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1 Introduction

Macroeconomists often invoke menu costs as an important source of price rigidities. In menu

cost economies, firms are more likely to adjust prices in response to large shocks, so Phillips

curves are potentially non-linear. However, most work using menu cost models studies the

responses to small aggregate shocks, often times using linear methods.1 The recent rise in

inflation in many modern economies suggests a need to understand how menu cost economies

respond to large shocks. Understanding the causes of high inflation hinges critically on

whether Phillips curves are as flat when inflation is high as they are when inflation is low.

In this paper, we study the importance of non-linearities in menu cost economies. We

require that these model economies reproduce the distribution of micro-price changes because

recent work by Alvarez et al. (2016) showed that this is a critical determinant of the real

effects of small monetary shocks. In addition, since non-linearities arise because firms are

more likely to reprice in response to large as opposed to small shocks, we also require that the

model economies are consistent with the evidence on the comovement between the fraction

of price changes and inflation.

We show that standard menu cost models with Gaussian idiosyncratic shocks, calibrated

to match the distribution of micro-price changes, cannot reproduce the extent to which the

fraction of price changes increases in times of moderately high inflation of the magnitude

observed in developed economies. Intuitively, reproducing the dispersion of price changes

observed in the data requires large idiosyncratic shocks. These idiosyncratic shocks, as

opposed to aggregate shocks, drive the bulk of price changes, even when inflation rates are

high, so the fraction of price changes fluctuates little.

In addition, a second shortcoming arises in the presence of microeconomic strategic com-

plementarities that make a firm’s optimal reset price depend on the price of its competi-

tors. Such complementarities are widely used in the New Keynesian literature because they

dampen the response of the aggregate price level to monetary shocks and align it with the

empirical response.2 However, as pointed out by Dotsey and King (2005) and Klenow and

Willis (2016), adding such complementarities implies very large menu costs and losses from

misallocation from inefficient price dispersion.

We propose a resolution to these shortcomings by extending the standard multi-product

1See, for example, Dotsey et al. (1999), Golosov and Lucas (2007), Gertler and Leahy (2008), Midrigan
(2011), Vavra (2013), Alvarez et al. (2016), Alvarez et al. (2022a), Auclert et al. (2022). An exception is
Karadi and Reiff (2019) who study the response to large shocks in an economy similar to Midrigan (2011).

2See Leahy (2011) for a survey.
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menu cost model (Midrigan, 2011, Alvarez and Lippi, 2014) along two dimensions. First,

we assume that the products sold by a given firm are imperfect substitutes. Second, we

assume that strategic complementarities are at the firm, rather than at the product level.

Both of these assumptions reduce the amount of misallocation from inefficient price dispersion

inside the firm, decreasing the relative importance of idiosyncratic shocks in driving repricing

decisions and thus allowing the model to reproduce the relationship between inflation and

the fraction of price changes in the data.

We use our model to revisit the classic question of how large are the real effects of

monetary policy shocks. We show that output responses in our model are very different

than those in the standard model that we argued is inconsistent with the data. Specifically,

in our model output responds non-linearly to shocks of various sizes. The larger the shock

is, the stronger the response of the fraction of price changes and therefore the smaller are

the real effects. Thus, our model predicts that the slope of the Phillips curve is non-linear.

In contrast, we show that the standard model predicts linear output responses, echoing the

findings of Auclert et al. (2022).

We start by motivating our analysis using micro-price data that underlies the construction

of the Consumer Price Index in the United Kingdom. Since aggregate inflation has not been

volatile prior to the recent rise in inflation, we use disaggregated sectoral data to study

the high-frequency comovement between sectoral inflation and the sectoral fraction of price

changes. In line with previous work, we show that the fraction of price changes increases in

periods of high inflation.3 For example, when sectoral inflation is close to zero, the fraction

of price changes is approximately 10% per month. In contrast, when inflation increases to

5%, the fraction of price changes averages 14%. We follow Klenow and Kryvtsov (2008) in

decomposing movements in inflation into an intensive margin term that keeps the fraction of

price changes constant, and an extensive margin term. As in Klenow and Kryvtsov (2008),

the intensive margin term accounts for most of the movements in inflation in periods of low

inflation, but for only half of these movements when inflation is relatively high. Thus, the

extensive margin of price changes plays an important role at high levels of inflation.

We first consider a standard single-product menu cost model in which firms are subject

to Gaussian idiosyncratic and sectoral shocks. Firms face random menu costs of adjusting

prices, as in Dotsey et al. (1999), and have occasional opportunities to change their price

for free, as in Nakamura and Steinsson (2010). As in existing work, a single state variable

3This pattern has been documented before by Gagnon (2009), Nakamura et al. (2018), Alvarez et al.
(2018) and Karadi and Reiff (2019) using aggregate data from episodes of high inflation in other countries.
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– the gap between the firm’s price and its flexible-price counterpart, in short the price gap,

summarizes the history of shocks received by each firm. This price gap determines the

hazard that the firm resets its price. In turn, the distribution of price gaps across firms and

the adjustment hazard determines the distribution of price changes and the responses of the

economy to aggregate shocks.

We calibrate this model to match the frequency and the distribution of price changes in

the data, as well as the volatility of sectoral inflation. A robust prediction of the model is

that the fraction of price changes is nearly constant: as sectoral inflation increases from 0%

to 10% in our simulations, the monthly fraction of price changes only increases from 11% to

12%. To understand this result, we derive a formula that characterizes how the fraction of

price changes responds to an aggregate shock of a given size using a continuous time version of

the model. We show that this response depends only on the probability of free price changes

and the size of the aggregate shock relative to the standard deviation of price changes. Since

the standard deviation of price changes in the data is high relative to that of sectoral shocks,

19% vs. 1%, the fraction of price changes fluctuates little.

We also characterize the size of the menu costs and losses from misallocation implied

by the model. Our calibration, which features moderate micro strategic complementarities,

requires menu costs that represent 8.3% of sales, much larger than the 1% direct estimates

in the literature (Levy et al., 1997, Zbaracki et al., 2004). This calibration also predicts

implausibly large losses from misallocation: aggregate productivity is 20% lower than under

flexible prices. Though this number is comparable to the estimates of misallocation reported

by De Loecker et al. (2020) and Baqaee and Farhi (2018), these estimates encompass losses

from all distortions, not just those due to menu costs. We show that even though these

shortcomings can be remedied by assuming away strategic complementarities, the model still

fails to reproduce the comovement between inflation and the fraction of price changes.

We next consider a multi-product setting in which each firm sells a continuum of products,

each subject to idiosyncratic Gaussian quality shocks. There are economies of scope in price

adjustment in that the firm can change the entire menu of its prices by paying a random menu

cost. Two state variables are now necessary to summarize the history of shocks experienced

by a firm: the firm’s price gap – a weighted average of its product-level price gaps, as well

as the duration of the firm’s price spells. The latter determines the amount of within-firm

misallocation: the older prices are, the larger the misallocation, and thus the larger the losses

from leaving prices unchanged.
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We show that economies of scope, on their own, do not remedy the shortcomings discussed

above. We therefore extend the model along two dimensions, both of which reduce the

misallocation from price dispersion within the firm. First, we assume that individual products

sold by a given firm are imperfect substitutes. Our notion of a product is a collection of highly

substitutable goods that are subject to correlated shocks. For example, various flavors of tea

sold at Starbucks are highly substitutable but also face correlated shocks, so we think of tea

at Starbucks as a product that is distinct from pastries, another product sold at Starbucks.

Because a firm’s products are imperfect substitutes, the losses that the firm faces from its

inability to change prices in response to product specific shocks are small. Second, we assume

that strategic complementarities, which arise due to decreasing returns to scale, are at the

firm, not at the product level. Specifically, there is a firm-specific factor of production that is

fixed at the firm level, but perfectly mobile across the products the firm sells, which further

reduces the losses that the firm faces from its inability to change prices.

We show that our multi-product model reproduces the relationship between the fraction of

price changes and inflation in the data. As in the data, the extensive margin of price changes

accounts for half of the fluctuations in inflation when inflation is high. This is because our

model is able to generate large dispersion in price changes with a narrow inaction region,

so firms are more responsive to shocks that generate inflation than in the standard model.

Moreover, even though our model features moderate strategic complementarities, it requires

small menu costs to reproduce the micro-price statistics, in line with the 1% estimates in the

data, and implies small losses from misallocation due to inefficient price dispersion.

We further clarify the mechanism of our model by zooming in on a special case in which

the elasticity of substitution between the products sold by a firm is zero. This special case

is identical to a single-product model provided we adjust the trend money growth rate to

ensure that the firm’s price gap drifts at the same rate in both models. Even though these

two models have identical implications for the distribution of firm price gaps, decision rules,

and aggregate outcomes, the single-product equivalent generates a much smaller dispersion in

price changes. Thus, our multi-product model behaves identically to a single-product model

with narrower inaction regions, which implies that firm repricing decisions are much more

sensitive to aggregate shocks.

We use our model to revisit the real effects of monetary shocks by studying impulse

response functions to one-time, unanticipated and permanent shocks of various sizes. We

show that in our model impulse responses are very different than those predicted by standard
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models. In particular, while the two models respond similarly to small shocks, in our model

output responses are non-linear because the fraction of price changes increases rapidly with

the size of the shock. In contrast, in the standard model the output response scales linearly

with the size of the shock, even for monetary shocks as large as 15%, because the fraction

of price changes varies little with the size of the shock. In addition, the effects of monetary

policy changes are asymmetric in our model: expansionary shocks are more inflationary

because asymmetries in the profit function imply that prices are more likely to increase than

to fall. We summarize our findings by tracing out the Phillips curve implied by monetary

shocks. In our model, in contrast to the standard model, the Phillips curve is highly non-

linear and even vertical at inflation rates exceeding 5%.

2 Motivating Evidence

This section uses sectoral micro price data from the UK to show that the fraction of price

changes increases with inflation, and that this accounts for a significant share of movements

in inflation when inflation is relatively high. Though these facts have been documented in

previous work using data for other countries,4 we use the evidence for the UK to quantitatively

evaluate the ability of menu cost models to reproduce this pattern. In contrast to existing

work, we focus on data for individual sectors rather than the aggregate. Since inflation is

considerably more volatile in individual sectors compared to the aggregate, sectoral variation

allows us to better understand the relationship between inflation and the fraction of price

changes in periods of high inflation.

2.1 Data

We use the data that underlie the construction of the Consumer Price Index (CPI) in the

UK. The data are collected by the United Kingdom Office for National Statistics (ONS).

We use publicly available monthly product-level price quotes from January 1996 to August

2022. Goods and services are classified into 71 classes following the Classification of Indi-

vidual Consumption by Purpose (COICOP 6). Each item in a given class is constructed

with product-level price quotes by either sampling individual outlets or by collecting prices

centrally (for example, university tuition fees). We exclude centrally-collected items, which

account for approximately 26% of total consumer expenditures, as well as the five COICOP

4See, for example, Gagnon (2009) using data for Mexico, Nakamura et al. (2018) using data for the US,
Alvarez et al. (2018) using data for Argentina, Karadi and Reiff (2019) using data for Hungary.
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6 energy categories. See Appendix A for details.

In computing price statistics, we use regular price series constructed by filtering V-shaped

sales that last less than three months.5 Kehoe and Midrigan (2015) show that in theory

temporary price changes do not contribute much to inflation dynamics. We corroborate

their argument empirically by showing that excluding V-shaped sales from the calculation of

inflation does not visibly change its time path.

To that end, consider the following decomposition of inflation. Let pit be the price of

good i and ωit the weight of that good in the CPI. Aggregate inflation is then

πt =
∑
i∈At

ωit log pit/pit−1,

where At = Rt ∪ St is the set of goods that experience a price change in period t, Rt is the

set of goods that experience a regular price change and St is the set of goods who experience

a price change associated with a V-shaped sale. We construct an alternative inflation series

based on regular price changes by calculating

πR
t =

∑
i∈Rt

ωit log pit/pit−1,

and thus excluding price changes that either initialize or end a V-shaped sale.

Figure 1 compares the inflation series computed using all price changes with that com-

puted using only regular price changes. The figure reports the cumulative inflation in the

previous 12 months, that is, the year-to-year percent change in the consumer price index.

The two series are nearly indistinguishable, consistent with the theoretical predictions of Ke-

hoe and Midrigan (2015). Motivated by this observation, from now on we focus our analysis

on regular price changes only.

2.2 Inflation and Frequency of Adjustment

We follow Klenow and Kryvtsov (2008) in decomposing movements in inflation into an ex-

tensive margin component that captures changes in the fraction of price adjustments and an

intensive margin that captures movements in the average price change of firms that adjust.

Specifically, letting nt(s) denote the fraction of products in sector s that experience a change

in their regular price in period t and ∆t(s) denote the average price change conditional on

adjustment, we have6

πt(s) = ∆t(s)nt(s).

5We define V-shaped sales as temporary price cuts that return exactly to the original level.
6All statistics are weighted using item-level consumption expenditure weights.
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Figure 1: Inflation Calculated Using on All vs. Regular Price Changes
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We gauge the role of the extensive margin by constructing a counterfactual inflation series

that replaces the observed fraction of price changes nt(s) with that sector’s average fraction

of price changes, n̄(s) = 1
T

∑
t nt(s). That is, we calculate

πc
t (s) = ∆t(s)n̄(s)

and compare the dynamics of the actual inflation series πt(s) with the counterfactual inflation

πc
t (s) that shuts down movements in the fraction of price changes. Throughout the paper, to

mitigate the concern that our results are driven by sampling noise, we measure the fraction

of price changes as the average monthly fraction of regular price changes in the previous 12

months and inflation as the year-to-year percent change in the sectoral price index.

We first illustrate this decomposition in Figure 2 which shows the fraction of price changes

(left panel) and the two inflation series (right panel) for a specific sector – “Bread and

Cereals.” The fraction of price changes fluctuates substantially over time, ranging from 5%

to 20%. Consequently, the extensive margin of adjustment accounts for a sizable share of

movements in inflation in this sector, especially during the 2007-2008 world food crisis, when

actual inflation exceeded 15%, while counterfactual inflation only increased to 7%.

Figure 3(a) documents these patterns more systematically by presenting a binned scatter-

plot of the fraction of price changes in a given sector against sectoral inflation rates pooling

data from all sectors and weighting each by its expenditure share. We include sectoral fixed

effects so our results capture high-frequency variation in sectoral inflation rates, not aver-
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Figure 2: Inflation Decomposition: Bread and Cereals
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Notes: The left panel plots the fraction of price changes nt(s). The right panel plots πt(s) = ∆t(s)nt(s)

and πc
t (s) = ∆t(s)n̄(s).

age differences across sectors. The figure shows that the fraction of price changes increases

systematically with inflation. For example, when inflation is near zero, the fraction of price

changes is approximately equal to 10% per month and when inflation is 5%, it averages 14%.

To assess the importance of movements in the fraction of price changes for the dynamics

of inflation, Figure 3(b) shows a binned scatterplot of the counterfactual inflation series that

keeps the fraction of price changes constant at its historical average against realized inflation.

At low levels of inflation the extensive margin accounts for little of the movements in inflation:

the counterfactual inflation series increases one-for-one with actual inflation. In contrast, for

high inflation, above 4%, ignoring the extensive margin systematically underpredicts inflation.

Table 1 further corroborates these patterns. Panel A shows that the standard deviation

of the counterfactual inflation series is equal to 2.51%, representing 87% of the standard

deviation of actual inflation. This is consistent with Klenow and Kryvtsov (2008), who

document that most movements in inflation are due to the intensive margin. However, Panel

B shows that the extensive margin becomes much more important at high rates of inflation.

The slope coefficient in a regression of πc
t (s) on πt(s) is equal to 0.80 for the entire sample,

but falls to 0.48 and 0.39 when we restrict attention to periods in which sectoral inflation

exceeds its 75th and 90th percentile, respectively. We therefore conclude that at high rates of

inflation, the extensive margin accounts for more than half of the changes in inflation.
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Figure 3: Inflation and the Fraction of Price Changes
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Notes: The plot controls for sectoral fixed effects and weights individual sectors by their expenditure share.

We measure the fraction of price changes as the 12-month moving average of the fraction of monthly price

changes in the preceding year and inflation as the year-to-year percent change in the sectoral price index.

3 Single-Product Menu Cost Model

We first show that the standard single-product menu cost model, calibrated to match the

distribution of price changes in the data, cannot reproduce the comovement between inflation

and the fraction of price changes we documented in the previous section. In addition, pa-

rameterizations with moderate micro-level strategic complementarities in price setting result

in implausibly large menu costs and losses from misallocation due to price dispersion.

Because we study the comovement between sectoral inflation and the fraction of price

changes, we consider an economy with a continuum of measure one of ex-ante identical

sectors. The output of each sector is used to produce a final good. Each sector consists of a

continuum of measure one of firms, each producing a differentiated variety. Firms are subject

to idiosyncratic and sectoral shocks. We follow Golosov and Lucas (2007) in assuming that

preferences are logarithmic in consumption and linear in hours worked. This assumption,

widely used in the menu cost literature, allows us to characterize inflation dynamics in each

sector in isolation, greatly simplifying computations.
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Table 1: Role of Extensive Margin

A. Inflation Volatility

s.d. πt(s) 2.87

s.d. πc
t (s) 2.51

ratio 0.87

B. Slope of πc
t (s) on πt(s)

all observations 0.80

πt(s) > 75th pct. 0.48

πt(s) > 90th pct. 0.39

Notes: We compute the statistics in Panel A by first calculating the standard deviation of the two inflation

series for each sector and then calculating the expenditure-weighted average of the sector-level standard

deviations. We compute the slope coefficients in Panel B using an OLS regression that weights observations

for each sector using that sector’s expenditure weights.

3.1 Consumers

A representative consumer has preferences over consumption and derives disutility from work.

The consumer maximizes life-time utility, given by

E0

∞∑
t=0

βt (log ct − ht) ,

subject to

Mt +
1

1 + it
Bt = Wtht +Dt +Mt−1 − Pt−1ct−1 +Bt−1 + Tt,

where ct is consumption, ht is hours worked, Pt is the aggregate nominal price level, Mt is the

money supply, Bt is the amount of government bonds, Dt denotes profits and Tt represents

government transfers.

We assume a constant money growth rate gm and a cash-in-advance constraint

Ptct ≤ Mt,

which binds in equilibrium. The optimal labor supply choice implies that the nominal wage

is equal to the money supply

Wt = Ptct = Mt.
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Note that the timing assumptions we make here are as in Rotemberg (1987) and imply that

the cash-in-advance constraint does not distort the labor supply choice because labor income

in period t can be used for consumption immediately.

3.2 Technology

We next describe the assumptions we make on technology.

3.2.1 Final Goods Producers

Final output is produced using a Cobb-Douglas aggregator across sectoral output yt(s)

yt = exp

(∫
log yt (s) ds

)
. (1)

The final output is used for consumption only, so the aggregate resource constraint is ct = yt.

The aggregate price index Pt satisfies

Pt = exp

(∫
logPt (s) ds

)
,

where Pt(s) is the price index in sector s. The assumption of a unit elasticity of substitution

across sectors implies that sectoral expenditures are proportional to nominal spending, the

money supply and nominal wages

Pt(s)yt(s) = Ptyt = Mt = Wt.

3.2.2 Intermediate Goods Producers

Firm f in sector s produces output using a labor-only technology with decreasing returns to

scale determined by η ≤ 1

yt (f, s) = et (s) zt (f, s) lt (f, s)
η ,

where et(s) is productivity in sector s, zt(f, s) is the quality of the product of firm f in

that sector and lt(f, s) the amount of labor the firm uses in production. Sectoral output is

produced using a CES aggregator with elasticity of substitution σ

yt (s) =

(∫ (
yt (f, s)

zt (f, s)

)σ−1
σ

df

) σ
σ−1

. (2)

In addition to affecting the firm’s productivity, the quality index zt(f, s) also affects de-

mand. If prices were flexible, firms would respond to an increase in zt(f, s) by reducing prices
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one-for-one, leaving quality-adjusted prices, zt(f, s)Pt(f, s), and firm revenues unchanged.

These quality shocks therefore change firms’ desired prices and have the advantage of not

requiring keeping track of zt(f, s) as a state variable.7 We assume that the logarithms of

et(s) and zt(f, s) follow independent random walk processes with i.i.d. innovations drawn

from mean zero normal distributions with standard deviation σe and σz.

Letting Pt(f, s) denote an individual firm’s price, the demand function for the firm’s

output is given by

yt (f, s) = zt (f, s)

(
zt (f, s)Pt (f, s)

Pt (s)

)−σ

yt (s) ,

where

Pt (s) ≡
∫

Pt (f, s)
yt (f, s)

yt (s)
df =

(∫
(zt (f, s)Pt (f, s))

1−σ df

) 1
1−σ

is the price index in sector s.

3.3 Firm Objective

The aggregate implications of menu cost models are shaped by the distribution of price

changes (Caballero and Engel, 2007, Midrigan, 2011, Alvarez et al., 2016). We thus assume

a flexible menu cost specification that allows the model to reproduce key moments of the

distribution of price changes in the data. Specifically, we follow Nakamura and Steinsson

(2010) and assume that with probability 1 − λ firms can change their price for free. With

probability λ a price change requires a fixed cost ξt(f, s). We assume that the fixed cost is

an i.i.d. draw from a uniform distribution U [0, ξ̄] which gives rise to a smooth adjustment

hazard (Costain and Nakov, 2011, Alvarez et al., 2021).

The firm’s objective is to maximize the present value of its profits, given by

E0

∞∑
t=0

βt 1

Ptct

[
(1 + τ)Pt (f, s) yt (f, s)−Wt

(
yt (f, s)

et (s) zt (f, s)

) 1
η

− ξt (f, s)WtIt(f, s)

]
,

where τ = 1/ (σ − 1) is an output subsidy that corrects the markup distortion that would

arise even in the absence of menu costs. Letting It(f, s) denote a price adjustment indicator,

the last term represents the menu cost of changing prices, denominated in units of labor.

7An alternative approach, which we discuss in Appendix C, would be to assume that zt(f, s) only affects
productivity and scale the menu costs accordingly. We note that an additional advantage of modeling shocks
to quality as opposed to productivity is that the model no longer requires extremely large idiosyncratic shocks
to reproduce the dispersion of price changes. See Klenow and Willis (2016) for an illustration of this problem
and Aruoba et al. (2023) for an alternative resolution that relies on demand shocks.
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In order to write the firm’s problem recursively, we next express its objective as a function

of its price gap: the ratio of its actual price relative to what the firm would charge under

flexible prices. To that end we first define the real marginal cost index in sector s as

at(s) ≡
Wt

Pt (s) yt(s)

(
yt (s)

et (s)

) 1
η

,

and define the firm’s price gap as

xt (f, s) ≡ āη
et (s) zt (f, s)Pt (f, s)

Mt

,

where ā is the steady state value of at(s). Similarly, we define the sectoral price gap as the

CES weighted average of firm price gaps

xt (s) ≡
[∫

xt (f, s)
1−σ df

] 1
1−σ

= āη
et (s)Pt (s)

Mt

.

This sectoral price gap is equal to one in steady state, and is inversely related to the sector’s

real marginal cost

xt(s) =

(
at(s)

ā

)−η

. (3)

Moreover, under flexible prices xt (f, s) = xt(s) = 1 and at(s) = η.

With this notation in place, we can write the firm’s objective as

E0

∞∑
t=0

βt
(
xt (s)

σ−1
[
(1 + τ)xt (f, s)

1−σ − āxt (s)
( 1
η
−1)(σ−1) xt (f, s)

−σ
η

]
− ξt (f, s) It(f, s)

)
.

(4)

As in Burstein and Hellwig (2008), decreasing returns to scale introduce a micro-level

strategic complementarity in price setting, dampening the response of individual prices to

aggregate and sectoral shocks. To see this, notice that the price gap that maximizes the

firm’s flow profits is

xt (f, s) =

(
ā

η

) 1

1+σ( 1
η−1)

xt (s)

(σ−1)( 1
η−1)

1+σ( 1
η−1) .

The exponent of xt(s) determines the strength of strategic complementarities, that is, the

extent to which an individual firm’s price depends on the price of its competitors. The lower

η is or the higher σ, the stronger are strategic complementarities. To see why this is the

case, consider an increase in the money supply. If most firms do not adjust their prices, xt(s)

falls. A firm that resets its price recognizes that if it were to increase it, it would experience

an output drop, more so the more elastic demand is, that is, the larger is σ. This drop in
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output would reduce the firm’s marginal cost, more so the lower the returns to scale, that is,

the lower is η. This decrease in marginal cost dampens the firm’s desired price increase.8

Equation (4) shows that the problem of a firm in a given sector only depends on current

and future sectoral price gaps xt(s) and not on other sectoral and aggregate variables. To

see how the sectoral price gap xt(s) is determined in equilibrium, let

x̂t(f, s) ≡ āη
et (s) zt (f, s)Pt−1 (f, s)

Mt

denote the firm’s individual state variable: its last period’s price scaled by the money supply

and productivity. Given last period’s price gap, the firm’s state evolves according to

x̂t(f, s) = xt−1 (f, s)
et (s)

et−1 (s)

zt (f, s)

zt−1 (f, s)

Mt−1

Mt

. (5)

If the firm does not adjust, its price gap is xt(f, s) = x̂t(f, s). If the firm adjusts its price,

it resets the price gap to xt(f, s) = x∗
t (s), which is common to all firms that adjust. Letting

vat (s) denote the value of adjusting the price and vnt (x̂, s) the value of not adjusting, the firm

adjusts with probability

ht (x̂, s) = 1− λ+ λmin

{
vat (s)− vnt (x̂, s)

ξ̄
, 1

}
.

Finally, letting Ft(x̂; s) denote the distribution of firms, the sectoral price gap satisfies

xt(s) =

(∫ [
ht (x̂; s)x

∗
t (s)

1−σ + (1− ht (x̂; s)) x̂
1−σ
]
dFt (x̂; s)

) 1
1−σ

.

We use the Krusell and Smith (1998) approach to characterize how xt(s) evolves over time

as a function of a single moment of the distribution of Ft (x̂; s) . This approach works well in

this setting, with an R2 in the perceived law of motion in excess of 0.999. See Appendix B

for details.

3.4 Losses from Misallocation

Menu costs generate inefficient price dispersion and therefore misallocation. To see this, let

lt(s) =

∫
lt(f, s)df

8An alternative way to introduce micro-level strategic complementarities is through variable markups that
depend on firm market shares. As Alvarez et al. (2022b) show, up to a second-order approximation, these
approaches are equivalent.
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denote the amount of labor firms in sector s use in production. We can derive a sectoral

production function

yt (s) = et (s)ϕt (s) lt (s)
η ,

where

ϕt (s) =

(∫ (
xt (f, s)

xt (s)

)−σ
η

df

)−η

captures the losses from misallocation. When prices are flexible ϕt(s) = 1. More generally,

dispersion in relative prices reduces ϕt(s) below 1, more so the larger σ/η is. Intuitively,

efficiency requires that all firms in a given sector use the same amount of labor, lt(f, s) = lt(s).

The more elastic demand is, or the stronger the decreasing returns, the larger the dispersion

in firm employment implied by a given amount of relative price dispersion, and thus the

larger the productivity losses from misallocation.

3.5 Parameterization

Table 2 reports the result of the parameterization. A period is a month and we set the

discount factor β to an annualized value of 0.96. We start with an economy with moderate

micro-level strategic complementarities by setting σ equal to 6 and the elasticity of labor in

the production function η to 2/3. We show however that even a model without strategic

complementarities cannot reproduce the comovement between inflation and the fraction of

price changes in the data.

In our baseline calibration, reported in the column labeled “Free price changes,” we choose

the money growth rate gm, the standard deviation of idiosyncratic shocks σz, the probability

of free price changes 1−λ, the upper bound of the menu cost distribution ξ̄ and the standard

deviation of sectoral shocks σe to match key moments of the distribution of non-zero price

changes in the UK data. Specifically, we target a monthly fraction of price changes of 0.116,

a mean price change of 0.018, a standard deviation of price changes of 0.188, a kurtosis of

price changes of 3.609, and a volatility of sectoral inflation of 0.029.

We report the data moments in the first column of Panel A in Table 2. We compute

these statistics using regular price changes. To mitigate measurement error concerns, we

drop the top and bottom 2% of the price change distribution.9 We calculate the sectoral

fraction of price changes in the data as the harmonic weighted average of the fraction of price

changes of individual product categories (items) that belong to that sector. To mitigate the

9See Appendix A for price statistics computed using alternative truncations.
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Table 2: Parameterization of Single-Product Model

A. Moments

Data Free price
changes

No free price
changes

No free price
changes, alt.

I. Targeted

fraction ∆p 0.116 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188 0.118
kurtosis ∆p 3.609 3.609 1.998 1.837
std dev. πt(s) 0.029 0.029 0.029 0.029

II. Not targeted

distribution of |∆p|

10th percentile 0.018 0.021 0.079 0.049
25th percentile 0.045 0.053 0.116 0.073
50th percentile 0.104 0.118 0.165 0.104
75th percentile 0.204 0.214 0.220 0.139
90th percentile 0.334 0.315 0.272 0.175

B. Calibrated Parameter Values

Free price
changes

No free price
changes

No free price
changes, alt.

gm mean money growth rate 0.020 0.021 0.022
σz s.d. idios. shocks 0.064 0.064 0.039
λ 1 - prob. free change 0.911
ξ̄ upper bound menu cost 39.08 3.376 1.491
σe s.d. sectoral shocks 0.011 0.010 0.010

Note: The money growth rate is annualized and the menu cost is relative to average sales. In the models

without free price changes λ is set to 1. In the “No free price changes” calibration we do not target the

kurtosis and italicize its implied value. In the “No free price changes, alt.” calibration we target the

underlined moments. In all calibrations we set σ = 6, η = 2/3 and β = 0.96 (annualized).
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concern that dispersion in the size of price changes is driven by ex-ante heterogeneity, we

follow Klenow and Kryvtsov (2008) in standardizing the distribution of price changes by the

respective item-level mean and variance. See Appendix A for details.

As Panel A shows, the model matches the targeted moments perfectly. As Panel B

shows, the model implies a high dispersion of idiosyncratic shocks relative to sectoral shocks,

σz = 0.064 vs. σe = 0.011, a large upper bound on the distribution of menu costs, ξ̄ = 39

times average monthly sales, and a large probability of free price changes, 1−λ = 0.089. Free

price changes thus account for 77% (0.089/0.116) of all price changes. As shown in Panel A,

the model is also able to replicate the distribution of the size of price changes, which we do

not explicitly target. For example, the 10th percentile is 0.018 in the data and 0.021 in the

model, whereas the 90th percentile is 0.334 in the data and 0.315 in the model. Thus the

model generates nearly as many small and large price changes as in the data.

3.6 Model Implications

We next evaluate the model’s ability to reproduce the relationship between inflation and the

fraction of price changes in the data. We also report the model’s implications for the size of

menu costs and losses from misallocation.

Importance of the Extensive Margin. Figure 4 assesses the model’s ability to reproduce

the empirical comovement between actual inflation πt(s) and the counterfactual inflation

series πc
t (s) that shuts down fluctuations in the fraction of price adjustments. As in the data,

we compute inflation as the year-to-year percent change in the sectoral price level, and we

compute the fraction of price changes as the 12-month moving average in the preceeding

year. The left panel of the figure shows that, in contrast to the data, πt(s) and πc
t (s) comove

nearly one-for-one in the model. Thus, fluctuations in the fraction of price changes play

almost no role in driving inflation dynamics, even when sectoral inflation rates are high. In

particular, as inflation increases from 0% to 10% in our simulations, the monthly fraction of

price changes only increases from 11.3% to 12%.

Panel A of Table 3 reinforces this point in the second column. The slope coefficients from

regressing πc
t (s) on πt(s) are close to one, and fall to only 0.94 and 0.92 when we restrict the

sample to periods when sectoral inflation exceeds its 75th and 90th percentile. The patterns

are at odds with the data, where these coefficients fall below one-half at high rates of inflation.
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Figure 4: Importance of the Extensive Margin
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Notes: The figures are based on the calibration reported in Table 2. We compute inflation as the year-to-year
percent change in the sectoral price level, and the fraction of price changes as the 12-month moving average
in the preceeding year.

Size of Menu Costs and Misallocation. We also show that our baseline model requires

implausibly large menu costs to reproduce the data and predicts implausibly large losses

from misallocation. As the second column of Panel A in Table 3 shows, the average amount

of resources spent on adjusting prices in a given period is equal to 8.3% of average firm

sales, a number much larger than the estimates reported in Levy et al. (1997) and Zbaracki

et al. (2004), which are in the neighborhood of 1% of firm revenues. Moreover, the model

predicts that aggregate productivity is 19.9% lower than under flexible prices. This number is

comparable to the estimates of misallocation reported by De Loecker et al. (2020) and Baqaee

and Farhi (2018) which encompass all distortions that lead to misallocation (taxes, factor

adjustment costs, financial frictions, markup variation arising from differences in demand

elasticities etc.), as well as differences in production function elasticities across producers.10

It is unlikely that menu costs alone account for all observed misallocation in the data.

3.7 Understanding the Results

To understand what drives our findings above, we consider in Appendix D a continuous time

version of our model. For simplicity, we assume a fixed, rather than random menu cost, and

consider a quadratic approximation to the firm’s objective function and no growth in the

money supply, as in Alvarez and Lippi (2014). We use this setting to derive three formulas

10See, for example, Foster et al. (2022) for a discussion.
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Table 3: Model Implications

Data σ = 6 σ = 3

η = 2/3 η = 1 η = 2/3 η = 1

A. Free Price Changes

slope of πc
t (s) on πt(s)

all observations 0.80 0.99 0.99 0.99 0.99
πt(s) > 75th pct. 0.48 0.94 0.94 0.96 0.96
πt(s) > 90th pct. 0.39 0.92 0.93 0.94 0.94

menu costs/sales 0.083 0.020 0.023 0.009
losses from misallocation 0.199 0.053 0.071 0.029

B. No Free Price Changes

slope of πc
t (s) on πt(s)

all observations 0.80 0.98 0.97 0.98 0.98
πt(s) > 75th pct. 0.48 0.94 0.93 0.94 0.93
πt(s) > 90th pct. 0.39 0.91 0.90 0.91 0.91

menu costs/sales 0.065 0.017 0.022 0.009
losses from misallocation 0.089 0.023 0.030 0.012

C. No Free Price Changes, Alt.

slope of πc
t (s) on πt(s)

all observations 0.80 0.96 0.94 0.95 0.94
πt(s) > 75th pct. 0.48 0.86 0.85 0.86 0.85
πt(s) > 90th pct. 0.39 0.81 0.80 0.81 0.81

menu costs/sales 0.027 0.007 0.009 0.004
losses from misallocation 0.037 0.010 0.012 0.005

that describe i) how the fraction of price changes responds to one-time sectoral shocks,11

as well as the determinants of ii) the size of menu costs and iii) misallocation from price

dispersion. We then illustrate these theoretical predictions using the quantitative model

introduced above.

Importance of the Extensive Margin. We show in Appendix D that the impact re-

sponse of the fraction of price changes to a one-time sectoral shock of size δ is

∆n =
1− l

2

δ2

V[∆p]
+O(δ4), (6)

11Our technology and preference assumptions imply that the responses of sectoral prices to a sectoral shock
are identical to the responses of aggregate prices to an aggregate shock.
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where l is fraction of price changes that are free and V[∆p] is the variance of price changes

conditional on adjustment.12 If the size of the sectoral shock is small relative to the variance

of price changes, the fraction of price changes responds little. In our calibration, the standard

deviation of sectoral shocks is 0.011 and that of price changes is 0.188, so δ2/V[∆p] ≈ 0.003.

Therefore, the fraction of price changes responds little. This response is further dampened

by the presence of free price changes (in our calibration l = 0.089/0.116 ≈ 3/4), but since

δ2/V[∆p] is nearly zero, the fraction of price changes responds little to aggregate shocks even

absent free price changes.

To further illustrate this last point, we calibrate a version of the model in which we

set λ = 1, so that there are no free price changes. As the column labeled “No free price

changes” in Table 2 shows, this model can no longer reproduce the kurtosis of price changes

and generates a distribution of |∆p| that is much less dispersed than in the data. As shown

in the middle panel of Figure 4 and Panel B of Table 3, this model also predicts that most

fluctuations in inflation are driven by the intensive margin of price changes, not changes in

the fraction of prices that adjust. Once again, this is because even in this version of the

model, sectoral shocks are small relative to the idiosyncratic shocks needed to generate the

dispersion in price changes observed in the data.

As Table 2 shows, even though the economy without free price changes reproduces the

standard deviation of price changes in the data, it fails to match the median size of price

changes, which is equal to 0.104 in the data and 0.165 in the model. Since the median size

of price changes is often used to calibrate the volatility of idiosyncratic shocks in menu cost

models,13 we consider an alternative calibration strategy for the economy without free price

changes in which we target this statistic instead of the standard deviation of price changes.

As the last column of Table 2 shows, this calibration requires less dispersed idiosyncratic

shocks and thus generates a lower standard deviation of price changes of 0.118, much smaller

than the 0.188 in the data. Consistent with the theoretical predictions in equation (6), this

calibration predicts that the fraction of price changes is more responsive to sectoral shocks.

As the right panel of Figure 4 and Panel C of Table 3 show, the extensive margin of price

changes plays a more important role, though still much smaller than in the data.

Equation (6) helps clarify why several existing studies found stronger responses of the

fraction of prices changes to aggregate shocks in menu cost models. Nakamura et al. (2018)

12In deriving this result, we assume that the (S, s) bands are unchanged. One should therefore interpret δ
as the size of the shock relative to the change in the bands.

13See, for example, Nakamura et al. (2018).
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show that a single product model without free price changes can reproduce the increase in

the fraction of price changes in the US micro-price data during the high inflation episode in

the late 1970s and early 1980s. These authors target a median size of price changes of 7.5%.

As we showed above, in the absence of free price changes, a calibration to the median size

of price changes understates the variance of price changes, which equation (6) establishes

as a key determinant of how the fraction of price changes responds to aggregate shocks.

Cavallo et al. (2023) show that the standard menu cost model predicts that the fraction of

price changes responds strongly to a large aggregate shock. However, they consider an 20%

aggregate shock, much larger than the sectoral shocks we consider here that are necessary

to reproduce the volatility of sectoral inflation. In their paper, with a 20% shock, the term

δ2/V[∆p] in equation (6) is much larger than in our setting. Thus, while it is indeed the

case that in menu cost models the fraction of price changes responds significantly to very

large shocks, it does not in response to more moderately sized shocks that in the data trigger

changes in the fraction of prices that adjust.

Size of Menu Costs and Misallocation. We also show in Appendix D that the total

amount of menu costs paid in a given period, expressed as a fraction of total revenues, is

C ≈ (σ − 1)

[
1 + σ

(
1

η
− 1

)]
V[∆p]Ψ(K[∆p])

12
, (7)

where Ψ(·) is a hump-shaped function that satisfies Ψ(1) = 1 and Ψ(6) = 0. For our baseline

parameterization, Ψ(3.609) = 1.33. We also show that the losses from misallocation from

price dispersion are

log(ϕ) ≈ −σ

2

[
1 + σ

(
1

η
− 1

)]
V[∆p]K[∆p]

6
. (8)

Both of these objects depend on the two moments we target in the calibration, the variance

and the kurtosis of price changes, as well as the demand elasticity σ and the degree of returns

to scale η. As discussed above, our choice of σ = 6 and η = 2/3, which generates micro-level

strategic complementarities, implies large menu costs and losses from misallocation. In the

last three columns of Table 3 we consider alternative values of these two parameters which

greatly reduce the calibrated menu costs and losses from misallocation.14 However, these

alternative parameterizations imply weaker or no micro-level strategic complementarities

14We re-calibrate the models for each of these alternative parameterizations to match the same targets in
Table 2. See Appendix E for details.
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and therefore smaller real effects of monetary shocks in the aggregate, at odds with the VAR

evidence (Christiano et al., 2005).

Importantly, though eliminating micro-level strategic complementarities reduces the size

of menu costs and the losses from misallocation considerably, it does not affect the importance

of the extensive margin of price changes. This is consistent with equation (6) which shows

that the response of the fraction of price changes to sectoral shocks does not depend on the

demand elasticity σ and the returns to scale η.

To summarize, the single-product menu cost model, when calibrated to match the distri-

bution of micro price changes in the data, cannot reproduce the relationship between inflation

and the fraction of price changes. Moreover, parameterizations of the model with moder-

ate micro-level strategic complementarities also imply very large menu costs and losses from

misallocation from price dispersion. As we show below, these shortcomings also apply to the

canonical multi-product menu cost model with economies of scope in price setting.

4 Multi-Product Menu Cost Model

We next extend the model to a multi-product setting in which there are economies of scope

in the price adjustment technology, as in Midrigan (2011) and Alvarez and Lippi (2014).15

Each firm sells a unit measure of products. Each product is subject to independent quality

shocks. The firm can change the entire menu of prices by paying a random menu cost drawn

from a uniform distribution. Since economies of scope in price setting allow us to match the

large number of small price changes observed in the data, we no longer need to assume that

some price changes are free.

We show that economies of scope, on their own, do not remedy the shortcomings discussed

above. We therefore extend the multi-product model along two dimensions, both of which

reduce the misallocation from price dispersion within the firm and narrow the inaction region,

thus allowing the model to reproduce the relationship between inflation and the fraction

of price changes we document in the data, while allowing for strategic complementarities.

First, we assume a nested CES aggregator in which the elasticity of substitution between the

products sold by a given firm is lower than that across firms. Our notion of a product is a

collection of highly substitutable goods, subject to correlated shocks. For example, we think

of tea sold by Starbucks as representing a product because different flavors or sizes of tea

are close substitutes that experience correlated shocks. In contrast, different pastries sold

15See Bhattarai and Schoenle (2014) and Bonomo et al. (2022) for evidence on multi-product pricing.
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by Starbucks, while highly substitutable among themselves, are much less substitutable with

tea. Our second assumption is that decreasing returns to scale arise due to a specific factor

of production that is fixed at the firm level, but is perfectly mobile across the products a firm

sells. This implies that there are decreasing returns and therefore strategic complementarities

at the firm level, but the losses from misallocation within the firm are lower than in a model

where the decreasing returns to scale are also at the product level.

Since the multi-product model shares many elements with the single-product model above,

we only discuss the new ingredients that we introduce here.

4.1 Technology

The technology for producing the final good is the same as in equation (1) and that for

producing sectoral output is

yt (s) =

(∫
yt (f, s)

σ−1
σ df

) σ
σ−1

.

A firm produces a unit mass of products that are aggregated into a firm-level composite using

yt (f, s) =

(∫ (
yit (f, s)

zit (f, s)

) γ−1
γ

di

) γ
γ−1

,

where γ is the elasticity of substitution between different products and zit(f, s) is the quality

of product i, which follows a random walk process

log zit+1(f, s) = log zit(f, s) + σzε
z
it+1(f, s),

where σz is the volatility of innovations and εzit+1(f, s) is an i.i.d. draw from a standard

normal distribution.16 The demand for an individual product is given by

yit (f, s) = zit (f, s)

(
zit (f, s)Pit (f, s)

Pt (f, s)

)−γ

yt (f, s) ,

where

Pt (f, s) ≡
∫

Pit (f, s)
yit (f, s)

yt (f, s)
di =

(∫
(zit (f, s)Pit (f, s))

1−γ di

) 1
1−γ

is the composite price of the bundle of products of firm f .

16In an earlier draft, we considered an alternative specification with firm-level, in addition to product
level quality shocks. While that economy also reproduces the relationship between inflation and the fraction
of price changes, it also features stronger selection effects and thus less non-neutrality for small aggregate
shocks. Since we would like to argue that the non-linearity in our model is not driven by selection effects,
here we substantially reduce these by eliminating firm level shocks.
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Individual products are produced with a technology that uses labor and an input, say

managerial, that is in fixed supply at the firm level but perfectly mobile across individual

products. Specifically, letting mit(f, s) denote the amount of the fixed input used for product

i, the production function is

yit(f, s) = et (s) zit (f, s)mit (f, s)
1−η lit (f, s)

η . (9)

We normalize the supply of the fixed factor to 1, so the choice of mit(f, s) has to satisfy∫
mit (f, s) di = 1.

Notice that this technology exhibits constant returns to scale at the individual product level

but, as we show below, decreasing returns at the firm level. Assuming instead that the fixed

factor is immobile across products, so that mit(f, s) = 1, the technology in equation (9)

also features decreasing returns to scale at the product level. As we show below, under this

alternative assumption, the losses from misallocation within the firm are larger.

4.2 Firm Objective

We next discuss the problem of the firm in this multi-product setting and highlight the

differences from the single-product model. The firm’s life-time value is given by

V0(f, s) = E0

∞∑
t=0

βt

Ptct

[
(1 + τ)

∫
Pit (f, s) yit (f, s) di−Wtlt(f, s)− ξt(f, s)WtIt(f, s)

]
,

where It(f, s) is an indicator for whether the firm changes its menu of prices. Letting

xit (f, s) = āη
et (s) zit (f, s)Pit (f, s)

Mt

denote the price gap of product i, the firm’s price gap is

xt (f, s) =

(∫
xit (f, s)

1−γ di

) 1
1−γ

= āη
et (s)Pt (f, s)

Mt

.

Letting lt(f, s) =
∫
lit(f, s)di denote the total amount of labor a firm uses in production, we

can derive a firm-level production function

yt (f, s) = et (s)ϕt (f, s) lt (f, s)
η ,

where ϕt(f, s) is firm productivity which can fall below one because of losses from misalloca-

tion from price gap dispersion inside the firm. Notice that this firm-level production function
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features decreasing returns to scale, which generates strategic complementarities, as in the

single-product menu cost model.

In our model in which the specific input is mobile across products, firm productivity is

ϕt(f, s) =

(∫ (
xit (f, s)

xt (f, s)

)−γ

di

)−1

.

In contrast, if the specific input is fixed at the product level, firm productivity is

ϕt(f, s) =

(∫ (
xit (f, s)

xt (f, s)

)− γ
η

di

)−η

,

and is lower than in our model for a given dispersion in price gaps.

With this notation, the firm’s objective can be expressed in terms of the firm-level price

gap and the losses from misallocation as

E0

∞∑
t=0

βt
(
xt (s)

σ−1
[
(1 + τ)xt (f, s)

1−σ − āxt (s)
( 1
η
−1)(σ−1) xt (f, s)

−σ
η ϕt (f, s)

− 1
η

]
− ξt(f, s)It(f, s)

)
.

Therefore the only difference between this objective and that of a single-product firm is that

in a single-product firm there is no misallocation inside the firm.

Since the firm’s objective only depends on its price gap xt(f, s), the productivity ϕt(f, s)

and the sectoral price gap xt(s), we can write the firm’s problem recursively by summarizing

the distribution of the firm’s price gaps with two idiosyncratic state variables. To derive

these, consider a firm that does not adjust the prices Pit−1(f, s) it inherits from the previous

period. Its composite price index is then equal to

Pt (f, s) =

(∫
(zit (f, s)Pit−1 (f, s))

1−γ di

) 1
1−γ

.

Since zit(f, s) follows a geometric random walk with independent innovations, this composite

price index evolves according to

Pt (f, s) = exp

(
(1− γ)

σ2
z

2

)
Pt−1 (f, s) .

If γ > 1, the composite price drifts down over time at a rate that increases with the volatility

of idiosyncratic shocks. Intuitively, the composite price index is a quantity-weighted aver-

age of individual product prices, so even though individual prices are constant, consumers

reallocate demand towards products with cheaper quality-adjusted prices.
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The first state variable we keep track of is then

x̂t (f, s) = āη
et (s) exp

(
(1− γ) σ2

z

2

)
Pt−1 (f, s)

Mt

,

the firm’s price gap in the absence of price changes. If the firm resets its prices, the gap is

equal to xt(f, s) = x∗
t (s), the optimal reset price gap, otherwise it is xt(f, s) = x̂t(f, s). This

state variable evolves over time according to

x̂t(f, s) = exp

(
(1− γ)

σ2
z

2

)
xt−1 (f, s)

et (s)

et−1 (s)

Mt−1

Mt

.

The second state variable we keep track of is the duration of a firm’s price spell, as this

determines the losses from misallocation within the firm. To see why, notice that when

the firm resets its prices, it sets xit(f, s) = x∗
t (s) and eliminates the misallocation inside

the firm, so ϕt(f, s) = 1. Over time, the losses from misallocation increase because the

distribution of price gaps becomes more dispersed. In our model with a mobile specific

factor, the productivity of a firm whose prices are d periods old is

ϕt (f, s) = exp

(
−dγ

σ2
z

2

)
. (10)

For a given duration, the losses from misallocation are increasing in the elasticity of substi-

tution γ and the volatility of idiosyncratic shocks. Assuming instead that the specific factor

is immobile across products implies

ϕt (f, s) = exp

(
−dγ

σ2
z

2

(
1 + γ

(
1

η
− 1

)))
, (11)

so the losses from misallocation are larger than in our baseline model whenever η < 1.

As in the single-product model, we use the Krusell and Smith (1998) approach to charac-

terize how the sectoral price gap x̂t(s) evolves over time in response to sectoral shocks. We

find that the method works well even in the multi-product setting, with a R2 in the perceived

law of motion for the sectoral price gap in excess of 0.997.

Lastly, we note that the distribution of price changes for a firm with a price gap x̂t(f, s)

that last changed its price d periods ago and adjusts in period t is

log
P ∗
it (f, s)

Pit−d (f, s)
∼ N

(
log

x∗
t (s)

x̂t (f, s)
+ d (1− γ)

σ2
z

2
, dσ2

z

)
.

The older the firm’s prices are, the more dispersed its price gaps and therefore the more

dispersed its price changes. In turn, the distribution of overall price changes is equal to

a mixture of the normal distributions above and is therefore fat-tailed as long as there is

randomness in the menu costs, which generates dispersion in the duration of price spells

conditional on adjustment.
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4.3 Parameterization

Table 4 shows the parameterization of the two variants of the multi-product model. In both

of these we set σ = 6 and η = 2/3, as in the single-product model, so they also feature

moderate strategic complementarities. In our baseline economy, which we refer to as our

model, we assume that the specific factor is mobile across products and set γ = 1. As we

show below, this value of γ allows the model to reproduce that menu costs are approximately

1% of firm revenues.17 In the standard multi-product economy, we assume that the specific

factor is immobile across products and set γ = σ = 6.

Our calibration strategy is similar to that in the single-product model, except that we

no longer explicitly target the kurtosis of price changes since we have one fewer parameter.

Panel A of Table 4 shows that both multi-product models are able to perfectly match the

targeted moments, namely the fraction of price changes, the mean and standard deviation

of price changes, and the volatility of sectoral inflation. The models also reproduce well the

untargeted statistics: the kurtosis of price changes and the distribution of the size of price

changes. Panel B reports the calibrated parameter values. With the exception of the upper

bound of the menu cost distribution, which is much smaller in our model, both models require

similar parameter values to match the data.

4.4 Model Implications

We next discuss the ability of the multi-product models to reproduce the relationship between

inflation and the fraction of price changes, as well as their implications for the size of menu

costs and the losses from misallocation.

Importance of the Extensive Margin. Figure 5 plots the relationship between sectoral

inflation πt(s) and the counterfactual sectoral inflation πc
t (s) that eliminates fluctuations in

the fraction of price changes. Our model reproduces the non-linear relationship between the

two, whereas the standard multi-product model predicts that the extensive margin of price

changes plays almost no role in driving inflation dynamics, even at high rates of inflation.

Table 5 further corroborates this point. In our model, the slope coefficient from regressing

πt(s) on πc
t (s) is 0.83, close to the 0.80 in the data, and falls to 0.48 when sectoral inflation is

above its 90th percentile, close to its 0.39 empirical counterpart. In contrast, in the standard

17In the robustness section we report results for alternative values of γ.
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Table 4: Parameterization of Multi-Product Model

A. Moments

Data Our model Standard

I. Targeted

fraction ∆p 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188
std dev. πt(s) 0.029 0.029 0.029

II. Not targeted

kurtosis ∆p 3.609 3.873 3.612

distribution of |∆p|

10th percentile 0.018 0.020 0.022
25th percentile 0.045 0.053 0.055
50th percentile 0.104 0.115 0.118
75th percentile 0.204 0.206 0.209
90th percentile 0.334 0.311 0.312

B. Calibrated Parameter Values

Our model Standard

gm mean money growth rate 0.023 0.022
σz s.d. idios. shocks 0.063 0.063
ξ̄ upper bound menu cost 0.960 26.56
σe s.d. sectoral shocks 0.011 0.010

Note: The money growth rate is annualized and the menu cost is relative to average sales.

model, regressing πt(s) on πc
t (s) yields a slope coefficient of 0.97. This slope coefficient only

falls to 0.86 when inflation exceeds its 90th percentile.

Size of Menu Costs and Misallocation. The last two rows of Table 5 show that our

model requires small menu costs, in line with the 1% estimates from the data, to reproduce

the micro-price statistics. In contrast, the standard model requires menu costs that are 30

times larger. Additionally, our model implies that the productivity losses from misallocation

from menu costs are 1.3%, whereas the standard model implies much larger losses, equal to

36.7%. That menu costs and misallocation are smaller in our model follows from the fact

that the same volatility of quality shocks σz translates into much lower within-firm losses
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Figure 5: Importance of the Extensive Margin
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Table 5: Multi-product Model Implications

Data Our model Standard

slope of πc
t (s) on πt(s)

all observations 0.80 0.83 0.97
πt(s) > 75th pct. 0.48 0.57 0.89
πt(s) > 90th pct. 0.39 0.48 0.86

menu costs/sales 0.010 0.297
losses from misallocation 0.013 0.367

from misallocation, as shown in equations (10) and (11).

4.5 Understanding the Results

To understand why the fraction of price changes fluctuates much more in our model relative

to the standard model, Figure 6 plots the distribution of firm price gaps x̂t(f, s) across firms

and sectors, as well as the adjustment hazard for firms that last adjusted prices 3 and 18

months ago. We note that the adjustment hazards are much flatter in the standard model

compared to our model. This reflects the much larger menu costs required to match the

micro-price statistics in the standard model. The flatter the adjustment hazard, the smaller

is the fraction of firms that adjusts in response to a shock that shifts the distribution of price

gaps x̂t(f, s), and therefore the lower the response of the fraction of price changes. We also

note that the adjustment hazard increases with the duration of prices because the resulting

increase in misallocation inside the firm given by equations (10) and (11) makes it more likely
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Figure 6: Adjustment Hazards in Multi-Product Model
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for firms with older prices to adjust.

To sharpen the intuition behind our findings, recall that in the single-product model we

showed that, in the absence of free price changes, the response of the fraction of price changes

to a one-time sectoral shock of size δ is

∆n =
1

2

δ2

V[∆p]
+O(δ4). (12)

In deriving this result, we used the fact that in this model there is a one-to-one relationship

between the variance of price changes V[∆p] and the width of the inaction region, S, namely

V[∆p] = S2. Thus, the extent to which the fraction of price changes increases after a shock

of size δ depends on how large the shock is relative to the width of the inaction region.

We argue next that in the multi-product model there is no longer a tight relationship

between the variance of price changes and the width of the inaction region: as shown in

Figure 6, the two multi-product models have different adjustment hazards despite matching

the same variance of price changes. To that end, consider a version of our multi-product

model in which the elasticity of substitution between a firm’s products is equal to γ = 0, so

there are no losses from misallocation inside the firm and ϕt(f, s) = 1. The firm’s objective

then becomes

E0

∞∑
t=0

βt
(
xt (s)

σ−1
[
(1 + τ)xt (f, s)

1−σ − āxt (s)
( 1
η
−1)(σ−1) xt (f, s)

−σ
η

]
− ξt(f, s)It(f, s)

)
,

(13)

where, absent a price change, the firm price gap evolves according to

xt(f, s) = exp

(
σ2
z

2

)
xt−1 (f, s)

et (s)

et−1 (s)

Mt−1

Mt

. (14)

30



Comparing equations (13) and (14) to their counterparts (4) and (5) from the single-

product model, reveals that the multi-product model with γ = 0 is equivalent to a single-

product model in which there are no idiosyncratic shocks and in which the money growth

rate satisfies

gsinglem = gmulti
m − σ2

z

2
.

This equivalent single-product model has identical value functions, adjustment thresholds and

optimal reset prices as its multi-product counterpart, and therefore has the same aggregate

implications. However, the two models have very different implications for the distribution

of price changes.

We illustrate this point by calibrating the multi-product model with γ = 0 using the

same strategy as above. The second column of Table 6 shows that this model reproduces

the targeted moments perfectly. The last column of the table reports the moments implied

by evaluating the equivalent single-product model at the calibrated parameters from our

multi-product model with γ = 0. The equivalent single-product model implies a standard

deviation of price changes of only 1.9%, much smaller than the 18.8% in the multi-product

analog and in the data.

Since the two models have identical aggregate implications, they predict the same response

of the fraction of price changes to a sectoral shock of size δ. We can therefore leverage

equation (12) to express the response of the fraction of price changes in our multi-product

model as a function of the variance of price changes in the equivalent single-product model.

For example, for a sectoral shock of 0.01, δ2/V[∆p] = 0.012/0.0192 ≈ 0.25, much larger than

in the single-product model we considered in Section 3. Intuitively, our multi-product model

behaves identically to a single-product model with narrower inaction regions, which implies

that firm repricing decisions are much more sensitive to aggregate shocks.

4.6 The Role of γ

We next explore how the conclusions of our model are shaped by the within firm elasticity

of substitution γ. To that end, we recalibrate two versions of our model in which we set

γ = 0 and γ = 3, respectively. We report the results of the calibration in Appendix E and

summarize the main predictions here. Table 7 shows that when γ = 0 the model predicts

too large of a role for the extensive margin of price changes in driving inflation fluctuations

relative to the data: when sectoral inflation exceeds its 75th percentile, 90% of the movements

in inflation are due to variation in the fraction of price changes relative to the 52% in the
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Table 6: Equivalent Single-product Model

Data
Our model

γ = 0
Equivalent

single product

I. Targeted

frequency ∆p 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.000
std. dev. ∆p 0.188 0.188 0.019
std dev. πt(s) 0.029 0.029 0.029

II. Not targeted

kurtosis ∆p 3.609 4.480 2.211

distribution of |∆p|

10th percentile 0.018 0.019 0.007
25th percentile 0.045 0.050 0.010
50th percentile 0.104 0.109 0.016
75th percentile 0.204 0.199 0.022
90th percentile 0.334 0.309 0.030

Note: The moments reported in the column “Equivalent single product” are computed by evaluating the

equivalent single product model at the calibrated parameters from our model with γ = 0.

data. This version of the model also predicts very small menu costs, 0.1% of total revenues,

and insignificant losses from misallocation. When γ = 3 the extensive margin fluctuates too

little. For example, when sectoral inflation exceeds its 75th percentile, 29% of the movements

in inflation are due to the extensive margin. This version of the model requires too large

menu costs, 3.4% of revenues, and predicts losses from misallocation that are three times

larger than in our baseline with γ = 1. We therefore conclude that allowing for a relatively

low value of γ and therefore small losses from misallocation inside the firm is critical for the

model to reproduce the role of the extensive margin of price changes for inflation dynamics,

as well as reconcile the evidence that menu costs are relatively small in an economy that

features moderate strategic complementarities.18

18Alvarez and Lippi (2014) also consider a nested CES specification with different elasticities. They con-
clude that when the number of products sold by a firm goes to infinity and there are no common shocks,
allowing for different elasticities does not affect the dynamics of the economy. In contrast, in our setting with
common shocks (i.e. shocks to sectoral productivity), allowing for different elasticities significantly changes
the dynamics of the economy in response to large, but not to small shocks.
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Table 7: Alternative Values of γ

Data γ = 0 γ = 1 γ = 3

slope of πc
t (s) on πt(s)

all observations 0.80 0.60 0.83 0.91
πt(s) > 75th pct. 0.48 0.10 0.57 0.71
πt(s) > 90th pct. 0.39 0.07 0.48 0.64

menu costs/sales 0.001 0.010 0.034
losses from misallocation 0.001 0.013 0.043

5 Real Effects of Monetary Shocks

We next use the model developed above to revisit the classic question in the menu cost

literature: how large are the real effects of monetary policy? That is, how much does output

respond to monetary shocks of various sizes? We show that output responses in our model

are very different than those in the standard model that we showed is inconsistent with the

data. Specifically, in our model output responds non-linearly to shocks of various sizes. The

larger the shock is, the stronger the response of the fraction of price changes and therefore

the smaller the real effects. Thus, our model predicts a non-linear Phillips curve.

5.1 Impulse Response to Monetary Shocks

We start by reporting impulse responses to a one-time, unanticipated and permanent increase

of 1% and 10% in the money supply Mt, starting from the ergodic distribution of price gaps

induced by sectoral and idiosyncratic productivity shocks. Figure 7 plots the impulse response

of aggregate output yt in the top row and that of the fraction of price changes in the bottom

row. We compare the impulse responses in our model and the standard single-product model

with σ = 6, η = 2/3 and free price changes.19 To ease comparison, we rescale the y-axis in

the output impulse responses by the size of the shock. We make two points. First, for a small

shock of 1% the real effects of monetary policy are nearly the same in the two models, echoing

the findings of Alvarez and Lippi (2014) who show that these effects are pinned down by the

kurtosis of the distribution of price changes. Second, while in the single-product model the

impulse response scales linearly with the shock, consistent with the findings of Auclert et

al. (2022), in our model a large shock of 10% implies a disproportionately smaller output

19In Appendix E we show that the responses in the single-product model are similar to those in the standard
multi-product model.
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Figure 7: Response of Output and Fraction of Price Changes to Money Shock
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response. Not only is the output response on impact smaller in our model (6.3% vs. 8.9%),

but it also shorter lived.

To see why this is the case, the bottom row of Figure 7 shows that, in contrast to the

single-product model, in which the fraction of price changes responds very little to both

small and large shocks, in our model it increases considerably after a large money shock.

For example, though the fraction of price changes responds little to a money shock of 1%, it

jumps on impact to 40% after a 10% money shock.

In Table 8 we zoom in on the impact response of inflation to a money shock ∆m. We

calculate the pass-through of the shock to inflation ∆π/∆m and decompose it into three

channels. Our decomposition, in the spirit of Caballero and Engel (2007), starts from the

observation that, up to a first-order approximation, inflation in the absence of the shock is

equal to

π =

∫
ωh (ω) df (ω) ,

where ω is the desired price change, h(ω) is the adjustment hazard and f(ω) is the ergodic

distribution of desired price changes across firms and sectors. The money shock increases all

firms’ desired price changes to ω + α, where

α = x̃∗ − x∗ +∆m,

and where x̃∗ is the average across sectors of the log reset price in the first period after the

money shock and x∗ is the average across sectors of the log reset price in the absence of the
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shock. The money shock changes the inflation rate to

π̃ =

∫
(ω + α) h̃ (ω) df (ω) ,

where h̃(ω) is the new adjustment hazard as a function of ω, the desired price change absent

the money shock. The change in inflation ∆π ≡ π̃ − π can then be decomposed into the

following three terms

∆π = α

∫
h (ω) df (ω)︸ ︷︷ ︸
Calvo

+α

∫ (
h̃ (ω)− h (ω)

)
df (ω)︸ ︷︷ ︸

frequency

+

∫
ω
(
h̃ (ω)− h (ω)

)
df (ω)︸ ︷︷ ︸

selection

.

The first term, which we refer to as the Calvo term, captures the price increase that the

shock generates if the frequency of price changes were to remain constant at its steady state

level
∫
h (ω) df (ω). The second term, which we refer to as the frequency term, captures the

price increase resulting from the increase in the frequency of price changes from its steady

state level to
∫
h̃ (ω) df (ω). The final term is the Golosov and Lucas (2007) selection effect

that captures the change in mix of firms that adjust prices. We note that this is purely an

accounting decomposition, as all of these effects are interdependent. For example, a stronger

selection effect leads to more price flexibility and thus a smaller reduction in the optimal

reset price x̃∗ and therefore a larger Calvo effect.

We make two observations based on the decomposition results in Table 8. First, for small

shocks the models have a similar pass-through to inflation, mostly driven by the Calvo effect.

Moreover, the relative importance of the Calvo, frequency and selection effects is similar

across the two models: in both changes in the frequency play a negligible role and selection

accounts for a quarter of the pass-through. Second, in our model the pass-through increases

rapidly with the size of the shock: from 0.114 for a 1% shock to 0.441 for a 10% shock vs.

from 0.128 to 0.145 in the single-product model. This increase is primarily accounted for by

the increase in the frequency of price changes, while the strength of the Calvo and selection

effects remains comparable to that in the single-product model.

5.2 Non-Linear Phillips Curve

We next investigate how non-linear are the real effects of changes in monetary policy for a

wider range of shocks. Specifically, we consider money shocks that range from -15% to 15%

and report the impact response of the frequency of price changes and output, as well as the

cumulative response of output.
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Table 8: Inflation Pass-through to Monetary Shock on Impact

Single-product Our model

1% 10% 1% 10%

total pass-through 0.128 0.145 0.114 0.441

Calvo 0.092 0.096 0.079 0.105
frequency 0.001 0.012 0.006 0.286
selection 0.035 0.037 0.030 0.050

Figure 8: Impact Response of the Fraction of Price Changes

-15 -10 -5 0 5 10 15

money shock, %

0

0.2

0.4

0.6

0.8

our model

single product

Figure 8 shows that though the fraction of price changes is relatively insensitive to the

size of the money shock in the single product model, it responds much more in our model.

Specifically, in the neighborhood of zero the frequency does not respond to money shocks,

but increases fast away from zero. Moreover, the frequency response is asymmetric: 42% of

firms change prices after a 10% increase in the money supply, and 26% do so after a 10%

fall in the money supply. This asymmetry is driven by the asymmetry in the profit function:

sub-optimally low prices are much more costly than sub-optimally high prices.

Figure 9(a) displays the impact response of output to monetary shocks of various sizes.

In the single product model, the response is nearly linear, reflecting the relatively constant

fraction of price changes. In our model, the output response is highly non-linear. Though the

output response is similar to that in the single product model for shock sizes between -7% and

5%, our model predicts lower real effects for larger shocks. The output response on impact

is also asymmetric in our model, reflecting the asymmetry in the response of the fraction of
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Figure 9: Output Response to Money Shocks
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price changes: a 15% money shock leads to only a 2.8% increase in output, whereas a -15%

leads to a 8.9% fall in output.

The cumulative impulse responses of output, depicted in Figure 9(b), exhibit a similar

pattern, but the non-linearity of the response in our model is even more pronounced, a

consequence of the lower persistence of the output response in our model. As can be inferred

from Figure 7, the response of output in our model has a lower half-life. The asymmetry is

also present in the cumulative output response: while a 15% increase in money supply shock

has almost no cumulative real effects, a 15% fall in money supply leads to a cumulative fall

in output of 36%.

Figure 10 summarizes this discussion by depicting the Phillips curve implied by the impact

responses of output and inflation to the money shocks considered above. While the Phillips

curve is approximately linear in the single product model, it is highly non-linear in our model.

In particular, at low levels of inflation the Phillips curve in our model has a similar slope as

that in the single model, but it becomes much steeper and eventually vertical at high rates

of inflation.

6 Conclusions

We show that canonical menu cost models, calibrated to match the distribution of micro price

changes, cannot reproduce the strong comovement between the fraction of price changes and

inflation observed in the data. They therefore predict linear inflation dynamics even in
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Figure 10: Phillips Curve, Impact Responses
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response to large shocks, as in time-dependent pricing models with a constant frequency of

price changes. Moreover, these menu cost models require large menu costs and predict large

losses from misallocation in the presence of microeconomic strategic complementarities in

price setting.

We propose a resolution to these shortcomings by extending the multi-product menu cost

model along two dimensions. First, we assume that individual products sold by a given firm

are imperfect substitutes. Second, we assume that strategic complementarities are at the firm

rather than the product level. Both these assumptions limit the losses from misallocation

from price dispersion within the firm and allow the model to reproduce the importance of the

extensive margin of price changes at high levels of inflation. The model also implies small

menu costs and losses from misallocation, even in the presence of strategic complementarities.

We use the model to study the real effects of monetary policy. We find that, in contrast

to standard models, our model predicts a highly non-linear and asymmetric output response

to shocks, owing to a more responsive frequency of price changes. The model implies that

the Phillips curve is nearly vertical when inflation is sufficiently high.
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Appendix
For Online Publication

A Data

A.1 Overview

We use the data that underlie the construction of the Consumer Price Index (CPI) in the

UK. The data are collected by the United Kingdom’s Office for National Statistics (ONS).20

We use public monthly product-level price quotes and item-level price indexes from January

1996 to August 2022.21

Goods and services are classified following the 6-digit Classification of Individual Con-

sumption by Purpose (COICOP 6).22 The CPI is produced in stages, with indexes derived

at each stage weighted together to give higher level indexes. A sample of prices of items

which are representative of UK consumer expenditure are collected in line with the COICOP

classification system.23 There are currently around 650 representative items in the UK CPI

price basket of goods. The items usually have fairly broad specifications (such as a roll of

wallpaper or women’s jeans). Price collectors choose a selection of products which conform to

that item specification. Product-level price quotes are collected by either sampling individual

outlets or are collected centrally (for example, university tuition fees).

A.2 Weights

Class-level The COICOP class-level weights are largely calculated from household final

consumption expenditure data which covers the relevant population and range of goods and

services and are classified by COICOP. This is supplemented by other data sources, including

the Living Costs and Food Survey (LCF) data, International Passenger Survey data, and

data from Public Sector Branch. The weights used in compiling the measures of consumer

price inflation are updated annually following ONS reviews of the representative items in the

20The descriptions in this section are taken from the Consumer Price Indices Technical Manual published
by the ONS and available here.

21See also Davies (2021) and Petrella et al. (2018) who use these data.
22COICOP is a hierarchical classification system comprising: Divisions e.g. 01 Food & non-alcoholic

beverages, Groups e.g. 01.1 Food, and Classes (the lowest published level) e.g. 01.1.1 Bread and cereals. See
here for a description of the COICOP classification.

23For example, for the item home-killed lamb, prices are collected for ‘loin chops with bone’ and ‘shoulder
with bone’. Other joints, and loin chops and shoulders without bones, are not priced; it is assumed that their
price movements are close to those of the joints of lamb that are priced.

1

https://www.ons.gov.uk/economy/inflationandpriceindices/methodologies/consumerpricesindicestechnicalmanual2019
https://www.ilo.org/public/english/bureau/stat/download/cpi/coicop.pdf


basket, so that the weights reflect the introduction of new items and the deletion of others. In

addition, using up-to-date expenditure data ensures that the indexes remain representative

of current expenditure patterns over time.

Item-level Some items within a class represent themselves while others represent a subclass

of expenditure within a section.24 However, other items represent price changes for a set of

items, which are not priced, so for these the weight reflects total expenditure on all items in

the set.25 The expenditure figures for all items in a section are expressed as a percentage of

the section weight. Each percentage is rounded to the nearest unit, except where percentages

are less than 0.5 which are rounded up to 1. Manual adjustments are then made by the ONS

to constrain the sum of each section’s item weights to 100.

The item weights are updated twice each year–with the January index when the new

COICOP weights are introduced, and in February when the representative items that make

up the basket of goods and services are updated. When the basket of goods and services is

updated in February, item weights are updated by drawing on data from a variety of sources.

These include detailed National Accounts expenditure data, LCF data, market research data

and other sources including administrative data. For each COICOP class, the sum of the new

item weights introduced in February is constrained to be equal to the updated class weight

introduced in the previous month.

A.3 Sources

We use several datasets published by the ONS to construct our master panel dataset.

1. Price quotes. The price quote data is sourced from the ONS website.26

2. Item identifier, COICOP classification, and COICOP weights. The item index data is

sourced from the ONS website.27 The classification of items into COICOP classifica-

tions are also provided by the ONS.28 COICOP weights are provided for each item.

24For example, within electrical appliances, the electric cooker item represents only itself and not any other
kinds of electrical appliances.

25For example, a screwdriver is one of several items representing all spending on small tools within DIY
materials, and there are other items within the section representing all spending on paint, timber, fittings
and so on.

26The link to the latest data is here and to historical data is here.
27The link is here.
28The link is here.

2

https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://webarchive.nationalarchives.gov.uk/ukgwa/20160109121317/http://www.ons.gov.uk/ons/rel/cpi/consumer-price-indices/cpi-and-rpi-item-indices-and-price-quotes/rpt-cpi---rpi-item-indices---price-quotes.html
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes


3. Aggregated price indexes. We also use the price indexes published by the ONS at

COICOP-6 and above levels of disaggregation.29

A.4 Compiling the Dataset

To compile the dataset, we use the following steps.

1. Import data. In this step we generate a dataset of unprocessed price quotes and a

dataset of item-COICOP classifications and CPI weights.

2. Process item-level data and price quotes. In this step we correct for recording errors

and drop price quotes that are invalidated by the ONS. We also use the algorithm

in Blanco (2021) to recover unique price trajectories for price quotes with the same

product-outlet identifier.30

3. Merge price quotes data with item identifiers and weights.

Our final master panel dataset is comprised of the variables in Table A.1. We have

around 38 million unique price quote observations from 1996m1 to 2022m8. All statistics

and analyses are produced with this dataset.

A.5 Data Checks

We do two checks on our panel dataset.

1. First, we confirm that the diaggregated price indexes generate the published aggregate

CPI index using the sector-level weights in our dataset. We construct:

πt =
∑
s

wt(s)πt(s) (15)

where πt is inflation, πt(s) is inflation at the s-sector level of disaggregation, and wt(s)

is the corresponding weight in our dataset. Figure A.1 plots the constructed aggre-

gate index against the published aggregate index; Figure A.2 plots the corresponding

inflation rates.

2. The second check we do is to compare inflation constructed using the final micro price

dataset to the published aggregate inflation series. Figure A.3 plots inflation rates

29The link is here.
30These observations can arise because of confidentiality reasons.

3

https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceinflation


Figure A.1: Price Indexes
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calculated from the micro data using regular prices, and shows that they have a close

correspondence to the published aggregate inflation rate.

A.6 Constructing Micro-Price Statistics

We use our master panel dataset to construct the micro-price statistics that we use to calibrate

the model. We apply the following steps in sequence to the dataset:

1. Filters: We drop price changes with a sale flag and noncomparable product substitu-

tion flag. We also drop prices that are centrally collected by the ONS. We next remove

quotes for products that are not observed in the dataset for at least 6 months. We next

drop prices that are not rounded to the nearest cent, and which could indicate record-

ing errors (see Eichenbaum et al., 2014). We next drop observations if the number of

observations for the item-category is less than 20. Out of our initial number 37,708,793

unique price quotes, these filtering steps eliminates 3,639,521 observations.

2. Removing energy products: We drop observations that are classified as “energy”

at the COICOP-6 level, following the ONS classification.31 This removes 381,134 ob-

servations.

31There are five COICOP-6 classifications that are grouped as “energy”: Electricity (04.5.1), Gas (04.5.2),
Liquid fuels (04.5.3), Solid fuels (04.5.4), Fuels and lubricants (07.2.2).
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Table A.1: Variables in Dataset

Variable Description

date Date of price quote observation
quote id Identifier for the price quote
weight id Identifier for the item
weight Weight
price Price
coicop 6 COICOP-6 classification
CPI agg Aggregate CPI index

Figure A.2: Inflation Rates
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Figure A.3: Inflation Calculated Using Regular Price Changes

0

2

4

6

8

10

1998 2002 2006 2010 2014 2018 2022

Regular Price Changes
Published Aggregate

3. Product-level weights: The weights in our dataset are observed at the item-date

level. We construct product-date level weights by dividing the item-date weight by the

number of quotes observed for that item-date.

4. Regular prices: Since the sales flag is unlikely to cover all sales observed, we next

construct regular prices by applying an algorithm that filters out V-shaped price series

that last less than three months. As we plot in the text, the aggregate inflation series

computed from regular prices is close to the series computed using posted prices. As

an example of our algorithm that constructs regular prices, Figure A.4 plots the posted

price and regular price for an item in the COICOP-6 Bread and Cereals category

(01.1.1).

5. Standardization: We follow Klenow and Kryvtsov (2008) and calculate for each price

change ∆pit(j) of quote i that belongs to product category j the standardized price

change

∆̂pit(j) =
∆pit(j)− µ∆(j)

σ∆(j)
σ∆ + µ∆,

where µ∆(j) and σ∆(j) are the item-level mean and standard deviation of non-zero

price changes and µ∆ and σ∆ are the overall ones.
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Figure A.4: Posted and Regular Price Example: “Bread and Cereals” Product
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6. Remove outliers: Our final step is to remove the top 2% and bottom 2% of observa-

tions based on the normalized price changes.

Table A.2 shows price statistics for different sets of prices from our dataset.32 Removing

energy prices drops the frequency of adjustment from 0.18 to 0.17, and using regular prices

drops it further to 0.12. The remaining price statistics are broadly similar.

We next show in Table A.3 a subset of commonly reported statistics under different

filtering assumptions to understand how the procedures we use to process the UK data

affects the price statistics. We report the mean absolute value of price changes, the standard

deviation of price changes, the kurtosis of price changes, and the frequency of price changes.

In all cases, we remove energy prices, as categorized by the ONS at the COICOP-6 level. The

first row shows the price statistics for all prices. The remaining rows report the price statistics

for regular prices computed under our algorithm that filters out V-shaped price series that

last less than three months (the baseline filter), and alternatively computed using the regular

price algorithm of Kehoe and Midrigan (2015) (the KM filter). When considering regular

prices, we present statistics for different treatments of observations at the top and bottom of

the price change distribution. In the set of statistics that we target in the baseline estimation,

we remove the top and bottom 2% of observations ordered by the normalized price changes.

32In all cases, we standardize prices at the item level and remove the top 2% and bottom 2% of outliers.
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Table A.2: Micro Price Statistics

Regular Prices
All Prices No Energy No Energy

frequency ∆p 0.180 0.168 0.116

distribution of ∆p

mean 0.014 0.014 0.018
std. dev. 0.188 0.190 0.188
kurtosis 3.121 3.145 3.609

5th percentile -0.325 -0.328 -0.327
10th percentile -0.238 -0.240 -0.226
25th percentile -0.100 -0.099 -0.081
50th percentile 0.024 0.023 0.026
75th percentile 0.126 0.126 0.119
90th percentile 0.250 0.252 0.247
95th percentile 0.329 0.332 0.340

distribution of |∆p|

mean 0.146 0.147 0.142
std. dev. 0.119 0.121 0.125

5th percentile 0.009 0.009 0.009
10th percentile 0.019 0.019 0.018
25th percentile 0.050 0.050 0.045
50th percentile 0.115 0.115 0.104
75th percentile 0.216 0.217 0.204
90th percentile 0.327 0.330 0.334
95th percentile 0.394 0.398 0.413

Notes: In all cases, we remove the top and bottom 2% outliers.

In Table A.3 we present results for which no outliers are dropped, up to dropping the top and

bottom 10% of observations. We also drop outliers category-by-category, at the COICOP-6

and COICOP-2 levels. The bottom rows of Table A.3 show these statistics, where reported,

in other papers (that use different datasets). The results indicate that the key statistics do

not depend on the filter used to produce regular prices.

Table A.4 shows the weights at the COICOP-2 level in our sample used to compute micro

price statistics and compared to the weights that are published by the ONS in the CPI.

8



Table A.3: Price Statistics Across Filters

Mean |∆p| Std Dev ∆p Kurtosis ∆p Freq ∆p

All prices 0.177 0.255 12.270 0.164

Regular prices
- Baseline filter 0.168 0.250 13.987 0.116
- Baseline filter, 2% outliers 0.142 0.188 3.609 0.116
- KM filter 0.167 0.248 13.889 0.093
- KM filter, 1% outliers 0.151 0.204 4.102 0.093
- KM filter, 2% outliers 0.141 0.186 3.566 0.093
- KM filter, 2% outliers (by coicop2) 0.142 0.187 3.600 0.093
- KM filter, 2% outliers (by coicop6) 0.142 0.187 3.636 0.093
- KM filter, 5% outliers 0.121 0.152 2.936 0.093
- KM filter, 10% outliers 0.097 0.117 2.511 0.092

Literature
- Klenow and Kryvtsov (2008) 0.113 – – –
- Nakamura and Steinsson (2008) 0.085 – – 0.087–0.111
- Midrigan (2011) 0.11 – 4.02 0.116
- Karadi and Reiff (2019) 0.099 – 3.98 0.126
- Blanco (2021) 0.153 0.205 3.809 0.126

Notes: For regular prices, the ‘baseline filter’ removes V-shaped sales that last less than 3 months,
and the ‘KM filter’ follows the algorithm in Kehoe and Midrigan (2015). Removing x% outliers drops
the top and bottom x-th percentiles of the data ordered by normalized price changes. Nakamura
and Steinsson (2008) report the median |∆p|. Blanco (2021) reports statistics for the UK data.
Karadi and Reiff (2019) reports statistics using data from Hungary.

Table A.4: COICOP-2 Level Weights in Sample Versus Published Weights

Weight, Sample Weight, CPI

1 Food and Non-Alcoholic Beverages 0.19 0.12
2 Alcoholic Beverages and Tobacco 0.09 0.05
3 Clothing and Footwear 0.08 0.06
4 Housing, Utilities, and Other Fuels 0.03 0.14
5 Furniture, Household Eq./Maintenance 0.12 0.08
6 Health 0.03 0.02
7 Transport 0.08 0.14
8 Communication 0.00 0.03
9 Recreation and Culture 0.14 0.13
10 Education 0.00 0.03
11 Restaurants 0.13 0.11
12 Miscellaneous Goods and Services 0.11 0.09

Aggregate 1.00 1.00

9



B Solution Method

In the presence of strategic complementarities in price setting the firms’ optimal pricing

decisions depend on the price of their competitors. Recall that the assumptions we make on

preferences imply that the problem of a firm in a given sector depends only on the current

and future sectoral price gaps xt(s). We follow the approach of Krusell and Smith (1998)

and postulate that xt(s) is a function of a single moment of the distribution of firm state

variables. Specifically, the moment we use is

x̂t(s) ≡ āη
et(s)

Mt

Pt−1(s),

the previous period’s price level, scaled by the money supply and sectoral productivity.33 We

postulate that the sectoral price gap depends on this state variable according to

xt(s) = X (x̂t(s)) .

Given the function X (·), x̂t(s) evolves according to

x̂t+1(s) =
et+1(s)

et(s)

Mt

Mt+1

X (x̂t(s)) .

We use the Krusell and Smith (1998) approach to pin down X (·). In particular, we

parameterize X (·) using Chebyshev polynomials in order to capture potential non-linearities.

For any given guess of X (·), we solve the firm’s decision rules, simulate histories of sectoral

productivity shocks, and find the sectoral price gap xt(s) that is consistent with the firms’

decision rules. We then use projection methods to update our guess of X (·) using simulated

data on xt(s) and x̂t(s), and iterate until convergence. We find that the Krusell and Smith

(1998) approach works well in both the single- and multi-product models, with an R2 in the

perceived law of motion in excess of 0.999.

33Equivalently, x̂t(s) =

(∫ ( zt−1(f,s)
zt(f,s)

)1−σ

x̂t(f, s)
1−σdf

) 1
1−σ

.
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C An EconomyWith Idiosyncratic Productivity Shocks

We describe an economy in which idiosyncratic shocks are shocks to productivity, as opposed

to quality. We show that the firm’s problem is nearly isomorphic to the problem of a firm in

our baseline model provided one rescales the menu cost appropriately.

We now suppose that the technology for aggregating individual products into a final sector

good is

yt (f, s) =

(∫
yit (f, s)

γ−1
γ di

) γ
γ−1

and

yt (s) =

(∫
yt (f, s)

σ−1
σ df

) σ
σ−1

.

Notice that we no longer have taste shifters in these aggregators. The demand functions are

therefore

yit (f, s) =

(
Pit (f, s)

Pt (f, s)

)−γ

yt (f, s)

yt (f, s) =

(
Pt (f, s)

Pt (s)

)−σ

yt (s) .

As earlier, the production function is

yit (f, s) = et (s) zit (f, s)mit (f, s) lit (f, s)
η ,

and the optimal choice of the specific factor mit implies that the total amount of labor the

firm needs to produce the bundle yit(f, s) is

lt (f, s) =

(∫
yit (f, s)

et (s) zit (f, s)
di

) 1
η

.

Notice that now zit(f, s) represents a product-specific productivity shock. Firm profits are

∞∑
t=0

βt

Ptct

[
(1 + τ)

∫
Pit (f, s) yit (f, s) di−Wt

(∫
yit (f, s)

et (s) zit (f, s)
di

) 1
η

−Wtξt(f, s)It(f, s)

]
,

where we now assume that the fixed cost of changing prices ξt(f, s) depends on the firm’s

productivity, as we discuss below. Absent such rescaling, firms whose productivity grows

over time would face smaller menu costs relative to their profits and no longer be subject to

pricing frictions.

To show that in this environment the problem of the firm is similar to that in our baseline

model, let us define the several objects. First, the first-best level of a firm’s productivity is

zt (f, s) =

(∫
zit (f, s)

γ−1 di

) 1
γ−1

.
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This evolves over time according to

zt (f, s) = zt−1 (f, s) exp

(
(γ − 1)

σ2
z

2

)
,

given our assumption that individual productivity evolves according to a geometric random

walk process with Gaussian innovations. We can write the firm’s production function as

yt (f, s) = et (s) zt (f, s)ϕt (f, s) lt (f, s)
η ,

where ϕt(f, s) represents the losses from misallocation inside the firm, given by

ϕt (f, s) =

(∫
zt (f, s)

zit (f, s)

(
Pit (f, s)

Pt (f, s)

)−γ

di

)−1

.

Also let

zt (s) =

∫ zt (f, s)

(σ−1) 1η

1+σ( 1
η−1) df


1+σ( 1

η−1)
(σ−1) 1η

denote the sectoral weighted average of individual firm’s composite productivities. This term

also evolves over time according to a deterministic trend.

We define the price gaps as follows. The sectoral price gap is given by

xt (s) = āη
et (s) zt (s)Pt (s)

Mt (s)
.

The firm-level price gap is given by

xt (f, s) = āη
et (s)ut (s)

(
ũt(f,s)
ut(s)

) 1
η

1+σ( 1
η−1) Pt (f, s)

Mt (s)
.

The product-level price gap is given by

xit (f, s) = āη
et (s) zt (s)

(
zt(f,s)
zt(s)

) 1
η

1+σ( 1
η−1) zit(f,s)

zt(f,s)
Pit (f, s)

Mt (s)
.

We assume that the menu cost scales with the firm’s productivity

ξ̄t(f, s) =

(
zt (f, s)

zt (s)

) (σ−1) 1η

1+σ( 1
η−1)

.
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This assumption ensures that the menu cost is equal to a constant fraction of the firm’s

(flexible price) profits, so they do not vanish for firms that grow increasingly large. We can

then rewrite the firm’s objective as

∞∑
t=0

βt

(
zt (f, s)

zt (s)

) (σ−1) 1η

1+σ( 1
η−1)

[
(1 + τ)

(
xt (f, s)

xt (s)

)1−σ

− at (s)ϕt (f, s)
− 1

η

(
xt (f, s)

xt (s)

)−σ
η

− ξ̄t(f, s)It(f, s)

]
.

This objective is nearly identical to that in the baseline model with quality shocks, except

that we have an additional term due to firm productivity growth affecting the discount factor.

In addition, since we scale prices by different terms involving productivity, the law of motion

for price gaps changes accordingly.

We finally note that if the firm does not adjust prices, misallocation inside the firm is

equal to

ϕt (f, s) =

(∫
zt (f, s)

zit (f, s)

(
Pit (f, s)

Pt (f, s)

)−γ

di

)−1

=

(∫
zit (f, s)

−1 di
)−1

zt (f, s)
,

and evolves over time according to the same law of motion as in our baseline model with

quality shocks

ϕt (f, s) = ϕt−1 (f, s) exp

(
−γ

σ2
z

2

)
.

13



D Single-Product Menu Cost Model in Continuous Time

This section analyzes the model presented in Section 3 in continuous time. We assume

gm = 0, so the money supply is constant.

D.1 Environment

Household. A representative consumer has preferences over consumption and derives disu-

tility from work. The consumer maximizes lifetime utility, given by∫ ∞

0

e−ρt (log ct − ht) dt,

subject to

M0 +B0 =

∫ ∞

0

e−
∫ t
0 is ds[Ptct −Wtht −Dt − Tt] dt,

where ct is consumption, ht is hours worked, Pt is the aggregate nominal price level, Dt

denotes profits, and Tt represents government transfers. M0 and B0 are initial money and

bonds holding, respectively.

We assume that nominal spending is subject to a cash-in-advance constraint,

Ptct ≤ M̂t,

where M̂t denotes money demand.

The household optimality condition together with market clearing for money aggregates

imply

it = ρ , Mt = Wt , ct =
Mt

Pt

.

Final Goods Producers. The technology for producing final output is as in Section 3.

Intermediate Goods Producers. The intermediate goods producer faces the same

production technology as in Section 3. The technology for changing prices is as follows: in a

period of length dt, the firm faces a non-random menu cost ξ̄ denominated in units of labor

with probability 1 − φdt and a zero menu cost with probability φdt. The firm chooses a

sequence of price adjustment dates {Th}∞h=1 and log-price adjustments {∆ph}∞h=1. For a given

firm-level log price gap x̂ and a sectoral log price gap X̂, the sequential formulation of the

firms’ problem is

V X̂(x̂) = max
{Th,∆ph}∞h=1

E0

[∫ ∞

0

e−ρtΠt(s, f) dt−
∞∑
i=1

ξTh
(f, s)

]
, (16)
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where the flow profit function is given by

Πt(s, f) = eX̂t(s)(σ−1)
(
(1 + τ)e(x̂t(s,f)−X̂t(s))(1−σ) − āeX̂t(s)( 1

η
−1)(σ−1)e−

σ
η
x̂t(f,s)

)
,

subject to the law of motion of firm price gap

x̂t(f, s) = constant + x̂+ log(et(s)) + log(zt(f, s)) +
∑

h:Th≤t

∆ph

and the law of motion of the sectoral price gap X̂t(s) with initial condition X̂.

D.2 Cost of Price Rigidity

We compute the cost of price rigidity under the assumption that σe = 0, i.e., there are no

sectoral shocks. Moreover, since sectors are identical, without loss of generality we omit the

sectoral index. Let V X̂(x̂) be the optimal firm value defined in equation (16). The flow profit

function ΠX̂(x̂) in a sector with sectoral (log) price gap X̂ and firm-level (log) price gap x̂ is

given by

ΠX̂(x̂) := eX̂(σ−1)
(
(1 + τ)e(x̂−X̂)(1−σ) − āeX̂(

1
η
−1)(σ−1)e−

σ
η
x̂
)
. (17)

Given the definition of the flow profits in equation (17), we can write the firm’s value as

V X̂(x̂) = max
τ

E
[∫ τ

0

e−ρtΠX̂(x̂t) dt+ e−ρτ
[
ξτ +max

x̂∗
V X̂(x̂∗)

]
|x̂0 = x̂

]
. (18)

The next propositions characterize the costs of price rigidity. First, we characterize the

losses from misallocation due to price dispersion. Second, we characterize the size of the

menu cost.

Let E[x̂m] denote the m-th moment of the log price gap distribution and V[x̂] denote its

variance. Similarly, E[∆pm] denotes the m-th moment of the log price change distribution

and V[∆p] = E[∆p2]− E[∆p]2 and K[∆p] = E[∆p4]
E[∆p2]2

denotes the variance and kurtosis of the

price change distribution, respectively. Finally, n denotes the fraction of price changes and

E[τ ] the average duration between price changes.

From now on, we consider a quadratic approximation of firms’ flow profits around the

optimal static log price gap. This approximation implies a symmetric value function around

the optimal price gap and therefore a symmetric policy function. Let (x̂−, x̂∗, x̂+) be the

optimal policy, characterized by the lower and upper adjustment thresholds x̂− and x̂+, and

the reset price x̂∗. We normalize the units in which we express the price gap to ensure that

the optimal reset price is zero. Moreover, the symmetry of the value function implies that
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−x̂− = x̂+ = x̄. The following proposition characterizes the quadratic approximation of the

profit function.

Proposition 1. Define

x̂∗(X̂) = argmax
x̂

ΠX̂(x̂). (19)

Then, up to a second-order approximation,

ΠX̂(x̂) = ΠX̂(x̂∗(X̂)) +
1

2

∂2ΠX̂(x̂)

∂x̂2

∣∣∣∣∣
x̂=x̂∗(X̂)

(x̂− x̂∗(X̂))2 +O
(
(x̂− x̂∗(X̂))3

)
, (20)

where the optimal reset price is given by

x̂∗(X̂) =
η

η + σ(1− η)
log

(
σ

(1 + τ)(σ − 1)η

)
+

(σ − 1)(1− η)

η + σ(1− η)
X̂. (21)

and the level and curvature of the profit function are given by

ΠX̂(x∗(X̂)) = e

(
σ−1− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)
η + σ(1− η)

σ
(22)

∂2ΠX̂(x̂)

∂x̂2

∣∣∣∣∣
x̂=x̂∗(X̂)

= −e

(
σ−1− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)(σ − 1)
η + σ(1− η)

η

(23)

and the revenue is equal to

eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂) = e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ) (24)

Proof. The first-order condition for the profit function

ΠX̂(x̂) = eX̂(σ−1)
[
(1 + τ)e(1−σ)x − e(σ−1) 1−η

η
X̂e−

σ
η
x
]

(25)

is given by

0 = (1 + τ)(1− σ)e(1−σ)x̂ +
σ

η
e(σ−1) 1−η

η
X̂e−

σ
η
x̂, (26)

which implies an optimal markup

x̂∗(X̂) =
η

η + σ(1− η)
log

(
σ

(1 + τ)(σ − 1)η

)
+

(σ − 1)(1− η)

η + σ(1− η)
X̂. (27)

Therefore,

ΠX̂(x∗(X̂)) = eX̂(σ−1)
[
(1 + τ)e(1−σ)x̂∗(X̂) − e(σ−1) 1−η

η
X̂e−

σ
η
x̂∗(X̂)

]
= e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η) η + σ(1− η)

σ
(1 + τ) (28)

16



and

∂2ΠX̂(x̂∗(X̂))

∂x̂2
= −e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)(σ − 1)
η + σ(1− η)

η
.

(29)

Finally, the revenue is given by

eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂) = eX̂(σ−1)(1 + τ)

(
σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

e

(
− (σ−1)2(1−η)

η+σ(1−η)

)
X̂

= e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ) (30)

Proposition 2. Aggregate productivity is approximately equal to

log(ϕ) ≈ −σ(η + (1− η)σ)

η
V[x̂] = −σ

2

(
1 + σ

(
1

η
− 1

))
V[∆p]K[∆p]

6
(31)

Proof. Recall that we can write aggregate productivity as

ϕ =

(∫
f

e−
σ
η (x̂f−X̂) df

)1/η

. (32)

Using the same approximation as in Gali (2008), we have that

log(ϕ) ≈ −σ(η + (1− η)σ)

2η
V[x̂]. (33)

Because the profit function is symmetric, we have that x̂∗(X̂) = E[x̂]. With this result, we

can use Corollary 3 of Baley and Blanco (2021), and the definition of kurtosis, we have that

V [x̂] =
1

6

E[∆p4]

E[∆p2]
=

1

6
E[∆p2]K[∆p]. (34)

Putting these two results together, we have

log(ϕ) ≈ −σ

2

(
1 + σ

(
1

η
− 1

))
E[∆p2]K[∆p]

6
= −σ

2

(
1 + σ

(
1

η
− 1

))
V[∆p2]K[∆p]

6
, (35)

where the last equality uses that when the drift is zero, E[∆p] = 0 and E[∆p2] = V[∆p2]

(Baley and Blanco, 2021).
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Proposition 3. The total amount paid on menu costs, expressed as a fraction of revenue, is

approximately equal to

nE[ξτ ]
eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)

= (σ − 1)

[
1 + σ

(
1

η
− 1

)]
V[∆p]Ψ(K[∆p])

12
(36)

where Ψ(1) = 1, Ψ(6) = 0, and increasing-decreasing in its argument.

Proof. Under the assumption of the CalvoPlus model, we can write nE[ξτ ] as

nE[ξτ ] =
n− φ

n

(
nξ̄
)
. (37)

Using the Barro (1972) and Dixit (1991) formula, the normalized upper adjustment

threshold x̄ is

x̄ =

(
12σ2

uξ̄

ΠX̂
x̂2(x̂∗(X̂))

)1/4

. (38)

Using that σ2
z = nE[∆p2] if the drift is equal to zero (see Proposition 1 in Alvarez et al.,

2016) we have

nξ̄ = E[∆p2]
ΠX̂

x̂2(x̂∗(X̂))

12

(
x̄2

E[∆p2]

)2

, (39)

we have that

nE[ξτ ] =
n− φ

n

(
nξ̄
)
= E[∆p2]

ΠX̂
x̂2(x̂∗(X̂))

12

[
n− φ

n

(
x̄2

E[∆p2]

)2
]
. (40)

We next show that the last term is only a function of φx̄2

σ2
z
. Using the result that φx̄2

σ2
z

is a

function of kurtosis (see Proposition 6 in Alvarez et al., 2016), implies that the last term is

only a function of the kurtosis, which will complete the proof of the Proposition.

Let P(x̂) and D(x̂) be the solutions of the following differential equations

φP(x̂) =
σ2
z

2
P ′′(x̂), P(x̄) = P(−x̄) = 1, (41)

φD(x̂) = φ

(
−x̂

x̄

)2

+
σ2
z

2
D′′(x̂), D(x̄) = 1,D(−x̄) = 1. (42)

It is easy to check that P(0) = n−φ
n

and D(0) =
E[∆p2]

x̄2 . Using these definitions and letting

ẑ = x̂/x̄, we can normalize P(·) and D(·) as P̃(ẑ) := P (ẑx̄) and D̃(ẑ) := D (ẑx̄) . Doing a

change of variable, we have that

φP̃(ẑ) =
σ2
z

2x̄2
P̃ ′′(ẑ), P̃(1) = P̃(−1) = 1, (43)

φD̃(ẑ) = φẑ2 +
σ2
z

2x̄2
D̃′′(ẑ), D̃(1) = D̃(−1) = 1. (44)
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Letting Φ = φ2x̄2

σ2
z

ΦP̃(ẑ) = P ′′(ẑ), P̃(1) = P̃(−1) = 1, (45)

ΦD̃(ẑ) = Φẑ2 + D̃′′(ẑ), D̃(1) = D̃(−1) = 1, (46)

with P̃(0) = n−λ
n

and D̃(0) = E[∆p2]
x̂2 . Since Φ is a strictly decreasing function of the kurtosis

of price changes, we have that P̃(0)

D̃(0)2
= Ψ(K[∆p]). It is easy to check that Ψ(1) = 1 and

Ψ(6) = 0 and that the function is increasing-decreasing in its argument. Thus, we have that

nE[ξτ ] = E[∆p2]
ΠX̂

x̂2(x̂∗(X̂))

12
Ψ(K[∆p]). (47)

Dividing by the revenue, we have that

nE[ξτ ]
eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)

= E[∆p2]
ΠX̂

x̂2(x̂∗(X̂))

12eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)
Ψ(K[∆p])

= E[∆p2](σ − 1)
η + σ(1− η)

12η
Ψ(K[∆p])

= E[∆p2]
σ − 1

12

[
1 + σ

(
1

η
− 1

)]
Ψ(K[∆p]). (48)

Finally, since E[∆p] = 0, we have that E[∆p2] = V[∆p] and

nE[ξτ ]
eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)

= V[∆p]
σ − 1

12

[
1 + σ

(
1

η
− 1

)]
Ψ(K[∆p]). (49)

D.3 The Effect of a Sectoral Shock on the Fraction of Price Changes

We next characterize the impact effect of a sectoral productivity shock of size δ on the fraction

of price changes n. Let ∆n(δ) be the change in the fraction of price changes upon such a

shock. The next proposition characterizes this object under the assumption that equilibrium

policies are unchanged.

Proposition 4. Let l be the fraction of free price changes in the steady state, i.e., l = φ
n
.

Then

∆n(δ) =
1− l

2

δ2

V[∆p]
+O(δ4) (50)

Proof. Let St(δ) be the mass of firms without a price change following a sectoral shock of size

−δ which decreases the price gap by δ. We refer to St(δ) as the survival function t periods

following the shock. Then, on impact,

∆n(δ) = 1− S0(δ), (51)
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since there is a positive mass of firms changing their price on impact. The survival function

at time 0 is given by

S0(δ) =

∫ x̄

−x̄

f(x̂+ δ) dx̂, (52)

where f(x̂) satisfies the Kolmogorov forward equation with boundary conditions

φf(x̂) =
σ2
z

2

d2f(x̂)

dx̂2
∀x̂ ∈ (−x̄, x̄)/{0}, (53)

f(±x̄) = 0 ∀x̂ /∈ [−x̄, x̄], (54)∫
R
f(x̂) = 1, (55)

f(x̂) ∈ C(R) ∩ C2((−x̄, x̄)). (56)

Notice that above we wrote the price gap as the difference from its mean. Using a fourth-order

Taylor approximation we have

S0(δ) = S0(0) +
dS0(0)

dδ
δ +

1

2!

d2S0(0)

dδ2
δ2 +

1

3!

d3S0(0)

dδ3
δ3 +O(δ4) (57)

We next characterize each term in this approximation. From now on, without loss of

generality, we assume that δ > 0 and evaluate these terms by taking the limit as δ ↓ 0.

Order-zero: Using the boundary condition (55)

S0(0) =

∫ x̄

−x̄

f(x̂) dx̂ = 1. (58)

First-order: Using a change of variables and imposing that f(x̂) = 0 for all x̂ < −x̄, we

have that

S0(δ) =

∫ x̄

−x̄

f(x̂+ δ) dx̂ =

∫ x̄−δ

−x̄−δ

f(x̂) dx̂ =

∫ x̄−δ

−x̄

f(x̂) dx̂. (59)

Applying the Leibniz rule

S ′
0(δ) = −f(x̄− δ), (60)

S ′
0(0) = − lim

x̂↑x̄
f(x̂) = 0, (61)

where the last equation uses the boundary conditions (54) and (56).

Second-order: Observe that

S ′′
0 (δ) = f ′(x̄− δ) (62)

and taking the limit, S ′′
0 (0) = limx̂↑x̄ f

′(x̂). We now characterize limx̂↑x̄ f
′(x̂). Since the

fraction of price change satisfies

n = φ+
σ2
z

2

(
lim
x̂↓−x̄

f ′(x̄)− lim
x̂↑x̄

f ′(x̄)

)
, (63)
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using symmetry f(x̂) = f(−x̂) if and only if f ′(x̂) = −f ′(−x̂), we have that

−(n− φ)

σ2
z

= S ′′
0 (0). (64)

Using the fact that σ2
z = nE[∆p2]

S ′′
0 (0) = − (n− φ)

nE[∆p2]
. (65)

Third-order: Using the boundary conditions (53) and (56)

S ′′′
0 (δ) = −f ′′(x̄− δ) = −2φ

σ2
z

f(x̄− δ) (66)

with S ′′′
0 (0) = 0.

Taking all the results together,

S0(δ) = 1− n− φ

2n

δ2

E[∆p2]
+O(δ4). (67)

Thus,

∆n(δ) =
1− l

2

δ2

V[∆p]
+O(δ4). (68)

E Additional Figures and Tables

Tables E.5 and E.6 report the parameterization of the single-product models with and with-

out free price changes, for different values of σ and η. Table E.7 reports the results from

considering different values of σ and η in the the alternative parameterization strategy in

which we target the median size of price changes.

Table E.8 reports the calibration results when we consider alternative values of γ in our

multi-product model.

Figure E.5 plots the fraction of price changes in our model and the standard multi-product

model for money shocks ranging from -15% to 15%. Figures E.6(a) and E.6(b) display the

impact and cumulative output response to these shocks.
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Table E.5: Parameterization of Single-Product Model with Free Price Changes

A. Moments

Data σ = 6 σ = 3
η = 1 η = 2/3 η = 1

I. Targeted

frequency ∆p 0.116 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188 0.188
kurtosis ∆p 3.609 3.609 3.609 3.609
std dev. πt(s), % 2.870 2.870 2.870 2.870

II. Not targeted

distribution of |∆p|

10th percentile 0.018 0.020 0.020 0.019
25th percentile 0.045 0.052 0.051 0.051
50th percentile 0.104 0.116 0.114 0.114
75th percentile 0.204 0.213 0.211 0.210
90th percentile 0.334 0.316 0.317 0.318

B. Calibrated Parameter Values

σ = 6 σ = 3

η = 1 η = 2/3 η = 1

gm mean money growth rate 0.021 0.020 0.021
σz s.d. idios. shocks 0.064 0.064 0.064
λ 1 - prob. free change 0.909 0.907 0.907
ξ̄ upper bound menu cost 12.11 18.91 7.924
σe s.d. sectoral shocks 0.010 0.011 0.010

Note: The money growth rate is annualized. In all calibrations, we set β = 0.96 (annualized).
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Table E.6: Parameterization of Single-Product Model with no Free Price Changes

A. Moments

Data σ = 6 σ = 3
η = 1 η = 2/3 η = 1

I. Targeted

frequency ∆p 0.116 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188 0.188
kurtosis ∆p 3.609 1.931 1.839 1.819
std dev. πt(s), % 2.870 2.870 2.870 2.870

II. Not targeted

distribution of |∆p|

10th percentile 0.018 0.079 0.079 0.079
25th percentile 0.045 0.116 0.116 0.115
50th percentile 0.104 0.165 0.165 0.165
75th percentile 0.204 0.221 0.221 0.221
90th percentile 0.334 0.274 0.277 0.277

B. Calibrated Parameter Values

σ = 6 σ = 3

η = 1 η = 2/3 η = 1

gm mean money growth rate 0.022 0.021 0.021
σz s.d. idios. shocks 0.064 0.064 0.064
ξ̄ upper bound menu cost 0.908 1.228 0.501
σe s.d. sectoral shocks 0.009 0.010 0.009

Note: The money growth rate is annualized. We do not target the kurtosis and italicize its implied value. In

all calibrations, we set β = 0.96 (annualized).
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Table E.7: Parameterization of Single-Product Model with no Free Price Changes, Alterna-
tive Calibration

A. Moments

Data σ = 6 σ = 3
η = 1 η = 2/3 η = 1

I. Targeted

frequency ∆p 0.116 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018 0.018
std. dev. ∆p 0.188 0.118 0.117 0.118
kurtosis ∆p 3.609 1.893 1.850 1.837
std dev. πt(s), % 2.870 2.870 2.870 2.870

II. Not targeted

distribution of |∆p|

10th percentile 0.018 0.050 0.050 0.049
25th percentile 0.045 0.074 0.073 0.073
50th percentile 0.104 0.105 0.104 0.104
75th percentile 0.204 0.138 0.139 0.139
90th percentile 0.334 0.174 0.174 0.175

B. Calibrated Parameter Values

σ = 6 σ = 3

η = 1 η = 2/3 η = 1

gm mean money growth rate 0.022 0.022 0.022
σz s.d. idios. shocks 0.039 0.039 0.039
ξ̄ upper bound menu cost 0.391 0.498 0.202
σe s.d. sectoral shocks 0.009 0.010 0.009

Note: The money growth rate is annualized. We only target the underlined moments. In all calibrations, we

set β = 0.96 (annualized).
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Table E.8: Alternative Parameterizations of Our Multi-Product Model

A. Moments

Data γ = 0 γ = 3

I. Targeted

fraction ∆p 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188
std dev. πt(s) 0.029 0.029 0.029

II. Not targeted

kurtosis ∆p 3.609 4.480 3.722

distribution of |∆p|

10th percentile 0.018 0.019 0.021
25th percentile 0.045 0.050 0.054
50th percentile 0.104 0.109 0.116
75th percentile 0.204 0.199 0.208
90th percentile 0.334 0.309 0.311

B. Calibrated Parameter Values

Our model Standard

gm mean money growth rate 0.022 0.023
σz s.d. idios. shocks 0.063 0.063
ξ̄ upper bound menu cost 0.057 3.178
σe s.d. sectoral shocks 0.010 0.011

Note: The money growth rate is annualized and the menu cost is relative to average sales.
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Figure E.5: Impact Response of the Fraction of Price Changes
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Figure E.6: Output Response to Money Shocks

(a) Response on Impact
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(b) Cumulative Response
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