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1 Introduction

Electricity generation is a critically important component of the economy and modern life.

However, it also generates substantial negative externalities. In particular, electricity gener-

ation contributed 31% of U.S. CO2 emissions in 2019 (Energy Information Administration,

2020). Beyond its climate change impacts, electricity generation emits substantial local pol-

lutants that harm human health, with damages for the U.S. estimated at $57.3 billion in

2017 (Holland et al., 2020).

Amid growing concerns about the damages from electricity emissions, two major transi-

tions in electricity generation are underway. The first transition, occurring over the past two

decades, is marked by the significant reduction in the cost of generating electricity with nat-

ural gas, thanks to combined-cycle technology and hydraulic fracturing (fracking). Figure 1

illustrates the marginal electricity fuel costs in 2006 and 2017 for combined-cycle natural gas

and coal generators in our sample. The figure sorts generators by dispatch order—i.e., in or-

der of increasing fuel cost—with capacities displayed cumulatively. In 2006, combined-cycle

natural gas generators (in green) had uniformly higher fuel costs than coal. Yet, by 2017,

there were substantially more combined-cycle natural gas generators, and their costs were

similar to or below coal. This shift to natural gas has led to a 28% reduction in CO2 emissions

between 2005 and 2018 and lower local air pollution (U.S. Energy Information Administra-

tion, 2018). The second transition stems from a substantial decrease in the costs of solar

panels and batteries, both having dropped over 80% since 2010 (International Renewable

Energy Agency, 2020; Cole and Frazier, 2019; Goldie-Scot, 2019). Given these cost declines

and the substantially lower pollution externalities from renewables, a second transition, to

renewable energy, has started.

Since electricity generation has high fixed costs and low marginal costs, electric utilities

were historically considered natural monopolies and faced rate-of-return (RoR) regulation.

The 1990s saw extensive restructuring in the U.S. and Europe, where electricity generation—

and sometimes retailing—was opened to competition. In the U.S., this deregulatory push

ended with the California electricity crisis of the early 2000s, leaving a patchwork system
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Figure 1: Marginal Fuel Costs Over Time
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Note: Generator level data on marginal fuel costs and capacities from analysis sample.

where states have substantially different levels of regulatory control. The impact of falling

natural gas generation costs varied across regulated and restructured markets. For instance,

between 2006 and 2018, 26.0% of coal capacity exited in restructured states, whereas only

17.2% exited in regulated states.1 This suggests that it is important to study whether

electricity regulation increases social costs by slowing transitions to new energy sources.

RoR electricity regulation has the twin goals of “reliability” and “affordability” (Energy,

Climate, and Grid Security Subcommittee, 2023). To meet these goals, the regulator creates

a structure under which utilities are incentivized to meet electricity load (demand) while

encouraging low-cost generation and limiting underused capital (Joskow, 1974). This paper

develops and estimates a model of electricity regulation. In the model, the utility optimizes

against the regulatory structure by choosing investment and retirement capacity levels in

the long run and generation quantities by fuel-technology and imports in each hour. We

estimate our model using publicly available data on utilities’ electricity generation, load,

1Authors’ calculations based on analysis data, discussed in Section 2.2.
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revenues, and capacity. We use our model to evaluate how both the current and alternative

regulatory structures affect generation and capacity decisions and the resulting costs and

pollution.

RoR regulation limits a utility to earning a “fair” rate of return on its capital, referred

to as its “rate base” (Viscusi et al., 2018). While RoR regulation aims to create incentives

for the utility to make efficient decisions, it is well understood that it is difficult to struc-

ture natural monopoly regulations appropriately. In particular, a literature has shown that

RoR regulation leads to over-investment in capital because it limits the utility’s return in

proportion to the capital base, and the utility endogenously responds by increasing capital

(Averch and Johnson, 1962). Regulators therefore have combined RoR regulation with the

requirement that only “prudent” capital investments be included in the rate base. For older,

existing technologies needing maintenance, repair, or upgrade, one common approach to de-

termining whether an investment is prudent is whether it is “used and useful” for generation

(Gilbert and Newbery, 1994; Fisher et al., 2019), but this may cause the utility to oper-

ate capital inefficiently. The regulator’s task has become even more complicated over the

past 25 years due to changing technologies, fuel prices, and environmental concerns. These

changes exacerbate the regulator’s imperfect information about the current and future costs

of alternative utility investment and operation decisions.

Our model captures these key features of RoR regulation. The regulator in our model

accomplishes its objectives via two instruments. First, it offers a maximum rate of return that

is declining in the utility’s variable costs. This instrument encourages the utility to invest

in low-cost generators and use low variable cost sources. Second, the regulator considers

capacity usage in assessing the extent to which capital is included in the rate base.

The utility optimizes against this regulatory structure in its investment and operations

decisions. Each three-year period, the utility chooses coal capacity retirement and combined-

cycle natural gas capacity investment, facing quadratic costs of adjustment. Investments

increase its rate base and therefore its variable profits, conditional on the rate of return.

When choosing which fuel-technologies to operate and how much to import to meet load,

the utility has two potentially conflicting incentives. First, to increase its allowable rate of
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return, the utility seeks to have low total variable costs, which include fuel, ramping, import,

and operations and maintenance costs.2 Second, particularly after the decline in natural gas

generation costs, it may use expensive coal generators to ensure that they are deemed used

and useful.

Our model relies on both regulatory and cost parameters. The regulatory parameters in-

clude the determinants of the maximum rate of return and each fuel-technology’s contribution

to the rate base, which for coal capacity depends on its usage. Our cost parameters include

operations and maintenance, ramping, and retirement/investment costs. We estimate the

regulatory and operations parameters with a nested fixed-point indirect inference approach

that seeks to match important data correlations. Specifically, we run regressions on our actual

data that capture key features such as utilities’ revenues, ramping behavior, and usage, and

find the structural parameters that yield the most similar regression coefficients in simulated

data generated by the model. We also estimate the investment and retirement costs with

a GMM nested fixed-point approach. We follow the Gowrisankaran and Schmidt-Dengler

(2023) algorithm that facilitates the computation of models with continuous outcomes, in

our case investment and retirement decisions.

We use our structural parameter estimates to analyze the impact of counterfactual poli-

cies on operations decisions and long-run outcomes in the presence of an energy transition.

We consider four categories of counterfactuals: (1) adjustments to the existing regulatory

parameters, (2) cost minimization, (3) a social planner which also internalizes carbon exter-

nalities at $190/ton (Environmental Protection Agency, 2023b), and (4) carbon taxes in the

presence of RoR regulation.

We find that utilities faced with an energy transition in 2006 would retire 45% of coal

capacity on average over a 30-year horizon and gradually reduce coal usage but increase

combined-cycle natural gas capacity by 427% over the same period. Comparing this baseline

outcome to counterfactual simulations that change the penalty for high variable costs, utilities

generate more with combined-cycle natural gas capacity as the penalty for high variable costs

increases, yielding a faster energy transition. Yet both coal and combined-cycle natural gas

2The existence of ramping costs links these operations decisions across hours.
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capacity levels also increase with higher variable cost penalties, exacerbating the Averch and

Johnson (1962) effect of over-investment from RoR regulation and decreasing affordability.

Turning to the potential costs of RoR regulation, cost minimizing utilities transition away

from coal much more quickly than in the baseline: they immediately reduce coal generation

by 53% and virtually eliminate coal capacity over 30 years. Similarly, a social planner that

internalized carbon externalities would eliminate coal capacity over the same time-frame, but

would also immediately reduce coal generation by 95%. Increasing the coal usage incentive or

changing the penalty for high total variable cost within the existing RoR regulatory structure

does not come close to replicating the speed of this energy transition. If regulated utilities

instead faced a carbon tax, they would pass through 90% in the short-run, but transition

away from coal toward combined-cycle natural gas in the long run. However, variable profits

with the social planner, cost minimizer, or regulation with a carbon tax are all much lower.

This may ultimately reduce reliability by undermining utilities ability to remain in business.

Literature: This paper relates to three broad literatures. First, we build on a long-

standing literature on the theory of regulation. A number of papers have examined the

optimal design of RoR regulation (e.g., Averch and Johnson, 1962; Baumol and Klevorick,

1970; Klevorick, 1971, 1973; Joskow, 1974; Gilbert and Newbery, 1994; Joskow, 2007). A

different strand of the literation has focused on setting incentives correctly in the presence of

asymmetric information (Laffont and Tirole, 1986). We extend the models in these literatures

by investigating the role of regulation in the face of an energy transition.

Second, we extend the empirical literature on the impact of electricity regulation, which

includes Fowlie (2010); Davis and Wolfram (2012); Cicala (2015); Abito (2020); Lim and

Yurukoglu (2018); MacKay and Mercadal (2019); Cicala (2022); Dunkle Werner and Jarvis

(2022); Aspuru (2023); and Jha (2023). The closest paper in this literature to ours is Abito

(2020), which structurally estimates a Laffont and Tirole style model of regulation under

asymmetric information where an electric utility makes operations decisions trading off effort

against costs. We add to these two literatures by specifying and structurally estimating a

model of regulation that incorporates utilities’ investment, retirement, and operations deci-

sions when faced with RoR regulation.
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Finally, we contribute to the growing empirical literature on the dynamics of investment

and exit in electricity markets, which includes Myatt (2017); Eisenberg (2019); Linn and

McCormack (2019); Abito (2020); Elliott (2022); Butters et al. (2023); and Gowrisankaran

et al. (2023). Gowrisankaran et al. (2023)—written by an overlapping set of co-authors—is

similar to the other papers cited here in considering coal plant retirements for independent

power producers. This paper differs by modeling decisions of regulated utilities.

Section 2 presents background on the industry and introduces the data. Section 3 presents

the model. Section 4 presents reduced-form evidence that supports key assumptions in our

model. Section 5 presents our estimation approach, and Section 6 discusses our estimation

and counterfactual results. Section 7 concludes.

2 Industry Background and Data

2.1 Industry Background

RoR regulation often exists in industries that are considered “natural monopolies” (Viscusi

et al., 2018). The goal of this regulatory approach is to ensure reliability—in electricity, to

literally keep the lights on—while maintaining affordability. In the U.S., state regulatory

agencies, generally called Public Utility Commissions (PUCs), implement electricity RoR

regulation with these goals in mind.3

Specifically, in our context, PUCs make three different types of decisions.4 First, they

approve utility capital investments and retirements which, together with depreciation rates,

ultimately affect what is included in the “rate base,” which is defined as the capital stock

on which the regulator gives the utility an allowable RoR. Second, they determine which of

utilities’ reported non-capital costs are reimbursable. Third, they decide on the allowable

3For instance, the Minnesota statute governing public utilities states “[t]he commission, [..] shall give
due consideration to the public need for adequate, efficient, and reasonable service and to the need of the
public utility for revenue sufficient to enable it to meet the cost of furnishing the service, including adequate
provision for depreciation of its utility property used and useful in rendering service to the public, and to
earn a fair and reasonable return upon the investment in such property.” (Minn. Stat. § 216B.16, subds. 6).

4Our discussion of the regulatory process draws heavily from a guide to electricity regulation written by
an independent think tank (Lazar, 2016) and a classic textbook on regulation (Viscusi et al., 2018).
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rate of return which, together with the first two decisions, determine the profits that utilities

can earn.

PUCs collect information to make these decisions largely via Integrated Resource Plans

(IRPs) and rate hearings. Utilities propose IRPs that lay out the capital investments and

retirements which they believe will best allow them to meet the regulator objectives of relia-

bility and affordability. PUCs then decide which of these investments are likely to be prudent

and therefore reimbursable in the rate base.

PUCs also hold periodic rate hearings, which are opportunities for them to adjust con-

sumer rates (Joskow, 2014; Abito, 2020). Before these hearings, utilities submit documenta-

tion of their recent performance—including usage of existing generators, costs, and revenues—

as well as expected future performance, including from investments. PUCs use rate hearings

to decide on the allowable rate of return on the rate base and then set consumer electricity

price schedules so that the utility can expect to cover its reimbursable variable costs and earn

the allowable rate of return.

Beyond changing electricity rates, PUCs can respond to varying circumstances by making

discretionary adjustments to the rate base, e.g., for construction in progress, investments in

terminated projects, and fuel stocks. They may explicitly look at metrics such as usage when

making these discretionary adjustments. As Lazar (2016) explains on page 52: “Generally,

to be allowed in rate base, an investment must be both used and useful in providing service

and prudently incurred. The utility has the burden of proving that investments meet these

well-established tests, but often enjoys presumption of use and usefulness, and prudence in

the absence of evidence to refute it.”

This regulatory structure encourages utilities to invest in capital to increase their rate

base. Regulated utilities own most of the generation capacity within their states (Shwisberg

et al., 2020), while simultaneously trading electricity with outside generation sources either

bilaterally or through regional electricity markets. For instance, Missouri is a regulated state,

but it lies within the Midcontinent Independent System Operator (MISO) electricity market,

and utilities in Missouri trade electricity through this platform.

However, advocacy groups and research organizations have argued that this regulatory
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structure leads to inefficient deviations from utility cost minimization, despite the potential

for trades. Numerous groups have found that utilities that trade in wholesale electricity

markets often choose to “self-commit” (or mandate that their own generators must run)

even when these generators’ costs exceed the market price (Fisher et al., 2019; Daniel et al.,

2020; Potomac Economics, 2020). Further, regulated utilities may have a preference to build

their own capacity rather than signing power purchase agreements with third parties who can

produce electricity at lower cost (Cross-Call et al., 2018; Wilson et al., 2020). This inclination

has extended to recent decisions concerning renewable energy, where there is also concern

that regulated utilities are underinvesting (Bottorff et al., 2022; Biewald et al., 2020; Daniel,

2021).

2.2 Data

We use data on the electricity industry in the U.S. from a variety of publicly available sources.

Our data include both annual measures—such as generator capacity, fuel prices, and utility

revenues—and hourly measures—such as load, generation, and wholesale electricity prices.

Our main estimation sample extends from 2006 to 2017.

Our primary annual data derive from the Energy Information Administration (EIA). We

merge together information from three EIA forms. First, EIA Form 861 provides annual

total revenue for electric utilities that are obligated to report this information. Form 860

records information about each power plant’s capacity, fuel-technology type, and U.S. state.

We retain information on plants with three fuel-technologies: coal (COAL), combined-cycle

natural gas (CCNG), and other (non combined-cycle) natural gas turbines (NGT), many of

which are used to meet peak load. Finally, Form 923 has annual plant-level data on fuel

energy input in MMBtus and electricity generation in MWhs. We combine these data to

recover heat rates, which indicate fuel energy input per unit of generation. We allow for

different heat rates by utility and fuel-technology, but restrict each utility’s heat rate to be

the same within a fuel-technology for all existing and new capacity.

We merge these data with hourly plant-level data on the quantity of electricity gener-
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ated from the Environmental Protection Agency’s (EPA’s) Continuous Emissions Monitoring

System (CEMS) data. We then collapse the combined EIA/EPA data across generators of

the same fuel-technology type within a utility-hour. We keep data from states defined as

regulated in Cicala (2022) in the Eastern Interconnection.5

We limit our data geographically because regulated utilities in the Eastern Interconnection

all have relatively nearby Independent System Operators (ISOs). We use wholesale electricity

price data from the nearest state in an ISO to define import prices. We also merge in coal

and natural gas fuel prices at the state-year level derived from EIA Form 423.

Our last major data source is the Federal Energy Regulatory Commission (FERC) Form

714 data. These data include hourly load served by each utility. We then use the combined

data to define hourly imports into the utility as load net of our three primary generation fuel-

technology types. Thus, imports will include both nuclear and renewable (which is relatively

moderate during this time-frame) generation.

On-line Appendix A2 discusses details of our data construction and includes summary

statistics of our analysis data at the utility-year and utility-hour levels, respectively. Our final

analysis data consist of nearly 2.5 million utility-hour observations across 283 utility-years

for 26 unique utilities.

3 Model of Electricity Regulation

We present our model in four parts. We begin with a broad overview of the regulatory envi-

ronment and then provide details of the regulator’s instruments. We then turn to the utility’s

long-run investment and retirement decisions and finally its hourly operations decisions.

3.1 Overview

We model a regulator that uses RoR regulation to provide incentives to a natural monopoly

electric utility. Following Viscusi et al. (2018), the regulator has two primary objectives:

5While we restrict the data used in our structural estimation to regulated states, we provide reduced-form
evidence comparing regulated and restructured states.
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it wants enough generation and imports to meet load in every hour (“reliability”), and it

wants to keep consumer rates low (“affordability”).6 The regulator could also potentially be

concerned about mitigating environmental harm.

The regulator observes the utility’s costs and usage decisions. However, asymmetric

information about the costs of alternative decisions may keep it from prescribing the utility’s

optimizing actions (Joskow, 2007). For this reason, we assume that, instead of dictating

choices, the regulator imposes a fixed incentive structure that encourages the utility to take

actions that meet the regulator’s goals. In response, the utility makes two types of decisions,

both with the goal of maximizing expected discounted profits. In the long run, it chooses

the investment levels of different generation technologies. Given these technologies, it makes

hourly operations decisions to meet load.

These interactions face evolving technologies and market conditions. Specifically, fluctua-

tions in fuel prices determine which generation technologies are most cost effective, technolog-

ical advancements create new generation options, and shifting perceptions of environmental

harm affect policy priorities. These conditions contribute to the regulator’s asymmetric in-

formation problem as the regulator must now predict current and future costs of multiple

generation technologies. In combination with the long-lived nature of generation capital,

these conditions also require the utility to continuously reevaluate its operations, investment,

and retirement decisions.

In the model, the regulator uses two instruments to generate appropriate incentives.

First, it offers a maximum rate of return, which specifies the profits the utility can earn as a

function of its capital stock, also known as the rate base. In order to ensure that the utility

invests in and uses capital efficiently, this maximum rate of return is declining in operating

costs. Second, the regulator only includes generators that it deems to be “used and useful”

in the rate base. This combines the idea that only “prudent” capital investments should be

included in the rate base (Viscusi et al., 2018) with the idea that a generator’s usage is one

objective way to measure the prudence of an investment (Gilbert and Newbery, 1994). These

6Regulated utilities also provide transmission and distribution services, but this is not the focus of our
study. See for example Lim and Yurukoglu (2018).
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two incentives create a tension for the utility: it wants to use low-cost fuel-technologies but

also wants to use expensive legacy capital.

Together, these instruments lead the utility to make decisions that further the regulator’s

objectives. Nonetheless, these instruments are not perfect, allowing multiple inefficiencies to

persist. First, utilities may operate generators out of dispatch order to increase their effective

capital. We expect this to be of particular concern for utilities that operate coal generators

rendered economically inefficient by the decrease in the marginal cost of generating electricity

with natural gas. Second, utilities in our model will still have an incentive to over-invest in

capital (Averch and Johnson, 1962), although this is limited by the used-and-useful standard.

Estimating our model will allow us to quantify these distortions.

3.2 Regulatory Instruments

The utility needs to meet load, `yh, in each hour, h = 1, . . . H, of each year, y. We assume

that load varies across hours, but that hourly load is perfectly inelastic. The utility meets

load using generation capacity, Kf
y , from different fuel-technologies, f , and imports from

outside of its service area. We let f ∈ {COAL,CCNG,NGT}, represent coal, combined-

cycle natural gas, and natural gas turbines respectively. We denote the quantity of generation

from each fuel-technology qfyh and import choice qmyh, which we combine into ~qy.

The regulator’s first instrument is the maximum rate of return that the utility can earn

in each year, s̄y. In order to encourage the utility to use its capital efficiently—operating

generators from lowest to highest marginal cost—the regulator sets s̄y to be a decreasing

function of total variable (generation and import) costs, TV C(~qy):

s̄y ≡
(
TV C(~qy)

CostBasis

)−γ
with γ > 0, (1)

where CostBasis is a baseline, observable cost metric that varies across utilities.7

The regulator’s second instrument is the rate base that it determines to be “used and

useful,” By. We define By to be a weighted sum of MWs of useful capital across fuel-

7This declining rate of return is observed in other regulated sectors such as natural gas (Hausman, 2019).
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technologies, converted to dollar terms:

By ≡ α
[
αCCNGKCCNG

y + αNGTKNGT
y + αCOALUU

(
Q
COAL

y /KCOAL
y

)
KCOAL
y

]
, (2)

where the αf terms weight capital of different fuel-technologies, α converts MWs of useful

capital into dollars of rate base, Q
COAL

y /KCOAL
y is the annual usage rate of coal, where

Q
COAL

y ≡ 1
H

∑H
h=1 q

COAL
yh , and UU

(
Q
COAL

y /KCOAL
y

)
is the function determining the share of

coal capital that the regulator deems used and useful. Coal’s contribution to the rate base,

its effective capital, is then the product UU(·)×KCOAL
y , and is analogous to physical capital

for the other fuel-technologies. The α and αf terms are parameters. To avoid collinearity,

we normalize αCCNG = 1, which allows us to interpret α as the rate base contribution (in

dollars) of one MW of CCNG capacity.

We assume that the used-and-useful standard only binds for coal generators. As shown

in Figure 1, falling natural gas prices during our sample period meant that CCNG genera-

tors both decreased costs and demonstrated their usefulness for baseload generation. NGT

generators have higher average heat rates than CCNG ones, but since they often serve as

“peakers,” they would generally not need to prove usefulness via high usage rates. In con-

trast, coal frequently became uneconomical during our sample period, implying that utilities

need to balance lower generation costs against proving that coal was used and useful.

We specify the coal used-and-useful standard with a simple logit functional form of usage:

UU(Q
COAL

y /KCOAL
y ) =

exp
(
µ1 + µ2

Q
COAL

KCOAL

)
1 + exp

(
µ1 + µ2

Q
COAL

KCOAL

) , (3)

where µ1 and µ2 are parameters, with µ2 determining the incentive to increase coal usage.

Given the utility’s choices, its rate of return is:

sy ≡ (Revenuesy − TV C(~qy))/By. (4)

The regulator allows the utility to earn Revenuesy sufficient for the utility to earn its max-
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imum rate of return, i.e. sy = sy. The regulator ensures this rate of return by setting the

average consumer electricity price to Revenuesy divided by the total load.

3.3 Investment and Retirement Decisions

The utility facing this regulatory structure must make decisions over capacity investment

and retirement by fuel-technology and operations decisions in each hour. Focusing in this

subsection on capacity investment and retirement, we assume that these decisions take three

years to implement, consistent with the long time horizons necessary to build or decommission

fossil fuel generators. We therefore define a period, t, to be a three-year window.

Every period, the utility makes the decision of how much to invest, separately by fuel-

technology, xft , and incurs costs based on these decisions. The utility can choose xft > 0,

which corresponds to investment, or xft < 0, which corresponds to retirement. After this

decision, every year, the utility decides which fuel-technologies or imports to use to supply

electricity for every hour of the year. At the end of the year, the regulator observes utility

costs, determines the rate base, and provides the utility with its variable profits given the

rate of return in (4).

We treat each of the three fuel-technologies differently, reflecting their characteristics

during our sample period. We assume that the utility chooses only (non-negative) investment

for CCNG capacity and whether to retire existing coal capacity. We make these choices since

the vast majority of entry decisions are for CCNG capacity, and the vast majority of exit

decisions are for coal capacity.8 Finally, to limit the complexity of our model, we do not

endogenize the choice of NGT capacity, which we view as less central to utility regulation.

In each period, the utility makes optimizing decisions given its long-run state, Ω, and

earns variable profits given these decisions, π∗(Ω). Since Ω needs to include any factor

that affects expected current or future profits, it could, in principle, include many variables.

For tractability we restrict the time-varying component of Ω to four variables. In addition

to t itself, we include natural gas fuel price, pNGt , which we assume follows an exogenous

8While we observe a few instances of coal entry in the data, the decision to undertake these investments
largely occurred before our sample period.
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AR(1) process. The state Ω also includes the coal and CCNG capacities, both of which vary

deterministically with the utility’s decisions, Kf
t+1 = Kf

t +xft . Beyond the time-varying state,

Ω includes a number of fixed states: the utility’s heat rates for all fuel-technologies, NGT

capacity, coal fuel price, CostBasis, and hourly import supply curves and load.

The utility makes investment decisions to maximize the expected discounted long-run

sum of operating profits net of investment costs with an annual discount factor of β = 0.95.

We only allow the utility to make these decisions over the 30 years starting in 2006 and

assume that the long-run state remains fixed after that point since we view predictions after

this time horizon as overly uncertain.

Investment costs build on Ryan (2012) and Fowlie et al. (2016) (R/FRR). Each fuel-

technology’s investment costs include time-invariant fixed, linear, and quadratic terms and a

stochastic cost shock:

InvCostsf (xft |ε
f
t ) = δf01{x

f
t 6= 0}+ xft (δ

f
1 + xft δ

f
2 + σfεft ), (5)

where (δf0 , δ
f
1 , δ

f
2 , σ

f ) for f ∈ {COAL,CCNG} are parameters to estimate. Unlike in R/FRR,

where the stochastic shock is on the fixed cost of investment, we assume that each period’s

shocks, εft , increase marginal investment costs and that they are distributed i.i.d. with a

standard normal density. Many models with continuous choices specify i.i.d. shocks for each

candidate choice (e.g., Rust and Rothwell, 1995). We instead specify unobservable cost shocks

as increasing the marginal cost of investment because a shock to each investment level may

yield unrealistic substitution patterns as the number of levels grows. Our approach generates

a distribution of capacity changes in any state, which allows us to match the data variation.

Focusing on the timing of the investment decisions, each period the utility first observes

the natural gas fuel price shock. It then observes its shock to the coal marginal cost of

retirement, εCOALt , and makes its coal retirement decision. Next, it observes its shock to the

CCNG marginal cost of investment, εCCNGt , and makes its CCNG investment decision. It

then makes operations decisions and earns variable profits over the three-year period (which

are a function of its state at the time of the coal investment decision). At the end of the
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period, capacity adjusts to reflect investment and retirement decisions.

We can write utility i’s coal retirement decision Bellman equation for t ≤ 10 (during the

30-year decision period) as:

V COAL
i (KCOAL, KCCNG, pNG, t, εCOAL) = π∗i (K

COAL, KCCNG, pNG)

+ max
xCOAL≤0

{
−InvCostsCOAL(xCOAL|εCOAL) + EV CCNG

i (KCOAL + xCOAL, KCCNG, pNG, t)
}
,

(6)

where we include an index i in π∗—and therefore in the value functions—to account for the

effect of the utility’s fixed states on profits. Further, EV CCNG
i is the expectation of the value

function at the start of the CCNG investment decision, before the εCCNG investment cost

shock is realized. We include variable profits here since they are a function of the state at

this stage.

For its gas investment decision, the Bellman equation is:

V CCNG
i (KCOAL′

, KCCNG, pNG, t, εCCNG) = max
xCCNG≥0

{
− InvCostsCCNG(xCCNG|εCCNG)

+β

∫
EV COAL

i (KCOAL′
, KCCNG + xCCNG, p′, t+ 1)dg(p′|pNG)

}
, (7)

where KCOAL′
is the coal capacity after the coal retirement decision, g(p′|pNG) is the condi-

tional density of the next period’s fuel prices, and EV COAL
i is the expectation of the value

function at the start of the next period, integrating over the εCOAL investment cost shock.

Equations (6) and (7) show that the utility can adjust its next period’s capital determin-

istically but is faced with a stochastic evolution of fuel prices and cost shocks. For t > 10,

both Bellman equations look similar to these equations except that the utility does not make

investment or retirement decisions and natural gas fuel prices do not evolve. The assumption

that the state does not evolve when t > 10 allows us to solve the dynamic programming

problem by backward induction, with the state-contingent value function at t = 10 being the

discounted sum of future profits.
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3.4 Operations Decisions

Investment and retirement decisions depend critically on the annual profits π∗ that the utility

would earn at any long-run capacity and fuel price state. Within a year, the utility maximizes

variable profits with its hourly choices of generation by fuel-technology and imports, ~qy.

The utility’s profits depend upon its rate of return on its rate base, where its rate of

return is a function of its total variable costs over the year:

TV C(~qy) =
∑
h

[∑
f

[
qfyh × (heatf × pfy + omf ) + ρf ×Ramp(qfyh−1, q

f
yh)
]

+

∫ qmyh

0

Smyh(q)

]
.

For each fuel-technology, variable costs sum fuel, operation and maintenance (O&M), and

ramping costs. Each fuel-technology has a heat rate, heatf , and fuel price per MMBtu, pfy ,

which together determine the marginal fuel cost. We model O&M costs, omf , as constant

per MWh of generation, and ramping costs, ρf , as constant per MW of generation increase,

i.e., Ramp(qfyh−1, q
f
yh) = qfyh − q

f
yh−1 in the case where qfyh > qfyh−1 and zero otherwise.9 We

assume that NGT generators do not have ramping costs, so ρNGT = 0.

The utility faces an inverse import supply curve Smyh(q
m
yh). We assume that it imports

energy from various sources with separate contracts, and hence it pays different sources

different amounts. Following the literature (Bushnell et al., 2008; Gowrisankaran et al.,

2016; Reguant, 2019), we let the utility’s import costs be the integral under the inverse

supply curve rather than the maximum import price times quantity imported.

The utility chooses ~qy to maximize its variable profits given the regulatory structure

presented in Section 3.2. The existence of ramping costs creates a dynamic linkage between

hours, which implies that we need to consider profit maximization jointly across hours of the

year. To simplify the operations decision problem, we assume that the utility observes all

hourly loads and import supply curves at the beginning of the year. Given these assumptions,

9We do not model ramping costs when h = 1.
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optimized profits are:

π∗i (K
COAL, KCCNG, pNG) = max

~qy

Max. rate of return︷ ︸︸ ︷(
TV Ci(~qy, p

NG)

CostBasisi

)−γ Rate base︷ ︸︸ ︷
B(~qy, K

COAL, KCCNG) (8)

subject to:
F∑
f=1

qfh + qmh = `h ∀ h︸ ︷︷ ︸
Generation and imports meet load

and 0 ≤ qfh ≤ Kf ∀ f, h︸ ︷︷ ︸
Capacity constraints

,

where the i subscript makes explicit which terms depend on the fixed state. As defined in

Equation (2), the rate base, B(~qy, K
COAL, KCCNG), depends upon ~qy, through coal usage.

Equation (8) makes explicit the tension the regulatory structure creates for the utility: for a

given rate base, the utility wants to minimize TV C, but it also needs to generate with coal

in order for coal to be considered used and useful.

Equation (8) presents profit maximization over the year as a constrained optimization

problem. However, for computation, we conceptualize this problem as a discretized finite-

horizon Bellman equation. Without loss of generality, our model allows us to specify that

the utility receives its only payoff, the regulatory profit, in the terminal hour. This payoff

is a function of TV C and coal usage, Q
COAL

, but ramping costs imply that TV C depends

on the hourly sequence of coal and CCNG generation. Thus, in any hour, h, the state for

the Bellman equation includes the cumulative TV C and coal usage prior to this hour (which

eventually pertain to profits), last hour’s coal and CCNG generation (which affect ramping

costs), and the hour of year h. These five variables are sufficient for the utility to evaluate

the impact of its actions on its state-contingent value starting at hour h+ 1.

Having solved for the state-contingent value functions backwards to the first hour of the

year, we then forward simulate—using the calculated state-contingent optimal policies—to

recover the optimal action path. Specifically, we start in the first hour and record the optimal

generation choices. We then use these choices to update the state for the next hour, which in

turn allows us to record the state-contingent optimal actions for that hour. Iterating through

the year, we obtain the utility’s optimal operations decisions.
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4 Reduced Form Evidence

Our model includes two key instruments that help the regulator meet its objectives. First, the

maximum allowable rate of return offered declines in total variable costs. Second, capacity

contributes more to effective capital when it is used sufficiently. This section analyzes the

empirical support for these assumptions.

4.1 Determinants of the Allowable Rate of Return

We use utility-year level regressions to understand how the regulator adjusts the maximum

rate of return, s̄y, as TV Cy changes. Since we do not directly observe either the rate of

return or TV Cy, we proxy for them using observable information. Specifically, we proxy

for TV Cy using fuel and import costs, which omits ramping and O&M costs, as these are

not observable. Our dependent variable proxies for rate of return with a measure of variable

profits—revenues net of fuel and import costs—divided by the sum of coal, CCNG, and NGT

capacity in MWs. Our hypothesis is that increases in costs will lower the rate of return.

A central concern of this approach is that the return on capital needs to cover fixed

costs—such as for capacity investment, transmission, and distribution—and these will vary

across utilities. This implies that what the regulator considers a high cost for one utility may

be a low cost for another, which then affects the maximum allowable rate of return.10

We use two approaches to address this concern here. First, we estimate specifications

with utility fixed effects. Second, we divide variable costs by the utility’s size, since costs per

unit of utility size are likely to be similar across utilities. We measure size in two ways: first

with the sum of coal, CCNG, and NGT capacities and second with a measure of the utility’s

peak load, the 95th percentile of hourly load in the utility-year.

Table 1 presents the results of these regressions. The three regressions with utility fixed-

effects find strong, negative relationships between our proxies for the utility’s rate of return

and variable costs.11 This provides support for our modeling assumption that generators

10Our structural model accounts for these differences by dividing TV Cy by the utility’s CostBasis.
11The different normalizations mean that we cannot directly compare coefficients across specifications.
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Table 1: Regressions of Rate of Return on Total Variable Cost per Effective Capital

Dependent Variable:
Variable Profits per MW of Capacity

Variable Costs per −89.7 −360.1
Capacity (Thou.$/MW) (94.5) (59.3)

Variable Costs per High 0.057 −0.462
Load (Mil.$/MWh) (0.127) (0.059)

Variable Costs (Mil.$) −0.017 −0.026
(0.005) (0.007)

Utility FE N Y N Y N Y

Note: Each column presents regression results from a separate regression on our analysis
data, with standard errors in parentheses. Variable costs include fuel and import costs but
exclude O&M and ramping costs. Variable profits are revenues net of these variable costs.
High load is the 95th percentile of hourly load for the utility-year.

earn higher rates of return when they decrease variable costs. Without utility fixed effects,

only one of the three regressions is statistically significant. We believe that the regressions

with fixed effects are the most directly tied to the identification of our model.

4.2 Determinants of Effective Capital

We next motivate our assumption that coal usage affects the extent to which coal capacity

contributes to effective capital, Ke
y . Our hypothesis is that regulated utilities face incentives

to operate coal generators out of dispatch order to increase their effective capital. However,

testing this hypothesis is complicated: it is difficult to understand the relative costs of using

coal in any hour because ramping and O&M costs are not observed. Thus, we provide evi-

dence on this hypothesis by comparing coal usage by firms in regulated states to restructured

states. Firms owning coal in restructured states may face similar ramping and O&M costs

but are not subject to used-and-useful considerations.12

Specifically, we run regressions at the utility-hour level of whether the utility is operating

coal on whether the utility’s fuel cost is above wholesale price and this indicator interacted

12We use our merged EIA/EPA dataset (before we merge in the FERC data) for these results. For both
regulated and restructured markets, we define firms using the EIA’s definition of a utility.
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with whether the utility is in a restructured state, controlling for state and year fixed effects.13

We also run these regressions for CCNG to understand the differential response of coal in

restructured markets. The comparison of how usage responds to wholesale prices falling

below fuel costs, differentially across fuel-technologies and regulatory status, identifies the

used-and-useful incentive with a triple-difference-in-difference-style comparison.

Table 2: Out-of-Dispatch-Order Generation by Regulatory Status

1{Fuel-Technology Operating}
Combined Cycle

Coal Natural Gas

1{Fuel Cost > Price} −0.031 −0.201
(0.031) (0.031)

1{Fuel Cost > Price}× Restructured −0.122 0.005
(0.050) (0.029)

R2 0.089 0.132
N 19, 782, 473 20, 723, 467

Note: Regressions are linear probability models that include state and year fixed
effects. Data are at the utility-hour level for the Eastern Interconnection and
include both regulated and restructured electric utilities. We cluster standard
errors (in parentheses) at the state and year level.

Table 2 shows the results of these regressions for both coal and CCNG. The first column

shows that coal in regulated states is not significantly less likely to operate when out of dis-

patch order, i.e., when its marginal fuel costs exceed the wholesale (import) price. However,

coal generation in restructured states responds strongly to being out of dispatch order, with a

statistically significant 12.2 percentage point reduction in the likelihood of operating relative

to regulated states. The second column shows that CCNG generation in both regulated and

restructured states react strongly to low wholesale prices. This provides evidence consistent

with the hypothesis that regulated utilities gain value from generating with coal even when

it is out of dispatch order.

Figure 2 presents estimates from similar regressions to Table 2 on out-of-dispatch order

generation, but allowing the coefficients to vary by state. Panel (a) shows the out-of-dispatch

13Regulatory status is completely determined by state during our sample years, so we do not include a
separate control for regulatory status.
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Figure 2: Generation When Fuel Cost > Price in Regulated Versus Restructured Markets

(a) Out-of-Dispatch Order Generation
for Coal and CCNG
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(b) Coal Out-of-Dispatch-Order Generation
vs. Utility Ownership Share
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Note: Panel (a) presents coefficients on coal and CCNG out-of-dispatch order generation by state.
Panel (b) plots the fraction of generation owned by electric utilities against the same coal coefficients.
In both panels, green states are regulated and red states are restructured.

order coefficients for coal (vertical axis) and CCNG (horizontal axis). We plot regulated states

in green and restructured states in red. Out-of-dispatch order coal generation is clearly related

to regulatory status while there is little pattern for CCNG. The seven states with the lowest

differential coal usage—which are at the bottom of the graph—are all restructured states.

This reinforces the idea that regulatory status significantly impacts coal usage.

Panel (b) of Figure 2 plots the share of generation owned by electric utilities in the state

(as reported by Shwisberg et al., 2020) against the same coal coefficients as in Panel (a).

Regulated states generally have utility ownership shares over 60%, whereas all restructured

states but one have utility ownership shares under 30%. The best fit line shows that coal’s

responsiveness to low wholesale prices correlates strongly with utility ownership share.

5 Estimation Approach

We estimate the model developed in Section 3 in three parts. First, we estimate each utility’s

hourly import supply curve using generation, load, weather, and price data. We then com-

bine these data and curves with utility revenue data to estimate the parameters governing
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the regulatory incentive structure and utilities’ operations costs. Finally, we combine invest-

ment and retirement data with profits across states as predicted by our estimated operations

decisions to recover investment and retirement cost parameters. We estimate both opera-

tions and investment/retirement parameters with full solution approaches and thus compute

counterfactual outcomes with the same techniques.

Broadly, identification of the model follows from the intuition that the observed sharp

decline in natural gas fuel prices had different implications across utilities, depending upon

the utilities’ capital mixes. For instance, consider a utility with substantial coal and CCNG

capacity. Early in our sample, when natural gas prices were high, this utility would have

generated with coal first, and only used natural gas in hours with high load. After natural

gas prices fell, the utility faced conflicting incentives: it wanted to run natural gas generators

to keep fuel costs low and be allowed higher s, but it also wanted to use—and not retire—coal

generators to increase its effective capital. This contrasts with a utility with predominantly

coal capacity that needed to meet load with coal even after natural gas prices fell. By

comparing the operations and investment/retirement decisions across utilities, we are able to

identify the structural parameters.

We discuss our estimation approaches and the specific identification arguments for the

operations and investment/retirement parameters in turn. On-line Appendix A3 discusses

details of estimation including estimation of the import supply curves.

5.1 Operations Parameters

Each utility in each year makes hourly operations decisions in a finite-horizon dynamic model

as discussed in Section 3.4. This optimization results in hourly quantities of imports and

generation by fuel-technology, annual variable costs, and annual coal usage. Conditional on

the state and parameters, these outcomes then determine the utility’s annual profits.

We use utilities’ hourly generation choices within a year to estimate the regulatory param-

eters: the penalty for high TV C—γ, the conversion from MW of CCNG capital to dollars of

rate base—α, the other fuel-technologies’ rate base contributions relative to CCNG—αNGT
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and αCOAL, and the used-and-useful terms—µ1 and µ2. We also use these choices to estimate

ramping costs—ρCOAL and ρCCNG, and O&M costs—omCOAL, omCCNG, and omNGT .

We estimate the structural parameters via a nested fixed-point indirect inference approach

(Gourieroux et al., 1993). This involves a non-linear search to find the parameters that most

closely match coefficients from regressions run on model-simulated data to those run on actual

data. The solution of our model depends on CostBasis, which captures differences in fixed

characteristics across utilities, such as size, that will influence the regulator’s perception of

costs. We define CostBasis as fuel costs and a measure of import costs in the first year the

utility appears in the data,14 because the other components of TV C—including O&M and

ramping costs—are not directly observable.

Solving for optimal operations decisions results in simulated hourly and annual data on

which we run our indirect inference regressions. Indirect inference is a form of generalized

method of moments (GMM), which specifies correlations in the data we would most like to

match. Indirect inference regressions do not require a causal interpretation, but rather are

meant to capture equilibrium behavior. We therefore choose indirect inference regressions

that we believe best reflect the important equilibrium features of the data.

An alternative to indirect inference would be a GMM estimator that matched outcomes

such as the rate base or the rate of return between the simulated model and the data. In our

case, we do not observe these key elements, but rather observe outcomes that indirectly relate

to them, notably revenues, generation, and fuel and import costs. The indirect inference

approach allows us to capture the equilibrium co-movements between different observable

variables.

We run indirect inference regressions at both the utility-hour and utility-year level. We

summarize each of these sets of regressions here and include a more complete discussion in

On-line Appendix A3.2. While identification of the structural parameters derives from all

of the indirect inference regressions together, we motivate particular regressions as aiding

identification of particular parameters. Fundamentally, much of the variation that identifies

14In most cases, this will be 2006, before natural gas prices declined, and hence during a period when base
load was predominantly met with coal generation.
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these parameters will stem from the sharp decline in natural gas fuel prices, as discussed in

the introduction of Section 5.

At the hourly level, we regress generation by fuel-technology on a constant to match the

scale of generation of each fuel. Because utilities have an incentive to reduce costs, these

scales are particularly useful for identifying O&M costs. We also regress current generation

on lagged generation, controlling for current and future predictors of demand, separately

for coal and CCNG. These regressions help identify ramping costs, because the higher the

ramping costs the less the utility will change generation from hour to hour.

We also regress the log of the share of hourly generation from coal and CCNG that is

met by coal on quintiles of annual coal usage,15 the coal fuel price minus the natural gas fuel

price, their interactions, and utility fixed effects. We run an analogous regression for CCNG.

These regressions help us to understand the utility’s incentive to run coal out of dispatch

order, which identify coal usage’s contribution to effective capital. We would expect that,

to the extent that used-and-useful incentives bind, coefficients on coal quintiles—unlike for

CCNG—should exhibit an inverse U-shape, with the marginal incentive to use coal in an

hour being highest when the return to coal usage via the used-and-useful incentive is the

highest. While this relationship may reflect the level of used-and-useful incentives for coal,

it may also reflect the fact that the use of a fuel in a given hour reflects the fuel’s overall

value. We therefore limit our regressions to hours where total load is between 75% and 125%

of total CCNG capacity, to isolate hours where the incentive to increase coal’s contribution

to the rate base are most likely to affect generation.

At the annual level, we regress an observable measure of variable profits—revenues net of

fuel and a measure of import costs—on a constant. We further regress this same measure on

capacity by fuel-technology and coal capacity interacted with coal usage. These regressions

help recover the conversion between MW of CCNG capacity and dollars of revenue, α, as well

as coal and NGT’s relative contributions to the rate base, αCOAL and αNGT . These regressions

also combine with the hourly regressions to help identify the coal usage incentives, µ1 and

µ2. Finally, we regress a measure of the rate of return on fuel and import costs and utility

15We define the quintiles of usage across all utility-years where the utility has positive coal capacity.
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fixed effects to help identify γ, which indicates how the maximum allowable rate of return

responds to changes in TV C.

Note that there are two sets of parameters that are jointly identified. Both α and γ deter-

mine how generation capital translates into dollars of allowable return. Similarly, αCOAL, µ1,

and µ2 combine to translate coal capital and usage into the rate base. For both of these sets,

we identify them jointly with multiple indirect inference regressions.

5.2 Investment and Retirement Cost Parameters

As explained in Section 3.3, the utility makes CCNG investment and coal retirement decisions

to maximize its expected discounted sum of operating profits net of investment and retirement

costs, with Bellman equations (6) and (7). We estimate the time-invariant terms, δf0 , δ
f
1 , δ

f
2 ,

and standard deviations of unobservable components of investment and retirement costs, σf ,

with a GMM nested fixed-point estimator.16 We use moments on the difference between

the data and the model for investment or retirement. Specifically, for coal, we include the

retirement amount and its square conditional on a non-zero amount, and indicators for non-

zero retirement and whether they exceed certain thresholds. We also interact each of these

terms with the utility’s starting capital. Finally, we include the variance of the retirement

amount. For CCNG, we include the analogous moments, but for investment.

We estimate the structural parameters with a search over candidate parameters values

that minimize the moment condition. For each candidate parameter vector, we solve the

investment/retirement dynamic programming problem and find the value of the moments.

Our moment function uses an asymptotically efficient weighting matrix, which we construct

by bootstrapping the data to solve for the variance of the moments and then taking the

inverse of the variance.

We now describe two important features of our implementation. First, we solve the

value function iteration and calculate the distributions of investment and retirement decisions

16An alternative approach would be to use a conditional choice probability (CCP) estimator (Hotz and
Miller, 1993). In our context, the nested fixed-point approach is computationally very rapid, reducing the
potential benefits of a CCP approach.
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using recent advances in the literature on continuous choice estimation (Gowrisankaran and

Schmidt-Dengler, 2023). Following this method, we define a finite grid of investment/retire-

ment levels and then find the cutoff ε values between the different levels. A complication that

Gowrisankaran and Schmidt-Dengler address is that some levels are not chosen for a given

parameter vector and state. The algorithm provides a computationally quick way of ruling

out the levels that are not chosen and of then solving for the probability of each remaining

level based on cutoffs between them. We use these probabilities to solve for the continuation

values in the Bellman recursion.17 Because we solve for the probability of each level rather

than simulating a distribution of levels, the moment condition is continuous in the structural

parameter vector, which reduces the implementation costs of a nested fixed-point approach.

In our case, we employ a finite grid of 10 investment/retirement levels.18 For a given

parameter vector, the computed model provides the probability that the firm would choose

each grid point for any investment/retirement decision in the data.19 This probability then

enters into the moment condition for this parameter vector. We estimate our parameters

with GMM instead of maximum likelihood because, for many parameters, we found a zero

model probability for some observed investment/retirement levels, yielding a zero likelihood.

Second, in an initial step, we calculate each utility’s operating profits—which are key

inputs in the investment and retirement Bellman equation—across states. We implement

this by solving profits across a grid of coal capacity, CCNG capacity, and natural gas fuel

prices that enters our investment and retirement Bellman, using the estimated operations

parameters.

Identification of the investment and retirement cost parameters comes from the extent

to which utilities choose to retire coal or invest in CCNG given differences in expected

profits across these states. For instance, the extent to which utilities choose to delay entry

of CCNG—even when profits are potentially higher with additional natural gas capacity—

identifies the average investment costs for CCNG. The extent to which there is heterogeneity

17The additional difficulty in calculating continuation values, which this algorithm addresses, is that they
include the expected value of ε given the choice.

18We experimented with increasing the number of investment/retirement levels in our GMM estimator but
found that our results were not sensitive to this change.

19We find the probability for each decision by interpolating the computed policy function.
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in utilities’ investment and retirement decisions given similar differences in expected profits

conditional on an action identifies the standard deviation of the investment and retirement

cost shocks. As with the operations parameters, declines in natural gas fuel prices together

with heterogeneity across utilities in their capital mixes provide variation in profit differences

across states that identify the investment/retirement parameters.

6 Results and Counterfactuals

This section begins by presenting our estimation results. Following that, we describe our

counterfactual simulations. We first analyze short-run counterfactuals that evaluate the im-

pact of alternate regulatory policies on operations decisions holding utility capacity constant.

Then, we explore long-run counterfactuals that simulate an energy transition over a 30-year

horizon following a fall in natural gas prices.

6.1 Results

Table 3 presents estimates and standard errors for the structural parameters estimated using

operations decisions.20 Focusing first on how much a change in a utility’s capacity would

affect variable profits—which is primarily determined by both γ and α21—we find that,

across sample observations, a 10% increase in TV C would decrease variable profits by 4%,

while a 10% decrease in TV C would increase variable profits by 4.6%. We find that a 500

MW change in effective capital, which is roughly the mean CCNG generator capacity, would

change variable profits by 6.5% on average across our sample.

Considering next the parameters underlying how coal usage affects the rate base, we find

that µ2, the slope term on usage in the function that determines coal’s contribution to effective

20Table A1 in the On-line Appendix A1 displays how simulations of our operations model compare to
observed data and Table A2 in the same Appendix displays how the indirect inference coefficients estimated
on the data match those estimated on the simulated data. Overall, we find that the model replicates patterns
in the data reasonably well, replicating the pattern of usage across CCNG and coal usage quantiles. However,
the model over-predicts revenues and NGT usage.

21Recall that we do not have data on the rate base and hence α is not separately identified from γ. Because
ramping and O&M costs affect TV C, they also enter into the rate of return and affect variable profits.
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Table 3: Coefficient Estimates for Operations Model

Parameter Notation Estimate Std. Error

Penalty for High TV Ct γ 0.429 (0.08)
Rate Base per MW of Effective Capital (Millions $) α 0.221 (0.06)
Coal Capacity Contribution to Effective Capital αCOAL 1.117 (0.51)
Coal Usage Logit Base µ1 -0.589 (0.11)
Coal Usage Logit Slope µ2 5.641 (0.87)
NGT Contribution to Effective Capital αNGT 2.134 (1.00)

Ramping Cost for Coal (100$ / MW) ρCOAL 0.578 (0.11)
Ramping Cost for CCNG (100$ / MW) ρCCNG 0.219 (0.31)
O&M Cost for Coal ($ / MWh) omCOAL 16.350 (3.92)
O&M Cost for CCNG ($ / MWh) omCCNG 2.594 (0.10)
O&M Cost for NGT ($ / MWh) omNGT 19.767 (14.40)

Note: Structural parameter estimates from indirect inference nested fixed point estimation.
All values are in 2006 dollars.

capital, is positive and statistically significant. In other words, coal capacity affects the rate

base more as its usage increases. Figure A1 in On-line Appendix A1 displays the impact

of coal capacity on the rate base by usage level relative to the impact of CCNG capacity.

Coal capacity owned by an (out-of-sample) utility that never generated electricity with coal

would contribute to the rate base 40% as much as a similar amount of CCNG capacity.

Alternatively, coal capacity owned by a similarly out-of-sample utility that generates with

its full coal capacity in all hours would contribute to the rate base 111% as much as a similar

amount of CCNG capacity. We find that a unit of NGT capacity would affect the rate base

more than twice as much as a unit of CCNG capacity.

Turning to other operations costs, a 100 MW coal ramp in one hour—which corresponds

to increasing output by 15% for a coal generator with mean capacity—would cost the utility

$5,780 while the figure is lower for CCNG ramps at $2,190. The coal estimates are between

those of a full startup and a ramp of a unit that is already generating from Reguant (2014).

They are lower than Borrero et al. (2023), but pertain to ramping across generators in a

utility rather than for a specific generator as in that paper. We estimate O&M costs of

$16.35/MWh for coal capacity. This figure is similar to Linn and McCormack (2019) and

28



Borrero et al. (2023). Our O&M costs for CCNG and NGT are $2.59/MWh and $19.77/MWh

respectively, though only the CCNG O&M cost is statistically significant. For CCNG, this

number is extremely close to the reported variable O&M costs for single shaft and multi-shaft

CCNG turbines of $2.67 and $1.96, respectively (Energy Information Administration, 2022).

Table 4: Coefficient Estimates for Investment/Retirement Decisions

Parameter Notation Estimate Std. Error
Fixed cost of coal retirement × 1e2 δCOAL0 -0.446 (9.79)
Linear coal cost per MW δCOAL1 3.196 (0.44)
Quadratic coal cost per MW / 1e3 δCOAL2 0.117 (0.02)
Coal shock standard deviation per MW σCOAL -0.430 (0.02)

Fixed cost of CCNG investment × 1e2 δCCNG0 -0.509 (0.01)
Linear CCNG cost per MW δCCNG1 6.487 (0.08)
Quadratic CCNG cost per MW / 1e3 δCCNG2 0.270 (0.05)
CCNG shock standard deviation per MW σCCNG -1.671 (0.06)

Note: Structural parameter estimates from GMM nested fixed point estimation. All
values are in 2006 dollars.

Table 4 presents our investment/retirement parameter estimates. We find that the fixed

costs of adjusting coal or gas capacity are small and slightly negative, although only statisti-

cally significantly for CCNG investment. The marginal costs of both coal retirement and gas

investment are convex, with positive quadratic terms. The cost of CCNG investment offsets

the negative fixed cost of investment as long as the investment amount exceeds 8 MW, a

negligible size.

Evaluating the magnitude of standard investment and retirement decisions, a 250 MW

coal retirement yields $836 million in scrap value with the mean cost shock. The coal shock

has a standard deviation of $430,000 per MW. This means that the 250 MW of coal retirement

would yield a scrap value between $729 million and $944 million with a one standard deviation

positive or negative cost shock. In contrast, a 250 MW CCNG investment costs $1.6 billion

with the mean cost shock. For a 250MW CCNG investment, the costs lie between $1.17 and

$2.01 billion with one standard deviation less or more than the mean CCNG investment cost.

Our estimates of the mean capital cost of CCNG investment are approximately 3-6 times

higher than the capital costs reported in Energy Information Administration (2022). We
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would expect our estimates to be higher since they are based on revealed preferences and thus

include substantially more than just capital costs. For instance, they also include permitting

costs, the costs of the PUC approval processes, and any additional regulatory costs (or avoided

regulatory costs in the case of coal capacity retirement). Moreover, investments in our model

generally occur when the utility receives a favorable draw of the CCNG cost shock, resulting

in lower realized costs than the mean. Similarly, for coal retirement, we estimate large scrap

values, but these estimates include avoided investments in coal generators that would have

been necessary to keep these generators running (e.g., mercury abatement technologies as in

Gowrisankaran et al., 2023).

6.2 Counterfactuals

We use our estimates to conduct a series of counterfactuals that illuminate the role of regula-

tion in energy transitions. We first examine how alternative incentives would affect utilities’

operations decisions for each counterfactual. We then evaluate the impact of a technological

innovation that generates an energy transition by simulating utilities’ investment and retire-

ment decisions when they start with the 2006 environment but are suddenly faced with the

much lower average 2018–20 natural gas fuel prices.22

Table 5 presents the results of our operations counterfactuals. The first row presents

outcomes from the baseline model. The next two rows consider outcomes from two versions

of the first best solution: a social planner who perceives a cost of CO2 emissions of $190/ton

and then a cost minimizer (who does not consider carbon externalities).23 The social planner

reduces coal usage from 62% to 3% of capacity—a 95% reduction—by substituting to other

sources. Specifically, CCNG capacity usage more than doubles. The cost minimizer also uses

substantially less coal than in the baseline, 53% less.24 This demonstrates that even without

a carbon tax, moving to cost minimization over our sample period would significantly reduce

coal generation relative to regulation. Consistent with these generation decisions, average

22On-line Appendix A4 provides implementation details on the counterfactuals.
23We assume that electricity imported from restructured markets has the U.S. average carbon intensity.
24For the operations counterfactuals, cost minimization is equivalent to the current regulatory framework

with µ2 = 0.
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Table 5: Operations Counterfactuals

Total Var.
Coal CCNG Production Carbon Electricity Variable

Usage Usage Costs Costs Revenues Profits
(%) (%) (Mil. $) (Mil. $) ($/MWh) (Mil. $)

Baseline 61.80 21.66 1,338 5,057 92.62 1,582

Social Planner 2.98 48.94 4,482 3,004 151.30 651

Cost Min., µ2 = 0 29.32 36.79 1,183 4,050 73.94 1,155

2× Usage Incentive, µ2 47.44 29.62 1,266 4,575 92.29 1,650

Half TV C Penalty, γ 71.98 16.98 1,382 5,381 95.42 1,597

2× TV C Penalty, γ 51.59 27.01 1,291 4,735 93.40 1,633

Carbon Tax w/ RoR 63.81 31.14 6,661 5,106 238.87 792

Note: Table presents counterfactual simulations of operations decisions at estimated parameter
values. The social planner minimizes costs including a $190/ton carbon cost. The cost minimizer
has the same incentives but does not value carbon externalities. This is equivalent to current
regulation with µ2 = 0. The next three counterfactuals change regulatory incentives as indicated.
The final counterfactual preserves the ROR regulatory structure adding the $190/ton cost to TV C.

annual carbon costs per utility are $5.1 billion in the baseline but fall to $3.0 billion with a

social planner and $4.1 billion under cost minimization.

Both the social planner and cost-minimizing outcomes involve far lower utility profits, as

shown in the final column of Table 5. Utilities will potentially not cover other costs such as

transmission and distribution with these lower profits. This implies that RoR regulation may

not be able to directly implement these solutions. We, therefore, compare these outcomes to

those of counterfactuals where we keep the current regulatory structure the same but alter

parameters that govern utility incentives. This allows us to evaluate the effects of potentially

feasible policy changes.

Specifically, rows 4-6 of Table 5 consider regulatory structures that modify incentives to

use coal generation and the penalty for high total variable costs. The fourth row doubles the

value of coal usage in increasing effective capital. The effect of this counterfactual depends

on how it changes each utility’s marginal incentive to use coal.25 Figure A1 shows that

25We do not conduct a counterfactual that decreases µ2 since cost minimization is equivalent to µ2 = 0.
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this marginal incentive is decreasing in coal usage. Doubling this incentive would increase

the marginal incentive to use coal at low usage rates but decrease it at higher usage rates.

Empirically, we see that the average effect across utility-years in our sample is that doubling

this incentive decreases coal usage by 23%. We also simulate changing the penalty for high

TV C. Halving the penalty results in 16% more coal usage, while doubling the penalty

decreases coal usage by 17% relative to the baseline. None of these three counterfactuals result

in outcomes that are close to the social planner or cost minimization levels for operations

decisions but all increase utility profits relative to the baseline.

Finally, we consider adding carbon taxes to the existing regulatory structure. In a com-

petitive environment, Pigouvian carbon taxes will yield first-best outcomes. In a regulated

environment, however, since utilities typically pass through costs to consumers, carbon taxes

will be (at least partially) passed through and may not change generation decisions. In our

model, higher costs yield lower rates of return, which means that pass-through will be in-

complete. We see that electricity revenues per MWh more than double from $92.62 in the

baseline to $238.87, which represents a 90% pass-through rate.26 Despite this change, the

carbon tax does not substantially change operations decisions and actually leads to higher

carbon emissions, increasing coal usage by 3%. This is because the tax increases TV C so

much that the marginal incentive to minimize costs is then outweighed by the incentive to

use coal to increase effective capital.27

While these counterfactuals highlight the impact of changing regulatory incentives on

operations decisions, changing these incentives would also have long-run ramifications for

utilities’ investment and retirement decisions. In particular, when a utility is facing an

energy transition, it will respond with capital investment and retirement. We simulate the

effect of an energy transition by calculating 30 years of utility decisions when the utilities in

26Carbon costs are $5.1 billion while average utility revenues (not shown in Table 5) increase from $2.92
to $7.45 billion with a carbon tax.

27The $190/ton carbon tax generates costs that are far from the variation in our data. With a $20/ton
tax we find that coal usage and carbon costs decline. With a large carbon tax, there is a question of whether
the regulator will update CostBasis to maintain reliability. We assume that CostBasis does not change,
so the utility’s marginal incentive to reduce costs is attenuated. Since utilities are reimbursed for costs, the
short-run disincentive for using more carbon-intensive coal plants is the TV C penalty.
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2006 suddenly face the average 2018–20 natural gas fuel price. This allows us to understand

how a utility that had adapted to high gas prices, but suddenly faced a future with expected

lower gas prices, would respond.

Figure 3: Capacity and Generation for Social Planner and Cost Minimizer
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capacities
but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including a
$190/ton carbon cost. The cost minimizer has the same incentives but does not value carbon
externalities.

Figure 3 presents the results of our investment and retirement counterfactuals for the

social planner and cost minimizer. Panel (a) shows that while utilities in the baseline only

retire 45% of coal capacity over 30 years, in both counterfactuals utilities virtually eliminate

coal capacity over this horizon. Panel (a) further shows that CCNG investment is higher

in the baseline than under both the social planner and the cost minimizer. This is because

RoR regulation incentivizes over-investing in capital (Averch and Johnson, 1962). Panel (b)

shows that the social planner effectively stops using coal in the first period, while the cost

minimizer only reduces coal generation by 61% relative to the baseline. The cost minimizer

only approaches the planner level of coal generation at the end of the 30-year horizon. Thus,

during the energy transition we study, the primary benefit of carbon taxes relative to mar-
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ket incentives would have been in reducing coal generation rather than encouraging coal

retirement.

Our main counterfactuals keep import curves fixed, consistent with a single utility facing

alternate incentives. This allows the utility to increase imports when coal generation is costly,

for instance when it faces the social planner’s incentives. An alternative assumption is that

the utility holds constant its import quantities at the 2006 baseline level.28 Figure A2 in

On-line Appendix A1 shows the decisions of the social planner and cost-minimizing utility

in this environment. Comparing panel (a) of this figure to that of Figure 3, coal retirement

decisions look quite similar. However, the social planner invests in CCNG more quickly since

it cannot rely on imports to reduce carbon emissions in the short run. Turning to generation,

panel (b) of Figure A2 shows that the social planner continues to generate with coal in the

short-run since it cannot rely on imports to lower costs and carbon emissions. In the long

run, however, investments in CCNG capacity allow the social planner to move completely

away from coal generation, as when we allow import quantities to vary.

Turning to coal usage incentives, since coal does not contribute as much to effective

capital, setting µ2 = 0 yields a decrease in coal capacity of 97% and coal generation of 98%

by the end of the 30-year horizon. However, doubling the coal usage incentive leads to slower

retirement of coal capacity, but also lower generation with that capacity, the latter for the

same reasons as in the operations counterfactual. In contrast, changing coal usage incentives

has very little effect on CCNG investment or usage.

When we evaluate the impact of changing the penalty for high TV C, we see a very different

picture. Specifically, we find a large effect of changing this penalty on CCNG capacity and

generation, since increasing the TV C penalty will cause the utility to invest in (and use) the

newly lower marginal cost CCNG more. We find little effect on coal retirement decisions,

but increasing the penalty lowers coal generation by 67% by the end of the horizon. This is

because utilities will want to reduce generation with coal in order to lower TV C, but coal

capacity still contributes to effective capital.

Finally, Figure 6 compares the baseline to carbon taxes assessed on the regulated utility

28Import prices will be different because they will reflect the different natural gas prices.
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Figure 4: Capacity and Generation for Different Coal Usage Incentives
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capacities
but imposing 2018–20 natural gas fuel prices. The counterfactuals change the coal usage incentive,
µ2, as indicated.

and the social planner. We find different results in the short run and the long run. While

short-run effects are quite small, and even increase coal generation as in Table 5, we find

that coal capacity and generation decline substantially in the long run—both by 96%—over

the horizon as taxes incentivize coal retirement and CCNG investment. Figure A3 in On-line

Appendix A4 shows that this results in roughly 25% below baseline carbon emissions for the

social planner, cost minimizer, and regulated utility facing a carbon tax.

7 Conclusion

This paper develops and estimates a model of rate-of-return regulation and analyzes how

regulation performs when confronted with an energy transition. The regulator creates an

incentive structure that seeks to make electricity reliable and affordable. The utility optimizes

against this structure, facing a tension between keeping variable costs low and proving that

coal capacity is prudent by keeping its usage high.
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Figure 5: Capacity and Generation for Different TVC Penalties
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capacities
but imposing 2018–20 natural gas fuel prices. The counterfactuals change the TV C penalty, γ, as
indicated.

We find that, in the face of an energy transition, the current regulatory structure is very

different from either a social planner or cost minimizer, retiring only 45% of coal capacity in

the 30 years after natural gas prices fall. In contrast, the cost minimizer virtually eliminates

coal capacity over this horizon, while the social planner—which also internalizes carbon

externalities of $190/ton—essentially stops even using coal immediately.

We further find that adjusting the regulatory structure on the margin, by changing the

penalty for high variable costs or the incentive to use coal, does not approach the cost-

minimizing solution. For instance, increasing the penalty for high variable costs increases

combined-cycle natural gas generation, but at the expense of substantial extra coal and

combined-cycle capacity. Entirely eliminating the coal usage incentive approaches the cost

minimizing coal capacity and generation in the long run, but with much more combined-

cycle investment. Adding the $190/ton carbon tax to existing RoR regulation leads to 90%

of the tax just being passed through to customers in the short-run, though it does lead to

the elimination of coal capacity over our horizon.
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Figure 6: Capacity and Generation for Social Planner, and Carbon Tax with Regulation
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capacities
but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including a
$190/ton carbon cost. The carbon tax counterfactual leaves the regulatory structure unchanged
but adds the carbon cost to TV C.

While there are drawbacks to the existing RoR regulation, all three alternatives that lead

to the elimination of coal capacity over 30 years—social planner, cost minimization, and a

carbon tax—also substantially reduce utility variable profits. These approaches may therefore

necessitate lump-sum transfers to maintain electricity reliability by ensuring resources for

capacity investment, transmission, and distribution. Consistent with this result, the 2022

Inflation Reduction Act included substantial transfers for clean energy investment rather

than carbon taxes.

Finally, our results speak to the importance of regulatory incentives in the next energy

transition to electricity storage and renewables. Regulatory approaches that resulted in

over-investment in combined-cycle capacity may hinder this ongoing transition by requiring

ratepayers to fund stranded assets, thereby reducing electricity affordability. Our results

further suggest that usage incentives for combined-cycle capacity are likely to further hinder

this transition.
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On-Line Appendix

A1 Additional Tables and Figures Referenced in Main

Paper

Table A1: Operations Model Fit

Data Model
Annual Electricity Production (TWh):

Coal 16.14 19.43
CCNG 6.93 3.94
Imports 13.04 11.46

Mean Usage Share (%):
Coal 52.40 61.80
CCNG 35.89 21.66

Annual Costs (Millions of Dollars):
Coal Fuel 397.83 477.84
CCNG Fuel 230.90 103.69
NGT Fuel 36.32 147.87

Coal O&M 263.93 317.60
CCNG O&M 17.99 10.23
NGT O&M 12.14 37.64

Coal Ramping 15.48 13.76
CCNG Ramping 4.06 3.12
Imports 665.30 226.66

Total Variable Production Costs 1,644 1,338
Electricity Revenues (Dollars/MWh): 65.41 92.62

Note: Table presents key outcomes from the data and the model simulated at the
estimated parameter values for the analysis sample. In the “data” column, we use
observed operations decisions but calculate O&M and ramping costs using estimated
parameters and import costs using estimated import supply curves.
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Figure A1: Coal Contribution to Effective Capital Relative to CCNG
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Figure A2: Capacity and Generation for Baseline, Social Planner, and Cost Minimizer with
Fixed Imports
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Note: Figures present counterfactual simulations over 10 3-year periods starting with 2006 capacities
but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including a
$190/ton carbon cost. The cost minimizer has the same incentives but does not value carbon
externalities. In both of these cases, we hold hourly imports for each utility fixed at their simulated
quantities for the first year the utility appears in the analysis sample.
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Figure A3: CO2 Carbon Costs for Baseline, Planner, Cost Minimizer, and Carbon Tax
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Note: The Figure presents counterfactual simulations over 10 3-year periods starting with 2006
capacities but imposing 2018–20 natural gas fuel prices. The social planner minimizes costs including
a $190/ton carbon cost. The cost minimizer has the same incentives but does not value carbon
externalities. The carbon tax counterfactual leaves the regulatory structure unchanged but adds
the carbon cost to TV C.
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Table A2: Indirect Inference Coefficient Matching

Dependent Variable Regressor Actual Data Simulated Data

Usage Variable:
Coal Constant 0.524 (0.000) 0.524 (0.001)

CCNG Constant 0.359 (0.001) 0.166 (0.001)
NGT Constant 0.087 (0.001) 0.168 (0.001)

Variable Profit Proxy
Constant 861.102 (99.895) 1963.903 (122.898)

Rate of Return Proxy
Fuel and Import Costs -26.000 (7.000) -11.000 (2.000)

Variable Profit Proxy
Coal Capacity (MW) -0.358 (0.060) 0.270 (0.017)

Coal Capacity x Usage 0.603 (0.110) 0.054 (0.026)
CCNG Capacity (MW) 0.254 (0.021) 0.269 (0.004)
NGT Capacity (MW) 0.086 (0.076) 0.541 (0.016)

Log Coal Share
First Quintile Coal 0.461 (0.077) -0.018 (0.070)

Second Quintile Coal 1.072 (0.077) 1.129 (0.073)
Third Quintile Coal 1.452 (0.076) 0.884 (0.065)
Fourth Quintile Coal 1.263 (0.078) 1.852 (0.049)

Log CCNG Share
First Quintile CCNG -2.369 (0.003) 0.000 (0.004)

Second Quintile CCNG -1.298 (0.004) -2.867 (0.002)
Third Quintile CCNG -0.708 (0.004) -2.796 (0.002)
Fourth Quintile CCNG -0.294 (0.028) -1.614 ( .)

Ramping:
Coal Usage Lagged Coal Usage 0.972 (0.000) 0.979 (0.002)

CCNG Usage Lagged CCNG Usage 0.968 (0.001) 0.965 (0.000)

Note: Table presents the indirect inference regression coefficients estimated on the actual
data and data simulated by the model. Standard errors are in parentheses.
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A2 Data

A2.1 Construction of Analysis Data

Our analysis data include information principally from the EIA, the EPA, and FERC. To con-

struct our analysis data, we need to merge together information from these three sources, at

the utility-year and utility-hour levels and in some cases also separately by fuel-technologies.

The EIA data contain a plant ID and the EPA CEMS data contain a facility ID. We merge

these two data sets together using these fields. The EIA Form 861 data contain a utility ID,

which we use to collapse the data across generators with the same fuel-technology within the

same utility. The FERC Form 714 data include an “EIA code” field, equivalent to EIA’s

utility ID field, which further allows us to merge these data to the combined EIA/EPA data.

The CEMS data also include information for the state within which each plant is located.

We used this information to convert each hour in these data to eastern standard time. In

some cases, this required us to approximate the time zone by state; e.g., we assumed that

Kentucky is in the eastern time zone and Tennessee is in the central time zone. The FERC

data include the time zone at which each utility reports hourly load. We used this reported

information to convert each hour in these data to eastern standard time. In some cases, this

required us to interpret utilities’ responses to the time zone question, e.g., that “CEN” refers

to the central time zone. We also converted hours in the FERC data from daylight savings

time to standard time.

We deflate all revenues and prices to January, 2006 dollars. We used the CPI net of food

and energy as our measure of inflation.

We retain in our sample only those utilities with at least five years of revenue and load

data. We also drop three utilities which reported excessive exports or very low capacity.

We collected nodal prices from ISOs and then constructed an average hourly wholesale

electricity price for each U.S. state and hour. As we describe in Section A3.1, to estimate

import supply curves, we pair these wholesale electricity price data with average daily tem-

perature at the state level from PRISM.29

29We downloaded these data from Prof. Wolfram Schlenker’s website, http://www.columbia.edu/
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Finally, for our coal and gas fuel price measures, we aggregate the EIA Form 423 infor-

mation on annual contracted fuel prices by plant to the state-year level by taking the mean,

weighting by annual generation at each generator. Using these data at the state-year level

captures the opportunity cost of fuel faced by utilities.

A2.2 Summary Statistics on Data

Table A3 presents summary statistics of our analysis data at the utility-year level. The first

column presents overall averages and standard deviations while the second and third columns

present the values for the first year of our data (2006) and the last year (2017), respectively.

Coal capacity declines substantially over our analysis sample—from 3.77 TW to 2.86 TW per

utility—while CCNG capacity increases from 1.95 TW to 2.97 TW per utility. Average coal

fuel prices are $2.45/MMBtu over our sample, and marginal costs of coal generation are just

over $20/MW over our sample. In contrast, natural gas fuel prices fall from a high of nearly

$8/MMBtu in 2006 to only $3.12/MMBtu in 2017. This drop in fuel prices caused CCNG

marginal costs to fall by 41% over our time period. Finally, our data record information on

26 unique utilities. The average annual revenues of these utilities is approximately $2 billion

per year (in January, 2006 dollars), a figure that is consistent across years.

Table A4 presents similar summary statistics for our hourly-level analysis data. Utilities

in our data serve an average of a little more than 4 terawatt hours of load per hour. In 2006,

the majority (66%) of this load was met by coal and only a small amount (13%) was met

by CCNG. By 2017, this situation had changed substantially, with 34% of load met by coal

on average and 33% met by CCNG. The remainder of load is generally met with imports,30

with NGT consistently producing only a small percentage of load. This is consistent with

many NGT generators being used as “peakers” that only generate in times with high load.

Finally, import prices reflect the overall decrease in natural gas prices, displaying a 43% drop

between 2006 and 2017.

~ws2162/links.html.
30We allow exports to be represented as negative imports, so some utilities will have more generation from

Coal, CCNG, and NGT than total load in particular hours.
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Table A3: Summary Statistics from Data at Utility/Year Level

Overall 2006 2017

Capacity (GW):

Coal
3.51 3.77 2.86

(4.57) (5.03) (3.15)

CCNG
1.95 1.07 2.97

(3.84) (2.94) (5.08)

NGT
0.78 0.69 1.12

(1.14) (1.07) (1.43)
Fuel Price ($/MMBtu):

Coal
2.45 2.02 2.37

(0.79) (0.65) (0.58)

Natural Gas
5.35 7.97 3.12

(2.27) (1.02) (0.42)
Fuel Cost ($/MWh):

Coal
25.22 20.84 23.99
(8.11) (6.19) (7.33)

CCNG
39.45 64.46 23.15

(19.14) (12.65) (3.75)

NGT
73.05 103.68 88.53

(56.55) (25.35) (186.79)
Utility Revenues (Billions of Dollars):

1.98 1.92 2.05
(2.39) (2.61) (2.42)

Number of Unique Utilities:
26 25 20

Notes: The first column reports summary statistics over the entire 2006–
17 period. We report fuel costs conditional on a utility having positive
capacity for that fuel-technology. Standard deviations are in parentheses.
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Table A4: Summary Statistics from Data at Utility/Hour Level

Overall 2006 2017

Load Served (TWh):
4.16 4.10 4.58

(5.03) (5.05) (5.14)
Production (TWh):

Coal
2.16 2.72 1.55

(2.61) (3.35) (1.46)

CCNG
1.01 0.53 1.52

(1.76) (1.23) (2.34)

NGT
0.10 0.07 0.21

(0.24) (0.20) (0.36)
Import Quantity (TWh):

1.49 1.34 1.84
(2.63) (2.60) (2.76)

Import Price ($/MWh):
33.05 40.99 23.25

(19.33) (21.12) (8.24)
Number of Observations:

2,476,657 214,955 175,194

Notes: The first column reports summary statistics over the entire
2006–17 period. Standard deviations are in parentheses.
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A3 Details of Estimation

This appendix section details the assumptions underpinning the estimation of our model.

We begin with the estimation of import supply curves, then provide information on the

estimation of regulatory and operating cost parameters using utilities’ operating decisions.

Finally, we discuss the estimation of investment and retirement cost parameters.

A3.1 Import Supply Curves

We estimate import supply curves for each utility in each hour in an initial step before

these curves enter into the estimation of regulatory and operating cost parameters. Each

hour, a utility u chooses the share of load to meet with its own generation and the share

to import from facilities it does not own. To understand these decisions, we follow Bushnell

et al. (2008), Gowrisankaran et al. (2016), and Reguant (2019) and estimate a linear import

supply curve that models the quantity of electricity imported to the utility as a function of

import price and controls.

Building on this literature—and important in our context, because the supply curves in

exporting regions will change as fuel prices change—we allow the intercept and slope of the

import supply curve to vary with the natural gas fuel price:

qmuyh = (ψu0 + ψu1p
NG)pmyh + ψu2p

NG + ψu3Xuyh + εmuyh. (A1)

We allow all parameters to vary across utilities and, as discussed in Section 2.2, we approx-

imate the import price with the wholesale market price at the closest wholesale electricity

node and define import quantity as the difference between load and generation. The con-

trols, Xuyh, capture demand shocks in the exporting region, and include cooling degree days,

heating degree days, and their squares for every state in the nearest ISO, interacted with

hour of the day. We also include fixed effects for the day of week, month of year, and hour

of day.

Recovering the import supply curves requires understanding the causal impact of import
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price on import quantity, but an OLS regression of (A1) would not consistently estimate

the supply curve because the data reflect variation in both demand and supply. Therefore,

we identify the import supply curve using instruments that plausibly shift the demand for

imports without affecting the import supply curve. Specifically, as in the literature discussed

above, we instrument for the import price with the utility’s local load, after controlling

for Xuyh.
31 In many contexts, demand shifters are used as instruments for price in supply

estimation. In electricity markets, since local load is nearly perfectly inelastic, load itself

instruments for price in supply curve estimation. This instrument is valid if, in addition to

local load being perfectly inelastic, it is unaffected by local supply shocks and uncorrelated

with shocks to demand (conditional on Xuyh) in exporting regions.

We use the estimates from (A1) to recover a supply curve for each utility-year-hour. We

follow the above papers and specify intercepts of these curves as including the residual from

(A1), i.e. ψ̂u2p
NG + ψ̂u3Xuyh + ε̂muyh where the hats indicate estimated values.

In a few utility-years, we estimated import supply curves where the slope—of import

quantity with respect to import price—was negative and very flat. With those slopes, utilities’

profits became implausibly large with exports, which could result in utilities who export

unreasonable amounts. To avoid this issue, we limited the slope to be at most −100 when

we estimated a negative slope.

A3.2 Operations Decisions

We estimate regulatory and operating cost parameters from utilities’ operating decisions by

solving for the utility’s optimal actions given a state and candidate parameter vector and

then running indirect inference regressions on those actions. We then find the parameter

vector that matches these indirect inference coefficients to those obtained when the same

regressions are run on the data. We present the details of how we solve for utilities’ optimal

actions before turning to the details of the indirect inference regressions.

To solve for utilities optimal operations decisions, we construct a sample of 8 weeks across

31Given that we interact import price with natural gas fuel price, we also use the interaction of the natural
gas price with local load as an additional instrument.
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the year. This sample includes four two-week spans starting at midnight on February 8th,

May 8th, August 8th, and November 8th of each year. We assume that utilities pay ramping

costs between hours within these two-week spans but not between the spans.

As discussed in the main text, the utility’s Bellman equation in a given hour depends

upon four states: (1) cumulative TV C up to that hour, (2) cumulative coal usage up to

that hour, (3) lagged coal generation, and (4) lagged CCNG generation. We discretize

each of these states into ten bins so that we have 104 = 10, 000 states for each utility-

hour and interpolate across discretized states. For the cumulative TV C state, we keep

track of the average variable cost—so that the state has a similar scale for earlier and later

hours of the year—and divide the bins evenly between a minimum marginal cost (defined

as 50% of the utility’s lowest marginal cost for available fuel-technologies in the year) and

a maximum marginal cost (defined as the maximum of $200/MWh or 150% of the utility’s

highest marginal cost for available fuel-technologies in the year). For cumulative coal usage,

we choose evenly divided bins between 0 and 1. For the lagged generation states, we choose

evenly divided bins between zero and the capacity of the respective fuel-technology.

In each hour, the utility chooses its coal and CCNG generation levels, both of which affect

the future state. We allow the utility to choose between 10 potential values of each of coal

and CCNG generation, for 100 possible generation choices. We define the minimum of these

equally-spaced bins as either 500 MWh below the lagged generation for that fuel-technology

or zero, whichever is bigger. We define the maximum of the bins as either 500 MWh above

the lagged generation for the fuel-technology or the fuel-technology’s installed capacity for

the utility, whichever is smaller. Thus, we do not allow utilities to ramp or deramp more

than 500 MWs per hour, for both fuel-technologies.

For each hourly choice of coal and CCNG generation, the utility meets the remaining

load with some combination of NGT or imports. Since these fuel choices do not enter into

the utility’s end-of-year payoff except through TV C, the utility is incentivized to make the

cost-minimizing choice across these options. For each potential choice of coal and CCNG,

we find the quantity of imports that sets the price of imports equal to the marginal cost of

NGT. We then check whether this choice is feasible, or implies an NGT choice less than 0 or
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more than NGT capacity. In the first case, we use the computed quantity of imports. In the

latter cases, we choose the boundary condition of NGT of 0 or capacity, as this will minimize

costs. We then compute variable costs for the hour with this combination of generation and

import choices and find the expected continuation value given this choice.

As discussed in the main text, we assume that the utility receives its regulatory profit in

the terminal hour. We implement this by scaling annual outcomes (e.g. Revenues and fuel

and import costs) from the 8 week sample to the annual level by multiplying by the hours

in a year divided by the hours in the sample, 8760/1344 for non-leap years and 8784/1344

for leap years. The maximum rate of return that the regulator provides the utility increases

as TV C decreases. We limit this rate of return to what it would be if TV C was 10% of

CostBasis in order to avoid some utilities choosing to export so much that they reach a

negative, and hence unrealistic, TV C.

After solving for the utility’s optimal operations decisions, we use these simulated data

in our indirect inference regressions. For the regressions using hourly data, we run these

regressions on the same 8 weeks of data on which we solve for the utilities’ optimal operations

decisions. For the regressions run on annual data, we run the regressions on the true annual

data and the model-simulated data scaled to the annual level.

We run a total of 10 regressions on both the observed data and the model-simulated data

and match 29 coefficients from these regressions. These regressions include:

1. Scale of Generation: We run regressions of the hourly utilization (generation divied

by capacity) for each fuel-technology on a constant. This yields three regressions, one

for each of coal, CCNG, and NGT. We cluster the standard errors of these regressions

at the utility level and match the three coefficients on the constants.

2. Scale of Variable Profit: We run one regression at the utility-year level of revenues

net of fuel and import costs on a constant. We cluster the standard errors of this

regression at the utility level and match the coefficient on the constant.

3. Determinants of Rate of Return: We run one regression of a proxy for the utility’s

rate of return on a proxy for total variable costs. Specifically, our dependent variable
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is the utility’s revenues net of fuel and import costs divided by the utility’s total coal,

CCNG, and NGT capacity in the year. Our independent variable is fuel and import

costs. We include utility fixed effects in this regression, but we only match the coefficient

on our TV C proxy, not the fixed effect estimates.

4. Determinants of Variable Profit: We run one regression at the utility-year level of

a proxy for variable profits (revenues net of fuel and import costs) on the utility’s coal

capacity, coal capacity multiplied by coal usage rate, CCNG capacity, and NGT capac-

ity. We cluster the standard errors at the utility level and match the three coefficients

on capacity and the interaction term.

5. Usage of Coal and CCNG: We run two regressions at the hourly level where the

dependent variables are the log of coal (or CCNG) generation divided by the sum of

coal and CCNG generation in the hour. For the coal regression, the primary dependent

variables are quintiles of annual coal utilization across all utility-years where a utility

has positive coal capacity and these quintiles interacted with the difference in marginal

cost between coal and CCNG. We include analogous regressors in the CCNG generation

share regression. We also include utility fixed effects in both regressions. We run these

regressions only on hours of the year where the load is between 75% and 125% of

the utility’s CCNG capacity (for the coal regression) or coal capacity (for the CCNG

capacity) in that year. We cluster the standard errors at the utility level. We match

the nine coefficients in each regression on the usage shares and their interactions with

fuel prices.

6. Extent of Ramping: We run two regressions at the hourly level of current coal

or CCNG generation on lagged generation with the same fuel-technology. In these

regressions we control for the fuel price of coal, the fuel price of CCNG, the current

electricity price, current load, and six leads for each of load, the import supply curve

intercept, and the electricity price. We include utility, month-of-year, and hour-of-

year fixed effects and cluster standard errors at the utility and hour-of-year level. We

only match the one coefficient from each regression (two coefficients total) on lagged
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generation.

This indirect inference approach also requires us to choose a weighting matrix to determine

how differences across moments will be summed. We use a weighting matrix based on the

inverse of the variance-covariance matrix of the regressions on the actual data above. We

assume that there is no covariance across regressions.

A3.3 Investment and Retirement Decisions

We estimate investment and retirement decisions with a nested fixed point GMM estimator

that requires solving for the dynamically optimal investment/retirement decisions across

states. We compute the optimal investment/retirement decisions with a Bellman equation.

After the final decision period, when t > 10, the state no longer evolves and the utility no

longer makes investment/retirement decisions. Hence, we solve for the value at this state as

the discounted flow of π∗, evaluated at the terminal state. We then solve the remaining 10

period problem with backward recursion, starting with the CCNG investment decision for

all states at t = 10, then the coal retirement decision for all states at t = 10, the CCNG

investment decision for all states at t = 9, etc.

As with the operations decision detailed in Section A3.2, we discretize the state space

and compute continuation values by interpolating across discretized states. Here, we use 10

evenly divided bins for each of the time-varying states of coal capacity, CCNG capacity, and

natural gas fuel price. Since we consider only retirements for coal, we let the coal capacity

bins range from 0 to the observed coal capacity at the beginning of the sample. Since we

consider only investment for CCNG, we let CCNG capacity bins range from the observed

capacity CCNG capacity at the beginning of our sample to 110% of peak load, defined as

the 95th percentile of hourly load. Finally, we let the natural gas fuel price bins range from

75% of the lowest three-year mean fuel price (as described below) to the maximum three-year

mean price. Given that there are 10 evaluation time periods and two decisions (investment

and retirement) in each period, we solve for continuation values at 104 × 2 = 20,000 states

per utility.
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Although the value function varies across period t, the period profits, π∗ do not, and vary

only across utility and the three time-varying states. For each utility i, we calculate π∗i using

the utility’s mean NGT capacity and coal fuel price over the sample period. For the utility’s

fixed states that vary by hour—which are load and the import supply curve residual—we

use hours from the first year that utility i is observed in our data, generally, 2006. We use

data from one year here rather than using the mean across years to preserve the level of

fluctuations that occurs between hours and accurately capture ramping and other costs.

For each of the 20,000 states, we solve for the continuation value using the algorithm

developed by Gowrisankaran and Schmidt-Dengler (2023). This algorithm discretizes the

continuous (in our case, investment/retirement) decision and requires that we specify the

number and values of the discrete levels. Based on our examination of changes in the data,

we specify 10 bins for coal capacity change: 0, 200, 400, 600, 800, 1000, 1500, 2000, 3500,

and 5000 MWs of capacity retirement and 10 bins for CCNG capacity change: 0, 100, 200,

400, 600, 800, 1000, 1500, 2000, and 3000 MWs of capacity investment. We exclude coal

retirement bins that would imply negative coal capacity.

We estimate our GMM objective function with 18 moments. Each of the moments indi-

cates the difference between the estimated model value of a statistic and the value in the data.

We use 9 moments each for coal and CCNG decisions. For coal, we include (1) an indicator

for positive retirement, this indicator interacted with (2) the quantity of capacity retired

and (3) quantity squared, and (4) an indicator for retirement of more than 500 MW. We

interact these four moments with coal capacity (5–8) and include (9) the retirement quantity

variance. For CCNG, we include the analogous moments, but for investment (10-18).

We estimate an asymptotically optimal GMM weighting matrix by bootstrapping the

model moment values across observations and using the inverse estimated variance-covariance

matrix as the weighting matrix. We calculate standard errors using the standard GMM for-

mulas. Because of computational complexity, our standard errors for the investment/retirement

decisions do not account for the fact that π∗ is estimated.

Finally, we estimate the natural gas fuel transitions using a panel of Henry Hub natural

gas spot prices as reported by https://www.eia.gov/dnav/ng/hist/rngwhhdM.htm. We
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use data from 2003–20, and let each observation denote the three-year mean price. We then

estimate gas price transitions with a simple autoregressive specification of price on lagged

price. We take the slope and residual from the regression and discretize quantiles of the

prediction to obtain transition probabilities of the natural gas fuel price state from period to

period.

A4 Implementation of Counterfactuals

This appendix discusses our implementation of the counterfactuals for both the operations

decisions and the long-run decisions that simulate an energy transition. These counterfactuals

compare the current regulatory structure to (1) the cost minimization solution and (2) the

social planner solution. They also analyze alterations to the current regulatory framework,

specifically (3) altering the penalties for high TV C and (4) altering usage incentives. Finally,

(5) we simulate counterfactual carbon taxes within the context of RoR regulation.

To simulate operations decisions, we start with each utility-year in our analysis sample

and simulate how operations would change under these counterfactual environments. To

simulate the long-run decisions under counterfactual environments, we calculate a grid of

state-contingent profits π∗i for each utility i observed in our sample under these environments.

Our simulation process then follows the computation described in the estimation of the

investment and retirement parameters, in On-line Appendix A3.3, but with different profit

grids from those used in the baseline estimation.

We report outcomes for each counterfactual that include information on the generation

decisions, carbon externalities, and—in the case of the long-run counterfactuals—coal and

CCNG capacity. To calculate the carbon externalities, we multiply the EPA’s current carbon

cost (Environmental Protection Agency, 2023b) by the carbon intensity of each fuel source

in CO2 tons per MWh. We calculate the carbon intensity of each utility and fuel-technology

by multiplying its heat rate, measured in MMBtu per MWh, by its emissions tons per heat

input, measured in CO2 tons per MMBtu. We recover the heat rate by utility and fuel-

technology from our analysis data and the emissions per heat input for coal and natural
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gas from Energy Information Administration (2023). Our reported counterfactual carbon

cost measures further account for the carbon intensity of imports. We assume that the

carbon intensity for imports is the 2019 national mean carbon intensity of generation, which

we calculate from Environmental Protection Agency (2023a). Because we fix the carbon

intensity of imports across counterfactual policies, the carbon impact of these policies most

accurately indicate the impact of a policy change affecting a single utility.

Finally, we discuss our implementation of each of the five types of counterfactuals.

1. Cost Minimization. For the operations model, cost minimization is equivalent to

the current regulatory problem with µ2 set to 0. This is because, without usage in-

centives, the regulated utility is incentivized to minimize operations costs. In the long

run, however, investment/retirement decisions will differ between the cost minimiza-

tion solution and the current regulatory framework with µ2 = 0. To solve the cost

minimization solution for the energy transition, we maximize a value function where

the period objective is the negative of total cost, rather than profits.

2. Social planner. The social planner in our model seeks to minimize the expected

discounted costs of electricity production plus the CO2 externality from this production.

Thus, we compute the social planner solution in the same way as the cost minimization

solution, except that we subtract from the criterion function the social cost of carbon

from generation with each of the fuels and from imports.

3. Altering the penalties for high TV C. We consider counterfactuals that halve or

double γ, which indicates the penalty that a high TV C gives the utility in terms of a

lower maximum rate of return s. An increase in γ implies both a steeper drop in profits

from higher TV C and a drop in profits overall. For these counterfactuals, we would

like to study the impact of changing the slope of profits with respect to TV C rather

than the level. Thus, for these counterfactuals, we also adjust α—which indicates the

rate base per MW of effective capital—to keep mean variable profits across utility-year

observations at the baseline operating decisions the same as in the baseline.
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4. Altering usage incentives. We consider counterfactuals that eliminate or double the

logit slope µ2 on coal capacity’s extra contribution to the rate base with additional us-

age. As noted above, µ2 = 0 is equivalent to cost minimization in operations decisions.

However, it is different in its long-run implications and hence we report the impact of

an energy transition separately for cost minimization and for the regulatory framework

with µ2 = 0.

5. Carbon tax within existing regulatory structure. We assume here that utilities

are charged a carbon tax of $190/ton on both their generation and imports. Because

this carbon tax then enters TV C, utilities can partly increase consumer rates in re-

sponse. The penalty for high TV C limits their ability to fully pass through this tax,

and creates long-run incentives to move to low-carbon fuel sources. Our carbon tax

counterfactual results account for these mechanisms.
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