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1 Introduction

In the long run, economic growth is driven by new ideas which push out the technological

frontier. While many of these ideas are generated by brand new firms entering the economy,

a substantial share of new ideas come from established firms already in the economy. In

this project, we study the innovation decisions of established firms because they face a joint

tradeoff: since they already have ideas in place, these firms must decide not only how much

to innovate — creating new ideas — but also how much to invest in capital — scaling up

production using existing ideas. To the extent that a firm is financially constrained, these

two activities will compete for the same funds within the firm. At the micro level, how do

financial frictions distort the mix of investment and innovation within firms? At the macro

level, do these distortions quantitatively matter for economic growth?

We address these questions using new firm-level evidence and an endogenous growth

model with heterogeneous firms subject to financial frictions. Empirically, we find that estab-

lished firms are investment-intensive when they have low net worth but become innovation-

intensive as they accumulate more net worth. Our model matches this finding because firms

with low net worth have a high return to capital which crowds out innovation. At the micro

level, financial frictions slow the rate at which firms accumulate capital, drive down its re-

turn, and shift into becoming innovation-intensive. At the macro level, this lower innovation

reduces economic growth. We calibrate the model to the US economy and find that the

resulting long-run output losses from lower growth are large, even though the allocation of

capital to existing ideas is relatively efficient in comparison. To the extent that innovation

has positive spillovers, this allocation is not constrained efficient; a planner would raise in-

novation and lower investment expenditures among constrained firms. A simple innovation

subsidy does not generate the correct distribution of investment and innovation across firms

to fully achieve this goal.

Our analysis in this paper focuses on established firms, which already have at least one

“scalable idea,” i.e., an idea which requires meaningful capital investment to bring to market.

In contrast, we view the smallest and youngest firms in the economy as focused on creating

their first scalable idea, leading them to be highly innovation-intensive (consistent with the
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empirical evidence in, for example, Akcigit and Kerr (2018)). By definition, these firms do

not yet face the tradeoff between investment and innovation which motivates our analysis.

Our empirical sample of established firms is drawn from Compustat, a panel of publicly-

listed US firms. To our knowledge, Compustat is the only US panel dataset that measures

our outcomes of interest (investment and innovation expenditures) as well as the financial

position of the firm. However, Compustat is a highly selected subset of established firms

because it only contains firms with publicly traded equity or debt. We address this issue

by calibrating our model to a broad set of firms in the economy and explicitly modeling

selection into Compustat.

We uncover two key results about how investment and innovation depend on firms’ finan-

cial position. First, firms become less investment-intensive as they accumulate net worth in

the sense that their physical investment rates decline over time. Second, firms become more

innovation-intensive as they accumulate net worth in the sense that their R&D rates and

patenting rates increase over time.

We refer to these findings as a pecking order of firm growth because firms primarily grow

through accumulating capital when they have low net worth but primarily grow through

producing new ideas when they have high net worth. We infer that firms prioritize investment

over innovation when they face a high shadow price of external finance, as proxied by having

low net worth. We find similar patterns using other proxies for that shadow price, such as size

— firms are investment-intensive when they are small but innovation-intensive when they

are large — and age — firms are investment-intensive when they are young but innovation-

intensive when they are old.

Motivated by this evidence, we develop a heterogeneous-firm endogenous growth model

in which firms face financial constraints. Given our focus on established firms, firms in our

model are initially endowed with their first scalable idea, embodied in their productivity,

from the existing stock of ideas in the economy. Firms must then decide how much resources

to spend on investment, which increases the capital stock used in production, and how

much to spend on innovation, which increases the probability of receiving a new idea and

raising the firm’s productivity. The firm’s mix of investment and innovation is determined

by the relative return on these two activities. The return to capital is its marginal product
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and collateral value in external finance, while the return to innovation is the probability of

generating a new idea times the present value of that idea to the firm.

Our model generates a pecking order of firm growth similar to the data. Firms with low

levels of net worth are investment-intensive because the returns to capital are high, both

because their marginal product of capital is high and, being financially constrained, because

they place a high value on capital’s use as collateral. As a firm accumulates net worth, the

return to capital falls, and the firm slowly shifts into becoming innovation-intensive. Finan-

cial frictions control how quickly firms become innovation-intensive because they determine

how quickly firms can drive down the returns to capital.

The quantitative strength of the model’s pecking order is governed not only by the finan-

cial frictions but also the innovation technology, which determines the return to innovation.

Inferring the properties of this technology is difficult because new ideas are difficult to mea-

sure in the data. We infer the realization of new ideas using what firms reveal to us through

their forward-looking investment decisions. In particular, our model predicts that, among

unconstrained firms, new ideas should generate investment spikes — short-lived bursts of

investment — in order to implement the new ideas in production. Consistent with this

prediction, past R&D expenditures are strongly associated with investment spikes in our

Compustat data; having one standard deviation higher R&D increases the probability of a

spike in the following year by approximately 30%. We calibrate our model to match this

finding as well as other features of firms’ investment, R&D, and borrowing in the U.S.

We validate our calibrated model using new empirical evidence on the response of inno-

vation to changes in the after-tax price of investment induced by the Bonus Depreciation

Allowance. In particular, we show that our model quantitatively replicates two findings.

First, lower investment taxes raises both investment R&D expenditures, consistent with

their complementarity in production. Second, the increase in R&D expenditures is larger

for small firms, consistent with the role of financial frictions in our model.

We then use our calibrated model to quantify the long-run costs of financial frictions.

To do so, we compare the balanced growth path in our model to a frictionless version of the

model in which firms face no financial constraints. The frictionless model has no pecking

order of firm growth because firms immediately accumulate their optimal scale of capital
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and begin innovating. Because financial frictions slow down the rate at which firms become

innovation-intensive, they reduce the total amount of innovation in the economy, lowering

the growth rate of aggregate TFP. In addition, financial frictions also misallocate capital

given the current distribution of productivity, lowering the level of TFP.

Quantitatively, we find that financial frictions lower the aggregate growth rate by more

than 40 basis points per year, leading to substantial long-run output losses when cumu-

lated over time. For example, lower growth reduces GDP by nearly 25% over fifty years.

We show that this result holds for a range of parameter values governing the innovation

technology, financial frictions, innovation spillovers, and firm entry. These large effects of

financial frictions on growth occur even though the output losses from capital misallocation

are comparatively modest (with an upper bound of 5%). In other words, for the US econ-

omy, financial frictions have large long-run costs because fewer new ideas are discovered,

even though good ideas are able to attract funding once they are discovered.

To the extent that innovation generates positive spillovers, the equilibrium allocation

is socially inefficient, opening the door to policy intervention. In order to understand the

nature of the externality, we first study the allocation chosen by a planner who internalizes

the positive spillovers but is subject to the same financial constraints as individual firms.

Clearly, the planner wants higher innovation, so we focus on the subtler question of how the

planner reallocates investment in order to support this goal.

The planner faces a tradeoff for investment because of financial frictions: higher innova-

tion requires lower investment expenditures for constrained firms (in order to finance higher

innovation) but incentivizes higher investment for unconstrained firms (due to the comple-

mentarity of productivity and capital). We study how the planner balances these forces along

a transition path starting from the equilibrium BGP. In the early phase of this transition,

the substitutability for constrained firms dominates in the sense that aggregate investment

initially falls. Over time, however, the resulting growth builds up the distribution of net

worth and eventually the complementarity for unconstrained firms dominates in the sense

that aggregate investment increases.

While simple policies can partially decentralize the planner’s allocation, they are not fully

successful because they do not produce the same distribution of investment and innovation
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across firms. We illustrate this finding by computing the effects of an innovation subsidy that

increases aggregate innovation expenditures by the same amount as the social planner. But

despite generating the same aggregate amount of innovation expenditures, the subsidy raises

the aggregate growth rate by 10% less than the planner. This occurs because the subsidy

disproportionately increases innovation expenditures among unconstrained firms who have

a low marginal return to innovation.

Related Literature Our findings contribute to our understanding of the aggregate costs

of financial frictions. The existing quantitative macro literature about financial frictions has

primarily focused on how the frictions affect the allocation of inputs across firms (see, e.g.,

Buera, Kaboski and Shin (2011), Midrigan and Xu (2014), or Moll (2014)). However, these

papers abstract from innovation decisions, so the costs of financial frictions only arise from

distorting inputs as a function of productivity.1 In our model, financial frictions also distort

the distribution of productivity by affecting innovation.

Our model combines elements of the Hopenhayn (1992) framework, in which firm dy-

namics are determined given an exogenous process for productivity, and the Schumpeterian

growth framework pioneered by Aghion and Howitt (1992) and Grossman and Helpman

(1991), and more recently used in quantitative analyses by, e.g., Klette and Kortum (2004),

Akcigit and Kerr (2018), or Acemoglu et al. (2018). We contribute to this Schumpeterian

literature by incorporating capital accumulation and sluggish input dynamics induced by

financial frictions.2

A key feature of Hopenhayn (1992) is decreasing returns to scale, which implies that firms

have an optimal scale given their level of productivity. The literature has studied how various

1Midrigan and Xu (2014) allow financial frictions to affect whether firms enter the “modern” sector which
has a better production technology. This adoption margin is complementary to the innovation margin we
study here.

2Our focus on differences in innovation intensity across firms is most closely related to Akcigit and Kerr
(2018), who study how firms choose between two different types of innovation. We abstract from different
types of innovation to instead study the choice between innovation and capital investment. In a related vein,
Chen and Xu (2023) incorporate both physical capital and R&D investments into an industry equilibrium
model (in the tradition of Ericson and Pakes, 1995), abstracting from financial frictions. Our results are also
related to the literature on how financial frictions distort the allocation of investment across different types of
capital, such as tangible vs. intangible (Garcia-Macia et al., 2017), durable vs. non-durable (Rampini, 2019),
new vs. used (Lanteri and Rampini, 2023a), and clean vs. dirty (Lanteri and Rampini, 2023b). Crouzet
et al. (2022) develop a model in which firms choose between two different types of capital that differ in their
degree of non rivalry.
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frictions impede the ability of firms to reach this optimal scale, including financial frictions

in, for example, Khan and Thomas (2013). We incorporate innovation into a version of this

model, endogenizing the productivity process and therefore the distribution of optimal size.

In doing so, we are broadly related to Atkeson and Burstein (2010), who embed innovation

decisions in a Melitz (2003)-style model without capital.

In independent work, Sui (2024) also develops a version of the Hopenhayn (1992) model

in which firms choose investment and innovation subject to financial frictions in order to

study how differences in financial conditions accounts for differences in economic performance

across European countries. We view our two papers as highly complementary. Our main

contribution is the pecking order of firm growth: we document it in the data, show that

it is the key manifestation of financial frictions in the model, and quantitatively assess its

implications for both aggregate efficiency and innovation policy.

More broadly, our findings are consistent with a large body of empirical work that

provides cross-country, regional, sectoral, firm-level, and case study evidence that better-

functioning financial markets lead to higher economic growth (see Levine, 2005, for a de-

tailed survey). There is also a large body of theoretical work about the relationship between

financial markets and economic growth (see, e.g., Aghion, Howitt and Levine, 2018, and

references therein). We contribute to this literature in at least two ways. First, we focus

on how financial frictions distort firms’ joint decisions between investment and innovation.

Second, we focus on quantifying the aggregate effects of the resulting distortions.

Road Map The rest of our paper is organized as follows. Section 2 elaborates on the set

of established firms on which we focus our analysis. Section 3 documents the pecking order

of firm growth in the data. Motivated by this evidence, Section 4 develops the model and

Section 5 describes how the model matches the pecking order. Section 6 calibrates the key

parameters of the model and shows the model matches a number of untargetted moments in

the data. Section 7 uses the calibrated model to quantify the aggregate effects of financial

frictions. Section 8 shows how innovation spillovers shape the constrained-efficient allocation

and evaluates the effects of innovation subsidies and investment tax cuts. Section 9 concludes.
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2 Which Firms Are We Thinking About?

The established firms on which we focus our analysis is a particular subset of all firms in the

economy. In fact, the vast majority of firms in the economy pursue little to no innovation

and their scale is very small, perhaps for non-pecuniary reasons (see Hurst and Pugsley,

2011). We omit these “lifestyle entrepreneurs” from our analysis and instead focus on firms

that will eventually innovate and meaningfully contribute to economic growth.

We conceptualize the lifecycle of these innovative firms in two phases. In the initial

phase, the firm is innovating in order to create its first “scalable idea,” i.e. an idea which

requires a meaningful capital investment in order to successfully bring to market. Almost

by definition, these firms are innovation-intensive because they do not have a project into

which they can devote meaningful capital investment. This view is consistent with the vast

array of empirical evidence that the smallest and youngest firms in the economy are highly

innovation-intensive (see, e.g., Akcigit and Kerr, 2018).

Once a firm successfully creates and implements its first scalable idea, it enters the

established phase. We focus on this phase because it contains the tradeoff in which we are

interested: how much does the firm scale up its existing idea through investment and how

much does it to attempt to generate a new idea through innovation? Our empirical evidence

on the pecking order of firm growth guides the model we develop to study this tradeoff.

Our Compustat sample is a selected subset of these established firms because it requires

that firms have publicly traded debt or equity to be included in the data. This selection

skews our empirical sample to contain older and larger firms than the universe of established

firms. We address this issue in our economic model by including the universe of established

firms and explicitly accounting for the selection into Compustat.

3 Descriptive Evidence

We show that firms are more investment-intensive when they have low net worth but become

more innovation-intensive when they have high net worth.
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3.1 Data Description

Our main analysis uses annual firm-level data from Compustat, a panel of publicly listed U.S.

firms from 1975 – 2018. These data contain a long panel of firms’ investment expenditures,

R&D expenditures, and financial positions, allowing us to measure our key variables of

interest. To our knowledge, Compustat is the only US dataset with these properties.

Our main outcomes of interest are firms’ investment and innovation decisions as a function

of their net worth. We measure the investment rate as the ratio of capital expenditures to

the lagged value of plant, property, and equipment. Innovation activity is more difficult to

measure, so we proxy for it in two ways. First, we proxy for the inputs into the innovation

process using the R&D share, i.e. the ratio of R&D expenditures to the sum of R&D

expenditures and capital investment. Second, we proxy for the outputs of the innovation

process using approved patents collected from the United States Patent and Trademark

Office by Kogan et al. (2017).

We study how these outcomes vary with firms’ financial positions to study the effects of

financial frictions. Our main measure of financial position is net worth, which is the value of

plant, property, and equipment, plus cash and short-term investments, minus total debt. In

our model, net worth is the key state variable which determines the shadow price of external

finance to the firm. Of course, the empirical variation in net worth is endogenous, and we

do not have exogenous variation to identify the causal effect of net worth on investment

and innovation. For that reason, we view our empirical results as providing descriptive

evidence that firms with low net worth prioritize investment over innovation. In Section

6, we provide additional supportive evidence of the role of financial frictions in our model

using firms’ response of investment and innovation to changes in the after-tax relative price

of investment.

Appendix A describes the details of how we clean the data and presents descriptive

statistics of our final sample. For our baseline analysis, we exclude observations associated

with acquisitions in order to focus on innovation and investment occurring within firms

(though we obtain similar results when including acquisitions).
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Figure 1: The Pecking Order of Firm Growth

(a) Investment rates (b) R&D share

(c) Patent activity (d) Value of patents / sales

Notes: Binned scatter plots of investment rates, the R&D share, the share of firms with positive patenting,
and the patent-value-to-sales ratio by the log of firm net worth. All variables are demeaned at the firm
level. In order to make the units of the outcome variables more interpretable, we add back in the
unconditional mean across all firms. For variable definitions and sample selection, see Appendix A.

3.2 The Pecking Order of Firm Growth

We illustrate our pecking order of firm growth using simple binned scatterplots of investment

and innovation by net worth. We isolate within-firm variation by de-meaning all variables

at the firm level, which is equivalent to using a firm fixed effect in a regression context. We

condition on firms with at least twenty years of observations in order to precisely estimate

the firm-level mean, but Appendix A shows our results also hold for the whole sample of

firms. In order to make the units of the outcome variables more interpretable, we add back

in their mean values across all firms for these plots (which is a normalization that does not

affect any results).

Figure 1 illustrates our two key empirical results. First, panel (a) shows that firms’

investment activity decreases as they accumulate net worth; investment rates exceed 0.2
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when firms have their lowest levels of net worth but then fall below 0.1 as firms accumulate

net worth.3 This pattern is consistent with the notion that firms face a higher relative return

to capital when they have low net worth.

Second, panels (b) – (d) shows that firms’ innovation activity instead increases as firms

accumulate net worth. In terms of innovation inputs, panel (b) shows that the R&D share

increases by about 25% as firms accumulate net worth. Appendix A shows that other

measures of R&D activity, such as R&D-to-sales or the share of firms with positive R&D

expenditures, also increase in net worth.4

In terms of innovation outputs, panels (c) and (d) show that patenting activity also

increases as firms accumulate net worth. On the extensive margin, panel (c) shows that

firms are about 30% less likely per year to obtain a successful patent when they are have low

net worth compared to when they have high net worth. On the intensive margin, panel (d)

shows that the total market value of those new patents granted in a given year (scaled by

firms’ sales) doubles as they accumulate net worth.5 Appendix A shows that other measures

of patenting activity, such as the number of new patents per employee or the value of each

new patent, are also increasing with net worth. While individually none of these measures of

R&D or patenting activity fully captures firms’ innovation, they are collectively consistent

with the notion that firms face a higher relative return to innovation as they accumulate net

worth.

Pecking Order by Size and Age Although net worth maps directly into the shadow

price of external finance in our model, the corporate finance literature often uses other

measures of size and age to proxy for that shadow price. We now show that our pecking

3A potential concern with this result is that the firm’s capital stock is a component of net worth as well
as the denominator of the investment rate. Of course, that fact does not necessarily imply a mechanical
negative relationship between the two variables because investment expenditures, in the numerator of the
investment rate, is an endogenous choice. Nevertheless, Table 1 shows that firm-level investment rates are
also decreasing in the firms’ sales or employment, which have no mechanical relationship with its capital
stock. In addition, Appendix Figure A.2 shows that the investment-to-sales ratio is decreasing in net worth.

4A potential concern is R&D expenditures are under-reported in the data. We address this concern in
Appendix A by conditioning on observations after the firm reports its first positive R&D expenditure and
therefore has presumably set up the accounting infrastructure to report R&D going forward. We find similar
results in this subsample.

5We use Kogan et al. (2017)’s measure of the market value of these patents, i.e. the change in firm equity
value in a narrow window around the patent approval. We sum all of these changes that occur within a year
to obtain the annual change in the firm’s equity value due to new patents.
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Table 1
The Pecking Order by Various Measures of Size

(1) (2) (3) (4)
Investment R&D Patent Patent-value

rate share activity -to-sales

log net worth

γ̂ -0.068 0.024 0.049 0.021
(0.003) (0.003) (0.007) (0.005)

N 45935 47286 49105 31176
R2 0.263 0.857 0.639 0.678

log capital

γ̂ -0.087 0.026 0.064 0.022
(0.003) (0.003) (0.008) (0.005)

N 49986 51569 53625 33561
R2 0.272 0.852 0.633 0.671

log capital including intangibles

γ̂ -0.087 0.039 0.046 0.020
(0.003) (0.004) (0.009) (0.005)

N 44471 44794 46484 30549
R2 0.282 0.852 0.634 0.670

log employment

γ̂ -0.045 0.002 0.110 0.008
(0.005) (0.005) (0.011) (0.006)

N 45050 45827 47508 30868
R2 0.207 0.851 0.636 0.673

log sales

γ̂ -0.058 0.018 0.094 0.026
(0.004) (0.004) (0.010) (0.005)

N 49986 51569 53625 33561
R2 0.218 0.851 0.634 0.671

Mean 0.13 0.16 0.34 0.05

Notes: Results from estimating the regression ojt = αj + γ log sjt + ϵjt, where ojt is the outcome of interest
(investment rate, R&D share, indicator for positive patenting, or patent-value-to-sales ratio; sjt is the
measure of size (net worth, capital, capital including intangibles, sales, employment); and αj is a firm fixed
effect. We standardize the size measures log sjt over the entire sample. Standard errors, reported in
parentheses, are clustered at the firm level. The variable “capital including intangibles” is from Peters and
Taylor (2017) and is measured by incorporating both the firm’s past investment and R&D expenditures.
For variable definitions and sample selection, see Appendix A.
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order holds using these alternative sorting variables.

We summarize the pecking order using the regression

ojt = αj + γ log sjt + ϵjt, (1)

where ojt is the outcome of interest (investment rate, R&D share, indicator for positive

patenting, or patent-value-to-sales), sjt is the measure of size (net worth, capital, sales, or

employment), and ϵjt is a residual. The coefficient of interest is γ, which measures how the

outcome of interest varies with the particular measure of firm size. We standardize each size

variable log sjt over the entire sample in order to make the units of the coefficient γ easier

to interpret. We cluster standard errors at the firm level.

The first row of Table 1 quantifies the magnitudes and statistical significance of the bin-

scatters using the regression (1) in which sjt is measured with net worth. Column (1) shows

that having one standard deviation more net worth lowers the firm’s investment rate by

nearly 7 percentage points relative to the unconditional mean of 13 percentage points — a

more than 50% decline in investment as firms accumulate net worth. Columns (2) – (4) show

that having more net worth systematically raises our various proxies of innovation activity.

For example, having one standard-deviation higher net worth increases the market value of

that year’s patenting activity relative to sales by 2 percentage points, a nearly 40% increase

relative to its unconditional mean. All these effects are statistically significant.

The remaining rows of Table 1 show that these patterns hold for the other measures of

size. The second and third row proxy for size using physical capital (measured with plant,

property, and equipment) or the sum of physical and intangible capital (as measured by

Peters and Taylor (2017), which includes physical investment and R&D expenditures). The

fourth and fifth rows proxy for size using employment or sales, which are common in the

literature. Net worth and these various measures of size are correlated in both the data and

our model, so it is reassuring that the magnitudes of the pecking order are similar for all of

these measures.

Figure 2 shows the pecking order by firm’s age. We use Datastream to obtain age since
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Figure 2: The Pecking Order by Age

(a) Investment rates (b) R&D share

(c) Patent activity (d) Value of patents / sales

Notes: Results from estimating the regression ojt = αj +
∑

s∈S γsagesjt + εjt, where ojt is the outcome of
interest (investment rate, R&D share, indicator for positive patenting, or patent-value-to-sales); agesjt is a
dummy variable that takes the value of 1 if firm’s age of incorporation in period t is in group s and zero
otherwise; and αj is a firm fixed effect. We consider the following age groups:
S ≡ {[0, 5], (5, 10], (10, 15], (15, 20], (25, 30], (30, 35]}. We estimate the regression for firms with age up to 40
years, so the omitted group corresponds to age (35, 40]. Standard errors are clustered at the firm level and
dashed lines correspond to 90% error bands. Firms’ age since incorporation is obtained from Datastream.
For other variable definitions and sample selection, see Appendix A.

incorporation (not age since IPO) and estimate the regression

ojt = αj +
∑
s∈S

γsagesjt + ϵjt, (2)

where agesjt is a dummy variable that takes the value of 1 if the firm’s age of incorporation

in period t is within age bin s ∈ S ≡ {[0, 5], (5, 10], (10, 15], (15, 20], (25, 30], (30, 35]}. We

estimate the regression for firms with an age up to 40 years—above which the number of

observations per bin becomes too small—so the omitted group corresponds to the age range

(35, 40]. Consistent with our main results, we find that firms are more investment-intensive

when they are young but become more innovation-intensive as they become older.
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3.3 Additional Results

Appendix A.2 contains a number of robustness checks, which we summarize here:

(i) Other measures of innovation. Appendix Figure A.2 shows that our baseline bin-scatter

plots look similar for five other measures of innovation inputs: (a) the ratio of R&D

expenditures to sales, which is often studied in the literature; (b) the share of firms

with positive R&D; (c) the R&D share for firms that have reported positive R&D in

the past, and therefore have presumably set up the accounting infrastructure to record

formal R&D with less measurement error; (d) the patents-to-employees ratio, another

measure often studied in the literature; and (e) the average market value per patent

in a given year, a measure of patent quality.

(ii) Sources of variation. Appendix Table A.2 shows that the pecking order is robust to

using different sources of variation in the data, such as adding time fixed effects to

capture trend changes in the composition of investment and innovation.

(iii) Sample. Table A.3 shows that the pecking order is also robust when using different

samples of firms, such as all firms in the data or further conditioning only on Akcigit

and Kerr (2018)’s “continuously innovative firms” that have conducted positive R&D

or patenting activity at some point over the last five years.

4 Model

We now develop our model of investment and innovation that is consistent with the evidence

presented above. The core of the model is a set of heterogeneous firms who face the tradeoff

between investment and innovation. We specify the model in order to capture three salient

difference between capital and ideas which generate the pecking order of firm growth:

(i) Scale: a given amount of ideas has an optimal scale of capital that can be supported in

the market. Past that point, firms must grow by creating new ideas through innovation.

(ii) Tangibility : it is easier to sell capital than ideas. This feature implies that capital is

more collateralizable in external borrowing.

14



(iii) Risk : scaling up existing ideas through capital investment is less risky than innovat-

ing to create a new idea. We will exploit the differences in risk characteristics when

calibrating the model in Section 6.6

4.1 Environment

We now turn to the specifics of how we capture these salient differences in our model frame-

work. The model is set in discrete time and there is no aggregate uncertainty.

Heterogeneous Firms There is a set of heterogeneous firms that correspond to the es-

tablished firms in the economy. Each period, there is a fixed flow πd of new firms that enter

with zero debt and draw their initial levels of productivity and capital from some distribution

Φ0
t (z, k). We assume the initial distribution of productivity for new firms is related to the

distribution of productivity among incumbent firms (we will parameterize this dependence

in Section 6). Some type of imitation is necessary to ensure the model generates a positive

growth rate along the balanced growth path.

One can view these initial conditions as the outcomes of a rich process of firm dynamics

during the initial phase described in Section 2. We view these initial phase firms’ primary

activity as investing in innovation to create their first scalable idea. As a result, their

innovation intensity — measured, for example, as the R&D-to-sales ratio or the patents-to-

employee ratio — will be the highest in the economy, consistent with Akcigit and Kerr (2018).

These firms may also have a limited number of non-scalable products generating sales, so

their innovation intensity will also be decreasing in size, again consistent with Akcigit and

Kerr (2018). Since these firms have little capital to use as collateral, these firms also rely

heavily on equity finance, consistent with the role of venture capital and private equity.7

6More broadly, one can view our model as a special case of a more general framework in which firms
accumulate two assets which differ in their technology, risk, and tangibility properties. We focus on capital
and ideas specifically because ideas, being non-rival, are the ultimate source of long-run growth while capital,
being rival, is not.

7A more formal model of the initial phase could be formulated as follows. Each initial phase firm has a
(possible empty) set of non-scalable ideas/products which generate a small flow of sales. The firm’s primary
activity is spending resources into an innovation technology which generates a probability of receiving a
scalable idea. If successful, a scalable idea is drawn from the set of existing ideas among established firms, as
in the main text. Any innovation expenditures in excess of current sales must be financed by external equity.
Quantifying equity financing frictions requires taking a stand on issues unique to initial phase firms, such as

15



Production Each firm j an undifferentiated good yjt = Atzjtk
α
jt where j indexes a firm, zjt

is firm-specific productivity, kjt is the firm’s capital stock, and At is aggregate productivity.
8

Decreasing returns to capital α < 1 ensure there is an optimal scale of the firm for each

level of productivity, capturing the scale difference between capital and ideas described

above. Decreasing returns could capture either a feature of the production technology or,

alternatively, diminishing marginal revenue due to a downward-sloping demand curve. In

either case, decreasing returns generate positive profits which incentivizes innovation efforts.

After production, a random subset of firms learn that they must exit the economy, in

which case they sell their undepreciated capital (1− δ)kjt and pay back their debt. This exit

shock occurs with probability πd, which is also the inflow of new entrants, ensuring the total

mass of firms in production is constant over time. The exit shocks ensures that firms do not

outgrow their financial frictions in the long run.

Innovation and Investment Firms that will continue into the next period spend re-

sources on investment and innovation. Investment xjt yield capital in the next period fol-

lowing the standard accumulation equation kjt+1 = (1 − δ)kjt + xjt. Innovation intensity

ijt increases the probability of realizing a successful innovation, η (ijt). We assume the ar-

rival probability η(ijt) is increasing, concave, and bounded between 0 and 1. A successful

innovation permanently raises productivity by a factor ∆:

log zjt+1 =

log zjt +∆+ εjt+1 with probability η (ijt)

log zjt + εjt+1 with probability 1− η (ijt)

 , (3)

where εjt+1 ∼ N(0, σε) are idiosyncratic shocks to productivity growth unrelated to inno-

vation. Together, these assumptions capture the risk differences between capital and ideas:

concentrated ownership, agency issues with the manager, the value of expertise provided by financiers, etc.
Since these frictions are distinct from the financial frictions affecting established firms, we omit the initial
phase from our baseline analysis and assume the inflow of firms into the established phase is independent
of the degree of financial frictions. In this sense, our results about the aggregate costs of financial frictions
should be interpreted as a lower bound.

8Appendix B shows that this production function can be derived from a model in which labor is a variable
input in production: yjt = Atzjtk

α̃
jtℓ

ν̃
jt with α̃ + ν̃ < 1. The production function in the main text is equal

to the variable profit function maxℓjt Atzjtk
α̃
jtℓ

ν̃
jt − wtℓjt. In this case, the production parameter α reflects

the elasticity of revenue with respect this combination of inputs through α = α̃
1−ν̃ . We calibrate the model

under this interpretation.
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on the one hand, investment generates future capital with certainty, so its risk comes from

shocks to the marginal product of capital. On the other hand, innovation only generates a

new idea with uncertainty, but a new idea generates a large discrete jump in productivity.

This jump captures the arrival of new technologies, production practices, or new products

which are distinct from other idiosyncratic shocks.

The total amount of expenditures required to achieve success probability η(ijt) is ijt ×

(Atzjt)
1

1−α . This cost specification has two natural properties. First, the fact that it grows

along with aggregate productivity ensures the model has a balanced growth path. Second, the

fact that it scales with individual productivity implies that all financially unconstrained firms

have the same growth rate, a property known as Gibrat’s law. This property provides useful

benchmark both because it arguably holds among large firms in the data and because it is a

common feature of Schumpeterian models. Constrained firms grow faster than unconstrained

firms because constrained firms have a higher marginal product of capital.

Firms cannot sell their existing ideas, i.e., innovation expenditures must be non-negative

ijt ≥ 0. In principle, financially constrained firms may have an incentive to sell their ideas in

order to finance investment. In practice, the “market for ideas” — licensing arrangements,

patent sales, mergers and acquisitions, etc. — is rife with frictions. We view our assumption

that ijt ≥ 0 as the limit in which those frictions are sufficiently large to prevent trade in

the market for ideas altogether. These frictions allow the model to generate inaction in

innovation rates, which is common in the data.

Financing Firms have two sources of finance for their investment and innovation expen-

ditures. First, they can borrow externally, but this borrowing is subject to the collateral

constraint bjt+1 ≤ θkjt+1. This constraint can be derived from an environment in which

firms lack commitment to repay their debts, lenders can seize a fraction θ
1−δ of the firm’s

collateral in the event of default, and lenders only offer risk-free contracts. We assume that

firms can only post physical capital as collateral, capturing the fact that capital is more

tangible than ideas. In Section 5, we show that our results are robust to allowing firms to

partially collateralize ideas through an earnings-based constraint.

Firms can also finance expenditures using their internal resources, but they cannot raise
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new equity. This assumption implies that dividend payments must be non-negative:

djt = Atzjtk
α
jt + (1− δ)kjt − bjt − kjt+1 − (Atzjt)

1
1−α ijt +

bjt+1

1 + rt
≥ 0.

This no equity-issuance constraint is a parsimonious way of capturing the fact that seasoned

equity offerings are relatively rare among established firms.

Innovation Spillovers Aggregate productivity At captures the positive spillovers from

one firms’ innovation decisions onto others:

At =

(∫
zjtdj

)a
, (4)

where a ≥ 0 governs the degree of spillovers, e.g. the degree to which others’ ideas are relevant

or can be appropriated for use. We choose this form of spillovers to cleanly illustrate how

financial frictions interacts with the positive externality. These spillovers are used to conduct

our policy analysis in Section 8.

Household To close the model, there is a representative household with preferences rep-

resented by the utility function
∑∞

t=0 β
t C

1−σ
t −1

1−σ , where 1/σ is the elasticity of intertemporal

substitution (EIS). Since there is no aggregate uncertainty, firms discount future profits using

the risk-free rate
1

1 + rt
= β

(
Ct+1

Ct

)−σ

. (5)

4.2 Equilibrium

In order to define the equilibrium, it is convenient to formulate firms’ decisions recursively.

The firm’s individual state variables are its individual productivity zjt and its net worth

njt = Atzjtk
α
jt + (1 − δ)kjt − bjt. Exiting firms set kjt+1 = bjt+1 = ijt = 0, while continuing

firms’ decisions are characterized by the Bellman equation

vcontt (z, n) = max
k′,i,b′

n− k′ − (Atz)
1

1−α i+
b′

1 + rt
+

1

1 + rt
Et
[
vt+1(z

′, n′)
]
s.t. d ≥ 0 and b′ ≤ θk′, (6)
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where Et [vt+1(z
′, n′)] integrates over the next period’s exit shock, innovation success, and

idiosyncratic productivity shocks. The implied decision rules induce a law of motion for the

measure of firms, Φt+1(z, n) = T (Φt; k
′(·), i(·), b′(·))(z, n).

A competitive equilibrium is a sequence of value functions vt(z, n); policies k′t(z, n),

it(z, n), and b
′
t(z, n); distribution of firms Φt(z, n); real interest rate rt; and aggregate produc-

tivity At such that (i) firms optimize and the associated policy functions solve the Bellman

equation (6); (ii) the evolution of Φt(z, n) is consistent with firm decisions; (iii) the real in-

terest rate rt is given by (5) with Ct =
∫ (

yjt − (kjt+1 − (1− δ)kjt)− (Atzjt)
1

1−α ijt

)
dj; and

(iv) aggregate productivity is given by the definition (4).

Balanced Growth Path Because productivity grows over time, the limiting behavior

of the model exhibits a balanced growth path (BGP). Along the BGP, all macroeconomic

aggregates grow at the same rate 1 + g = (1 + g̃)
1+a
1−α , where g̃ is the growth rate of mean

firm-specific productivity Et[zjt]. Appendix B provides details.

5 The Pecking Order of Firm Growth

We now show that financial frictions create the pecking order of firm growth in the model.

We show that this result is robust to extending the model to incorporate an earnings-based

borrowing constraint. We also highlight the key parameters governing the pecking order,

motivating our calibration strategy in Section 6.

5.1 Characterizing Decision Rules

We will illustrate the model’s pecking order by plotting firms’ decision rules for investment

and innovation. A key object for characterizing these decision rules is the shadow value of

funds, ∂vt(z,n)
∂n

. This object is the marginal value of keeping a unit of resources inside the firm

and therefore represents the opportunity cost of instead spending those resources outside the

firm on investment or innovation.

Financial frictions increase the marginal cost of spending by raising the shadow value of

funds. Appendix B shows that the shadow value is equal to ∂vt(z,n)
∂n

= 1 + λt(z, n), where
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λt(z, n) is the Lagrange multiplier on the non-negativity constraint on dividends. That is,

the shadow value of funds is equal to the household’s value of funds, 1, plus the shadow

price of issuing equity, λt(z, n). At the optimum, firms equate this shadow price λt(z, n) to

the shadow price of additional borrowing when constrained, i.e. the expected value of the

multipliers on the borrowing constraint µt(z, n) in all possible current and future states.

We refer to the multiplier λt(z, n) as the financial wedge because it encodes how both

financial frictions affect the marginal cost of spending. Proposition 1 below shows how this

financial wedge affects firms’ optimal choices.9

Proposition 1. Consider a firm in period t that will continue operations in t + 1, has

productivity z, and has net worth n. Then there exist two functions nt(z) and nt(z, n) that

partition the individual state space such that

(i) Financially unconstrained: If n ≥ nt(z), then the financial wedge λt(z, n) = 0.

Being financially unconstrained is an absorbing state. The capital accumulation k∗t (z),

innovation i∗t (z), and borrowing b∗t (z) policies are independent of net worth.

(ii) Currently constrained: If n ≤ nt(z, n), then both the collateral constraint binds

b′ = θk′ and the financial wedge is positive λt(z, n) > 0.

(iii) Potentially constrained: If n ∈ (nt(z, n), nt(z)), the collateral constraint is not

currently binding b′ < θk′ but the financial wedge is positive λt(z, n) > 0.

In all of these cases, the optimal choices for external financing b′t(z, n), investment k′t(z, n),

and innovation it(z, n) solve the system

k′ + (Atz)
1

1−α i = n+
b′

1 + rt
if λt(z, n) > 0; otherwise, b′t(z, n) = b∗t (z), (7)

1 + λt(z, n) =
1

1 + rt
Et
[
(MPKt+1(z

′, k′) + 1− δ)× (1 + (1− πd)λt+1(z
′, n′))

]
+ θµt(z, n) (8)

1 + λt(z, n) ≥
η′(i)

(Atz)
1

1−α

1

1 + rt

(
Et[vt+1(z

′, n′|ιt+1(z, n) = 1]− Et[vt+1(z
′, n′|ιt+1(z, n) = 0)]

)
,

with = if it(z, n) > 0 (9)

9This proposition extends a similar result from Khan and Thomas (2013)’s model without innovation.
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where MPKt+1(z
′, k′) = αAt+1z

′(k′)α−1 is the marginal product of capital, λt(z, n) is the

Lagrange multiplier on the no equity issuance constraint d ≥ 0, µt(z, n) is the multiplier

on the collateral constraint b′ ≤ θk′, and ιt+1(z, n) denotes the realization of a successful

innovation.

Proof. See Appendix B. ■

The first part of Proposition 1 describes three different regimes of financial constraints.

Financially unconstrained firms have zero probability of facing a binding collateral con-

straint, which implies that their financial wedge is λt(z, n) = 0. These firms are able to

follow the policy rules from the version of the model without financial frictions and are in-

different over any combination of external financing b′ and internal financing d leaves them

financially unconstrained. Following Khan and Thomas (2013), we resolve this indetermi-

nacy by requiring that firms pursue the “minimum savings policy,” i.e., the smallest level of

b′ that leaves them unconstrained with probability one (see Appendix B for details).

The remaining firms are affected by financial frictions in some way. Currently constrained

firms’ collateral constraint binds in the current period, directly limiting their ability to bor-

row. Potentially constrained firms do not face a binding collateral constraint in the current

period, but may reach a future state in which the constraint becomes binding. Financial

frictions still affect these firms’ decisions through precautionary motives.

The second part of Proposition 1 characterizes the investment and innovation decisions

for any of these three types of firms.10 Equation (7) is the nonnegativity constraint on

dividends, which binds if the firm has a positive financial wedge λt(z, n) > 0. In this case,

innovation and investment expenditures must be financed out of either internal resources

or new borrowing. Equations (8) and (9) are the first-order conditions for investment and

innovation.11

10It is possible that the first-order conditions have multiple solutions due to the complementarity between
innovation and investment. However, in a simple version of the model, we have shown that, under our
functional forms for η(i), there is a wide range of parameters such that there is at most one interior solution
to the FOCs. Other than this interior solution, the only other possibility is at the corner with zero innovation,
which our algorithm takes into account. Consistent with this result, in the full calibrated model we have
numerically found at most one interior solution to the FOCs as well. Results available upon request.

11Our numerical algorithm solves the firm’s problem by jointly iterating over the policy functions and the
Lagrange multipliers λt(z, n) in (the detrended version of) this system (7) - (9). This procedure is very
fast because it avoids any numerical maximization or equation solving. In practice, we find computational
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As discussed above, the marginal cost of investment or innovation on the LHS of (8) and

(9) is the shadow value of funds 1 + λt(z, n). The marginal benefit of investment on the

right-hand side of the investment (8) is given by two terms. The first term is the discounted

expected marginal product of capital in the next period, weighting the marginal product in

different future states by the shadow value of funds. The second term is collateral benefit of

capital: each unit of capital provides θ units of collateral whose shadow value is the Lagrange

multiplier µt(z, n).

The marginal benefit of innovation on the RHS of (9) is the marginal improvement in the

probability of success (per unit of innovation expenditure) times the expected increase in firm

value from a successful innovation. This first-order condition may not hold with equality

if the firm is against the non-negativity constraint on innovation it(z, n) ≥ 0, generating

inaction in innovation expenditures.12

5.2 The Pecking Order of Firm Growth in the Model

Figure 3 illustrates the model’s pecking order by plotting the firms’ decision rules. The left

panel plots the investment and innovation policies k′t(z, n) and it(z, n) as a function of net

worth n, holding the level of productivity z fixed for the sake of illustration. The right panel

plots the net returns associated with each activity, i.e. the right-hand side of the respective

first-order condition minus one. We generate these plots using our calibrated parameter

values from Section 6, but the qualitative properties that emerge hold over a wide range of

the parameter space.

The model’s pecking order can be summarized by three distinct regions of net worth

space. First, for the lowest levels of net worth,, the firm spends all of its available resources

on capital and sets innovation expenditures it(z, n) = 0 because the net return to capital

lies strictly above the net return to innovation. This occurs because the firm is small, so

its marginal product of capital is high (reflecting the scale difference between capital and

runtimes comparable to using Carroll (2006)’s endogenous grid method, even though that method does not
apply to this model. Our algorithm is applicable to other investment models in which the endogenous grid
method does not apply. See Appendix C for details.

12We abstract from inaction in investment expenditures because it is extremely rare in our Compustat
sample (which aggregates over many production units within a firm). In contrast, around half of firm-year
observations have zero R&D expenditures in our data.
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Figure 3: The Pecking Order of Firm Growth in the Model
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Notes: the left panel plots capital expenditures k′t(z, n) (left axis) and innovation intensity it(z, n) (right

axis) in market equilibrium BGP of the calibrated model for fixed z. The right panel plots the net return to

these activities, defined as the RHS of Euler equations (8) and (9) minus 1. “No financial frictions” refers

to the model in which all firms following the unconstrained policies k∗(z) and i∗(z) from Proposition 1.

ideas), and because the firm is financially constrained, so it places a high value on collateral

(reflecting the tangibility difference between capital and ideas).13 In this region of the state

space, the firm only grows by accumulating capital. As it does so, the firm drives down

the return capital due to the diminishing marginal product and the lower shadow value of

collateral. At the same time, higher capital also raises the return to innovation because

productivity and capital are complements in production.

As the firm continues to grow and accumulate net worth, the net returns to capital and

innovation eventually intersect and the firm begins innovating. In this second region of

the pecking order, the innovation first-order condition (9) holds with equality, so the net

returns to capital and innovation must be equalized. However, both net returns are still

strictly greater than zero because the financial wedge is positive λt(z, n) > 0, so the firm is

still financially constrained. In this region of the state space, the firm grows both through

accumulating capital and through innovating (in the sense that it may successfully generate

a new idea and increase its productivity z). In this process, the “R&D share” — innovation

13Appendix D shows that most of the gap between the return to capital and innovation is due to the
higher marginal product of capital, not its collateral value, in our particular calibration.
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expenditures as a share of investment plus innovation expenditures — is increasing net worth,

as in the data. This occurs because the amount of innovation required to equate the two

returns is initially low but then increases over time due to the concavity of η(i).

For sufficiently high levels of net worth, the firm enters the last region of the pecking

order in which the shadow value of funds λt(z, n) is close to zero and the firm is essentially

unconstrained. In this region, the net returns to investment and innovation are close to zero,

implying that the firm’s policies become independent of net worth. In this case, the only

way in which the firm will grow further is through the realization a successful innovation.

If this happens, the firm’s productivity z will jump up and the firm may re-enter an earlier

region of the pecking order.

Taken together, these three regions of the state space form the pecking order of firm

growth in our model: firms are investment-intensive when they have low net worth but

slowly shift to becoming innovation-intensive as they accumulate net worth. This pattern

reflects the typical firm dynamics in our model for two reasons. First, firms enter the economy

with a new idea but less capital than the implied optimal scale, k < k∗t (z), placing most

new entrants in the first region of the pecking order in which they start growing through

investment.14 Second, incumbent firms who successfully receive a new idea from a successful

innovation will similarly enter a situation in which their current capital stock is below their

new, higher optimal scale k < k∗t (z). These firms may enter an earlier region of the pecking

order and prioritize investment before innovating again.

Financial Frictions Create the Pecking Order The degree of financial frictions is

key to the model’s pecking order because they control how quickly firms can accumulate

net worth and shift towards becoming innovation-intensive. In fact, Figure 3 shows that,

14In this sense, firms enter the economy rich in ideas but poor in capital. This assumption is consistent
with empirical evidence on scale-dependent growth from, e.g. Haltiwanger, Jarmin and Miranda (2013). In
particular, the literature often finds that employment and sales of small firms grow faster than large firms;
this occurs in our model because small firms have a high marginal product of capitalr. In addition, the
literature sometimes argues that the expected growth rates of large firms are independent of size (Gibrat’s
law); this occurs among unconstrained firms in our model because they choose the same innovation intensity
it(z, n) and therefore have the same probability of receiving a new idea (see the plots in Appendix D).
However, the fact that Gibrat’s law does not hold for all firms in our model complicates aggregation relative
to the typical endogenous growth model. Specifically, we need to keep track of the entire distribution of
firms in order to solve the model. See Appendix C for details.
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without financial frictions, the model would not have a pecking order at all; instead, firms

would immediately lever up to their optimal scale and enter the third region of the pecking

order in which they grow only through innovation. In this case, investment and innovation

would become independent of net worth, inconsistent with the data.

Alternative Forms of Financial Frictions While some form of financial constraints

are necessary to generate the pecking order in our model, the precise form we’ve chosen is

not. In general, financial constraints play two roles in our model. First, they imply that

firms with low net worth have a higher shadow value of funds 1 + λt(z, n) and, therefore,

face a higher marginal cost of spending resources on either activity. Second, the financial

constraints determine the collateral value of investment or innovation, which affects the

marginal benefit of either activity. In our model, the financial constraint bjt+1 ≤ θkjt+1

implies that capital is collateralizable but ideas are not.

We now describe a model extension in which ideas are also collateralizable and show that

the pecking order still holds. In this extension, we consider the alternative earnings-based

borrowing constraint

bjt+1 ≤ θ̃Et
[
At+1zjt+1k

α
jt+1

]
. (10)

This specification captures the spirit of the earnings-based constraints documented by Lian

and Ma (2021), Greenwald et al. (2019), and Caglio, Darst and Kalemli-Özcan (2021).15 We

assume expected future earnings enter this constraint in order to allow for future ideas, not

just current ideas, to be partially collateralizable. In this sense, this alternative constraint

also has similar features to equity issuance. We recalibrate the strength of the alternative

constraint θ̃ to match the same leverage as in our baseline model; therefore, the key difference

between this alternative constraint and our baseline is the fact that future ideas are now

collateralizable.

Figure 4 shows that this alternative constraint generates a similar pecking order to our

baseline model. The pecking order is similar because both constraints raise the marginal

cost of expenditures for firms with low net worth, implying these firms have a high marginal

15This functional form requires that the idiosyncratic productivity shocks εjt+1 are bounded in order to
support any borrowing. In practice, we bound the shocks in the interval [−3σε, 3σε].
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Figure 4: The Pecking Order with Collateralizable Ideas
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Notes: the left panel plots capital expenditures kt(z, n) (left axis) and innovation intensity it(z, n) (right
axis) in market equilibrium BGP of the alternative model with the financial constraint (10). The right panel
plots the return to investment and innovation from the alternative first-order conditions

1 + λt(z, n) =
1

1 + rt
Et [(MPKt+1(z

′, k′) + 1− δ)× (1 + (1− πd)λt+1(z
′, n′))] + θµt(z, n)Et[MPKt+1(z

′, k′)]

1 + λt(z, n) ≥
η′(i)

(Atz)
1

1−α

1

1 + rt
(Et[vt+1(z

′, n′|ιt+1(z, n) = 1]− Et[vt+1(z
′, n′|ιt+1(z, n) = 0)])

+
η′(i)

(Atz)
1

1−α

(Et[At+1z
′|ιt+1(z, n) = 1]− Et[At+1z

′|ιt+1(z, n) = 0)]) (k′)α.

“No financial frictions” refers to the model in which all firms following the unconstrained policies k∗(z) and

i∗(z) but using the same real interest rate from the market BGP.

product of capital. The primary quantitative difference is that the return to innovation is

shifted up relative to the baseline model, reflecting the fact that future ideas are now partially

collateralizable. However, the second region with positive innovation — in which the R&D

share slowly increases over time — is larger than in our baseline model. Therefore, the

pecking order is robust to allowing for the collateralizability of ideas. Given this robustness,

we maintain with our baseline model of financial frictions bjt+1 ≤ θkjt+1 for the rest of the

paper because it is canonical in macro-finance (e.g. Kiyotaki and Moore, 1997).

Other Forms of Sluggish Adjustment In our model, financial frictions are the only

reason that firms cannot immediately jump to their optimal scale of capital k∗t (z) and shift

to becoming innovation-intensive. However, there are other forces outside our model which
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also generate sluggish capital adjustment, such as adjustment costs, customer capital ac-

cumulation, or learning by doing. These other mechanisms would also slow down the rate

at which firms accumulate capital and shift to innovation-intensity, also consistent with the

pecking order in the data.16

We focus on financial frictions in this paper for two reasons. The first reason is em-

pirical: our results in Section A about the role of net worth suggest that firms’ financial

position determines their place in the pecking order. In addition, financial frictions imply

that investment and innovation are substitutes for constrained firms, which allows the model

to match the size-dependent response of innovation to investment tax shocks described in

Section 6. More generally, the empirical corporate finance literature has provided a vast

array of other evidence that financial frictions influence firms’ investment decisions. Taken

together, these empirical results suggest that financial frictions are a key source of sluggish

adjustment dynamics.

Comparison to the Data The second reason that we focus on financial frictions because

our approach is to independently calibrate their strength and ask how much of the pecking

order they generate, rather than to force financial frictions to account for the entire pecking

order. In particular, in Section 6, we choose the collateral constraint θ to target average bor-

rowing rates and leave the pecking order as an untargeted outcome of the model. Appendix

D shows that our model generates a qualitatively similar pecking order to the data in terms

of the R&D share over the firms’ lifecycle. However, among our Compustat firms, the slope

of the model’s pecking order is flatter than the empirical regression coefficients in the data.

This result is consistent with the idea that other forms of sluggish adjustment are necessary

to fully account for the empirical pecking order. We leave combining financial frictions with

these other forms of sluggish adjustment for future research.

16We have solved a version of the model with quadratic capital adjustment costs to show this result.
Results available upon request.
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5.3 Key Parameters Generating the Pecking Order

Numerically, we have found that two sets of parameters are particularly important in deter-

mining the pecking order. The first is the strength of financial frictions, which are governed

by the collateral constraint θ. As described above, a tighter constraint (lower θ) slows down

the rate at which firms accumulate net worth and shift toward becoming innovation-intensive.

The second key set of parameters govern the innovation technology: the probability of

successfully generating an idea, η(i), and the size of successful innovations, ∆. Appendix

Figure D.2 illustrates the effects of a more efficient innovation technology, which raises the

success probability η(i) for any level of innovation intensity i. The higher success probability

shifts up the returns to innovation, which implies that it intersects the returns to capital at

a lower level of net worth. Therefore, firms begin innovating earlier on, and conditional on

innovating, do more innovation.17

6 Parameterization

We now calibrate the model, focusing on the key parameters that govern the magnitude of

the pecking order. We show that the calibrated model matches various untargeted statistics,

including the response of innovation to investment tax shocks.

6.1 Strategy for Disciplining Key Forces

As discussed in Section 5, the model’s pecking order is governed by the degree of financial

frictions and the innovation technology.

Financial Frictions Following much of the literature, we choose the tightness of the

collateral constraint θ to match the average leverage of firms in the data. Importantly, we

target average leverage in the microdata underlying the Quarterly Financial Reports (QFR)

reported in Crouzet and Mehrotra (2020). This sample of firms is broader than the publicly-

traded firms in Compustat and is therefore more representative of the aggregate economy.

17Appendix D also describes an extension of the model with heterogeneity in the size of successful inno-
vations, ∆. In this extension, the across firm correlation between size and innovation intensity depends on
the correlation of firm size with ∆. However, the pecking order always holds within firms over time.
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In Section 6.3, we validate the magnitude of our financial frictions using the response of

investment and innovation to investment tax shocks.

Innovation Technology The main challenge in our calibration is to pin down the prop-

erties of the innovation technology, i.e., the probability of a successful innovation η(i) and

the size of successful innovations ∆. While we can arguably measure innovation inputs

using R&D expenditures, there is no direct measure of the output, successful innovations.

Given this difficulty, we instead infer successful innovations using what firms reveal through

their forward-looking investment decisions. In our model, unconstrained firms that receive a

successful innovation experience an investment spike—a large but short-lived surge in their

investment rate — in order to adapt their capital stock to the new, higher level of produc-

tivity.18 Therefore, the responsiveness of investment spikes to R&D expenditures should be

informative about the innovation technology.

We study the relationship between investment spikes and R&D expenditures in our Com-

pustat data. Following Cooper and Haltiwanger (2006), we define investment spikes as years

in which a firm’s investment rate is above 20%. In our sample, the frequency of investment

spikes is 23% and the average size of an investment spike is 37%, similar to Cooper and

Haltiwanger (2006)’s Census sample.

We estimate the linear probability model

1{xjt
kjt

≥ 0.2} = αj + αst +
H∑
h=1

βh

(
RDjt−h

ỹjt−h

)
+ Γ′Xjt + ϵjt, (11)

where
xjt
kjt

denotes the investment rate of firm j in period t;
RDjt
ỹjt

the R&D-to-sales ratio; αj

and αst firm and time by 4-digit sector fixed effects; Xjt is a vector of firm-level controls;

and ϵjt is a residual. Our coefficient of interest, β1, measures how the probability of an

investment spike is related to previous R&D expenditures. The vector Xjt includes variables

that attempt to control for two alternative reasons for investment spikes that are unrelated

18This approach relies on the assumption that a successful innovation creates a discrete jump in productiv-
ity while shocks unrelated to productivity, εjt, follow a normal distribution. Again, our formulation is aimed
at capturing the non-normal, discrete nature of innovation, which are classic elements in Schumperterian
growth models (e.g., Aghion and Howitt, 1992; Grossman and Helpman, 1991).

29



Table 2
R&D Expenditures Predict Investment Spikes

(1) (2) (3)

RDjt−1

ỹjt−1
1.27 1.09 1.10

(0.16) (0.15) (0.15)

Controls No Cash flows Cash flows,

years since the last spike,

capital to labor ratio

Observations 55,647 55,647 55,647
Adj. R2 0.280 0.297 0.300

Notes: Results from estimating 1{xjt

kjt
≥ 0.2} = αj + αts +

∑4
h=1 βh

(
RDjt−h

ỹjt−h

)
+ Γ′Xjt + ϵjt, where

xjt

kjt

denotes the investment rate of firm j in period t;
RDjt

ỹjt
the R&D-to-sales ratio; αj and αts firm and time by

sector fixed effects; Xjt is a vector of firm-level controls; and ϵjt is a residual. Column (1) reports estimates
for a specification without including-firm level time-varying controls; Column (2) those that include cash

flows (
cfjt
kjt

) as a control; and Column (3) those that also include the lumpy-investment controls (years since

the last investment spike, years since spiket−1, and the standardized capital-output ratio,
kjt

njt−1
). To

estimate the models reported in Columns (1) and (2), we restrict the sample to that with available
observations in Column (3). For variable definitions and descriptive statistics, see Appendix A.

to the innovation technology. First, we include the ratio of cash flows to lagged capital to

absorb the effect that changes in firms’ cash-on-hand has on both investment spikes and

R&D expenditure. Second, we control for the number of years since a previous investment

spikes and the capital-to-labor ratio, which are informative about the effects of non-convex

capital adjustment costs.19 Appendix A.1 details the construction of these additional control

variables. We set H = 4 for our baseline model and explore alternative lags in robustness

analysis. We two-way cluster standard errors by firm and year.

Table 2 shows that, consistent with the predictions of our model, R&D expenditures are

a strong predictor of investment spikes. Column (1) reports the estimated coefficient β1

from the linear probability model (11) without any additional controls Xjt. Quantitatively,

the estimated coefficient implies that having last year’s an R&D-to-sales ratio one standard

deviation above the mean increases the probability of an investment spike by 7 percentage

points, i.e. a 30% increase in the probability of a spike relative to its unconditional mean.

19(S, s) models predict that an investment spike is more likely when the firms’ capital stock k is farther
from its optimal scale k∗(z). This “gap” is increasing if firms have not had an investment spike in the recent
past, or if the capital-to-labor ratio is far from normal (under the assumption that the choice of labor is
more flexible and therefore better reflects current productivity z).
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Column (2) shows that this estimate survives controlling for changes in cash flow which may

independently affect both investment and R&D expenditures.

One may be concerned that investment spikes in the data are driven by non-convex

capital adjustment costs, not the arrival of new ideas as in our model. We address this

concern in three ways. First, we target the passthrough of R&D expenditures to investment

spikes, not the overall frequency of investment spikes. Second, we note that fixed costs and

irreversibilities most naturally occur at the unit of the plant or even production line, and

Compustat firms aggregate over many such units. Finally, Column (3) in Table 2 shows that

our regression coefficient is virtually unaffected by controlling for the years since the last

spike and the capital to labor ratio.

While we admittedly do not have exogenous variation in R&D expenditures to identify

the causal effect of innovation on investment spikes, we view these results are suggesting

a tight link between the two. Therefore, we will target the estimated coefficient β1 in our

model calibration by running the same regression on model-simulated data.

Appendix A.3 presents robustness analysis and additional supportive evidence about the

relationship between R&D expenditures and investment spikes. We show that the results

presented in Table 2 are robust to using an alternative definition of investment spikes that

considers a sector-level threshold instead of an absolute threshold, using more or less lags

of R&D-to-sales ratios, and using additional controls used in the investment literature (e.g.,

size, sales growth, and the share of current assets). We also present a complementary event

study which shows that R&D-to-sales tend to increase before investment spikes.

6.2 Calibration

We now describe our calibration in more detail. We proceed in two main steps. First,

we fix a subset of parameters to match standard targets. Second, we choose the remaining

parameters so that moments from the model’s BGP match key features of the data, including

the regression coefficients documented above.

For the calibrated model, we assume that initial scalable idea z of new entrants is drawn

from log-normal distribution whose mean z0 equals the mean of the distribution of incumbent

firms, and set the dispersion in those draws to σz = ∆. We further assume that all new
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Table 3
Fixed Parameters

Parameter Description Value
Household
β Discount factor 0.97
1/σ EIS 1.50
Firms
α Output elasticity w.r.t inputs 0.55
δ Depreciation rate 0.08
πd Exit rate 0.08

Notes: parameters chosen exogenously to match external targets.

entrants start with an initial capital stock k0 roughly equal to 4% of the average capital stock

in the economy. This value is between the two possibilities discussed by Khan and Thomas

(2013): having new entrants’ capital be 10% of average capital or having their employment

be 10% of average employment (in the extended model with labor discussed in Footnote

8). We show that our main results are robust to alternative choices for both the mean and

standard deviation of this initial distribution in Section 7.

Fixed Parameters Table 3 contains the parameters that we exogenously fix. We set the

EIS 1/σ = 1.5, in line with estimates from the finance literature. We make this choice

because changes in the real interest rate are very powerful in our model given that firms face

no other adjustment costs. We set the EIS on the high end of estimates from the literature to

dampen this unrealistic interest-sensitivity of investment. Given this value of the EIS, we set

the household’s discount factor β so that the real interest rate is 4% annually along the BGP.

We set the elasticity of output with respect to inputs to be α = 0.55, close to the 0.59 value

Cooper and Haltiwanger (2006) estimate for manufacturing plants.20 We set the depreciation

rate to δ = 8% annually to imply an aggregate investment-to-capital ratio of 10% along the

BGP. Finally, we assume πd = 8% of firms exit per year, broadly consistent with exit rates

in both the Business Dynamics Statistics (BDS) and in our Compustat sample.

20In the model with labor discussed in Footnote 8, our choice of α is consistent with an underlying
production function in which the labor share is 2/3 and the total returns to scale is 0.85.
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Selection into Compustat We now turn to the set of parameters that we choose to

match targets in the data. Many of these targets are drawn from our Compustat data. In

the model, we mirror selection into Compustat by conditioning on firms that have survived

at least five years. This choice matches the median time to IPO of seven years from Ottonello

and Winberry (2020), but allowing the “initial phase” outside our model to take two years.

The logic behind this choice is that all established firms in our model would like to enter

Compustat at some point in their life, so the most informative variable to select on is the

average age of firms that end up in Compustat.21

Fitted Parameters Table 4 contains the parameters that are endogenously chosen along

with our empirical targets. The targets labeled “Compustat” are drawn from our Compustat

data, and the corresponding statistic in the model is drawn from the selected subset of firms

described above.

The first three parameters in the left panel of Table 4 govern the innovation technology.

We assume that the probability of success is given by η(i) = 1 − exp{−η0 [(1 + i)η1 − 1]},

which is increasing, concave, and bounded between 0 and 1. In addition, η′(0) is finite,

allowing the model to generate inaction in R&D expenditures as discussed earlier. Under this

functional form, the parameter η0 governs the overall efficiency of the success probability with

respect to innovation intensity while the parameter η1 governs the slope of this relationship.

The parameter ∆ then controls the size of successful innovations.

While all parameters are jointly chosen to match all moments, we have found that the

innovation technology is primarily pinned down by the first three targets in the right panel

of Table 4. The regression coefficient from Section 6.1 has a strong influence over both

parameters that govern the probability of success, η0 and η1. In contrast, the average R&D to

sales ratio, E[RDjt/yjt|RDjt > 0], primarily influences the curvature parameter η1 because it

governs how quickly the marginal benefit of additional R&D spending is exhausted.22 Given

21In contrast, cutoffs based on size would be require us to find a relevant comparison group of non-
Compustat firms that does not include the Hurst and Pugsley (2011) “lifestyle entrepreneurs” which have a
permanently small optimal scale.

22We target the average R&D-to-sales ratio conditional on positive R&D because the R&D inaction rate
in Compustat (45%) is much higher than in our model (10%). We prefer to not target this inaction rate
because Compustat inaction may partly reflect misreporting rather than true inaction.
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Table 4
Fitted Parameters and Empirical Targets

Parameter Description Value Target (all joint) Data Model
Innovation technology
η0 Idea arrival 1.01 Regression coefficient (Compustat) 1.09 1.03
η1 Idea arrival 0.21 E[RDjt/yjt|RDjt > 0] (Compustat) 0.06 0.06
∆ Size of ideas 0.10 E[xjt/kjt|spike] (Compustat) 0.37 0.35
Financial frictions
θ Collateral 0.52 E[bjt/kjt] (QFR) 0.34 0.30
Productivity shocks
σε SD of shocks 0.03 σ(xjt/kjt) (Compustat) 0.15 0.13
Innovation spillovers
a Spillovers 0.55 Growth rate (aggregate data) 0.02 0.02

Notes: left panel contains the parameters chosen to match the moments in the right table. “Idea arrival
function” refers to η(i) = 1− exp{−η0 [(1 + i)η1 − 1]}. “Regression coefficient” is the regression coefficient
β1 from Table 2 column (2). E[RDjt/yjt|RDjt > 0] is the average R&D to sales ratio for observations with
positive R&D expenditures in the Compustat sample described; in the model, we compute R&D

expenditures as Atz
1

1−α it(z, n). E[xjt/kjt|spike] is the average size of investment spikes in the Compustat
sample. E[bjt/kjt] is the average gross leverage of firms in the QFR reported by Crouzet and Mehrotra
(2020). σ(xjt/kjt) is the standard deviation of investment rates in our sample. “Growth rate” is the
aggregate growth rate along the BGP.

these two targets, the average size of investment spikes E[xjt/kjt|spike] pins down the size of

successful innovations ∆.

As described above, we choose the the degree of financial frictions θ to match average

leverage E[bjt/kjt] from the QFR data reported in Crouzet and Mehrotra (2020). The dis-

persion of idiosyncratic shocks σε then allows us match the dispersion of investment rates.

Given all these targets, the model without any innovation spillovers (i.e. a = 0 in

aggregate productivity) generates an aggregate growth rate less than 2% per year. We then

choose the spillovers a residually in order to match a long-run growth rate of 2% per year.

This approach is an admittedly simple way of disciplining the spillovers associated with

innovation. We therefore view our policy results, which are a consequence these spillovers,

as a numerical illustration of the key economics for a reasonable degree of spillovers.

Model Fit Table 4 shows that the model matches the targeted moments fairly well (even

though it is overidentified due to nonlinearity). Importantly, the model is very close to

the targets informative about both the innovation technology and the degree of financial

frictions. Averaging across all firms, the implied excess return to capital is 5.4% and the
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excess return to innovation (conditional on innovating) is 2.7%.

Calibrated Parameters The calibrated parameter values are broadly consistent with

the range of estimates in the literature. The collateral constraint implies that about half

of tangible capital is collateralizable. The volatility of idiosyncratic shocks σε is lower than

typical estimates in versions of the Hopenhayn (1992) model with capital, but the dispersion

of investment in our model is also driven by endogenous innovations, which reduces the size

of exogenous shocks necessary to match the data.23

The most natural point of comparison for our estimated innovation technology is to the

empirical literature on the response of patenting to R&D spending, which is often used to

discipline Schumepterian models (see, e.g., Acemoglu et al. (2018)). These studies typically

find an average elasticity of successful innovation to R&D around 1/2, while our estimates

imply an average elasticity 0.74. One interpretation of this finding is that investment spikes

capture a broader set of innovations than do patents.

6.3 Validation

Our calibrated model matches a number of untargeted statistics in the data.

Investment Tax Shocks Appendix D provides new evidence on the response of invest-

ment and innovation to exogenous changes in the after-tax price of investment. Specifically,

we study variation in the after-tax price of investment induced by the Bonus Depreciation

Allowance, a countercyclical investment stimulus used during the 2001 and 2008 recessions.

Following Zwick and Mahon (2017), we exploit sectoral heterogeneity in the policy treat-

ment to estimate the effects of the Bonus using a difference-in-difference empirical design.

We first reproduce Zwick and Mahon (2017)’s finding that the Bonus substantially raises

firm-level investment in our Compustat data. We then show that the Bonus also raises R&D

expenditures, especially for small firms.

We replicate the Bonus Depreciation Allowance in our model by feeding in a comparable

shock to the relative price of investment (Appendix B shows how to map investment taxes

23In addition, existing models often use mean-reverting AR(1) processes, while our process is a unit root,
creating more cross-sectional dispersion in investment for a given volatility of shocks.
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into the relative price). We then replicate the same regressions described above on data

simulated from our model and find that the model roughly matches all of these regression

coefficients.Hence, our model is consistent with the cross-price elasticities of innovation to

investment prices by firm size. We view this result as validating the strength of financial

frictions in driving investment and innovation decisions in our model.

Firm Heterogeneity More broadly, Appendix D analyzes the two sources of firm het-

erogeneity in our model, lifecycle dynamics and productivity differences. Following the

pecking order of firm growth, most young firms start investment-intensive but become more

innovation-intensive as they age. Increases in productivity, due to either successful inno-

vations or productivity shocks, raise the marginal product of capital and shadow value of

funds 1 + λt(z, n), which induces firms to invest and borrow more but innovate less. These

dynamics imply positive investment- and innovation-cash flow sensitivities, as in the data.

We also show that the model matches a number of untargeted moments from Compustat.

7 Aggregate Costs of Financial Frictions

We now show that financial frictions lead to substantial long-run losses in aggregate output,

primarily through reducing innovation and growth.

7.1 The Costs of Financial Frictions

Financial frictions reduce aggregate output through two channels in our model. First, as

described in Section 5, they slow down the rate at which firms shift towards becoming

innovation intensive. Aggregating across firms, lower innovation reduces the long-run growth

rate along the BGP:

g∗ ≈ 1

1− α
(1 + a)(e∆ − 1)

∫
ιjtdj, (12)

where ιjt is an indicator for whether firm j generated a new idea. We quantify this channel

by comparing our calibrated model to the frictionless model in which there are no financial

frictions. In the frictionless model, all firms follow the unconstrained policies k∗t (z) and i
∗
t (z)

from Proposition 1, which imply a higher arrival rate of new ideas.
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Second, financial frictions distort the allocation of capital across firms with different

levels of productivity, reducing the level of TFP as in the misallocation literature. Formally

decomposing the misallocation costs of financial frictions separately from the growth costs

is conceptually difficult in our model because changes in the allocation of capital also affect

innovation decisions. We instead provide a simple upper bound for the misallocation costs

by computing the counterfactual level of output which solves

Y ∗
t = max

kjt
At

∫
zjtk

α
jtdj such that

∫
kjtdj ≤ Kt.

This counterfactual holds aggregate capital fixed, but distributes it across firms to maximize

current output given the current distribution of productivity. This object is an upper bound

on misallocation costs because it assumes capital can be perfectly re-allocated after the

realization of the productivity shocks zjt. Appendix B shows that the ratio of actual output

to this optimal level is

Yt
Y ∗
t

=

∫
zjt

(
kjt
Kt

)α
dj(∫

z
1

1−α
jt dj

)1−α .

Our upper bound on the misallocation costs of financial frictions is then Yt
Y ∗
t
− 1.

Quantitative Results The top row of Table 5 shows that the growth costs of financial

frictions are large: without financial frictions, the long-run growth rate would be more

than 40 basis points higher per year. Cumulated over long horizons, this difference implies

substantial losses in aggregate output; for example, after fifty years, GDP in the frictionless

model is nearly 23% higher than in the calibrated model.24

These findings about the long-run growth costs of financial frictions complement the

24Financial frictions affect the long-run BGP growth rate because our model is a fully endogenous growth
model. Alternatively, we could specify a semi-endogenous growth model by assuming that new ideas increase
productivity log zjt by the factor ∆ × (AtEt[zjt])

ϕ with ϕ < 0 (our baseline model corresponds to ϕ = 0).
In this case, removing financial frictions would no longer affect the BGP growth rate, but would still raise
growth along the transition path following their removal. Furthermore, the gains from removing financial
frictions along this path would be continuous in the parameter ϕ. Performing this exercise would require
making assumptions about the dynamics of how the financial frictions are removed and what agents expect
about that path, estimating a value for the parameter ϕ, and potentially require modeling other short-term
adjustment frictions as well. We view our analysis here as a simple, parsimonious benchmark to illustrate
the quantitative magnitude of financial frictions on growth without taking a specific stand on these issues.
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Table 5
Aggregate Output Losses from Financial Frictions

Lost growth Lost growth after Misallocation costs
per year 20 years 30 years 40 years 50 years (upper bound)

Baseline 41bps 8.6% 13.1% 17.9% 22.8% 5.0%

Higher η0 54bps 11.0% 16.9% 23.2% 29.8% 4.8%
Higher η1 54bps 11.0% 16.9% 23.2% 29.8% 4.6%
Higher θ 33bps 6.7% 10.2% 13.8% 17.5% 3.9%
Lower a 39bps 7.9% 12.1% 16.5% 21.1% 5.2%
Lower z0 35bps 7.1% 10.8% 14.7% 18.7% 3.8%
Higher k0 39bps 7.9% 12.1% 16.5% 21.0% 4.6%

Notes: output losses from financial frictions computed relative to frictionless model in which all firms follow
the unconstrained policies k∗(z) and i∗(z) from Proposition 1. “Lost growth” is the difference in the BGP
growth rate g∗ in the frictionless model vs. the full model. “Lost growth after” cumulates the lost growth
over different horizons. “Misallocation (upper bound)” refers to the losses from capital misallocation
discussed in the main text. “Baseline” refers to calibration model. “Higher” and “lower” refer to sensitivity
analysis with respect to parameter values 25% higher or lower than their calibrated value.

literature which studying the misallocation costs of financial frictions. For example, Buera,

Kaboski and Shin (2011) argue that the misallocation costs of financial frictions can be up

to 40% of aggregate TFP in developing economies.25 In contrast, our model is calibrated

to the US economy, in which financial markets are much better developed and therefore

misallocation is less than 5%. We nevertheless find that that financial frictions are costly

for this US in the long run due to reduced innovation. In this sense, our results suggest that

the main aggregate costs of financial frictions in the long run is that fewer new ideas are

discovered rather than existing ideas going underfunded.26

Sensitivity Analysis Table 5 also performs sensitivity analysis with respect to key pa-

rameters in the model. The first two rows show that making the innovation technology more

efficient (raising η0 or η1 by 25%) increases the growth costs but decreases the misallocation

costs of financial frictions. This occurs because higher η0 or η1 raise the marginal benefit

25Of course, the quantitative magnitudes of misallocation are debated in the literature. Midrigan and Xu
(2014) argue that the TFP losses from misallocation are around 5-10% in a model calibrated to Korea.

26Another way to compare the growth and misallocation costs would be to compute the present value of
lost growth cumulated over time. However, performing this calculation would require computing the entire
transition path, which would require making assumptions about the dynamics of how the financial frictions
are removed, what agents expect about that path, potentially require modeling other short-term adjustment
frictions, etc. An alternative simple back-of-the-envelope alternative is to simply compute the difference in
present values of output implied by these different growth rates using a 4% discount rate. Under that metric,
the present value of lost growth from financial frictions is approximately 26%.
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of innovation, implying that more firms are constrained in terms of innovation relative to

investment. The third row of Table 5 shows the effects of raising the collateral constraint by

25%, reducing the degree of financial frictions. As expected, less financial frictions reduce

both the growth and misallocation costs. However, the growth costs are still substantial.

The remaining rows of Table 5 contain further sensitivity analysis. Lower innovation

spillovers a reduces the growth effects of financial frictions, as expected from (12). Lower

productivity among new entrants z0 implies that entrants are closer to their efficient scale

and therefore less constrained than in the baseline calibration, which reduces the growth

and misallocation costs of financial frictions. Raising the capital stock of new entrants k0

similarly implies that entrants start out closer to their efficient scale, reducing the growth

and misallocation costs. In all cases, the growth costs are still substantial.

Role of Innovation Spillovers As we noted in Section 6, we calibrated the innovation

spillovers a = 0.55 residually to match a long-run growth rate of 2% per year. One concern

with this strategy is that there may be other sources of this long-run growth rate outside our

model. As a robustness check, we recalibrated the model to target an annual growth rate of

g = 1.5% per year, resulting in smaller innovation spillovers of a = 0.12. In this case, the

growth costs of financial frictions are still substantial: the annual growth rate is 32bps per

year lower due to financial frictions.

7.2 Distributional Effects of Financial Frictions

In the cross section, financial frictions depress innovation primarily in financially constrained

firms who are in the early stages of the pecking order. Figure 5 compares the distribution

of detrended capital stocks in our calibrated model and the frictionless model. Given the

differences in growth rates, direct comparisons across the two economies are not valid, but

comparisons within each economy are still meaningful. From this perspective, the size dis-

tribution in our full model has more mass in both the left and right tails than does the

distribution without financial frictions. The thickness of the left tail reflects the fact that it

takes new entrants longer to grow, while the thickness of the right tail reflects the fact that
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Figure 5: Distributional Effects of Financial Frictions

Notes: distribution of capital along the balanced growth path. Capital stocks have been detrended in order

to compute a stationary distribution, but the resulting distribution has the same cross-sectional properties

as the raw distribution (see Appendix B). “Full model” refers to our calibrated model. “Without financial

frictions” refers to the version of the model in which firms follow the unconstrained policies k∗(z) and i∗(z)

from Proposition 1.

unconstrained firms who survive follow a random growth process with exogenous death.27

Because most innovation is done by financially unconstrained firms, Appendix D shows

that temporary financial shocks θt do not have a particularly persistent effect on aggregate

growth in our model (despite the sizeable effects of permanent differences in θ described

above). This result contrasts with the stylized fact that financial shocks have more persistent

negative economic effects in the data (e.g., Cerra and Saxena, 2008). In our model, the

majority of innovation at a given time is performed by unconstrained firms, as described

above. These firms are not directly affected by the shock and therefore face no impulse to

lower innovation. However, an important caveat to this result is that we abstract from how

financial frictions affect the initial phase of firm growth.28

27In fact, these random growth with death dynamics in the right tail generate a Pareto tail (see, e.g., Jones
and Kim (2018)). Unfortunately, the model’s tail is thinner than in the data because the expected size of
successful innovations must be relatively small to match the average size of investment spikes. However, we
can thicken the tail by incorporating heterogeneity in the size of successful innovations, which would create
heterogeneity in the expected growth rates (again in the spirit of Jones and Kim (2018)). In this extension,
the average of these growth rates would still be pinned down by the average size of investment spikes, but
the thickness of the right tail would be driven by firms with higher realized growth.

28Ates and Saffie (2021) study how financial shocks affect aggregate productivity through the composition
of firms’ entry in the context of a small open economy experiencing a sudden stop.
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8 Policy Implications of Financial Frictions

The equilibrium is not socially efficient because firms do not internalize the positive spillovers

from their innovations. In this section, we study a constrained-efficient planner who inter-

nalizes the externality. We show that financial frictions create a tradeoff in how the planner

chooses the distribution of investment and innovation across firms. We find that simple poli-

cies do not decentralize this allocation because they do not generate the same distribution.

8.1 Planner’s Allocation

We characterize the problem of a constrained-efficient social planner who faces the same

financial constraints as private firms but internalizes the positive spillovers from innovation.

In principle, this planner may also want to change the private allocation due to pecuniary

externalities through the real interest rate (which may affect welfare due to market incom-

pleteness). We exclude these pecuniary externalities from the main text because they do not

affect the long-run choices of the planner and have already been extensively studied in the

literature (see, for example, Geanakoplos and Polemarchakis, 1986; Lorenzoni, 2008; Dávila

and Korinek, 2018).29

Appendix B formulates the planner’s problem recursively. The problem is technically

challenging because the state variable is the entire distribution of firms and the control

variables are entire functions of the firms’ individual states. We overcome this challenge by

solving the problem in the function space following Lucas and Moll (2014) and Nuño and

Moll (2018). We arrive at the following characterization of the solution:

Proposition 2. In the constrained-efficient allocation, individual allocations solve the aug-

mented Bellman equation

ωcont
t (z, n) = max

k′,b′,i
n− k′ − (Atz)

1
1−α i+

b′

1 + rt
+Λtz +

1

1 + rt
Et[ωt+1(z

′, n′)] s.t. d ≥ 0 and b′ ≤ θk′

(13)

29It is straightforward to incorporate pecuniary externalities; results available upon request.
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where Λt is the planner’s shadow value of the innovation externality:

Λt = a

(∫
zjtdj

)a−1

×
∫

(1 + λjt)

[
zjtk

α
jt −

1

1− α
(A

α
1−α
t zjt)

1
1−α ijtdj

]
(14)

with the convention that λjt = ijt = 0 for exiting firms.

Proof. See Appendix B. ■

The only difference between the private Bellman equation (6) and the planner’s aug-

mented Bellman equation (13) is the shadow value of the innovation externality, Λt. Equa-

tion (14) shows that this shadow value is the product of two terms: the marginal impact

of an individual firm’s productivity, zjt, on aggregate productivity times the marginal so-

cial benefit of higher aggregate productivity.30 This object is itself an integral of a prod-

uct of two firm-level objects: the marginal increase in production net of innovation costs,

zjtk
α
jt − 1

1−α(A
α

1−α
t zjt)

1
1−α ijt, times the firms’ shadow value of funds, 1 + λjt.

Financial frictions amplify the positive externality of innovation in the sense that a higher

shadow value of funds 1+λjt raises the social value of innovation through the product in (14).

This amplification occurs because the higher production net of innovation costs increases

firms’ cash flows and therefore alleviates their financial constraints.

Tradeoff Between Investment and Innovation While the planner prefers more in-

novation than in equilibrium (Λt > 0), it faces a tradeoff in terms of investment due to

financial frictions. On the one hand, higher innovation for constrained firms requires less

investment expenditures due to their flow-of-funds constraint, i.e. investment and innovation

are substitutes for constrained firms. On the other hand, higher innovation incentivizes more

investment for unconstrained firms due to the complementarity between productivity and

capital, i.e. investment and innovation are complements for unconstrained firms.

In order to characterize this tradeoff, we solve for the transition path chosen by the

planner starting from the equilibrium BGP. Figure 6 compares the equilibrium allocation to

30Consistent with our focus on established firms, we also assume that the planner takes as given the
distribution of new entrants, i.e. does not take into the positive externality through imitation. We make
this simplifying assumption because we treat the initial phase as largely outside our model; incorporating
this margin would only further increase the positive externality of innovation.
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Figure 6: Firm-Level Allocations Chosen by Planner
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Notes: decision rules in market equilibrium vs. constrained-efficient allocation in initial period of the transi-

tion, for a given level of productivity z. Left panel plots innovation expenditures (Atz)
1

1−α i(z, n) for a firm

with average productivity z for a given level of net worth. Dashed black line is the private policy rule in the

market equilibrium and solid blue line is the planner’s policy rule. Right panel plots the percentage difference

between the planner’s capital accumulation policy relative to the private policy in the market equilibrium.

the planner’s allocation in the first period of the transition path. The left panel shows that

the planner weakly increases innovation expenditures for all firms because the shadow of the

innovation externality is positive Λ1 > 0.

The right panel of Figure 6 shows that the planner’s allocation of investment is very

different for constrained and unconstrained firms. Constrained firms must reduce capital

accumulation k′(z, n) by nearly 14% in order to finance higher innovation expenditures.

In contrast, unconstrained firms increase capital accumulation around 2% because higher

innovation also raises their expected marginal product of capital in the next period.

Figure 7 studies the aggregate implications of this tradeoff over the entire transition path.

The substitutability between investment and innovation dominates in the early stage of the

transition in the sense that aggregate investment falls. This occurs for two reasons. First,

more firms are financially constrained early in the transition, putting them in the substi-

tutable region of the state space illustrated above. Second, the planner requires especially

high innovation early on in the transition, implying constrained firms need to substantially

reduce their investment. One reason the planner values high innovation early on because
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Figure 7: Planner’s Allocation and a Simple Innovation Subsidy
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more firms are constrained, amplifying the planner’s shadow value of the innovation exter-

nality Λt described in equation (14).

Over time, the complementarity between investment and innovation begins to dominate

in the aggregate in the sense that aggregate investment eventually increases. This occurs

because higher innovation raises net worth, implying that more firms are unconstrained and

therefore in the complementary region of the state space. In addition, the planner’s desired

innovation falls over time as the shadow value of the externality falls as well.

8.2 Evaluating Practical Policies

The planner’s allocation is difficult to implement in practice because one has to get both the

allocation of innovation and investment correct, and the relevant tradeoffs vary across both

firms and time.31

Figure 7 compares the planner’s allocation to a simple, commonly-used policy: a sub-

31The planner’s augmented Bellman equation (13) suggests one possible implementation: a time-varying
transfer to firms proportional to individual productivity. This transfer would have to vary over time to
mirror changes in the planner’s shadow value Λt and vary across firms according to their productivity zjt.
Both of these objects are unobservable to policymakers in practice.
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sidy to innovation expenditures that is constant across both firms and time. To make the

policy comparable to the planner’s allocation, we choose the subsidy rate to generate the

same increase in aggregate innovation expenditures chosen by the planner. However, Figure

7 shows that the subsidy generates 10 basis points less growth per year than the planner’s

allocation. This result occurs because the subsidy disproportionately increases innovation

among unconstrained firms, who have a lower return to innovation η′(i). Hence, the inno-

vation subsidy does not fully replicate the planner’s solution because it fails to deliver the

correct distribution of innovation across firms.32

9 Conclusion

In this paper, we have studied the efficiency costs of financial frictions for the macroeconomy.

While the quantitative macroeconomic literature has primarily focused on how financial

frictions distort investment decisions and misallocate capital, we focused on how financial

frictions distort innovation and lower economic growth. We showed these two margins are

empirically linked through the pecking order of firm growth. Quantitatively, we found the

primary long-run costs of financial frictions is due to lower innovation and growth.. A key

contribution of our paper is a new endogenous growth framework with heterogeneous firms

and financial frictions that is consistent with this evidence and can be used to draw aggregate

implications.

We have purposefully kept our framework as parsimonious as possible in order to focus on

the novel mechanisms for our research questions. However, the parsimony of our framework

can be leveraged in order to obtain additional insights. For example, extending the model to

include labor would also incorporate a negative pecuniary externality of innovation operating

through the labor market. In this extension, innovations from unconstrained firms raise labor

demand, which in turn raises labor costs and tightens financial constraints on affected firms.

The optimal policy would have to balance the tradeoff between growth (coming from the

32Appendix D also studies the effects of an investment tax cut in our model. We find that an investment
tax cut raises the long-run growth rate by 10 basis points per year because higher capital also stimulates
innovation. In contrast, investment tax cuts have no effect on the long-run growth rate in the neoclassical
growth model.
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innovation spillovers) and misallocation (coming from these pecuniary externalities).

Another extension would relax our assumption that firms cannot sell ideas. Given the

frictions in the market for ideas, it is natural to use a search-and-matching model in the

spirit of Lucas and Moll (2014), Perla and Tonetti (2014), or Akcigit, Celik and Greenwood

(2016). In this extension, firms would choose between spending time producing output and

their remaining time searching in the market for ideas. This tradeoff would provide a third

source of firm-level growth, technology adoption. We conjecture that low-productivity firms

would be more likely to adopt than innovate because their time cost of searching is relatively

low and their expected return from matching is relatively high. Conversely, high-productivity

firms would be more likely to sell ideas, especially if they are financially constrained. This

extension would also endogenize the innovation spillovers through the composition of idea

trades that emerges in the market for ideas.
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A Data Appendix

This appendix provides additional empirical results referenced in the main text.

A.1 Data Construction

Variables For the Compustat sample, we define the variables used in our empirical analysis

as follows:

1. Investment rate: ratio of capital expenditures (capx) to lagged plant, property, and equip-

ment (ppegt).

2. R&D share: ratio of research and development expense (xrd) to the sum of capital ex-

penditures and research and development expense. R&D-to-sales : ratio of research and

development expense to the average of sales (sale) in the previous 5 years.

3. Patents : Number of patents filed per year (based on the variable filing dated) and

market value of patents (based on the variable xi real), constructed from the Kogan

et al. (2017) dataset. To construct the patent-value-to-sales ratio, we use the average of

sales (sale) in the previous 5 years.

4. Net worth: defined as sum of plant, property, and equipment and cash and short-term

investments (che) minus total debt (sum of dlc and dltt).

5. Cash flows : measured as the sum of EBITDA and research and development expense

divided by lagged plant, property, and equipment.

6. Capital-to-employment : defined at the ratio of lagged plant, property, and equipment to

employment (emp).

Sample Selection Our empirical analysis excludes:

1. Firms in finance, insurance, and real estate sectors (sic ∈ [6000, 6799]), utilities (sic ∈

[4900, 4999]), nonoperating establishments (sic = 9995), and industrial conglomerates

(sic = 9997).
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2. Firms not incorporated in the United States.

3. Firm-year observations that satisfy one of the following conditions, aimed at excluding

extreme observations:

i. Negative assets, sales, capital expenditure, or R&D.

ii. Low capital values (gross plant, property, and equipment below $5M in 1990 dollars).

iii. Acquisitions larger than 20% of assets.

iv. Investment rates higher than 1.

v. R&D-to-sales ratios higher than 0.3.

vi. Gross leverage (defined as the ratio of total debt to total assets) higher than 10 or

negative.

Descriptive Statistics Table A.1 contains descriptive statistics of our final analysis sam-

ple. Figure A.1 plots the distribution of investment rates and R&D-to-sales ratios in our

sample.

Figure A.1: Distribution of Investment Rates and R&D

(a) Investment rates (b) R&D-to-sales

Notes: This figure shows the histogram of investment rates and the R&D-to-sales ratio. Vertical dashed
lines represent each variable mean. For variables definitions and sample selection, see Appendix A.1.
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Table A.1
Descriptive statistics

Mean Median St dev 95th Observations

Investment rate .155 .107 .15 .48 157,644
Investment spike .233 .423 157,644
Investment rate | spike .371 .311 .167 .778 36,735
Time since last spike 4.34 2 6.12 17 111,130
R&D share .193 0 .29 .84 165,105
R&D-to-sales ratio .027 0 .055 .166 133,054
Positive R&D expenditure .433 .495 133,054
R&D-to-sales ratio | positive R&D expenditure .063 .033 .069 .222 57,584
Leverage .281 .243 .242 .736 166,641

Notes: This table shows descriptive statistics for variables used in the empirical analysis of Section 6.1.
Investment rate, R&D-to-sales ratio, and leverage are defined in Appendix A.1. Investment spike denotes a
dummy variable that takes the value of one in periods in which a firm’s investment rate is above 20%.
Time since last spike denotes the number of years since the firm experienced the previous investment spike.
Positive R&D expenditure denotes a dummy variable that takes the value of one in a period in which a
firm’s research and development expense (xrd) is positive. Investment rate | spike and R&D-to-sales ratio |
positive R&D expenditure report, respectively, moments for investment rates conditional on periods of
investment spikes and of R&D-to-sales ratios conditional on positive R&D expenditure. For sample
selection, see Appendix A.1.

A.2 Robustness of Pecking Order

This section contains the additional robustness analysis described in the main text. We

recapitulate that description below.

Figure A.2 shows that our bin-scatter plots look similar for other measures of investment

and innovation. Panel (a) shows that the investment-to-sales ratio is declining in net worth,

similar to the investment-to-capital ratio presented in the main text. The remaining panels

show that other measures of innovation are increasing in net worth: panel (b) is the ratio of

R&D expenditures to sales, which is often studied in the literature; panel (c) the share of

firms with positive R&D, a measure of the extensive margin; panel (d) is the R&D share for

firms that have reported positive R&D in the past, and therefore have presumably set up

the accounting infrastructure to record formal R&D with less measurement error; panel (e)

is the patents-to-employees ratio, another measure often studied in the literature; and panel

(f) the average market value per patent in a given year, a measure of patent quality.

Table A.2 shows that the pecking order is generally robust to using different sources of

variation in the data. Panel (a) reports the regression coefficients (1) without the firm fixed
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Figure A.2: The Pecking Order of Firm Growth for Other Measures of
Investment and Innovation

(a) Investment-to-sales (b) R&D-to-sales

(c) R&D activity (d) R&D share (after first positive R&D)

(e) Patents per employee (f) Value per patent

Notes: Binned scatter plots of the investment-to-sales ratio, the R&D-to-sales ratio, the share of firms with
positive R&D, the R&D share (conditional on already having an observation with positive R&D), patents
per employee, and the market value per patent (computed following Kogan et al., 2017, and expressed in
1982 millions of dollars, deflated by the CPI) by the log of firm net worth. All variables are demeaned at
the firm level. In order to make the units of the outcome variable more interpretable, we add back in the
unconditional mean of the outcome variables across all firms. For variable definitions and sample selection,
see Appendix A.
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Table A.2
Sources of Variation in the Pecking Order

(1) (2) (3) (4) (5) (6)
Investment R&D R&D R&D Patent Patent-value

rate share -to-sales activity activity -to-sales

(a) No fixed effects
γ̂ -0.010 -0.011 0.001 0.029 0.103 0.039

(0.001) (0.001) (0.000) (0.002) (0.002) (0.001)
N 45939 47290 41664 49109 49109 31177
R2 0.009 0.002 0.001 0.003 0.048 0.053

(b) Firm fixed effects (baseline)

γ̂ -0.068 0.024 0.002 0.016 0.049 0.021
(0.003) (0.003) (0.001) (0.006) (0.007) (0.005)

N 45935 47286 41661 49105 49105 31176
R2 0.263 0.857 0.877 0.854 0.639 0.678

(c) Sector fixed effects

γ̂ -0.014 0.019 0.006 0.073 0.155 0.062
(0.002) (0.005) (0.002) (0.010) (0.010) (0.012)

N 45939 47290 41664 49109 49109 31177
R2 0.084 0.586 0.494 0.549 0.360 0.261

(d) Sector-by-time fixed effects

γ̂ -0.0005 0.014 0.007 0.085 0.196 0.071
(0.003) (0.005) (0.002) (0.011) (0.011) (0.014)

N 42962 44278 38785 46173 46173 28713
R2 0.198 0.571 0.443 0.519 0.358 0.205

(e) Firm and time fixed effects

γ̂ -0.025 -0.007 0.003 0.018 0.097 0.021
(0.003) (0.004) (0.001) (0.008) (0.009) (0.005)

N 45935 47286 41661 49105 49105 31176
R2 0.318 0.862 0.878 0.855 0.643 0.691

Notes: Panel (a) shows the results from estimating the regression ojt = α+ γ log njt + ϵjt, where ojt is the
outcome of interest (investment rate, R&D share, R&D-to-sales, indicator for positive R&D, indicator for
positive patenting, or patent-value-to-sales ratio); and njt is net worth (standardized over the whole
sample). Panel (b) shows our baseline results, from estimating the regression ojt = αj + γ log njt + ϵjt,
where αj is a firm fixed effect. Panel (c) reports the results from estimating ojt = αs + γ log njt + ϵjt,
where αs is a sector fixed effect. Panel (d) reports the results from estimating ojt = αst + γ log njt + ϵjt,
where αst is a sector-by-time fixed effect. Panel (e) reports the results from estimating
ojt = αj + αt + γ log njt + ϵjt, where αt is a time fixed effect. Standard errors, reported in parentheses, are
clustered at the firm level. For variable definitions and sample selection, see Appendix A.
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effects αj. Panel (b) then includes firm fixed effects, which is our baseline specification from

the main text. Panel (c) replaces the firm fixed effects with 4-digit sector fixed effects αs.

Panel (d) includes sector-by-year fixed effects αst to focus on within-sector-year variation.

Finally, panel (e) includes firm and year fixed effects to absorb aggregate trends in the

outcome variables.

Table A.3
The Pecking Order of Firm Growth for Alternative Samples

(1) (2) (3) (4) (5) (6)
Investment R&D R&D R&D Patent Patent-value

rate share -to-sales activity activity -to-sales

(a) Unrestricted sample

γ̂ -0.061 0.021 0.002 0.017 0.057 0.016
(0.002) (0.002) (0.000) (0.003) (0.004) (0.003)

N 134754 140545 115194 142163 142163 85297
R2 0.322 0.888 0.889 0.878 0.613 0.703

(b) Firms with more than 20 years of data (baseline)

γ̂ -0.068 0.024 0.002 0.016 0.049 0.021
(0.003) (0.003) (0.001) (0.006) (0.007) (0.005)

N 45935 47286 41661 49105 49105 31176
R2 0.263 0.857 0.877 0.854 0.639 0.678

(c) Continuously innovative firms with more than 20 years of data

γ̂ -0.064 0.043 0.003 0.008 0.050 0.039
(0.003) (0.005) (0.001) (0.009) (0.011) (0.009)

N 27057 27743 25450 28854 28854 18984
R2 0.267 0.807 0.855 0.752 0.477 0.654

Notes: This table shows the results from estimating the regression ojt = αj + γ log njt + ϵjt, where ojt is
the outcome of interest (investment rate, R&D share, R&D-to-sales, indicator for positive R&D, indicator
for positive patenting, or patent-value-to-sales ratio); njt is net worth (standardized over the whole
sample); and αj is a firm fixed effect. Panel (a) reports results using the sample of all firms and periods;
panel (b) shows our baseline sample, including firms with at least 20 years of observations; and panel (c)
the sample of firms with at least 20 years of observations and that are “continuously innovative” (i.e., firms
that have conducted positive R&D or patenting activity over the last five years). For variable definitions
and sample selection, see Appendix A.

Table A.3 shows that the pecking order is also robust when using different samples of

firms. Panel (a) uses all firms in the sample, without selecting on firms that have at least

twenty years of observations as in our baseline sample. Panel (b) uses our baseline sample

from the main text. Finally, panel (c) conditions on Akcigit and Kerr (2018)’s definition
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Table A.4
Investment spikes and Innovation: Robustness

(1) (2) (3) (4) (5)

RDjt−1

ỹjt−1
1.115 0.65 1.10 1.13 1.03

(0.15) (0.14) (0.15) (0.15) (0.15)

Measure of spikes Absolute Sectoral Absolute Absolute Absolute
Lags 4 4 3 5 4
Additional controls No No No No Size, sales growth,

current assets
Observations 55,647 39,215 55,647 50,117 54,191
Adj. R2 0.300 0.220 0.300 0.294 0.314

Notes: Results from estimating 1{xjt

kjt
≥ χs} = αj + αst +

∑H
h=1 βh

(
RDjt−h

ỹjt−h

)
+ Γ′Xjt + ϵjt, where

xjt

kjt

denotes the investment rate of firm j in period t; χs is a threshold defining investment spikes;
îjt
ỹjt

the

R&D-to-sales ratio; αj and αst firm and time by sector fixed effects; Xj,t is a vector of firm-level controls;
and ϵjt is a residual. Column (1) reports estimates for the baseline specification of Table 2, with χs = 0.2,

H = 1, and the vector Xjt including cash flows (
cfjt
kjt

) and the lumpy-investment controls (years since the

last investment spike, years since spiket−1, and the standardized capital-output ratio,
kjt

njt−1
). Column (2)

uses a “sectoral” threshold for investment spikes, where χts is the mean plus one standard deviation of the
distribution of investment rates of sector s (at 2-digit NAICS level). Columns (3) and (4) report results for
alternative lags of the R&D-to-sales ratio: H = 3 and H = 5. Column (5) includes additional control
variables: size (measured with the log of real plant, property, and equipment), sales growth, and the share
of current assets. For variable definitions and descriptive statistics, see Appendix A.

of “continuously innovative firms” in our baseline sample, i.e., firms which have at least

twenty years of observations and have conducted positive R&D or patenting activity over

the previous five years.

A.3 Innovation and Investment Spikes

This appendix contains four additional results about the relationship between R&D expen-

ditures and investment spikes referenced in Section 6. First, Table A.4 Columns (1), (3),

and (4) show that the main coefficient estimates are robust to including different numbers of

lag H. Second, Table A.4 Column (2) shows that the result holds when spikes are defined as

an investment rate of one standard deviation above the mean investment rate within sector

s. Third, Table A.4 Column (5) shows that the results hold when adding size, sales growth,

and current assets to the control vector Xjt. Finally, Figure A.3 complements the regression

results with an event-study analysis around an investment spike.
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Figure A.3: Event Study Analysis of Investment Spikes

(a) Investment rates (b) R&D-to-sales

Notes: This figure shows the dynamics of investment rates and R&D-to-sales around investment spike
episodes. The figure reports the coefficients βh from estimating
yjt = αj + αst +

∑4
h=−4 βh1{xjt+h

kjt+h
≥ 0.2}+ εjt, where yjt denotes the investment rate (

xjt

kjt
) or

R&D-to-sales ratio (RDt

ỹt
); αj and αts firm and time by sector fixed effects; and εjt is a random error term.

For variable definitions and descriptive statistics, see Appendix.

B Model Appendix

This appendix provides various details of model analysis mentioned in the main text. Section

B.1 characterizes firms’ decision rules, proves Proposition 1, and provides details of the BGP.

Section B.2 shows how to add labor to the model, as described in Footnote 8. Section B.3

provides details about the tax code discussed in Section 6.3 and Section 8.2. Section B.4

derive the expressions relating to the costs of financial frictions in Section 7. Finally, Section

B.5 sets up the planner’s problem and proves Proposition 2.

B.1 Firms’ Decision Rules and the BGP

This subsection characterizes the individual firm’s decisions and defines a balanced growth

path. We proceed in three steps. First, we detrend the problem in order to work with a

stationary system, which is what we solve numerically. Second, we characterize the solution

of the detrended problem and show that it results in Proposition 1 in the main text. Finally,

we use these results to show that all decisions and macroeconomic aggregates scale with the

growth rate g in a balanced growth path.
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B.1.1 Detrending

We will scale the problem by Zt =
(
At
∫
zjtdj

) 1
1−α =

(∫
zjtdj

) 1+a
1−α . To that end, let ñ = n

Zt
,

k̃ = k
Zt

denote variables relative to Zt. The only except is that we will define z̃ = z∫
zjtdj

.

Divide the Bellman equation (6) by Zt to get

vcontt (z, n)

Zt
= max

k′,i,b′

n

Zt
− k′

Zt
− (Atz)

1
1−α i

Zt
+

b′

Zt(1 + rt)
+

1

1 + rt
Et
[
πd

n′

Zt
+ (1− πd)

vcontt+1 (z
′, n′)

Zt

]
, (15)

where we have expanded Et[vt+1(z
′, n′)] = πdEt[n′] + (1− πd)Et[vcontt+1 (z

′, n′)].

Our goal is to write (15) in terms of the detrended variables and the growth rate gt =
Zt+1

Zt

only. To that end, note that k′

Zt
= k′

Zt+1

Zt+1

Zt
= (1 + gt)k̃

′ and b′

Zt
= (1 + gt)̃b

′. Now multiply

and divide the continuation value by Zt+1

Zt+1
to get

vcontt (z, n)

Zt
= max

k′,i,b′
ñ− (1+gt)k̃

′− z̃
1

1−α i+
(1 + gt)̃b

′

(1 + rt)
+

1 + gt
1 + rt

Et
[
πdñ

′ + (1− πd)
vcontt+1 (z

′, n′)

Zt+1

]
.

Define ṽt(z̃, ñ) =
vcontt (z,n)

Zt
to arrive at our final detrended Bellman equation:

ṽt(z̃, ñ) = max
k̃′,i,̃b′

ñ−(1+gt)k̃
′− z̃

1
1−α i+

(1 + gt)̃b
′

(1 + rt)
+
1 + gt
1 + rt

Et [πdñ′ + (1− πd)ṽt+1(z̃
′, ñ′)] . (16)

Finally, we detrend the constraints and consistency conditions of this problem. Clearly,

we have d̃ ≥ 0, b̃′ ≤ θk̃′, and ñ′ = z̃′(k̃′)α + (1− δ)k̃′ − b̃′. In terms of the law of motion for

z, in the event of a successful innovation, we have

log
z∫

zjt+1dj
= log

z∫
zjt+1dj

+∆+ εjt+1 = log
z∫
zjtdj

∫
zjtdj∫
zjt+1dj

+∆+ εjt+1

which implies

log z̃′ = log
z̃

1 + g̃t
+∆+ εjt+1

where g̃t =
∫
zjt+1dj∫
zjtdj

is the growth rate of firm-specific productivity.
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B.1.2 Proof of Proposition 1

Our characterization in Proposition 1 is similar to Khan and Thomas (2013), extended to

include the innovation decision. We proceed in three steps. First, we set up the Lagrangian

and take the associated first-order conditions. Second, we use those first-order conditions

to derive the partition of the state space from the first part of Proposition 1. Finally, for

convenience, we un-detrend those first-order conditions to get the system of equations in the

second part of Proposition 1.

Lagrangian The Lagrangian of the detrended Bellman equation (16) is

L = (1 + λt(z̃, ñ))

(
ñ− (1 + gt)k̃

′ − z̃
1

1−α i+
(1 + gt)̃b

′

(1 + rt)

)
+ (1 + gt)µt(z̃, ñ)

(
θk̃′ − b̃′

)
(17)

+ χt(z̃, ñ)i+
1 + gt
1 + rt

Et [πdñ′ + (1− πd)ṽt+1(z̃
′, ñ′)] ,

where λt(z̃, ñ) is the multiplier on the no-equity issuance constraint d̃ ≥ 0, µt(z̃, ñ) is the mul-

tiplier on the collateral constraint b̃′ ≤ θk̃′, and χt(z̃, ñ) is the multiplier on the nonnegativity

constraint on innovation i ≥ 0.

The first-order condition for borrowing b̃′ is

(1 + λt(z̃, ñ))
1 + gt
1 + rt

= (1 + gt)µt(z̃, ñ)−
1 + gt
1 + rt

Et
[
πd
∂ñ′

∂b̃′
+ (1− πd)

∂ṽt+1(z̃
′, ñ′)

∂ñ′
∂ñ′

∂b̃′

]
.

From the envelope condition, we have ∂ṽt(z̃,ñ)
∂ñ′ = 1+λt(z̃, ñ). Use that together with

∂ñ′

∂b̃′
= −1

to get

(1 + λt(z̃, ñ))
1 + gt
1 + rt

= (1 + gt)µt(z̃, ñ) +
1 + gt
1 + rt

Et [πd + (1− πd)(1 + λt+1(z̃
′, ñ′))] .

Note that πd + (1− πd)(1 + λt+1(z̃, ñ)) = 1 + (1− πd)λt+1(z̃, ñ). Use that fact, multiply by

1+rt
1+gt

, and subtract 1 from both sides to finally arrive at

λt(z̃, ñ) = (1 + rt)µt(z̃, ñ) + (1− πd)Etλt+1(z̃
′, ñ′). (18)
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Hence, the financial wedge λt(z̃, ñ) is the expected value of current and all future Lagrange

multipliers on the collateral constraint µt(z̃, ñ), discounted by the exit probability.

The first-order condition for capital accumulation k̃′ is

(1 + gt)(1 + λt(z̃, ñ)) = θ(1 + gt)µt(z̃, ñ) +
1 + gt
1 + rt

Et
[
πd
∂ñ′

∂k̃′
+ (1− πd)

∂ṽt+1(z̃
′, ñ′)

∂ñ′
∂ñ′

∂k̃′

]
.

Note that ∂ñ′

∂k̃′
= MPK(z̃′, k̃′) + (1 − δ), where MPK(z̃′, k̃′) = αz̃′(k̃′)α−1 is the marginal

product of capital. Using very similar steps to above, the terms in the continuation value

can be collected to yield

1 + λt(z̃, ñ) = θµt(z̃, ñ) +
1

1 + rt
Et
[(

MPK(z̃′, k̃′) + (1− δ)
) (

1 + (1− πd)λt+1(z̃
′, ñ′)

)]
. (19)

The first-order condition for innovation i is

(1 + λt(z̃, ñ))z̃
1

1−α = χt(z̃, ñ) +
1 + gt
1 + rt

∂

∂i
Et [πdñ′ + (1− πd)ṽt+1(z̃

′, ñ′)] .

Consider the term in the continuation value in the case where the firm exits in the next

period. We can write this expectation as Et[ñ′] = η(i)Eε[ñ′|ι = 1] + (1 − η(i))Eε[ñ′|ι = 0]

where Eε denotes the expectation over the idiosyncratic shocks ε. Hence, we have ∂Et[ñ′]
∂i

=

η′(i) (Eε[ñ′|ι = 1]− Eε[ñ′|ι = 0]). By a similar argument,

∂Et[ṽt+1(z̃
′, ñ′)]

∂i
= η′(i) (Eε[ṽt+1(z̃

′, ñ′)|ι = 1]− Eε[ṽt+1(z̃
′, ñ′)|ι = 0]) .

Putting these all together yields

(1 + λt(z̃, ñ))z̃
1

1−α ≥ 1 + gt
1 + rt

η′(i)

πd (Eε[ñ′|ι = 1]− Eε[ñ′|ι = 0]
)
+

(1− πd)
(
Eε[ṽt+1(z̃

′, ñ′)|ι = 1]− Eε[ṽt+1(z̃
′, ñ′)|ι = 0]

)
 , (20)

with equality if i > 0.

To summarize, the firm’s optimal decisions are characterized by the first-order conditions
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(18), (19), and (20) together with the complementarity slackness conditions:

µt(z̃, ñ)(θk̃
′ − b̃′) = 0 with µt(z̃, ñ) ≥ 0, and

λt(z̃, ñ)d̃ = 0 with λt(z̃, ñ) ≥ 0.

Partition of State Space We now use these first order conditions to derive the partition

of the state space in the first part of Proposition 1.

Unconstrained Firms : We define a financially unconstrained firm as one for whom the

financial wedge λt(z, n) = 0. From (18), these firms have zero probability of a binding collat-

eral constraint in the future, so µjt+s = λjt+s = 0 for all s ≥ 0; that is, being unconstrained

is an absorbing state. We will guess and verify that these firms decisions are independent of

net worth and are characterized by a set of objects b̃′∗t (z̃), k̃
′∗
t (z̃), i

∗
t (z̃), and ṽ

∗
t (z̃). We now

characterize these objects.

First, because λt(z̃, ñ) = µt(z̃, ñ) = 0, they are indifferent over any combination of b′

and d which leaves them financially unconstrained. Following Khan and Thomas (2013),

we resolve this indeterminacy by assuming firms accumulate the most debt (or, if b′ < 0,

do the least amount of savings) which leaves them financially unconstrained. Khan and

Thomas (2013) refer to this policy b′∗t (z̃) as the minimum savings policy. In order to derive

a characterization of it, note that if the firm adopts b′∗t (z̃) in period t, then its dividends in

the next period t+ 1, conditional on a particular realized state z̃′, are

d̃t+1(z̃
′) = z̃′(k̃′∗t (z̃))

α+(1−δ)k̃′∗t (z̃)− b̃′∗t (z̃)− (z̃′)
1

1−α i∗t+1(z̃
′)− (1+gt+1)k̃

′∗
t+1(z̃

′)+
1 + gt+1

1 + rt+1
b̃′∗t+1(z̃

′)

In order to be financially unconstrained, it must be the case that d̃t+1(z̃
′) ≥ 0 for all z̃′

which have a positive probability. The minimum savings policy b̃′∗t (z̃) is the largest level of

debt which satisfies this constraint with probability one:

b̃′∗t (z̃) = min
z̃′

z̃′(k̃′∗t (z̃))
α+(1−δ)k̃′∗t (z̃)−(z̃′)

1
1−α i∗t+1(z̃

′)−(1+gt+1)k̃
′∗
t+1(z̃

′)+
1 + gt+1

1 + rt+1
b̃′∗t+1(z̃

′) (21)

Note that this policy implies dividends are zero at a minimizer of the RHS of (21) and

strictly positive otherwise.

Next, we define ṽ∗t (z̃) to be the value of a firm starting right after they adopt the uncon-
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strained policies:

ṽ∗t (z̃) = −(1+ gt)k̃
′∗
t (z̃)− z̃

1
1−α i∗t (z̃) +

(1 + gt)̃b
′∗
t (z̃)

1 + rt
+

1

1 + rt
Et
[
ñ′ + (1− πd)ṽ

∗
t+1(z̃

′)
]
, (22)

where ñ′ = z̃′(k̃′∗t (z̃))
α + (1 − δ)k̃′∗t (z̃) − b̃′∗t (z̃) is independent of ñ. Since the financial

constraints never bind for unconstrained firms, their value function is linearly separable in

net worth. Therefore, the total value of a firm who becomes unconstrained in period t is

ṽt(z̃, ñ) = ñ+ ṽ∗t (z̃).

Given this characterization of the value function, the first-order conditions for capital

and innovation (19) and (20) become

1 =
1

1 + rt
Et[MPK(z̃′, k̃′) + (1− δ)] (23)

1 ≥ η′(i)

z̃
1

1−α

1 + gt
1 + rt

Et

πd (Eε[ñ′|ι = 1]− Eε[ñ′|ι = 0])+

(1− πd)
(
Eε[ṽ∗t+1(z̃

′)|ι = 1]− Eε[ṽ∗t+1(z̃
′)|ι = 0]

)
 . (24)

Note that the innovation policy implicitly enters the first-order condition for capital (23)

through the expectations operator. Nevertheless, one can verify from (23) and (24) that

these policies are independent of current net worth ñ given that both ñ′ and ṽ∗t+1(z̃
′) are

themselves independent of net worth.

Finally, note that if it is feasible to follow these policies, then it will also be optimal

because they solve the firm’s profit maximization problem with an expanded choice set. In

turn, it is feasible to follow these policies if the firm can adopt them without violating the

no-equity issuance constraint:

ñ− (1 + gt)k
′∗
t (z̃)− z̃

1
1−α i∗t (z̃) +

1 + gt
1 + rt

b̃′∗t (z̃) ≥ 0. (25)

This condition is satisfied if and only if ñ ≥ nt(z̃) ≡ (1 + gt)k̃
′∗
t (z̃) + z̃

1
1−α i∗t (z̃)−

(1+gt )̃b′∗t (z̃)

1+rt
.

Constrained Firms : We define financially constrained firms as those for whom λt(z, n) >

0, i.e., there is a positive probability of facing a binding collateral constraint. These firms’

decision rules are characterized by the full system of first-order conditions (18), (19), and
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(20), and therefore depend on net worth. We divide these firms into two cases: (i) currently

constrained firms currently face a binding collateral constraint, i.e., µt(z̃, ñ) > 0, and (ii)

potentially constrained firms who do not currently face a binding collateral constraint, i.e.,

µt(z̃, ñ) = 0.

To derive the threshold nt(z̃, ñ) from the proposition, let ipt (z̃, ñ), k̃
′p
t (z̃, ñ), and b̃

′p
t (z̃, ñ)

denote the policy rules of the currently constrained firms. If these choices are feasible, then

they are also optimal because they solve a relaxed version of the full problem. The policies

are feasible as long as

ñ ≥ nt(z̃, ñ) ≡ z̃
1

1−α it(z̃, ñ) + (1 + gt)k̃
′p
t (z̃, ñ)−

(1 + gt)b
′p
t (z̃, ñ)

1 + rt
.

Un-Detrending the Conditions We now show that the detrended first-order conditions

(18), (19), and (20) derived above imply the conditions (7), (8), and (9) from the main text.

We start with the first-order condition for capital. First note that, from the chain rule,

∂vt(z, n)

∂n
= Zt

∂ṽt(z̃,
n
Zt
)

∂n
=
Zt
Zt

∂ṽt(z̃, ñ)

∂ñ
=⇒ 1 + λt(z, n) = 1 + λt(z̃, ñ),

i.e., the financial wedge is the same in the detrended and un-detrended problems. Next, note

that

MPKt+1(z
′, k′) = α

At+1z
′

(k′)1−α
= α

At+1z
′/Z1−α

t+1

(k′)1−α/Z1−α
t+1

= αz̃(k̃′)1−α.

Hence, the detrended first-order condition (19) directly implies the undetrended first-order

condition (8) (where µt(z, n) = µt(z̃, ñ) as well).

Next, consider the detrended first-order condition for innovation (20). Plugging in the

fact that 1 + gt =
Zt+1

Zt
and rearranging gives

(1+λt(z, n))Ztz̃
1

1−α ≥ η′(it(z, n))

1 + rt
Zt+1Et

πd (Eε[ñ′|ι = 1]− Eε[ñ′|ι = 0])+

(1− πd) (E
ε[ṽt+1(z̃

′, ñ′)|ι = 1]− Eε[ṽt+1(z̃
′, ñ′)|ι = 0])


By definition of the detrended variables, this equation is the same as the un-detrended

condition (9) from the main text. The nonnegativity constraint for dividends (7) follows

directly from our detrending of the problem.
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B.1.3 Balanced-Growth Path

In this subsection, we characterize a balanced-growth path of the model. In order to do so,

we must first explicitly write out the law of motion for the distribution of firms. We find it

easier to work with the distribution over de-trended state variables, Φt(z̃, ñ). Heuristically,

its evolution is given by

Φ̃t+1(z̃
′, ñ′) = (1− πd)

∫ ∫ ∫  η(it(z̃, ñ))

[
1{z̃′ = z̃e∆eε

1 + g̃t
} × 1{n′(

z̃e∆eε

1 + g̃t
, k′t(z̃, ñ), b

′
t(z̃, ñ))}

]
+(1− η(it(z̃, ñ)))

[
1{z̃′ = z̃eε

1 + g̃t
} × 1{n′(

z̃eε

1 + g̃t
, k′t(z̃, ñ), b

′
t(z̃, ñ))}

]


× p(ε)dεΦ̃t(z̃, ñ)dz̃dñ+ πdΦ̃
0(z̃, ñ), (26)

where ñ′ = z̃′k̃′t(z̃, ñ)
α + (1 − δ)k̃′t(z̃, ñ) − b̃′t(z̃, ñ) is the law of motion for detrended state

variables induced by the policy rules.33

We are now ready to define a balanced-growth path as the limiting behavior of the

model when Zt+1

Zt
= 1 + g for all t. Using the results in the previous subsections, we have

shown that the firm value function and decision rules are all scaled by Zt in the sense that

their detrended analogs ṽ(z̃, ñ) are time-invariant. In addition, the distribution of detrended

state variables Φ̃(z̃, ñ) is constant and equal to the stationary distribution implied by (26).

Finally, it is easy to see that aggregate consumption is stationary because can be written as

the integral of the policy rules, which scale with Zt, against the stationary distribution:

C =

∫
z̃k̃αdΦ̃(z̃, k̃, b̃)− (1− πd)

∫ (
((1 + g)k̃′t(z̃, k̃, b̃)− (1− δ)k̃) + z̃

1
1−α it(z̃, k̃, b̃)

)
dΦ̃(z̃, k̃, b̃)

− πd

∫
k̃dΦ̃0(z̃, k̃, b̃),

where, abusing notation somewhat, Φ̃(z̃, k̃, b̃) denotes the stationary distribution over (z̃, k̃, b̃).

33This description is heuristic because the true transition function for the distribution should be defined
over measurable sets of (z̃′, ñ′). One can view the heuristic evolution (26) as the generator of that transition
function if one interprets the indicator functions 1 as Dirac delta functions.
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B.2 Adding Labor to the Model

Adding labor extends the model in two ways. First, as discussed in the main text, the

production function becomes yjt = Atzjtk
α
jtℓ

ν
jt, where ℓjt is the labor used in production by

firm j and α+ ν < 1. Second, we incorporate labor supply into the household’s preferences

by assuming that the utility function is

∞∑
t=0

βt

[
logCt − χ

L1+ψ
t

1 + ψ

]
,

where χ is a scale parameter and ψ−1 is the Frisch elasticity of labor supply.34

Adding labor does not significantly alter our positive results; it simply leads to a re-

interpretation of the production function in the main text. To see this, note that firms’

optimal labor demand is purely static and is therefore independent of their net worth:

max
ℓjt

Atzjtk
α
jtℓ

ν
jt − wtℓjt =⇒ ℓjt =

(
νAtzjtk

α
jt

wt

) 1
1−ν

Now define variable profits πjt = yjt − wtℓjt. Plugging in the above expression for optimal

labor demand and simplifying yields

πjt = ν̃ (Atzjt)
1

1−ν w
− ν

1−ν
t k

α
1−ν
jt .

where α̃ = α
1−ν and ν̃ = ν

ν
1−ν − ν

1
1−ν .

The firm’s problem in this extended model is isomorphic to our previous model using

the new definition of net worth: njt = πjt + (1 − δ)kjt − bjt. Importantly, net worth still

grows with Zt, facilitating the same detrending as in our baseline model. Specifically, it is

easy to guess and verify that the real wage wt scales with Zt, which implies that the first

two terms grow with Z
1−α−ν
1−ν

t = Z
1− α

1−ν
t . But since capital grows with Zt, the term involving

capital grows with Z
α

1−ν
t . Putting these two observations together, variable profits grows

with Z
1− α

1−ν
t Z

α
1−ν
t = Zt.

34Given these additively separable preferences over consumption and labor supply, balanced growth re-
quires log utility over consumption. We could alternatively allow for a non-unitary EIS if we instead assume
preferences fall within the more general King, Plosser and Rebelo (1988) class.
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The equilibrium of this extended model is the same as in our baseline model, except that

we add the real wage wt as another equilibrium price and add the labor market as another

market clearing condition: (
wtC

−1
t

χ

) 1
ψ

=

∫
ℓjtdj.

B.3 Incorporating Corporate Taxes and Bonus Depreciation

We model the structure of the U.S. corporate tax code before the Tax Cuts and Jobs Act

(TCJA 2017), and then consider the long-run effects of implementing the TCJA 2017. We

assume firms pay a linear tax rate τ on their revenues net of tax deductions. Firms can fully

deduct innovation expenditures in the period in which they occur, but investment expen-

ditures must be gradually deducted over time according to the tax depreciation schedule.35

Following Winberry (2021), we assume the tax deduction schedule follows a geometric de-

preciation process with tax depreciation rate δ̂ (which may differ from economic depreciation

δ). Each period, firms inherit a stock of depreciation allowances k̂jt from past investments

and deduct the fraction δ̂ of those depreciation allowances from their tax bill. In addition,

firms deduct the same fraction δ̂ of new investment kjt+1 − (1− δ)kjt from their tax bill as

well. Therefore, their total tax bill in a given period is

τ ×
(
yjt − (Atzjt)

1
1−α ijt − δ̂

[
k̂jt + (kjt+1 − (1− δ)kjt)

])
.

The firm carries the un-deducted portion of its investments into the next period: k̂jt+1 =

(1− δ̂)
[
k̂jt + (kjt+1 − (1− δ)kjt)

]
.

In principle, we would need two new state variables, k̂jt and kjt, in order to forecast the

evolution the stock of depreciation allowances k̂jt+1. However, we are able to bypass these

additional states using the following simplifying assumption.

Proposition 3. Suppose that firms can borrow against future tax deductions at the risk-free

rate rt. Then the tax depreciation schedule only affects firm decisions through the present

35R&D expenditures are typically fully deducted because they primarily reflect labor costs.
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value of tax deductions per unit of investment:

ζ̂t =
∞∑
ι=0

(
s∏

p=0

1

1 + rt+p

)
(1− δ̂)s. (27)

This present value alters the effective after-tax price of capital:

vcontt (z, n) = max
k′,i,b′

n−(1−τ ζ̂t)k
′−(1−τ)(Atz)

1
1−α i+

b′

1 + rt
+

1

1 + rt
Et
[
vt+1(z

′, n′)
]
s.t. d ≥ 0 and b′ ≤ θk′,

where n′ = (1− τ)Atz
′(k′)α + (1− τ ζ̂t)(1− δ)k − b′.

Proof. The key insight of our proof is that borrowing against the stream of future tax

deductions is equivalent to selling a claim on this stream to households. Since the claim is

risk-free, the household is willing to pay its present value τ ζ̂t × (kjt+1 − (1− δ)kjt). Hence,

each unit of investment produces τ ζ̂t of additional resources to the firm, lowering its after-tax

price by that amount.

The financially constrained firms from Proposition 1 (with a positive financial wedge

λt(z, n) > 0) will strictly prefer to sell the claim because their shadow value of funds is

higher than the household’s value of funds. However, financially unconstrained firms (with

no financial wedge λt(z, n) = 0) will be indifferent between selling the claim or not because

they value funds the same as the household. However, one can show that in this case, the

present value of the tax deductions affects firms decisions because they are indifferent over

the timing (technically, their value function is linearly separable in the tax deductions; see

Winberry (2021)). ■

This proposition allows us to model both temporary investment tax incentives and per-

manent tax reforms using changes in the present value ζ̂t. Temporary tax incentives, like the

Bonus Depreciation Allowance, temporarily increase ζ̂t and therefore act as shocks to the

relative price of investment. The TCJA 2017 tax reform introduced full expensing, which

increased ζ̂t = 1 because it allows firms to fully deduct investment expenditures from their

tax bill in the period they are incurred. To keep our analysis simple, we will directly work

with the composite shock ζt = τ ζ̂t and assume that ζt = 0 in the balanced growth path. This

assumption implies that we do not have to recalibrate the model to accommodate steady
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state taxes. Instead, we will calibrate our tax shocks ζt as deviations from their initial value.

B.4 Aggregate Costs of Financial Frictions

We derive the two results referenced in Section 7 of the main text.

Approximation of the Long-Run Growth Rate The long-run growth rate is given by

1 + g = (1 + g̃)
1+a
1−α , where g̃ is the growth rate of average productivity

∫
zjtdj. In Appendix

C, we show that

1 + g̃ =

∫
z′p(ε)Φ(s)dεds∫

zΦ(s)ds

where Φt(s) is the distribution of firms over individual states s = (z, n) in period t along

a balanced growth path, and z′(s, ε′) = zeε
′
e∆ with probability η(i(s)) and z′(s, ε′) = zeε

′

with probability 1− η(i(s)). Plug this in to get

1 + g̃ =

∫ (
η(i(s))zeε

′
e∆ + (1− η(i(s)))zeε

′)
p(ε′)Φt(s)dε

′ds∫
zΦt(s)ds

=⇒ 1 + g̃ =

∫
eε

′
p(ε′)dε′ ×

∫ (
η(i(s))ze∆ + (1− η(i(s)))z

)
Φt(s)ds∫

zΦt(s)ds

=⇒ 1 + g̃ =
eσ

2
ε/2 ×

∫ (
1 + η(i(s))(e∆ − 1)

)
zΦt(s)ds∫

zΦt(s)ds

=⇒ 1 + g̃ = eσ
2
ε/2

(∫
zΦt(s)ds∫
zΦt(s)ds

+ (e∆ − 1)

∫
zη(i(s))Φt(s)ds∫

zΦt(s)ds

)
=⇒ 1 + g̃ ≈

(
1 + (e∆ − 1)(

∫
η(i(s))Φt(s)ds)

∫
zΦt(s)ds∫
zΦt(s)ds

)
=⇒ g̃ ≈ (e∆ − 1)

∫
η(i(s))Φt(s).

Hence, we have

1 + g = (1 + g̃)
1+a
1−α

=⇒ log(1 + g) =
1 + a

1− α
log(1 + g̃)

=⇒ g ≈ 1 + a

1− α
(e∆ − 1)

∫
η(i(s))Φt(s),

as in the main text.
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Upper Bound on Misallocation Costs The upper bound on misallocation costs in the

main text compares actual output along the BGP, Yt, to the benchmark

Y ∗
t = max

kjt
At

∫
zjtk

α
jtdj such that

∫
kjtdj ≤ Kt.

The first-order condition with respect to kjt can be rearranged to

kjt =

(
αAtzjt
λ

) 1
1−α

, (28)

where, abusing notation, λ is the Lagrange multiplier on the constraint
∫
kjtdj ≤ Kt.

Integrating (28) across firms j and using
∫
kjtdj = Kt gives

λ =
αAt

K1−α
t

(∫
z

1
1−α
jt dj

)1−α

.

Plug this expression into the FOC (28) and rearrange to get

kjt
Kt

=
z

1
1−α
jt∫
z

1
1−α
jt dj

.

Aggregate TFP in this allocation is therefore

TFP ∗
t = At

∫
zjt

(
kjt
Kt

)α
dj

=⇒ TFP ∗
t = At

∫
zjt

 z
1

1−α
jt∫
z

1
1−α
jt dj

α

=⇒ TFP ∗
t = At

∫
z

1
1−α
jt(∫

z
1

1−α
jt

)α
dj

=⇒ TFP ∗
t = At

(∫
z

1
1−α
jt dj

)1−α

.

Taking the ratio of this to actual TFP gives the expression in the main text.
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B.5 Planner’s Problem and Proof of Proposition 2

We formulate the planner’s problem recursively. For notational convenience, let s = (z, k, b)

denote a firm type. The planner’s state variable is the distribution of firms, Φ(s). The

planner’s value function solves the Bellman equation

Wt(Φ) = max
k′(·),i(·),b′(·)

C1−σ − 1

1− σ
+ βWt+1(T (Φ; k

′(·), i(·), b′(·))) such that (29)

C =

∫
[Azkα + (1− δ)k] Φ(s)ds− (1− πd)

∫ [
k′(s) + (Az)

1
1−α i(s)

]
Φ(s)ds (30)

− πd

∫
k′Φ0(z′, k′, b′)dz′dk′db′

Azkα + (1− δ)k − b− k′(s)− (Az)
1

1−α i(s) +
b′(s)

1 + rt
≥ 0 for all s (31)

b′(s) ≤ θk′(s) for all s (32)

A =

(∫
zΦ(s)dz

)a
(33)

T (Φ; k′(·), i(·), b′(·))(z′, k′, b′) = πdΦ
0(z′, k′, b′) (34)

+ (1− πd)

∫ (1{k′ = k′(s)} × 1{b′ = b′(s)})×

(η(i(s))1{z′ = ze∆eε}+ (1− η(i(s)))1{z′ = zeε})

 p(ε)Φ(s)ds,

where p(ε) is the p.d.f. of ε and T (Φ; k′(·), i(·), b′(·)) is the transition function for the dis-

tribution. We denote the entire decision rule function using, e.g., k′(·), and the function

evaluated at a particular using k′(s).

The planner’s problem (29) is a functional equation because both the state variable and

choice variables are functions of the individual state s. Nuño and Moll (2018) provide con-

ditions under which Lagrangian methods apply using Gâteaux derivatives, which we assume

hold in our model as well. These derivatives are the natural extension of partial derivatives

into the function space. For example, δW
δΦ(s̃)

(Φ) denotes the Gâteaux derivative with respect

to the mass of households at point s, which itself is a function of the entire distribution Φ.36

The time subscripts reflect the dependence on the path of the real interest rate in firms’

borrowing decisions. For notational simplicity we will often omit the dependence on Φ and

36A more explicit analogy with partial derivatives may be useful. Suppose that the state space s lay on
a finite grid with N points. Then the distribution Φ(s) would be an N × 1 vector, and the value function
W (Φ) : RN → 1. In this case, the partial derivative ∂W

∂Φ(si)
: RN → 1 is a function of Φ as well.
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the time subscripts.

We will use these tools to solve the planner’s problem (29) using Lagrangian methods.

Let λ(s) denote the multiplier on the no-equity issuance constraint (31), µ(s) denote the

multiplier on the collateral constraint (32), and Λ denote the multiplier on the innovation

externality (33). We will directly plug in the definitions of consumption (30) and the tran-

sition function for the distribution (34). With all this notation in hand, the Lagrangian

is

L =
C1−σ − 1

1− σ
+

∫
λ(s)

(
Azkα + (1− δ)k − b− k′(s)− (Az)

1
1−α i(s) +

b′(s)

1 + rt

)
ds

+

∫
µ(s) (θk′(s)− b′(s)) ds+ Λ

[(∫
zΦ(s)ds

)a
− A

]
+ βW (T (Φ; k′(·), i(·), b′(·))),

where it is understood that C and T (Φ; k′(·), i(·), b′(·)) stand in for (30) and (34).

We proceed in two steps. First, subsection B.5.1 takes the first-order conditions with

respect to all the planner’s choices. Second, subsection B.5.2 characterizes those choices in

terms of the marginal social value function from Proposition 2 in the main text.

B.5.1 First Order Conditions

We analyze each first-order condition separately.

Aggregate productivity The FOC with respect to aggregate productivity is

C−σ
[∫

zkαΦ(s)ds− 1− πd
1− α

∫
A

α
1−α z

1
1−α i(s)Φ(s)ds

]
(35)

+

∫
λ(s)

[
zkαΦ(s)ds− 1

1− α
A

α
1−α z

1
1−α i(s)

]
ds = Λ.

Going forward, it will be convenient to work with the transformed multipliers λ̃(s) =
λ(s)

Φ(s)(1−πd)C−σ and Λ̃ = Λ
C−σ .

37 Plugging these in and simplifying yields

Λ̃ = πd

∫
zkαΦ(s)ds+ (1− πd)

∫
(1 + λ̃(s))

[
zkαΦ(s)ds− 1

1− α
A

α
1−α z

1
1−α i(s)

]
Φ(s)ds. (36)

37Of course, this transformed multiplier λ̃(s) is only defined for points with a positive mass of firms.
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Innovation The FOC with respect to innovation at a particular point i(s) is

C−σ(1− πd)(Az)
1

1−αΦ(s) + λ(s)(Az)
1

1−α = β

∫
δW (Φ′)

δΦ′(s′)

δT (s′)

δi(s)
ds′.

The LHS is the planner’s marginal cost of higher innovation i(s), which reduces consumption

and tightens the no-equity issuance constraint for firm-type s. The RHS is the marginal

benefit, which captures how higher innovation affects the distribution of productivity in the

next period. To keep the notation manageable, we denote T (s′) = T (Φ; k′(·), i(·), b′(·))(s′) =

Φ′(s′). The integral is the functional-derivative extension of the chain rule: a change in i(s)

affects the mass of firms at each point in the state space in the next period T (s′), and each

of those marginal changes affects the social welfare function W (Φ′).

We can simplify the δT (s′)
δi(s)

terms using the definition of the transition function (34). In

particular, marginal changes in i(s) only affect the transition function through changing the

probability of success, not changing the value of the state conditional on success. Therefore,

we have

δT (s′)

δi(s)
=


(1− πd)η

′(i(s))p(ε)Φ(s) if s′ = (ze∆eε, k′(s), b′(s)),

−(1− πd)η
′(i(s))p(ε)Φ(s) if s′ = (zeε, k′(s), b′(s))

0 otherwise


Plugging this into the FOC gives

C−σ(1− πd)(Az)
1

1−αΦ(s) + λ(s)(Az)
1

1−α = β(1− πd)η
′(i(s))Φ(s)


∫

δW (Φ′)

δΦ′(ze∆eε, k′(s), b′(s))
p(ε)dε

−
∫

δW (Φ′)

δΦ′(zeε, k′(s), b′(s))
p(ε)dε


Finally, dividing by C−σ(1− πd)Φ(s) and using our definition of λ̃(s) from above gives

(Az)
1

1−α (1 + λ̃(s)) =
β

C−σ
η′(i(s))

[∫
δW (Φ′)

δΦ′(ze∆eε, k′(s), b′(s))
p(ε)dε−

∫
δW (Φ′)

δΦ′(zeε, k′(s), b′(s))
p(ε)dε

]
. (37)

Investment The FOC for capital accumulation at a particular point k′(s) is

C−σ(1− πd)Φ(s) + λ(s) = θµ(s) + β

∫
δW (Φ′)

δΦ′(s′)

δT (s′)

δk′(s)
ds′.

73



The derivatives of next period’s value functions are more complicated than for innovation

because a marginal change in k′(s) affects the value of the state s′ in the next period.

Assuming we can swap the order of differentiation, we can write

∫
δW (Φ′)

δΦ′(s′)

δT (s′)

δk′(s)
ds′ =

∫
δ

δk′(s)

δW (Φ′)

δΦ′(s′)
T (s′)ds′.

Plugging in the definition of the transition function and noting that only the part of the

transition function from incumbents will matter for the derivatives gives

∫
δ

δk′(s)

δW (Φ′)

δΦ′(s′)
T (s′)ds′ = (1−πd)

∫ ∫ ∫
δ

δk′(s)

δW (Φ′)

δΦ′(s′)

(1{k′ = k′(s)} × 1{b′ = b′(s)})×

(η(i(s))1{z′ = ze∆eε}+ (1− η(i(s)))1{z′ = zeε})

 p(ε)Φ(s)dsds′dε.

Using only the initial state s under consideration and eliminating the values of the future

state variables s′ with zero probability, the integral becomes

(1− πd)

[
η(i(s))

∫
δ

δk′(s)

δW (Φ′)

δΦ′(ze∆eε, k′(s), b′(s)))
p(ε)dε+ (1− η(i(s)))

∫
δ

δk′(s)

δW (Φ′)

δΦ′(zeε, k′(s), b′(s)))
p(ε)dε

]
Φ(s).

Finally, we will plug this into the FOC, and as usual divide by C−σ(1− πd)Φ(s) to get

1 + λ̃(s) = θµ̃(s) +
β

C−σ

η(i(s))
∫

δ

δk′(s)

δW (Φ′)

δΦ′(ze∆eε, k′(s), b′(s)))
p(ε)dε+

(1− η(i(s)))

∫
δ

δk′(s)

δW (Φ′)

δΦ′(zeε, k′(s), b′(s)))
p(ε)dε

 (38)

where µ̃(s) = µ(s)
C−σ(1−πd)Φ(s)

.

Borrowing The FOC for borrowing at a particular point b′(s) is

λ(s)

1 + rt
= µ(s)− β

∫
δW (Φ′)

δΦ′
δT (s′)

δb′(s)
ds′

As with capital, we can write the integral term as

∫
δ

δb′(s)

δW (Φ′)

δΦ′(s′)
T (s′)ds′ = (1−πd)

∫ ∫ ∫
δ

δb′(s)

δW (Φ′)

δΦ′(s′)

(1{k′ = k′(s)} × 1{b′ = b′(s)})×

(η(i(s))1{z′ = ze∆eε}+ (1− η(i(s)))1{z′ = zeε})

 p(ε)Φ(s)dsds′dε.
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And as in the case with capital, this integral becomes

(1− πd)

[
η(i(s))

∫
δ

δb′(s)

δW (Φ′)

δΦ′(ze∆eε, k′(s), b′(s)))
p(ε)dε+ (1− η(i(s)))

∫
δ

δb′(s)

δW (Φ′)

δΦ′(zeε, k′(s), b′(s)))
p(ε)dε

]
Φ(s).

Plugging this into the FOC and dividing by C−σ(1− πd)Φ(s) yields

λ̃(s)

1 + rt
= µ̃(s)− β

C−σ

η(i(s))
∫

δ

δb′(s)

δW (Φ′)

δΦ′(ze∆eε, k′(s), b′(s)))
p(ε)dε+

(1− η(i(s)))

∫
δ

δb′(s)

δW (Φ′)

δΦ′(zeε, k′(s), b′(s)))
p(ε)dε

 (39)

B.5.2 Marginal Social Value Functions

The optimal choices to the planner’s problem are given the FOCs (36), (37), (38), and (39),

together with the complementarity slackness conditions. In order to arrive at the results

in Proposition 2, we now use the envelope theorem to get a recursive expression for the

marginal social value function δW (Φ)
δΦ(s)

.

Differentiating the RHS of the planner’s objective at the optimal policies results in

δW (Φ)

δΦ(s)
=C−σ

[
Azkα + (1− δ)k − (1− πd)

(
k′(s) + (Az)

1
1−α i(s)

)]
+ Λa

(∫
zΦ(s)ds

)a−1

z

+ β

∫
δW (Φ′)

δΦ′(s′)

δT (s′)

δΦ(s)
ds′.

From the definition of the transition function (34), we have

∫
δW (Φ′)

δΦ′(s′)

δT (s′)

δΦ(s)
ds′ = (1−πd)

[
η(i(s))

∫
δW (Φ′)

δΦ′(ze∆eε, k′(s), b′(s))
p(ε)dε+ (1− η(i(s)))

∫
δW (Φ′)

δΦ′(zeε, k′(s), b′(s))
p(ε)dε

]
.

We now define ω(s; Φ) = δW (Φ)
δΦ(s)

to be the marginal social value function in the direction

of Φ(s). Plugging this into the two equations above and slightly rearranging, we have

ω(s; Φ) =πdC
−σ [Azkα + (1− δ)k] + (1− πd)C

−σ
[
Azkα + (1− δ)k − k′(s)− (Az)

1
1−α i(s)

]
+ Λa

(∫
zΦ(s)ds

)a−1

z + β(1− πd)Eε [η(i(s))ω(s′; Φ′) + (1− η(i(s)))ω(s′; Φ′)] ,

where Eε[ω(s′; Φ′)] =
∫
ω(s′; Φ′)p(ε)dε takes the expectation over idiosyncratic shocks ε.
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We now define ω̃(s; Φ) = ω(s;Φ)
C−σ . Plugging this into the equation above yields

ω̃(s; Φ) =πd

[
Azkα + (1− δ)k + Λ̃a

(∫
zΦ(s)ds

)a−1

z

]
+ (40)

+ (1− πd)


Azkα + (1− δ)k − k′(s)− (Az)

1
1−α i(s) + Λ̃a

(∫
zΦ(s)ds

)a−1

z

+ β

(
C ′

C

)−σ

Eε [η(i(s))ω̃(s′; Φ′) + (1− η(i(s)))ω̃(s′; Φ′)]

 .

We are finally in a position to derive the equations in Proposition 2 from the main text.

Let time subscripts denote the optimal value and policy functions conditional on the optimal

path of the distribution Φ(s). Then, let

ω̂t(s) = ω̂(s; Φt)−b′t−1(s)+(1−πd)
b′t(s)

1 + rt
+β

(
Ct+1

Ct

)−σ

(1−πd)
(
−b′t(s) + (1− πd)

b′t+1(s)

1 + rt+1

)
+. . .

be the planner’s social marginal value function plus the path of borrowing and debt repay-

ments starting from period t. Plugging this into (40) gives the augmented Bellman equation

ω̂t(s) =πd

[
Azkα + (1− δ)k − b+ Λ̃a

(∫
zΦ(s)ds

)a−1

z

]
+ (41)

+ (1− πd)


Azkα + (1− δ)k − b− k′(s)− (Az)

1
1−α i(s) + Λ̃a

(∫
zΦ(s)ds

)a−1

z

+
b′(s)

1 + rt
+ β

(
C ′

C

)−σ

Eε [η(i(s))ω̂t(s′) + (1− η(i(s)))ω̂t(s
′)]

 .

To keep notation even simpler, define Λ̂ = Λ̃a
(∫

zΦ(s)ds
)a−1

and let Et denote the

expectation over both the innovation shock and the idiosyncratic ε shocks, as in the main

text. Finally, let ω̂exit
t denote the terms inside the first set of brackets in (41) and let ω̂cont

t

second set of brackets in (41). Then we have ω̂t(s) = πdω̂t(s)
exit + (1− πd)ω̂t(s)

cont, where

ω̂cont
t (s) = Azkα+(1−δ)k−b−k′(s)−(Az)

1
1−α i(s)+

b′(s)

1 + rt
+Λ̂z+β

(
Ct+1

Ct

)−σ
Et
[
ω̂t+1(s

′)
]
(42)

This Bellman-like equation (42) is similar to the augmented Bellman equation (13) from

Proposition 2 except that (42) is evaluated at the planner’s optimal policies. Therefore, it
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remains to show that the planner’s policies maximize the RHS of Bellman operator implied

by the RHS of (42) subject to the constraints d ≥ 0 and b′ ≤ θk′. But inspection of the

FOCs we derived above shows that this is the case.

C Numerical Algorithm

This appendix describes our numerical solution algorithm. This algorithm may be of interest

to other researchers because it is extremely efficient by avoiding numerical optimizer or

equation-solver.

Balanced Growth Path We first describe how we solve for a balanced growth path, and

then describe how we solve for a transition path starting from an arbitrary initial condi-

tion away from the BGP. Our algorithm for solving the balanced growth path iterates over

candidate growth rates g. Given a guess of g, we solve for individual firms’ decision rules,

computed the implied growth from those decision rules, and check whether that implied

growth is consistent with our guess for g. For each candidate growth rate, the most difficult

part is solving for the individual decisions.

Individual decisions Given a guess for the growth rate g, we solve for the individual

decision rules using the first order conditions from Proposition 1. We solve for the decision

in two steps. First, we solve for the decisions of the financially unconstrained firms. The key

step in this process is iterating over the unconstrained policies k̃′∗(it)(z̃), i
∗
(it)(z̃), and ṽ(it)(z̃),

where (it) indexes the iteration. Given the current iteration of these objects, we perform the

following:

(i) Update the investment policy from (19), which becomes k̃′∗(it)+1(z̃) =
(
αEt[z̃′]

r−δ

) 1
1−α

,

where r = 1
β
(1 + g)σ − 1 is the real interest rate associated with the growth rate g.

Note that we use the previous iteration of the innovation policy i∗(it)(z̃) to evaluate the

expectation.
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(ii) Update the innovation policy from (20), which can also be evaluated in closed form:

i∗(it)+1(z̃) = max{0, η′−1

z̃
1

1−α
1 + r

1 + g

πd
(
Eε[ñ′|ι = 1]− Eε[ñ′|ι = 0]

)
+

(1− πd)
(
Eε[ṽ∗(it)(z̃

′)|ι = 1]− Eε[ṽ∗(it)(z̃
′)|ι = 0]

)

−1}.

We use the new iteration of the capital policy k′∗(it)+1(z̃) to evaluate the evolution of

net worth. Note that the minimum savings policy drops out of this difference and is

therefore not necessary for this computation. We pre-compute the inverse function

η′−1(y).

(iii) Update the value function ṽ∗(it)+1(z̃) by iterating on the Bellman operator implied by

(22).

Given these unconstrained objects, we can solve for the minimum savings policy by iterating

on the operator implied by (21). Finally, we can recover the unconstrained net worth cutoff

n(z̃) from (25).

With these unconstrained policies in hand, we can now solve for the decision rules for

all firms over the entire state space (z̃, ñ). We do so by iterating on k̃′(it)(z̃, ñ), b̃
′
(it)(z̃, ñ),

i(it)(z̃, ñ), λ(it)(z̃, ñ), and v(it)(z̃, ñ):

(i) If a particular state (z̃, ñ) satisfies ñ > n(z̃), then use the unconstrained policies and

value derived above.

(ii) Solve for the policy rules assuming the collateral constraint is not binding:

• Update the capital accumulation policy from (19), which can be computed in

closed form:

k̃′(it)+1(z̃, ñ) =

(
α

Et[(z̃′ × (1 + 1− πd)λ(it)(z̃
′, ñ′)]

(1 + r)(1 + λ(it)(z̃, ñ))− (1− δ)Et[(1 + 1− πd)λ(it)(z̃′, ñ′)]

) 1
1−α

,

where we compute the law of motion for net worth ñ and the expectation using

the current iteration (it) of the policy rules.
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• Update the implied b̃′(it)+1 from the d̃ = 0 constraint:

b̃′(it)+1(z̃, ñ) =
1 + r

1 + g

(
z̃

1
1−α i(it)(z̃, ñ) + (1 + g)k̃′(it)+1(z̃, ñ)− ñ

)
.

(iii) For each point in the state space (z̃, ñ), which if the collateral constraint is binding at

these candidate solutions, i.e. if b̃′(it)+1(z̃, ñ) > θk̃′(it)+1(z̃, ñ). If so, compute the policies

with a binding collateral constraint:

• Update the capital accumulation policy from the d̃ = 0 constraint with b̃′ = θk̃′:

k̃′(it)+1 =
ñ− z̃

1
1−α i(it)(z̃, ñ)

(1 + g)(1− θ
1+r

)
.

• Set b̃′(it)+1(z̃, ñ) = θk̃′(it)+1(z̃, ñ).

• Recover the Langrange multiplier on the collateral constraint µ(it)+1(z̃, ñ) from

the capital Euler equation (19).

(iv) Update the innovation policy (20) given this new iteration of the investment and bor-

rowing policies:

i∗(it)+1(z̃) = max{0, η′−1

(1 + λ(it)(z̃, ñ))z̃
1

1−α
1 + r

1 + g
Et

πd (E
ε[ñ′|ι = 1]− Eε[ñ′|ι = 0])+

(1− πd)
(
Eε[ṽ∗(it)(z̃

′)|ι = 1]− Eε[ṽ∗(it)(z̃
′)|ι = 0]

)

−1}

where we evaluate the law of motion for net worth using k̃′(it)+1(z̃, ñ) and b̃
′
(it)+1(z̃, ñ).

(v) Update the value function ṽ(it)+1(z̃, ñ) by iterating on the Bellman operator from (16).

(vi) Update the financial wedge λ(it)+1(z̃, ñ) from (18):

λ(it)+1(z̃, ñ) = (1 + r)µ(it)+1(z̃, ñ) + (1− πd)Et[λ(it)(z̃′, ñ′)].

While we do not have a formal proof that this iteration will converge, we find that it robustly

converges for the parameterizations that we have explored. Given these policy rules, we

compute the stationary distribution Φ̃(z̃, ñ) implied by (26).
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Updating guess of the growth rate g We now need to compute the aggregate growth

rate implied by these decision rules. We compute the growth rate of average productivity∫
zjtdj, g̃, using the definition

1 + g̃ =
(1− πd)

∫
z′p(ε)Φ(s)dεds+ πd(1 + g̃)

∫
zΦ(s)ds∫

zΦ(s)ds

where s = (z, n) denotes the individual state vector. The second term in the numerator

reflects our assumption that the average productivity of initial entrants is equal to the

average productivity of incumbents. Rearranging this expression gives

1 + g̃ =

∫
z′p(ε)Φ(s)dεds∫

zΦ(s)ds
.

The numerator in this integral is

∫ [
η(i(s))e∆eεz + (1− η(i(s)))eεz

]
p(ε)Φ(s)dεds

= eσ
2
ε/2

[∫
zΦ(s)ds+

∫
η(i(s))(e∆ − 1)zΦ(s)ds

]

where the second line uses the fact that ε is log-normally distributed independent of s.

Collecting terms, we have

1 + g̃ = eσ
2
ε/2

[
1 + (e∆ − 1)

∫
η(i(s))zΦ(s)ds∫

zΦ(s)ds

]
.

Given this value of g̃, we can then compute the implied growth of Zt as 1 + ĝ = (1 + g̃)
1+a
1−α .

Taken together, this procedure defines a mapping from the current guess of the growth

rate, g, to a new guess, ĝ = f(g). The balanced growth path is a fixed point of this

mapping. We compute the fixed point using a nonlinear equation solver to numerically solve

the equation ĝ − f(g) = 0.

Transition Path We can solve for the transition path starting at an arbitrary initial

distribution Φ̃0(z̃, ñ) using a nonlinear equation solver. Specifically, we assume the economy

converges to the balanced growth path by some finite period T and define the transition
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path as a sequence of {gt, rt}Tt=0 which solves h({gt, rt}) = 0, where h performs the following:

(i) Given the sequence {gt, rt}Tt=0, solve for the individual decisions using backward itera-

tion in the scheme described above for computing the BGP.

(ii) Given these policies and the initial distribution, Φ̃0(z̃, ñ), simulate forward to get the

path of distributions {Φ̃t(z̃, ñ)}Tt=1.

(iii) The elements of h({gt, rt}) are then the aggregate consistency conditions:

1

β

(
Ct+1

Ct

)σ
− (1 + rt) = 0.

D Additional Quantitative Results

This appendix provides details of quantitative results described in the main text.

D.1 Additional Results about the Pecking Order

This section provides additional results about the model’s pecking order of firm growth

described in Section 5.

R&D Share Over the Pecking Order Figure D.1 shows that the model’s R&D share

is increasing throughout the pecking order. We compute the R&D share as the ratio of

R&D expenditures to the sum of R&D expenditures and investment expenditures, as in the

data. The model’s R&D share is zero in the first region of the pecking order in which firms

pursue no innovation. The R&D share begins to increase in the second region, in which

firms begin innovating. The R&D share is monotonically increasing in this region because

the amount of innovation required to reduce the return on innovation is itself increasing due

to the concavity of η(i). Finally, the R&D share flattens out once the firm reaches the third

region of the pecking order in which the decision rules are independent of net worth.

Role of Innovation Technology in the Pecking Order Figure D.2 compares our cal-

ibrated pecking order to a version of the model with a more efficient innovation technology,
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Figure D.1: R&D Share Over the Pecking Order

0 10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Notes: R&D share computed as the ratio of innovation expenditures to the sum of innovation expenditures
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Figure D.2: Role of Innovation Technology in the Pecking Order
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Notes: the left panel plots capital expenditures k′t(z, n) (left axis) and innovation intensity it(z, n) (right

axis) in market equilibrium BGP of the calibrated model for fixed z. The right panel plots the net return to

these activities, defined as the RHS of the Euler equations (8) and (9) minus 1. “Better η(i)” refers to the

model with higher η0 than in our baseline calibration (see Section 6).
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Figure D.3: The Pecking Order with Heterogeneity in Innovation Size
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Notes: figure plots time path of R&D-to-sales ratios (left panel) and detrended log capital stock (right panel)

for two types of firms: one with the baseline innovation technology, and one with a better technology with

higher step size ∆ but starts with a smaller log capital stock. Log capital in right panel is normalized to

zero in the first year for the firm with the baseline technology.

i.e. a higher value of η0 which raises the probability of receiving a successful innovation η(i)

for a given innovation intensity i. As described in the main text, the more efficient innova-

tion technology shifts up the returns to innovation, which has two effects on firms’ decisions.

First, the return to innovation intersects the return to capital for a lower level of net worth,

implying that firms start innovating earlier on in the pecking order. Second, conditional

on positive innovation, firms do more innovation. These higher innovation expenditures re-

quires the firm to reduce capital accumulation in the region in which the firm is financially

constrained. However, once the firm becomes unconstrained, capital accumulation increases

relative to the baseline because higher innovation increases the expected marginal product

of capital in the next period.

Heterogeneity in Innovation Size Our baseline model assumes that all innovations

produce the same increase in productivity, ∆. However, some papers in the existing literature

argues that some firms have a comparative advantage in larger “breakthrough” innovations.

We now show that our model can accommodate this possibility without affecting our pecking
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order of growth within firms.

Specifically, we compare the time paths of two firms that differ in the size of their success-

ful innovations, ∆. The first firm is representative of an established firm in our Compustat

sample; it has our calibrated innovation technology and starts with a level of capital similar

to a smaller firm within Compustat. The second firm is representative of a smaller “fledgling”

firm that has a comparative advantage in innovation; its innovation technology has a larger

increase in productivity upon success ∆, but the firm starts with a lower level of capital. We

simulate the time paths of the R&D share and the capital stock over five years.

Figure D.3 shows that innovation is negatively correlated with size across firms but is

still positively correlated with size within firms, as in our pecking order of firm growth. The

across-firm correlation is negative because the smaller firm has a higher technological return

to innovation ∆, and therefore pursues more innovation and less investment for any level of

net worth. However, the within-firm correlation is still positive because each firm is more

willing and able to finance higher innovation as they accumulate net worth.

D.2 Investment Tax Shocks

The Bonus Depreciation Allowance allowed firms to deduct a fraction bt ∈ [0, 1] of investment

expenses from their tax bill immediately (and apply the standard depreciation schedule to

the remaining 1 − bt fraction of expenditures). By bringing forward future tax deductions

into the present, the policy increases the present value of tax deductions by ∆ζt = bt(1− ζ)

where ζ < 1 is the present value of deductions under the baseline schedule.

Zwick and Mahon (2017) show that sectoral heterogeneity in the baseline tax depreciation

schedule across sectors, ζs, provides exogenous variation that can be used to identify the

effect of the Bonus, ∆ζst = bt(1− ζs), on investment. We estimate their specification in our

Compustat sample with the regression

xjt
kjt

= αi + αt + γ
1− τζst
1− τ

+ Γ′Xjt + ϵjt, (43)

where τ is the corporate tax rate, αi is a firm fixed effect, αt is a time fixed effect, Xjt

controls for cash flows to lagged capital, and ϵjt are residuals.
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Table D.1
Bonus Depreciation Allowance in the Data and the Model

(1)
xjt

kjt
, data (2)

xjt

kjt
, model (3)

ijt
yjt

, data (4)
ijt
yjt

, model

1−τζst
1−τ -1.37 -1.73 -0.14 -0.20

(0.16) (0.04)

R2 0.35 0.88

Notes: estimates of γ̂ from the regression (43) in columns (1) and (2) or from the regression (44) in
columns (3) - (6). Standard errors, reported in parentheses, are clustered by firms. “Model” columns (2)
and (4) replicate the regressions on model-simulated data in response to a shock equivalent to a 50% bonus
depreciation allowance which reverts back to its long-run average following an AR(1) process with annual
persistence 0.8 (giving a half-life of roughly two years).

To replicate this experiment in our model, we feed in an exogenous shock to the relative

price of investment. Appendix B shows that the Bonus is isomorphic to a temporary shock to

the relative price of capital in our model. We assume that the shock mean-reverts according

to an AR(1) with an annual autocorrelation coefficient of 0.8, which implies a half-life around

two years (broadly in line with the data). We then simulate a panel of firms from our

model’s Compustat sample and estimate the regression equation (43). In this regression, we

assume all firms face the same present value of tax deductions ζt, i.e. there is no sectoral

heterogeneity. Since the empirical specification (44) includes time fixed effects to absorb

general equilibrium effects, we keep the real interest rate fixed at its initial value rt = r∗ for

this exercise. We do not include controls Xjt that are outside of our model.

As a reality check, the first two columns of Table D.1 show that the model roughly

matches the response of investment to the Bonus Depreciation Allowance. Column (1) shows

that the empirical estimate of the regression coefficient is γ̂ = −1.37, which is close to Zwick

and Mahon (2017)’s estimate of −1.53 using firm-level IRS microdata. A 50% bonus would

increase the average value of 1−τζst
1−τ by −0.03, implying its direct effect increased the average

firm’s investment rate by −0.03 × −1.37 = 0.04, compared to its unconditional average of

0.14. The model’s implied regression coefficient in Column (2) is γ̂ = −1.73, around two

standard errors of the empirical estimate.

Column (3) in Table D.1 documents a new empirical finding: the Bonus also substantially
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Figure D.4: Heterogeneous Responses to the Bonus Depreciation Allowance
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Notes: cross-price elasticity of innovation expenditures to the relative price of investment, using a shock

equivalent to a 50% bonus depreciation allowance which reverts back to its long-run average following an

AR(1) process with annual persistence 0.8 (giving a half-life of roughly two years). Elasticities computed as

the Davis, Haltiwanger and Schuh (1998) growth rate in the impact period of the shock.

raises innovation expenditures. We estimate the regression

RDjt

ỹjt
= αi + αt + γ

1− τ ζ̂st
1− τ

+ Γ′Xjt + ϵjt, (44)

which replaces the investment rate on the LHS of (43) with the RD-to-sales ratio RDjt/ỹjt.

Note that the denominator ỹjt is lagged sales in the past five years, so it is predetermined in

the period of the shock. Quantitatively, this estimated coefficient implies that a 50% bonus

directly raises the average firm’s RD-to-sales ratio by about 0.8pp relative to its unconditional

average of 2.9pp — a nearly 30% increase in innovation expenditures.

Column (4) in Table D.1 shows that the model matches the empirical response of inno-

vation to the Bonus within one standard error. In order to understand the role of financial

frictions in driving the model’s success, Figure D.4 plots the model’s cross-price elasticity of

innovation with respect to investment. Unconstrained firms have a positive elasticity because

higher investment also raises the return to innovation due to the complementarity between

capital and productivity. On the other hand, constrained firms have a positive elasticity

because the shock lowers their after-tax expenditures on investment, freeing up cash flows to
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Table D.2
Bonus Depreciation Allowance by Size

Small firms Large firms
RDjt

yjt
, data (2)

RDjt

yjt
, model (3)

RDjt

yjt
, data (4)

RDjt

yjt
, model

1−τζst
1−τ -0.27 -0.27 -0.10 -0.07

(0.10) (0.04)

R2 0.83 0.90

Notes: estimates of γ̂ from the regression (43) in columns (1) and (2) or from the regression (44) in
columns (3) - (6). Standard errors, reported in parentheses, are clustered by firms. “Small” firms in
column (5) are those whose average sales are in the bottom 3 deciles of the sales distribution. “Large”
firms in column (6) have average sales in the top 3 deciles of the sales distribution “Model” columns (2)
and (4) replicate the regressions on model-simulated data in response to a shock equivalent to a 50% bonus
depreciation allowance which reverts back to its long-run average following an AR(1) process with annual
persistence 0.8 (giving a half-life of roughly two years).

finance innovation. Quantitatively, this cash flow channel is larger than the complementarity

channel for most constrained firms.

Table D.1 confirms that these size-dependent responses are consistent with the data,

providing further validation of the role of financial frictions in linking innovation and invest-

ment. Following Zwick and Mahon (2017), we define small firms as those whose average sales

are in the bottom three deciles of the distribution and large firms whose sales are in the top

three deciles. Small firms’ innovation expenditures are about four times as responsive to the

bonus as are large firms, consistent with our model.

D.3 Sources of Firm Heterogeneity

Figure D.5 visualizes the partition of the state space characterized in Proposition 1 in the

detrended BGP. The red isocurve implicitly defines the constrained cutoff n(z, n); firms above

this curve are actively constrained. The level of net worth below which firms are constrained

is increasing in productivity z because higher productivity firms have a higher optimal scale

of capital k∗(z) and therefore a greater incentive to borrow. The blue isocurve implicitly

defines the unconstrained cutoff n(z); firms below this curve are financially unconstrained.

Firms in between these two isocurves are potentially constrained.
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Figure D.5: Partition of the State Space

Notes: partition of the state space from Proposition 1 in the market BGP. Net worth n and log productivity

log z have been detrended following Appendix B.

Decision Rules Figure D.6 plots firms’ value functions and decision rules as a function

of net worth n for different levels of productivity z. Consistent with the pecking order of

firm growth from Section 5, firms with low net worth spend all their available resources on

investment and do not innovate. The level of net worth at which firms begin innovating

is increasing in their productivity because higher-productivity firms have a higher marginal

product of capital and, therefore, a higher opportunity cost of innovation. While constrained,

firms accumulate debt until they reach their optimal scale k∗(z), at which point they use ad-

ditional net worth to pay down their debt (and potentially engage in financial saving). Once

firms become financially unconstrained, they adopt the minimum savings policy described in

Proposition 1. Unconstrained firms’ capital varies substantially, but all unconstrained firms

have the same innovation rate because of how the cost of innovation is scaled by productivity.

Figure D.7 plots the “cash flow sensitivities” of investment and innovation, defined as

∂k′(z,n)
∂n

and ∂i(z,n)
∂n

. Of course, unconstrained firms have sensitivities of zero because their
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Figure D.6: Decision Rules
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Notes: firm decision rules in the market BGP. All variables have been detrended following Appendix B.

decision rules are independent of net worth (see Figure D.6). Among constrained firms,

those that do not innovate simply put all additional net worth toward investment. We can

explicitly compute the resulting investment-cash flow sensitivity by differentiating the flow

of funds constraint (7) with innovation i(z, n) = 0 and borrowing b′ = θk′

k′(z, n) = n+
θk′(z, n)

1 + r
=⇒ ∂k′(z, n)

∂n
=

(
1− θ

1 + r

)−1

≈ 2,

where the last approximation uses our calibrated values of θ = 0.52 and r = 0.04. Since

firms can lever up investment with borrowing, their investment-cash flow sensitivities are

above one. Constrained firms with positive innovation have a smaller investment-cash flow

sensitivity because they put some of the additional funds toward innovation as well:

k′(z, n)+(Atz)
1

1−α i(z, n) = n+
θk′(z, n)

1 + r
=⇒ ∂k′(z, n)

∂n
=

(
1− θ

1 + r

)−1(
1− (Atz)

1
1−α

∂i(z, n)

∂n

)
.

Quantitatively, Figure D.7 shows that the innovation-cash flow sensitivities are an order of

magnitude smaller than the investment-cash flow sensitivities.
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Figure D.7: Cash Flow Sensitivities
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Notes: cash flow sensitivities computed as ∂k′(z,n)
∂n and ∂i(z,n)

∂n . Derivatives computed using finite differences.

Lifecycle Dynamics Figure D.8 plots a sample lifecycle for a firm that enters the economy

at time t = 0. In order to highlight the role of innovation, we assume that the firm receives

no idiosyncratic productivity shocks εjt = 0 over this sample path. In its first years of life,

the firm has a very high investment rate and does not innovate. As the firm ages, it exhausts

its marginal product of capital, reducing its investment rate and increasing its innovation

rate. These dynamics are consistent with the descriptive evidence from Figure 1 in the main

text. In this particular sample path, the firm receives two successful innovations, both of

which successful innovations are accompanied by investment spikes.

Decomposing the Return to Capital Figure D.9 decomposes the return to capital from

the pecking order plot Figure 3 as well as its “MPK component”

1

1 + rt
Et [(MPKt+1(z

′, k′) + 1− δ)× (1 + (1− πd)λt+1(z
′, n′))] ,
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Figure D.8: Sample Firm Lifecycle
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Notes: sample lifecycle profile for a firm without idisosyncratic shocks εjt = 0 for all j. Initially endowed

with approximately average productivity and net worth among new entrants .

Figure D.9: Decomposing the Return to Capital
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Notes: the return to investment and innovation, defined as the RHS of Euler equations (8) and (9) minus 1.

“Capital (MPK component)” refers to the return to capital excluding the collateral value θµt(z, n).
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Table D.3
Distribution of Investment, Innovation, and Leverage

Statistic Data Model
Investment spending
E[xjt/kjt] 0.15 0.16
σ(xjt/kjt) (targeted) 0.15 0.13
E[xjt/kjt|spike] (targeted) 0.37 0.35

R&D spending
E[RDjt/yjt] 0.06 0.03
Frac(RDjt/yjt > 0) 0.45 0.92
E[RDjt/yjt|RDjt > 0] (targeted) 0.06 0.06

Leverage
Mean gross leverage, all (targeted) 0.34 0.30
Mean gross leverage, Compustat 0.21 0.28
SD gross leverage, Compustat 0.22 0.24
Mean net leverage, Compustat 0.13 0.09
SD net leverage, Compustat 0.33 0.36

Notes: cross-sectional statistics from stationary distribution of firms. As in the maint text, xjt denotes
investment, kjt denotes capital, ijt denotes innovation, yjt denotes sales, and bjt denotes borrowing. We
compute gross borrowing in the model as max{bjt, 0}.

i.e. the part of the return to capital not driven by its value as collateral θµt(z, n). The figure

shows that the majority of the difference between the return to capital vs. innovation is due

to the MPK component, not its collateral value.

D.4 Distribution of Investment, Innovation, and Leverage

Table D.3 compares a number of moments of the stationary distribution of investment,

R&D, and leverage from our model to their counterparts in the Compustat data. The model

endogenously matches the average investment rate fairly well even though they it was not

directly targeted in the calibration. The model model also matches the first two moments

of leverage fairly well, either in terms of gross or net leverage. However, the model over-

predicts the share of firms with positive R&D spending compared to the data. We choose not

to target this statistic because it is well-known that firms under-report R&D expenditures,

especially along the extensive margin.
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Figure D.10: Transition Paths Following Financial Shock θt
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Notes: aggregate transition paths following an unexpected tightening of the collateral constraint θt. Top left

panel plots the path of θt. Remaining panels plot aggregate output, investment, and innovation expenditures

in log-deviations from initial period. Dashed black lines are the growth trajectory in the initial market BGP.

D.5 Transitory Growth Effects of Financial Shocks

We model a financial shock as a transitory decline in the collateral constraint θt plotted in

the top left panel of Figure D.10. We compute the effects of this shock assuming that the

shock is completely unexpected at time t = 0 but then agents have perfect foresight as the

economy transitions back to a BGP. The bottom panels show that the shock reduces both

investment and innovation expenditures. However, once the shock has dissipated, the growth

rate of investment, innovation, and output return to their original levels. Hence, our model

does not generate much internal propagation of financial shocks on aggregate growth rates

(although the levels never return to the original trend).

D.6 Investment Tax Cuts

We illustrate the connection between investment tax cuts and innovation using the Tax Cuts

and Jobs Act (TCJA 2017) as an example. Appendix B.3 shows that the tax system changes
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Figure D.11: Investment Tax Cuts Raise Innovation (TCJA 2017)
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Notes: transition path following an unexpected, permanent decline in the relative price of capital of the size

equivalent to full expensing of investment, starting from the initial market BGP. Dashed lines correspond to

the paths of investment, output, and innovation along the initial growth trajectory. Solid lines correspond

to their actual paths in response to the change in the relative price of capital. Investment and innovation

expenditures expressed as log-deviations from initial period.

the after-tax price of investment to 1 − τζt, where τ is the corporate tax rate and ζt is the

present value of tax deductions per unit of investment. The TCJA 2017 raised the present

value of deductions to ζt = 1, lowering the relative price of investment. We mirror this policy

change in our model by studying a permanent decline in the after-tax price of investment of

the same size.

Figure D.11 shows that, in our model, full expensing increases the long-run growth rate

by 10 basis points per year. This result occurs for two reasons. First, for unconstrained firms,

the complementarity of capital and TFP in production implies that the return to innovation

increases with investment. Second, if after-tax capital expenditures fall, constrained firms

can afford more innovation our of their current cash flows. However, these positive effects

take fifteen years to fully materialize.

In contrast to our model, investment tax cuts would have no effect on the long-run growth

rate in the neoclassical growth model. In the neoclassical model, cutting taxes on investment

would increase the capital stock but, due to the diminishing marginal product of capital,

only lead to an increase in the level of output (not its growth rate).
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