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1 Introduction

Principal component analysis (PCA) has become a key tool for building dynamic models of vector

time series with a large cross-sectional dimension. A typical application first subtracts the sample

mean from each variable and divides the demeaned variables by their sample standard deviations.

PCA finds linear combinations of the standardized variables that have maximum sample variance.

These principal components are then used to build dynamic models for each individual series.

For surveys of PCA and its usefulness in economics see Bai and Ng (2008) and Stock and Watson

(2016).

One difficulty with PCA is that many of the time series encountered in economics and finance

are nonstationary. For a nonstationary variable, the population mean is undefined and the sam-

ple standard deviation diverges to infinity as the number of time-series observations gets large.

Onatski and Wang (2021) detailed some of the problems that can arise from trying to apply PCA to

nonstationary data. The typical solution to this problem is for researchers to examine each series

individually by hand to determine the transformation of that series that needs to be made before

calculating principal components of the set of variables.

This approach has two shortcomings. First, while for some variables it may be fairly clear what

transformation is necessary to achieve stationarity, for others it is far from obvious. For example,

interest rates have a strong downward trend since 1980. Should yields be treated as stationary?

If nonstationary, should we take their first differences or deviations from a time trend before per-

forming PCA? Many finance applications take principal components of interest rates without any

transformation; see for example Piazzesi (2010) or Joslin et al. (2011). McCracken and Ng (2016)

used either first differences or spreads between interest rates as the first step before including in-

terest rates in PCA. Crump and Gospodinov (2022) recommended using either bond returns or

the first differences of bond returns in place of yields themselves to reduce the persistence of these

data. Some authors work with first differences of inflation and the unemployment rate while oth-

ers leave those variables as is. Many decisions like these have to be made before applying PCA

to large data sets. In this paper, we propose an automatic procedure that allows the researcher to

avoid these judgment calls.

A second fundamental problem is the appropriateness of the methodology itself. Suppose we
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somehow overcame the first problem and knew for certain the true nature of the trend in each in-

dividual series. Suppose for illustration we knew correctly that the first variable y1t is a stationary

AR(1) process with autoregressive coefficient ρ = 0.99 while the second variable y2t is a random

walk. The currently prescribed procedure would instruct the researcher to use the first variable as

is and the second variable in the form of first differences. But while the levels of y1t and y2t exhibit

very similar properties, the level of y1t and first difference of y2t are radically different. Should

we expect that there is some linear combination of y1t and ∆y2t that can summarize the common

economic drivers behind the two variables? If differencing is the appropriate transformation for

a random walk, it seems we should be using some similar transformation for an AR(1) process

whose root is close but not quite equal to unity.

This paper proposes an approach to PCA that solves these problems. We first note as in Hamil-

ton (2018) that it is possible to use OLS to estimate an h-period-ahead forecast of the level of any

variable as a linear function of its own lags without knowing the nature of the nonstationarity.

Moreover, the errors from these linear forecasts are stationary for a broad class of underlying

nonstationary processes. Our proposal is to use PCA to identify common factors behind the fore-

cast errors. Specifically, we estimate an OLS regression of yit on {1, yi,t−h, yi,t−h−1, . . . , yi,t−h−p+1},

where i = 1, . . . , N represents the index of the variable, h is the forecasting horizon, and p is the

number of lags used for the forecast. We then calculate principal components of the residuals.

This approach solves both of the problems identified above. The procedure is fully automatic

and treats every variable in the same way. The transformation of yit is a continuous function of

the estimated autoregressive coefficients and implies no discontinuity in the way that persistent

stationary series are treated as the largest autoregressive root tends toward unity.

Hamilton (2018) suggested that a two-year-ahead forecast error could be interpreted as the

stationary cyclical component of the series. Our empirical application follows this suggestion and

uses h = 24 for monthly data to uncover the common cyclical factors behind a range of economic

and financial indicators. We demonstrate that using h = 24 also offers a practical solution to the

problem of outliers which has posed a severe challenge to using PCA on macroeconomic observa-

tions in 2020.

Bai and Ng (2004) and Barigozzi et al. (2021) developed methods that are suitable when the

observed data are an unknown mix of I(0) and I(1) variables. Their approaches start by applying
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PCA to first-differences of all of the variables whether stationary or not. Bai and Ng (2004) esti-

mated factors for the original data by accumulating factors estimated from the differenced data.

Barigozzi et al. (2021) estimated factors by applying the loadings estimated from differenced data

to the detrended levels of the original data. Barigozzi et al. (2021) showed that their procedure

can estimate the set of factors that account for common stochastic trends in the original data. Bai

and Ng (2004) allowed for some of the common factors to be I(0) and others to be I(1), but their

equations (1)-(3) do not allow the possibility that a single common factor is influencing the level

of a stationary variable y1t and the growth rate of a nonstationary variable y2t. In contrast to these

approaches, the goal of our analysis is to uncover the cyclical components that are driving both

the stationary and nonstationary variables.

Our results are also useful for estimation of dynamic factor models. One common approach

to estimating dynamic factor models is to apply a transformation that is believed to make the in-

dividual series stationary, calculate principal components of the transformed data, and then fit a

vector autoregression to the estimated factors (Stock and Watson (2002, 2016); Bai and Ng (2002,

2006)). Alternatively, the factors and their dynamics can be estimated jointly by maximum likeli-

hood or quasi-maximum likelihood (Bańbura and Modugno (2014); Doz et al. (2012)). For MLE

or QMLE, researchers again typically transform each observed variable yit individually to achieve

stationarity (e.g., Forni et al. (2009); D’Agostino et al. (2016)). Antolin-Diaz et al. (2017) allowed

the growth rate of a known subset of the variables to follow a random walk as part of the hypoth-

esized state-space framework.1 In contrast, our approach allows the researcher to implement the

initial transformations without the need for subjective judgments about each individual series.

Section 2 discusses the use of forecasting regressions to isolate a stationary component of a

possibly nonstationary time series. Section 3 describes how PCA could be used to uncover the

common factors behind the forecast errors if we somehow could know the true process followed

by each variable, and uses standard results to establish the consistency of PCA in that hypothet-

ical setting. Section 4 analyzes the case when PCA is applied to the residuals from estimated

OLS regressions, and establishes consistency of the method in that more realistic setting. Simula-

tions in Section 5 investigate what happens when we apply our procedure to a variety of possible

1Stock and Watson (2016) recommended a transformation to render the original raw data stationary that allows for
a slowly moving growth rate or trend.

3



data-generating processes. We find that using two-year-ahead forecast errors works well when

we have 50 years of data and that h = 1 performs quite well even in much shorter samples. Sec-

tion 6 illustrates the promise of our approach in an empirical analysis using the FRED-MD large

macroeconomics data set.

2 Isolating a stationary component from a nonstationary series

Let yit denote the level of a possibly nonstationary variable at time t. Collect its p most recent

values as of date t − h along with a constant term in a vector z̃i,t−h = (1, yt−h, yt−h−1, ..., yt−h−p+1)
′.

The population linear projection of yit on z̃i,t−h is given by P(yit|z̃i,t−h) = α′
i0z̃i,t−h where the co-

efficient αi0 is defined as the vector that minimizes the expected squared error of a forecast of yit

based on a linear function of z̃i,t−h:

αi0 = arg min
α

E(yit − α′ z̃i,t−h)
2. (1)

For example, if yit is covariance stationary with E(z̃i,t−h z̃′i,t−h) nonsingular, the population linear

projection coefficient is given by

αi0 =
[

E(z̃i,t−h z̃′i,t−h)
]−1

E(z̃i,t−hyit). (2)

If yit is ergodic for second moments, the population parameter αi0 can be consistently estimated

by an OLS regression of yit on z̃i,t−h:

α̂i =
[
∑T

t=1 z̃i,t−h z̃′i,t−h

]−1 [
∑T

t=1 z̃i,t−hyit

]
=

[
T−1 ∑T

t=1 z̃i,t−h z̃′i,t−h

]−1 [
T−1 ∑T

t=1 z̃i,t−hyit

] p→ αi0.

Note that there is no assumption in the definition (1) nor in its stationary solution (2) that the pro-

cess is linear or that it can be characterized by an ARMA representation of known order. There

may be better forecasts of yit that could be obtained using a nonlinear function or more lags like

yi,t−h−p, yi,t−h−p−1, ... But there is an optimal forecast within the class of linear forecasts that use

only p lags. For a covariance-stationary process, the optimal forecast within that class is charac-

terized by (2).
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A solution to (1) also exists if yit is nonstationary but its first difference ∆yit is covariance

stationary. This can be seen from the accounting identity that holds for any time series:

yit = yi,t−h + ∆yi,t−h+1 + ∆yi,t−h+2 + · · ·+ ∆yit. (3)

For an I(1) process,

P(yit|z̃i,t−h) = yi,t−h + P(∆yi,t−h+1|z̃†
i,t−h) + P(∆yi,t−h+2|z̃†

i,t−h) + · · ·+ P(∆yit|z̃†
i,t−h) (4)

for z̃i,t−h = (1, yt−h, yt−h−1, ..., yt−h−p+1)
′, z̃†

t−h = (1, ∆yt−h, ∆yt−h−1, ..., ∆yt−h−p+2)
′ and P(∆yi,t−s|z†

i,t−h) =[
E(∆yi,t−s z̃†′

i,t−h)
] [

E(z̃†
i,t−h z̃†′

i,t−h)
]−1

z̃†
i,t−h. Moreover, the population linear projection coefficient

αi0 can again be consistently estimated by an OLS regression of the level of yit on (1, yi,t−h, yi,t−h−1,

..., yi,t−h−p+1)
′. The intuition for this is that an OLS levels regression minimizes the sample analog

to the population minimization in (1):

α̂i = arg min
α

T−1 ∑T
t=1(yit − α′ z̃i,t−h)

2. (5)

If the OLS estimate α̂i picks up the unit root, the value of (5) converges to a finite number as T

gets large. If it does not, the value of (5) would diverge to infinity. Thus in large samples, OLS

estimation is dominated by the incentive inherent in the objective function of OLS to remove any

nonstationary features of the data. More formally, the fitted values from the regression (5) are

numerically identical to the fitted values from an OLS regression of yit on (yi,t−h, z̃†′
i,t−h). In the

latter regression, the OLS coefficient on the lagged level yi,t−h will converge in probability to one

whenever the dependent variable is an I(1) process. In fact, the OLS estimate of this parameter

is superconsistent, converging at rate T rather than at rate
√

T, and the asymptotic distribution of

the other coefficients is identical to what would result if we regressed ∆yit on z̃†
i,t−h; see Hamilton

(2018).

Hamilton (2018) showed that these results generalize to any nonstationary process that is co-

variance stationary around a deterministic polynomial in time t provided that the order of the

polynomial is no greater than the number of lags p, or if the process is I(d) with the dth difference

of yit covariance stationary for some d no greater than p. One does not need to know the order of
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the polynomial or the value of d in order to consistently estimate the population linear projection

coefficient αi0 using a regression of the level of yit on a constant and its p most recent levels as of

date t − h.

Hamilton (2018) also showed that the residual from the population linear projection, cit =

yit − α′
i0z̃i,t−h, is covariance stationary for any of the above nonstationary processes. For example,

for an I(1) process, we see from (3) and (4) that

cit = yit − P(yit|z̃i,t−h)

=
[
∆yi,t−h+1 − P(∆yi,t−h+1|z̃†

i,t−h)
]
+

[
∆yi,t−h+2 − P(∆yi,t−h+2|z̃†

i,t−h)
]
+

· · ·+
[
∆yit − P(∆yit|z̃†

i,t−h)
]

is covariance stationary for any finite h. It is thus possible to isolate a stationary component

of a large range of nonstationary processes from the residuals of an OLS regression of yit on

(1, yi,t−h, yi,t−h−1, ..., yi,t−h−p+1)
′ without knowing whether the variable yit is stationary or non-

stationary.2

It is instructive to compare this approach with other common ways of thinking about the trend

in a nonstationary series. If the ith observed variable is a deterministic function of time plus a zero-

mean stationary process, yit = δdet
i (t) + cdet

it , we could describe the deterministic time trend as the

limit of a forecast that would have been made in the arbitrarily distant past:

δdet
i (t) = lim

h→∞
lim

p→∞
E(yit|yi,t−h, yi,t−h−1, ..., yi,t−h−p+1).

By contrast, if the first difference of the ith variable is a zero-mean stationary process, Beveridge

2Specifically, if either: (i) yit is stationary around a deterministic polynomial function of time of order di ≤ p satisfy-
ing

T−1/2
[Tr]

∑
s=1

(yit − δi0 − δi1t − δi2t2 − · · · − δitdi ) =⇒ ωiWi(r)

where [Tr] denotes the largest integer no greater than Tr, Wi(r) denotes standard Brownian motion, and ⇒ denotes
weak convergence of associated probability measures; or alternatively if (ii) di differences of yit are stationary for some
di ≤ p satisfying

T−1/2
[Tr]

∑
s=1

(∆di yit − µi) =⇒ ωiWi(r);

then Hamilton (2018) showed that cit is stationary and that the estimated coefficient α̂i from an OLS regression gives a
consistent estimate of the population parameter αi0.
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and Nelson (1981) suggested that we think of the trend as the forecast of the variable in the arbi-

trarily distant future. They decomposed yit = δBN
it + cBN

it where

δBN
it = lim

h→∞
lim

p→∞
E(yi,t+h|yit, yi,t−1, ..., yi,t−p+1).

While these concepts of trend have some appeal, they have the significant practical drawback that

both are based on the properties of forecasts at infinite horizons. They thus depend on conjectures

of what happens at infinity, conjectures that are impossible to verify on the basis of a finite sample

of observations.

By contrast, forecasts at a two-year horizon are something that can be reasonably investigated

without auxiliary assumptions in samples of typical size. If we choose h to correspond to a two-

year horizon, Hamilton (2018) argued that the decomposition

yit = P(yit|1, yi,t−h, yi,t−h−1, ..., yi,t−h−p+1) + cit (6)

can be viewed as a way to implement traditional approaches to trend-cycle decomposition that is

practical and robust. Moreover, the primary reason we would go wrong in making a two-year-

ahead forecast of most economic time series is due to unforeseen cyclical changes. For example,

the value of yit will be significantly below P(yit|z̃i,t−h) if the economy goes into a recession after t−

h and significantly above the forecast if recovery from a downturn is more robust than expected.

For this reason, Hamilton (2018) proposed to use h corresponding to a two-year horizon as a way

to isolate the the stationary cyclical component of the ith variable, for example, h = 24 for monthly

data.

Another important benefit of setting h = 24 is that it offers a solution to the huge practical

problem of dealing with outliers. To see why this is the case, suppose for illustration that the

ith variable is characterized by a random walk: yit = yi,t−1 + εit. For a monthly random walk,

the residual from the two-year population linear projection is given by cit = ∑23
s=0 εi,t−s. From the

Central Limit Theorem, cit exhibits much less kurtosis than the one-period-ahead forecast error εit.

We find in our empirical application in Section 6 that this feature is extremely helpful in dealing

with outliers such as those seen during the COVID-19 pandemic in 2020.
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Notwithstanding, these benefits do not come without a cost. The larger the value of h, the

more serial correlation there will be in cit, and the more prone PCA can be in small samples to

the spurious factor problem identified by Onatski and Wang (2021). Our simulations in Section 5

suggest that if we have 50 years of data, using two-year-ahead forecast errors works pretty well.

For shorter samples, the spurious factor problem can be more serious, and our recommendation

for those applications is to look for common factors in the one-year-ahead (h = 12) or one-month-

ahead (h = 1) forecasts. In the latter case, additional correction for outliers is likely needed.

To summarize, our procedure is to estimate the same regression for every variable yit, regard-

less of whether we think it is stationary and without making any conjecture about the nature of

any nonstationarity. To allow for persistent seasonal components in yit, we recommend choosing

p to be the number of observations in a year. Our procedure estimates the following regression by

OLS for every variable,

yit = ki + αi1yi,t−h + αi2yi,t−h−1 + · · ·+ αipyi,t−h−p+1 + cit, (7)

with h = 8 and p = 4 for quarterly data and h = 24 and p = 12 for monthly data. We will

refer to the residual from the estimated regression ĉit as the OLS residual for variable yit and the

residual from the population linear projection cit as the true cyclical component. The value ĉit is a

consistent estimate of cit, and the true value cit is stationary as long as any nonstationarity in yit

is characterized by either a polynomial time trend of order di or an I(di) process with di ≤ p. Our

procedure is to perform PCA on the regression residuals {ĉ1t, ..., ĉNt}.

One practical decision is whether a nonlinear transformation of the raw data is necessary for

∆di yit to be stationary for some di. If taking first differences of the log is the correct way to produce

a stationary series, then taking the change in the level would not produce a stationary series. We

recommend using logs for variables like output or prices which are usually described in terms of

growth rates. For such variables we use the log of the level of the variable, yit = log Yit as the

variable in the regression (7). For variables like interest rates or the unemployment rate that are

already quoted in percentage terms, we use the raw data yit = Yit in the regression.

The true cyclical component cit has mean zero and is stationary for a wide range of processes.

However, the population value of αi0 is not known but must be estimated by regression. In Section
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3 we characterize our assumptions about the factor structure that we hypothesize describes the

true values of cit, and use standard results to establish that these population factors could be

consistently estimated if the true values of cit were observed without error. Section 4 considers the

case when we do not know the value of di for each series, do not know whether it is stationary

or characterized by a deterministic time trend or an I(di) process, and the cit are not observed. In

that section we analyze the consequences of performing PCA on the estimated OLS residuals ĉit.

3 Principal component analysis when the true cyclical component is

observed

In the previous section we defined the true cyclical component cit to be the residual from a popu-

lation linear projection of yit on (1, yi,t−h, yi,t−h−1, ..., yi,t−h−p+1)
′, and noted that cit is stationary for

a broad class of possible processes. In this section we provide sufficient conditions under which

the true cyclical components for a collection of N different variables would have a factor struc-

ture that could be consistently estimated using PCA if we observed the true value of cit for each

variable. The set-up and results in this section closely follow Stock and Watson (2002).

3.1 Assumed factor structure of the true cyclical components

Collect the true cyclical components for the N different series at time t in an (N × 1) vector Ct =

(c1t, ..., cNt)
′. We postulate that these are characterized by a factor structure of the form

Ct
(N×1)

= Λ
(N×r)

Ft
(r×1)

+ et
(N×1)

. (8)

The number of latent factors r is much less than the number of variables N, but the r factors are

assumed to account for most of the variance of Ct in a sense made formal below. Since the factors

are unobserved, Ct = ΛH−1HFt + et would imply the identical observable model as (8). Thus

some normalizations are necessary in order to talk about consistently estimating the jth factor f jt.

In empirical estimation, practitioners typically resolve this ambiguity by estimating the jth column

of Λ by the eigenvector associated with the jth largest eigenvalue of T−1 ∑T
t=1 CtC′

t. Note that such

a procedure implies a normalization in which the columns of Λ are orthogonal to each other and
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the elements of Ft are uncorrelated with each other and ordered by the size of their variance.

We follow Stock and Watson (2002) in how to characterize these conventions as the cross-section

dimension N and time-series dimension T get large.3

Assumption 1 (factor structure).

(i) (Λ′Λ/N) → Ir.

(ii) E[FtF′
t ] = ΩFF, where ΩFF is a diagonal matrix with ωii > ω jj > 0 for i < j.

(iii) |λij| ≤ λ̄ < ∞.

(iv) T−1 ∑t FtF′
t

p→ ΩFF.

In addition to implementing the property that eigenvectors of a symmetric matrix are orthog-

onal, Assumption 1(i) requires that each factor makes a nonnegligible contribution to the average

variance of cit across i. That is, if we were to imagine adding more variables (increasing N) with

λij = 0 for all i greater than some fixed N0, then Assumption 1(i) could not hold. Likewise 1(ii)

and 1(iv) require that each factor continues to matter as the number of time-series observations T

grows. These conditions are consistent with serial dependence of the factors, but rely on the fact

that Ct is stationary.

Let γ denote an (N × 1) vector and Γ = {γ : γ′γ/N = 1}. Note that if γ were the jth col-

umn of Λ, the scalar γ′ΛFt/N would converge to f jt and (N2T)−1 ∑T
t=1 γ′ΛFtF′

t Λ′γ
p→ ω jj. The

assumption that the idiosyncratic elements et do not have a factor structure requires that there is

no value of γ for which the analogous operation applied to et would lead to anything other than

zero: sup
γ∈Γ

(N2T)−1 ∑T
t=1 γ′ete′tγ

p→ 0. Stock and Watson (2002) used the following assumptions to

guarantee the absence of a factor structure in et.

Assumption 2 (moments of the errors).

(i) lim
N→∞

supt ∑∞
s=−∞ |E[e′tet+s/N]| < ∞.

(ii) lim
N→∞

supt N−1 ∑N
i=1 ∑N

j=1 |E[eitejt]| < ∞, where eit denotes the ith element of et.

(iii) lim
N→∞

supt,s N−1 ∑N
i=1 ∑N

j=1 |cov[eiseit, ejsejt]| < ∞.

3See Bai and Ng (2013) and Stock and Watson (2016) for discussion of alternative normalizations.
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Some might be concerned that we have simply postulated that the true cyclical components

are characterized by Assumptions 1 and 2. But something very similar is done in traditional

applications that assume conditions like these characterize specified stationary transformations of

the original data. Indeed, insofar as the cyclical components have a common primitive definition

in terms of h-period-ahead forecast errors, we would argue that these assumptions are easier to

defend in our application than in many others.

3.2 Consequences of applying PCA to the true cyclical components

Recall that the (N × 1) vector of true cyclical components Ct is stationary and has population mean

zero. If Ct was observed directly, its estimated sample variance matrix would be S = T−1 ∑T
t=1 CtC′

t

and a linear combination γ′Ct for any (N × 1) vector γ would have sample variance γ′Sγ. If Ct

was observed, the first estimated principal component (denoted f̃1t = N−1λ̃
′
1Ct) would be defined

as the linear combination that has maximum sample variance subject to a normalization condition

such as γ ∈ Γ = {γ : γ′γ/N = 1}:

λ̃1 = arg sup
γ∈Γ

R̃(γ) (9)

R̃(γ) = (N2T)−1γ′ ∑T
t=1 CtC′

tγ. (10)

Note we are normalizing λ̃
′
1λ̃1/N = 1 as we did asymptotically for the columns of Λ in Assump-

tion 1(i). We also divide the sample variance of γ′Ct by N2 in anticipation of the result that R̃(λ̃1)

will converge to a fixed constant as N and T grow. The solution to (9) is obtained by setting

λ̃1 proportional to the eigenvector of S = T−1 ∑T
t=1 CtC′

t associated with the largest eigenvalue.

For example, if we calculated eigenvectors of this matrix using code that normalizes eigenvectors

to have unit length and orders eigenvalues by decreasing size, λ̃1 would be
√

N times the first

eigenvector. The largest eigenvalue of S is equal to T−1 ∑T
t=1 f̃ 2

1t, the sample variance of the first

principal component. The jth principal component N−1λ̃
′
jCt is found by maximizing R̃(γ) sub-

ject to the constraint that γ is orthogonal to λ̃1, ..., λ̃j−1. The solution for λ̃j is proportional to the

eigenvector of S associated with the jth largest eigenvalue.

Alternatively, if we observed the true factors Ft and loadings Λ, we could calculate the compo-
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nent of the variance of γ′Ct that is attributable to the r factors alone:

R∗(γ) = (N2T)−1γ′ ∑T
t=1 ΛFtF′

t Λ′γ. (11)

Stock and Watson (2002) showed that under Assumptions 1 and 2, the maximum value for (10)

(which is given by the largest eigenvalue of S) and the supremum of (11) over all γ ∈ Γ converge

in probability to the same number ω11, which is the population variance of the first factor, and

that λ̃
′
1Ct/N gives a consistent estimate of f1t up to a sign. If we were to estimate k > r principal

components, the first r would consistently estimate f jt up to a sign normalization and the last k − r

would asymptotically have zero variance. We restate their results in the following theorem.

Theorem 1. (Stock and Watson, 2002). Suppose that Assumptions 1 and 2 hold. Let R∗(γ) be the function

in (11) and let f̃1t, ..., f̃kt denote the first k estimated principal components of Ct ( f̃ jt = λ̃
′
jCt/N) with k ≥ r.

Let F̃t
(r×1)

= ( f̃1t, ..., f̃rt)′ and Λ̃
(N×r)

=

[
λ̃1 · · · λ̃r

]
. Then as N and T go to infinity:

(i) sup
γ∈Γ

R∗(γ)
p→ ω11;

(ii) If λ∗
1 = arg sup

γ∈Γ
R∗(γ) and λ∗

j = arg sup
γ∈Γ,γ′λ∗

1=···=γ′λ∗
j−1=0

R∗(γ), then R∗(λ∗
j )

p→ ω jj for j = 1, ..., r;

(iii) T−1 ∑T
t=1 f̃ 2

jt = R̃(λ̃j)
p→ ω jj for j = 1, ..., r;

(iv) T−1 ∑T
t=1 f̃ 2

jt
p→ 0 for j = r + 1, ..., k;

(v) S̃Λ̃′Λ/N
p→ Ir where S̃ is a diagonal matrix whose row j column j element is +1 if λ̃

′
jλj > 0 and

−1 if λ̃
′
jλj < 0.

(vi) S̃F̃t − Ft
p→ 0.

4 Principal component analysis when the cyclical component must be

estimated

In this section we assume that we do not observe the true cyclical component cit of series i but

have an estimate ĉit = cit + vit. Let Ĉt = (ĉ1t, ..., ĉNt)
′ and Vt = (v1t, ..., vNt)

′. We investigate the
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properties of principal components calculated from the estimated cyclical components:

f̂ jt = N−1λ̂
′
jĈt (12)

λ̂j = arg sup
{γ∈Γ,γ′λ̂1=···=γ′λ̂j−1=0}

R̂(γ)

R̂(γ) = (N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ.

We first note a high-level sufficient condition under which PCA applied to the estimated cyclical

components Ĉt gives consistent estimates of the true factors Ft. Let vit = ĉit − cit denote the differ-

ence between the estimated and true cyclical component of series i at date t. The condition is that

vit converges in mean square to zero uniformly in i and t as T goes to infinity.

Assumption 3 (high-level conditions on vit). For ∀δ > 0, ∃Tδ : E(v2
it) < δ ∀T > Tδ and ∀i, t.

The following result establishes that if the error in estimating the cyclical component satisfies

Assumption 3, the results ( f̂ jt, λ̂j, R̂(γ)) of applying PCA to the estimated cyclical components Ĉt

give consistent estimates of the magnitudes that characterize the true cyclical components Ct.

Theorem 2. Suppose that Ct and et in equation (8) satisfy Assumptions 1 and 2. Let Ĉt = Ct + Vt for

Vt = (v1t, ..., vNt)
′ where vit satisfy Assumption 3. Let f̂1t, ..., f̂kt denote the first k estimated principal

components of Ĉt ( f̂ jt = λ̂
′
jĈt/N) with k ≥ r and let F̂t

(r×1)
= ( f̂1t, ..., f̂rt)′ and Λ̂

(N×r)
=

[
λ̂1 · · · λ̂r

]
.

Then as N and T go to infinity:

(i) T−1 ∑T
t=1 f̂ 2

jt = R̂(λ̂j)
p→ ω jj for j = 1, ..., r;

(ii) T−1 ∑T
t=1 f̂ 2

jt
p→ 0 for j = r + 1, ..., k;

(iii) ŜΛ̂′Λ/N
p→ Ir where Ŝ is a diagonal matrix whose row j column j element is +1 if λ̂

′
jλj > 0 and

−1 if λ̂
′
jλj < 0;

(iv) ŜF̂t − Ft
p→ 0.

Under what conditions can we expect Assumption 3 to hold? For z̃i,t−h = (1, yi,t−h, yi,t−h−1, ...,

yi,t−h−p+1)
′, the true cyclical component cit is the residual from a population linear projection of

yit on z̃i,t−h and ĉit is the residual from the corresponding estimated regression:

13



cit = yit − α′
i0z̃i,t−h

ĉit = yit − α̂′
i z̃i,t−h

vit = ĉit − cit = (αi0 − α̂i)
′ z̃i,t−h

(αi0 − α̂i) = −
(

∑T
t=1 z̃i,t−h z̃′i,t−h

)−1 (
∑T

t=1 z̃i,t−hcit

)
(13)

v2
it = (αi0 − α̂i)

′ z̃i,t−h z̃′i,t−h(αi0 − α̂i). (14)

Consider first the case of a single stationary regressor (p = 1, di = 0) and v2
it = (αi0 − α̂i)

2y2
i,t−h.

If yit is stationary we expect that
√

T(αi0 − α̂i)
d→ N(0, Vi) and E(y2

i,t−h) < ∞, in which case v2
it

should converge to zero as T gets large. Next consider the case of a single I(1) regressor (p =

1, di = 1). Take for illustration the case of a random walk: yit = yi,t−1 + εit = εit + εi,t−1 + · · ·+ εi1

and cit = εit + εi,t−1 + · · ·+ εi,t−h+1. Then

α̂i − αi0 =
(

∑T
t=1 y2

i,t−h

)−1 (
∑T

t=1 yi,t−hcit

)
=

(
∑T

t=1 y2
i,t−h

)−1 (
∑T

t=1 yi,t−h(εi,t−h+1 + εi,t−h+2 + · · ·+ εit)
)

T(α̂i − αi0) =
[

T−2 ∑T
t=1 y2

i,t−h

]−1 [
T−1 ∑T

t=1(yi,t−hεi,t−h+1) + T−1 ∑T
t=1(yi,t−h+1 − εi,t−h+1)εi,t−h+2

+ · · ·+ T−1 ∑T
t=1(yi,t−1 − εi,t−h−1 − εi,t+h−2 − · · · εi,t−h+1)εit

]
d→

[
σ2

i

∫ 1

0
[Wi(r)]2dr

]−1 [
hσ2

i

∫ 1

0
Wi(r)dWi(r)

]

which is h times the Dickey-Fuller distribution.4 Also for t − h = [rT] for [rT] the largest integer

less than or equal to rT and r ∈ (0, 1),

T−1y2
i,[rT]

d→
T→∞

σ2
i [Wi(r)]2.

If we assume that E(T−1y2
i,t−h) is bounded for all t, then v2

it = T−1[T(αi0 − α̂i)]
2[T−1y2

i,t−h] should

4See Hamilton (1994, Proposition 17.3) for similar derviations.
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again converge to zero for each t as T → ∞.

Returning to the general case, we have from (14) and (13) that

∑T
t=1 v2

it = (αi0 − α̂i)
′
(

∑T
t=1 z̃i,t−h z̃′i,t−h

)
(αi0 − α̂i)

=
(

∑T
t=1 cit z̃′i,t−h

) (
∑T

t=1 z̃i,t−h z̃′i,t−h

)−1 (
∑T

t=1 z̃i,t−hcit

)
. (15)

This will be recognized as the OLS Wald statistic for testing the true null hypothesis H0 : αi = αi0

multiplied by σ̂2
i = (T − k)−1 ∑T

t=1 ĉ2
it, the average squared regression residual. To find the asymp-

totic distribution of ∑T
t=1 v2

it we can make use of the insight of Sims et al. (1990) that the residuals

from a regression of yit on z̃i,t−h are numerically identical to the residuals from a regression of

yit on zi,t−h = Ri z̃i,t−h for Ri any nonsingular matrix. For a particular form of nonstationarity,

there is a particular value for Ri that makes the asymptotic properties of the residuals easiest

to analyze. Note that we do not need to know the form of the nonstationarity since the ob-

served residual ĉit = yit − α̂′
i z̃i,t−h is numerically identical to the analyzed residual yit − β̂

′
izi,t−h

and thus vit = ĉit − cit is identical whichever way one chooses to describe the regression. For

example, for di = 2 and p = 4, we would conveniently characterize the regressors as zi,t−h =

(∆2yi,t−h, ∆2yi,t−h−1, 1, ∆yi,t−h, yi,t−h)
′. The estimated residuals from a regression of yit on zi,t−h are

numerically identical to the residuals from a regression on z̃i,t−h. We do not need to know the

value of di to implement the first regression, and therefore do not need to know the value of di to

find the residuals from the second regression:

∑T
t=1 v2

it =
(

∑T
t=1 cit z̃′i,t−h

) (
∑T

t=1 z̃i,t−h z̃′i,t−h

)−1 (
∑T

t=1 z̃i,t−hcit

)
=

(
∑T

t=1 citz′i,t−h(R′
i)
−1

) (
∑T

t=1 R−1
i zi,t−hz′i,t−hR′−1

i

)−1 (
∑T

t=1 R−1
i zi,t−hcit

)
=

(
∑T

t=1 citz′i,t−h

) (
∑T

t=1 zi,t−hz′i,t−h

)−1 (
∑T

t=1 zi,t−hcit

)
. (16)

For any given unknown true value of di, there is also an unknown true value of a diagonal scaling

matrix ΥiT that facilitates calculation of the asymptotic distribution:

∑T
t=1 v2

it =
(

∑T
t=1 citz′i,t−hΥ−1

iT

) (
Υ−1

iT ∑T
t=1 zi,t−hz′i,t−hΥ−1

iT

)−1 (
Υ−1

iT ∑T
t=1 zi,t−hcit

)
. (17)
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Again we do not need to know the value of ΥiT in order to know that (17) characterizes the fit-

ted residuals. The results in Hamilton (2018) establish that for a broad class of stationary and

nonstationary processes,

(
∑T

t=1 citz′i,t−hΥ−1
iT

) (
Υ−1

iT ∑T
t=1 zi,t−hz′i,t−hΥ−1

iT

)−1 (
Υ−1

iT ∑T
t=1 zi,t−hcit

)
d→ q′iQiq′i.

Note the existence of limiting variables qi and Qi does not depend on any assumption that the cit

are serially uncorrelated. The result that ∑T
t=1 v2

it ∼ Op(1) implies T−1 ∑T
t=1 v2

it ∼ op(1) when the

regressors are stationary or nonstationary of any unknown order di < p. For example, if di = 2,

p = 4 and ∆2yit is a mean-zero I(0) process, then

ΥiT =



T1/2 0 0 0 0

0 T1/2 0 0 0

0 0 T1/2 0 0

0 0 0 T 0

0 0 0 0 T2


(18)

Qi =



γi0 γi1 0 0 0

γi1 γi0 0 0 0

0 0 1 ωi
∫ 1

0 Wi(r)dr ωi
∫

W(2)
i (r)dr

0 0 ωi
∫ 1

0 Wi(r)dr ω2
i

∫ 1
0

[
Wi(r)

]2 dr ω2
i

∫
Wi(r)W

(2)
i (r)dr

0 0 ωi
∫

W(2)
i (r)dr ω2

i

∫
Wi(r)W

(2)
i (r)dr ω2

i

∫ [
W(2)

i (r)
]2

dr


(19)

for γij = E(∆2yit∆2yi,t−j), ω2
i = ∑∞

j=−∞ γij, Wi(r) standard Brownian motion, and W(2)
i (r) =∫ r

0 Wi(s)ds. Thus T−1 ∑T
t=1 v2

it should converge to zero for a broad class of processes.

Consider next the convergence of v2
it for each individual t. In the case of a single stationary

regressor, v2
it = (αi0 − α̂i)

2y2
i,t−1 and ∑T

t=1 v2
it = (αi0 − α̂i)

2 ∑T
t=1 y2

i,t−1 so

v2
it

T−1 ∑T
t=1 v2

it

=
y2

i,t−1

T−1 ∑T
t=1 y2

i,t−1

(20)

v2
it = (Ait/BiT)T−1 ∑T

t=1 v2
it (21)
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for Ait = y2
i,t−1 and BiT = T−1 ∑T

t=1 y2
i,t−1. As T → ∞, BiT

p→ E(y2
i,t−1) meaning that if T−1 ∑T

t=1 v2
it

p→

0, then also v2
it

p→ 0 . A sufficient condition to ensure that E(v2
it) < δ is that E(Ait/BiT)

2 < κ4 is

uniformly bounded.

For the random-walk example, expression (20) again holds identically and we can again rewrite

it in the form of (21) now defining Ait = T−1y2
i,t−1 and BiT = T−2 ∑T

t=1 y2
i,t−1. Then T−1/2yi,[Ts]

d→
T→∞

σiWi(s) and
Ait

BiT
=

T−1y2
i,[Ts]∫ 1

0 T−1y2
i,[Ts]ds

d→
[
Wi(s)

]2∫ 1
0 [Wi(s)]2ds

.

This limiting distribution again has finite variance. We can ensure that Condition 3 holds for finite

T and each t as before by assuming that E(Ait/BiT)
2 < κ4.

For the general case,

v2
it = (αi0 − α̂i)

′ z̃i,t−h z̃′i,t−h(αi0 − α̂i)

= (αi0 − α̂i)
′R−1

i ΥiTΥ−1
iT Ri z̃i,t−h z̃′i,t−hR′

iΥ
−1
iT ΥiT(R′

i)
−1(αi0 − α̂i)

= ᾱ′
i(Υ

−1
iT zi,t−hz′i,t−hΥ−1

iT )ᾱi

= T−1ᾱ′
i Aitᾱi

for ᾱi = ΥiT(R′
i)
−1(αi0 − α̂i) and Ait = TΥ−1

iT zi,t−hz′i,t−hΥ−1
iT . Likewise ∑T

t=1 v2
it = ᾱ′

iBiT ᾱi for BiT =

Υ−1
iT

(
∑T

t=1 zi,t−hz′i,t−h

)
Υ−1

iT . Thus

v2
it

T−1 ∑T
t=1 v2

it

=
ᾱ′

i Aitᾱi

ᾱ′
iBiT ᾱi

. (22)

In general, the ratio in (22) converges in distribution as T → ∞ to a variable with finite variance,

and condition 3 will hold if the ratio has finite variance for each t as well.

The stationary p = 1 example is a special case of this general formulation with zi,t−h = yi,t−h,

ΥiT =
√

T, Ait = y2
i,t−h, and BiT = T−1 ∑T

t=1 y2
i,t−h. For the random-walk example, zi,t−h = yi,t−h,

ΥiT = T, Ait = T−1y2
i,t−h, and BiT = T−2 ∑T

t=1 y2
i,t−h. For the p = 4, di = 2 example, ΥiT is given by
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(18) and BiT
d→ Qi given in (19), while the lower right (3 × 3) block of Ait is characterized by

T


T−1/2 0 0

0 T−1 0

0 0 T−2




1

∆yi,t−h

yi,t−h


[

1 ∆yi,t−h yi,t−h

]


T−1/2 0 0

0 T−1 0

0 0 T−2



=


1 T−1/2∆yi,t−h T−3/2yi,t−h

T−1/2∆yi,t−h T−1(∆yi,t−h)
2 T−2yi,t−h∆yi,t−h

T−3/2yi,t−h T−2yi,t−h∆yi,t−h T−3y2
i,t−h



d→


1 ωiWi(s) ωiW

(2)
i (s)

ωiWi(s) ω2
i [Wi(s)]2 ω2

i Wi(s)W
(2)
i (s)

ωiW
(2)
i (s) ω2

i Wi(s)W
(2)
i (s) ω2

i

[
W(2)

i (s)
]2


for [sT] = t − h and ω2

i = ∑∞
j=−∞ E(∆2yit∆2yi,t−j).

We now formally state sufficient conditions that guarantee that Assumption 3 holds.

Assumption 4 (sufficient conditions for Assumption 3).

(i) The true cyclical component cit is uniformly bounded, that is, there exists κ1 < ∞ : ∀i c2
it < κ1.

(ii) ∑T
t=1 v2

it
d→ Ui = q′iQ

−1
i qi with E(Ui) < κ2 ∀i.

(iii) The convergence is uniform in i, that is, for all κ3, ε3 > 0, ∃T3(κ3, ε3) : ∀T > T3(κ3, ε3) and ∀i,

∣∣∣Prob
(

∑T
t=1 v2

it > κ3

)
− Prob(Ui > κ3)

∣∣∣ < ε3.

(iv) Let λmax(Ait) denote the largest eigenvalue of Ait = TΥ−1
iT zi,t−hz′i,t−hΥ−1

iT and λmin(BiT) the small-

est eigenvalue of BiT = Υ−1
iT

(
∑T

t=1 zi,t−hz′i,t−h

)
Υ−1

iT . There exists a κ4, T4 < ∞ such that E
[
λmax(Ait)/λmin(BiT)

]2

< κ4 for all T > T4 and all i and t.

Presumably it is possible to replace condition 4(i) with restrictions on the tail behavior of cit,

though we have not attempted that here. Sufficient conditions for 4(ii) are analyzed in Hamilton

(2018). The following result establishes that Assumption 4 can replace Assumption 3.

Theorem 3. Assumption 4 implies Assumption 3.
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5 Results from simulations

In this section we report results from applying our method in a variety of different settings. In

these simulations we take the number of cross-section variables to be N = 100 and vary the

number of time-series observations T from 100 to 1000. For each generated sample, we calculate

the (N × N) correlation matrices of: (1) the raw data; (2) the OLS regression residuals for that

data set; and (3) the true cyclical components for that data set implied by the particular process

that was used to generate that sample. For each of these correlation matrices, let ξ̂ j denote the jth

largest eigenvalue of the correlation matrix. The fraction of the variance of the sample explained

by the jth principal component is

R2
j = ξ̂ j/N. (23)

We also calculated the number of factors that would be selected for that sample based on the ICp2

criterion of Bai and Ng (2002) recommended by Stock and Watson (2016, p. 436),

r∗ = arg

 min
r∈{0,1,...,r0}

log

1 −
∑r

j=0 ξ̂ j

N

+ r
(

N + T
NT

)
min{N, T}

 , (24)

with ξ̂0 defined to be 0. We took r0 = 10 and for each of the different cases generated 100 different

samples.

5.1 Mix of unrelated stationary and nonstationary variables

For our first example, half the variables are random walks and the other half are white noise,

yit =

 yit−1 + εit = εit + εi,t−1 + · · ·+ εi1 for i = 1, 2, ..., N/2

εit for i = (N/2) + 1, ..., N

for t = 1, ..., T. The innovations εit ∼ N(0, 1) are independent across all i and t. Thus each of the

N variables is completely independent of the others and there is no factor structure in the true

data-generating process.

The first two columns of Table 1 report the results from calculating principal components of

the raw data. In a sample of T = 100 observations, the first three principal components seem to
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account for 38% of the variance of the full set of N = 100 variables. This result is entirely spurious,

and illustrates the cautions raised by Onatski and Wang (2021) about using PCA when some of the

variables are nonstationary. The criterion (24) would always lead us incorrectly to conclude that

there is more than one factor in a sample of size T = 100. This problem in the apparent number of

factors gets even worse when the sample size increases. The latter is the expected result, since (24)

is in the class of criteria for which Onatski and Wang (2021, p. 602) demonstrated that the number

of factors selected diverges as N and T go to infinity.

The next two columns of Table 1 report what the results would be if we somehow knew the

true cyclical component of each variable. For this case, we applied PCA to a sample of T − h

observations for which the ith observed variable for t = h + 1, h + 2, ..., T is given by

cit =

 yit − yi,t−h = εit + εi,t−1 + · · ·+ εi,t−h+1 for i = 1, 2, ..., N/2

εit for i = (N/2) + 1, ..., N
. (25)

Note that the cyclical components in (25) can be serially correlated, but this autocorrelation van-

ishes for observations separated by more than h periods. The cyclical components cit thus sat-

isfy by construction the conditions under which Bai and Ng (2002) demonstrated that (24) would

asymptotically select the correct number of factors. We find in our simulations that (24) does in-

deed correctly conclude there is no factor structure for these data sets provided the number of

time-series observations is 600 or larger. For smaller T it is less reliable. The reason is that there is

a small-sample version of the Onatski and Wang (2021) spurious factor problem that arises from

the serial correlation of some of the variables that is induced by the definition of the true cyclical

component in equation (25). If T is large enough, this problem goes away, but for smaller T it can

make a difference.

Columns (5) and (6) examine the case where the analysis is based on the residuals from running

an OLS regression on the raw data Yit for all variables i = 1, ..., N without making any judgments

about which variables are stationary and which are not. For large samples, the results are similar

to those that we would obtain if we somehow knew the exact correct transformation to use for

every variable.

The small-sample problem in columns (3)-(6) results from the serial correlation that is a conse-
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Table 1: Mixture of independent random walks and white noise

Raw data ct (h=24) ĉt (h=24) ĉt (h=12) ĉt (h=8) ĉt (h=1)

j R2 r∗ R2 r∗ R2 r∗ R2 r∗ R2 r∗ R2 r∗

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
T = 100

0 — 0 — 0 — 1 — 13 — 96 — 100
1 22.6 0 16.0 0 11.9 26 10.3 48 8.4 4 4.0 0
2 9.9 67 12.0 6 9.4 54 8.5 35 7.1 0 3.8 0
3 5.6 33 8.3 94 7.3 19 6.9 4 6.1 0 3.6 0

T = 200
0 — 0 — 0 — 0 — 78 — 100 — 100
1 22.7 0 9.4 0 10.2 0 6.6 22 5.2 0 2.9 0
2 9.4 13 7.8 3 8.2 8 5.7 0 4.6 0 2.7 0
3 5.3 87 6.6 97 6.5 92 4.9 0 4.2 0 2.6 0

T = 400
0 — 0 — 23 — 3 — 100 — 100 — 100
1 22.5 0 5.9 51 6.5 34 4.3 0 3.5 0 2.2 0
2 9.4 0 5.2 22 5.5 47 3.8 0 3.2 0 2.1 0
3 5.1 100 4.5 4 4.7 16 3.5 0 3.0 0 2.1 0

T = 600
0 — 0 — 99 — 79 — 100 — 100 — 100
1 22.4 0 4.6 1 5.0 21 3.4 0 2.9 0 1.9 0
2 9.3 0 4.1 0 4.4 0 3.1 0 2.7 0 1.9 0
3 5.2 100 3.7 0 3.9 0 2.9 0 2.5 0 1.8 0

T = 800
0 — 0 — 100 — 100 — 100 — 100 — 100
1 22.7 0 4.0 0 4.2 0 3.0 0 2.6 0 1.8 0
2 9.3 0 3.6 0 3.7 0 2.7 0 2.4 0 1.7 0
3 5.0 100 3.3 0 3.4 0 2.6 0 2.3 0 1.7 0

T = 1000
0 — 0 — 100 — 100 — 100 — 100 — 100
1 22.6 0 3.5 0 3.7 0 2.7 0 2.4 0 1.7 0
2 9.3 1 3.2 0 3.3 0 2.5 0 2.2 0 1.7 0
3 5.1 99 3.0 0 3.0 0 2.4 0 2.1 0 1.6 0

Notes to Table 1. R2 indicates the percentage of total variance accounted for by the jth principal
component for j = 1, 2 or 3. r∗ indicates the percentage of samples for which the criterion (24)
selects the number of factors to be j = 0, 1, 2, or ≥ 3. In every case, the true number of factors is
r = 0 and the cross-section dimension is N = 100.
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quence defining the cyclical component to be the error from a 24-period-ahead forecast. Columns

(7) and (8) report results if we instead were to look for common factors in the 12-period-ahead fore-

cast errors. This typically would reach the correct conclusion even in a sample of only T = 200

observations. Columns (9) and (10) consider 8-period-ahead forecast errors, such as our suggested

cyclical calculation would use for quarterly data. The results indicate that if we have more than

50 years of data (T = 600 for monthly data or T = 200 for quarterly data), conducting PCA on the

two-year-ahead OLS forecast residuals is reasonably reliable.

The last two columns of Table 1 examine looking for common factors in the one-period-ahead

forecast errors. In these simulations, this reaches the correct conclusion 100% of the time that there

are zero factors in these data sets even for a sample of T = 100 observations. Thus our proposed

method appears to be quite reliable if the interest is in identifying common factors behind one-

period-ahead forecast errors. However, one-period-ahead forecast errors are more sensitive to

outliers. This is an important consideration, as will be demonstrated in our analysis of actual data

in Section 6.

5.2 Mix of unrelated stationary variables with differing persistence

In our second example, for i = 1, 2, ..., N/2 the variables are generated by a stationary but persis-

tent AR(1) process:

yi1 ∼ N(0, 1/(1 − ρ2))

yit = ρyi,t−1 + εit for t = 2, 3, ..., T.

The remaining N/2 variables are white noise (yit = εit for i = (N/2) + 1, ..., N). Our example uses

ρ = 0.99, so all the variables are stationary but half of them are highly persistent. The innovations

εit ∼ N(0, 1) are independent across all i and t, so there is no factor structure in the true data-

generating processes.

Columns (1) and (2) of Table 2 report the results from applying PCA to the raw data. Note that

for this example, the raw data themselves satisfy the Bai and Ng (2002) conditions for asymptotic

validity of PCA. Nevertheless, even in a sample of size T = 1000, the first principal component

alone appears to explain a third of the data, and the criterion in (24) would always conclude

incorrectly that there is at least one factor. This is a small-sample manifestation of the Onatski and

22



Wang (2021) spurious factor phenomenon. In a sufficiently large sample, this problem would go

away. But T = 1000 is not large enough for persistence characterized by ρ = 0.99.

In columns (3)-(4) we apply PCA to the residuals from a 24-period-ahead forecasting regres-

sion. Again we estimated the same regression for all variables, whether persistent or not. And

again using regression residuals solves the problem pretty reliably in samples larger than T = 600.

If we look for a factor structure in the one-period-ahead regression residuals as in columns (5)-(6),

the problem is solved 100% of the time even in a sample of T = 100.

5.3 Cointegration

In our next example, the nonstationary variables are cointegrated and there is no factor structure

for the stationary variables. The single common factor for the nonstationary variables follows a

random walk:

Ft = Ft−1 + vt t = 1, ...., T; F0 = 0

yit = Ft + εit i = 1, 2, ..., N/2

yit = εit i = (N/2) + 1, ..., N

with vt ∼ N(0, 1) and εit ∼ N(0, 1) independent for all i and t. Notice that the first (N/2) vari-

ables are cointegrated with (N/2)− 1 linearly independent cointegrating relations.5 Thus the true

number of common factors in this example is r = 1.

Columns (7) and (8) of Table 2 report the results from applying PCA to the raw data. Note that

even though half the variables are nonstationary, PCA always correctly concludes that there is a

single common factor in these data. This is an illustration of the well-known result that PCA on

levels data can correctly identify cointegrating relations; for more discussion see Harris (1997) and

Onatski and Wang (2018).

Columns (9) and (10) report results from applying PCA to the residuals from 24-period-ahead

forecasting regressions. Again the same regression is estimated in the same way for stationary

and nonstationary observations. And again PCA on the regression residuals results in the correct

answer 100% of the time, even if the sample size is as small as T = 100.

5Linearly independent cointegrating relations are given by yit − y1t ∼ I(0) for i = 2, 3, ..., (N/2).
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Table 2: Stationary and cointegrated variables

ρ = 0.99 Cointegrated

Raw data ĉt (h=24) ĉt (h=1) Raw data ĉt (h=24)

j R2 r∗ R2 r∗ R2 r∗ R2 r∗ R2 r∗

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
T = 100

0 — 0 — 0 — 100 — 0 — 0
1 43.3 98 16.0 1 4.1 0 46.1 100 40.3 100
2 3.6 2 10.6 99 3.8 0 2.8 0 3.4 0
3 2.8 0 5.5 0 3.6 0 2.5 0 3.1 0

T = 200
0 — 0 — 0 — 100 — 0 — 0
1 42.5 82 10.9 0 2.9 0 48.1 100 45.7 100
2 3.3 18 8.7 2 2.7 0 2.1 0 2.3 0
3 2.3 0 6.9 98 2.6 0 2.0 0 2.2 0

T = 400
0 — 0 — 7 — 100 — 0 — 0
1 40.5 54 6.3 26 2.2 0 48.8 100 46.5 100
2 3.4 46 5.5 54 2.1 0 1.8 0 1.8 0
3 2.2 0 4.8 13 2.1 0 1.7 0 1.7 0

T = 600
0 — 0 — 96 — 100 — 0 — 0
1 38.5 40 4.8 4 1.9 0 49.3 100 47.0 100
2 3.5 57 4.3 0 1.9 0 1.6 0 1.6 0
3 2.3 3 3.9 0 1.8 0 1.5 0 1.6 0

T = 800
0 — 0 — 100 — 100 — 0 — 0
1 36.9 32 4.1 0 1.8 0 49.4 100 47.0 100
2 3.4 60 3.7 0 1.7 0 1.5 0 1.5 0
3 2.4 8 3.3 0 1.7 0 1.5 0 1.5 0

T = 1000
0 — 0 — 100 — 100 — 0 — 0
1 35.4 33 3.6 0 1.7 0 49.5 100 47.1 100
2 3.5 60 3.3 0 1.7 0 1.5 0 1.5 0
3 2.5 7 3.0 0 1.6 0 1.4 0 1.4 0

Notes to Table 2. R2 indicates the percentage of total variance accounted for by the jth principal
component for j = 1, 2 or 3. r∗ indicates the percentage of samples for which the criterion (24)
selects the number of factors to be j = 0, 1, 2, or ≥ 3. In columns (1)-(6), the true number of factors
is r = 0. In columns (7)-(10), the true number of factors is r = 1. In every case, the cross-section
dimension is N = 100.
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These results confirm the asymptotic theory that applying PCA to OLS regression residuals

is a promising approach to handling both nonstationarity and stationary persistence of unknown

form in reasonably large samples.

6 Characterizing a large macroeconomic data set

The use of large macroeconomic data sets was pioneered by Stock and Watson (1999), whose goal

was to use the information of 168 different macroeconomic variables to produce better forecasts

of inflation. They found that the first principal component of macroeconomic variables that are

related to the level of real economic activity produced the best inflation forecasts over the period

1959:1 to 1997:9. Their findings led to the development of the Chicago Fed National Activity Index,

which is the first principal component of a subset of 85 different measures of economic activity.6

McCracken and Ng (2016) reviewed subsequent uses of large macroeconomic sets and devel-

oped the FRED-MD database whose 2015:4 vintage covered 134 macroeconomic variables. These

variables include monthly measures divided into 8 broad categories: (1) output and income; (2)

labor market; (3) housing; (4) consumption, orders, and inventories; (5) money and credit; (6) in-

terest and exchange rates; (7) prices; and (8) stock market. This data set offers benefits of continuity

and continuous updating and is the basis for our analysis in this paper.

In previous applications of PCA to large macroeconomic data sets, each of the variables needed

to be transformed using a detrending method that was selected individually for each series. For

details of how this has been done for the CFNAI see Federal Reserve Bank of Chicago (2021)

and for FRED-MD see the data appendix to McCracken and Ng (2016). Figure 1 illustrates these

transformations for three important macroeconomic indicators. The first column plots the raw

data, while the second column plots the data as transformed by McCracken and Ng (2016) in

order to ensure stationarity, using the same data set as in their original paper. Everyone agrees

that industrial production (row 1) is nonstationary, and all previous researchers have used first

differences of the log of industrial production shown in panel (1,2). While there is little doubt

that this is a good way to generate a stationary series for this variable, monthly growth rates of

6The variables used to calculate the Chicago Fed National Activity Index (CFNAI) fall into four broad groups: (1)
production and income; (2) employment, unemployment, and hours; (3) personal consumption and housing; and (4)
sales, orders, and inventories

25



Figure 1: Level, transformed value, and cyclical component of industrial production, unemploy-
ment, and PMI Composite, 1962:3 to 2014:12

industrial production exhibit a lot of high-frequency fluctuations around the dominant cyclical

patterns. For the unemployment rate (row 2), it is less clear whether the series should be regarded

as stationary. McCracken and Ng (2016) used first differences of unemployment, which behave

quite differently from the level. The purchasing managers composite index from the Institute of

Supply Management (row 3) appears to be stationary, and McCracken and Ng (2016) entered this

series directly into PCA without any transformation.

The top panel of Figure 2 plots the first principal component of the transformed series arrived

at by McCracken and Ng (2016).7 This inherits some of the high-frequency fluctuations seen in

the (1,2) and (2,2) panels of Figure 1. Indeed, McCracken and Ng (2016) regarded this series as too

volatile to reliably identify business cycles and turning points, and instead plotted in their Figure

3 the accumulation of this series. The CFNAI (shown in panel 2 of Figure 2) is very similar to the

first principal component of the FRED-MD macro data set.

The third column of Figure 1 plots the cyclical components of industrial production, unem-

7We generated this figure using the exact data and code posted at https://research.stlouisfed.org/econ/mccracken/fred-
databases/. Note that we have multiplied the series by −1 in order to give it the property that the factor declines in
recessions, and that their Figure 3 plots the accumulations (s1t = ∑t

j=1 f̃1t) whereas our graph shows f̃1t itself.
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Figure 2: First PC of FRED-MD variables as transformed by McCracken and Ng (2016), the
Chicago Fed National Activity Index, and first PC of cyclical components of FRED-MD variables,
1962:3 to 2014:12

ployment, and PMI as estimated by the residuals of the OLS regression (7) with h = 24 and

p = 12.8 PMI is almost impossible to predict two years in advance, and our cyclical component

is almost identical to the original series. Thus both our method and the traditional approach use

this variable essentially as is. There is some but not much predictability of the unemployment

rate at the two-year horizon, so for this variable our transformation much more closely resem-

bles the original series than it does the first-difference transformation. For industrial production,

our approach takes out the broad trend while retaining the essential cyclical behavior observed

in the raw data. The three variables in the third column, unlike those in the second column, all

share a common characterization of what is happening over the business cycle. Consistent with a

long tradition in business cycle research, when plotted this way PMI appears as a leading indica-

8For those series that McCracken and Ng (2016) transformed using logs, first differences of logs, or second differ-
ences of logs (their transformations 4-6), we simply took the log of the variable before performing the regresssion. Thus
for example the series plotted in the upper left panel of Figure 1 is 100 times the natural logarithm of the industrial
production index. For those series that they used as is, as first differences, or second differences (their transformations
1-3), we simply used the variable as is. They employed a special transformation (7) for nonborrowed reserves. One
would have expected to take logs of a variable like this, but the variable took on negative values in 2008. For this series
their transformation was yit = ∆(xt/xt−1 − 1.0) and we used yit = xt/xt−1.
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tor, industrial production as a coincident indicator, and unemployment as a coincident or lagging

indicator, with all three clearly following the same cycle.

The first principal component of the estimated cyclical components of the variables in the

data set is plotted in the bottom panel of Figure 2. Unlike the CFNAI, this provides a very clean

summary of historical business cycles. There is another interesting difference between the third

panel and the first two. The NBER defines the business-cycle trough (the end point of the shaded

regions) as the low point in the level of overall economic activity. For example, in the first month of

a new expansion, the unemployment rate is still very high, but it has started to come down. Our

series in the bottom panel of Figure 2 captures this feature very well, reaching a trough at exactly

the point identified by the NBER Business Cycle Dating Committee. By contrast, the low point in

the series plotted in the first two panels typically comes more towards the middle of the recession.

This is because the rate of decline of real output (a common raw input in the variables as usually

transformed) starts to ease well before the recession has ended. Both in terms of the cleanness of

the series and its timing, we would suggest that our approach offers a better characterization of

the state of the U.S. business cycle over this sample period.

6.1 Outliers

Previous users of large macro data sets devoted a lot of attention to outliers and implemented pro-

cedures to mitigate their influence. Prior to the COVID-19 recession of 2020, the CFNAI discarded

observations that were more than six times the interquartile range, as did Stock and Watson (1999)

in some of their analysis. McCracken and Ng (2016) discarded observations that were more than

ten times the interquartile range. This criterion identifies 79 different observations on 22 different

variables as outliers in the 1960:3 to 2014:12 data set; for details see Table B2.

This approach to identifying outliers requires one to know the form of the transformation

that is needed to render each variable stationary. Can one accomplish the same task without

knowing which variables are nonstationary or the form of the nonstationarity? If we knew the true

cyclical component cit we could easily identify outliers of cit relative to its interquartile range. But

outliers also exert undue influence on the estimated regression coefficients, tilting the coefficients

so as to tend to make ĉit closer to zero than the true value cit. We therefore calculated residuals
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using leave-one-out regressions.9 Outliers that exceed ten times the interquartile range for h = 1-

month-ahead forecast errors are reported in the middle columns of Table B2. There is quite a

bit of overlap between these outliers and those identified by conventional methods, though there

are also some differences. For example, interest rate spreads in 1980 and some price measures in

November 2008 register as outliers to the regression but not in the transformed series. Overall, the

regression identifies 98 outliers in this data set compared to 79 identified by McCracken and Ng.

If one were to use h = 1-month-ahead forecasting regressions to extract a stationary component,

then we would recommend removing or downweighting outliers as identified using leave-one-

out interquartile ranges.

We noted in Section 2 that two-year-ahead forecast errors should be much less influenced by

outliers than is the case for typical transformations like taking the monthly growth rate. In fact, we

found outliers in the two-year-ahead regression residuals in only 2 of the 134 series, as reported

in the last columns of Table B2. The behavior of total and nonborrowed reserves was certainly

anomalous during the Federal Reserve’s response to the Great Recession, but nothing else in this

sample is a clear outlier by this criterion. Our recommended procedure is to use two-year-ahead

regression residuals and make no corrections for outliers. The series that we have plotted in the

bottom panel of Figure 2 is the unadjusted first principal component of the full set of OLS residuals

ĉit.

Outliers are an even bigger issue when data for 2020 are included. For the 2023:11 vintage

of FRED-MD, the McCracken-Ng procedure would identify 40 of the 127 variables as all being

outliers in the single month of 2020:4. Despite dropping all of these 40 observations, the first

principal component calculated using their algorithm shows an enormous decline in this month.

Indeed, in order to include the 2020 observations in the top panel of Figure 3, the scale must be so

large that it makes all the previous cyclical fluctuations barely noticeable. The CFNAI modified

its procedure for dealing with anomalous observations to handle these observations. Even so the

CFNAI still displays an unprecedented drop in 2020, as seen in the second panel.

By contrast, only two variables are identified as outliers for 2020:4 for purposes of our ap-

proach, these being new claims for unemployment insurance and the number unemployed for

9That is, we calculated c̃it = yit − α̃i.t z̃i,t−h with α̃i.t =
(

∑T
s=1,s ̸=t z̃i,s−h z̃′i,s−h

)−1 (
∑T

s=1,s ̸=t z̃i,s−hyis

)
estimated sepa-

rately for each i and t and then divided c̃i.t by its observed interquartile range.
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Figure 3: First PC of FRED-MD variables as transformed by McCracken and Ng (2016), the
Chicago Fed National Activity Index, and first and second PC of cyclical components of FRED-MD
variables, 1962:3 to 2023:6

less than 5 weeks. The result of applying our procedure to the FRED-MD database up through

June of 2023 with no corrections for outliers is displayed in the third panel of Figure 3. Note that,

unlike the top two panels, our series describes the downturn in 2020 on a comparable scale as ear-

lier recessions, although our series indicates that the speed of the downturn was unprecedented,

as was the growth in the first two months of the recovery. Also in contrast to the first two pan-

els, our series indicates (correctly, in our view) that the economy did not fully recover from the

COVID-19 shock until September of 2021. The sharp spike up in our series in April of 2022 reflects

the fact that most macro variables were substantially higher in April 2022 than one would have

predicted based on observations in April 2020. This conclusion is also consistent with the aggres-

sive actions of policy makers in the spring of 2020. Our series further indicates that economic

activity remained unusually strong through the summer of 2023.
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6.2 Missing observations

Another issue with large data sets comes from discontinued, newly added, or missing variables.

McCracken and Ng (2016) adapted the Stock and Watson (2002) algorithm for unbalanced panels,

though they found in their original data set that the results are essentially identical if one simply

drops variables as needed to create a balanced panel. For our application, we have simply calcu-

lated principal components of ĉit on a balanced panel, though there is no obstacle to applying the

Stock and Watson (2002) algorithm to an unbalanced panel of ĉit.10

6.3 Uses of macroeconomic cyclical factors

A key use of PCA is to summarize the statistical information in a large cross section of indica-

tors; for illustrations see Bernanke et al. (2005), Bai and Ng (2008), Forni et al. (2009), Bai and Ng

(2010), and Stock and Watson (2016). The movement in variable i that is captured by the jth factor

alone is given by λ̂ij f̂ jt. Since ĉit is normalized to have unit variance, the fraction of the variance

of the stationary component of variable i that is explained by the jth macro factor is given by

λ̂
2
ijT−1 ∑T

t=1 f̂ 2
jt.

Table B1 reports the R2 explained by the first macroeconomic cyclical factor for each of the

120 variables used in our analysis of the 2023 vintage data set. The first factor alone accounts for

almost 2/3 of the variance of typical indicators of real output or income and more than half of

the variance of typical indicators of labor-market conditions. The first cyclical factor is far less

successful at describing financial indicators and nominal prices. It is interesting that when we add

the second cyclical factor, the R2 for the median price indicator rises to 66%. The first factor thus

seems mainly to capture real economic conditions and the second characterizes nominal prices

and interest rates.

The fourth panel in Figure 3 plots the second cyclical factor. This by construction is orthogonal

to the first, and often continues to fall even as the recovery in real economic activity is beginning.

10A balanced panel was created from the 127 variables in the 2023:11 dataset by: using only data over 1960:1-
2023:6; dropping the Michigan Survey of Consumer Sentiment (UMCSENT), trade-weighted exchange rate (TWEX-
AFEGSMTH), and new orders for consumer goods (ACOGNO) and nondefense capital goods (ANDENO), which are
the same four series dropped by McCracken and Ng to create a balanced panel from the 2015:4 dataset; dropping the
VIX (VIXCLS), which was not included in the 2015:4 dataset and whose first value is July 1962; and dropping the finan-
cial commercial paper rate (CP3M) and the commercial paper-fed funds spread (COMPAPFF) which were not reported
for April 2020. The particular variables used in our analysis of the 2023 vintage dataset are described in Table B1.
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This is consistent with the view that nominal variables may respond sluggishly to business-cycle

developments. It describes events beginning in 2022 as a third big U.S. inflation wave, though less

dramatic than the big inflations of 1973-74 and 1979-81.

We next explore the use of the cyclical factors in forecasting. Stock and Watson (1999) demon-

strated that the first principal component of a large data set of real macroeconomic variables could

be very helpful for forecasting inflation. Their finding gave rise to the Chicago Fed National Ac-

tivity Index (CFNAI), a PCA-based indicator that is still widely used today. We compare the

usefulness for forecasting of the CFNAI (denoted f̂ CF
t ), the first or second principal component

calculated using the algorithm and data set of McCracken and Ng (2016) (denoted f̂ MN1
t and f̂ MN2

t ,

respectively), or the first or second principal component of the forecasting residuals (denoted f̂ HX1
t

or f̂ HX2
t ) calculated from the McCracken-Ng data set using equation (12). Our approach to com-

paring different forecasts is similar to that used by Stock and Watson (1999) and McCracken and

Ng (2016).

A particular model m uses a set of variables xm
t that are observed at date t to try to forecast the

value of a variable of interest yh
t+h that will not be observed until t + h:

yh
t+h = πm′xm

t + um,h
t+h. (26)

We estimated the value of πm by OLS regression on the subsample t = T0, T0 + 1, ..., T1 − h − 1

and used these coefficients to forecast yh
T1

. We then augmented the sample by one observation,

estimating the regression over t = T0, T0 + 1, ..., T1 − h and using those coefficients to forecast yh
T1+1.

We repeated this for an evaluation period T1 to T2 and calculated the average squared forecast

error over this evaluation period. We performed this analysis using three different evaluation

periods. The first evaluation period is specified by T1 = 1970:1 to T2 = 1996:12, which was the

evaluation period in the original study by Stock and Watson (1999). The second evaluation period

is T1 = 1997:1 to T2 = 2014:12, which corresponds to the new data used by McCracken and Ng

(2016) that were not available to Stock and Watson (1999). The third evaluation period is T1 =

2015:1 to T2 = 2023:6, which is the new data available since publication of McCracken and Ng
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(2016). The models we considered were a pure autoregressive model,

xAR
t = (1, y1

t , y1
t−1, ..., y1

t−5)
′,

and models that add to the autoregressive model six lags of one of the principal components

estimates. For example,

xCF
t = (xAR′

t , f̂ CF
t , f̂ CF

t−1, ..., f̂ CF
t−5)

′.

This differs a little from the forecast evaluations performed by Stock and Watson (1999) and Mc-

Cracken and Ng (2016) in that these authors used BIC to select different lag lengths for the autore-

gressive and principal components and for each subsample, whereas we set the lag length to six

for every evaluation. Also, since f̂ CF
t is only available beginning in 1967:3, we used T0 = 1967:9 as

the first date for estimation of all models.

In every case, for each T we re-estimated the coefficients π̂m for the forecasting regression

(26) using an expanding data set ending h periods before the variable being forecast. A separate

question is the data set used to estimate the factors f̂t themselves. Insofar as the factors are only

identified up to sign, the meaning of coefficients multiplying f̂t could change across expanding

samples. To construct f̂ MN
t for the first two evaluation samples we followed McCracken and Ng

(2016) in calculating the factor f̂ MN
t using the full historical vintage of the FRED-MD database

available as of 2015:4.11 For the third evaluation sample, we re-estimated f̂ MN
t using the full

database available as of 2023:11. For the predicting variable f̂ CF
t we used the value of the CFNAI

as it is currently reported for all historical dates.12 For f̂ HX
t , for all three samples we first detrended

each individual variable using regressions estimated using the full 2015:4 vintage data set. For the

first two evaluation samples, we calculated the principal component of ĉit using the full 2015:4

vintage. For the third evaluation sample, we calculated the principal component of ĉit using the

full 2023:11 vintage.13 Our approach for the third sample thus is not affected by the potential

11Our series for f̂ MN1
t for this subsample is almost (but not quite) identical to the series analyzed by McCracken and

Ng (2016). We have been unable to identify the source of the small discrepancies.
12We downloaded f̂ CF

t on December 27, 2023 from the FRED database at https://fred.stlouisfed.org/series/CFNAI.
13That is, we estimated the coefficients for the forecasting regression (7) using the 2015:4 vintage data set. We used

those coefficients to obtain ĉit for all dates through 2023:6. We calculated f̂ HX1
t for the first two subsamples from the

first principal component of ĉit for t = 1962:3 to 2014:12. We calculated f̂ HX1
t for the third subsample from the first

principal component of ĉit for t = 1962:3 to 2023:6. We obtained similar results (not reported here) when the detrending
regressions used to calculate ĉit for the third subsample were estimated using the 2023:11 vintage data set.
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concern that the detrending regression is using information that was unavailable at the time the

forecast was made.

For our first set of evaluations we set yh
t+h to be the average inflation rate between month t and

t + h, quoted at an annual rate,

yh
t+h = (1200/h) log(CPIt+h/CPIt),

where CPIt denotes the level of the consumer price index in month t.14 The column labeled AR in

Table 3 reports the simulated out-of-sample mean squared error of a purely autoregressive model

for each of the three evaluation samples and for forecast horizons of h = 1, 6, or 12 months.15 The

first panel reproduces the finding of Stock and Watson (1999) that an index like CFNAI signifi-

cantly improves forecasts for longer horizons over the 1970-1996 period. The alternative measures

f̂ MN1
t or f̂ HX1

t offer similar improvements. The indexes offer little or no improvement for one-

month-ahead forecasts over this period, but again are similar to each other. All three indexes are

outperformed by simple autoregressive forecasts over either of the later two evaluation periods.

The observation that inflation has become much harder to forecast in data since 1996 has been

reported by a number of other researchers, including Atkeson and Ohanian (2001), Fisher et al.

(2002), Stock and Watson (2007), and Stock and Watson (2008).16 Interestingly, the second cyclical

factor f̂ HX2
t does better than any of the other four indexes at forecasting inflation at the one-month

horizon for the 1970-1996 sample and at the 6-12 month horizons for the 2015-2023 sample.

Table 3 also reports forecasts of industrial production, setting

yh
t+h = (1200/h) log(IPt+h/IPt),

for IPt the level of the industrial production index in month t. The indexes f̂ CF
t , f̂ MN1

t , and f̂ HX1
t

14Here again our evaluation design differs slightly from that in Stock and Watson (1999) and McCracken and Ng
(2016) in that those authors took the object of interest to be to forecast the change in the inflation rate as a function of
lagged changes:

yh
t+h = (1200/h) log(CPIt+h/CPIt)− 1200 log(CPIt/CPIt−1).

15Stock and Watson (1999) reported results for h = 12 months whereas McCracken and Ng (2016) reported results
for h = 1, 6, and 12.

16The result is also revealed in the numbers reported in Table 5 of McCracken and Ng (2016) , though the authors did
not comment on it.
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Table 3: Mean squared forecast errors for different models

Consumer Price Index
sample horizon AR CF MN1 HX1 MN2 HX2

1970-1996 h=1 7.91 1.00 0.99 1.03 0.98 0.90
h=6 4.26 0.81 0.77 0.80 0.95 0.88
h=12 5.32 0.70 0.62 0.74 1.02 1.33

1997-2014 h=1 12.26 1.03 1.04 1.02 0.97 1.09
h=6 6.08 1.23 1.23 1.23 0.96 1.11
h=12 4.21 1.22 1.22 1.28 0.95 1.17

2015-2023 h=1 8.31 1.58 1.30 1.19 0.96 1.05
h=6 3.98 2.03 1.52 1.81 1.04 1.02
h=12 3.84 1.79 1.31 1.51 1.06 0.98

Industrial Production
sample horizon AR CF MN1 HX1 MN2 HX2

1970-1996 h=1 76.73 0.97 0.94 0.96 1.01 1.02
h=6 38.66 0.92 0.93 0.83 0.71 0.79
h=12 27.19 1.01 1.06 1.21 0.49 0.87

1997-2014 h=1 58.90 0.85 0.83 0.98 1.04 1.00
h=6 22.61 0.93 0.94 1.05 1.24 1.12
h=12 20.11 0.96 1.01 1.06 1.26 1.11

2015-2023 h=1 584.33 1.76 0.92 1.11 1.02 1.00
h=6 100.90 2.33 1.16 1.04 1.06 0.94
h=12 43.97 2.38 1.15 0.85 1.04 0.91

Notes to Table 3. AR column reports simulated out-of-sample mean squared forecast error for
purely autoregressive model evaluated over three different out-of-sample periods. CF column
reports the relative MSE when lags of the Chicago Fed National Activity Index are added to the
autoregression, with a value less than one indicating the variable is useful for forecasting. MN1
column reports the relative MSE when lags of the first principal component calculated using the
procedures in McCracken and Ng (2016) are used in place of the CFNAI. HX1 reports relative MSE
when lags of the first principal component of the estimated cyclical components are used in place
of CFNAI. MN2 and HX2 report results when the second principal component is used instead of
the first.
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all help forecast industrial production over near horizons in the first two evaluation periods. The

CFNAI does particularly poorly at forecasting either inflation or industrial production at any hori-

zon for 2015-2023. Both f̂ HX1
t and f̂ HX2

t do significantly better than CFNAI in every case over this

period.

We conclude that our approach offers similar benefits to conventional PCA when evaluated

in terms of simulated out-of-sample forecasts, and does much better than measures like the CF-

NAI for recent data. We share the conclusion of the earlier literature that the usefulness of any

principal-component-based measure for purposes of forecasting depends on the variable, evalua-

tion period, and horizon of the forecast.

7 Conclusion

Calculating principal components of medium-horizon forecast errors is a viable approach to iden-

tifying the common cyclical factors that drive a large collection of potentially nonstationary eco-

nomic indicators. This avoids the need to decide how to detrend each individual series and is

much more promising than approaches such as the Chicago Fed National Activity Index for han-

dling data that include the large outliers of 2020.
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A Proofs

The proof of Theorem 2 makes use of the following lemma.

Lemma 1. Let S be any symmetric positive semidefinite (N × N) matrix with diagonal elements sii, i =

1, ..., N. Then

sup
γ∈Γ

γ′Sγ

γ′γ
≤ ∑N

i=1 sii. (A-1)

Proof of Lemma 1.

Notice that the left side of (A-1) is equal to the largest eigenvalue of S. Since S is positive

semidefinite, all eigenvalues are nonnegative so the largest eigenvalue is less than or equal to the

sum of all the eigenvalues. But the sum of all the eigenvalues is equal to the trace of S, which is

defined as the sum of its diagonal elements. Thus the left side of (A-1) must be less than or equal

to the right side.

Proof of Theorem 2(i)-(ii).

Notice from Ĉt = Ct + Vt that

(N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ

= (N2T)−1γ′ ∑T
t=1 CtC′

tγ + (N2T)−1γ′ ∑T
t=1 VtV ′

t γ + 2(N2T)−1γ′ ∑T
t=1 CtV ′

t γ. (A-2)

We first show that the second and third terms on the right side of (A-2) converge in probability to

0 for all γ ∈ Γ. To show this for the second term, notice from Lemma 1 that

sup
γ∈Γ

(N2T)−1γ′ ∑T
t=1 VtV ′

t γ = sup
γ∈Γ

(NT)−1 γ′ ∑T
t=1 VtV ′

t γ

γ′γ

≤ (NT)−1 ∑N
i=1 ∑T

t=1 v2
it. (A-3)

Since Ev2
it < δ for all i and t, it follows that E

[
(NT)−1 ∑N

i=1 ∑T
t=1 v2

it

]
< δ and thus sup

γ∈Γ
(N2T)−1γ′ ∑T

t=1 VtV ′
t γ

p→ 0 by Markov’s Inequality.

For the last term in (A-2),

∣∣∣(N2T)−1γ′ ∑T
t=1 CtV ′

t γ
∣∣∣ ≤ [

(N2T)−1γ′ ∑T
t=1 CtC′

tγ
]1/2 [

(N2T)−1γ′ ∑T
t=1 VtV ′

t γ
]1/2

.
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The first term converges in probability to a number no larger than ω1/2
11 from Theorem 1, and the

second converges in probability to 0 for all γ from (A-3). Thus for all γ ∈ Γ, (N2T)−1γ′ ∑T
t=1 CtV ′

t γ
p→

0. We thus conclude from (A-2) that

(N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ − (N2T)−1γ′ ∑T
t=1 CtC′

tγ
p→ 0 (A-4)

for all γ ∈ Γ. Since

T−1 ∑T
t=1 f̂ 2

1t − T−1 ∑T
t=1 f̃ 2

it = sup
γ∈Γ

(N2T)−1γ′ ∑T
t=1 ĈtĈ′

tγ − sup
γ∈Γ

(N2T)−1γ′ ∑T
t=1 CtCtγ,

it follows that this difference converges in probability to zero, establishing result (i) of Theorem 2

for j = 1. Analogous calculations establish results (i) and (ii) for j = 2, ..., k.

Proof of Theorem 2(iii).

Notice that (N2T)−1Λ̂′ ∑T
t=1 ĈtĈ′

tΛ̂ is a diagonal matrix for all N and T by the definition of Λ̂

with diagonal elements converging in probability to ω jj by result (i):

(N2T)−1Λ̂′ ∑T
t=1 ĈtĈ′

tΛ̂
p→ ΩFF. (A-5)

Equation (A-4) then establishes that (N2T)−1Λ̂′ ∑T
t=1 CtC′

tΛ̂
p→ ΩFF. We also know from results

(R2)-(R6) in Stock and Watson (2002) that

(N2T)−1γ′ ∑T
t=1 CtC′

tγ − (N2T)−1γ′ ∑T
t=1 Λ′FtF′

t Λγ
p→ 0

for all γ ∈ Γ, meaning

(N2T)−1Λ̂′ ∑T
t=1 CtC′

tΛ̂
p→ (N2T)−1Λ̂′ ∑T

t=1 ΛFtF′
t Λ′Λ̂

= (N−1Λ̂′Λ)
(

T−1 ∑T
t=1 FtF′

t

)
(N−1Λ′Λ̂)

p→ HΩFF H′ (A-6)
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for H = plim (N−1Λ̂′Λ). Combining results (A-4)-(A-6),

ΩFF = HΩFF H′. (A-7)

Let ĥ′j denote the jth row of Λ̂′Λ/N,

ĥ′j
(1×r)

= λ̂
′
j

(1×N)

Λ
(N×r)

/N,

for λ̂
′
j the jth row of Λ̂′. Then

ĥ′jĥj =
λ̂
′
j√
N

ΛΛ′

N
λ̂j√

N
.

This is less than or equal to the largest eigenvalue of ΛΛ′/N, which converges to 1. Letting h′j =

(hj1, hj2, ..., hjr)
′ denote the jth row of H, we thus have

ĥ′jĥj
p→ h2

j1 + h2
j2 + · · · h2

jr ≤ 1.

The (1,1) element of (A-7) states

h′1ΩFFh1 = h2
11ω11 + h2

12ω22 + · · ·+ h2
1rωrr = ω11.

Since ω11 > ω22 > · · · > ωrr > 0, this requires h2
11 = 1 and h12 = · · · = h1r = 0. Thus the (1,1)

element of Λ̂′Λ/N converges in probability to ±1 and other elements of the first row converge to

zero.

The (2,2) element of (A-7) states

h2
21ω11 + h2

22ω22 + · · ·+ h2
2rωrr = ω22 (A-8)

where h21 = plim λ̂2λ1/N. Regress λ1 on λ̂1 with residual q1:

λ1 = k̂1λ̂1 + q1 (A-9)

k̂1 = (λ̂
′
1λ̂1/N)−1(λ̂

′
1λ1/N)
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q′1λ̂1 = 0

λ′
1λ1/N = k̂2

1(λ̂
′
1λ̂1/N) + q′1q1/N.

We saw above that k̂2
1

p→ 1, which along with λ′
1λ1/N → 1 and λ̂

′
1λ̂1/N = 1 establishes q′1q1/N

p→

0. Premultiply (A-9) by λ̂
′
2/N:

λ̂
′
2λ1/N = k̂1λ̂

′
2λ̂1/N + λ̂

′
2q1/N = λ̂

′
2q1/N.

But from Cauchy-Schwarz

(λ̂
′
2q1/N)2 ≤ (λ̂

′
2λ̂2/N)(q′1q1/N)

p→ 0.

Thus λ̂
′
2λ1/N

p→ h21 = 0 and (A-8) becomes

h2
22ω22 + h2

23ω33 + · · ·+ h2
2rωrr = ω22.

Since ω22 > ω33 > · · · > ωrr and h2
22 + h2

23 + · · · + h2
2r ≤ 1, this requires h2

22 = 1 and all other

elements of the second row of H to be zero, establishing the second row of the claim in Theorem

2(iii). Proceeding iteratively through rows 3,4,..,r establishes the rest of the result in (iii).

Proof of Theorem 2(iv).

Write

ŜF̂t − Ft = N−1ŜΛ̂′Ĉt − Ft

= N−1ŜΛ̂′(ΛFt + et + Vt)− Ft

= (N−1ŜΛ̂′Λ − Ir)Ft + N−1ŜΛ̂′et + N−1ŜΛ̂′Vt. (A-10)

The task is to show that all three terms in (A-10) have plim 0. That (N−1ŜΛ̂′Λ − Ir)Ft
p→ 0 follows

immediately from result (iii). For the second term,

N−1ŜΛ̂′et = N−1(ŜΛ̂′ − Λ′)et + N−1ŜΛ′et. (A-11)
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Consider the square of the jth element of the first term in (A-11):

 (ŝjλ̂
′
j − λ′

j)et

N

2

≤

 (ŝjλ̂
′
j − λ′

j)(ŝjλ̂j − λj)

N

 [
e′tet

N

]
. (A-12)

The first term in (A-12) is

(ŝjλ̂
′
j − λ′

j)(ŝjλ̂j − λj)

N
=

ŝ2
j λ̂

′
jλ̂j

N
−

λ′
j ŝjλ̂j

N
−

ŝjλ̂
′
jλj

N
+

λ′
jλj

N
,

which converges in probability to zero by Theorem 2(iii). The second term in (A-12) is Op(1), by

result (R1) in Stock and Watson (2002), meaning the plim of (A-12) is zero. The second term in

(A-11) also converges in probability to zero as in Stock and Watson (2002) Result (R15). Hence

N−1ŜΛ̂′et
p→ 0.

For the third term in (A-10), N−1ŜΛ̂′Vt, note that the jth element is N−1ŝjλ̂
′
jVt whose square is

N−2λ̂
′
jVtV ′

t λ̂j ≤ N−1 ∑N
i=1 v2

it
p→ 0 (A-13)

with the inequality following from Lemma 1 and the convergence in probability from Assumption

3 and Markov’s Inequality.

Proof of Theorem 3.

We first demonstrate that Assumptions 4(i)-(iii) imply E
(

T−1 ∑T
t=1 v2

it

)
< δ for all T > Tδ.

Note from (16) UiT = ∑T
t=1 v2

it can be written as the sum of squares of the fitted values from a

regression of cit on zi,t−h, which by construction it must be smaller than the sum of squares of cit

itself:

UiT < ∑T
t=1 c2

it < Tκ1.

We therefore know

E[T−1UiT] = E[T−1UiT1{T−1UiT ≤ δ/2}] + E[T−1UiT1{δ/2 ≤ T−1UiT ≤ κ1}]

< (δ/2) + κ1Prob(T−1UiT ≥ δ/2).

The condition E[T−1 ∑T
t=1 v2

it] < δ will then follow if we can show that for any δ > 0 ∃Tδ such
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that Prob(T−1UiT ≥ δ/2) ≤ δ/(2κ1) whenever T > Tδ. Given any δ > 0, let κ3 = 4κ1κ2/δ and

ε3 = δ/(4κ1). Then from Assumption 4(iii), ∃T3(κ3, ε3) (call this T3(δ)) such that ∀T ≥ T3(δ),

Prob(UiT ≥ κ3) < Prob(Ui ≥ κ3) + ε3 = Prob(Ui ≥ κ3) + δ/(4κ1).

From Markov’s Inequality and the definition of κ3 this means

Prob
(

UiT ≥ 4κ1κ2

δ

)
<

E(Ui)

κ3
+

δ

4κ1

≤ κ2

(4κ1κ2/δ)
+

δ

4κ1

=
δ

2κ1
(A-14)

with the second inequality coming from Assumption 4(ii). Let Tδ = max{T3(δ), 8κ1κ2/δ2}. For all

T ≥ Tδ we know from this definition of Tδ that

Prob(T−1UiT > δ/2) ≤ Prob(T−1
δ UiT > δ/2)

= Prob(UiT > δTδ/2)

≤ Prob(UiT > 4κ1κ2/δ). (A-15)

Putting (A-14) together with (A-15) establishes that for all T > Tδ, Prob(T−1UiT ≥ δ/2) ≤ δ/(2κ1)

which was to be shown.

We next show that E
(

T−1 ∑T
t=1 v2

it

)
< δ along with Assumption 4(iv) imply that Assumption

3 holds. Notice that

v2
it = T−1ᾱ′

i Aitᾱi ≤ T−1(ᾱ′
iᾱi)λ

max(Ait)

∑T
t=1 v2

it = ᾱ′
iBiT ᾱi ≥ (ᾱ′

iᾱi)λ
min(BiT)

v2
it

T−1 ∑T
t=1 v2

it

≤ λmax(Ait)

λmin(BiT)
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E(v2
it) ≤ E

[
λmax(Ait)

λmin(BiT)
T−1 ∑T

t=1 v2
it

]

≤

E

[
λmax(Ait)

λmin(BiT)

]2
1/2 (

E
[

T−1 ∑T
t=1 v2

it

]2
)1/2

(A-16)

by Cauchy-Schwarz. The first term in (A-16) is less than
√

κ4 by Assumption 4(iv). For the

second term, T−1 ∑T
t=1 v2

it < κ1 so E
[

T−1 ∑T
t=1 v2

it

]2
< κ1E

[
T−1 ∑T

t=1 v2
it

]
. For any δ > 0, let

δ4 = δ/(κ1
√

κ4). There exists a T4 such that E(T−1 ∑T
t=1 v2

it) < δ4 for T > T4 and all i, mean-

ing E(v2
it) < δ. Since this is uniform in i, it follows that E

[
N−1 ∑N

1=1 v2
it

]
< δ, which was to be

shown.
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B Data appendix

Table B1: R2 for each variable explained by first and second principal components, 1962:3 to 2023:6

Group 1. Output and income
Index FRED Description PC1 PC1&2
1 RPI Real Personal Income 0.23 0.40
2 W875RX1 Real personal income ex transfer receipts 0.61 0.75
6 INDPRO IP Index 0.77 0.85
7 IPFPNSS IP: Final Products and Nonindustrial Supplies 0.81 0.88
8 IPFINAL IP: Final Products (Market Group) 0.78 0.82
9 IPCONGD IP: Consumer Goods 0.52 0.83
10 IPDCONGD IP: Durable Consumer Goods 0.49 0.82
11 IPNCONGD IP: Nondurable Consumer Goods 0.41 0.55
12 IPBUSEQ IP: Business Equipment 0.71 0.71
13 IPMAT IP: Materials 0.65 0.73
14 IPDMAT IP: Durable Materials 0.64 0.75
15 IPNMAT IP: Nondurable Materials 0.62 0.69
16 IPMANSICS IP: Manufacturing (SIC) 0.77 0.87
17 IPB51222S IP: Residential Utilities 0.02 0.03
18 IPFUELS IP: Fuels 0.07 0.07
19 CUMFNS Capacity Utilization: Manufacturing 0.68 0.73

Median 0.63 0.74



Table B1 (continued)

Group 2. Labor market
Index FRED Description PC1 PC1&2
20 HWI Help-Wanted Index for United States 0.55 0.56
21 HWIURATIO Ratio of Help Wanted/No. Unemployed 0.55 0.55
22 CLF16OV Civilian Labor Force 0.25 0.34
23 CE16OV Civilian Employment 0.75 0.75
24 UNRATE Civilian Unemployment Rate 0.69 0.71
25 UEMPMEAN Average Duration of Unemployment (Weeks) 0.24 0.24
26 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 0.38 0.46
27 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 0.65 0.68
28 UEMP15OV Civilians Unemployed - 15 Weeks and Over 0.66 0.66
29 UEMP15T26 Civilians Unemployed for 15-26 Weeks 0.65 0.66
30 UEMP27OV Civilians Unemployed for 27 Weeks and Over 0.59 0.59
31 CLAIMSx Initial Claims 0.42 0.45
32 PAYEMS All Employees: Total nonfarm 0.81 0.81
33 USGOOD All Employees: Goods-Producing Industries 0.85 0.85
34 CES1021000001 All Employees: Mining and Logging: Mining 0.03 0.41
35 USCONS All Employees: Construction 0.67 0.74
36 MANEMP All Employees: Manufacturing 0.74 0.74
37 DMANEMP All Employees: Durable goods 0.77 0.77
38 NDMANEMP All Employees: Nondurable goods 0.52 0.53
39 SRVPRD All Employees: Service-Providing Industries 0.67 0.68
40 USTPU All Employees: Trade, Transportation and Utilities 0.80 0.80
41 USWTRADE All Employees: Wholesale Trade 0.74 0.80
42 USTRADE All Employees: Retail Trade 0.67 0.68
43 USFIRE All Employees: Financial Activities 0.42 0.43
44 USGOVT All Employees: Government 0.08 0.09
45 CES0600000007 Avg Weekly Hours : Goods-Producing 0.33 0.48
46 AWOTMAN Avg Weekly Overtime Hours : Manufacturing 0.38 0.62
47 AWHMAN Avg Weekly Hours : Manufacturing 0.31 0.53
115 CES0600000008 Avg Hourly Earnings : Goods-Producing 0.04 0.42
116 CES2000000008 Avg Hourly Earnings : Construction 0.00 0.34
117 CES3000000008 Avg Hourly Earnings : Manufacturing 0.02 0.33

Median 0.55 0.59

Group 3. Housing
Index FRED Description PC1 PC1&2
48 HOUST Housing Starts: Total New Privately Owned 0.14 0.37
49 HOUSTNE Housing Starts, Northeast 0.17 0.39
50 HOUSTMW Housing Starts, Midwest 0.11 0.42
51 HOUSTS Housing Starts, South 0.12 0.28
52 HOUSTW Housing Starts, West 0.11 0.26
53 PERMIT New Private Housing Permits (SAAR) 0.11 0.35
54 PERMITNE New Private Housing Permits, Northeast (SAAR) 0.13 0.43
55 PERMITMW New Private Housing Permits, Midwest (SAAR) 0.10 0.47
56 PERMITS New Private Housing Permits, South (SAAR) 0.08 0.30
57 PERMITW New Private Housing Permits, West (SAAR) 0.09 0.24

Median 0.11 0.36



Table B1 (continued)

Group 4. Consumption, orders, and inventories
Index FRED Description PC1 PC1&2
3 DPCERA3M086SBEA Real personal consumption expenditures 0.54 0.77
4 CMRMTSPLx Real Manu. and Trade Industries Sales 0.73 0.89
5 RETAILx Retail and Food Services Sales 0.46 0.50
58 AMDMNOx New Orders for Durable Goods 0.69 0.69
59 AMDMUOx Unfilled Orders for Durable Goods 0.26 0.40
60 BUSINVx Total Business Inventories 0.27 0.75
61 ISRATIOx Total Business: Inventories to Sales Ratio 0.22 0.27

Median 0.46 0.69

Group 5. Money and credit
Index FRED Description PC1 PC1&2
62 M1SL M1 Money Stock 0.02 0.02
63 M2SL M2 Money Stock 0.03 0.05
64 M2REAL Real M2 Money Stock 0.03 0.45
65 BOGMBASE Monetary Base 0.20 0.20
66 TOTRESNS Total Reserves of Depository Institutions 0.28 0.28
67 NONBORRES Reserves Of Depository Institutions 0.00 0.00
68 BUSLOANS Commercial and Industrial Loans 0.10 0.17
69 REALLN Real Estate Loans at All Commercial Banks 0.23 0.23
70 NONREVSL Total Nonrevolving Credit 0.29 0.30
71 CONSPI Nonrevolving consumer credit to Personal Income 0.09 0.17
118 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 0.03 0.03
119 DTCTHFNM Total Consumer Loans and Leases Outstanding 0.21 0.22
120 INVEST Securities in Bank Credit at All Commercial Banks 0.02 0.04

Median 0.09 0.17

Group 6. Interest and exchange rates
Index FRED Description PC1 PC1&2
76 FEDFUNDS Effective Federal Funds Rate 0.34 0.68
77 TB3MS 3-Month Treasury Bill: 0.37 0.69
78 TB6MS 6-Month Treasury Bill: 0.38 0.71
79 GS1 1-Year Treasury Rate 0.36 0.71
80 GS5 5-Year Treasury Rate 0.16 0.63
81 GS10 10-Year Treasury Rate 0.08 0.59
82 AAA Moody’s Seasoned Aaa Corporate Bond Yield 0.02 0.60
83 BAA Moody’s Seasoned Baa Corporate Bond Yield 0.00 0.61
84 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 0.06 0.31
85 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 0.04 0.27
86 T1YFFM 1-Year Treasury C Minus FEDFUNDS 0.00 0.16
87 T5YFFM 5-Year Treasury C Minus FEDFUNDS 0.12 0.34
88 T10YFFM 10-Year Treasury C Minus FEDFUNDS 0.21 0.41
89 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 0.33 0.49
90 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 0.40 0.49
91 EXSZUSx Switzerland / U.S. Foreign Exchange Rate 0.00 0.01
92 EXJPUSx Japan / U.S. Foreign Exchange Rate 0.00 0.03
93 EXUSUKx U.S. / U.K. Foreign Exchange Rate 0.07 0.08
94 EXCAUSx Canada / U.S. Foreign Exchange Rate 0.00 0.04

Median 0.08 0.49



Table B1 (concluded)

Group 7. Prices
Index FRED Description PC1 PC1&2
95 WPSFD49207 PPI: Finished Goods 0.07 0.74
96 WPSFD49502 PPI: Finished Consumer Goods 0.07 0.72
97 WPSID61 PPI: Intermediate Materials 0.06 0.65
98 WPSID62 PPI: Crude Materials 0.11 0.44
99 OILPRICEx Crude Oil, spliced WTI and Cushing 0.02 0.50
100 PPICMM PPI: Metals and metal products: 0.17 0.36
101 CPIAUCSL CPI : All Items 0.09 0.82
102 CPIAPPSL CPI : Apparel 0.04 0.40
103 CPITRNSL CPI : Transportation 0.04 0.56
104 CPIMEDSL CPI : Medical Care 0.11 0.41
105 CUSR0000SAC CPI : Commodities 0.08 0.73
106 CUSR0000SAD CPI : Durables 0.00 0.33
107 CUSR0000SAS CPI : Services 0.01 0.67
108 CPIULFSL CPI : All Items Less Food 0.04 0.77
109 CUSR0000SA0L2 CPI : All items less shelter 0.07 0.78
110 CUSR0000SA0L5 CPI : All items less medical care 0.10 0.82
111 PCEPI Personal Cons. Expend.: Chain Index 0.08 0.76
112 DDURRG3M086SBEA Personal Cons. Exp: Durable goods 0.00 0.37
113 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 0.06 0.78
114 DSERRG3M086SBEA Personal Cons. Exp: Services 0.04 0.66

Median 0.06 0.66

Group 8. Stock market
Index FRED Description PC1 PC1&2
72 S&P 500 S&P’s Common Stock Price Index: Composite 0.22 0.33
73 S&P: indust S&P’s Common Stock Price Index: Industrials 0.18 0.28
74 S&P div yield S&P’s Composite Common Stock: Dividend Yield 0.05 0.40
75 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 0.11 0.44

Median 0.15 0.36

Overall median 0.19 0.50

Notes to Table B1. Index refers to the index number of the variable in our database. FRED refers
to variable name in the FRED database. PC1 is the fraction of the variance of the cyclical compo-
nent of that variable that is explained by the first principal component. PC1&2 is the fraction of
the variance of the cyclical component of that variable that is explained by the first and second
principal components combined.



Table B2: Outliers associated with McCracken-Ng algorithm, 1-month-ahead regressions, and 24-
month-ahead regressions

McKracken-Ng Regression (h=1) Regression (h =24)
variable id description no. dates no. dates no. dates
RPI 1 real per-

sonal
income

1 2013:1 1 2013:1 0

W875RX1 2 RPI less
transfers

1 2013:1 1 2013:1 0

IPDMAT 14 durables
industrial
production

1 1959:12 0 0

CES1021-
000001

35 employment:
mining

6 1971:10,1971:12,
1977:12,1978:4,
1981:4,1981:6

6 1971:10,1971:12
1977:12,1978:4,
1981:4,1981:6

0

MANEMP 37 employment:
manufac-
turing

0 2 1970:10,1970:12 0

DMANEMP 38 employment:
durables

0 4 1964:10,1964:11,
1970:10,1970:12

0

USGOVT 45 employment:
govern-
ment

0 2 1960:3,2010:5 0

BUSINV 68 total busi-
ness inven-
tories

1 1982:1 1 1982:1 0

M1SL 70 M1 money
stock

2 2001:10,2009:1 0 0

AMBSL 73 St. Louis
monetary
base

9 2008:9,2008:10,
2008:12-2009:3,
2010:2,2010:3,
2011:2

8 2008:9-2008:11,
2009:2,2009:3,
2009:10,2010:3,
2011:2

0

TOTRESNS 74 total re-
serves

3 2001:10,2008:9,
2008:11

4 2001:9,2001:10,
2008:9,2008:10,

22 2008:11-2010:8

NON-
BORRES

75 nonborrowed
reserves

14 2001:10,
2008:1-
2008:5, 2008:9,
2008:11-2009:5

18 2001:9,
2007:12-2009:4

22 2001:9,
2007:12-2008:4,
2008:9-2009:4,
2010;2,2010:3,
2010:5-2010:8,
2010:10,2010:12

REALLN 77 real estate
loans

3 2006:10,2006:11,
2008:11

2 2006:10,2008:10 0

NONREVSL 78 total non-
revolving
credit

4 1977:1,1977:2,
2010:12,2011:1

2 1977:1,2010:12 0



Table B2 (continued)
McKracken-Ng Regression (h=1) Regression (h =24)

variable id description no. dates no. dates no. dates
CONSPI 79 nonrevolving

consumer
credit

0 3 1977:1,2010:12,
2013:1

0

FEDFUNDS 84 fed funds
rate

8 1979:10,1980:3,
1980:5,1980:11,
1980:12,1981:2,
1981:5,1982:8

6 1979:10,1980:3,
1980:5,1980:10,
1980:11,1981:5

0

CP3M 85 3-month
commer-
cial paper
rate

7 1980:3,1980:5,
1980:11,1980:12,
1981:5,1981:11,
1982:8

4 1980:3,1980:5,
1980:10,1981:5

0

TB3MS 86 3-month
Tbill rate

5 1980:3,1980:5,
1981:5,1981:11,
1982:8

4 1980:4,1980:5,
1981:5,1981:6

0

TB6MS 87 6-month
Tbill rate

2 1980:5,1981:11 2 1980:4,1980:5 0

GS1 88 1-year
Treasury
rate

2 1980:5,1981:11 0 0

COMPAPFF 93 com paper
fed funds
spread

0 2 1981:1,1981:6 0

TB3SMFFM 94 3-month
Tbill ff
spread

0 3 1980:4,1981:2,
1981:6

0

TB6SMFFM 95 6-month
Tbill ff
spread

0 4 1980:4,1980:5,
1980:12,1981:2

0

T1YFFM 96 1-year
Tbill ff
spread

0 4 1980:4,1980:5,
1980:12,1981:2

0

T5YFFM 97 5-year
Treas ff
spread

0 2 1980:5,1981:2 0

T10YFFM 98 10-year
Treas fed
funds
spread

0 1 1980:5 0

AAAFFM 99 Aaa cor-
porate
fed funds
spread

0 3 1980:5,1980:11,
1981:2

0



Table B2 (concluded)
McKracken-Ng Regression (h=1) Regression (h =24)

variable id description no. dates no. dates no. dates
BAAFFM 100 Baa cor-

porate
fed funds
spread

0 2 1980:5,1980:11 0

PPIITM 108 PPI inter-
mediate
materials

0 1 2008:11 0

PPICRM 109 PPI crude
materials

1 2001:2 0 0

OILPRICE 110 crude oil
price

2 1974:1,1974:2 1 1974:1 0

CPITRNSL 115 CPI trans-
portation

0 1 2008:11 0

CUS-
R0000SAS

119 CPI ser-
vices

0 1 1980:7 0

DSERRG3-
M086SBEA

126 PCE con-
sumption

1 2001:10 0 0

MZMSL 131 MZM
money
stock

1 1983:1 1 1983:1 0

DTCOLN-
VHFNM

132 motor ve-
hicle loans

3 1977:12,2010:3,
2010:4

1 2010:3 0

DTCTHFNM 133 consumer
loans

2 2010:12,2011:1 2 2010:12,2011:1 0

total 79 98 44
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