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1 Introduction

Misallocation is important to understanding economic growth, both during economic
transitions (e.g., Buera and Shin, 2013, 2017; Moll, 2014) and in long-run steady states (e.g.,
Jovanovic, 2014; Acemoglu et al., 2018; Peters, 2020). Various measures of cross-sectional
dispersion indicate that the allocation efficiency of capital displays strong pro-cyclical
patterns (e.g., Eisfeldt and Rampini, 2006; Bloom, 2009; Kehrig, 2015; Bloom et al., 2018).
The link between capital misallocation and growth prospects can potentially shed light on
the fundamental forces that drive low-frequency growth fluctuations. These fluctuations in
growth constitute a systematic risk capable of quantitatively rationalizing numerous asset
pricing phenomena (e.g., Bansal and Yaron, 2004; Hansen, Heaton and Li, 2008) and helping
justify the substantial welfare costs associated with economic fluctuations. By introducing a
novel misallocation-based asset pricing mechanism, we underscore the critical role of the
valuation channel in conveying the substantial impact of capital misallocation on economic
growth prospects.

This paper quantitatively explores the relationship between misallocation, growth
prospects, and the systematic risk that shapes asset prices in capital markets. To achieve
this, we develop an analytically tractable general equilibrium model with heterogeneous
firms and endogenous stochastic growth. In our model, the misallocation of production
capital is endogenously slow-moving and causes low-frequency fluctuations in economic
growth. A shock that increases the misallocation of production capital results in a prolonged
elevation in the level of misallocation. This, in turn, leads to a persistent decline in incentives
for innovation (R&D), thereby affecting economic growth adversely. At the heart of this
mechanism is the impact of production capital misallocation on the marginal q of intangible
capital, which is the present value of marginal profits derived from intangible capital (e.g.,
Crouzet and Eberly, 2023). A reduced marginal q of intangible capital leads to weakened
incentives for innovation, with increased misallocation depressing the marginal q of intangi-
ble capital through two channels. First, it reduces the rents of innovation by decreasing the
aggregate demand for the goods licensed by innovation outputs. Second, when investors
exhibit recursive preferences, it elevates the risk premium required to discount the future
rents of innovation, due to heightened volatility in growth prospects, acting as a “leverage
effect” of financial frictions. This second channel magnifies the impact of capital misallo-
cation on economic growth prospects, establishing what we term the “valuation channel.”
Through this channel, fluctuations in misallocation have amplified effects on variations in
low-frequency economic growth.

Our model builds upon the framework established by Moll (2014), where misallocation
endogenously emerges as an outcome of financial frictions. We extend Moll (2014)’s
framework in three ways, all the while preserving its analytical tractability. First, we model
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Figure 1: Our model elucidates a mechanism that quantitatively links capital misallocation
to economic growth via a valuation channel.

heterogeneous firms engaged in the production of final goods. These firms are typically
publicly traded, owned by a diverse group of shareholders with homogeneous recursive
preferences. However, they are managed by corporate managers with objectives that differ
from those of their shareholders. This agency conflict leads to the financial frictions faced
by these firms. Second, in addition to the final goods sector, our model incorporates both
intermediate goods and R&D sectors. R&D activities, which contribute to expanding the
variety of intermediate goods utilized in the production of final goods, are pivotal in driving
technological progress and, consequently, endogenous economic growth, as articulated by
Romer (1986, 1990) and Jones (1995). Third, we incorporate aggregate shocks that drive
slow-moving misallocation.

The combination of these three components enables us to illustrate a novel and relevant
economic mechanism, as illustrated in Figure 1. When the misallocation of production
capital within the final goods sector increases, the aggregate demand for the goods produced
by the intermediate goods sector declines. In this sector, each producer holds monopoly
power over a specific type of intermediate goods by acquiring the blueprint from the R&D
sector. The lower demand for intermediate goods leads to lower monopoly rents, and thus
reduces the value of the blueprints invented within the R&D sector. This chain of events
then leads to a decline in the marginal q of intangible capital across the economy. As a
result, the incentive for innovation within the R&D sector declines, which ultimately leads
to a decrease in equilibrium economic growth prospects.

Importantly, there is more to the above mechanism, as highlighted in red color in Figure
1. The endogenously persistent and slow-moving misallocation of production capital implies
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that the aggregate shocks influencing misallocation can lead to low-frequency fluctuations
in economic growth. When agents have recursive preferences, these low-frequency growth
fluctuations, as a fundamental source of systematic risk, play a crucial role in determining
the discount rate (particularly, the risk premium). Importantly, due to the interaction with
financial frictions, the economic growth rate is not only low but also highly volatile in
periods with high misallocation, leading to a higher risk premium in economic downturns.
This further depresses the marginal q of intangible capital across the economy, amplifying
the impact of production capital misallocation on economic growth prospects through the
“valuation channel.”

Our theoretical framework, which links misallocation to growth, bears resemblances to
the model by Peters (2020), wherein the innovation rates of firms are negatively impacted by
the misallocation of production labor. However, our model is different in three significant
ways: (i) the source of misallocation in our model is financial frictions arising from agency
conflicts, rather than product market imperfections; (ii) our model focuses on the dynamics
of stochastic growth, rather than deterministic steady-state growth; and (iii) our model
emphasizes the “valuation channel,” a crucial aspect absent in the model of Peters (2020).
Our mechanism is also different from that of Acemoglu et al. (2018), who emphasize the
role of misallocation of R&D inputs, rather than the misallocation of production capital, in
determining equilibrium economic growth.

Below, we elaborate on the key elements of our model. Our economic model encompasses
three sectors. First, the R&D sector serves as the engine of knowledge creation, leveraging
final goods and the existing reservoir of knowledge to generate new blueprints. Second, the
intermediate goods sector capitalizes on these blueprints, in conjunction with final goods, to
produce a variety of differentiated intermediate goods. In this sector, there is a continuum
of producers. Each producer holds a monopoly over a specific type of intermediate good,
with the monopoly power secured by the blueprint acquired from the R&D sector. Finally,
the final goods sector uses production capital, labor, and intermediate inputs to produce
the ultimate end products. There is a representative agent who owns firms in all sectors, a
continuum of heterogeneous firms in the final goods sector, and homogeneous firms in the
intermediate goods and R&D sectors.

Firms in the final goods sector differ in both productivity levels and their stock of
production capital. Yet, due to agency conflicts, they are subjected to both collateral
constraints on borrowing and equity market constraints relating to payouts and issuances.
These financial frictions contribute to the misallocation of production capital among firms
operating within the final goods sector. Increased misallocation leads to a decline in
aggregate productivity within the final goods sector, wihch reduces the aggregate demand
for intermediate goods. This, in turn, adversely affects the profitability of innovation and
thus reduces the incentive of innovators to generate new blueprints for expanding the variety
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of intermediate goods, ultimately resulting in a lower growth rate for the economy.
There is one aggregate shock — the production capital depreciation shock — that drives

the aggregate fluctuation of the economy. Modeling aggregate shocks to production capital
depreciation rates follows Storesletten, Telmer and Yaron (2007), Gourio (2012), Brunnermeier
and Sannikov (2017), among others. Firms endogenously choose their capacity utilization
intensity. Higher intensity allows firms to produce more outputs at the cost of a higher
production capital depreciation rate. In equilibrium, firms with higher productivity deploy
their production capital more intensively, making them more vulnerable to the aggregate
capital depreciation shock than less productive firms. As a result, this aggregate shock leads
to fluctuations in the misallocation of production capital within the economy, which in turn
results in fluctuations in the economy’s growth rate.

Our model represents a general equilibrium framework featuring heterogeneous firms
and aggregate fluctuations. The standard approach to solving such models typically in-
volves numerical approximations based on key moments summarizing the cross-sectional
distribution of firms. We depart from the standard approach by proposing a parametric
approximation of the distribution of log productivity and log capital using a bivariate
normal distribution. This parametric approximation approach offers two major advantages.
First, it allows us to derive a closed-form expression for the misallocation of capital in the
final goods sector, which emerges as a crucial and explicit endogenous state variable that
summarizes the cross-sectional distribution of firms. Specifically, in our model, misallocation
is characterized by the covariance between the log marginal revenue product of capital
(MRPK) and log capital, normalized by the variance of log MRPK. This covariance-based
measure of misallocation is intuitive and aligns with similar metrics used in empirical
studies for assessing capital allocation efficiency (e.g., Olley and Pakes, 1996; Bartelsman,
Haltiwanger and Scarpetta, 2009, 2013). Second, our proposed parametric approximation
makes the model highly tractable and transparent. It allows the evolution of the model
economy to be analytically characterized by two endogenous state variables — misallocation
and the knowledge stock-capital ratio. This approach enables an analytical exploration
of the relationship between the dynamics of misallocation and the dynamics of aggregate
growth.1

To illustrate the key theoretical mechanism, we begin our analysis by focusing on the
deterministic balanced growth path in the absence of aggregate shocks. We show that
a one-time shock that increases misallocation can exert a persistently adverse effect on
economic growth. Specifically, due to financial frictions, the reallocation of capital across

1We justify the validity of this approximation using the Berry-Esseen bound (Tikhomirov, 1980; Bentkus,
Gotze and Tikhomoirov, 1997) under certain conditions. Our parametric approximation yields results that are
close to those obtained via standard numerical approximation methods, particularly under baseline calibration,
as detailed in Online Appendix III.
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firms takes time. As a result, the shock not only escalates misallocation at the moment of
impact but also prolongs this heightened level into the long-term future. Therefore, through
its influence on the marginal q of intangible capital, and consequently on R&D incentives,
what begins as a temporary shock to misallocation can result in a prolonged downturn
in economic growth. This underscores the profound and lasting effects that misallocation,
stemming from agency conflicts in the corporate sector, has on the economy. Furthermore,
we show that the persistence of both misallocation and economic growth is closely related to
the persistence of firms’ idiosyncratic productivity. This augments the key insight from Moll
(2014), which states that an increase in the persistence of firms’ idiosyncratic productivity
leads to a longer time for the economy to reach its steady state. In our model, the persistence
of idiosyncratic productivity emerges as a crucial determinant of the persistence of aggregate
economic growth. This is primarily because misallocation naturally adjusts more slowly
when idiosyncratic productivity becomes more persistent.

Building on this mechanism, we show that in the full model with aggregate shocks,
misallocation evolves slowly, leading to low-frequency fluctuations in economic growth. In
quantitative terms, the annual autocorrelation of misallocation stands at 0.73, while that
of consumption growth is 0.46, both closely mirroring empirical measures. Consequently,
our model demonstrates a novel mechanism linking misallocation fluctuations to low-
frequency growth fluctuations.2 Central to this mechanism is the valuation channel, which
significantly magnifies the effects of production capital misallocation in the final goods
sector on economic growth. In particular, during economic downturns, characterized by
heightened misallocation and reduced growth, firms in the final goods sector face greater
financial constraints. In such periods, the economic growth rate is not only low but also
highly volatile. Consequently, low expected consumption growth typically coincides with
high macroeconomic volatility, leading to an elevated risk premium. As a result, the marginal
q of intangible capital suffers a double impact: it is depressed not only because of reduced
profits, but also because future profits are discounted at a higher rate owing to the increased
risk premium.

Furthermore, we show that our model not only rationalizes several crucial asset pricing
moments but also suggests significant welfare costs associated with misallocation fluc-
tuations. Specifically, the model implies a high Sharpe ratio of 0.39 for the aggregate
consumption claim, accompanied by a low and stable risk-free rate, aligning with em-
pirical observations. The representative agent would experience a welfare gain of about
10% if consumption fluctuations are eliminated. The large quantitative effects generated
by misallocation fluctuations hinge on two properties of the model, the low-frequency

2Our model provides a misallocation-based explanation for the observed low-frequency covariation in the
time series of consumption growth and output growth (e.g., Bansal, Dittmar and Lundblad, 2005; Hansen,
Heaton and Li, 2008; Müller and Watson, 2008, 2018).
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growth fluctuations driven by slow-moving misallocation, and the recursive preference of
the representative agent. We show that if misallocation does not affect economic growth
or if it is not sufficiently slow moving to generate low-frequency growth fluctuations, the
quantified Sharpe ratio and welfare gain would be very small. Moreover, we demonstrate
that if the representative agent possesses time-separable preferences with constant relative
risk aversion (CRRA), the observed effects would be markedly diminished. The crux of this
phenomenon lies in the recursive preferences, which ensure that the representative agent’s
marginal utility today is influenced not just by current consumption growth, but more
importantly, by expectations of future consumption growth. Consequently, fluctuations in
anticipated consumption growth can exert significant valuation effects via the stochastic
discount factor (SDF). Furthermore, given the persistent nature of consumption growth, even
a transient shock can lead to enduring future effects. This persistence markedly heightens
the influence of future consumption growth on current marginal utility, thereby amplifying
the impact of capital misallocation on economic growth.

Although our main contribution is theoretical, we empirically test the main predictions
of our model. Motivated by our theory, we construct a misallocation measure based on the
covariance between log MRPK and log capital using U.S. Compustat data. We show that
the misallocation measure is persistent, with a yearly autocorrelation of 0.75. Moreover, the
value of our empirical measure of misallocation increases during economic downturns. We
show that an increase in misallocation predicts declines in R&D intensity and reductions in
the growth of aggregate consumption and output over long horizons. Moreover, we provide
direct causal evidence to support the model’s mechanism that misallocation drives long-run
growth through its impact on R&D. We consider the policy shock from the American Jobs
Creation Act (AJCA) passed in 2004, which relaxes financial constraints of firms with pre-tax
income from abroad. By exploiting industries’ differential exposure to this policy shock
in a difference-in-differences (DID) setting, we find that the AJCA considerably reduces
industry-level misallocation and raises R&D expenditure in treated industries. We further
show that the impact of the AJCA on industry-level R&D expenditure becomes statistically
insignificant after controlling for its impact on industry-level misallocation. In Section I
of the Online Appendix, we provide additional cross-sectional evidence to support the
main theoretical mechanism, suggesting that the proposed misallocation measure captures a
quantity-based macroeconomic asset pricing factor.

Related Literature. Our paper is related to several strands of the literature. First, our
work contributes to the enduring yet rapidly expanding body of literature emphasizing
the importance of misallocation in driving economic growth and development. In terms
of economic growth, it relates to the research by Banerjee and Duflo (2005), Jones (2013),
Jovanovic (2014), Acemoglu et al. (2018), Peters (2020), König et al. (2022), and Glode and
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Ordonez (2023), among others. Regarding economic development, it relates to studies such
as those by Foster, Haltiwanger and Syverson (2008), Restuccia and Rogerson (2008), Hsieh
and Klenow (2009), Jones (2011), Bartelsman, Haltiwanger and Scarpetta (2013), Asker,
Collard-Wexler and Loecker (2014), David, Hopenhayn and Venkateswaran (2016), and
David and Venkateswaran (2019). Our paper is particularly related to the literature on
financial frictions and misallocation. Most of this literature focuses on the long-run total
factor productivity (TFP) and welfare losses due to misallocation in the deterministic steady
state (e.g., Amaral and Quintin, 2010; Greenwood, Sanchez and Wang, 2010, 2013; Caselli
and Gennaioli, 2013; Midrigan and Xu, 2014; Buera, Kaboski and Shin, 2015), while a few
papers also analyze transitional dynamics (e.g., Jeong and Townsend, 2007; Buera and
Shin, 2013; Moll, 2014; Gopinath et al., 2017).3 Our paper develops a stochastic growth
model in which slow-moving misallocation endogenously drives low-frequency growth
cycles. We show that when agents have recursive preferences, the misallocation caused by
financial frictions can generate large risk premia and welfare losses through endogenous
low-frequency growth fluctuations. Moreover, the persistence of firm-level idiosyncratic
productivity plays an important role in generating slow-moving misallocation, which, in
turn, generates low-frequency growth fluctuations.4 Our results complement the key insight
of Moll (2014), who shows that as idiosyncratic productivity becomes increasingly persistent,
the transition speed from a distorted initial state to the steady state slows down, resulting in
potentially large welfare losses during transitions.

Relatively few studies in the finance literature have concentrated on the role of misalloca-
tion, especially when compared to the development and growth literature. This discrepancy
highlights a potential research gap that could be pivotal in understanding the broader
impacts of misallocation on financial systems and markets. Existing advances include
Eisfeldt and Rampini (2006, 2008b), Rampini and Viswanathan (2010), Fuchs, Green and
Papanikolaou (2016), van Binsbergen and Opp (2019), Ai, Li and Yang (2020), Ai et al. (2020),
and Lanteri and Rampini (2021), among others. Our paper is most related to David, Schmid
and Zeke (2022), who analyze the implications of macroeconomic risk for misallocation.
Nevertheless, our paper examines the reverse relationship — the consequences of misal-
location on macroeconomic risk. Specifically, our model reveals that misallocation within
the economy can itself act as a macroeconomic risk factor of asset pricing. This occurs as

3Several papers measure the importance of financing costs in generating misallocation. For example,
Gilchrist, Sim and Zakrajsek (2013) find that the costs of debt play a limited role in generating misallocation
based on a sample consisting of about 500 (mostly large) firms that issue corporate bonds. David, Schmid and
Zeke (2022) find that the costs of equity are important in generating misallocation. Whited and Zhao (2021)
find significant variations in the costs of debt and equity across U.S. firms.

4By connecting the persistence in idiosyncratic productivity with the persistence in aggregate consumption
growth, our model implies that low-frequency growth fluctuations can be identified using granular firm-level
data, which potentially helps address the issues of weak identification in the asset pricing literature (Chen,
Dou and Kogan, 2022; Cheng, Dou and Liao, 2022).
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misallocation influences the investors’ SDF through its effect on low-frequency consumption
growth. In contrast, the model of David, Schmid and Zeke (2022) adopts an exogenous SDF
to assess how macroeconomic risk impacts the economy’s misallocation.

Our paper also contributes to the asset pricing literature. Various theoretical studies
provide micro foundations to justify low-frequency growth fluctuations (e.g., Ai, 2010;
Kaltenbrunner and Lochstoer, 2010; Nicolae, Panageas and Yu, 2012; Croce, 2014; Kung and
Schmid, 2015; Collin-Dufresne, Johannes and Lochstoer, 2016; Ai, Li and Yang, 2020; Gâr-
leanu and Panageas, 2020; Croce, Nguyen and Raymond, 2021). Our paper is most closely
related to the work of Kung and Schmid (2015), who illustrate that R&D endogenously
drives a small, persistent component of productivity, generating long-run uncertainty about
economic growth. The primary distinction of our model from theirs lies in incorporating
the cross-sectional misallocation of production capital, which influences both the aggregate
TFP and the total demand for intermediate inputs. Importantly, due to the interaction with
financial frictions, the economic growth rate is not only reduced but also subject to greater
volatility in times of economic downturns, which elevates the risk premium, thereby ampli-
fying the effect of production capital misallocation on economic growth prospects through
the ”valuation channel.” This difference allows our theory to rationalize low-frequency
growth fluctuations through the equilibrium interactions between endogenous slow-moving
misallocation, marginal q of intangible capital, and R&D activities — a mechanism supported
by the data.

Finally, our paper is related to the literature on the welfare cost of economic fluctu-
ations (e.g., Lucas, 1987). In particular, the following papers are closely related to our
work. Barlevy (2004) shows that economic fluctuations at business cycle frequencies can
cause substantial welfare losses by influencing the growth rate of consumption via capital
investment. Furthermore, Alvarez and Jermann (2004) use asset prices to estimate that
the welfare gains from eliminating all consumption fluctuations are significantly greater
than those from just eliminating the fluctuations at business cycle frequencies. Our model,
which focuses on slow-moving misallocation, driven endogenously by transient shocks,
explains the occurrence of low-frequency growth fluctuations. As a result, it underscores
the significant welfare costs associated with these misallocation fluctuations, particularly
through their impact on low-frequency growth. This is especially pertinent in scenarios
where the representative agent exhibits recursive preferences.

2 Model

There are three sectors: a final goods sector with heterogeneous firms, an intermediate
goods sector, and an R&D sector. A representative agent holds ownership in firms across all
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these sectors.

2.1 Final Goods Sector

In the final goods sector, there is a continuum of firms of measure one, indexed by i ∈ I ≡
[0, 1] and operated by managers. Firms are different from each other in their idiosyncratic
productivity zi,t and capital ai,t. The distribution of firms at t is characterized by the joint
probability density function (PDF), φt(a, z).

The firm produces output at intensity yi,t over [t, t+dt) using a technology with constant
returns to scale (CRS):

yi,t =
[
(zi,tui,tki,t)

αℓ1−α
i,t

]1−ε
xε

i,t, with α, ε ∈ (0, 1), (1)

where labor ℓi,t is hired in a competitive labor market at the equilibrium wage wt. The
variable ki,t = ai,t + âi,t is the capital installed in production, which includes the firm’s
own capital ai,t and the leased capital âi,t borrowed from a competitive rental market at the
equilibrium risk-free rate r f ,t.5 The final goods are the numeraire.

As specified in (1), the firm’s output yi,t increases with its idiosyncratic productivity
zi,t and endogenous choice of capacity utilization intensity ui,t ∈ [0, 1]. Utilizing capital at
intensity ui,t leads to depreciation of ui,tki,td∆t over [t, t + dt). In this expression, d∆t =

δkdt + σkdWt represents the stochastic depreciation rate, where δk and σk are positive
constants. In our framework, the standard Brownian motion, denoted as Wt, is employed to
represent the aggregate capital depreciation shock. This method of modeling the aggregate
capital depreciation shock is in line with the approaches used in existing studies, such as
Storesletten, Telmer and Yaron (2007), Albuquerue and Wang (2008), and Gourio (2012).

The firm’s own capital stock evolves according to

dai,t = −δaai,tdt + σa,tai,tdWt + dIi,t, (2)

where δa > 0 is the constant depreciation rate and σa,tai,tdWt captures shocks to capital
efficiency. We assume that a single aggregate shock dWt affects both capital depreciation
and efficiency for tractability. This implies that an improvement in the efficiency of new
capital is associated with the depreciation of existing capital, capturing the displacement
effect of new capital (e.g., Gârleanu, Kogan and Panageas, 2012; Kogan et al., 2017; Kogan,
Papanikolaou and Stoffman, 2020).6 The firm’s investment over [t, t + dt), denoted by dIi,t,

5The capital leasing market is relevant for firms’ production and financial decisions (e.g., Eisfeldt and
Rampini, 2008a; Rampini and Viswanathan, 2013; Li and Tsou, 2021).

6The modeling of capital efficiency shocks is widely adopted in the literature (e.g., Sundaresan, 1984; Cox,
Ingersoll and Ross, 1985; Kogan, 2001, 2004; Gourio, 2012; Di Tella, 2017; Dou, 2017).
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is defined in equation (17) below. As we show in Section 3.2, the aggregate shock dWt

generates time variations in the misallocation of production capital.7

The composite xi,t in equation (1) consists of differentiated intermediate goods, given by
the constant elasticity of substitution (CES) aggregation:

xi,t =

(∫ Nt

0
xν

i,j,tdj
) 1

ν

, (3)

where xi,j,t is the quantity of intermediate goods j ∈ [0, Nt]. The elasticity of substitution
among differentiated intermediate goods is 1/(1 − ν) > 0. At any given time t, the stock of
knowledge in the economy, encapsulated in the variety of intermediate goods, is quantified
as Nt. It is through the expansion of Nt that technological advances occur and drive economic
growth.

The firm’s idiosyncratic productivity zi,t evolves according to

d ln zi,t = −θ ln zi,tdt + σ
√

θdWi,t, (4)

where the standard Brownian motion Wi,t captures idiosyncratic productivity shocks. The
parameter θ determines the persistence of zi,t.

2.2 Intermediate Goods Sector

There is a continuum of homogeneous intermediate goods producers indexed by j ∈ [0, Nt].
Each producer j holds monopoly power in pricing a specific type of intermediate good, a
power that is guaranteed by the blueprint obtained from the R&D sector. These producers
purchase final goods and convert them into intermediate goods following the blueprints. In
this process, one unit of final goods is utilized to produce one unit of intermediate goods.
Let pj,t denote the price of intermediate good j. The producer solves the following problem
to maximize monopoly profit:

πj,t = max
pj,t

pj,tej,t − ej,t, (5)

subject to the downward-sloping demand curve:

ej,t =

(
pj,t

pt

) 1
ν−1

Xt, with pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

, (6)

7Other aggregate shocks can also generate time variations in misallocation, such as the aggregate shocks to
firms’ financial constraints. However, Jermann and Quadrini (2012) show that financial shocks cannot generate
persistent macroeconomic effects unless the shocks themselves are calibrated to be persistent. The aggregate
shock dWt in our model directly affects firms’ capital. Because capital accumulation is a gradual process, even
independent and identically distributed shocks to firms’ capital can generate persistent macroeconomic effects.
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where Xt ≡
∫

i∈I xi,tdi is the aggregate demand for the composite of intermediate goods.
Let qj,t be the value of owning the exclusive rights to produce intermediate good j.

Because intermediate-good producers are homogeneous, in a symmetric equilibrium, it must
hold that qj,t ≡ qt and πj,t ≡ πt, for all producers j ∈ [0, Nt]. Intermediate good producers,
while engaging in monopolistic competition in intermediate goods markets dealing with
final goods firms, operate under perfect competition in the blueprint market with innovators.
As a result, the price of a blueprint, qt, equates to the present value of future monopoly
rents that a blueprint can generate, discounted by the SDF of the representative agent. Thus,
the value of qt satisfies the Hamilton-Jacobi-Bellman equation:

0 = Λt (πt − δbqt)dt + Et [d(Λtqt)] , (7)

where Λt is the SDF of the representative agent, as specified in (13), and δb is the patent
obsolescence rate. The variable qt can be interpreted as the marginal q of intangible capital
in the economy.

2.3 R&D Sector

Innovators in the model are atomistic, with each one capable of inventing a single blueprint
through an R&D experiment over [t, t+dt) with a success rate ϑt > 0. Each R&D experiment
requires the use of final goods as R&D expenditure with unity intensity over [t, t + dt).
Each innovator in the model can optimally decide to engage in an R&D experiment without
incurring any entry costs. Let St represent the total number of innovators who choose to
participate over [t, t + dt). As a result, the total number of newly created blueprints over
[t, t + dt) is given by ϑtStdt, which contributes to the evolution of the aggregate knowledge
stock, Nt, as follows:

dNt = ϑtStdt − δbNtdt. (8)

Importantly, the success rate of R&D experiments, ϑt, is influenced by both the aggregate
stock of knowledge Nt and the total R&D expenditure St. In line with Comin and Gertler
(2006), we model the success rate as ϑt = χ (Nt/St)

h, where h ∈ (0, 1). This formulation
captures the positive spillover effect of the aggregate knowledge stock, Nt, as emphasized
by Romer (1990) and Jones (1995), and the congestion or competition effect of the total R&D
activities, St, in the success rate.8

In equilibrium, the free-entry condition dictates that the expected return from R&D for
the marginal innovator choosing to engage in an R&D experiment must be equal to the

8The production of non-rival knowledge stock through R&D is the core engine of long-run growth (Romer,
1986, 1990; Jones, 1995). Recently, Crouzet et al. (2022) develop a model to show that the degree of nonrivalry
in intangible capital has non-monotonic effects on growth.
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expenditure incurred for the R&D experiment. This implies that

qtϑt = 1. (9)

The free-entry condition implies an investment-q relation for intangible capital at the
aggregate level (e.g., Peters and Taylor, 2017; Crouzet and Eberly, 2023) as follows:

qt = χ−1 (St/Nt)
h . (10)

2.4 Agents

There is a continuum of agents, including workers and managers. Each manager operates
a firm in the final goods sector that is subject to agency problems.9 Workers in the model
lend funds to firms and additionally hold equity claims on all of them. We assume the
existence of a complete set of Arrow-Debreu securities, allowing agents to fully insure
against idiosyncratic consumption risks, ensuring the existence of a representative agent.
The aggregate labor supply is inelastic and normalized to be Lt ≡ 1.

Preferences. The representative agent has stochastic differential utility as in Duffie and
Epstein (1992):

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (11)

where

f (Ct, Ut) =

(
1 − γ

1 − ψ−1

)
Ut

[(
Ct

[(1 − γ)Ut]1/(1−γ)

)1−ψ−1

− δ

]
. (12)

This preference is a continuous-time version of the recursive preferences proposed by Kreps
and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity function f is an
aggregator over the current consumption rate Ct of final goods and future utility level
Ut. The coefficient δ is the subjective discount rate, the parameter ψ is the elasticity of
intertemporal substitution (EIS), and the parameter γ captures risk aversion.

The representative agent’s SDF is

Λt = exp
[∫ t

0
fU(Cs, Us)ds

]
fC(Ct, Ut). (13)

Limited Enforcement. Constraints in the equity market for payouts/issuances and in the
credit market for borrowing emerge endogenously due to limited enforcement problems

9The managers, who may be executives, directors, or entrepreneurs, can also broadly include controlling
shareholders. These shareholders have control over the firms’ investment and payout policies (e.g., Albuquerue
and Wang, 2008).
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associated with equity and debt contracts.
Manager i extracts pecuniary rents τai,tdt over [t, t + dt) while running firm i.10 In line

with the corporate finance literature (e.g., Myers, 2000; Lambrecht and Myers, 2008, 2012),
we conceptualize rents primarily as cash compensation, although, in practice, managerial
rents can take various forms, extending to real resources appropriated by a broad coalition
of managers and staff. These forms include above-market salaries, generous pensions,
perks, and enhanced job security. Shareholders have the option to intervene and take
control of the firm by replacing the manager. However, this intervention is costly due to
the need for collective action, as noted by Myers (2000), and it can also damage the firm’s
talent-dependent customer capital, as detailed in Dou et al. (2020).

In particular, we assume that upon shareholder intervention, a fraction τ/ρ of the capital
ai,t is lost, with τ < ρ, and the shareholders then become the firm’s new manager. In
equilibrium, to prevent such an intervention, the manager optimally pays out dividends at
the minimum amount necessary to dissuade shareholders from intervening. This leads to a
payout intensity policy of di,t = ρai,t over [t, t + dt).11

Moreover, the manager can divert a fraction 1/λ of leased capital âi,t with λ ≥ 1. As a
punishment, the firm would lose its own capital ai,t. In equilibrium, the manager is able
to borrow up to the point where he has no incentive to divert leased capital, implying a
collateral constraint of âi,t ≤ λai,t, as in Buera and Shin (2013) and Moll (2014).

The financial frictions described above are formally encapsulated in the following propo-
sition, with its proof provided in the Online Appendix II.A.

Proposition 1. Because of the agency problem with limited enforcement, the firm’s payout/issuance
policy is subject to the following equity market constraint:

di,t = ρai,t. (14)

Moreover, the firm’s leased capital is subject to the following collateral constraint:

−ai,t ≤ âi,t ≤ λai,t. (15)

Several points are worth further discussion. First, there are other agency problems that
can lead to the equity market and collateral constraints (e.g., Gertler and Kiyotaki, 2010;
Gertler and Karadi, 2011). Second, the equity market constraint, widely studied in the

10Managers are able to extract rents due to the imperfections in corporate governance. In practice, preventing
managers from diverting cash flows for their private benefit is challenging for shareholders, despite the
observability of cash flows and the protection of shareholders’ property rights to firm assets.

11Technically, since the dividend intensity is a constant fraction of the firm’s capital, the model has linear
solutions and tractable aggregation. A similar feature is observed in the model of Moll (2014), which results
from the logarithmic preferences of entrepreneurs and the presence of CRS technology.
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corporate finance literature (Myers, 2000; Lambrecht and Myers, 2008, 2012, e.g.,), essentially
means that firms cannot freely move funds in and out of themselves. Third, our model’s
formulation of capital market imperfections, which is analytically tractable, captures the
fact that firms face restrictions and costs in accessing external funds. Fourth, one specific
interpretation of interfirm borrowing and lending is through a competitive rental market,
where firms can rent capital from each other (e.g., Jorgenson, 1963; Hall and Jorgenson, 1969;
Buera and Shin, 2013; Moll, 2014).

Managers’ Problem. The manager of firm i makes decisions for all s ≥ t to maximize the
present value Ji,t of future managerial rents, as in Lambrecht and Myers (2008, 2012),

Ji,t = max
âi,s,ui,s,ℓi,s,{xi,j,s}

Nt
j=0

Et

[∫ ∞

t

Λs

Λt
τai,sds

]
, (16)

subject to the equity market constraint (14), the collateral constraint (15), and the intertem-
poral budget constraint (2) with dIi,t given by

dIi,t = yi,tdt −
∫ Nt

0
pj,txi,j,tdjdt − wtℓi,tdt − ui,tki,td∆t − r f ,t âi,tdt − di,tdt, (17)

where profits are reinvested, similar to Pástor and Veronesi (2012).
The SDF Λt evolves according to

dΛt

Λt
= −r f ,tdt − ηtdWt, (18)

where ηt is the endogenous market price of risk. Given that the technology, the budget
constraint, and the collateral constraint are all linear in ai,t, the value Ji,t is also linear in ai,t:

Ji,t ≡ Jt(ai,t, zi,t) = ξt(zi,t)ai,t, (19)

where ξi,t ≡ ξt(zi,t) captures the marginal value of capital to the manager, which depends
on zi,t and the aggregate state of the economy. The variable ξi,t evolves as follows:

dξi,t

ξi,t
= µξ,t(zi,t)dt + σξ,t(zi,t)dWt + σw,t(zi,t)dWi,t, (20)

where µξ,t(zi,t), σξ,t(zi,t), and σw,t(zi,t) are endogenously determined in equilibrium.
By exploiting the homogeneity of Ji,t in capital ai,t, we derive the manager’s optimal

decisions. These are summarized in Lemma 1, with the proof provided in the Online
Appendix II.B.
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Lemma 1. There is a cutoff zt for being active, and factor demands are linear in capital kt(a, z):

ut(z) =

{
1, z ≥ zt

0 z < zt
, kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
, (21)

ℓt(a, z) = (ε/pt)
ε

α(1−ε) h
1
α
t zut(z)kt(a, z), and (22)

xj,t(a, z) =
(

pj,t/pt
) 1

ν−1 (ε/pt)
1−(1−α)(1−ε)

α(1−ε) h
1−α

α
t zut(z)kt(a, z), for j ∈ [0, Nt], (23)

where ht = (1 − α)(1 − ε)/wt. The productivity cutoff zt is determined by:

ztκt = r f ,t + δk + σk[σξ,t(zt)− ηt], with κt = α(1 − ε) (ε/pt)
ε

α(1−ε) h
1−α

α
t . (24)

At time t, only firms with zi,t ≥ zt produce, and these firms rent the maximal amount
âi,t = λai,t allowed by the collateral constraint. In equation (24), the cutoff zt is deter-
mined such that the marginal return ztκt is equal to the marginal cost of leased capital,
which includes the locally deterministic user cost of capital r f ,t + δk and a stochastic term
σk

[
σξ,t(zt)− ηt

]
, reflecting the firm’s exposure to aggregate risk.

Using Lemma 1, equation (17) can be simplified as12

dIi,t = (1 + λ)
(
κtzi,tdt − d∆t − r f ,tdt

)
ai,t1zi,t≥zt + (r f ,t − ρ)ai,tdt. (25)

2.5 Equilibrium and Aggregation

The dividend intensity Dt is given by

Dt = ρAt +
∫ Nt

j=0
πj,tdj − St, (26)

where At is the aggregate capital held by firms in the final goods sector, given by

At =
∫ ∞

0

∫ ∞

0
aφt(a, z)dadz. (27)

Definition 2.1 (Competitive Equilibrium). At any given time t, the competitive equilibrium of the
economy is defined by a set of prices wt, r f ,t, and

{
pj,t

}Nt
j=0, along with their corresponding quantities,

such that

(i) each firm i in the final goods sector maximizes (16) by choosing âi,t, ui,t, ℓi,t, and {xi,j,t}Nt
j=0,

12Similar to the approach in Moll (2014), the drift term in the capital accumulation equation is proportional
to the firm’s capital ai,t. This relationship directly results from the constant payout ratio as specified in equation
(14) and the CRS production technology, outlined in equation (1), given a specific Nt.

16



subject to (14), (15), and (17), given the equilibrium prices;

(ii) each intermediate goods producer j maximizes (5) by choosing pj,t for j ∈ [0, Nt];

(iii) the equilibrium R&D expenditure St is determined by equation (9);

(iv) the SDF Λt is given by equation (13) and the risk-free rate r f ,t is determined by

r f ,t = − 1
dt

Et

[
dΛt

Λt

]
; (28)

(v) the labor market-clearing condition determines wt:

Lt =
∫ ∞

zt

∫ ∞

0
ℓt(a, z)φt(a, z)dadz; (29)

(vi) the leased capital market-clearing condition determines the representative agent’s bond holdings
Bt:

Bt =
∫ ∞

0

∫ ∞

0
ât(a, z)φt(a, z)dadz. (30)

The aggregate capital Kt is the sum of capital in the final goods sector At and bonds Bt

Kt =
∫ ∞

0

∫ ∞

0
kt(a, z)φt(a, z)dadz = At + Bt. (31)

(vii) the resource constraint is satisfied because of Walras’s law.

Because firms’ problem is linear in capital ai,t, we introduce the capital share ωt(z) to
fully characterize the distribution of firms in the final goods sector:

ωt(z) ≡
1
At

∫ ∞

0
aφt(a, z)da. (32)

Intuitively, the capital share ωt(z) plays the role of a density and captures the share of firms’
capital held by each productivity type z. We define the analogue of the corresponding
cumulative distribution function (CDF) as follows

Ωt(z) ≡
∫ z

0
ωt(z′)dz′. (33)

To ensure well-behaved equilibrium growth, as in standard growth models, we need
output Yt to be homogenous of degree one in the accumulating factors Nt and Kt, i.e.,
(1−ν)ε
ν(1−ε)

+ α = 1, as in Kung and Schmid (2015). For the remainder of the paper, we assume
this parameter restriction.
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Proposition 2. At time t ≥ 0, given ωt(z), the equilibrium aggregate output is

Yt = ZtKα
t L1−α

t , (34)

where Zt is the economy’s TFP, given by

Zt = (εν)
ε

1−ε HtN1−α
t with Ht =

[∫ ∞
zt

zωt(z)dz

1 − Ωt(zt)

]α

. (35)

The variable Ht captures the endogenous productivity of the final goods sector. Factor prices are

pj,t = 1/ν for j ∈ [0, Nt], pt = N
ν−1

ν
t /ν, and wt = (1 − α)(1 − ε)Yt/Lt. (36)

The aggregate profits of the intermediate goods sector and R&D expenditure are, respectively,

Ntπt = (1 − ν)εYt and St = (χqt)
1
h Nt. (37)

Equation (35) shows that TFP depends on both the knowledge stock Nt and the final
goods sector’s productivity Ht, which is the average firm-level productivity z weighted by
ωt(z).13 The value of Ht is higher when more productive firms are associated with more
capital, which reflects a more efficient allocation of capital across firms.

3 Model Solution and Mechanism

In Section 3.1, we present a parametric approximation of the firm distribution. This approx-
imation allows us to derive an endogenous state variable that captures the misallocation
of production capital within the model economy. In Sections 3.2 and 3.3, we explore the
economy’s evolution under the influence of aggregate shocks and describe the deterministic
balanced growth path in the absence of aggregate shocks, respectively. Finally, in Section
3.4, we leverage the deterministic balanced growth path to highlight the key theoretical
mechanism underlying our model. We show that a one-time shock exerts an endogenous
and lasting impact on misallocation, thereby engendering persistent transitional dynamics
in the aggregate growth rate.

13Equation (35) is related to the industry-level TFP formula derived by Hsieh and Klenow (2009). The key
difference is that in our model, firms in the final goods sector produce homogeneous goods, whereas firms in
the model of Hsieh and Klenow (2009) produce differentiated goods. In Online Appendix IV, we show that by
driving the elasticity of substitution among goods to infinity and wedges to 0, the industry-level TFP formula
of Hsieh and Klenow (2009) coincides with our productivity Ht in equation (35).
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3.1 Parametric Approximation: Misallocation as a State Variable

The capital share ωt(z) is an infinite-dimensional object that evolves endogenously. This
makes our general equilibrium model with aggregate shocks intractable. Rather than solving
the model using the standard numerical approximation methods developed in the literature
(e.g., Krusell and Smith, 1998), we propose a parametric approximation of ωt(z), which
serves three purposes. First, it yields a simple endogenous state variable that intuitively
captures the misallocation of capital in the final goods sector. Second, it enables us to clearly
illustrate the relationship between misallocation dynamics and aggregate growth dynamics,
thereby making it easier to demonstrate the pivotal mechanism linking production capital
misallocation with the low-frequency component of economic growth.14 Third, It facilitates
an analytical characterization of the model economy’s evolution, rendering the computation
of model dynamics highly tractable. In Online Appendix III, we assess the accuracy of our
parametric approximation and offer in-depth discussions on its relationship with numerical
approximation methods previously developed in the literature.15

Specifically, at any time t ≥ 0, we approximate the distribution of log capital ãi,t =

ln ai,t and log productivity z̃i,t = ln zi,t across firms in the final goods sector using a
bivariate normal distribution. This assumption is similar in spirit to the bivariate log-normal
distribution of the skills of matched young and old agents in the model of Jovanovic (2014).
With this parametric assumption, Jovanovic (2014) derives analytical transitional dynamics
to cleanly characterize the link between misallocation in the labor market and growth.

This approximation is intuitive because according to equation (4), in the stochastic steady
state, we have z̃i,t ∼ N(0, σ2/2) in the cross section of firms. Moreover, using the Berry-
Esseen bound, it holds heuristically that ãi,t across firms approximately follows a normal
distribution (see Online Appendix III.A). This joint log-normal approximation enables the
derivation of a closed-form formula for ωt(z).

Proposition 3. For any t ≥ 0, the capital share ωt(z) can be approximated by the PDF of a

14The idea of using tractable parametric approximations to deliver key model mechanisms is similar in
spirit to several influential works in the finance literature. For example, Campbell and Shiller (1988b) propose
log-linear present value approximations to decompose the impact of discount-rate news and cash-flow news
on stock valuations. Gabaix (2007, 2012) develops the class of “linearity-generating” processes to achieve
analytical convenience when revisiting a set of macro-finance puzzles.

15Under the baseline calibration, our solutions closely match those obtained through standard numerical
approximation methods, which directly track the evolution of ωt(z) by utilizing higher-order moments in
both the deterministic balanced growth path and the stochastic steady state. Our parametric approximation
method shares a similar philosophy with these standard methods, in that it uses a selected number of moments
to encapsulate the infinite-dimensional cross-sectional distribution of agents or firms. The key distinction,
however, lies in our approach’s direct application of a parametric functional form to delineate the distribution
at any given time. This approach enables us to derive closed-form equations for the evolution of these moments.
In contrast, with standard numerical approximation methods, the evolution of these moments cannot be
characterized in closed form.
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log-normal distribution,

ωt(z) =
1

zσ
√

π
exp

[
− (ln z + σ2Mt/2)2

σ2

]
, (38)

where Mt ≡ −Cov(z̃i,t, ãi,t)/var(z̃i,t) = −2Cov(z̃i,t, ãi,t)/σ2.

Intuitively, Proposition 3 implies that under our approximation, the endogenous state
variable Mt ≡ −Cov(z̃i,t, ãi,t)/var(z̃i,t) is a sufficient statistic that characterizes the evolution
of ωt(z). We further characterize the economy’s TFP Zt in closed form.

Proposition 4. Under our approximation, the aggregate TFP Zt is

Zt = (εν)
ε

1−ε N1−α
t

[
(1 + λ)

At

Kt
exp

(
−σ2

2
Mt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

, (39)

where Φ(·) represents the CDF of a standard normal variable.

Equation (39) shows that the economy’s TFP, Zt, strictly decreases with the endogenous
state variable Mt, holding aggregate variables At, Kt, and Nt fixed. Thus, Mt reflects
the degree of misallocation in our model economy. In fact, Mt also directly reflects the
distribution of MRPK. To elaborate, substituting out labor and intermediate inputs in firms’
technology using Lemma 1, we obtain

yi,t = vi,tki,t, with vi,t = (ε/pt)
ε

α(1−ε) h
1−α

α
t zi,t. (40)

Because final goods are the numeraire, vi,t measures firm i’s MRPK at t. Define ṽi,t = ln vi,t.
We obtain a theoretically motivated measure for misallocation:

Mt ≡ −Cov(z̃i,t, ãi,t)

var(z̃i,t)
= −Cov(ṽi,t, ãi,t)

var(ṽi,t)
, ∀ t ≥ 0. (41)

Intuitively, in our model, the covariance between productivity and production cap-
ital, Cov(z̃i,t, ãi,t), is fundamentally akin to the covariance between MRPK and capital,
Cov(ṽi,t, ãi,t), given that firms produce homogeneous goods using a CRS technology. A
higher Mt reflects that firms with higher productivity (zi,t) or MRPK (vi,t) are linked to
a lower level of production capital (ai,t), which, according to Proposition 4, results in a
diminished TFP.

Relation to Existing Empirical Measures of Misallocation. Our model-implied misal-
location measure Mt is similar to the capital allocation efficiency measure based on the
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covariance between size and productivity (e.g., Olley and Pakes, 1996; Bartelsman, Halti-
wanger and Scarpetta, 2009, 2013).16 The state variable Mt constructed in equation (41)
provides a theoretical justification for using the size-productivity covariance as a measure
of capital allocation efficiency. In particular, our model analytically characterizes that a
higher Mt (i.e., a lower covariance) reduces aggregate TFP (see equation (39)). Moreover,
under the parametric approximation of our model economy, Mt sufficiently summarizes
the cross-sectional distribution of firms, ωt(z), thereby highlighting the significant role of
production capital misallocation as an endogenous state variable.

The covariance-type measure for misallocation is fundamentally similar to the dispersion
measures employed in the misallocation literature, such as the dispersion of revenue TFP
or MRPK (e.g., Foster, Haltiwanger and Syverson, 2008; Hsieh and Klenow, 2009). These
measures assess the effects of capital allocation efficiency on aggregate TFP and are grounded
in the crucial assumption that allocation distortions occur when the marginal revenue
product of a production factor diverges from its marginal cost. Bartelsman, Haltiwanger and
Scarpetta (2013) offer evidence that the relationship between size and productivity is more
resistant to multiplicative measurement errors compared to the dispersion measures. They
argue that classical measurement errors typically inflate the standard deviation of measured
MRPK but leave the measured covariance unaffected. Similarly, Eisfeldt and Shi (2018)
contend that due to the noisiness of productivity dispersion measures, they may not be
informative for capturing business cycle variations in misallocation frictions. This aspect is
especially relevant to our research, as we seek to investigate the asset pricing implications of
misallocation and its influence on economic growth fluctuations. In Section 4.1, we construct
a model-consistent empirical measure of misallocation based on the covariance-type measure
Mt, as outlined in equation (41).

3.2 Evolution of the Economy

Under the parametric approximation, the economy’s transitional dynamics are characterized
by the evolution of aggregate capital At in the final goods sector, the knowledge stock Nt,
and misallocation Mt, as summarized in the proposition below.

Proposition 5. Under our parametric approximation, for all t ≥ 0, the economy is fully characterized

16Olley and Pakes (1996) decompose total productivity into the unweighted average of plant-level produc-
tivities and the sample covariance between productivity and the share of output. They argue that the latter
captures capital allocation efficiency because a higher covariance implies that a higher share of output goes
to more productive firms. Bartelsman, Haltiwanger and Scarpetta (2009, 2013) generalize this measure by
focusing on the covariance between firm-level log productivity and size, where productivity is measured
by physical TFP, revenue TFP, or labor productivity and size is measured by the amount of physical output,
revenue, or input. They show that the size-productivity relationship carries over to these alternative measures
of size and productivity in a class of models.
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by the evolution of At, Nt, and Mt, as follows

dAt =
[
α(1 − ε)Yt − δkKt − δa At − r f ,tBt − ρAt

]
dt − (σkKt − σa,t At)dWt, (42)

dNt =χ (χqt)
1−h

h Ntdt − δbNtdt, (43)

dMt =− θMtdt − Cov(z̃i,t, dãi,t)/var(z̃i,t), (44)

where Kt = (1 + λ) [1 − Ωt(zt)] At, Bt = Kt − At, and Cov(z̃i,t, dãi,t) is given by equation (IA.67)
in Online Appendix II.F.

Define Et = Nt/At as the knowledge stock-capital ratio. Because the economy is
homogeneous of degree one in At, the three state variables (At, Nt, Mt) can be further
reduced to two state variables (Et, Mt).

In equation (42), the last term (σkKt − σa,t At)dWt captures the variation in At due to
aggregate shocks. As our aim is to theoretically demonstrate the asset pricing implications
of misallocation, we seek to create a setting devoid of confounding effects from other
channels. Hence, we adopt the technical specification σa,t = Kt/Atσk. This specification
ensures that the evolution of the aggregate capital stock is locally deterministic, allowing
economic fluctuations in our model to be purely driven by the variation in misallocation Mt

in equation (44). This setup enables a focused analysis on the role of Mt.17

Equation (44) shows that the evolution of Mt depends on two terms. The first term
−θMtdt is related to the evolution of idiosyncratic productivity zi,t (see equation (4)).
Intuitively, a higher θ implies a less persistent zi,t, which drives misallocation Mt =

−Cov(z̃i,t, ãi,t)/var(z̃i,t) towards zero more rapidly, thereby making Mt less persistent. The
second term, Cov(z̃i,t, dãi,t)/var(z̃i,t), captures the impact of capital accumulation, dãi,t,
as described by equation (2). A higher Cov(z̃i,t, dãi,t) implies that more productive firms
accumulate their capital at a higher rate, which reduces misallocation Mt. The variable
Cov(z̃i,t, dãi,t) negatively depends on the aggregate shock dWt (see equation (IA.67) in
Online Appendix II.F). Intuitively, a positive shock (dWt > 0) increases the depreciation
rate of capital ki,t, which reduces the capital accumulation of more productive firms (i.e.,
zi,t ≥ zt) but not that of less productive firms (i.e., zi,t < zt), which do not produce (see
equation (21)). As a result, a positive shock leads to a lower Cov(z̃i,t, dãi,t) and increases
misallocation Mt, which, in turn, reduces aggregate output and consumption, indicating
that Mt is countercyclical.

17By excluding other channels, our technical specification might exaggerate the quantitative impact of
misallocation. With this consideration in mind, we clarify that the aim of our quantitative analysis in Section
4 is not to precisely identify the contribution of misallocation to growth fluctuations. Rather, our objective
is to show that, within a reasonably calibrated model, slow-moving misallocation can induce significant
low-frequency fluctuations in growth. These fluctuations, in turn, can explain the high Sharpe ratio observed
in the capital market and result in considerable welfare costs.
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3.3 Deterministic Balanced Growth Path

To clearly illustrate the equilibrium relationship between misallocation and long-run growth,
we characterize the economy’s deterministic balanced growth path in the absence of aggre-
gate shocks (i.e., dWt ≡ 0).

Proposition 6. There is a deterministic balanced growth path on which Et ≡ E, Mt ≡ M, and
Ht ≡ H are constant. The aggregate capital At, knowledge stock Nt, output Yt, TFP Zt, and
consumption Ct grow at the same constant rate g, and their ratios are constant.

The values of these variables and the growth rate g are determined by the system of
equations presented in Online Appendix II.G. We highlight that g is directly related to the
marginal q of intangible capital as follows:

g = χ(χq)
1−h

h − δb. (45)

The next proposition clearly shows that on the deterministic balanced growth path, there is
a negative relationship between misallocation M and the marginal q of intangible capital.

Proposition 7. Under our parametric approximation, the marginal q of intangible capital is nega-
tively related to misallocation M on the deterministic balanced growth path:

ln q =− ασ2

2
M +

ασ2

4
+ ln

[
(1 − ν)ε(εν)

ε
1−ε

r f + δb

]
+ α ln(1 + λ)− α ln E

+ α ln
[

Φ
(

Φ−1
(

K/A
1 + λ

)
+

σ√
2

)]
, (46)

where K/A represents the constant ratio of Kt to At on the deterministic balanced growth path.

3.4 Key Mechanism: Persistence of Misallocation and Growth

In this section, we focus on the deterministic balanced growth path to illustrate the model’s
core mechanism. We show that a one-time shock, reducing the misallocation level at t = 0,
induces an endogenous and persistent effect on misallocation Mt from t = 0 onwards. This
effect, in turn, triggers a long-lasting influence on aggregate growth by affecting the marginal
q of intangible capital (see Proposition 7), and consequently, the R&D-capital ratio – a critical
driver of economic growth. Moreover, we show that the persistence of aggregate growth
depends on the persistence of misallocation, which depends largely on the persistence of
idiosyncratic productivity.

Impulse Response Function. Consider a scenario involving a one-time, unexpected shock
that exogenously reduces misallocation Mt at t = 0. Consequently, the economy begins at

23



0 10 20 30 40 50

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

0 10 20 30 40 50
1

1.01

1.02

1.03

1.04

1.05

1.06

0 10 20 30 40 50
1.7

1.8

1.9

2

2.1

2.2

0 10 20 30 40 50

1.62

1.63

1.64

1.65

1.66

1.67

0 10 20 30 40 50
0.499

0.5

0.501

0.502

0.503

0.504

0 10 20 30 40 50

0.127

0.128

0.129

0.13

0.131

0.132

0.133

0.134

Note: Consider an unexpected shock that reduces misallocation Mt by σ[Mt] = 0.09 at t = 0. Panels A, B, and C
plot the transitional dynamics of misallocation Mt, excess consumption Ct/(C0egt), and the contemporaneous
consumption growth rate dCt/(Ctdt) when θ is calibrated at different values. For each choice of θ, we
recalibrate the parameter χ so that the consumption growth rate in the deterministic balanced growth path
is the same as our baseline calibration. All other parameters are set according to our calibration in Table 1.
Panels D, E, and F plot the transitional dynamics of the final goods sector’s productivity Ht, the marginal q of
intangible capital, qt, and R&D-capital ratio, St/At, for the baseline calibration with e−θ = 0.85.

Figure 2: Transitional dynamics after a one-time shock to misallocation Mt.

an anomalously low level of production capital misallocation due to this shock. From t = 0
onward, it will gradually converge back to the deterministic balanced growth path. The
blue solid lines in Figure 2 illustrate the transitional dynamics of several key variables from
t = 0 onward, based on our benchmark calibration (see Table 1). To render the quantitative
effects informative, the magnitude of the shock is set to 0.09, aligning with the standard
deviation of Mt in our calibration. As depicted in Panel A, misallocation Mt will experience
an extended endogenous transitional period, lasting about 20 years, before it reaches the
level in the deterministic balanced growth path.

In the absence of aggregate shocks, aggregate consumption would follow C0egt, growing
at a constant annual rate of g = 1.75% for all t ≥ 0. To remove the deterministic trend in
Ct and focus on the fluctuation in growth rates, we consider excess consumption, defined
as Ct/(C0egt). The blue solid line in Panel B indicates that excess consumption Ct/(C0egt)
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is 1 before the shock, jumps to approximately 1.015 at the moment the shock hits at
t = 0, and gradually increases until reaching the level in the deterministic balanced growth
path. Although the shock to misallocation is transitory, the economy shifts to a steady
state with permanently higher consumption, driven by the endogenous accumulation of
capital At and knowledge stock Nt. Panel C demonstrates a similar concept by displaying
the contemporaneous consumption growth rate over the interval [t, t + dt), calculated as
dCt/(Ctdt). The blue solid line illustrates that the consumption growth rate spikes to
about 1.98% at the onset of the shock at t = 0 and then slowly adjusts to the level in the
deterministic balanced growth path as misallocation persists.

The mechanism connecting misallocation to growth is depicted by the black arrows in
Figure 1. Specifically, a decrease in misallocation, Mt, directly enhances the productivity, Ht,
of the final goods sector, as shown in Panel D of Figure 2. An elevated Ht boosts aggregate
output, Yt, which in turn increases the marginal q of intangible capital (refer to Panel E of
Figure 2 and equations (7) and (37)), encouraging more R&D activities (illustrated in Panel
F of Figure 2). This chain of effects culminates in a higher rate of economic growth via the
expansion of the knowledge stock, Nt.

Role of the Persistence of Idiosyncratic Productivity. As discussed, it is the persistence
of misallocation Mt, particularly through its impact on R&D, that drives the persistent
excess consumption growth relative to the deterministic balanced growth path. As shown in
equation (44), the persistence of misallocation depends on θ, which governs the persistence
of zi,t. To further illustrate the relationship between the persistence of misallocation and the
persistence of aggregate consumption growth, we study the transitional dynamics under
different values of θ. Specifically, according to equation (4), the yearly autocorrelation in
ln zi,t is e−θ. In Panels A, B and C of Figure 2, we compare our baseline calibration of
e−θ = 0.85 with two alternative calibrations in which the yearly autocorrelation in ln zi,t is
0.9 (black dashed line) and 0.95 (red dash-dotted line), respectively.

Panel A demonstrates that calibrations with a higher persistence of zi,t result in lower
misallocation Mt on the deterministic balanced growth path, aligning with the insights
provided by Buera and Shin (2011) and Moll (2014). Crucially, the convergence speed of
Mt to its deterministic balanced growth path slows as the persistence of zi,t increases. As a
measure to capture this phenomenon, we compute the half-life of transitions, which is the
time it takes for Mt to revert to half of its long-term value post-shock. The half-life of Mt is
3.0, 4.2, and 6.9 years for e−θ = 0.85, 0.9, and 0.95, respectively, indicating that misallocation
becomes more persistent when idiosyncratic productivity is more persistent. Comparing the
three curves in Panels B and C, it is clear that the economy with a higher persistence of zi,t

has more persistent consumption growth after the shock to Mt.
Thus, our model suggests that the persistence of idiosyncratic productivity zi,t plays an
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important role in determining the persistence of the growth rate of aggregate consumption,
dCt/(Ctdt). The persistence levels of these two variables are connected via the persistent
endogenous misallocation Mt. This result generalizes the key insight of Moll (2014) to
an economy with stochastic growth. In a model without long-run growth or aggregate
shocks, Moll (2014) shows that the transition to steady states slows down as idiosyncratic
productivity shocks become more persistent. Building on this insight, we additionally
demonstrate that in a model with endogenous stochastic growth, the persistence of idiosyn-
cratic productivity shapes the persistence of aggregate growth by affecting the persistence
of endogenous misallocation.

3.5 Growth Fluctuations and Discount Rates

As illustrated by the black arrows in Figure 1 and the impulse responses in Figure 2, on the
deterministic balanced growth path without aggregate shocks, misallocation affects growth
through its impact on the marginal q of intangible capital, which determines aggregate R&D
expenditure. In the full model with aggregate shocks, the link between the marginal q of
intangible capital and growth is amplified by countercylical discount rates (risk premium)
through the valuation channel, as illustrated by the red arrows in Figure 1.

In our model, recessions are the periods with high misallocation, during which firms
in the final goods sector are financially constrained. The aggregate output is low and
particularly volatile. Thus, recessions are times with low expected consumption growth
and high macroeconomic uncertainty, which implies high risk premium. Specifically, the
conditional volatility of the one-year growth rates of consumption Ct and that of SDF Λt are
strongly positively correlated with misallocation Mt and negatively correlated with one-year
expected consumption growth rate, with correlation coefficients given by:

corr[σt[∆ ln Ct+1], Mt] = 0.91 and corr[σt[∆ ln Λt+1], Mt] = 0.93,

corr[σt[∆ ln Ct+1], Et[∆ ln Ct+1]] = −0.88 and corr[σt[∆ ln Λt+1], Et[∆ ln Ct+1]] = −0.89,

where ∆ ln Xt = ln Xt − ln Xt−1 represents the difference in ln Xt between year t and year
t − 1; the yearly value of Xt is computed by integrating Xtdt in continuous time. Thus, the
model implies countercylical macroeconomic uncertainty and risk premium.

The countercyclical risk premium amplifies the variation in the marginal q of intangible
capital. To see this, note that the marginal q of intangible capital, qt, is determined by
equation (7). During recessions with high misallocation, qt is depressed not only because of
reduced profits πt but also because future profits are discounted at a higher discount rate
due to increased macroeconomic uncertainty. This generates large variation in qt, which in
turn generates significant variation in aggregate consumption growth (see equation (45)),
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capturing the valuation channel illustrated in Figure 1.
Quantitatively, more than half of the volatility of qt is attributed to the countercyclical risk

premium while the remaining is due to procycical profits πt. Following the theoretical mech-
anism elaborated in Section 3.4, this valuation channel is quantitatively significant because
the fluctuations in misallcocation driven by the aggregate shocks dWt are persistent, when
the parameter θ is calibrated to match the persistence of idiosyncratic productivity shocks
in the data (see Table 1). The slow-moving misallocation in turn generates low-frequency
fluctuations in economic growth and macroeconomic uncertainty, thereby generating a high
Sharpe ratio in the capital market (see Section 4.4) and significant welfare losses (see Section
4.5).

4 Quantitative Analysis

In this section, we explore the quantitative effects of misallocation on economic growth, asset
prices, and welfare. Section 4.1 develops an empirical measure of misallocation, motivated
by our theoretical model. Section 4.2 focuses on calibrating and validating the model against
observed macroeconomic and asset pricing moments. Section 4.3 presents evidence that
misallocation is a significant predictor of R&D expenditure and future economic growth,
both in the data and in our model. Section 4.4 investigates how misallocation influences asset
pricing. Finally, Section 4.5 calculates the welfare costs resulting from growth fluctuations
driven by misallocation.

4.1 Data and Empirical Measures

We obtain annual consumption and GDP data from the U.S. Bureau of Economic Analysis
(BEA) and stock return data from the Center for Research in Security Prices (CRSP). Con-
sumption and output growth are measured by the log growth rate of per-capita real personal
consumption expenditures on nondurable goods and services and the log growth rate of
per-capita real GDP. The nominal variables are converted to real terms using the consumer
price index (CPI). We obtain data on private business R&D investment from the National
Science Foundation (NSF) and on R&D stock from the Bureau of Labor Statistics (BLS).
These two time series are considered empirical counterparts for St and Nt, respectively. The
ratio of the two (i.e., St/Nt) is our empirical measure of R&D intensity. The risk-free rate is
constructed using the yield of 3-month Treasury Bills, obtained from CRSP. Firms’ dividend
yield is computed as the ratio of total dividends over market capitalization, obtained from
Compustat.
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Model-Consistent Empirical Measure of Misallocation. We construct a model-consistent
empirical measure of misallocation according to equation (41), Mt = −Cov(ṽi,t, ãi,t)/var(ṽi,t).
Specifically, we regress the empirical measure of log capital ãi,t on log MRPK ṽi,t using the
cross section of firms in each year t in U.S. Compustat data from 1965 to 2016:18

ãi,t = αt + βtṽi,t + εi,t, (47)

where the estimated coefficient β̂t directly captures Cov(ṽi,t, ãi,t)/var(ṽi,t). The empirical
measure of Mt is constructed using the HP-filtered time series of −β̂t from 1965 to 2016 with
a smoothing parameter of 100 (Backus and Kehoe, 1992). The HP filter allows us to extract
the cyclical component of capital misallocation fluctuations, following the literature (e.g.,
Eisfeldt and Rampini, 2006). In the regression specification (47), the empirical measure of
log capital ãi,t is constructed using the average log capital of firm i over the past T years, i.e.,
ãi,t ≡ T−1 ∑T

τ=1 ln (production_capitali,t+1−τ), with T = 3. The empirical results are robust
to alternative choices of T. Firm i’s production capital is measured by its net property,
plant and equipment (PPENT), and thus, production_capitali,t = ppenti,t.19 We construct
the empirical measure for ṽi,t using the average log MRPKi,t of firm i over the past T
years, that is, ṽi,t ≡ T−1 ∑T

τ=1 ln (MRPKi,t+1−τ). In accordance with equation (40), we define
MRPKi,t as MRPKi,t = salei,t/(ppenti,t + rented_capitali,t). This formulation closely follows
our theoretical model, where the total production capital is measured by the sum of the
firm’s own production capital (ppenti,t) and rented capital (rented_capitali,t). The quantity
of rented capital is determined by capitalizing rental expenses, adhering to established
accounting conventions and literature precedents (e.g., Rauh and Sufi, 2011; Rampini and
Viswanathan, 2013). Specifically, the rented capital for firm i in year t is calculated as its
total rental expenses for the year, multiplied by a factor of 10, and is limited to a maximum
of 0.25 times ppenti,t.20

Panel A of Figure 3 plots the time series of year-on-year changes in the empirical mea-
sure of misallocation, denoted as ∆Mt. The shaded areas represent periods of economic
downturns, including economic recessions and three financial crises.21 Aligned with our the-

18Because our theory mainly applies to manufacturing firms, we exclude firms from financial, utility, public
administration, and non-tradable industries, where non-tradable industries are defined according to Mian and
Sufi (2014). The empirical results are robust if non-tradable industries are included in the sample.

19The robustness of our empirical findings is maintained when using a firm’s tangible net worth as a
proxy for its production capital, that is, production_capitali,t = tangible_net_worthi,t. A firm’s tangible net
worth is constructed as tangible_net_worthi,t = ppenti,t + current_assetsi,t + other_assetsi,t − total_liabilitiesi,t.
Highlighting the relevance of this measure, Chava and Roberts (2008) point out that lenders often rely on a
firm’s tangible net worth to evaluate its capacity to service and repay debt. Tangible net worth, serving as a
key indicator of a firm’s borrowing capacity, is frequently included in loan agreements, as noted by research
including DeAngelo, DeAngelo and Wruck (2002), Roberts and Sufi (2009), Sufi (2009), and Prilmeier (2017).

20All empirical findings are consistent when using a capitalization factor of 5, 6, or 8 for rental expenses, or
when capping the capitalized amount at different fractions (0, 0.5, 1, or 2) of ppenti,t.

21The three crises are the savings and loan crisis from January 1986 to December 1987, the Mexican peso
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Note: Panel A plots the year-on-year changes in the empirical measure of misallocation, i.e., ∆Mt. The shaded
areas represent recessions or severe financial crises. Panel B plots the time series of Mt (left y-axis) and the
smoothed earnings-price ratio (right y-axis) proposed by Campbell and Shiller (1988a).

Figure 3: Time-series plot of the empirical measure of misallocation Mt.

oretical framework and empirical evidence from the literature, capital misallocation typically
escalates during economic downturns. Our empirical measure of misallocation significantly
increases in seven out of the nine economic downturns we examined. This stylized pattern
is consistent with the model’s prediction that misallocation typically increases during a
period involving macroeconomic recessions or financial turmoil.

In Panel B of Figure 3, we present a comparison between the empirical measure of
misallocation Mt (illustrated by the red solid line) and the smoothed earnings-price ratio
(shown as the black dashed line) introduced by Campbell and Shiller (1988a). The smoothed

crisis from January 1994 to December 1995, and the European sovereign debt crisis from September 2008 to
December 2012.
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Table 1: Parameter calibration and targeted moments.

Panel A: Externally determined parameters

Parameter Symbol Value Parameter Symbol Value

Capital share α 0.33 Capital depreciation rate δk, δa 0.03

Share of intermediate inputs ε 0.5 1− R&D elasticity h 0.17

EIS ψ 1.85 Risk aversion γ 8

Patent obsolescence rate δb 0.15 Volatility of idio. productivity σ 1.39

Inverse markup ν 0.6 Rent extraction rate τ 0.01

Collateral constraint λ 1.1 Persistence of idio. productivity θ 0.1625

Panel B: Internally calibrated parameters and targeted moments

Parameter Symbol Value Moments Data Model

Subjective discount rate δ 0.01 Real risk-free rate (%) 1.11 1.58

R&D productivity χ 1.35 Consumption growth rate (%) 1.76 1.75

Capital depreciation shock σk 0.19 Consumption growth vol. (%) 1.50 1.67

Dividend payout rate ρ 0.037 Dividend yield (%) 2.35 2.14

earnings-price ratio and its variants are frequently employed as empirical proxies for the
aggregate discount rate (e.g., Gourio, 2012; Hall, 2017; Dou, Ji and Wu, 2021, 2022). The time-
series variation of this ratio typically aligns with the frequency of business cycles. Clearly,
the empirical measure of misallocation, Mt, exhibits greater persistence compared to the
smoothed earnings-price ratio, despite the two time series exhibiting positive comovement.
The yearly autocorrelation of Mt is 0.75, which is close to the calibrated persistence of 0.77
that Bansal and Yaron (2004) find for the predictable component of consumption growth. If
misallocation Mt affects economic growth, as suggested by our model, the highly persistent
and volatile Mt appears to capture the low-frequency growth fluctuations, referred to as
the medium-term business cycle by Comin and Gertler (2006) or the growth cycle by Kung
and Schmid (2015). The observed positive comovement aligns with the model-implied
interaction between misallocation and the discount rate.

4.2 Calibration and Validation of the Model

Panel A of Table 1 presents the externally calibrated parameters. Following standard
practice, we set the capital share in production technology at α = 0.33. We set the yearly
capital depreciation rates at δk = δa = 3%. We set the share of intermediate inputs at
ε = 0.5 according to the estimates of Jones (2011, 2013). The inverse markup is set at
ν = ϵ/(ϵ + (1 − α)(1 − ϵ)) = 0.6 to guarantee the existence of a balanced growth path.
Following standard practice in the asset pricing literature, we set risk aversion at γ = 8.
Following Kung and Schmid (2015), we set the EIS at ψ = 1.85, the patent obsolescence rate
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Table 2: Untargeted moments in the data and model.

Moments Data Model Moments Data Model

Panel A: Consumption moments

AC1(∆ ln Ct) (%) 0.44 0.46 AC2(∆ ln Ct) (%) 0.08 0.28

AC5(∆ ln Ct) (%) −0.01 0.00 AC10(∆ ln Ct) (%) 0.06 −0.06

VR2(∆ ln Ct) (%) 1.52 1.46 VR5(∆ ln Ct) (%) 2.02 2.21

Panel B: Other moments

AC1(∆ ln St) (%) 0.30 0.42 AC1(Mt) (%) 0.75 0.73

SR[Rm,t] 0.36 0.39 σ[r f ,t] (%) 2.06 0.47

Note: With slight abuse of notations, ∆ ln Xt = ln Xt − ln Xt−1 represents the difference in ln Xt between
year t and year t − 1, where the yearly value of Xt is computed by integrating Xtdt in continuous time.
ACk(∆ ln Ct) refers to the autocorrelation of log consumption growth with a k-year lag. VRk(∆ ln Ct) refers to
the variance ratio of log consumption growth with a k-year horizon. AC1(∆ ln St) is the yearly autocorrelation
of log private business R&D investment growth. AC1(Mt) is the yearly autocorrelation of misallocation Mt.
SR[Rm,t] = E[Rm,t − r f ,t]/σ[Rm,t − r f ,t] is the Sharpe ratio of the consumption claim.

at δb = 15%, and h = 0.17 so that the elasticity of new blueprints with respect to R&D is 0.83.
We set the volatility of idiosyncratic productivity at σ = 1.39 according to the calibration of
Moll (2014). The persistence of idiosyncratic productivity is set at θ = 0.1625, which implies
that log idiosyncratic productivity has a yearly autocorrelation of e−θ = 0.85, consistent
with the estimate of Asker, Collard-Wexler and Loecker (2014) based on U.S. census data,
as well as with the calibration in the macroeconomics literature (e.g., Khan and Thomas,
2008; Moll, 2014). We set the collateral constraint parameter at λ = 1.1, which is within the
range of calibration values in the macroeconomics literature (e.g., Jermann and Quadrini,
2012; Buera and Shin, 2013; Midrigan and Xu, 2014; Moll, 2014; Dabla-Norris et al., 2021).
The rent extraction rate τ is a scaling parameter, the value of which does not affect firm
decisions. We normalize it at τ = 1%.

The remaining parameters are calibrated by matching the relevant moments summarized
in Panel B of Table 1. When constructing the model moments, we simulate a sample for
1, 000 years with a 100-year burn-in period, which is long enough to guarantee the stability
of these moments. The discount rate is set at δ = 0.01 to generate a real risk-free rate of
1.58%. R&D productivity is set at χ = 1.35 to generate an average consumption growth
rate of 1.75%. Following Storesletten, Telmer and Yaron (2007), we calibrate σk = 0.19 so
that the model-implied volatility of consumption growth is 1.67%. We set the payout rate at
ρ = 3.7% so that the dividend yield is 2.14%.

Table 2 presents the untargeted moments. Panel A shows that the moments reflecting the
persistence of consumption growth implied by the model are roughly consistent with those
in the data, even though these moments are not directly targeted in our calibration. Panel B
shows that the yearly autocorrelation of R&D expenditure growth ∆ ln St and misallocation
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Mt have comparable values in the model and data. The model implies a smooth risk-free
rate and a high Sharpe ratio of the consumption claim, consistent with the Sharpe ratio of
the market portfolio in our data sample. We discuss the mechanisms that generate asset
pricing implications in Section 4.4.

4.3 Misallocation, R&D, and Growth

In this section, we illustrate that, within the framework of the model and the actual data,
misallocation Mt successfully captures the low-frequency growth fluctuations. This conclu-
sion is supported by predictive regressions over long horizons, showcasing Mt’s capacity
in reflecting long-term growth trends. In Panel A of Table 3, we study the relationship
between misallocation Mt and R&D intensity. In both the actual data and model (i.e., the
simulated data), we regress R&D intensity in the current year (t) and the next year (t + 1) on
misallocation Mt, as follows:

St+h
Nt+h

= α + βMt + εt+h, with h = 0, 1. (48)

The results indicate that higher misallocation is associated with a decline in contemporaneous
R&D intensity and predicts a lower R&D intensity in the next year.

Next, we examine whether misallocation Mt covaries with the slow-moving component
of expected growth by testing whether misallocation negatively predicts future consumption
growth in the data and model. We run the following regression:

∆ ln Ct,t+1 + · · ·+ ∆ ln Ct+h−1,t+h = α + βMt + εt,t+h, (49)

where h = 1, · · · , 5 and ∆ ln Ct+h−1,t+h is the one-year log consumption growth from year
t + h − 1 to t + h. Panel B of Table 3 presents the results of projecting future consumption
growth over horizons of 1 to 5 years on misallocation Mt. In both the data and model, the
slope coefficients are negative and statistically significant. The coefficients are more negative
for longer horizons because consumption growth is persistent. Our estimates indicate
that misallocation Mt comoves with the slow-moving component of expected consumption
growth. We further run regressions similar to (49) using future log output growth as the
dependent variable. Panel C of Table 3 presents the results of projecting future output
growth over horizons of 1 to 5 years on misallocation Mt. The patterns are similar to those
of consumption growth in Panel B.

Taken together, we find empirical evidence that the aggregate growth rates of consump-
tion and output can be predicted by our empirical measure of misallocation Mt, especially
over long horizons. Our findings lend empirical support to the notion of misallocation-
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Table 3: Misallocation, R&D, and growth in the data and model.

Panel A: R&D intensity (St/Nt)

t t + 1

Data Model Data Model

β −0.106 −0.039 −0.094 −0.042

(0.028) (0.004) (0.030) (0.004)

Panel B: Consumption growth (∆ ln Ct)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Data Model Data Model Data Model Data Model Data Model

β −0.083 −0.140 −0.138 −0.201 −0.178 −0.246 −0.207 −0.275 −0.227 −0.276

(0.027) (0.017) (0.043) (0.033) (0.053) (0.047) (0.056) (0.064) (0.060) (0.080)

Panel C: Output growth (∆ ln Yt)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Data Model Data Model Data Model Data Model Data Model

β −0.094 −0.109 −0.139 −0.243 −0.163 −0.218 −0.193 −0.225 −0.218 −0.233

(0.046) (0.032) (0.065) (0.037) (0.083) (0.054) (0.084) (0.064) (0.088) (0.075)

Note: The data sample is yearly and spans the period from 1965 to 2016. In the model, we simulate a sample
of 52 years as in the data. Robust standard errors are reported in brackets.

driven low-frequency growth fluctuations. In the simulated data of our model, similar
patterns are observed due to the key mechanism elaborated in Section 3.4. Thus, our model
helps rationalize and identify misallocation as an economic source of low-frequency growth
fluctuations in the data.

4.4 Asset Pricing Implications of Misallocation

Table 4 shows the asset pricing implications of misallocation. Column (1) presents the
implications in the baseline model. The aggregate consumption claim has a high Sharpe
ratio of 0.39, which is similar to that of the market portfolio in the data. Because the model
is calibrated to match an annualized volatility of consumption growth of 1.5%, the excess
return of the consumption claim has an annualized volatility of only 1.39%. Thus, the
average excess return is low due to low volatility. The risk-free rate has an average value of
1.58% and low volatility, as in the data. We also compute the ratio of the volatility of 1-year
SDF to its mean, σ[Λt+1/Λt]

E[Λt+1/Λt]
, which determines the maximal Sharpe ratio in the model. The

baseline calibration implies a high value of 0.61.
Next, we study different model specifications. In column (2), we exogenously fix

misallocation Mt at its long-run mean E[Mt]. The volatility of the consumption claim’s
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Table 4: Asset pricing implications under different model specifications.

(1) (2) (3) (4) (5) (6) (7)

Baseline Mt ≡ E[Mt] dNt ≡ 0 e−θ CRRA (γ = 1/ψ)

= 0.2 = 0.45 = 1.5 = 3

E[Re
m,t] (%) 0.54 0 0.02 0.01 0.08 0.02 0.02

σ[Re
m,t] (%) 1.39 0 0.72 1.17 1.09 1.01 0.57

SR[Rm,t] 0.39 − 0.02 0.01 0.08 0.02 0.04

E[r f ,t] (%) 1.58 1.87 0.98 1.93 1.88 3.60 6.17

σ[r f ,t] (%) 0.47 0 0.34 0.33 0.41 0.47 0.57
σ[Λt+1/Λt ]
E[Λt+1/Λt ]

0.61 0 0.03 0.06 0.10 0.03 0.05

Note: In the table, Re
m,t = Rm,t − r f ,t is the consumption claim’s return Rm,t in excess of the risk-free rate r f ,t;

SR[Rm,t] = E[Re
m,t]/σ[Re

m,t] is the Sharpe ratio of the consumption claim; and σ[Λt+1/Λt]/E[Λt+1/Λt] is the
ratio of the volatility of 1-year SDF to its mean. Column (1) presents the results under the baseline calibration.
In column (2), we adopt the same baseline calibration but eliminate fluctuations in misallocation by imposing
Mt ≡ E[Mt] exogenously. In column (3), we adopt the same baseline calibration but eliminate the growth of
knowledge stock Nt by imposing dNt ≡ 0 exogenously. In columns (4) and (5), we use alternative values of
parameter θ. In columns (6) and (7), we impose γ = 1/ψ and set different values of parameter γ. For columns
(4) to (7), we calibrate χ and σk to generate the same model-implied average consumption growth rate and
volatility as those reported in Panel B of Table 1. Other parameters are set at the same values as the baseline
calibration.

excess returns falls to 0 and the Sharpe ratio is not defined. This occurs because, within our
model, the aggregate shock dWt drives economic fluctuations purely through its effect on
Mt, with the dynamics of At and Nt being locally deterministic (see Proposition 5).22

To study the role of economic growth, we consider an alternative specification with no
economic growth in column (3), setting dNt ≡ 0.23 Compared with the baseline model in
column (1), the volatility of the consumption claim’s excess returns drops by about half,
from 1.39% to 0.72%. The average excess return declines even more significantly, resulting
in a Sharpe ratio of only 0.02.

In columns (4) and (5), we further show that fluctuations in economic growth are not
sufficient to rationalize a high Sharpe ratio; it is important for misallocation fluctuations to
generate low-frequency growth fluctuations. Specifically, following the insight illustrated
in Figure 2, the persistence of idiosyncratic productivity determines the persistence of
growth. In columns (4) and (5), we set e−θ at 0.2 and 0.45, respectively, which results in a
lower yearly autocorrelation of consumption growth than that in the baseline calibration,
where e−θ = 0.85. Compared with column (1), the Sharpe ratio of the consumption claim

22This property differentiates our theoretical mechanism from those of Kaltenbrunner and Lochstoer (2010)
and Kung and Schmid (2015), whose models generate low-frequency growth fluctuations through time-varying
aggregate capital stock or R&D expenditure, rather than the covariance between capital and productivity
across firms (i.e., Mt).

23Under this specification, the economy’s aggregate output and consumption still fluctuate due to aggregate
shocks. However, there is no long-run growth as the average growth rates of Yt and Ct are 0.
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drops significantly when idiosyncratic shocks are not persistent. These results highlight the
importance of low-frequency growth fluctuations in amplifying the impacts of misallocation
fluctuations on risk premia. Our findings complement the main insights of Buera and
Shin (2011) and Moll (2014), who analyze the impacts of the persistence of idiosyncratic
productivity on TFP, welfare, and the speed of transition through the self-financing channel.

In columns (6) and (7), we adopt a model specification where the representative agent
is characterized by CRRA preferences, setting γ = 1/ψ. In this setup, the Sharpe ratio
predicted by the model turns out to be notably low, whereas the risk-free rate is exceptionally
high, a consequence of the low EIS. When considering a (non-recursive) CRRA preference
structure, the valuation effects of low-frequency fluctuations in consumption growth are
negligible. This occurs because the representative agent effectively prices the risk of the
shock driving expected future consumption growth at zero.

4.5 Welfare Costs of Misallocation-Driven Growth Fluctuations

In our model, consumption fluctuations are almost entirely driven by fluctuations in misallo-
cation. Therefore, by evaluating the welfare costs associated with consumption fluctuations,
we are able to offer a quantitative analysis of the welfare implications of misallocation-driven
growth fluctuations within our theoretical framework. It is acknowledged that, in real-world
scenarios, consumption fluctuations may result from a variety of aggregate variables. Bearing
this in mind, our objective is not to precisely isolate the welfare costs directly attributable to
misallocation fluctuations. Rather, we aim to demonstrate that fluctuations in misallocation
have the potential to inflict significant welfare costs by causing consumption fluctuations,
within a model that is calibrated to align with observed aggregate consumption moments
(see in Panel A of Table 2).

Specifically, we solve a similarly parameterized model without aggregate shocks (i.e.,
σk = 0) and compare the representative agent’s utility gain relative to the model with
aggregate shocks. Column (1) of Table 5 reports that the welfare gain from removing all
consumption fluctuations is 10.34% under the baseline calibration. Moreover, in columns
(2) through (6) of Table 5, we compute the welfare gains from removing consumption
fluctuations under different specifications, similar to those in Table 4. Columns (2) through
(4) show that the welfare gains will be small if misallocation cannot affect economic growth
(i.e., setting dNt ≡ 0) or if misallocation is not persistent enough to generate low-frequency
growth fluctuations (i.e., e−θ = 0.2 or e−θ = 0.45).24 Columns (5) and (6) show that if the

24Columns (3) and (4) show that as idiosyncratic productivity becomes more persistent (i.e., higher e−θ), the
welfare gain from removing consumption fluctuations increases. This finding is related to the key insight of
Moll (2014), who shows that as the persistence of idiosyncratic productivity increases, the transition speed
from a distorted initial state to the steady state slows down, resulting in potentially larger welfare losses
during transitions. In our model with stochastic growth, the slow “transition” in response to aggregate
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Table 5: Welfare gains from removing consumption fluctuations.

(1) (2) (3) (4) (5) (6)

Baseline dNt ≡ 0 e−θ CRRA (γ = 1/ψ)

= 0.2 = 0.45 = 1.5 = 3

Welfare gains (%) 10.34 0.33 0.24 0.98 0.58 0.65

Note: The welfare gains from removing consumption fluctuations are computed using U0/U0 − 1, where U0
(U0) represents the representative agent’s utility at t = 0, with (without, i.e., setting σk = 0) consumption
fluctuations. When computing U0, the parameter χ is recalibrated to have the same average consumption
growth rate while all other parameter values remain unchanged. The specification in each column is described
in Table 4.

agent’s preference is non-recursive (i.e., setting γ = 1/ψ), the welfare gains are also small.
Taken together, our findings suggest that the model posits significant welfare costs

arising from misallocation-driven consumption fluctuations, attributable to a combination
of two distinct properties. First, as elaborated in Section 3.4, the model is able to generate
low-frequency growth fluctuations through slow-moving misallocation. Second, given the
representative agent’s recursive preferences, news about future consumption growth impacts
his current marginal utility. As illustrated in Table 4, these two properties also allow the
model to account for the observed high Sharpe ratio in the capital markets. Within our model
framework, there is a direct link between the welfare costs associated with consumption
fluctuations and the Sharpe ratio observed in the capital markets. Intuitively, both metrics
are elevated when variations in the representative agent’s marginal utility in response
to aggregate shocks are more pronounced. This connection is exploited by Alvarez and
Jermann (2004) to estimate the welfare gains from eliminating all consumption fluctuations
by directly applying the no-arbitrage principles on financial market data without specifying
consumer preferences. We implement the method proposed by Alvarez and Jermann (2004)
in our 1965-2016 sample and estimate that the welfare gain from eliminating all consumption
fluctuations ranges from 6.03% to 23.97%, which nests the value implied by our structural
model.25

The results in Tables 4 and 5 show that misallocation-driven growth fluctuations can
have significant implications for asset prices and welfare. As misallocation arises from firms’
financial constraints in our model, our results are related to the literature on the connection
between financial frictions and misallocation (e.g., Buera and Shin, 2013; Midrigan and Xu,
2014; Moll, 2014). A direct comparison of our model’s quantitative implications with these

shocks generates endogenous low-frequency growth fluctuations, which result in large welfare costs under the
recursive preference of the representative agent.

25Alvarez and Jermann (2004) propose different estimation methods to demonstrate robustness. We use their
first method, which projects consumption growth onto the payoff space spanned by a set of tradable assets.
The estimates and implementation details of other methods are reported in Section 2.3 of the online note on
additional materials.
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models in the literature is difficult due to the differences in model setups. For example,
our model involves stochastic growth driven by misallocation fluctuations, whereas these
models quantify losses from misallocation in steady states or transitions, without aggregate
shocks. In addition, although our model incorporates both the final goods and intermediate
goods sectors, we only consider misallocation in the final goods sector.

Despite the differences in model setups, our findings in Table 5 are broadly consistent
with the literature. For example, consistent with the calibration of Buera and Shin (2013) and
Moll (2014), our calibration of large idiosyncratic shocks implies that firm-level productivity
is not very persistent. As a result, purely through the variation in misallocation Mt, the
model is able to generate a TFP volatility of 2.48%, as in the data. This result is consistent
with the finding of Buera and Shin (2013) that misallocation resulting from financial frictions
can generate sizable TFP losses.

While Buera and Shin (2013) focus on quantifying misallocation across the intensive
margin (that is, differences in MRPK among active firms due to financial frictions), other
research (e.g., Banerjee and Moll, 2010; Buera, Kaboski and Shin, 2011; Midrigan and
Xu, 2014) underscores the significance of misallocation at the extensive margin (that is,
productive firms may stay inactive or refrain from entering the market due to financial
frictions). Depending on the calibration and model setup, Buera, Kaboski and Shin (2011)
quantify that both extensive and intensive margins are important, whereas Midrigan and
Xu (2014) estimate large TFP losses through the extensive margin rather than the intensive
margin. In our model, misallocation due to financial frictions reduces the final goods
sector’s productivity Ht, which captures the intensive margin effect. A lower Ht, in turn,
reduces the profits of innovators. Through the free-entry condition (9), this further leads
to a lower growth rate of the variety of intermediate goods, dNt/Nt (see equation (8)),
which can be seen as capturing the extensive margin effect.26 The results in column (3) of
Table 4 and column (2) of Table 5 indicate that the extensive margin plays a crucial role in
rationalizing the high Sharpe ratio in the capital market and in generating a large welfare
cost of misallocation-driven growth fluctuations. These findings support the significant role
of extensive-margin misallocation quantified by Midrigan and Xu (2014).

5 Empirical Tests on the Core Mechanism

In our model, financial frictions lead to misallocation, which in turn affects long-run growth
by influencing R&D investment. This section presents empirical evidence supporting this
mechanism, focusing on industry-level reactions to a policy shock designed to ease firms’

26There is no misallocation through the intensive margin in the intermediate goods sector because producers
are homogeneous.
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financial constraints.
The American Jobs Creation Act (AJCA) passed in 2004 allows domestic firms in the

U.S. to repatriate their foreign profits at a tax rate of 5.25%, rather than the 35% tax rate
that applied before the AJCA. This policy change effectively relaxes the financial constraints
of treated firms and substantially boost the investments of financially constrained firms
(Faulkender and Petersen, 2012). Our model suggests that easing financial constraints
reduces misallocation and boosts firms’ motivation to engage in R&D activities. To verify
this hypothesis, we assess the effect of the AJCA on industry-level misallocation and
R&D-capital ratio by exploiting industries’ differential exposure to the AJCA using a
difference-in-differences (DID) method.

Specifically, we construct industry-level measures of misallocation, the R&D-capital ratio,
and exposure to the AJCA using U.S. Compustat data. We use three-digit Standard Industrial
Classification codes to define industries. To ensure accurate estimation of industry-level
misallocation, we exclude industries with a median number of firms below 10. We construct
our industry-level measures of misallocation following the procedures described in Section
4.1, except that we run regression (47) based on firms within each industry. The industry-
level R&D-capital ratio is constructed as the ratio of total R&D expenditure to total capital
of firms within the industry. To capture an industry’s exposure to the AJCA, we construct
an industry-level measure of foreign business intensity, which is the proportion of firms
in the industry whose pre-tax income from abroad exceeds 5% during the 3-year period
before the AJCA (i.e., from 2001 to 2003). We consider industries with foreign business
intensity above (below or equal to) 33% as treated (untreated) industries. Treated industries
are matched with untreated industries using the nearest neighbor matching method based
on six industry-level characteristics.27 All industry-level characteristics are averaged over
the 3-year period before the AJCA.

We run the following regression using industry-year observations for the period from
2000 to 2007:

Yj,t = α × Treatj × Postt + β1 × Treatj + β2 × Postt + ε j,t, (50)

where Treatj = 1 if industry j is a treated industry, and 0 otherwise, and the variable Postt

is an indicator that equals 1 for years 2004 and onwards. The coefficient of interest, α,
estimates the average treatment effect of the AJCA on the outcome variable, Yj,t, for treated
industries. The outcome variable of interest, Yj,t, is either industry-level misallocation (Mj,t)
or industry-level R&D-capital ratio (RDj,t). The estimated coefficients are presented in
column (1) of Panels A and B in Table 6. Our results indicate that the AJCA results in

27The six industry-level characteristics are the means and standard deviations of firms’ sales, profit
margins, and Tobin’s Q. We construct a firm’s (net) profit margin using its income before extraordi-
nary items divided by its sales following Dou, Ji and Wu (2021), and a firm’s Tobin’s Q as Tobin_Qi,t =
(total_assetsi,t + market_equityi,t − book_equityi,t)/total_asseti,t, following Gompers, Ishii and Metrick (2003).
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Table 6: Impacts of the AJCA on misallocation and R&D.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industry-level misallocation

α α−4 α−3 α−2 α0 α1 α2 α3

−0.470 −0.211 −0.250 −0.046 −0.404 −0.584 −0.773 −0.627

(0.174) (0.319) (0.193) (0.172) (0.192) (0.221) (0.283) (0.319)

Panel B: Industry-level R&D-capital ratio

α α−4 α−3 α−2 α0 α1 α2 α3

0.018 −0.013 −0.005 −0.002 0.010 0.013 0.015 0.014

(0.006) (0.009) (0.005) (0.003) (0.005) (0.006) (0.007) (0.009)

Panel C: Industry-level R&D-capital ratio controlling for misallocation

α α−4 α−3 α−2 α0 α1 α2 α3

0.013 −0.013 −0.005 −0.002 0.007 0.009 0.009 0.010

(0.007) (0.010) (0.006) (0.003) (0.005) (0.007) (0.009) (0.010)

Note: Panel A estimates the impacts of the AJCA on industry-level misallocation. Column (1) reports
the estimated α̂ in specification (50). Columns (2) to (8) report the estimated ατ in specification (51) for
τ = −4,−3,−2, 0, 1, 2, 3. All coefficients are normalized relative to τ = −1. Panel B estimates the impacts of
the AJCA on the industry-level R&D-capital ratio. Panel C estimates the impacts of the AJCA on industry-level
R&D-capital ratio, controlling for industry-level misallocation. Standard errors clustered at the industry level
are reported in brackets.

significantly lower misallocation and higher R&D-capital ratios in treated industries.
Next, we conduct an event study analysis centered around 2004, employing a dynamic

DID regression approach to investigate the time-series evolution of the AJCA’s treatment
effect on the industry-level misallocation and R&D-capital ratio over the years:

Yj,t =
3

∑
τ=−4

ατ × Treatj × Yeart−τ + β1 × Treatj +
3

∑
τ=−4

β2,τ × Yeart−τ + ε j,t, (51)

where Yeart−τ is an indicator set to 1 for the year t − τ being 2004 (the year the AJCA
was enacted) and 0 otherwise. To circumvent collinearity in categorical regressions, we
impose constraints: α−1 = β2,−1 = 0, thereby designating the year immediately preceding
the passage of the AJCA as the reference period. The estimated effects on industry-level
misallocation and the R&D-capital ratio are detailed in columns (2) to (8) of Panels A
and B, respectively, in Table 6 and are graphically depicted in Figure 4. The estimated
coefficients, α−4, α−3, and α−2, are near zero and not statistically significant, indicating that
the parallel trend assumption holds in the years leading up to 2004. In the three years
subsequent to 2004, our estimates reveal that the AJCA induces significant and enduring
negative impacts on industry-level misallocation and significant positive impacts on the
industry-level R&D-capital ratio.
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Note: The solid lines visualize the empirical estimates in columns (2) to (8) of Panels A and B in Table 6,
respectively. All coefficients are normalized relative to τ = −1. The vertical bars represent the corresponding
90% confidence intervals.

Figure 4: Impacts of the AJCA on misallocation and R&D.

Furthermore, we present evidence suggesting that the positive effect of the AJCA on the
industry-level R&D-capital ratio is primarily realized through its influence on industry-level
misallocation. Specifically, we modify specification (50) as follows:

RDj,t = α × Treatj × Postt + β1 × Treatj + β2 × Postt (52)

+ β3 × Treatj × Mj,t + β4 × Mj,t + ε j,t,

which controls for industry-level misallocation Mj,t and its interaction term with Treatj. The
estimated coefficient is displayed in column (1) of Panel C in Table 6, showing that after
accounting for industry-level misallocation, the AJCA has a much less significant impact on
the R&D-capital ratio.

We further employ a dynamic DID regression approach to demonstrate the time-series
progression of the AJCA’s treatment effects on the industry-level R&D-capital ratio over the
years, while accounting for industry-level misallocation. This is achieved by executing the
following regression:

RDj,t =
3

∑
τ=−4

ατ × Treatj × Yeart−τ + β1 × Treatj +
3

∑
τ=−4

β2,τ × Yeart−τ (53)

+ β3 × Treatj × Mj,t + β4 × Mj,t + ε j,t.

Columns (2) to (8) of Panel C in Table 6 report the estimates for each year. Compared with
Panel A, it is clear that the impacts of the AJCA on the industry-level R&D-capital ratio
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become statistically insignificant after controlling for industry-level misallocation.

6 Conclusion

This paper develops an analytically tractable general equilibrium model with heterogeneous
firms and endogenous stochastic growth to quantitatively explore the relationship between
misallocation, growth prospects, and the systematic risk that shapes asset prices in capital
markets. In our model, increased misallocation reduces economic growth by depressing
the marginal q of intangible capital and thus R&D incentives. Misallocation evolves slowly,
leading to low-frequency fluctuations in economic growth. Central to this mechanism
is the valuation channel, which significantly magnifies the effects of production capital
misallocation in the final goods sector on economic growth. When agents have recursive
preferences, the low-frequency growth fluctuations driven by slow-moving misallocation not
only rationalize several crucial asset pricing moments but also suggest significant welfare
costs associated with misallocation fluctuations.

In the data, we construct a misallocation measure motivated by our theory and provide
supporting evidence for the model predictions. We show that the value of our empirical
measure of misallocation is persistent and increases during economic downturns. Moreover,
an increase in misallocation predicts declines in R&D intensity and reductions in the growth
of aggregate consumption and output over long horizons. Finally, by exploiting a policy
shock from the AJCA passed in 2004, we provide direct causal evidence to support the
model’s mechanism that misallocation drives long-run growth through its impact on R&D.
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