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1 Introduction
This paper integrates daytime and nighttime satellite imagery to analyze the eco-

nomic impacts of infrastructure projects. Our approach combines high-resolution im-
agery with analytical tools refined in the quantitative spatial economics literature
(Redding and Rossi-Hansberg, 2017). Our goal is to provide a tractable framework
for studying both the aggregate and highly local effects of infrastructure investments
that would be applicable in contexts in which conventional data sources are limited
or unavailable, for instance in many low-income countries.

Motivating our work is a multi-decade investment boom in transportation infras-
tructure in emerging and developing economies. Since the late 1990s, India has
constructed 6,000 km of new expressways to connect its largest cities as part of the
Golden Quadrilateral (GQ) network, while upgrading 19,000 km of minor roads to na-
tional highways and building an extensive network of rural roads (ADB, 2017). India’s
investment boom has recently accelerated, with the country currently adding 10,000
km of highways each year (Economist, 2022). China’s efforts are even more ambitious,
involving over 40,000 km of new motorways within China and a Belt-Road Initiative
that is creating new transport links throughout Asia and Africa. Since 2000, the
World Bank has devoted one-fifth of its total lending to transportation infrastructure,
with much of this funding going to low-income countries (Woetzel et al., 2017).

A major challenge in studying these investments is the coarseness of conventional
data. To evaluate impacts within a nation, one is typically left to work with cen-
sus samples, which tend to appear with long lags and to limit geographic identifiers
to municipalities or districts. Yet, in theory, the impacts and distributional conse-
quences of investments are highly localized (Allen and Arkolakis, 2022). The high-
resolution imagery we exploit lets us evaluate infrastructure investments from the
national to the granular level. As a demonstration case, we study the expansion of
India’s highways during the late 1990s and 2000s. Because this episode has been
studied using conventional data at lower spatial resolution (Datta, 2012; Ghani et al.,
2014; Asturias et al., 2016; Alder, 2016), we are able to benchmark our results using
satellite imagery with results using standard approaches.

Our analysis proceeds in four steps. First, we identify the footprints of local mar-
kets in India using the approach developed in Baragwanath et al. (2019), which ap-
plies an algorithm to define the geographic unit of analysis—a local market—as a
cluster of adjacent pixels whose properties in daytime multi-spectral satellite im-
agery indicate the presence of builtup landcover. We measure economic activity in
these granular markets using the intensity of nighttime lights captured by DMSP-
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OLS satellite sensors. The result is data on economic activity in 2001 and 2011 for
13,387 markets, which are either small towns unto themselves or the smaller cities
that comprise a larger metropolitan area. Within the metropolitan borders of New
Delhi, for example, we identify 579 local markets. In 2001, India’s urban markets
collectively contained 34.8% of the national population. As a comparison, World De-
velopment Indicators reports India’s 2001 urbanization rate at 27.9%.

Next, we measure travel times between each pair of markets by digitizing official
road maps for India in 1996, prior to the highway construction, and 2011, by which
point most construction from this phase was complete.1 The maps, which identify
five categories of intercity roadways from national highways to simple roads, reveal
that India’s recent highway construction was much more extensive than the Golden
Quadrilateral (GQ), the national artery connecting Delhi, Mumbai, Chennai, and
Kolkata, and the primary focus of earlier studies. The GQ accounted for just one-fifth
of new highway miles created by road upgrades or new construction between 1996
and 2011. A comprehensive analysis of India’s road expansion should thus include
the full extent of the intercity road construction during this period. Using Dijkstra
algorithm to calculate the minimum travel time between each market pair, the new
roads reduced travel times for 200-500km distances on average by about 1 hour.

Third, we demonstrate how to apply satellite imagery to an otherwise standard
quantitative spatial model (Redding and Rossi-Hansberg, 2017; Allen and Arkolakis,
2023). The procedure requires calculating the market access function for each mar-
ket in each year, using our data on market boundaries, nightlights, and bilateral
travel times, and estimates of the trade cost elasticity and the elasticity of income
with respect to nightlights (Henderson et al., 2012). We then estimate the impact of
changes in market access on market income, accounting for endogenous placement
of the roads using a least-cost-spanning-tree instrument (Faber, 2014). Finally, we
use our parameter estimates to construct counterfactual changes in welfare based on
alternative highway construction plans, which requires that we allocate population
across our local markets in one year of our data. To do so, we use publicly available
population rasters from the Gridded Population of the World for the year 2010.

We find that improved market access from road construction over 1996 to 2011
increased the net present value of Indian GDP by 1.60%. Nearly all of this increase
comes from the construction of the GQ. Although the expansion of non-GQ national
highways increased real GDP by 0.63%, this gain was offset by construction costs,

1Surprisingly, we were unable to obtain digitized road maps for India in the 1990s or 2000s.
We digitized official road maps using PDFs of the decadal Survey of India, with help from a digital
mapping company.
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leaving a small negative net impact. Impacts are far from uniform across markets:
we uncover a hockey-stick-shaped pattern where the (initially) smallest and largest
markets experienced larger gains than medium-size markets. Welfare rose by 2.2%
for markets in the first quartile in terms of size (as measured by the sum of night-
lights), followed by gains of 2.0% for markets in the second quartile, 2.2% for markets
in the third quartile, 2.3% for markets in the fourth quartile, and, notably, of 2.5%
and 3.3% for the top 50 markets and top 10 markets, respectively.

We then decompose the variance in welfare gains for different levels of spatial
aggregation: 42.6% of the total variance in welfare effects accrues within Indian dis-
tricts, and the remaining 57.4% accrues across districts. Satellite imagery thus re-
veals highly localized impacts of national infrastructure investment, which would not
be detectable using India’s district-level administrative data.

When we disentangle the welfare impacts from the construction of the GQ versus
the upgrading of national highways, we find opposing results. While the GQ dis-
proportionately benefited the largest markets in terms of nightlight intensities, the
gains from national highway upgrades concentrated on the smallest markets. The
GQ produced a welfare gain of 1.0% for the first quartile of markets, compared to a
welfare gain of 2.8% for the 10 largest ten markets. By contrast, the expansion of
national highways produced a welfare gain of 1.2% in the first quartile of markets,
and a smaller 0.4% gain in the top 10 markets. These findings highlight the varying
distributional consequences of major road construction projects.

Our work contributes to an expanding literature that applies satellite imagery
to the study of roads and economic growth. Storeygard (2016) uses nightlights to
estimate the impacts of road networks across 289 metropolitan regions in 15 Sub-
Saharan Africa countries; and Jedwab and Storeygard (2020) examine spatial im-
pacts of road construction in 3000 larger cities across 39 Sub-Saharan African coun-
tries. Relative to this work, our framework detects impacts for much finer geographic
units and embeds the analysis in a quantitative spatial model; relative to broader
literature in economics that uses satellite imagery (Henderson et al., 2012; Donald-
son and Storeygard, 2016), we demonstrate how the combination of nightlight data,
which captures the intensive margin of economic activity, with multi-spectral output
from daytime images, which defines the extensive margin of regional markets, can be
leveraged for analysis at very high spatial resolutions.2

Road construction in India has attracted much scholarly interest. In related work,

2The use of daytime satellite imagery in spatial economic analysis, which remains less common
than the use of nightlights, was pioneered by Burchfield et al. (2006) in their study of urban sprawl.
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Alder (2016) supplements administrative data with nightlights to study the impact of
the GQ on Indian districts and finds that aggregate real GDP (net of construction and
maintenance costs) would have been 0.8 percent lower in 2012 if the GQ had not been
built.3 Our framework, which arrives at similar aggregate impacts, reveals substan-
tial within-district variation in gains. Other work finds positive impacts of Indian
highways on manufacturing income and productivity (Datta, 2012; Asturias et al.,
2019), and farm income Allen and Atkin (2022), while adjacent studies examine how
the expansion of rural roads has affected Indian villages (Aggarwal, 2018; Asher and
Novosad, 2020). Because we detect builtup towns and cities and not un-illuminated
hamlets, our approach is not well suited for the analysis of rural villages.4

Beyond the economic consequences of road construction in India, our work demon-
strates how to apply satellite imagery to “off-the-shelf” spatial quantitative models,
which have been developed and refined in recent years (Allen and Arkolakis, 2014;
Ahlfeldt et al., 2015; Monte et al., 2018). In so doing, our goal is to provide a low-cost,
tractable, and rigorous framework for spatial impact analysis in general equilibrium.
It is difficult to imagine studying transnational infrastructure investments, such as
the Belt-Road Initiative, using administrative data. Moreover, unlike conventional
statistical sources, satellite imagery is available on a nearly real-time basis, which
allows one, for instance, to evaluate India’s current road investments. Naturally, our
approach cannot assess outcomes for individual units within a market, such as firms
or consumers. Overall, our results suggest that remotely-sensed data are useful for
assessing national policies in data-poor environments.

2 Data
2.1 Detecting Markets with Satellite Imagery

We use satellite imagery to construct markets by aggregating across adjoining
pixels that meet given thresholds for economic activity. Baragwanath et al. (2019)
develop a clustering algorithm that defines a boundary of a market as the set of con-
tiguous or near-contiguous pixels that contain built-up economic activity as indicated
by their day-time spectral properties. We apply this method to detect markets in In-
dia, and measure the intensive margin of economic activity of these markets through
nightlight intensity. We summarize the procedure in Appendix A, and refer the reader
to Baragwanath et al. (2019) for more details.

3Alder (2016) studies 612 of India’s 639 districts in 2001 compared to the 532 districts that contain
detectable urban markets in our analysis.

4See Redding and Rossi-Hansberg (2017); Allen and Arkolakis (2023) for a discussion of the of
quantitative spatial models and Coşar et al. (2021) for a recent application to Turkey.
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Market Boundaries

To define the boundary of markets, we rely on builtup landcover from the Moderate
Resolution Imaging Spectroradiometer (MODIS) 500m resolution layer constructed
by Friedl and Sulla-Menashe (2015), a publicly available dataset widely applied in
remote sensing. We use their “Urban and Builtup” pixels to indicate builtup land-
cover for 2001 (Sulla-Menashe and Friedl, 2018). We assign adjoining pixels with
builtup landcover to a cluster, and form the market boundary by combining proximate
clusters whose boundaries are within 1km of each other. Finally, in order to capture
possible changes in market footprints over time, we draw 0.5km buffers around the
markets. This process creates 13,387 markets which cover 2.7% of India’s surface
area. Markets have mean and median areas of 6.5km2 and 3.4km2. The standard
deviation across market sizes is 23.9km2, and the largest market—New Delhi—has a
boundary of 1,607.6km.

Baragwanath et al. (2019) also generate larger “super-markets” based on an coarser
buffers that nest disaggregate markets defined at smaller buffers: 1km markets ⊂
4km markets ⊂ 8km markets. These super-markets represent data-driven concen-
trations of economic activity, as opposed to those based on administrative district
borders, which can be highly idiosyncratic in size. Relative to the 13,387 1km mar-
kets, we identify 7,539 4km markets, and 3,483 8km markets. As a reference, the
2011 India Census recognizes 6171 “towns” that were home to India’s 377 million ur-
ban residents (31% of total population). Table A.1 provides summary statistics for the
1km, 4km and 8km markets. Our unit of analysis will be the 1km markets, but we
will also be interested in assessing welfare gains within and across the coarser mar-
ket buffers in order to evaluate the analytical value of having observations at higher
versus lower spatial resolutions.

To illustrate our approach, Figure 1 shows local markets around the Ahmedabad
district. In 2011, these markets contained 7.1 million inhabitants in the overall dis-
trict (shown in grey) and 5.6 million inhabitants in the metro area (shown in cross-
hatched yellow). Local markets are shown in black. The main city of Ahmedabad is
evident, as are its principal satellite cities of Gandhinagar, Kalol, Kadi, Changodar,
and Dohlka, and many smaller satellite towns and cities, some of which lie inside and
some of which lie outside district boundaries. Our method detects 69 markets within
the district of Ahmedabad and a total of 383 1km markets in the image.

5



Figure 1: Satellite-Detected Markets in Ahmedabad Metro Area, 2001

Notes: The figure shows markets in the metropolitan area and district of Ahmedabad. Major highways
as of 2011 are shown in bold lines; minor roads as of 2011 are shown in faint lines. Within the figure,
we observe 383 1km markets, 183 4km markets and 42 8km markets.

Market Economic Activity

We measure economic activity within each market using the intensity of light
emitted at night from the Defense Meteorological Satellite Program Operational Lines-
can System (DMSP-OLS), which detects visible and near-infrared light. DMSP-OLS
pixels have a spatial resolution of 1km. For each market, we identify the pixels that
overlap with its borders and aggregate light intensity across these pixels to create
a measure of economic activity for the market. Appendix A discusses various ap-
proaches to address well-known issues with DMSP-OLS data: bottom-coding, top-
coding, and blooming in nightlight data.

Although we do not directly observe GDP at the level of our 1km markets, we have
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GDP data at the district level from the Indian Planning Commission in 2001,5 which
allows us to determine the relationship between nightlights and GDP for these geo-
graphic units. Figure A.1 plots nightlights against district GDP (left panel), revealing
a strong positive correlation. We take this as supportive evidence of our use of night-
light intensity to proxy for local economic activity. To estimate a precise connection
between nightlights and economic activity, we assume the following relationship be-
tween log GDP, log yrt, log nightlight intensity, log Nrt,

log yrt = C + α log Nrt + υrt (1)

where υrt is an i.i.d. disturbance associated with measurement error in the use of
nightlights to capture GDP. We estimate equation (1) using 2001 data for 326 Indian
districts by projecting log GDP on the district’s log nightlight value. The regression
coefficients are: 0.42 for log nightlights, and 3.91 for the constant, with an R2 of 0.57.
We then use the estimated coefficients to project GDP for each 1km market-year:

yrt = exp
(
3.91 + 0.42 log Nrt

)
. (2)

Market Population

A key contribution of this paper is to demonstrate that satellite imagery can be
used to estimate the elasticity of GDP to changes in market access. In order to convert
this elasticity to welfare impacts, we further need an estimate of market population
(in at least one year, either at the baseline or endline). This is because nightlights
provide an estimate of GDP, whereas welfare in standard spatial models rests on
changes in real GDP per person. Population data are therefore necessary to sepa-
rately pin down market changes in population versus income.

Population data are publicly available across the globe in datasets such as the
Gridded Population of the World - GPW (Center for International Earth Science In-
formation Network - CIESIN - Columbia University, 2016). GPW population data are
available at a spatial resolution of 30 arc-seconds (approximately 1 km at the equa-
tor), for the years 2000, 2010, 2015, and 2020. We use data from year 2010 in our
exercise6. We process the GPW data in Google Earth Engine to obtain the total num-

5India does not produce GDP figures at the district level or sub-district level on a regular basis.
We could only obtain estimates for 2001. Of India’s 639 districts in 2001, 532 districts overlapped
with one of our markets in 2001. Of these, we have GDP estimates for 326 districts.

6In a previous draft, we used population data from the 2011 Indian Census rather the Gridded
Population of the World (GPW). The results were similar to those presented in the current version.
Specifically, we observed a total increase in the Net Present Value (NPV) of GDP by approximately
1.08% (compared to 1.60% in the current version), primarily driven by gains from the construction of
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ber of people in each market by adding the population inside each pixel that overlaps
with a given market. Table A.1 reports that the average number of people living in-
side a 1km market increased from 8.9 thousand in 2000 to 10.4 thousand in 2010.
As a validation, the largest 1km market in our sample, (corresponding to New Delhi
and covering 1,607.6km2) was assigned a population of 13.1 million in 2000 and 16.0
million in 2010, while the census reported population of New Delhi was 13.8 million
in 2001 and 16.8 million in 2011.

2.2 India’s Highway System

2.2.1 National Highway Development Project

The Golden Quadrilateral was the centerpiece of India’s National Highways De-
velopment Project (NHDP). Commencing in 2001 and reaching completion by 2012,
the GQ upgraded existing roads to four or six-lane expressways in a circular route
connecting New Delhi, Mumbai, Chennai, and Kolkata. The NHDP also upgraded
many more roads to national highways and constructed other roadways de novo. To
detect highway upgrades and new road construction, we digitized road maps from the
Survey of India, which, prior to 2015, mapped intercity roads for all of India on a
roughly decadal basis. We also digitized maps for 1996 and 2011, which span a period
from five years before the NHDP to just before its end. Appendix B provides more
details explaining the road digitization process and validation.

Figure 2 shows the results of our digitization exercise. The GQ appears in red, new
highways (whether upgrades or new construction) appear as dashed lines, and exist-
ing national highways appear in black. Other roads appear as faint lines. The newly
constructed portions of the grid are more dense in India’s north, east, and south, and
less dense in the center. The figure also shows urban agglomerations with populations
above 300,000. To a first approximation, the existing grid connected India’s largest
cities (populations above 1 million), while new portions of the grid connected smaller
cities. As shown in Figure 1, within an individual region (in this case, Ahmedabad),
there is considerable heterogeneity in access to roads according to market size. Figure
2 further summarizes our measures of India’s highway and intercity road construc-
tion. The GQ added 5,714km of new expressways, and national highways expanded
by 19,750km. Although the total increase in road mileage between 1996 and 2011 was
relatively modest—the 22,371km of additional roads represented only a 10% increase

the GQ, with a minor negative NPV attributable to NH expansion. The decision to transition to the
GPW dataset was motivated by the desire to employ a model that leverages only public (and globally
available) data.
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in total road length—the quality of roads improved significantly.7 India’s length of
highway-quality roads increased by a substantial 86.5% over the period.8

2.2.2 Travel Time between Markets

The increase in road miles understates the full benefits of the construction through
improved speed, as new highways have two to six lanes, whereas the roads being up-
graded had one to two lanes. To translate road construction into changes in transport
costs, we estimate changes in the time required to travel between each pair of mar-
kets in India (see Appendix B). Travel may occur along a portion of the GQ (four to
six lanes, paved), a national highway (two to four lanes, paved), and lesser road types
(one to two lanes, paved, semi-paved, or unpaved). As a starting point, we use es-
timates in Allen and Atkin (2016), which indicate average speeds of 20mph for the
lowest-quality roads (roads where delays may occur) and 60mph for top-quality roads
(GQ). For intermediate roadways, we assume speeds of 40mph for national highways,
30mph for all-weather motorable roads, and 20mph for fair-weather motorable roads.

Because the majority of markets are small, most do not have an identifiable road
going directly through them. The median market in our data is 2.4km away from an
identifiable road in 1996 (interquartile range 3.9km) and 2.2km away from an identi-
fiable road in 2011 (interquartile range 3.4km). Because we cannot detect connecting
roads to these markets, we assume that they follow the minimum distance from the
market centroid to the nearest road, assuming a speed of 20mph.

Given assumed travel speeds, we estimate the minimum travel time between each
pair of markets by implementing the Dijkstra algorithm (Dijkstra, 1959), which finds
the shortest path from a starting node to a target node through a weighted graph,
which is a data structure composed on a set of nodes and edges (Donaldson and Horn-
beck, 2016; Donaldson, 2018) (see Appendix B). Between 1996-2011, Table B.1 in-
dicates that travel times between markets 50-200km apart fell by about 0.5 hours,
travel times between markets 200-500km apart fell by about 1 hour, and travel times
between markets more than 500km apart fell by more than 3 hours.

7Most of the improvements came from upgrading the quality of existing roads to highway-quality
roads, not the construction of new roads that would add to total road length. This is why the 22,371km
of new roads does not coincide with the 5,714km added by the GQ plus the 19,750km added by the
expansion of national highways.

8Total highway-quality roads (which include the GQ and other national highways) in 2011 was
equal to 5,714km + 49,172km = 54,886km while total highway quality roads in 1996 was equal to
29,442km (see Figure 2 for more details).
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Figure 2: Highway Construction in India, 1996 to 2011

Notes: The figure presents: (i) a map of India in 2011, in which lines represent highways (solid black
for existing national highways, solid red for the Golden Quadrilateral, dashed black for upgrades to
national highways), and green dots represent major cities (dot size is proportional to city population in
1995), and (ii) a table showing total road length by type of road in India in 1996 and 2011, in kilometers.
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3 Quantitative Framework
We implement a standard spatial general equilibrium model, which embodies the

market-access approach (see, e.g., Donaldson and Hornbeck, 2016; Bartelme, 2018).
As recently noted by Allen and Arkolakis (2023), these spatial models are character-
ized by a system of regional consumer demand and labor supply equations. Consumer
demand has a CES structure, and labor supply derives from workers’ idiosyncratic
preferences across locations. We present estimating equations and welfare formu-
las based on this framework. We denote the trade elasticity parameter as θ and the
inverse labor supply elasticity as µ. For complete details, see Appendix C.

3.1 Equilibrium Conditions in Market Access

The framework delivers two expressions that link log changes in wages (w) and
population (L) to log changes in a region r’s market access:

ŵrt = εwΦ̂rt + χ̂wrt L̂rt = εlΦ̂rt + χ̂lrt (3)

where x̂t ≡ lnxt − lnxt−1 denotes log changes, εw and εl represent the reduced-form
elasticities, each of which depends on structural parameters θ and µ. χ̂wrt and χ̂lrt are
functions of unobserved regional amenities and productivity shocks.

The change in market access Φ̂rt is determined by:

Φ̂rt = ln

(∑
n

wntLnt
Φnt

τ−θrn,t

)
− ln

(∑
n

wn,t−1Ln,t−1

Φn,t−1

τ−θrn,t−1

)
(4)

where τrn,t is the symmetric iceberg trade cost between regions r and n at time t.9 The
level of market access at year t is solved from the following system of R equations,

Φrt =
∑
n

wntLntτ
−θ
rnt

Φnt

. (5)

In order to compute market access for each region, equation (5) reveals that we
need data for wntLnt, which is local GDP predicted as a function of nighttime lights,
and the iceberg trade cost composite, τ−θrnt, which following the literature we assume is
a function of travel times (see Redding and Rossi-Hansberg, 2017; Monte et al., 2018;
Allen and Arkolakis, 2022):

τ−θrn =
(

travel timern +
κ× (dr + dn)

speed

)−φ
. (6)

9Given symmetric trade costs, consumer market access and firm market accesses are equal up to
a factor of proportion, which simplifies the analysis (Donaldson and Hornbeck, 2016).
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Here, φ measures the elasticity of iceberg trade costs with respect to travel time. We
set φ = 1.5, following Redding and Rossi-Hansberg (2017). The variable dr is the last
miles traveled that connect market r to observed roadways, and dn is the last miles
traveled that connect market n to the observed roadways. We set κ = 0.000621 which
converts meters into miles. We set last-mile travel speeds equal to 20mph.

3.2 The Estimating Equation

Assuming that GDP equals labor income, ŷrt ≡ ŵrt + L̂rt, equation (3) implies

ŷrt = δΦ̂rt + Γ̂rt. (7)

where δ ≡ (εw + εl) and Γ̂rt = χ̂wrt + χ̂lrt + υ̂rt. For the dependent variable, equation (1)
implies that the changes in GDP can be measured as

ŷrt = αN̂rt + υ̂rt, (8)

where we set α = 0.42 based on estimation results for equation (2). The independent
variable, the change in market access, Φ̂rt, is derived by substituting yrt for wntLnt in
equation (5), solving the system of R equations in R unknowns in (5) for Φr at both
time t and time t− 1, and then taking the time difference between these two values.

3.3 Identification

The change in market access contains GDP and trade costs in period t, which em-
body endogenous responses to shocks between t−1 and t. This requires an instrument
to identify δ in equation (7). We follow Faber (2014) by constructing an instrument
based on a least-cost approach to connect markets:

Φ̂mst
rt = ln

(∑
r′

yn,t−1

Φmstnt
τmst
rn,t (Ω′t−1)−θ

)
− ln

(∑
n

yn,t−1

Φn,t−1
τ−θrn,t−1

)
. (9)

This instrument uses GDP at time t − 1 to calculate market access in both time pe-
riods. Additionally, bilateral trade costs, τmstrn,t (Ω′t−1), are constructed by a least-cost
spanning tree algorithm to connect India’s largest cities using information as of time
t − 1, denoted as Ω′t−1. See Appendix B for details. We use India’s 180 largest cities
in the baseline (cities with population above 100 thousand in 2000). We find similar
estimates when using India’s 100 largest cities (cities with a population above 350
thousand in 2000), as reported in Appendix D.

The value Φmst
nt is given by the solution to the R×R system of equations,
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Φmst
rt =

∑
n

yn,t−1

Φmst
n,t

τmst
rn,t (Ω′t−1)−θ. (10)

The instrument maps roads a central planner would have constructed if the only ob-
jective was to connect all targeted points (i.e., India’s 100 or 180 largest cities) in a
network subject to global cost minimization (Faber, 2014). The identifying assump-
tion for this instrument is that the location of non-targeted peripheral markets along
the least cost spanning tree network affects changes of market-level economic out-
comes only through new highway connections, conditional on district fixed effects.

3.4 Equilibrium Changes in Welfare

To perform counterfactual exercises, we solve the model in changes with 2011 as
the baseline (Dekle et al., 2008).10 We use X̂ to denote the ratio between the counter-
factual and the actual economy in 2011 of variable X (and henceforth suppress the
subscript t). These exercises call for additional data on the population of each market
and a parameter value for θ, which we obtain as described above.

Given data on local population Lr, the market access value Φr in 2011, our mea-
sure of market-level GDP, and counterfactual values of trade costs τ ′rn, we solve the
counterfactual market access in changes Φ̂r from the following system of equations:

Φ̂rΦr =

[∑
n

Φ̂
1
µ

(εw+ 1
θ

)
n

Ln
L

]− θ
θ+1
[∑

n

Φ̂εw+εl
n yn

Φ̂nΦn

τ ′
−θ
rn

]
, (11)

Once we obtain Φ̂r, the changes in local wage and population can be computed as

ŵr = Φ̂εw
r

[∑
n

Φ̂
1
µ

(εw+ 1
θ

)
n

Ln
L

] 1
θ+1
, L̂r = Φ̂εl

r

[∑
n

Φ̂
1
µ

(εw+ 1
θ

)
n

Ln
L

]−1

. (12)

where εw and εl are functions of the structural parameters µ and θ as

εw =
µθ − 1

θ
[
µθ + µ+ 1

] , εl =
2θ + 1

θ
[
µθ + µ+ 1

] . (13)

The changes in the local price index and welfare are given by:

P̂r = Φ̂
− 1
θ

r , ˆWelfarer =
ŵr

P̂r
. (14)

10Regarding whether to use the first or last period for the baseline, existing literature is agnostic.
Caliendo and Parro (2015) calibrate the model to the beginning period (1996 in our case), whereas
Adao et al. (2017) calibrate the model to the end period (2011 in our case).
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Solving the model requires values for the trade elasticity on iceberg trade costs (θ)
and the inverse labor elasticity (µ). We assume θ = 8 (see Donaldson and Hornbeck,
2016; Allen and Arkolakis, 2022). Given our estimate of δ, we can recover the inverse
labor supply elasticity µ as (see Appendix C.7 for details):

µ =
εw

δ − εw
× 2− δ

1− δ
, where εw =

1− δ
θ

. (15)

3.5 Intuition

In our model, the inverse labor elasticity µ governs the extent of population reloca-
tion across markets. Two extreme cases are worth mentioning. The first is when the
labor supply is elastic—i.e., when µ approaches one. The reduced-form parameters
become εl = (2θ + 1)/(θ2 + 2θ) and εw = (θ − 1)/(θ2 + 2θ). As seen in equation (3), an
improvement in market access translates into higher wages and higher city popula-
tion, where impacts on population (εl) are larger than impacts on wages (εw), owing
to labor supply being elastic. The second case is when the labor supply is inelastic—
i.e., µ approaches infinity. In this case, equation (13) implies that the reduced-form
parameters are εl = 0 and εw = 1/(θ + 1). Naturally, all changes in market access are
absorbed by changes in wages, with no impact on population.

4 Empirical Analysis
In this section, we first present baseline estimates of δ from (7) using Φ̂mst

rt as an
instrument and then discuss estimates under alternative model specifications.

4.1 Baseline Elasticity Estimates

Panel A of Table 1 presents estimation results for equation (7). Column 1 reports
the OLS estimate, δ =0.16 (s.e. 0.03). This estimate rises to 0.46 (s.e. 0.16) when
using IV, as seen in column 2. The IV results thus indicate an elasticity of GDP with
respect to market access of 0.46. All models control for district-fixed effects and ini-
tial log GDP to account for mean reversion. We cluster the standard errors at the
4km-buffer level. Given the inclusion of district fixed effects, markets that are the
only unit within a district do not contribute to the estimation, which means that the
model is estimated using 13,342 out of the 13,387 markets. Our estimate based on
within-district variation across markets is comparable to Alder (2016) who estimates
δ =0.6 (s.e. 0.23) using district-level variation.

To verify that our estimation results are not the by-product of longer-term trends
in India’s regional urban growth, we conduct a falsification exercise by regressing past
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nightlight changes for 1994 to 1999 on changes in market access for 2001 to 2011. In
Column 3, the elasticity is small and statistically insignificant (δ =0.18 , s.e. 0.18).

Table 1: Baseline Estimates

(1) (2) (3)
OLS 2SLS Pre-trend

δ 0.16 0.46 0.18
(0.03) (0.16) (0.18)

Observations 13,342 13,342 11,220
R2 0.34 0.16 0.18
F 592.8 607.5
Fixed-effects district district district

Notes: The table presents baseline estimates for the effects of changes in market access (due to
improvements in India’s road network) on market-level GDP as measured by nightlights. Columns
1 and 2 show the elasticity of GDP with respect to structural market access (in changes between
1996 and 2011), using OLS and 2SLS, respectively. Column 3 presents the pre-trend elasticity of
GDP on structural market access, based on changes in GDP between 1994 and 1999. All models
include district-level fixed effects. The instrumental variable for the 2SLS estimation is constructed
based on connecting India’s largest 180 cities using a least-cost spanning tree algorithm. Standard
errors (clustered by 4km markets) are in parentheses.

4.2 Variation Within Different Geographic Clusters

Our baseline estimates are identified from within-district variation. We compare
the estimates for δ using variation within different levels of geographic clusters. Ta-
ble 2 reports the IV estimates without any fixed effects in column 1, with state-level
fixed effects in column 2, and 8km-market fixed effects in column 3.11

When comparing across all markets, we find an elasticity of δ =0.47 (s.e. 0.09),
which drops to δ =0.29 (s.e. 0.10) when comparing markets within the same states,
and becomes δ =0.43 (s.e. 0.17) when comparing markets within the same 8km
markets. These estimates are comparable to our baseline estimates, although it ap-
pears that including only state fixed effects, the largest geographic unit, leads to an
underestimation of the effects. The similar and statistically significant coefficients
identified across different levels of geographic variation underscore the stability of
the positive relationship between GDP and market access that we estimate.

11The number of observations varies across models because some markets drop out of the regression
when they are the only unit inside a higher order geographic cluster. Thus, we end up with 13386
markets in the regression without fixed effects, 13385 markets in the regression with state fixed
effects, and 11153 markets in the regression with 8km-market fixed effects.
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Table 2: 2SLS Estimates under Different Fixed-Effects

(1) (2) (3)
2SLS 2SLS 2SLS

δ 0.47 0.29 0.43
(0.09) (0.10) (0.17)

Observations 13,386 13,385 11,153
R2 0.18 0.17 0.16
F 1906.5 1093.5 667.8
Fixed-effects no state super8

Notes: The table presents estimates for the effects of changes in market
access (due to improvements in India’s road network) on market-level
GDP as measured by nightlights using alternative sets of regional fixed
effects. We set θ = 8. Column 1 shows estimates without fixed effects,
column 2 includes state fixed effects, and column 3 includes 8km-market
fixed effects. The instrumental variable is constructed based on connect-
ing India’s 180 largest cities using a least-cost spanning tree algorithm.
Standard errors (clustered by 4km markets) are in parentheses.

4.3 Alternative Specifications

We perform robustness checks using alternative model specifications (for complete
results, see Appendix D). First, we use a reduced-form market access measure (Don-
aldson and Hornbeck, 2016), defined as, Φreduced-form

rt =
∑

n yntτ
−θ
rn,t. Results appear in

Appendix Table D.1. Estimates are similar to our baseline results. Second, Table D.2
reports estimates using a least-cost spanning tree instrument based on connecting
India’s 100 largest cities, rather than its largest 180. Results are again similar to our
baseline estimates. Finally, we construct market access using alternative values of
the elasticity of iceberg trade costs with respect to travel time, φ. As a lower bound,
we set φ = 1.3, following Monte et al. (2018); as an upper bound, we set φ = 1.7 follow-
ing Allen and Arkolakis (2022). Appendix Table D.3 reports the estimates of δ. While
the estimates of δ vary with the assumed value of φ, the results remain statistically
significant across specifications.

5 Welfare Analysis
Given the assumed parameter value of θ =8 and the estimated parameter value

of δ =0.46, equation (15) implies that the inverse labor supply elasticity is given by
µ =0.49.12 We use these parameter values and the model structure to evaluate the

12The welfare impacts are insensitive to values of φ but are sensitive to values of θ. In our baseline
calibration, we set θ =8 . We also report the results when setting θ = 4 (Simonovska and Waugh,
2014). Compared to our baseline estimates reported in Table 1, the welfare improvements become
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impact of India’s highway build-up over 1996 to 2011. First, we evaluate the wel-
fare effects of the full transportation network, and study the spatial distribution of
these effects. Second, we decompose spatial variation in welfare changes into between
and within-region components, which illustrate the benefits of working with granular
satellite imagery. Third, we separately evaluate the effects of the construction of the
GQ and of India’s national highway expansion, which allows us to disentangle the im-
pact of different types of road construction on welfare. Fourth, we evaluate impacts of
further upgrading of national highways and local roads. Finally, we incorporate the
costs of road construction to perform cost-benefit analysis, and thus evaluate the net
return of the infrastructure project as a whole. To implement the analysis, we take
our model to the data in 2011, evaluate highway travel times at the level of those for
1996, and then consider alternative changes in India’s highway infrastructure.

5.1 Effects of the Full Transportation Upgrade on Welfare by Market Size

We begin by considering changes in market access and welfare across markets re-
sulting from the full transportation network build-up (i.e., the GQ construction and
the expansion of national highways). We group markets into six categories based on
their nightlight intensities: the first three groups represent the first, second and third
quartiles of markets (which together represent 25.2% of the population in 2000), the
fourth group represents the fourth quartile of markets excluding the top 50 markets
(29.3% population in 2000), the fifth group represents the top 11-50 markets (31.6%
population in 2000), and the sixth group represents the top 10 markets in terms of
nightlight intensities (13.9% population in 2000).

In the left panel of Figure 3, which displays percentage changes in market access,
it is evident that the gain in market access is greatest for India’s very largest urban
areas. Market access rises by 13.5% for the top 10 markets, 9.6% for the top 11-50
markets, and 7.2-8.9% for the remaining markets. The right panel of Figure 3 dis-
plays percentage changes in welfare. Mirroring the market access results, welfare
gains are most pronounced for the largest markets: welfare increases by 3.3% for top
10 markets, 2.5% for top 11-50 markets, and 2.0-2.3% for the remaining markets.

Figure 4 displays the geographic distribution of welfare changes across markets.
Panel (a) shows dispersion across all markets, while Panel (b) zooms in on the area
surrounding New Delhi, and Panel (c) zooms in on the area surrounding Ahmedabad.
Smaller welfare changes are represented by lighter shades of yellow; larger welfare
changes are represented by darker shades of red. The thick blue line represents the
GQ, while the thinner and lighter blue lines represent national highways.
much larger as θ becomes smaller.
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Figure 3: (%) Change in Market Access and Welfare by Market Size
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Notes: This figure shows the average change in market access and welfare by markets grouped
according to size as measured by nightlight intensity for India’s complete transportation upgrade (GQ
plus national highway expansion). The 6 groups are the top 10 markets, the top 11-50 markets, and
the four quartiles of markets, with the 4th quartile excluding the top 50 markets.

Upon inspection of Figure 4, it is clear that markets along the GQ display the
largest welfare changes (shown in dark red), some markets along national highways
also show large welfare changes, and less connected markets in the center of India
display the smallest welfare changes (shown in pale yellow). Additionally, there is
substantial variation in welfare changes across 1km markets within the geographic
regions that are typically the unit of analysis in conventional data. For instance, if
we focus on Figure 4b, which shows the New Delhi region, we see that the average
welfare change for the 1km market corresponding to New Delhi was 3.04%. The mar-
ket with the smallest welfare change in Panel (b) had a meager 0.54% increase, while
the market with the largest change had a sizable 6.36% increase. Similarly, when we
zoom in on Ahmedabad in Figure 4c, we see that welfare changes for the market rep-
resenting Ahmedabad city was 3.56%. The market with the smallest welfare change
in the region had a 0.71% increase, while the market with the largest change showed
a 7.34% gain. This variation in welfare impacts across markets within a region (5.82
percentage point difference for the New Delhi area, 6.63 percentage point difference
for the Ahmedabad area) represents almost half of the difference between markets
across all India (13.16 percentage points), a fact which underscores the analytic value
of capturing welfare impacts in granular spatial data.
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Figure 4: Geographic Distribution of Welfare Changes

a: All of India

b: New Delhi c: Ahmedabad

Notes: This figure shows the geographic distribution of welfare changes across all urban markets in
India for the complete transportation upgrade (GQ plus national highway expansion). Smaller welfare
effects are represented by lighter shades of yellow; larger welfare effects are represented by darker
shades of red. The thicker blue line represents the GQ; the lighter blue lines represent national
highways. Panel (a) shows the geographic distribution for all markets in India, Panel (b) shows effects
for the area around New Delhi, and Panel (c) shows effects for the area around Ahmedabad.

19



5.2 Decomposing Welfare Changes Between vs. Within Regions

Next, we decompose the variance of log changes in welfare into the sum of between
and within-region components as follows:

Total = Between + Within. (16)

where
Total =

1

N

∑
i

(Wi − W̄)2, Between =
1

N

∑
d

Nd(W̄d − W̄)2 (17)

where Wi is change in log welfare in market i, W̄ is the average of Wi across all mar-
kets, W̄d is the average across markets within administrative unit d (e.g., state or
district), Nd is the number of markets within d, and N is the total number of markets.
The Within component is calculated as the difference between the Total and Between
components. Across all 13,387 1km markets, welfare changes have a mean of 2.04%
and a standard deviation of 1.30%.

Table 3: Decomposing Welfare Changes

A. States and Districts
Between state 18%
Within state 82%

Between district 39.4%
Within district 42.6%

B. Super-markets
Between 8km markets 63.1%
Within 8km markets 36.9%

Between 4km markets 21.8%
Within 4km markets 15.1%

Within 2km markets 5.6%
Between 2km markets 9.5%

Notes: The table presents a decomposition of changes in welfare between and within regional units
in India for the complete transportation upgrade (GQ plus national highway expansion). The left
panel decomposes aggregate welfare across and within Indian states and districts. The right panel
performs an alternative decomposition using the 8km, 4km, and 2km market boundaries detected
from satellite imagery.

In Table 3, we display the variance decomposition. Panel A performs the decompo-
sition by allocating 1km markets into standard Indian administrative units—districts
and states. The first row indicates that 18.0% of the overall variation in welfare gains
from India’s highway infrastructure expansion accrue across states, and the second
row shows that 82.0% of the variance accrues across markets within states. We fur-
ther decompose the within-state variation using district administrative boundaries.
Here again, much of the variance accrues to the within component. While 39.4% of
the overall variance is driven by differences across districts (within-state), 42.6% of
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the overall variance comes from welfare differences across 1km markets within dis-
tricts. Analysis performed at the district level thus may smooth over nearly half of
the spatial variation in welfare impacts.

Panel B of Table 3 reports an alternative decomposition that uses the delineation
of 8km, 4km, and 2km markets. Recall that the satellite imagery detects 3,483 8km
markets in India, and the decomposition shows that 63.1% of variation in welfare
changes is between 8km markets. This leaves the remaining 36.9% variation within
8km markets, again indicating that large heterogeneity in impacts of the roads at the
sub-district level. Of this 36.9% variation, 21.8% accrues to the within-8km but across
4km markets. This panel again suggests that administrative boundaries, which do
not overlap directly with transactions in urban environments, may smooth over vari-
ation in the impacts of changes in market access.

5.3 Disentangling the Effects of the GQ and National Highways

So far, we have analyzed the impacts of India’s entire transportation network (the
GQ plus national highways). While the effects of the GQ have been previously ana-
lyzed using district-level data (Alder, 2016), we are not aware of a welfare comparison
between the GQ and national highways. Evaluating the relative economic benefits
of the two— the first of which connected India’s very largest cities and the second
of which connected India’s next tier of cities—provides insight into how alternative
strategies to expand road networks affect well-being. Worthy of note in this com-
parison is that the expansion of national highways (in kilometers of lanes built) was
larger than that of the GQ (see Section 2.2), where the cost of the national highway
buildup was almost double that of the GQ (see Appendix Table B.2).

We compare a counterfactual in which only the GQ is built against one in which
only national highways are expanded. Figure 5 displays percentage changes in mar-
ket access (left panel) and welfare (right panel) across markets grouped according to
size. The GQ had larger impacts on welfare than the national highway expansion for
all market-size groups except the bottom group, which represents the first quartile of
markets in terms of nightlight intensity. The GQ-national highway difference is most
pronounced for the very largest markets. Whereas the difference in welfare gains be-
tween the GQ and nationals highways ranges from -0.2% (1st quartile of markets by
size) to 0.6% (11-50 top markets), the difference is 2.4% for the top 10 markets. Over-
all, the GQ alone would have led to a 2.2% increase in welfare, while the national
highway expansion alone would have led to a 0.6% increase in welfare.

To further explore these differences, Figure 6 displays geographic variation in wel-
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Figure 5: Market Access and Welfare Impacts by Highway Type and Market Size
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Notes: This figure shows the average change in market access and welfare by markets grouped by
size based on one scenario in which only the GQ is built (darker bars) and another scenario in which
only national highways are upgraded (lighter bars). The 6 groups are organized according to their
nightlight intensities (top 10 markets, top 11-50 markets, and four quartiles with the 4th quartile
excluding the top 50 markets).

fare improvements due to the GQ (left panels) and national highways (right panels)
for New Delhi (top panels) and Ahmedabad (bottom panels). As expected, welfare
gains for the GQ are concentrated in markets that lie close to the construction of the
GQ, whereas welfare improvements from national highways accrue mostly in more
remote markets that lie along the construction of the network. Overall, the absolute
increases in welfare from the GQ tend to be larger than those of national highways, as
evidenced by a higher presence of lighter shades of yellow in the right panels of Fig-
ure 6. Figures E.2 and E.3 in Appendix E show the geographic distribution of welfare
from GQ and NH for all of India, which mirrors the patterns uncovered in Figure 6.

5.4 Cost-Benefit of India’s Highway Investment.

Until this point, we have focused on welfare effects without consideration of the
costs incurred in the construction of these roads. We next perform a cost-benefit
analysis to evaluate the net return of building roads, explicitly considering the costs
of construction and maintenance. We calculate the net present value (NPV) of the
increase in GDP from the entire road-buildup program, considering benefits from
welfare improvements and costs of construction and maintenance.

To annualize construction costs, we conduct cost-benefit analysis in terms of NPV
(Tsivanidis, 2023). NPV values are computed over a 50-year time horizon using a 5%
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Figure 6: Geographic Distribution of Welfare from the GQ and the NH

a: New Delhi: Welfare GQ

b: Ahmedabad: Welfare GQ

c: New Delhi: Welfare NH

d: Ahmedabad: Welfare NH

Notes: This figure shows the geographic distribution of changes in welfare from the GQ and the
national highway expansion (NH) in markets around New Delhi (top two panels) and Ahmedabad
(bottom two panels). Smaller welfare changes are represented by lighter shades of yellow while larger
welfare changes are represented by darker shades of red. The thicker blue line represents the GQ,
while the lighter blue lines represent national highways.

discount rate. Panel B of Table 1 displays the NPV estimates for gross GDP, costs,
and net GDP. Since all NPVs are normalized by the NPV of GDP in 2011, they can be
interpreted as the annualized percentage of GDP.

We compare the actual economy with the observed road network in 2011, our
benchmark scenario, to three counterfactual scenarios. Column 1 reports the impacts
of the entire road network, which we obtain by comparing the benchmark scenario to
an economy with no highway construction. Column 2 isolates the effects of the GQ by
comparing our benchmark scenario to a counterfactual economy with the 2011 road
network, except for the GQ upgraded sections (i.e., GQ speeds equal regular highway
speeds). Column 3 reports the effects of only expanding national highways, which we
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obtain by comparing our benchmark scenario to a counterfactual economy with the
2011 road network that has the upgraded national highway sections removed (i.e.,
national highway speeds equal regular motorway speeds).

Table 4: Cost-benefit Calculations By Different Roads

All Roads GQ NH
NPV Increase in GDP 2.84 2.17 0.63
NPV of Construction Costs 0.39 0.13 0.26
NPV of Maintenance Costs 0.86 0.28 0.57
NPV of Total Costs 1.24 0.40 0.83
Increase in the NPV of GDP 1.60 1.76 -0.21

Notes: The table presents a cost-benefit analysis of the improvement in the road network, which
disentangles the increase in GDP and the costs of road construction and maintenance. We
differentiate the effects of all roads (panel B, column 1), GQ construction only (panel B, column
2), and national-highway construction only (panel B, column 3). GQ counterfactual: keep the road
structure as in 2011, but lower the speed of GQ roads to 40mph (speed of national highways); NH
counterfactual: keep the road structure as in 2011, but reduce the speed of newly built national
highways to 20mph (speed of other roads). All values are the NPV values computed over a 50-year
time horizon using a 5% discount rate, and then normalized by the NPV of the 2011 GDP.

The first row of Panel B of Table 1 reports that India’s highway investment during
this period increased annual gross GDP by 2.84%. Column 2 indicates that the con-
tribution of the GQ to overall welfare is 2.17%, or 76.3% of the overall increase. The
expansion of non-GQ national highways increased the NPV by 0.63%.13 Row 2 shows
the NPV of the total costs, which has two parts. The first is the construction cost.14 Ta-
ble B.2 details the overall construction costs in 1996 USD, which translates to an NPV
of $129.93 billion in 2011. The annual maintenance costs are assumed to be 12% of
the total construction costs (Allen and Arkolakis, 2014); row 4 reports the associated
NPV. Row 5 reports the NPV of GDP net of the costs, equaling the difference between
rows 1 and 2. We estimate that the GQ delivered a net GDP increase of 1.76%, but
national highways, by contrast, do not appear to have delivered a net benefit, which
is surprising given the large expansion in this road type reported in Figure 2.

Our results are similar, although slightly larger in magnitude, to those estimated
by Alder (2016), who finds that the construction of the GQ led to gross and net GDP

13Note that, because the model is non-linear, the joint effect of GQ and NH does not necessarily
equal the sum of the two individual effects. The differences reflect the interactive effects between the
two, which are small.

14The construction cost is from the World Bank’s Project Appraisal Document and the Implementa-
tion Completion and Results Report. The average construction cost is calculated based on data from
11 transportation projects that were executed in India between 2008 and 2017.
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gains of 1.30% and 0.80%, respectively. This suggests that granular high-resolution
satellite data can similarly aggregate estimates uncovered from (district-level) night-
light data alone. Additionally, one necessarily requires our granular spatial to evalu-
ate the distribution of welfare changes inside districts.

6 Conclusion
Many developing country policymakers appear to take it as an article of faith that

building new highways will raise national income per capita. They act on these be-
liefs by dedicating substantial public funds to transportation infrastructure, often
with the encouragement of international financial institutions and countries eager
to finance such investments. With standard administrative data, analyzing the eco-
nomic impacts of highway construction in the typical lower-income country would be
infeasible until a decade or more after project completion. We provide a method that
permits rapid and low-cost evaluation of infrastructure investments. Analysts need
only freely available satellite imagery, to evaluate impacts on GDP, and a baseline
or endline year of population data, to perform additional welfare analysis. With the
ongoing digitization of road maps globally (e.g., OpenStreetMap) and the availability
of high-resolution population data through such resources as Gridded Population of
the World, our method should have wide applicability.

In the much studied Indian context, our analysis delivers similar estimates of ag-
gregate welfare changes to those that use conventional data. This is to be expected,
considering that the market access approach is well-tested. Even for India, however,
our approach delivers insights that analyses using conventional, lower-resolution
data cannot. Our approach reveals the distributional consequences of new infras-
tructure across spatial markets that vary enormously in size and in their proximity
to new roads and highways. We expect that such results would be important to pol-
icymakers, considering that both efficiency and equity considerations weigh in how
large projects are evaluated and sold to the public.
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A Detecting Markets with Satellite Imagery
A.1 Market Boundaries

We define markets based on the methods in Baragwanath et al. (2019), who develop a clustering
algorithm that defines a market as the set of contiguous or near-contiguous pixels that contain built-up
economic activity as indicated by their spectral properties. This section summarizes that procedure.

The approach uses data on builtup landcover from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) layer constructed by Friedl and Sulla-Menashe (2015). The MODIS sensor captures
data in 36 spectral bands (ranging in wavelength from 0.4 µm to 14.4 µm) at varying spatial resolu-
tions (from 250m to 1km). These raw data indicate the reflectance intensity within each spectral band
for each pixel at a given moment in time. To convert data on the spectral properties of pixels into clas-
sifications of land use, Friedl and Sulla-Menashe (2015) apply a supervised machine learning method,
which takes advantage of a global database of training sites extracted from high-resolution imagery.15

The resulting data, which have a spatial resolution of 500m, are publicly available on Google Earth
Engine and have been widely used in the remote sensing literature (e.g., Huang et al. 2016, Mertes
et al. 2015, Guo et al. 2015).

There are six versions of the MODIS land-use classification layer. We use the University of Mary-
land version MCD12Q1 V006, which classifies global landcover at yearly intervals from 2001 to 2016.
Using data for 2001 and 2011, we take Urban and Builtup pixels (classification 13) to indicate builtup
landcover from MCD12Q1 V6 product (see Sulla-Menashe and Friedl 2018).

We combine adjoining pixels with builtup landcover into a cluster, where we set the minimum num-
ber of pixels in a cluster to be one (0.25km2). We then form markets by combining proximate clusters.
This method combines any pair of clusters into a market for which the minimum distance between
their boundaries is less than 1km, motivated by the method in Rozenfeld et al. (2011) for agglomerat-
ing neighboring administrative units into cities. Baragwanath et al. (2019) also construct markets for
buffers of 2km, 4km, and 8km, where for a given threshold, larger buffers nest smaller buffers (i.e.,
1km markets ⊆ 2km markets ⊆ 4km markets ⊆ 8km markets). For our analysis, we define market
boundaries using 2001 images.

To combine clusters of builtup pixels, we use the “Aggregate Polygons" function in ArcGis. This
function combines polygons within a specified buffer to form larger polygons. Baragwanath et al. (2019)
explain this procedure in depth. Finally, in order to capture changes in footprint growth between 2001
and 2011, we draw 0.5km buffers around the markets. Figure 1 illustrates the result of this exercise
for 1km, 4km and 8km MODIS markets around the Ahmedabad district area. While the 1km markets
identify pockets of intense economic activity, the 8km markets do a good job of tracing the borders of the

15There are alternatives to MODIS imagery for classifying land use. Baragwanath et al. (2019) also
detect urban land using the Global Human Settlements Layer (GHSL) of Pesaresi et al. (2015), which
is based on Landsat imagery; a recent layer produced by Goldblatt et al. (2018), which applies machine
learning to Landsat imagery and nightlight data to detect builtup landcover in India; and a minimum
threshold for nightlight intensity, similar to Harari (2020) and Dingel et al. (2019). Results based on
GHSL and Goldblatt et al. (2018) are similar to those based on MODIS. As explained in that paper, we
elect to use the MODIS layer over these options because it is more widely used in the literature and
covers a longer time span; we elect not to use nightlights to define the extent of markets because of
the well-known blooming effect of lights (Donaldson and Storeygard, 2016), which produces markets
that are overly smooth and expansive relative to the ragged, amoeba-like clusters of settlements that
compose metropolitan areas, as visible in daytime satellite imagery.
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larger metro area. In the figure, we identify 383 1km markets, 183 4km markets and 42 8km markets.

A.2 Market Economic Activity
To measure the intensive margin of activity within each market, we use the intensity of light emit-

ted at night from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-
OLS). DMSP-OLS sensors detect visible and near-infrared emissions at night from different sources on
Earth, such as city lights, auroras, gas flares, and fires. Pixels in DMSP-OLS have a spatial resolution
of approximately 1km. For each pixel, the digital number (DN) of calibrated light intensity ranges from
0 to 63. We use the stable light band of sensor F14 for 2001 and sensor F18 for 2011, both of which
discard ephemeral events, such as fires, but remain sensitive to persistent lighting, including from gas
flares or volcanoes.16 Since India has no active volcanoes or gas flares on land (Elvidge et al. 1999), it
is safe to assume that highly lit pixels indicate builtup activity. For each urban market, we identify
the DMSP-OLS pixels that overlap with its borders and aggregate light intensity across these pixels
to create a measure of economic activity for the market.

DN values are subject both to top coding—because the sensor becomes saturated at high levels
of light intensity, there is a maximum detectable DN value—and bottom coding—because of how the
stable light band of the satellite sensors operates, at low levels of light intensity, the sensor tends to
bunch DN values at either 0 or 5.17 Top coding is unlikely to be a concern in our data, owing to the
infrequency of pixels hitting the maximum DN value of 63, which in India occurs only in the central
business districts of the largest cities. In 2011, the DN value of the pixel at the 99.5th percentile
was 60. Bottom coding, however, is a potential concern. In 2001, we find that 1,124 (8.4%) markets
have zero aggregate nightlight intensity, while in 2011 no markets register zero nightlight intensity.
Part of this over-time decrease in zero values may reflect an increase in economic activity. However,
zero values in 2001 may also be the result of the sensor for that year being more prone to bunching DN
values at zero. To deal with bottom coding, we proceed as follows: 1 using the sample of pixels with non-
zero DN values in urban markets for 2001, we calculate the 5th percentile DN value, 2 we apply this
5th-percentile DN value to all pixels in urban markets that have zero DN readings in 2001, and 3 we
sum DN values across pixels in each market to create aggregate light intensity at the market level in
2001. Our estimation results are insensitive to simply dropping markets with zero DN values in 2001.

The saturation effect, blooming effect, and other sources of noise in nightlight intensity are less
pronounced in data from the Visible Infrared Imaging Radiometer Suite (VIIRS), imagery from which
is available from 2012 forward (Elvidge et al., 2017). Here, we use DMSP-OLS imagery in order to
create methods for measuring markets that can be extended backward in time. Our approach is easily

16The annual composites of DMSP-OLS cover 1992 to 2013 and include data from six different
satellite sensors. New satellites are launched to account for the gradual degradation of sensors, where
pairs of successive sensors overlap in space for periods of up to three years. To address differences
in radiometric performance between sensors, we apply the calibration methods developed in Elvidge
et al. (2009) and Elvidge et al. (2014), which uses the F12 image from Sicily in 1999 as a reference and
estimates a series of second-order polynomial regression functions for paired pixels from successive
sensors (e.g., F12-F13, F13-F14, etc.) and then recursively matches each sensor back to the range of
F12 in 1999.

17Tuttle et al. (2014) develop a mapping of DNs to wattage by placing portable high-pressure
sodium lamps at uninhabited sites in Colorado and New Mexico to check the DN recorded by the
F16 and F18 sensors. They find that ninety-three 100-watt incandescent lamps could be detected
(DN=1) at both fine (0.6km) and coarse (2.7km) resolutions. Eight times as many bulbs would saturate
(DN=63) the sensor at the fine resolution but not at the coarser resolution.

33



adaptable to VIIRS data.

Figure A.1: Nightlight Intensity versus Economic Activity

(a) Log GDP (b) Log Population
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Notes: The figure presents the relationship between nightlights and two measures of economic activity,
GDP and population. Panel (a) shows the bin-scatter plot for log sum of nightlights and log GDP in
2001 at the district level. GDP for 326 of India’s districts is from the Indian Planning Commission;
nightlights data are from DMSP-OLS Nighttime Lights Time Series Version 4, Defense Meteorological
Program Operational Linescan System and aggregated up to the district level. We run OLS regression
of log GDP on log nightlights, log land area, and a regression constant. We obtain a coefficient of 0.42
(sd 0.02 ) for log nightlights, and an R2 of 0.57 . Panel (b) shows the bin-scatter plot for log sum of
nightlights and log population in 2001 for 13,234 markets (all markets with non-zero population).
Population data is from the 2001 Indian Census; DMSP-OLS nightlights are aggregated up to the
market level. For interpretability, the non-logged values are presented on the Y-axis for both plots.

A.3 Market Population
To calculate population inside each market, we rely on publicly available worldwide population

rasters produced by the Gridded Population of the World (GPW). GPW is a “minimally-modeled grid-
ded population data collection that incorporates census population data from the 2010 round of cen-
suses. Population estimates are created by extrapolating the raw census counts to estimates for target
years 2000, 2005, 2010, 2015, and 2020" (Center for International Earth Science Information Network
- CIESIN - Columbia University, 2016). GPW relies only on population count data from administrative
censuses around the world and spatially explicit administrative boundaries to extrapolate population
counts at the 30 arcsecond pixel level.

We process the GPW data in Google Earth Engine to obtain the total number of people in each
market by adding the population inside each pixel that overlaps with a market. Table A.1 reports the
average number of people living inside a 1km market increased from 8.9 thousand in 2000 to 10.4
thousand in 2010. As a validation, the largest market (corresponding to Delhi) was assigned a popu-
lation of 13.1 million in 2000 and 16.0 million in 2010, while the population of Delhi reported by the
Census was 13.8 million in 2001 and 16.8 million in 2011.
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In order to check that our markets and population data are capturing real variation, we also use
the census conducted by the Indian government in 2001. This step is used as validation. Census data
are available at the town or village level for the whole of India, which represent the most dissaggre-
gated level at which information is available. There is an order of magnitude more towns and villages
in the census compared to the number of local markets we identify. In 2001, India was composed of
638, 588 villages and 5, 161 towns, with a total population of 1, 028, 737, 436; in 2011, India was composed
of 649, 481 villages and 7, 935 towns, with a total population of 1, 210, 854, 977.

Following Baragwanath et al. (2019), to allocate India’s population across our markets, we overlay
the footprints of the markets with Census shapefiles. Since villages and towns are, on average, sig-
nificantly smaller than our urban markets, we allocate the population living in these administrative
units by spatially overlaying the census shapefiles with our urban markets shapefile. Most villages
and towns overlap only one urban market. For these, we allocate the entire population living inside
the town or village to the urban market that they overlap with. When a town or village overlaps with
more than one urban market, the population inside that town or village is divided by the number of
urban markets it overlaps with, and equally distributed to each of these markets.

Using this method, we find that 32.7% of India’s total population in 2011 were assigned to one of
our 1km markets.18 Additionally, using this method, the average number of people living inside a 1km
market increased from 26.8 thousand in 2001 to 29.6 thousand in 2011.

A.4 Statistics
Table A.1 reports the statistics of the markets detected from the procedures described above. We

detect 13,387 markets at the 1km buffer.

18World Development Indicators report India’s urbanization rate was 31.3% in 2011.

35



Table A.1: Summary Statistics of Markets
N Mean Median SD Min Max

Panel A: 1km Markets
Area (Km2) 13,387 6.5 3.4 23.9 1.7 1,607.6
GPW Population 2000 (in thousands) 13,387 8.9 1.2 203.4 0.0 13,070.8
GPW Population 2010 (in thousands) 13,387 10.4 1.4 232.3 0.0 15,970.1
Mean Nightlights 1996 13,387 10.7 6.9 10.0 0.0 62.7
Mean Nightlights 2011 13,387 11.6 7.7 10.6 1.9 60.1
Percent δ Ntl Mean 1996-2011 13,387 13.8 12.5 47.5 -175.6 724.5
Sum Nightlights 1996 13,387 709.4 108.4 6,092.4 0.1 435,154.8
Sum Nightlights 2011 13,387 733.5 122.4 6,188.0 16.1 441,145.0
Percent δ Ntl Sum 1996-2011 13,387 13.7 10.8 47.6 -175.6 724.5
Panel B: 4km Markets
Area (Km2) 7,539 14.9 4.5 54.7 1.7 2,402.5
GPW Population 2000 (in thousands) 7,539 18.4 1.6 304.8 0.0 15,014.9
GPW Population 2010 (in thousands) 7,539 21.5 1.9 352.6 0.0 18,538.5
Mean Nightlights 1996 7,539 10.8 7.6 9.7 0.0 56.4
Mean Nightlights 2011 7,539 11.4 7.9 9.9 1.9 59.5
Percent δ Ntl Mean 1996-2011 6,895 9.6 6.0 56.9 -169.3 681.0
Sum Nightlights 1996 7,539 1,428.5 171.7 10,056.6 0.0 528,017.8
Sum Nightlights 2011 7,539 1,525.5 180.9 11,113.0 16.6 598,270.5
Percent δ Ntl Sum 1996-2011 6,895 9.6 6.0 56.9 -169.3 681.0
No. 1km Markets 7,539 1.8 1.0 2.9 1.0 89.0
Panel C: 8km Markets
Area (Km2) 3,483 62.1 6.5 574.5 1.7 23,384.8
Population 2001 (in thousands) 3,481 113.1 19.8 705.0 0.0 18,374.9
Population 2011 (in thousands) 3,482 125.9 22.5 803.1 0.0 28,184.2
GPW Population 2000 (in thousands) 3,483 56.4 2.3 669.6 0.0 26,286.2
GPW Population 2010 (in thousands) 3,483 65.9 2.6 787.1 0.0 32,176.5
Mean Nightlights 1996 3,483 12.7 9.8 10.3 0.0 53.9
Mean Nightlights 2011 3,483 13.3 9.7 10.5 1.9 56.5
Percent δ Ntl Mean 1996-2011 3,245 8.8 5.3 52.7 -169.3 527.1
Sum Nightlights 1996 3,483 4,161.1 329.8 31,546.7 0.0 1085618.0
Sum Nightlights 2011 3,483 4,604.7 352.0 35,723.9 16.6 1180177.5
Percent δ Ntl Sum 1996-2011 3,245 8.8 5.3 52.7 -169.3 527.1
No. 1km Markets 3,483 3.8 1.0 29.1 1.0 1,263.0
No. 4km Markets 3,483 2.2 1.0 11.5 1.0 562.0

Notes: The table presents summary statistics for MODIS-based markets. Panel A displays summary
statistics for 1km markets while panel B displays summary statistics for 4km markets and Panel
C for 8km markets. Area information is based on the footprints derived from MODIS satellite
data. Population data is from the 2001 and 2011 Indian Census; nightlights data is computed from
DMSP-OLS satellite images. Mean nightlights represents the average DN value inside the markets,
and can vary between 0 and 63. Sum of Nightlights is the sum of DN values within a market.
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B Road Digitization
B.1 Digitization

The digitization process involved five steps. In the first two, we created georeferenced maps for
1996 and 2011,19 with the assistance of the digital mapping company CyberSwift, and then identi-
fied the type of each intercity road in each year. The raw road maps identify five road types: the
Golden Quadrilateral, national highways, all-weather motorable roads, fair-weather motorable roads,
and roads where delays may occur. To begin, we assigned roads their given classification for the cor-
responding year. We also use the OpenStreetMap (OSM) for India in 2018 to visually inspect the
accuracy of our classification method.

The next three steps involved identifying the presence of new and upgraded roads. We began by
comparing maps for 1996, 2011, and 2018. This exercise revealed (i) roads that existed in 2011 and
2018 but not 1996, which indicate new construction; (ii) roads that existed in all years but had a higher
type in 2011 and 2018 than in 1996, which indicate road upgrades; and (iii) anomalies in road place-
ment or type, which included cases in which the 2011 road was of a lower type than that of 1996 or
in which the georeferenced maps for the two years identify different locations for the same road.20 To
resolve the anomalies, we used the 2018 map as ground truth. We aligned the georeferenced map for
2011 with OSM for 2018. Where the two maps agreed on road placement, we made no changes. Where
they disagreed, we realigned the road location for 2011 to match than in 2018. Similarly, we realigned
the 1996 map to the adjusted map for 2011, where they disagreed on road placement. To resolve
anomalies in road type, if a road had a higher type in 1996 and 2018 than in 2011, we upgraded the
2011 type; if a road had a higher type in 1996 than in 2011 and 2018, we downgraded the 1996 road
type. In the final step, we made other corrections to the georeferenced maps, accounting for “dangling”
roads (which begin at one intersection and connect to no other road) and “orphan” roads (which begin
and end without connecting to another road), by manually comparing the georeferenced and raw maps.

B.2 Calculating Travel Time between Markets
We use Dijkstra’s algorithm to compute bilateral travel times between markets. This algorithm,

developed by Dijkstra in 1959, finds the shortest path between a starting node and a target node
through a weighted graph. The graph is a data structure consisting of a set of nodes and edges, where
the edges represent travel times between the nodes. By comparing the sum of distances, such as phys-
ical distance, travel costs, and travel times, the algorithm can find the shortest path from an origin
market to a destination market. Given our setting, the nodes can be interpreted as intersections of
digitized roads and the edges as travel times between nodes.

We applied multiple settings to generate a series of travel times with different combinations of
travel speeds. Since major roads do not have directional flows, we defined the graph as undirected. To
convert urban markets and digitized roads into a weighted graph, we utilized the R package shp2graph
developed by Lu et al. (2018). This allowed us to calculate travel times for a series of urban markets
based on the spatial network, while incorporating the weight of each edge to obtain a more accurate
representation of the spatial network.

Although urban markets are generally located along major roads, most of the market centroids
19To align the maps, we used the Geographic Coordinate System and Lambert_Conformal_Conic

for projection.
20We ignore new road construction or road upgrades after 2011.
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Table B.1: Reduction in Travel Times Between 1996 and 2011

Travel Time Travel Time Difference
1996 (hrs) 2011 (hrs)

(1) (2) (3)
Distance between markets

0-50km 2.6 2.2 -.37
50-200km 4.8 4.2 -.56
200-500km 9.3 8.2 -1.03
500km + 22.7 19.4 -3.26

Notes: The table shows average travel times (in hours) between markets that are 0-50km, 50-200km,
200-500km or more than 500km away from each other. Column 1 presents average travel times in
1996, column 2 in 2011, and column 3 presents the difference between 2011 and 1996. Negative values
in column 3 indicate reductions in travel times between the two years. Travel times were calculated
using the Dijkstra algorithm.

are not situated directly on the edges, which consist of digitized roads. Additionally, our original data
source, the Road Map of India, does not contain information on tertiary roads due to the scale of the
maps. To address this issue, we constructed a series of pseudo roads between urban markets and their
nearest geometric point on the edges of the digitized roads. This allowed us to factor in additional
travel times that were not accounted for in the original data set. By doing so, we were able to obtain a
more accurate representation of travel times between urban markets.

B.3 Construction Costs
Table B.2 reports the construction costs from the World Bank’s Project Appraisal Document, and

the Implementation Completion and Reports (World Bank Group, 2017a,b,c,d,e,f,g).

B.4 Spanning Tree Network
This section describes the construction of the least-cost minimum spanning tree algorithm for the

Golden Quadrilateral (GQ) and national highways contracted in India between 1996 and 2001. Since
the primary objective of highway construction in India was to establish effective transportation net-
works among major cities, we used the minimum spanning tree algorithm to create the least-cost
connectivity network. We executed the computation in ArcGIS using Kruskal’s algorithm (Kruskal,
1956). This algorithm finds edges with the least possible weights to connect all nodes in an undirected
weighted graph setting.

Since we aim to reproduce the least-cost connectivity network based on real-world features, it is
critical that we use multiple layers of geographical constraints, rather than a simple digital eleva-
tion model (as is commonly used). We thus applied a friction surface developed by Nelson (2008), in
which we aggregated data of multiple layers such as land cover, elevation, slope, national borders, and
existing road, railway, and water bodies as of 2000, which was originally created to calculate global
travel times. This friction surface is a composite of 1km spatial resolution pixels, which represents the
time required to cross the pixel in minutes. We use these data as the cost layer of the spanning tree
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Table B.2: The Length of Digitized Roads and Associated Costs of Road Construction

Length (km)
Unit Costs

($ million/km)
Total Costs
($ billion)

1996 2011 Build-up
Golden Quadrilateral (GQ) 0 5714 5714 3.55 20.3
National Highway (NH) 29422 49172 19750 2.12 41.9
Other: Where delay may occur 2838 3625 787 0.42 0.33

Notes: The unit cost for the GQ project is based on that of the Allahabad Bypass Expressway
(P073776) (World Bank Group, 2017f), which is part of the GQ project. The unit cost for
national highway construction is obtained by taking the average of construction costs for
the Lucknow-Muzaffarpur national highway project (P077856) (World Bank Group, 2017g)
and the Grand Trunk road projects (P069889) (World Bank Group, 2017c). The unit cost for
local roads is based on average of widening and reconstruction costs of state road projects
(P050649, P067606, P070421, and P072539) (World Bank Group, 2017a,b,d,e).

algorithm.
We separately represent construction of the GQ and other national highways. For the GQ, we

targeted connecting India’s very largest cities; for other highways, we targetted connecting large and
middle-tier cities. For the construction of the GQ, we tested three versions: 1) connecting the four
largest cities (Chennai, Delhi, Kolkata, and Mumbai), 2) connecting the six cities (adding Ahmedabad,
Bangalore), and 3) connecting the nine largest cities: adding Asansol, Kanpur, and Varanasi).

The solutions to these three approaches is seen in Figure B.1, with option 1 for four cities in pink,
option 2 for six cities in green, and option 3 for nine cities in blue. Option 2, with a total length of
6,198km delivers the closest approximation of the GQ (5,714km) and we use this solution to construct
the GQ portion of our instrument India’s highway expansion.

For the construction of other highways, we considered a spanning tree to connect India’s 100 largest
cities (minimum population in 1991 > 500, 000) or India’s 180 largest cities (minimum population in
1999 > 200, 000), where we use populations in 1991, ten years before the National Highway Develop-
ment Project began. Using the same friction surface as in the GQ construction, Figure B.2 shows the
results for the two approaches, where existing roads in 1996 are in red, the spanning tree for the GQ
is in yellow, and the spanning tree for other highways is in green. Both versions deliver close approx-
imations of India’s highway expansion. We use the 180-city version as our baseline and the 100-city
version in further analysis.
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Figure B.1: Spanning Tree Version of GQ Construction

Notes: Three versions of GQ construction based on the minimum spanning algorithm: 1) four cities
(pink), 2) six cities (purple), and 3) nine cities (red). For reference, the yellow-black strip is an original
path of GQ. The background imagery is a cost layer constructed based on a friction surface

Figure B.2: Spanning Tree Version of Highway Construction

Notes: On top of the six cities version of the GQ, two versions of NH construction were implemented:
1) hundred cities version (left) and hundred eighty version (right). The background imagery is a cost
layer constructed based on a friction surface. GQ is purple line; the existing NH in 1996 is yellow; and
newly constructed NH by MST is green line. 40



C Model
This section presents a spatial equilibrium model of trade and labor mobility, which we use to

derive estimating equations and perform counterfactual welfare analysis.

C.1 Spatial Equilibrium Model
Gravity trade and prices. We extend the framework in Eaton and Kortum (2002) to model the spa-
tial equilibrium for Indian markets. There is a continuum of goods ω. Under perfect competition, each
Indian market can potentially produce any type of good. For each variety ω, importers will source from
their cheapest exporter. Let zr(ω) denote market r’s productivity in producing variety ω, which follows
an i.i.d. Fréchet distribution across product varieties ω and markets r, with cumulative distribution
function Fr(z) = exp

(
− Trz−θ

)
, where θ > 1 is the shape parameter and Tr is the scale parameter.

Productivity is more dispersed the smaller is θ.
In this setting, the share of city n’s expenditure on goods produced by city r, Πrn, is given by,

Πrn =
Trw

−θ
r τ−θin∑

` z`w
−θ
` τ−θ`n

, (C.1)

where the price index of city n is,

Pn = C
(∑

r

Trw
−θ
r τ−θrn

)− 1
θ

, (C.2)

Equations (C.1) and (C.2) characterize a standard constant elasticity of substitution (CES) demand
system (Arkolakis et al., 2012). Similar equilibrium conditions can be generated by other trade mod-
els, including Anderson (1979), Krugman (1991), and Melitz (2003)-Chaney (2008), where each model
differs in its interpretations of the parameters Tr and θ.

Labor Supply. We build on Allen and Arkolakis (2014), Redding (2016), and Redding and Rossi-
Hansberg (2017) to model labor mobility. We assume that each worker has an idiosyncratic taste
parameter, ηn, which is distributed i.i.d. Fréchet across locations, with cumulative distribution func-
tion G(η) = exp

(
− η−1/µ

)
. 1
µ > 1 is the dispersion parameter, where a higher value of 1

µ implies less
dispersion in idiosyncratic tastes across workers. µ captures the inverse labor supply elasticity. Indi-
viduals choose the location that maximizes their utility, which is the product of real wages and location
preferences, wnPn ηn. In equilibrium, the fraction of workers choosing market n is,

Ln
L

=
(wn/Pn)

1
µ∑

`(w`/P`)
1
µ

.21 (C.3)

We assume that there is no international migration. We restate equation (C.3) as,

wn = UPnL
µ
n. (C.4)

where U =
[∑

`(w`/P`)
1
µ 1
L

]µ
captures aggregate worker utility and is constant across n. In the

regression analysis, U is absorbed by the constant term, but does vary with changes in the general
equilibrium.

21This upward-sloping labor supply model can alternatively be generated via constraints on housing
supply, see, e.g., (Bartelme, 2018), in which case µ = 1−α

α , where 1− α is household expenditure share
on housing.
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Market Access and Trade balance. Below, we carry out our analysis using market access, following
Donaldson and Hornbeck (2016). Consumer market access of city n is given by,

Φn =
∑
r

Trw
−θ
r τ−θrn .

A higher value of consumer market access indicates that consumers of city n have access to cheaper
goods.

Balance trade indicates that city r’s income equals the sum of exports to all cities,

wrLr =
∑
n

ΠrnwnLn = Trw
−θ
r

∑
n

wnLnτ
−θ
in

Φn︸ ︷︷ ︸
Firm market access

. (C.5)

In the last term, the summation measures the firm market access to consumers—how easy it is for
firms in city n to sell their products to consumers across all markets. Under symmetric trade costs,
consumer and firm market accesses are equal up to a factor of proportion (Donaldson and Hornbeck,
2016), such that

Φr =
∑
n

wnLnτ
−θ
rn

Φn
. (C.6)

Below, we carry out our analysis using market access, Φr, which allows us to analyze changes in
general equilibrium without data on bilateral trade (given data on bilateral trade costs).

C.2 Estimating Equations
As shown in Fally (2015) and Bartelme (2018), equations (C.4) and (C.5) imply that,

wr = Φεwr χwr (C.7)

Lr = Φεlr χ
l
r (C.8)

where χwr = U
1

µ(θ+1)+1T
µ

µ(θ+1)+1
r and χlr = U

−θ−1
µ(θ+1)+1T

1
µ(θ+1)+1
r are functions of aggregate utility and re-

gional productivities and εw and εl are reduced-form wage and population elasticities with respect to
market access, and are functions of the structural parameters, µ and θ.22

We add time subscript t for each steady-state equilibrium, and write these conditions in log changes
as, (where x̂t = ln (xt/xt−1)),

ŵrt = εwΦ̂rt + χ̂wrt (C.9)

L̂rt = εlΦ̂rt + χ̂lrt (C.10)

and the change in market access as,

22Appendix C.7 shows that

εw =
µθ − 1

θ
[
µθ + µ+ 1

] , εl =
2θ + 1

θ
[
µθ + µ+ 1

] .
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Φ̂rt = ln

(∑
n

wntLnt
Φnt

τ−θrn,t

)
− ln

(∑
n

wn,t−1Ln,t−1

Φn,t−1
τ−θrn,t−1

)
. (C.11)

We will perform the empirical analysis as though satellite imagery is our only source of data for
economic activity in each market. Following Henderson et al. (2012), we presume that the intensity
of light emitted at night is a function of total economic activity in a location. We assume in particular
that the log change in income in market r, ŷrt ≡ ŵrt+ L̂rt, has a linear relationship with the log change
in nightlight intensity given by

ŷrt = αN̂rt + υrt (C.12)

where N̂rt is the log change in the intensity of light emitted in market r, α is the inverse elasticity
of nightlight intensity with respect to income, and υrt is an i.i.d. disturbance associated with measure-
ment error in the use of nightlights to capture GDP. Combining equations (C.9) to (C.12), we obtain a
modified set of equilibrium conditions for the general spatial model, given by

ŷrt = δΦ̂rt + Γ̂rt (C.13)

Φ̂rt = ln

(∑
n

ynt
Φnt

τ−θrn,t

)
− ln

(∑
n

yn,t−1

Φn,t−1
τ−θrn,t−1

)
(C.14)

where δ ≡ (εw + εl); Γ̂rt = χ̂wrt + χ̂lrt + υrt is a regional growth shock that incorporates the shocks to
amenities and productivities in (C.9) and (C.10), and measurement error in using nightlights to proxy
for income. Given θ, α, data on NTLrt and τrn,t across time, and the functional form of Φ̂r,t in (C.14),
we can use (C.13) to estimate the reduced-form parameter δ.

C.3 Market Access and Travel Times
In taking equations (C.13) and (C.14) to the data, we confront two estimation issues. First, the

change in market access in (C.14) is a function of unknown levels of market access in periods t and t−1.
We measure the structural market access by solving Φn from the following system of R equations

in R unknowns at each time t,
Φstructural
rt =

∑
n

ynt
Φnt

τ−θrn,t.
23 (C.15)

In (C.14), we exclude Φnt and Φn,t−1 in constructing the expressions in the two bracketed terms
that appear on the right-hand side of the equation.

Given values of α and θ, the approach computes the market access as a function of nightlight in-
tensity and the iceberg trade costs. We follow an extensive literature that assumes the iceberg trade
cost as a function of travel times below

τ−θrn =
(

travel timesrn +
κ× (dr + dn)

speed

)−φ
, (C.16)

where θ is the trade elasticity to iceberg costs, and φ measures the trade elasticity to travel time or
distance. We set φ = 1.5 which implies a trade elasticity to the distance of 1.5 used in the literature (see

23In so doing, we subsume into the solution for Φrt the time-specific constant, ceγt+0.5ση .
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Allen and Arkolakis, 2022). Counterfactual trade costs used in section 4 are calculated analogously.

C.4 Instrumentation Strategy
The change in market access in (C.14) contains nightlights and trade costs in period t. These values

embody endogenous responses to shocks between t− 1 and t, creating the need for an instrumentation
strategy. We specify the following instrument for Φ̂rt,

Φ̂ivrt = ln

(∑
r′

yn,t−1

Φmstnt
τmstrn,t (Ω′t−1)

−θ

)
− ln

(∑
n

yn,t−1

Φn,t−1
τ−θrn,t−1

)
. (C.17)

Following Faber (2014), we project the value of bilateral trade costs in period t, τrn,t, using τmstrn,t (Ω′t−1),
which is constructed using a least-cost spanning tree algorithm. We begin with India’s road and high-
way network as of the initial period and upgrade roads by connecting India’s 180 largest cities. Follow-
ing Donaldson and Hornbeck (2016), in the first bracketed term we use the lagged value yn,t−1 in place
of ynt. We further replace Φnt with Φmstnt , which is given by the solution to theR×R system of equations,

Φmstrt =
∑
n

yn,t−1

Φmstn,t
τmstrn,t (Ω′t−1)

−θ
. (C.18)

In this way, the instrument in (C.17) is based purely on information as of time t− 1.

C.5 Welfare Impacts
We solve the model in changes using (Dekle et al., 2008), and set the observed economy of 2011 as

the initial equilibrium.24 Since productivity is unchanged between equilibria, T̂r = 1. Given data on
local population Ln, the initial market access value Φr in 2011, local GDP measured as Nα

r , and the
counterfactual values in trade costs τ ′rn, we solve Φ̂r from the following equation systems

Φ̂rΦr =

[∑
n

Φ̂
1
µ (εw+ 1

θ )
n

Ln
L

]− θ
θ+1
[∑

n

Φ̂εw+εl
n Nα

n

Φ̂nΦn
τ ′
−θ
rn

]
. (C.19)

See Appendix C.6 for the derivation. Once we obtain Φ̂i, we calculate the changes in local wage as

ŵr = Φ̂εwr

[∑
n

Φ̂
1
µ (εw+ 1

θ )
n

Ln
L

] 1
θ+1

. (C.20)

We calculate changes in local population as

L̂r = Φ̂εlr

[∑
n

Φ̂
1
µ (εw+ 1

θ )
n

Ln
L

]−1

, (C.21)

24Regarding the choice of the initial equilibrium, the existing literature is mixed. For example,
Caliendo and Parro (2015) calibrate the model to the beginning period (1996 in our case), whereas
Adao et al. (2017) calibrate the model to the ending year (2011 in our case). We choose year 2011
as the initial equilibrium because the local population data is only available in year 2011. Different
choices of the initial equilibrium differ in the states of economy we are conditional on.
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and changes in local price and welfare as

P̂r = Φ̂
− 1
θ

r , ˆWelfarer =
ŵr

P̂r
. (C.22)

C.6 Deriving Equations (C.19), (C.20), and (C.21).

Let X̂ = X′

X be variables in proportional changes between two equilibria, where X ′ denotes vari-
ables in the counterfactual equilibrium and X denoted variables in the initial equilibrium (which we
treat as in the year 2011). The counterfactual deviates from the initial equilibrium only by changing
trade costs from τin to τ ′in, while productivity is unchanged, such that T̂r = 1.

We express (C.7)and (C.8) in changes to have

ŵi = Φ̂εwi χ̂wi , (C.23)

L̂i = Φ̂εli χ̂
l
i. (C.24)

χ̂wi = Û
1

µ(θ+1)+1 , χ̂li = Û
−(θ+1)
µ(θ+1)+1 . Û captures the changes in aggregate utility, summing over all locations

and therefore common across locations. Û is absorbed by the constant regressor in our reduced-form
regression but might change in general equilibrium. Recall that the labor supply curve in market n is

Ln =
(wn/Pn)

1
µ∑

n(wn/Pn)
1
µ

L =⇒ wn = PnL
µ
n

[∑
n

(wn/Pn)
1
µ

1

L

]µ
(C.25)

Here, U =
[∑

n(wn/Pn)
1
µ 1
L

]µ
. Supposing foreign workers cannot migrate to India, L′ = L. The propor-

tional changes is

Û =

[∑
n(w′n/P

′
n)

1
µ 1
L′∑

n(wn/Pn)
1
µ 1
L

]µ
=
[∑

n

( ŵn
P̂n

) 1
µ
Ln
L

]µ
(C.26)

It turns out Û can be expressed as functions of the vector of market access changes {Φ̂1, Φ̂2, ..., Φ̂n},
and therefore, ŵi, L̂i are also functions of {Φ̂1, Φ̂2, ..., Φ̂n}. This allows us to simplify the equation
system. First, the proportional changes in U can be expressed as

Û =
[∑

n

( ŵn
P̂n

) 1
µ
Ln
L

]µ
=
[∑

n

Φ̂
1
µ (εw+ 1

θ )
n χ̂

1
µ
w
Ln
L

]µ
= Û

1
µ(θ+1)+1

[∑
n

Φ̂
1
µ (εw+ 1

θ )
n

Ln
L

]µ
. (C.27)

⇐⇒ Û =
[∑

n

Φ̂
1
µ (εw+ 1

θ )
n

Ln
L

]µθ+µ+1
θ+1

(C.28)

Substituting equation (C.28) into equation (C.23) and (C.24), we have that

ŵi = Φ̂εwi

[∑
n

Φ̂
1
µ (εw+ 1

θ )
n

Ln
L

] 1
θ+1

, (C.29)

L̂i = Φ̂εli

[∑
n

Φ̂
1
µ (εw+ 1

θ )
n

Ln
L

]−1

, (C.30)
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Finally, we can write the market access equation (C.5) at the counterfactual equilibrium value as

Φ′i =
∑
n

w′nL
′
nτ
′−θ
in

Φ′n
=⇒ Φ̂iΦi =

∑
n

ŵnL̂nwnLn

Φ̂nΦn
τ−θin τ̂

−θ
in . (C.31)

Given wnLn = yn, where yn is measured according to equation (2), we can substitute (C.29) and (C.30)
into equation (C.31) to obtain equation (C.19).

C.7 Linking Structural Parameters with the Reduced-Form Parameters
We express θ and µ as a function of εw and εl. First, we express wage and population in terms

of market access as in equations (C.7) and (C.8), with χwi = U
1

µ(θ+1)+1 z
µ

µ(θ+1)+1
n , χli = U

−θ−1
µ(θ+1)+1 z

1
µ(θ+1)+1
n .

U =
[∑

n(wn/Pn)
1
µ 1
L

]µ
captures the aggregate utility and is constant across all locations. Note U is ab-

sorbed by the constant regressor in reduced-form regression, but does change in general equilibrium.
We take into account the changes in U in the counterfactual analysis.

We can express εw and εl as functions of our structural parameters as follows

εw =
µθ − 1

θ
[
µθ + µ+ 1

] , εl =
2θ + 1

θ
[
µθ + µ+ 1

] . (C.32)

Taking the ratio between the two to have

εw
εl

=
µθ − 1

2θ + 1
=⇒ µ =

1

θ
+

2θ + 1

θ

εw
εl
.

Then, we substitute the above expression into (13) to have

εw =
(2θ + 1) εwεl

(2θ + 1) + θ(2θ + 1) εwεl + (2θ + 1) εwεl
.

=⇒ θ(2θ + 1)εw + (2θ + 1)εw + (2θ + 1)εl = 2θ + 1.

when 2θ + 1 6= 0 =⇒ θεw + εw + εl = 1.

=⇒θ =
1− εw − εl

εw
.

Substituting θ = 1−εw−εl
εw

into µ = 1
θ + 2θ+1

θ
εw
εl

, we obtain

µ =
εw
εl

2− εw − εl
1− εw − εl

.

Since θ > 0 and µ > 0, we need parameter restriction εw + εl < 1. According to (Allen and Arkolakis,
2014), εw + εl < 1 is a sufficient condition for the model to have a unique equilibrium.
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D Sensitivity Analysis
D.1 Reduced-form Estimates

We perform sensitivity analysis on our reduced-form elasticity estimates δ under alternative model
specifications. First, we reestimates δ using a reduced-form market access measure following Donald-
son and Hornbeck (2016), defined as,

Φreduced-form
rt =

∑
n

yntτ
−θ
rn,t. (C.33)

In Table D.3, we obtain similar results on δ as the baseline model. Second, Table D.2 reports the es-
timates using 100 cities in the least-cost spanning tree algorithm. The estimated results are similar.
Third, our mapping of travel time to trade costs depends on parameter φ, as in Equation (6). In Ta-
ble D.3, we set φ = 1.3 as the lower bound and φ = 1.7 as the upper bound, following Monte et al.
(2018) and (Allen and Arkolakis, 2022). While the estimates of δ vary under different values of φ, in
both cases, we find statistically significant estimates for δ, while smaller and statistically insignificant
estimates for δ using pre-trend.
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Table D.1: Estimates Using Reduced-form Market Access

(1) (2) (3)
OLS 2SLS Pre-trend

δ 0.17 0.40 0.11
(0.03) (0.13) (0.15)

Observations 13,342 13,342 11,220
R2 0.34 0.16 0.18
F 698.7 714.1
Fixed-effects district district district

Notes: The table shows estimates using reduced form market access.
We set θ = 8. Column 1 shows coefficient estimates on changes in night-
lights between 1996 and 2011 using OLS; column 2 shows corresponding
coefficient estimates using 2SLS, where the instrumental variable is
constructed using 180 cities in the least-cost spanning tree algorithm;
column 3 shows coefficients estimates on changes in nightlights between
1994 and 1999 as a test of pre-trends. The fixed effects of 8km-markets
are controlled for all models. Standard errors (clustered at 4km markets)
are in parenthesis.
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Table D.2: Etimates using 100 Largest cities to construct the IV

(1) (2) (3)
OLS 2SLS Pre-trend

A. Structural Market Access.
δ 0.16 0.43 0.21

(0.03) (0.21) (0.32)
Observations 13,342 13,342 11,220
R2 0.34 0.16 0.18
F 236.5 228.2
Fixed-effects district district district

(1) (2) (3)
OLS 2SLS Pre-trend

B. Reduced-form Market Access.
δ 0.17 0.35 0.11

(0.03) (0.16) (0.24)
Observations 13,342 13,342 11,220
R2 0.34 0.16 0.18
F 338.9 329.0
Fixed-effects district district district

Notes: The table shows estimates using reduced form market access.
We set θ = 8. Column 1 shows coefficient estimates on changes in night-
lights between 1996 and 2011 using OLS; column 2 shows corresponding
coefficient estimates using 2SLS, where the instrumental variable is
constructed using 180 cities in the least-cost spanning tree algorithm;
column 3 shows coefficients estimates on changes in nightlights between
1994 and 1999 as a test of pre-trends. The fixed effects of 8km-markets
are controlled for all models. Standard errors (clustered at 4km markets)
are in parenthesis.
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Table D.3: Estimates with Alternative Values of φ

(1) (2) (3)
OLS 2SLS Pre-trend
A. Setting φ = 1.3.

δ 0.22 0.69 0.16
(0.04) (0.21) (0.25)

Observations 13,342 13,342 11,220
R2 0.34 0.15 0.18
F 592.2 625.2
Fixed-effects district district district

(1) (2) (3)
OLS 2SLS Pre-trend
B. Setting φ = 1.7.

δ 0.12 0.30 0.17
(0.02) (0.12) (0.14)

Observations 13,342 13,342 11,220
R2 0.34 0.16 0.18
F 592.9 596.2
Fixed-effects district district district

Notes: The table shows estimates using reduced form market access.
We set θ = 8. Column 1 shows coefficient estimates on changes in night-
lights between 1996 and 2011 using OLS; column 2 shows corresponding
coefficient estimates using 2SLS, where the instrumental variable is
constructed using 180 cities in the least-cost spanning tree algorithm;
column 3 shows coefficient estimates on changes in nightlights between
1994 and 1999 as a test of pre-trends. The fixed effects of 8km-markets
are controlled for all models. Standard errors (clustered at 4km markets)
are in parenthesis.
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Table D.4: Cost-Benefit Analysis θ = 4.

All Roads GQ NH
NPV Increase in GDP 5.59 4.27 1.24
NPV of Construction Costs 0.39 0.13 0.26
NPV of Maintenance Costs 0.86 0.28 0.57
NPV of Total Costs 1.24 0.40 0.83
Increase in the NPV of GDP 4.35 3.87 0.41

Notes: The table presents a cost-benefit analysis of the improvement in
the road network which disentangles the increase in GDP and the costs of
road construction and maintenance, differentiating the effects of all roads
(panel B, column 1), only GQ construction (panel B, column 2) and only
national highway construction (Panel B, column 3). GQ counterfactual:
keep the road structure as in 2011, but reduce the speed of GQ roads to
40mph (the speed of national highways); NH counterfactual: keep the road
structure as in 2011, but reduce the speed of newly built national highway
roads to 20mph (the speed of other roads). We set θ = 4, δ = 0.46, φ = 1.5.
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E Geographic Distribution of Effects

Figure E.1: Welfare Effects in Delhi and Ahmedabad
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F Further Highway Upgrades versus Local Roads Improve-
ments

We explore the potential impact of two further road upgrades. First, we examine the upgrading of
all national highways to the quality of GQ roads, which maintains the existing road structure in
2011 but increases the speed of national highways to 60mph (equivalent to that of the GQ). Second,
we explore upgrading of all local roads to the quality of national highways, thus keeping the same
road structure as in 2011 but improving the speed of local roads to 40mph (equivalent to the speed of
existing national highways).

Figure E.4: Impacts of Upgrading Highways vs Local Roads
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Notes: This figure shows the average increases in market access and welfare by market-size groups for
additional road upgrades. The 6 market size groups are clustered based on their nightlight intensities (top
10 markets, top 11-50 markets, and four quartiles with the 4th quartile excluding the top 50 markets).

Figure E.4 displays the percentage increase in market access and welfare for markets according to
their size. A further upgrade of national highways to GQ quality roads is projected to improve market
access from 14.28% for the 2nd quartile of markets to 19.35% for the top 10-50 markets, with the most
improvement for the top 10-50 markets. If we exclude the top 10 markets, the welfare improvements
produced by such a policy present a U-shaped curve, whereby the smallest and largest markets benefit
the most from such a road buildup.
When we run the counterfactual exercise for upgrading local roads to NH quality, we see that such a
policy would lead to smaller overall welfare improvements compared to a further upgrade of national
highways to GQ. Additionally, this type of policy would benefit smaller markets relatively more than
larger markets, showing the different distributional effects of these alternative road construction
projects.
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