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Abstract

Empirical researchers frequently rely on normal approximations in order to summa-

rize and communicate uncertainty about their findings to their scientific audience.

When such approximations are unreliable, they can lead the audience to make

misguided decisions. We propose to measure the failure of the conventional nor-

mal approximation for a given estimator by the total variation distance between

a bootstrap distribution and the normal distribution parameterized by the point

estimate and standard error. For a wide class of decision problems and a class of

uninformative priors, we show that a multiple of the total variation distance bounds

the mistakes which result from relying on the conventional normal approximation.

In a sample of recent empirical articles that use a bootstrap for inference, we find

that the conventional normal approximation is often poor. We suggest and illustrate

convenient alternative reports for such settings.

keywords: statistical communication, weak identification, Bayes bootstrap

JEL codes: C18, C44, D81

1 Introduction

Empirical researchers often summarize their findings using a point estimate and standard

error. Such summaries can be justified by conventional asymptotic approximations. In re-
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cent decades economists have documented many reasons that such approximations can fail,

including weak identification (Staiger and Stock 1997, Stock and Wright 2000), parameters

near a boundary (Andrews 1999, Andrews 2001), highly nonlinear models (Dagenais and

Dufour 1991, Andrews and Mikusheva 2016), non-differentiabilities (Hirano and Porter

2012, Fang and Santos 2019), and others. While diagnostic tools exist to measure the

quality of conventional approximations in some cases (e.g., Stock and Yogo 2005), these

diagnostic tools differ across settings, and in many important cases no widely accepted

diagnostic tool exists.1

In this paper, we propose to diagnose the failure of conventional approximations using the

total variation distance between a bootstrap distribution and the normal distribution param-

eterized by the point estimate and standard error. Our proposal is particularly easy to imple-

ment in the many settings where a bootstrap is used for inference, and we find that it implies

substantial departures from normality in a large share of a sample of recent empirical articles.

We ground our proposal in a model of statistical communication following Andrews and

Shapiro (2021). An analyst makes a report about a parameter of interest to an audience of

agents, each of whom faces a decision problem with a bounded loss function. We consider

agents whose priors belong to a density ratio neighborhood of a reference prior. For such

agents, well-known results imply that reporting the reference posterior that results from

updating the reference prior is as good—in terms of the loss it induces—as reporting the

full data.

In many settings analysts do not report full posterior distributions but instead make do

with simpler summaries. It is particularly common to report a point estimate and standard

error, which can be interpreted as parameterizing a normal approximation to the posterior.

We show that, across all agents in the audience, the increase in the expected loss from

receiving any distributional summary—rather than the full data—is bounded by a multiple

of the total variation distance between the reported distribution and the reference posterior.

Hence, if the reference posterior is approximately normal, centered at the analyst’s point

estimate with standard deviation close to the analyst’s standard error, it is essentially

1For the problem of detecting weak identification, for instance, the widely adopted rule of thumb which
deems instruments weak when the first-stage F−statistic is smaller than 10 offers performance guarantees
only for linear models with homoskedastic errors and a single endogenous regressor. Alternatives have
been proposed by Montiel Olea and Pflueger (2013) for non-homoskedastic linear models, by Sanderson
and Windmeijer (2016) and Lewis and Mertens (2022) for models with multiple endogenous variables,
and by Andrews (2018) for nonlinear models.
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without loss to summarize the data using the point estimate and standard error. If the

reference posterior instead departs from the conventional approximation, summarizing

using the point estimate and standard error creates scope for poor decision-making.

Evaluating the quality of the reported (e.g., normal) summary requires specifying a refer-

ence prior. We suggest a flexible class of Dirichlet process priors supported on the observed

values of the data. In the limit as a reference prior in this class becomes uninformative, the

corresponding reference posterior converges to the Bayes bootstrap distribution for the pa-

rameter of interest (Rubin 1981, Gasparini 1995). The increase in loss from reporting a point

estimate and standard error, rather than the full data, is thus bounded by a multiple of the

total variation distance between the implied normal distribution and the Bayes bootstrap

distribution, plus a remainder that goes to zero as the prior becomes uninformative.

Under our assumptions, then, the analyst can evaluate the quality of the normal

approximation (or any other proposed approximation) in a given application by comparison

to the Bayes bootstrap distribution. The Bayes bootstrap distribution can be conveniently

sampled in a wide range of applications. While the Bayes bootstrap distribution itself is

often continuous, any finite sample of bootstrap replicates is necessarily discrete, and so will

have total variation distance to any continuous (e.g., normal) distribution equal to one. We

therefore propose to approximate the total variation distance using the signed Kolmogorov

distance, which is a metric on distributions equal to the sum of the largest positive and

negative distances between the two distributions’ CDFs. The signed Kolmogorov distance

is a lower bound on the total variation distance, and the two are equal for continuous

distributions whose densities cross at most twice. In our applications, we show that this

condition is typically not refuted, and we repeat our analysis using an alternative approach

based on a kernel smoothing of the bootstrap replicates.

We outline a practical approach based on our findings. The analyst samples from a

Bayes bootstrap distribution, and computes the signed Kolmogorov distance between the

bootstrap sample and the normal distribution parameterized by the point estimate and

standard error. If the distance is small then the analyst reports the point estimate and

standard error. If the distance is large, the analyst selects an improved report, for instance

a plot of the bootstrap distribution, or a table showing the mean and standard devia-

tion of the normal distribution closest (in signed Kolmogorov distance) to the bootstrap

distribution. An Online Appendix shows conditions for the asymptotic equivalence, in
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signed Kolmogorov distance, between the Bayes bootstrap and other bootstraps, and in

our applications we find that conclusions based on the Bayes bootstrap distribution are

often similar to those based on the nonparametric bootstrap distribution.

Figure 1 illustrates our proposed approach in a hypothetical example. The analyst sam-

ples from a bootstrap distribution (Panel A). The analyst computes the signed Kolmogorov

distance between the bootstrap distribution and the normal distribution parameterized by

the point estimate and standard error. The signed Kolmogorov distance can be read directly

from a p-p plot (Panel B), which shows the relationship between the bootstrap CDF (y-axis)

and the normal CDF (x-axis). In the hypothetical example, the median of the normal

distribution is only at the 25th percentile of the bootstrap distribution, indicating that the

bootstrap distribution is not centered on the point estimate. Moreover, 50 percent of the

mass of the bootstrap distribution is contained between the median and 75th percentile of

the normal distribution, indicating that the bootstrap distribution is less dispersed than the

normal distribution. The analyst can simply report the distribution of the bootstrap repli-

cates (Panel A), or, if a more compact report is desired, replace the default normal report

(Panel C) with one that minimizes the signed Kolmogorov distance to the distribution of the

bootstrap replicates (Panel D). The analyst can summarize the findings in a table (Panel E).

To facilitate adoption of our proposals, we have made available a Python package and

web app called BootstrapReport. These tools take as inputs a point estimate, standard

error, and set of bootstrap replicates, and return the diagnostic and alternative reports

that we propose.

We apply our proposed approach to the universe of articles in the 2021 American

Economic Review which bootstrap some object of interest, and for which we were able

to recover bootstrap replicates. These articles cover a wide range of fields and methods.

Our proposed approach applies readily to all of them. For many objects of interest, the

conventional normal approximation is far from the bootstrap distribution. Even within

a given article, the quality of the approximation can differ meaningfully across different

objects of interest. The distance-minimizing normal approximation to the bootstrap

distribution provides a superior visual fit and, we think, a better way to use two numbers

to communicate the information in the data about the parameter of interest.
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Figure 1: Illustration in a Hypothetical Example

Panel A: CDF of bootstrap distribution Panel B: Distance from default normal
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Panel C: Default normal distribution Panel D: Closer normal distribution
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Panel E: Analyst’s report
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Notes: The figure illustrates our proposed approach in a hypothetical example. The
analyst samples from a bootstrap distribution (Panel A). The analyst compares the
distribution of the bootstrap replicates to the distribution of the default normal report,
parameterized by the point estimate and bootstrap standard error (Panel B). If the
distance between the two distributions is large, the analyst can replace the default normal
report (Panel C) with the normal report closest, in signed Kolmogorov distance, to the
bootstrap distribution (Panel D). The analyst can summarize the findings in a table
(Panel E, with italics denoting values not reported in current practice).
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Practically, our principal contribution is to propose an automated and practically appeal-

ing diagnostic for the quality of the conventional normal approximation in a wide range of

settings. In addition to settings of correct specification and point identification, our approach

directly covers settings of potential misspecification (by focusing on a pseudo-true param-

eter), and settings of partial identification (by focusing on the bounds of the identified set).

The diagnostic we propose can be reported as a“third number” in addition to the point esti-

mate and standard error commonly reported in empirical research (Athey and Imbens 2023).

Methodologically, our principal contribution is to cast the problem of estimation and

uncertainty quantification for potentially irregular estimators as a communication prob-

lem. Rather than controlling frequentist criteria (e.g., size distortion) via an asymptotic

approximation (e.g., Stock and Yogo 2005, Andrews 2018), our approach instead considers

the potential for bad decision-making based on an approximation to a reference posterior

from a finite sample of data.2 Interpreting the usual point estimate and standard error

as a description of a posterior aligns with how we (and, we think, others) often consume

empirical research. Casting the problem as one of communication allows us to abstract

from many details about the underlying model and estimator that might otherwise call

for specialized treatments, and to obtain guarantees that hold in finite samples.

Empirically, we contribute what is to our knowledge the first census of failures of the

conventional normal approximation in empirical economics that does not restrict attention

to estimates of linear models, as well as the first large-scale census of bootstrap replicates.

We expect our data and findings to be of interest to future researchers interested in issues

of estimation and inference in economics.

While our approach neither targets nor offers frequentist guarantees, some of its elements

can be given a frequentist interpretation. In particular, the signed Kolmogorov distance

that we propose as a diagnostic converges to zero with the sample size when the bootstrap

distribution is asymptotically normal. Asymptotic normality of the bootstrap distribution

is, in turn, closely connected to asymptotic normality of the estimator (Mammen 1992). A

large value of the signed Kolmogorov distance therefore suggests a failure of conventional

2Our focus on communicating a useful summary of data to an audience of decision-makers is related
to the literatures on omniprediction (e.g., Gopalan et al. 2021) and sequential calibration (e.g., Noarov
et al. 2023), though our setting, problem statement and, consequently, proposed solutions, are different.
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asymptotic approximations in multiple respects, and so may be used analogously to other

bootstrap diagnostics proposed in the literature (e.g., Beran 1997, Zhan 2018). In contrast,

the frequentist interpretation of the improved reports we consider seems more delicate. It

is well known that Bayesian and frequentist methods can disagree in irregular inference

situations with, for instance, Bayesian credible sets differing substantially from frequentist

confidence sets (Ham and Woutersen 2011, Moon and Schorfheide 2012, Kline and Tamer

2016, Kitagawa et al. 2020). We illustrate this difference in our applications, where we

also discuss connections to existing proposals (e.g., Efron 1982b, Hall 1992) to improve

the informativeness of bootstrap reports.

Section 2 introduces our communication framework and presents results bounding the

increase in expected loss from reporting a distributional summary rather than the full data.

Section 3 specializes these results to a particular class of reference priors connected to the

Bayesian bootstrap. Section 4 lays out our proposed implementation, including the use

of signed Kolmogorov distance to approximate total variation distance. Section 5 presents

the findings from our census of articles in the 2021 American Economic Review that use

the bootstrap. An Appendix contains proofs of all results stated in the main text. An

Online Appendix contains additional theoretical results and additional findings from the

bootstrap census.

2 Regret Bounds for Statistical Reports

In this section we lay out our abstract framework, which follows ideas in Andrews and

Shapiro (2021). We use the framework to derive a bound on the regret from reporting

an approximate posterior belief on the parameter of interest.

2.1 Model of Scientific Communication

Consider an analyst who observes data X ∈ X drawn according to some distribution

P ∈∆(X ), where ∆(X ) denotes the set of probability measures on X . The analyst reports

some function of the data c(X) to an audience of agents, where c :X→S for a signal space

S. For a set of possible decisions D and a parameter space Θ, each agent is endowed with a

loss function L :D×Θ→ [0,λ], so that an agent with loss function L∈L who makes decision
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d∈D realizes loss L(d,θ)∈ [0,λ] when the true parameter value is θ∈Θ. Each agent is

further endowed with a prior π∈Π⊆∆(Θ×∆(X )) which describes the relationship between

the quantity of interest and the distribution of X. The family of priors Π is dominated

by a σ-finite measure, and we interpret π as the density with respect to this measure. We

identify each agent with their loss function and prior and write the audience as L×Π.3

For a given agent (L,π)∈L×Π, an optimal decision given data X ∈X is one that

minimizes the posterior expected loss Eπ [L(d,θ)|X] under their posterior distribution

π(θ|X). We measure the expected cost, given data X ∈X , of taking some particular

decision d, rather than an optimal decision, by the posterior regret

R(d;X,L,π)≡Eπ[L(d,θ)|X]− inf
d′∈D

Eπ[L(d
′,θ)|X].

If the analyst sends report c(X), the agent’s optimal decision dπ(θ|c(X)) minimizes the

posterior expected loss under their posterior distribution π(θ|c(X)):

dπ(θ|c(X))∈argmin
d∈D

Eπ[L(d,θ)|c(X)].

If X cannot be recovered from c(X), then dπ(θ|c(X)) can differ from the agent’s optimal

decision given X, in which case the regret R
(
dπ(θ|c(X));X,L,π

)
is strictly positive.4

Averaging over possible realizations of the data X using the agent’s prior, a given

communication rule c :X→S induces the communication regret

R(c;L,π)=Eπ
[
R
(
dπ(θ|c(X));X,L,π

)]
.

The communication regret measures the increase in the agent’s expected loss from ob-

serving only the report c(X) rather than the full data X. It is a regret analogue of the

communication risk defined in Andrews and Shapiro (2021), and so is also a rescaling of

transparency as defined in Andrews, Gentzkow, and Shapiro (2020).

The timeline is summarized below:

3As the dimension of D is unrestricted, the assumption that all agents share a common decision space
D is without loss of generality.

4When argmind∈DEπ[L(d,θ)|c(X)] is not a singleton, we can take dπ(θ|c(X)) to be any of its members.
When argmind∈DEπ [L(d,θ)|c(X)] is empty, the bounds we derive below continue to hold up to an
arbitrarily small slack term. The proofs in the Appendix cover this more general case.
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Timeline
� Analyst publicly commits to a reporting rule c :X→S

� Nature determines (θ,P)∈(Θ×∆(X ))

� Analyst

– observes X∼P ∈∆(X )

– publicly reports c(X)∈S

� Each agent (L,π) in the audience L×Π

– observes c(X)

– chooses decision d∈D
– realizes loss L(d,θ)∈ [0,λ]

2.2 Class of Audience Priors

Without restrictions on the set of priors Π⊆∆(Θ×∆(X )) it is difficult to obtain meaningful

bounds on communication regret, since agents may have arbitrarily heterogeneous beliefs

about how the parameter of interest relates to the distribution of the observed data. We

instead focus on situations in which disagreement is of bounded magnitude and concerns

only the parameter θ.

Assumption 1. For some commonly known reference prior π∗∈∆(Θ×∆(X )) and scalar

ρ≥1, the class of audience priors Π satisfies Π⊆Π(ρ,π∗) for

Π(ρ,π∗)=

{
π∈∆(Θ×∆(X )):

for all P ∈∆(X ), θ, θ′∈Θ,

π(θ,P)=π∗(P |θ)π(θ), π(θ)
π(θ′)

≤ρ· π
∗(θ)

π∗(θ′)

}
.

Assumption 1 states that agents in the audience agree on the conditional distribution

of P given θ; that is, π (P |θ) = π∗ (P |θ) for all π ∈ Π. Agents may disagree on the

marginal distribution π(θ), but such disagreement is bounded to lie within a density ratio

neighborhood of some reference prior. To interpret this assumption we discuss two examples.

Example. (Parametric Model) Consider the case where agents agree on a parametric model

for P with a finite-dimensional parameter θ, P =Pθ. In this case π(P |θ) is a degenerate
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distribution at Pθ for all π∈Π, and the assumption that π(P |θ)=π∗(P |θ) means that agents

agree on the parametric model. The prior neighborhood Π(ρ,π∗) also bounds the likelihood

ratios of π relative to those of π∗, and the restrictiveness of this assumption depends on ρ.

In the case where ρ=1, Π(1,π∗)={π∗} and there is no prior disagreement. In the opposite

case where ρ→∞, the requirement that π∈Π(ρ,π∗) reduces to the requirement that π and

π∗ assign zero mass to the same sets (i.e., that π and π∗ are mutually absolutely continuous).

Example. (Semiparametric Model) Consider the case where agents agree on a nonparamet-

ric model for P parameterized by ψ, so that P=Pψ, where ψ may be infinite-dimensional.

Agents’ loss functions depend on ψ only via the finite-dimensional parameter θ=θ(ψ). To

ensure that π(P |θ)=π∗(P |θ) in this context, it suffices that agents have homogeneous

conditional priors on ψ|θ, π(ψ|θ)=π∗(ψ|θ). Kessler, Hoff, and Dunson (2015) advocate

prior families of this form for non-parametric Bayesian estimation.

2.3 Bounds on Regret

Assumption 1 allows us to derive useful regret bounds. As a first step, we observe that

reporting the reference posterior π∗(θ|X) allows all agents to achieve zero regret.

Proposition 1. Under Assumption 1, if the analyst reports the reference posterior, c∗(X)=

π∗ (θ|X), then the posterior regret R
(
dπ(θ|c∗(X));X,L,π

)
= 0 for all X ∈ X and all

(L,π)∈L×Π(ρ,π∗).

All proofs are given in the Appendix.

Proposition 1 holds because, given π∗(θ|X), any agent with prior π ∈Π(ρ,π∗) can

compute their posterior π(θ|X) by reweighting the reference posterior,

π(θ|X)∝ π(θ)

π∗(θ)
π∗(θ|X).

Because π(θ|X) corresponds to the posterior belief that the agent would hold if they had

observed the data directly, the agent can take the posterior-optimal decision following

any report π∗(θ|X). Proposition 1 is a variant of an observation that has been made

many times in the Bayesian statistics and econometrics literatures, including by Raiffa and

10



Schlaifer (1961), Hildreth (1963), and Geweke (1997). Motivated by this observation, we

focus on communication rules that take S⊆∆(Θ).

In many contexts the analyst does not report a reference posterior distribution, but

instead reports another summary c(X) which can be interpreted as a distribution on Θ.

It is particularly common to report a frequentist point estimate and standard error for θ, a

report which can be motivated by a conventional asymptotic approximation, suggesting a

normal distribution on Θ. Such an approximation has the appeal of being easy to calculate

in many situations, and easy to communicate as it is fully described by only two numbers.

Example. (Parametric Model, continued) Suppose that the analyst computes a maximum

likelihood estimator θ̂ for θ. In sufficiently regular models, standard arguments imply that

the maximum likelihood estimator will be approximately normally distributed in large sam-

ples, θ̂(X)≈dN(θ,Σ), and also imply consistent estimators Σ̂(X) for Σ. If the analyst reports(
θ̂(X),Σ̂(X)

)
, this may also be interpreted as reporting c(X)=N

(
θ̂(X),Σ̂(X)

)
∈∆(Θ).

One would hope that if the analyst’s report is “close” to the reference posterior, agents

will still be able to achieve low regret. Our main result shows that this is the case. To

state this result, let S(π∗)⊆∆(Θ) denote the set of distributions on Θ that are absolutely

continuous with respect to the reference prior π∗, and so can be interpreted as approximate

posteriors. Define the naive posterior π̂(θ|c(X)) under a prior π∈Π as the distribution

obtained by acting as if c(X) were the reference posterior,

π̂(θ|c(X))∝ π(θ)

π∗(θ)
c(θ|X),

where we write c(θ|X) for the density of c(X) at θ. For dπ̂(θ|c(X)) the corresponding optimal

decision, we have the following bound on the posterior regret.

Theorem 1. Under Assumption 1, for any agent (L,π)∈L×Π(ρ,π∗), any c :X →S(π∗),
and any X∈X ,

0≤R
(
dπ̂(θ|c(X));X,L,π

)
≤(4ρλ)TV (c(X),π∗(θ|X)),

for TV (µ,ν) the total variation distance between measures µ,ν.

For an agent that takes the analyst’s report as a literal description of the reference

posterior, Theorem 1 states that the agent’s posterior regret is bounded above by a constant
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multiple of the total variation distance between the report and the reference posterior. The

constant is proportional to the bound λ on the value of an agent’s loss. The constant is

also proportional to the size ρ of the density ratio neighborhood implied by Assumption 1.

Example. (Common Priors) Suppose that ρ=1 so that all agents share the reference prior.

It is then appealing for the analyst to report the reference posterior. In modern applications

of Bayesian statistics, exact computation of the posterior is typically infeasible. Theorem

1 establishes a sense in which agents in the audience can reasonably base decisions on a

reported numerical approximation c(X) to the reference posterior π∗(θ|X), provided that

the two distributions are close in total variation.

For an agent that updates via Bayes rule based on the analyst’s report, an analogous

bound applies to the agent’s communication regret.

Corollary 1. Under Assumption 1, for any agent (L,π)∈L×Π(ρ,π∗) and any c :X→S(π∗),

0≤R(c;L,π)≤(4ρλ)Eπ[TV (c(X),π∗(θ|X))].

Corollary 1 follows directly from Theorem 1. Intuitively, treating the analyst’s report as

a literal description of the reference posterior can only increase an agent’s communication

regret, relative to updating via Bayes rule. Controlling total variation distance therefore

provides (via Theorem 1) a route to reducing a bound on the posterior regret for an agent

that takes the analyst’s report literally, and (via Corollary 1), a route to reducing a bound

on the communication regret for a more sophisticated agent.

In models satisfying standard regularity conditions, Theorem 1 implies the asymptotic

Bayes sufficiency of an efficient estimator and its estimated asymptotic variance for the

audiences we study.5

Example. (Parametric Model, continued) Again suppose the analyst reports the maximum

likelihood estimator and estimated asymptotic variance, c(X)=N
(
θ̂(X),Σ̂(X)

)
for all

X∈X . In sufficiently regular models the Bernstein-von Mises Theorem (see, e.g., Theorem

12.1 of Ghosal and van der Vaart 2017) implies that for any continuous reference prior π∗

5We call a reporting rule “Bayes sufficient” with respect to an audience L×Π if the reporting rule is as
good, for any member of that audience, as reporting the full dataX. This notion of sufficiency is a weakening
of the concept of marginal sufficiency for θ with respect to Π as defined in Raiffa and Schlaifer (1961).
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with a continuous, positive density, TV (c(X),π∗(θ|X))→p0 as the sample size grows. By

Theorem 1 we therefore have that R
(
dπ̂(θ|c(X));X,L,π

)
→p0 for any π∈Π(ρ,π∗) and L∈L

for finite ρ≥1, λ≥0. This establishes a sense in which a report consisting of the maximum

likelihood estimator and its estimated variance is asymptotically Bayes sufficient for the

audience L×Π(ρ,π∗): for sufficiently large samples, reporting the maximum likelihood

estimator together with the estimated variance allows each audience member to obtain

nearly the same expected loss as reporting the full data.6 A variety of arguments in the

literature imply other senses in which the maximum likelihood estimator is asymptotically

sufficient (see, e.g., Efron 1982a and Le Cam and Yang 2000).

Example. (Semiparametric Model, continued) Asymptotic sufficiency of efficient estimates

is not limited to low-dimensional parametric models. Let θ̂(X) be an asymptotically regular

estimator of θ which achieves the semiparametric efficiency bound, and let Σ̂(X) be an

estimator for its asymptotic variance (see Chapter 25 of van der Vaart 1998). Then similar

results (and caveats) obtain to those in the parametric case, provided that the model Pψ

and the reference prior π∗ satisfy the conditions for a semiparametric Bernstein-von Mises

Theorem (see, e.g., Theorem 12.8 of Ghosal and van der Vaart 2017).7

Theoretically, these examples provide a potential justification for some common sta-

tistical reports, and for this reason may be of independent interest. Practically, economists

may not wish to rely on asymptotic approximations of the kind that we invoke in the

examples, as these approximations have been found to break down in important applica-

tions. Our results suggest gauging the quality of an asymptotic approximation (or any

other approximation) by measuring the total variation distance between the approximating

distribution and a reference posterior. Operationalizing this suggestion requires specifying

a choice of reference prior, which is the task we turn to in the next section.

6This is not simply a consequence of consistency of θ̂(X) for θ, since our setup implicitly allows that
the loss function may depend on the sample size n. For example, for a decision space D=Θ=R the

set of loss functions L includes Ln(d,θ)=λ·1
{
|d−θ|>n−1

2

}
, which is concerned with errors of order

√
n.

Consequently simply reporting a consistent estimator of θ, or even a
√
n-consistent estimator, does not

by itself suffice to ensure that the regret converges to zero.
7These conditions do not require that every prior in the audience satisfies the Bernstein-von Mises Theo-

rem. In particular, the Bernstein-vonMises Theorem requires that the marginal density of the reference prior
π∗(θ) is continuous, whereas the audience Π(ρ,π∗) may include priors with discontinuous marginal densities.
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3 A Class of Uninformative Reference Priors

Calculating the regret bounds derived in Section 2 requires a choice of reference prior π∗.

In this section, we propose a class of reference priors closely linked to the Bayes bootstrap

(Rubin 1981). The Bayes bootstrap distribution corresponds to a posterior distribution

under a noninformative prior on the distribution of the data. While this “Bayes bootstrap

prior” is improper, and so cannot serve as a reference prior π∗, we show that a large class

of proper priors deliver nearly the same posterior distribution. We propose to use priors

in this class as default choices for the reference prior.

3.1 Sampling Model

To develop the results in this section we impose two substantive restrictions on our general

framework, both of which are common in applications of the bootstrap. The first restriction

is that the data X=(X1,...,Xn) consist of n∈N observations, each drawn independently

from a distribution P0∈∆(X0) supported on the sample space X0.
8 Thus, we have that

X ∈ Xn
0 = X is distributed according to P = ×n

i=1P0 ∈ ∆(X0)
n ⊂ ∆(X ). The second

restriction is that the parameter θ is a function of the distribution P0 of an individual

observation, so θ= θ(P0) where θ : ∆(X0)→Θ is a commonly known mapping. Under

these restrictions any prior π∈Π is fully described by the implied marginal prior π(P0)

on ∆(X0). We next discuss two examples.

Example. (GMM Estimands) The setting of this section is an instance of the semipara-

metric example discussed in Section 2, where we take ψ=P0 and assume that the data are

an i.i.d. sample from P0. Our results therefore cover inference on semiparametric target

parameters, such as the estimands in moment condition models. Suppose in particular

that we have an auxiliary model which implies that, for moment conditions ϕ(Xi,ϑ) which

depend on the data X and a parameter ϑ, the moments have mean zero at the true

(P0,ϑ) pair, EP0 [ϕ(Xi,ϑ)]=0. It is common to estimate ϑ using the generalized method

of moments (GMM, Hansen 1982). For a weighting matrix W(P0) that may depend on

8The assumption of i.i.d. sampling allows for situations in which the data are clustered, since we may
take Xi to be the data for cluster i and n the number of clusters.
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P0, the GMM estimand (i.e., the population analogue of the GMM estimator) is

θ(P0)∈argmin
ϑ∈Θ

EP0[ϕ(Xi,ϑ)]
′W(P0)EP0[ϕ(Xi,ϑ)]. (1)

Note that θ(P0) is well-defined irrespective of correct specification of the auxiliary model,

that is, irrespective of whether there in fact exists a value of ϑ such that EP0[ϕ(Xi,ϑ)]=0.9

Therefore θ(P0) can be interpreted as a pseudo-true parameter value.

Example. (Partially Identified Parameters) The restriction that θ= θ(P0) implies that

θ is point-identified. However, the results developed in this section can also be applied

to set-identified models under a restriction on the priors in the audience. Suppose that

audience members have loss functions L̃ : D×Γ → [0,λ] that depend on a parameter

γ ∈Γ. If there exists some θ= θ(P0) which is sufficient for γ under each agent’s prior,

in the sense that π (γ|θ,P0) = π (γ|θ), then the analysis above applies directly, taking

L(d,θ)=Eπ(γ|θ)

[
L̃(d,γ)

]
. Importantly, this formulation allows the marginal prior π(γ) to

differ arbitrarily across agents. The formulation includes situations where, for example,

γ∈R is a partially identified scalar parameter, θ∈R is an upper bound on the identified

set for γ (which implies that θ is point-identified by definition), and an agent’s posterior

belief π(γ|θ) on Γ, given θ, is a truncation of the agent’s marginal prior π(γ) to (−∞,θ],

where the prior π(γ) may differ across agents.

3.2 Default Reference Priors and Bootstrap Regret Bounds

We make the following assumption on the reference prior π∗.

Assumption 2. The reference prior π∗ takes the form

π∗(P0)=DP(αn,P
ω
n )

where DP(·,·) denotes a Dirichlet process, α>0 is a scalar, ω∈∆({1,...,n}) are weights,

and Pω
n =
∑n

i=1ωiδXi
is the ω-weighted empirical distribution of the data, for δXi

the Dirac

mass at Xi.

9When the argmin of (1) is non-unique, θ(P0) applies some selection rule. Similarly, when the infimum
is not achieved, we may define θ(P0) arbitrarily.
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Assumption 2 states that the reference prior is a Dirichlet process.10 The parameter α

controls the informativeness of the prior, with lower values corresponding to a less informa-

tive prior. The parameter Pω
n controls the central tendency of the prior and assigns mass

only to distributions supported on the observed data points {X1,...,Xn}. The requirement

to choose centering measures of the form Pω
n becomes considerably less restrictive as the

sample size n grows large.11 We restrict attention to Dirichlet process priors for tractability,

but they also have other attractive properties, such as posterior consistency for P0.

Well-known conjugacy results for Dirichlet processes imply that for Pn=
1
n

∑n
i=1δXi

the

empirical distribution of the data, the reference posterior given X is

π∗(P0|X)=DP

(
(1+α)n,

α

α+n
Pω
n +

n

α+n
Pn

)
.

The Bayes bootstrap posterior πB0 (P0|X) corresponds to the limit of π∗(P0|X) as α→0,

i.e., πB0 (P0|X)=DP(n,Pn). Results in Online Appendix B imply that for ω the uniform

weights, the limit of the marginal prior π∗(θ(P0)) on Θ is uniform on a set of values sup-

ported by the observed data. For a given choice of ω and α, the reference priors specified

in Assumption 2 are proper prior distributions and imply marginal priors π∗(θ(P0)) on Θ

which can be sampled using a procedure analogous to the Bayes bootstrap. We illustrate

this sampling in the Online Appendix in the context of our empirical applications.12

Importantly for our purposes, Assumption 2 implies that the reference and Bayes

bootstrap posteriors are close in total variation for small α.

Proposition 2. Under Assumption 2, for ζ(α,ω,n)=TV
(
π∗(P0|X),πB0 (P0|X)

)
we have

lim
α→0

sup
ω∈∆({1,...,n})

ζ(α,ω,n)=0 for all n.

Assumptions 1 and 2, together with Proposition 2, imply a bound on posterior regret

10See Chapter 4 of Ghosal and van der Vaart (2017) for a textbook treatment of Dirichlet processes.
11In particular, Appendix A proves that if X0 is a Polish space and P0 has full support, then for every

Q0∈∆(X0) and almost every sequence of draws {X1,X2,...} from P0 there exists a sequence of weights
ωn such that Pωn

n converges weakly to Q0 as n→∞.
12Chamberlain and Imbens (2003) propose to measure the informativeness of the marginal prior on

θ(P0) in the Bayes bootstrap by applying the Bayes bootstrap to subsamples of the data. Although
we are not aware of a proper prior π∗ on ∆(X0) for which this procedure samples the marginal prior,
the procedure seems similar in spirit to the one we illustrate in the Online Appendix, including in its
dependence on the observed data.
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which approaches the total variation distance between c(X) and the Bayes bootstrap

posterior as α becomes small.

Theorem 2. Under Assumptions 1 and 2, for any π∗ with π∗(P0)=DP(αn,P
ω
n ), any agent

(L,π)∈L×Π(ρ,π∗), any c :X→S(π∗), and any X∈X ,

0≤R
(
dπ̂(θ|c(X));X,L,π

)
≤(4ρλ)

(
TV
(
c(X),πB(θ|X)

)
+ζ(α,ω,n)

)
.

Theorem 2 states that, for priors in a density ratio neighborhood of the reference priors

defined in Assumption 2, we can bound the posterior regret for the naive-optimal decision

dπ̂(θ|c(X)) by a constant multiple of the total variation distance between c(X) and the Bayes

bootstrap posterior, plus a remainder that goes to zero with α.13 In order to compute

π̂(θ|c(X)), agents in the audience need to interpret the marginal reference prior π∗(θ). The-

oretical results in Online Appendix B and numerical results in Online Appendix D establish

that the marginal reference prior is uninformative in a variety of respects. In order to com-

pute the bound in Theorem 2 the analyst needs the Bayes bootstrap posterior, which can be

conveniently sampled via the Bayes bootstrap procedure. In the next section, we discuss the

bootstrap procedure along with other important aspects of our proposed implementation.

4 Implementation with a Scalar Parameter

In this section we lay out a practical approach to applying our ideas in the case of a scalar

parameter of interest θ ∈R. We assume that the analyst begins with a default report

c0 :X→S⊆S(π∗), where the signal space S describes the richness with which the analyst

will report to the reader. For example, if S is the set of univariate normal distributions,

then any report c(X) ∈ S is fully described by two numbers (the mean and standard

deviation). If S=S(π∗) is the set of all distributions dominated by π∗(θ), then describing

it may require a richer language, such as a plot. The leading example of a default report is

a point estimate θ̂ and standard error σ̂θ̂, which we interpret as taking c0(X)=N
(
θ̂,σ̂2

θ̂

)
.

13There is no direct analogue of the bound in Corollary 1 in this setting because the support of the
reference prior π∗, and consequently of all priors π∈Π, depends on the realization of the data X.
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4.1 Sample from a Bootstrap Distribution

Given a default report, the first step is to create a sample of J bootstrap draws η̂ =
1
J

∑
j δθ̂j ∈∆(Θ) for the parameter of interest θ, for δθ̂j the Dirac mass at θ̂j. In the

case of a weighted bootstrap, this is done by sampling J vectors of weights {W1,...,WJ}
i.i.d. according to some distribution and, for each draw Wj ∈∆({1,...,n}), constructing
the weighted empirical distribution P

Wj
n =

∑n
i=1Wj,iδXi

and calculating the implied value

θ̂j = θ
(
P
Wj
n

)
. The Bayes bootstrap takes Wj ∼Dirichlet

(
1
n
,..., 1

n

)
, and in this case the

distribution function of η̂ converges uniformly to that of πB (θ|X) as J → ∞ by the

Glivenko-Cantelli Theorem (van der Vaart 1998, Theorem 19.1).

We recommend using the Bayes bootstrap, but researchers may alternatively substitute

other bootstrap schemes. Appendix C provides conditions for the asymptotic equivalence

of two bootstrap distributions under the metric we consider. We read the conditions for

the large-sample equivalence of the Bayes bootstrap and the nonparametric bootstrap

(which takes Wj∼ 1
n
Multinomial

((
1
n
,..., 1

n

)
;n
)
) as fairly mild, but read the conditions for

the large-sample equivalence of the Bayes bootstrap with the parametric bootstrap, or

other bootstrap schemes that rely on correct specification or exact normality of particular

statistics, as more restrictive.

4.2 Approximate the Total Variation Distance

The next step is to approximate the total variation distance TV
(
c0(X),πB(θ|X)

)
between

the default report and the reference posterior. We do this by way of a lower bound because

convergence of η̂ to πB(θ|X) in terms of distribution functions does not imply convergence

in total variation.14

Definition 1. The signed Kolmogorov distance between measures µ,ν∈∆(R) is

SK(µ,ν)=sup
t∈R

(Fµ(t)−Fν(t))++sup
t∈R

(Fν(t)−Fµ(t))+

for Fµ(·),Fν(·) the CDFs associated with measures µ,ν and (A)+=max{A,0}.

The signed Kolmogorov (SK) distance between two distributions is found by adding

14Indeed, when η̂ is discrete while c0(X) is atomless, TV (c0(X),η̂)=1.
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together the largest positive and negative vertical distances between the distributions’

CDFs.15 This distance has several convenient properties.

Proposition 3. The signed Kolmogorov distance is a metric on ∆(R). In addition, it is

a lower bound on total variation distance,

SK(µ,ν)≤TV (µ,ν) for all µ,ν∈∆(R).

This inequality binds, with SK(µ,ν)=TV (µ,ν), when µ and ν are continuous with densities

whose difference changes sign at most twice.

We find that the data are consistent with the condition that the densities for µ and ν cross

at most twice in a large majority of our applications.

We propose to calculate the signed Kolmogorov distance SK(c0(X),η̂) between the

default report c0(X) and the bootstrap distribution η̂. The signed Kolmogorov distance

SK(c0(X),η̂) can be read off of a p-p plot of the distributions of η̂ and c0(X), and is in

this sense trivial to compute. When η̂ is sampled from the Bayes bootstrap distribution

πB (θ|X), convergence of Fη̂ to FπB(θ|X) as J →∞, together with the fact that signed

Kolmogorov distance is a metric, implies that

SK(c0(X),η̂)→pSK
(
c0(X),πB(θ|X)

)
as J→∞.

Hence, as the number of bootstrap draws grows large, the analyst will consistently recover

the SK distance (and, under a condition on the density, the total variation distance) between

the default report and the Bayes bootstrap distribution. A more involved alternative to

the SK distance, which we illustrate in the Online Appendix for our applications, is to

compute TV (c0(X),η̃) for η̃ a smoothed version of η̂.

4.3 Improve the Report

As a final step, the analyst may improve their report. If SK(c0(X),η̂) is small, the analyst

may simply report c0(X) and SK(c0(X),η̂). If SK(c0(X),η̂) is large, the analyst may

15The signed Kolmogorov distance is distinct from what Filion (2015) terms the “signed Kolmogorov-
Smirnov test.”
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wish to improve upon c0(X). The bound in Theorem 2, together with the approximation

result in Proposition 3, suggests selecting the report

c∗(X)∈argmin
s∈S

SK(s,η̂) (2)

that minimizes the SK distance between the report and the bootstrap distribution. If S
is the set of all normal distributions, c∗(X) corresponds to the normal distribution closest,

in SK distance, to the bootstrap distribution η̂. If the minimized distance SK(c∗(X),η̂)

is small, the analyst may consider c∗(X) a good summary, and report c∗(X) alongside

SK (c∗(X),η̂). Alternatively, if SK (c∗(X),η̂) remains large, the analyst may relax the

constraints on the set of possible reports. In particular, if S is unrestricted then reporting

c∗(X)= η̂, for example by plotting the bootstrap distribution, is always a solution to (2),

and seems a natural choice of report.

5 Bootstrap Distributions in the American Economic

Review

To demonstrate applicability to a wide range of economic settings, we applied the approach

in Section 4 to a census of papers in the 2021 American Economic Review that use a

bootstrap. In this section we describe our procedures and findings.

5.1 Sample from a Bootstrap Distribution

We used a Google Scholar query to identify papers published in the American Economic Re-

view in 2021 that use a bootstrap. For each paper, we identified the main objects of interest,

which we define to be objects for which a quantitative or a qualitative description appears in

the abstract or introduction. We focus on objects of interest for which the bootstrap is used

for inference. We excluded from our census papers that are primarily methodological, papers

that use the bootstrap only to calculate a p-value, or papers that use a bootstrap exclusively

for objects reported in appendices. Appendix Table 1 lists the papers we include in our cen-

sus along with the number of objects of interest in each paper that we include in our analysis.

The papers in the census cover a range of topics including public economics, labor
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economics, macroeconomics, behavioral economics, industrial organization, and develop-

ment economics. The objects of interest include parameters describing technology, welfare

calculations from a structural model, impulse responses, and transformations of regression

coefficients.

For each paper, we attempted to reproduce the bootstrap replicates using the published

replication code and data. When this was not feasible (e.g., due to confidential data),

we contacted the authors to request the bootstrap replicates. We succeeded in obtaining

bootstrap replicates covering 81 objects of interest across 14 articles, with only 1 article for

which we were unable to obtain the replicates. For each object of interest, the bootstrap

replicates define a distribution η̂.

Across the papers in the census, the most common form of bootstrap is the nonparamet-

ric bootstrap (10 articles), followed by the parametric bootstrap (3 articles).16 Only 1 article

used the Bayes bootstrap. Ourmain theoretical results cover the Bayes bootstrap. Appendix

C establishes conditions for the asymptotic equivalence of Bayes and other bootstraps in

SK distance. Appendix Figure 1 shows a scatterplot of the SK distance between the default

normal report and nonparametric bootstrap replicates (y-axis) versus the SK distance be-

tween the default normal report and Bayes bootstrap replicates (x-axis), across the objects

of interest for which we are able to implement a Bayes bootstrap using the authors’ original

code and data. In no case do we statistically reject the equality of the two SK distances.

5.2 Approximate the Total Variation Distance

We take the default report to be c0(X)=N
(
θ̂,σ̂2

θ̂

)
, where θ̂ is the reported estimate of

the object of interest θ, and σ̂θ̂=
√
Varη̂(θ) is the bootstrap standard error. All of the

original articles in the census report a point estimate θ̂, and 10 out of 14 report a bootstrap

standard error. The remaining 4 out of 14 articles report a bootstrap confidence interval.

To better capture such situations, and because of other known limitations of the bootstrap

standard error (e.g., Hahn and Liao 2021), Appendix Figure 2 shows results where we take

the variance of the default normal to match the difference between the 97.5th and 2.5th

percentiles of η̂ rather than the standard deviation of η̂.

16Our classification treats block bootstraps as nonparametric, and asymptotic bootstraps (which assume
that some statistics are exactly Gaussian) as parametric. In all but 1 of the papers in the census, the
authors’ bootstrap procedure implicitly treats the data as i.i.d. across some observed units.
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For each object of interest, we calculate the SK distance SK(c0(X),η̂) between the

default report and the bootstrap distribution. Figure 2 shows the CDF of SK(c0(X),η̂)

across the objects of interest in our census. The figure shows that the distance between

c0(X) and η̂ varies substantially across the objects of interest in our census.

To illustrate, Figure 3 shows a series of p-p plots comparing the bootstrap distribution η̂

to the default report c0(X). Each plot reports the maximum positive and negative vertical

distance between the CDF of the bootstrap replicates and of the default report. The sum

of these distances is SK(c0(X),η̂). For each paper in our census, we depict two p-p plots,

corresponding to the objects with the smallest and largest SK(c0(X),η̂) among the objects

of interest in the paper. The figure shows that SK(c0(X),η̂) can differ meaningfully even

across objects of interest reported in the same paper.

The SK distance is an approximation to the TV distance. The approximation is

exact when the densities for the two measures cross at most twice, which implies that

the difference in CDFs changes direction at most twice. Appendix Table 2 shows that

this hypothesis is statistically consistent with the distribution of the replicates in all but

1 of the 81 of the objects of interest in our census. As an additional sensitivity analysis,

Appendix Figure 3 shows the CDF of TV (c0(X),η̃) across the objects of interest in our

census, where η̃ is a smoothed distribution of bootstrap replicates.

5.3 Improve the Report

When SK(c0(X),η̂) is small, we recommend that researchers report c0(X) and SK(c0(X),η̂).

When SK(c0(X),η̂) is large, researchers can alternatively report the mean and variance

of the SK-distance-minimizing normal report, i.e., the distribution c∗(X) that solves (2)

for S the set of univariate normal distributions. Figure 2 compares the distributions of

SK(c∗(X),η̂) and SK(c0(X),η̂) across the objects of interest in our census. The share of

objects with SK distance greater than 0.1 falls from 72 to 10 percent when we replace the

default normal report c0(X) with the distance-minimizing normal report c∗(X). In the

remaining situations in which SK(c∗(X),η̂) is nontrivial, we recommend that researchers

report a richer summary than c∗(X), such as the CDF of the bootstrap replicates.

To illustrate, Figure 4 shows a series of plots comparing the CDFs of c0(X), c∗(X), and

η̂ across objects of interest in our census. Each row corresponds to a paper and focuses on
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the object of interest with the greatest value of SK(c0(X),η̂) among objects in that paper.

The first column compares the distribution η̂ of the bootstrap replicates to the distribution

c0(X) of the default normal report. The second column compares the distribution η̂ of the

bootstrap replicates to the distribution c∗(X) of the distance-minimizing normal report.

Subjectively, we view c∗(X) as a much better fit to the distribution of the replicates than

is c0(X), especially in cases where SK(c0(X),η̂) is large.

The distributions implied by c∗(X) and c0(X) often differ to a degree that seems

economically meaningful. To illustrate, Figure 5 reports, across all objects of interest,

the CDFs of the ratio of means Ec∗(X)[θ]/
∣∣Ec0(X)[θ]

∣∣ and the ratio of standard deviations√
Varc∗(X)(θ)/Varc0(X)(θ) between the distance-minimizing and default normal reports. In

33 percent of cases, the mean of the distance-minimizing normal report is more than 1.1

times or less than 0.9 times as large as the point estimate θ̂. In 42 percent of cases, the

standard deviation of the distance-minimizing normal report is more than 1.1 times or less

than 0.9 times as large as the bootstrap standard error σ̂θ̂.

Following Section 2.3, the interpretation of the report depends on the reference prior.

Appendix Figure 4 shows the result of sampling from the reference prior and Bayes

bootstrap posterior for a subset of the papers in our census.

5.4 Comparison to Bias-Corrected Confidence Intervals

Prior work in the frequentist tradition recommends reporting richer bootstrap information

than the standard error. For example, Hall (1992, Appendix III) suggests reporting

“confidence pictures” that consist of smoothed densities of the bootstrap replicates. A long

tradition (e.g., Efron 1982b, Hahn and Liao 2021) advocates reporting confidence intervals

based on percentile and other methods.

Our approach relates to these in recommending alternative reports to the bootstrap

standard error, but differs in neither targeting nor achieving frequentist coverage. To

illustrate the distinction, Appendix Figure 5 reproduces the plots in Figure 4, overlaying (in

the left column of plots) the 95% bias-corrected bootstrap confidence interval (Efron 1982b),

which is the default form of bootstrap confidence interval in Stata (2022), as well as (in the

right column of plots) the 95% credible interval based on the improved normal report c∗(X).

In some cases, particularly those in which the bootstrap distribution is skewed, or is centered
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away from the reported point estimate, the bias-corrected confidence interval contains a fairly

small share of the bootstrap replicates.17 Such cases highlight a contrast between the goal of

correct frequentist coverage and the goal of communicating the distribution of the replicates.

Appendix: Proofs

Proof of Proposition 1 By Bayes rule, π (θ|X) ∝ π (X|θ)π (θ) . Note, however, that
π (X|θ) =

∫
P (X)dπ (P |θ) , so Assumption 1 implies that π (X|θ) = π∗ (X|θ) for all

π ∈Π(ρ,π∗) and all X ∈X . Hence, π(θ|X)∝ π∗(X|θ)π(θ)∝ π∗(θ|X)π(θ)/π∗(θ), from

which the conclusion follows. □

We next state and prove three lemmas which we will use to prove Theorem 1.

Lemma 1. Under Assumption 1, for any π∈Π(ρ,π∗), any c :X→S(π∗), and any X∈X ,

TV (π̂(θ|c(X)),π(θ|X))≤(2ρ)TV (c(X),π∗(θ|X)).

Proof of Lemma 1 Let µ denote a dominating measure for {π(θ):π∈Π(ρ,π∗)}. For a
given π∈Π(ρ,π∗), define rπ(θ)=π(θ)/π

∗(θ) as the Radon-Nikodym derivative of π(θ) with

respect to π∗(θ), and note that by Assumption 1, supθ,θ′∈Θrπ(θ)/rπ(θ
′)≤ρ. By Assumption

1, the definition of π̂, and Bayes rule, respectively, we have that

π̂(θ|X)=
rπ(θ)c(θ|X)∫

rπ(θ′)c(θ′|X)dµ(θ′)
,π(θ|X)=

rπ(θ)π
∗(θ|X)∫

rπ(θ′)π∗(θ′|X)dµ(θ′)
.

Hence,

TV (π̂(θ|X),π(θ|X))=
1

2

∫ ∣∣∣∣ rπ(θ)c(θ|X)∫
rπ(θ′)c(θ′|X)dµ(θ′)

− rπ(θ)π
∗(θ|X)∫

rπ(θ′)π∗(θ′|X)dµ(θ′)

∣∣∣∣dµ(θ)≤
1

2

∫
rπ(θ)∫

rπ(θ′)c(θ′|X)dµ(θ′)
|c(θ|X)−π∗(θ|X)|dµ(θ)+

1

2

∫ ∣∣∣∣ 1∫
rπ(θ′)c(θ′|X)dµ(θ′)

− 1∫
rπ(θ′)π∗(θ′|X)dµ(θ′)

∣∣∣∣rπ(θ)π∗(θ|X)dµ(θ).

17The bias-corrected bootstrap confidence interval contains fewer than 80 percent of the bootstrap
replicates for 10 percent of the objects of interest in the census. By contrast, a 95 percent centered
credible interval based on the distance-minimizing normal report c∗(X) never contains fewer than 80
percent of the bootstrap replicates.
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Note that
∫
c(θ|X)dµ(θ)=1 by definition, so rπ(θ)∫

rπ(θ′)c(θ′|X)dµ(θ′)
≤ρ for all θ. This implies that

1

2

∫
rπ(θ)∫

rπ(θ′)c(θ′|X)dµ(θ′)
|c(θ|X)−π∗(θ|X)|dµ(θ)≤ρ·TV (c(X),π∗(θ|X)).

Note, further, that

1

2

∫ ∣∣∣∣ 1∫
rπ(θ′)c(θ′|X)dµ(θ′)

− 1∫
rπ(θ′)π∗(θ′|X)dµ(θ′)

∣∣∣∣rπ(θ)π∗(θ|X)dµ(θ)=

1

2

∣∣∣∣ 1∫
rπ(θ′)c(θ′|X)dµ(θ′)

− 1∫
rπ(θ′)π∗(θ′|X)dµ(θ′)

∣∣∣∣∫ rπ(θ)π∗(θ|X)dµ(θ)=

1

2

∣∣∣∣ ∫ rπ(θ)π∗(θ|X)dµ(θ)∫
rπ(θ′)c(θ′|X)dµ(θ′)

−1

∣∣∣∣≤ 1

2

∫
rπ(θ)∫

rπ(θ′)c(θ′|X)dµ(θ′)
|π∗(θ|X)−c(θ′|X)|dµ(θ)≤

ρ·TV (c(X),π∗(θ|X)),

where we have again used that rπ(θ)∫
rπ(θ′)c(θ′|X)dµ(θ′)

≤ρ for all θ. □

Lemma 2. For any agent (L,π)∈L×Π(ρ,π∗), any c :X →S(π∗), any X∈X , any κ>0,

and any d̂∈D such that

Eπ̂(θ|c(X))

[
L
(
d̂,θ
)]

≤ inf
d∈D

Eπ̂(θ|c(X))[L(d,θ)]+κ,

we have that

R
(
d̂;X,L,π

)
≤(2λ)TV (π̂(θ|c(X)),π(θ|X))+κ.

Proof of Lemma 2 The definition of total variation distance implies that

sup
f:Θ→[0,λ]

{
Eπ(θ|X)[f(θ)]−Eπ̂(θ|c(X))[f(θ)]

}
=λ·TV (π̂(θ|c(X)),π(θ|X)).

Therefore for any d∈D we have that

Eπ(θ|X)[L(d,θ)]≤Eπ̂(θ|c(X))[L(d,θ)]+λ·TV (π̂(θ|c(X)),π(θ|X)).

It follows that, for any κ∗>0 and d∗∈D such that

Eπ(θ|c(X))[L(d
∗,θ)]≤ inf

d∈D
Eπ(θ|c(X))[L(d,θ)]+κ

∗,
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we must have

Eπ(θ|X)

[
L
(
d̂,θ
)]

−Eπ(θ|X)[L(d
∗,θ)]≤

Eπ̂(θ|c(X))

[
L
(
d̂,θ
)]

−Eπ̂(θ|c(X))[L(d
∗,θ)]+(2λ)TV (π̂(θ|c(X)),π(θ|X)).

Now, by the definition of d∗,

Eπ(θ|X)

[
L
(
d̂,θ
)]

−Eπ(θ|X)[L(d
∗,θ)]≥R

(
d̂;X,L,π

)
−κ∗,

while by the definition of d̂,

Eπ̂(θ|c(X))

[
L
(
d̂,θ
)]

−Eπ̂(θ|c(X))[L(d
∗,θ)]≤κ.

Since we can set κ∗ arbitrarily close we zero, we thus have that

R
(
d̂;X,L,π

)
≤(2λ)TV (π̂(θ|c(X)),π(θ|X))+κ,

as we aimed to show. □

Lemma 3. Under Assumption 1, for any agent (L,π)∈L×Π(ρ,π∗), any c :X →S(π∗),
any X∈X , any κ>0, and any d̂∈D such that

Eπ̂(θ|c(X))

[
L
(
d̂,θ
)]

≤ inf
d∈D

Eπ̂(θ|c(X))[L(d,θ)]+κ,

we have

R
(
d̂;X,L,π

)
≤(4ρλ)TV (c(X),π∗(θ|X))+κ.

Proof of Lemma 3 The result is immediate from Lemmas 1 and 2. □

Proof of Theorem 1 The result is immediate from Lemma 3, noting that if

d̂=dπ̂(θ|c(X))∈argmin
d∈D

Eπ̂(θ|c(X))[L(d,θ)|c(X)]

then we can take κ=0. □

Proof of Corollary 1 In the case where argmind∈DEπ̂(θ|c(X))[L(d,θ)] is non-empty, the

result follows from Theorem 1 and the law of iterated expectations. Here we instead prove
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the result using Lemma 3, which does not require the existence of an optimal decision.

Specifically, note that by the law of iterated expectations,

R(c;L,π)=Eπ

[
inf
d∈D

Eπ(θ|c(X))[R(d;X,L,π)]

]
≤Eπ[R(δ(c(X));X,L,π)]

for all functions δ :S(π∗)→D. Note, however, that for any κ>0 we can choose δ such that

Eπ̂(θ|c(X))[L(δ(c(X)),θ)]≤ inf
d∈D

Eπ̂(θ|c(X))[L(d,θ)]+κ

for all X. For such a choice of δ, however, Lemma 3 implies

Eπ[R(δ(c(X));X,L,π)]≤(4ρλ)Eπ[TV (c(X),π∗(θ|X))]+κ.

Since we can take κ arbitrarily close to zero, the result is immediate. □

Proof of Proposition 2 By Pinsker’s inequality,

TV
(
π∗(P0|X),πB0 (P0|X)

)
≤
√

1

2
KL(πB0 (P0|X),π∗(P0|X)).

As discussed in Section 3.2, π∗(P0|X)=DP
(
(1+α)n, α

n+α
Pω
n +

n
n+α

Pn
)
while πB0 (P0|X)=

DP (n,Pn), so the problem reduces to that of bounding the KL divergence between a

DP(n,Pn) and aDP
(
(1+α)n, α

n+α
Pω
n +

n
n+α

Pn
)
. Since both base measures are discrete and

supported on {X1,...,Xn}, this is simply the KL divergence between the finite-dimensional

Dirichlet distributions Dir(β) and Dir
(
β̃
)
, for βi=1 for all i and β̃i=αωi+1. Using the

form of the Dirichlet density, however,

KL
(
Dir(β),Dir

(
β̃
))

=

log

(
Γ(n)

Γ((1+α)n)

)
+αn·ψ(n)+

n∑
i=1

(
log

(
Γ(αωi+1)

Γ(1)

)
−αωi·ψ(1)

)
,

where Γ and ψ denote the gamma and digamma functions, respectively. Since ψ(x)≡
∂
∂x
log(Γ(x)), however, the definition of the derivative implies that

lim
α→0

log
(

Γ(n)
Γ((1+α)n)

)
+αn·ψ(n)

α
=0 and lim

α→0

log
(

Γ(αωi+1)
Γ(1)

)
−αωi·ψ(1)

α
=0.
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Since the second equality holds for all ωi∈R, it is immediate that

lim
α→0

sup
ω∈∆{1,...,n}

KL
(
πB0 (P0|X),π∗(P0|X)

)
α

=0,

from which the result follows. □

Proof of Theorem 2 We again prove the stronger result that under Assumptions 1 and

2, for any π∗ with π∗(P0)=DP(αn,P
ω
n ), any agent (L,π)∈L×Π(ρ,π∗), any c :X→S(π∗),

any X∈X , and any d̂∈D such that

Eπ̂(θ|c(X))

[
L
(
d̂,θ
)]

≤ inf
d∈D

Eπ̂(θ|c(X))[L(d,θ)]+κ,

we have that

0≤R
(
d̂;X,L,π

)
≤(4ρλ)

(
TV
(
c(X),πB(θ|X)

)
+ζ(α,ω,n)

)
+κ.

To see this, note that for any such d̂, Lemma 3 implies that

R
(
d̂;X,L,π

)
≤(4λρ)TV (c(X),π∗(θ|X))+κ.

Since total variation distance is a metric, the triangle inequality implies that

TV (c(X),π∗(θ|X))≤TV
(
c(X),πB(θ|X)

)
+TV

(
πB(θ|X),π∗(θ|X)

)
,

from which the result is immediate using the definition of ζ(α,ω,n). □

Proof of Proposition 3 To show that SK is a metric, note first that SK is symmetric

and non-negative by construction, and that for any µ,ν,τ∈∆(R),

sup
t∈R

(Fµ(t)−Fν(t))+≤sup
t∈R

(Fµ(t)−Fτ(t))++sup
t∈R

(Fτ(t)−Fν(t))+,

so SK(µ,ν)≤SK(µ,τ)+SK(τ,ν), and SK satisfies the triangle inequality. Finally, note

that SK(µ,ν)=0 if and only if Fµ(t)=Fν(t) for all t.

To show that SK is a lower bound on TV, observe that for any µ,ν∈∆(R),

SK(µ,ν)= sup
tL,tR∈R

∣∣∣∣Prµ (t∈ [tL,tR])−Pr
ν
(t∈ [tL,tR])

∣∣∣∣≤TV (µ,ν)
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where the inequality follows from the definition of TV .

To show that SK and TV agree for continuous distributions µ and ν whose densities

cross at most twice, note first that if the distributions are identical then SK and TV coincide

trivially, so suppose the distributions are not identical. It follows that their densities must

cross at least once, so suppose without loss of generality that the density of µ is initially above

that of ν. First consider the case where the densities cross exactly once. Then there exists

t∗∈R such that µ(A)−ν(A)≥0 for allA⊆(−∞,t∗] while µ(A)−ν(A)≤0 for allA⊆ [t∗,∞).

Note that in this case, we have by construction that Fµ(t)−Fν(t)≥0 for all t. Consequently,

TV (µ,ν)=µ((−∞,t∗])−ν((−∞,t∗])=SK(µ,ν).

Next consider the case where the densities cross exactly twice. In this case there exist

t∗L,t
∗
U ∈R such that µ(A)−ν(A)≥0 for all A⊆(−∞,t∗L]∪[t∗U ,∞) while µ(A)−ν(A)≤0 for

all A⊆ [t∗L,t
∗
U ]. Note that in this case, Fµ(t)−Fν(t) is weakly increasing for t≤t∗L, weakly

decreasing for t∈ [t∗L,t
∗
U ], and again weakly increasing for t≥t∗U . Consequently,

SK(µ,ν)=(Fµ(t
∗
L)−Fν(t∗L))+(Fν(t

∗
U)−Fµ(t∗U))=

ν([t∗L,t
∗
U ])−µ([t∗L,t∗U ])=TV (µ,ν),

so SK(µ,ν)=TV (µ,ν), as desired. □
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Figure 2: Distribution of Signed Kolmogorov Distance to Normal Report
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Notes: The plot is a weighted empirical CDF. The unit of analysis is an object of interest and,
for each paper, we weight each object of interest by the inverse of the number of objects of
interest associated with the paper. For each object of interest we calculate the signed Kolmogorov
distance between the distribution of bootstrap replicates and the default normal report, whose
mean is given by the point estimate and whose standard deviation is given by the bootstrap
standard error. We also calculate the signed Kolmogorov distance between the distribution of
the bootstrap replicates and the closest normal report, whose mean and standard deviation are
chosen to minimize the signed Kolmogorov distance. The plot shows the weighted empirical CDF
of each of these two distances across the objects of interest in our census.
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Figure 3: Comparison of Bootstrap Distribution to Default Normal Report
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Figure 3 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report
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Figure 3 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report
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Figure 3 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report

Paper Object with...

least SK distance greatest SK distance
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Figure 3 (cont’d): Comparison of Bootstrap Distribution to Default Normal Report

Paper Object with...

least SK distance greatest SK distance
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Notes: Each row corresponds to a paper in our bootstrap census. Each plot is a p-p plot comparing

the distribution of the bootstrap replicates to the distribution of the default normal report whose

mean is given by the point estimate and whose standard deviation is given by the bootstrap stan-

dard error. The shaded region is a uniform confidence band designed to contain the empirical CDF

of the bootstrap replicates with probability at least 0.95 whenever the true bootstrap distribution

is given by the default normal report. Each plot legend reports the maximum positive and negative

vertical distances between the two distributions. Each row includes two plots, one for the object of

interest with the smallest sum of maximum positive and negative distances (“least SK distance”)

and one for the object of interest with the largest sum of distances (“greatest SK distance”).

Rows (papers) are in descending order according to their greatest signed Kolmogorov distance.
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Figure 4: Alternative Normal Reports

Paper Comparing bootstrap distribution to...
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Figure 4 (continued): Alternative Normal Reports

Paper Comparing bootstrap distribution to...

default normal report distance-minimizing normal report
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Figure 4 (continued): Alternative Normal Reports

Paper Comparing bootstrap distribution to...

default normal report distance-minimizing normal report
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Figure 4 (continued): Alternative Normal Reports

Paper Comparing bootstrap distribution to...

default normal report distance-minimizing normal report
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Figure 4 (continued): Alternative Normal Reports

Paper Comparing bootstrap distribution to...

default normal report distance-minimizing normal report

13

3 4 5 6 7 8
Value of object of interest

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Normal dist.
Bootstrap dist.

Num. reps. = 499
Normal µ = 5.091
Normal  = 1.000

3 4 5 6 7 8
Value of object of interest

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Normal dist.
Bootstrap dist.

Num. reps. = 499
Normal µ = 5.113
Normal  = 0.877

14

1 2 3 4 5 6
Value of object of interest

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Normal dist.
Bootstrap dist.

Num. reps. = 1000
Normal µ = 3.817
Normal  = 1.000

1 2 3 4 5 6
Value of object of interest

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
Normal dist.
Bootstrap dist.

Num. reps. = 1000
Normal µ = 3.658
Normal  = 0.933

Notes: Each row corresponds to a paper in our bootstrap census and focuses on the object of

interest with the greatest signed Kolmogorov distance as defined in Figure 3. The first column

compares the empirical CDF of the bootstrap replicates to the CDF of the default normal

report, whose mean is given by the point estimate and whose standard deviation is given

by the bootstrap standard error. The second column compares the empirical CDF of the

bootstrap replicates to the CDF of the distance-minimizing normal report, whose mean and

standard deviation are chosen to minimize the signed Kolmogorov distance. Each plot legend

reports the number of replicates and the mean and standard deviation of the normal. All

values are normalized by dividing by the standard deviation of the bootstrap replicates. Rows

(papers) are in descending order according to their greatest signed Kolmogorov distance.
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Figure 5: Distance-Minimizing Normal Reports

Panel A: Ratio of mean of distance-minimizing Panel B: Ratio of SD of distance-minimizing
normal report to point estimate normal report to bootstrap standard error
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Notes: Each plot is a weighted empirical CDF. The unit of analysis is an object of interest and, for each paper, we weight each object
of interest by the inverse of the number of objects of interest associated with the paper. For each object of interest we calculate the
distance-minimizing normal report, whose mean and standard deviation are chosen to minimize the signed Kolmogorov distance to the
distribution of the bootstrap replicates. Panel A shows the weighted empirical CDF of the ratio of the mean of the distance-minimizing
normal report to the point estimate. Panel B shows the weighted empirical CDF of the ratio of the standard deviation of the distance-
minimizing normal report to the bootstrap standard error.
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“Bootstrap Diagnostics for Irregular Estimators”

Isaiah Andrews, MIT and NBER1

Jesse M. Shapiro, Harvard University and NBER

A Approximation Properties of Reference Priors

Proposition 4. If X0 is a Polish space and P0 has support X0, then for any Q0∈∆(X0)

and almost every sequence of draws {X1,X2,...} from P0 there exists a sequence of weights

ωn such that Pωn
n →dQ0 as n→∞.

Proof of Proposition 4 Observe, first, that the sequence {X1,X2,...} is dense in X0 with

probability one. To see that this is the case, note that since X0 is Polish it is also a metric

space for some metric m0, and has countable dense subset {x1,x2,...}. For any ε>0 and

k∈N, note that for Bε(xk) the ε-ball around xk, Bε(xk)={x∈X0 :m0(xk,x)<ε}, since P0

has support X0 we must have PrP0{Xi∈Bε(xk)}>0. For K∈N let AK be the event that

the sequence {X1,X2,...} intersects Bε(xk) for all k∈{1,...,K}, i.e.,

AK={|{k∈{1,...,K} :{X1,X2,...}∩Bε(xk)≠∅}|=K}.

For P∞
0 =×∞

i=1P0, note that PrP∞
0
{AK}=1 for all K. Moreover, for any finite collection

{K1,...,KM}⊂N with K1<...<KM ,

PrP∞
0
{AK1∩AK2...∩AKM

}=PrP∞
0
{AKM

}=1,

so the events AK are mutually independent. Since
∑∞

K=1PrP∞
0
{AK}=∞ the second

Borel-Cantelli Lemma (see, e.g., Theorem 4.4 in Billingsley 1995) implies that

PrP∞
0
{{X1,X2,...}∩Bε(xk)≠∅ for all k∈N}=1.

Since m0 is a metric, it follows that

PrP∞
0
{{X1,X2,...}∩B2ε(x)≠∅ for all x∈X0}=1.

1E-mail: iandrews@mit.edu, jesse shapiro@fas.harvard.edu.
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Since we can repeat this argument for all ε>0, it follows that {X1,X2,...} is dense in X0

almost surely.

Let us next fix a draw of {X1,X2,...} which is dense in X0. Theorem A.3 of Ghosal

and van der Vaart (2017) implies that the set of weighted empirical measures

P={Pω
n :n∈N,ω∈∆({1,...,n})}

is dense in ∆(X0) in the weak topology. Since the sets

Pn={Pω
ñ :ñ∈{1,...,n},ω∈∆({1,...,ñ})}

are increasing in n and ∪∞
n=1Pn =P, it follows that for any Q0 ∈∆(X0) there exists a

sequence of weights {ωn}∞n=1 with P
ωn
n ∈Pn for all n such that Pωn

n →dQ0, as we aimed

to show. □

B Interpretation of the Limiting Marginal Prior

Here we discuss the interpretation of the limiting value of the marginal prior on the

parameter θ as the informativeness α of the reference prior tends to zero. We assume that

the target parameter of interest is well behaved when evaluated on weighted empirical

distributions where the weights approach a degenerate limit.

Assumption 3. For any permutation φ :{1,...,n}→{1,...,n}, any sequence ωs∈∆({1,...,n})
with ωs,i>0 and lims→∞ωs,i+1/ωs,i=0 for all i, and Pφ,ω

n,s =
∑

nδXi
ωs,φ(i), we have that

lim
s→∞

θ
(
Pφ,ω
n,s

)
= θ̄
(
Xφ(1),Xφ(2),...,Xφ(n)

)
for some limit θ̄(·).

To simplify discussion, we further assume, without loss of generality, that Xi≠Xj for all

i≠j.2 Assumption 3 holds for a wide range of target parameters.

Example. (Functions of a Mean) Suppose that θ(P0)=χ(EP0[ϱ(Xi)]) for known functions

χ and ϱ, where χ(·) is continuous at ϱ(Xi) for i∈{1,...,n}. In this case, it is immediate

that Assumption 3 holds for θ̄(x1,x2,...,xn)=χ(ϱ(x1)). This example includes cases such

2If this is not the case, we can simply drop observation j and add its weight ωj to the weight for
observation i.
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as minimum distance estimators where the target moments can be expressed as averages

of separable functions of the observations.

Under Assumption 3, the limiting marginal prior as α→0 takes a simple form.

Theorem 3. Under Assumptions 2 and 3, as α→ 0 the marginal reference prior π∗(θ)

converges weakly to π∞∈∆(Θ) where

π∞(θ)=
∑
φ∈Φ

p(φ,ω)1
{
θ̄
(
Xφ(1),Xφ(2),...,Xφ(n)

)
=θ
}

for Φ the set of permutations φ :{1,...,n}→{1,...,n} and

p(φ,ω)=
n∏
i=1

ωφ(i)
1−
∑

j<1ωφ(j)

the probability of drawing the sequence
(
Xφ(1),Xφ(2),...,Xφ(n)

)
when sampling (X1,...,Xn)

without replacement using weights (ω1,...,ωn).

Proof of Theorem 3 The stick-breaking representation of Dirichlet processes (see e.g.

Theorem 4.12 of Ghosal and van der Vaart 2017) implies that we can write draws from

the prior π∗(P0) as

P0=
∞∑
k=1

Vk(α)δX̃k

where δX̃k
is a Dirac mass at X̃k, the random variables X̃k are drawn i.i.d. from Pω

n , and

Vk(α) =
(
1−U

1
α
k

)∏k−1
i=1 U

1
α
i where the random variables Ui are i.i.d. standard uniform.

Note that Pr{Uj∈(0,1) for all j}=1, and that conditional on this event Vk(α)∈(0,1) for

all k and all α>0, while Vk+1(α)/Vk(α)→0 as α→0.

Let φ(1)∈{1,...,n} be the index for the observation in the original data withXφ(1)=X̃1.

For j∈{2,...,n}, let k(j) be the smallest k such that X̃k is distinct from
{
Xφ(1),...,Xφ(j−1)

}
,

and let Xφ(j)=X̃k(j). We can equivalently write

P0=P
φ,W(α)
n =

n∑
i=1

δXφ(i)
Wi(α), Wi(α)=

∞∑
k=1

Vk(α)1
{
X̃k=Xφ(i)

}
.

By construction P0∈∆({X1,...,Xn}), and Wi(α)∈(0,1) with probability one for all α>0.

3



Moreover, as α→0 we see that Wi+1(α)/Wi(α)→0 for all i, so

lim
α→0

θ
(
Pφ,W(α)
n

)
= θ̄
(
Xφ(1),Xφ(2),...,Xφ(n)

)
by Assumption 3. The form of p(φ,ω) is then immediate from the definition of φ. □

Example. (Functions of a Mean) In the case where θ(P0)=χ(EP0[ϱ(Xi)]) and ω=
(
1
n
,..., 1

n

)
,

the limiting marginal prior π∞(θ) corresponds to a draw from the empirical distribution

of χ(ϱ(Xi)). This prior is uninformative in several respects. For example, when χ(·) is
the identity function, Proposition 4.3 of Ghosal and van der Vaart (2017) implies that the

limit of the prior variance is simply the sample variance,

lim
α→0

Varπ∗(θ(P0))=VarPn(ϱ(Xi)),

while the limit of the posterior variance is far smaller in large samples,

lim
α→0

Varπ∗(θ|X)(θ(P0))=
1

n+1
VarPn(ϱ(Xi)).

C Equivalence of Bootstraps Under the SK Metric

This section provides sufficient conditions for two bootstraps, A and B, to coincide in SK

distance as n→∞. To emphasize the flexibility of the asymptotic setting, we here make

explicit that the data-generating process P0,n∈∆(X0) may depend on the sample size.

Our analysis assumes that the estimator θ̂ can be approximated by continuous functions

of objects which converge in distribution.

Assumption 4. The parameter space Θ is a subset of R and the estimator θ̂ can be written

as θ̂= an+bnθn

(
β̂n

)
for an and bn non-random sequences of scalars, θn a sequence of

functions, and β̂n=βn(Pn) a sequence of statistics with population analogues β0,n=βn(P0,n).

Moreover, for BLK the set of Lipschitz functions with supremum norm and Lipschitz

constant both bounded by K,

(a) As n→∞, we have that β̂n−β0,n→Zβ∼Qβ∈∆(Z) for Z a normed vector space

and Zβ a random variable such that ∥Zβ∥ is continuously distributed.
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(b) For all ϵ > 0, there exists a constant K (ϵ) ∈ [0,∞), a sequence of functions

θn,ϵ∈BLK(ϵ), and an open set Zϵ such that for cϵ the 1−ϵ quantile of ∥Zβ∥,

limsup
n→∞

sup
z∈Z\Zϵ

1{|θn(z+β0,n)−θn,ϵ(z)|>0}=0 and sup
z∈Z:∥z∥≤cϵ

PrQβ
{Zβ+z∈Zϵ}≤ϵ.

Assumption 4(a) states that the estimator can be represented as a function (or functional)

of a statistic that converges in distribution, where we do not restrict the dimension of β

beyond requiring convergence in distribution.3 Assumption 4(b) requires that the estimator

θ̂ be sufficiently continuous in β̂n, but is weaker than assuming continuity or differentiability

of θn, and does not in general imply normality of θ̂.4

For instance, if θ is the maximum of two means, θ(P0,n)=max
{
EP0,n[Xi,1],EP0,n[Xi,2]

}
where (Xi,1,Xi,2) are bounded, Assumption 4 holds if we take β̂n=βn(Pn)=

√
nFPn to be

the scaled empirical distribution function and β0,n=βn(P0,n)=
√
nFP0,n to be the scaled

distribution function of P0,n, even though θn(·) is non-differentiable and θ̂ need not be

asymptotically normal in this case. Similarly, if θ corresponds to a ratio of regression

coefficients, θ(P0,n) = β1(P0,n)/β2(P0,n), Assumption 4 holds under minimal conditions

when we take β̂n =
√
n(β(Pn)) and β0,n =

√
nβ(P0,n) for β(Pn) = (β1(Pn),β2(Pn)) and

β(P0.n)=(β1(P0,n),β2(P0,n)) the sample and population regression coefficients, respectively.

In this case θn(·) is discontinuous, and θ̂ again need not be asymptotically normal.

We further assume that both bootstraps consistently recover the asymptotic distribution

of β̂n and deliver an asymptotically continuous distribution for θ̂.

Assumption 5. For a bootstrap with distribution η(X) and other objects as defined in

Assumption 4, we have the following.

(a)

sup
h∈BL1

{
Eηβ(X)

[
h
(
β−β̂n

)]
−EQβ

[
h
(
β̂n−β0,n

)]}
→p0. (3)

3In cases where Z is infinite-dimensional and β̂n need not be measurable for finite n, the statements
below can be adapted by replacing the ordinary expectation E and convergence in probability →p by
the upper expectation E∗ and convergence in outer probability →p∗ respectively (see Chapter 1 of van der
Vaart and Wellner 1996).

4Assumption 4(b) is implied by local Lipschitz conditions such as those considered by Kitagawa et al.
(2020).
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(b) For Bε,n(θ)=
{
θ̃ :
∣∣∣θ̃−θ∣∣∣<ε/bn},

lim
ε→0

limsup
n→∞

E

[
sup
θ∈R

ηθ(Bε,n(θ)|X)

]
=0.

Assumption 5(a) states a sense in which the bootstrap consistently recovers the asymptotic

distribution of the statistics β̂n. Importantly, Assumption 5(a) does not require that the

bootstrap consistently recovers the asymptotic distribution of the estimator θ̂, or even that

such a distribution exists. Assumption 5(b) states a sense in which the bootstrap implies

an asymptotically continuous distribution for θ̂. Again, this continuous distribution need

not coincide with a true sampling distribution for θ̂, so Assumption 5(b) allows for cases

where the bootstrap need not be consistent, such as the examples discussed above.

If Assumption 4 holds for the estimator θ̂ and Assumption 5 holds for two bootstraps

A and B, then the distributions over θ̂ implied by the two bootstraps A and B are

asymptotically equivalent in SK.

Proposition 5. If Assumption 4 holds for θ̂ and Assumption 5 holds for bootstraps A and

B with distributions ηA(X) and ηB(X), then

SK
(
ηAθ (X),ηBθ (X)

)
→p0.

Proof of Proposition 5 Let β̂∗,A
n and β̂∗,B

n denote independent draws from the bootstrap

distributions ηAβ (X) and ηBβ (X), respectively. By the triangle inequality, Assumption 5(a)

implies that

sup
h∈BL1

{
EηAβ (X)

[
h
(
β−β̂n

)]
−EηBβ (X)

[
h
(
β−β̂n

)]}
=

sup
h∈BL1

{
E
[
h
(
β̂∗,A
n −β̂n

)
|X
]
−E
[
h
(
β̂∗,B
n −β̂n

)
|X
]}

→p0.

To prove Proposition 5, we first show that the bootstrap distributions for θ̂∗,An =θn

(
β̂∗,A
n

)
and θ̂∗,Bn =θn

(
β̂∗,B
n

)
are equivalent in bounded Lipschitz metric,

sup
h∈BL1

∣∣∣E[h(θ̂∗,An )|X]−E
[
h
(
θ̂∗,An

)
|X
]∣∣∣→p0. (4)
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To establish the equivalence (4), note that

sup
h∈BL1

∣∣∣E[h(θ̂∗,An )|X]−E
[
h
(
θ̂∗,Bn

)
|X
]∣∣∣=

sup
h∈BL1

∣∣∣E[h(θ̃n(β̂∗,A
n −β0,n

))
|X
]
−E
[
h
(
θ̃n

(
β̂∗,B
n −β0,n

))
|X
]∣∣∣

for θ̃n(β)=θn(β+β0,n). Note, next, that for n sufficiently large,{
(z1,z2)∈Z2 : θ̃n(z1+z2)≠θn,ϵ(z1+z2)

}
⊆{(z1,z2):∥z2∥≥cϵ}∪Cϵ

Cϵ=({(z1,z2):∥z2∥<cϵ}∩{(z1,z2):z1+z2∈Zϵ})

where Cϵ is open. We can write β̂∗,A
n −β0,n= β̂∗,A

n −β̂n+β̂n−β0,n, where Assumptions 5(a)

and 4(a) imply that (
β̂∗,A
n −β̂n
β̂n−β0,n

)
→d

(
Z∗
β

Zβ

)
, Z∗

β,Zβ
i.i.d.∼ Fβ. (5)

Hence,

limsup
n→∞

PrP0,n

{
θ̃n

(
β̂∗,A
n −β0,n

)
≠θn,ε

(
β̂∗,A
n −β0,n

)}
≤

limsup
n→∞

PrP0,n

{∥∥∥β̂n−β0,n∥∥∥≥cϵ}+limsup
n→∞

PrP0,n

{(
β̂∗,A
n −β̂n,β̂n−β0,n

)
∈Cϵ
}
.

Note, however, that

limsup
n→∞

PrP0,n

{∥∥∥β̂n−β0,n∥∥∥≥cϵ}≤ϵ, limsup
n→∞

PrP0,n

{(
β̂∗,A
n −β̂n,β̂n−β0,n

)
∈Cϵ
}
≤ϵ,

where the first inequality follows from (5) and the fact that ∥Zβ∥ is continuously distributed,

while the second follows from Assumption 4(a), the joint convergence (5), the Portmanteau

Lemma (Lemma 2.2 of van der Vaart 1998), and the fact that Cε is open. We thus have that

limsup
n→∞

E

[
sup
h∈BL1

∣∣∣E[h(θ̃n(β̂∗,A
n −β0,n

))
−h
(
θn,ϵ

(
β̂∗,A
n −β0,n

))
|X
]∣∣∣]≤2ϵ,

so since the same also holds for β̂∗,B
n ,

limsup
n→∞

E

[
sup
h∈BL1

∣∣∣E[h(θn(β̂∗,A
n

))
|X
]
−E
[
h
(
θn

(
β̂∗,B
n

))
|X
]∣∣∣]≤
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limsup
n→∞

E

[
sup
h∈BL1

∣∣∣E[h(θn,ϵ(β̂∗,A
n −β0,n

))
|X
]
−E
[
h
(
θn,ϵ

(
β̂∗,B
n −β0,n

))
|X
]∣∣∣]+4ϵ≤

limsup
n→∞

E

[
sup

h∈BLK(ϵ)

∣∣∣E[h(β̂∗,A
n

)
|X
]
−E
[
h
(
β̂∗,B
n

)
|X
]∣∣∣]+4ϵ,

where we have used the fact that a composition of a function BLK(ϵ) with one in BL1 is

necessarily in BLK(ϵ) (where we assume without loss of generality that K(ϵ)≥1). However,

sup
h∈BLK(ϵ)

∣∣∣E[h(β̂∗,A
n

)
|X
]
−E
[
h
(
β̂∗,B
n

)
|X
]∣∣∣=K(ϵ)· sup

h∈BL1

∣∣∣E[h(β̂∗,A
n

)
|X
]
−E
[
h
(
β̂∗,B
n

)
|X
]∣∣∣,

so Assumption 5(a) implies that

limsup
n→∞

E

[
sup
h∈BL1

∣∣∣E[h(θ̂∗,An )|X]−E
[
h
(
θ̂∗,Bn

)
|X
]∣∣∣]≤4ϵ.

Since we can repeat this argument for all ϵ>0, we have verified (4).

It remains to translate convergence of
(
θ̂∗,An ,θ̂∗,Bn

)
in bounded Lipschitz metric to

convergence of
(
ηAθ (X),ηBθ (X)

)
in SK metric. Let ηAθn(X) denote the distribution of θ̂∗,An ,

and note that since SK is unchanged by linear reparameterization, SK
(
ηAθ (X),ηBθ (X)

)
=

SK
(
ηAθn(X),ηBθn(X)

)
. Recall next that FηAθn(X)

(
θ̃
)
=EηAθn(X)

[
1
{
θ≤ θ̃

}]
, and note that for

any υ∈(0,1) and each θ̃∈R, there exists a function hυ∈BL1 such that hυ(θ)=υ·1
{
θ≤ θ̃

}
for all θ∉

(
θ̃−υ,θ̃

)
. Hence, for all υ∈(0,1)

sup
θ̃

∣∣∣FηAθn(X)

(
θ̃
)
−FηBθn(X)

(
θ̃
)∣∣∣≤

υ−1· sup
h∈BL1

∣∣∣EηAθn(X)[h(θ)]−EηBθn(X)[h(θ)]
∣∣∣+

sup
θ̃

(
EηAθn(X)

[
1
{
θ∈
(
θ̃−υ,θ̃

)}]
+EηBθn(X)

[
1
{
θ∈
(
θ̃−υ,θ̃

)}])
.

Thus, we have that for all υ∈(0,1),

limsup
n→∞

E

[
sup
θ̃

∣∣∣FηAθn(X)

(
θ̃
)
−FηBθn(X)

(
θ̃
)∣∣∣]≤
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υ−1·limsup
n→∞

E

[
sup
h∈BL1

∣∣∣EηAθn(X)[h(θ)]−EηBθn(X)[h(θ)]
∣∣∣]+

limsup
n→∞

E

[
sup
θ∈R

ηAθ (Bυ,n(θ)|X)

]
+limsup

n→∞
E

[
sup
θ∈R

ηBθ (Bυ,n(θ)|X)

]
.

However, we have already established that the first term goes to zero for all υ∈(0,1), while

the second and third terms go to zero as υ→0 by Assumption 5(b). Hence, ηAθn(X) and

ηBθn(X) converge in Kolmogorov metric. Since SK is bounded by twice the Kolmogorov

distance

SK
(
ηAθ (X),ηBθ (X)

)
≤2sup

θ̃

∣∣∣FηAθ (X)

(
θ̃
)
−FηBθ (X)

(
θ̃
)∣∣∣,

the conclusion of the proposition follows immediately. □

D Additional Findings from Bootstrap Census
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Appendix Table 1: List of Papers in Bootstrap Census

Citation
Objects Transmitted?

Abebe, Girum; Caria, A. Stefano; and Ortiz-Ospina, Esteban. Code for: “The Selection of Talent:
Experimental and Structural Evidence from Ethiopia.” https://doi.org/10.1257/aer.20190586.

7 N

Adermon, Adrian; Lindahl, Mikael; and Palme, M̊arten. Code for: “Dynastic Human Capital, Inequality,
and Intergenerational Mobility.” https://doi.org/10.1257/aer.20190553.

2 Y

Bailey, Martha J.; Sun, Shuqiao; and Timpe, Brenden. Code for: “Prep School for Poor Kids: The
Long-Run Impacts of Head Start on Human Capital and Economic Self-Sufficiency.”
https://doi.org/10.1257/aer.20181801.

6 Y

Bourreau, Marc; Sun, Yutec; and Verboven, Frank. Code for: “Market Entry, Fighting Brands, and Tacit
Collusion: Evidence from the French Mobile Telecommunications Market.”
https://doi.org/10.1257/aer.20190540.

20 Y

Braguinsky, Serguey; Ohyama, Atsushi; Okazaki, Tetsuji; and Syverson, Chad. Code for: “Product
Innovation, Product Diversification, and Firm Growth: Evidence from Japan’s Early Industrialization.”
https://doi.org/10.1257/aer.20201656.

2 N

Dinerstein, Michael; and Smith, Troy D. Code for: “Quantifying the Supply Response of Private Schools to
Public Policies.” https://doi.org/10.1257/aer.20151723.

1 N

Finkelstein, Amy; Gentzkow, Matthew; and Williams, Heidi. Code for: “Place-Based Drivers of Mortality:
Evidence from Migration.” https://doi.org/10.1257/aer.20190825.

3 Y

Goodman-Bacon, Andrew. Code for: “The Long-Run Effects of Childhood Insurance Coverage: Medicaid
Implementation, Adult Health, and Labor Market Outcomes.” https://doi.org/10.1257/aer.20171671.

2 Y
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Appendix Table 1 (continued): List of Papers in Bootstrap Census

Citation
Objects Transmitted?

Känzig, Diego R.. Code for: “The Macroeconomic Effects of Oil Supply News: Evidence from OPEC
Announcements.” https://doi.org/10.1257/aer.20190964.

6 N

Køstol, Andreas R.; and Myhre, Andreas S. Code for: “Labor Supply Responses to Learning the Tax and
Benefit Schedule.” https://doi.org/10.1257/aer.20201877.

5 Y

Mueller, Andreas I.; Spinnewijn, Johannes; and Topa, Giorgio. Code for: “Job Seekers’ Perceptions and
Employment Prospects: Heterogeneity, Duration Dependence, and Bias.”
https://doi.org/10.1257/aer.20190808.

3 N

Reimers, Imke; and Waldfogel, Joel. Code for: “Digitization and Pre-Purchase Information: The Causal and
Welfare Impacts of Reviews and Crowd Ratings.” https://doi.org/10.1257/aer.20200153.

7 N

Seibold, Arthur. Code for: “Reference Points for Retirement Behavior: Evidence from German Pension
Discontinuities.” https://doi.org/10.1257/aer.20191136.

4 Y

Weaver, Jeffrey. Code for: “Jobs for Sale: Corruption and Misallocation in Hiring.”
https://doi.org/10.1257/aer.20201062.

13 Y

Notes: For each paper in our bootstrap census, the table reports an abbreviated citation for the code and data, the number of objects of
interest for which we obtain replicates, and an indicator for whether or not we received a transmission of bootstrap replicates directly from

the authors. Papers are in ascending alphabetical order by the first author’s last name. In each case the publisher is “Nashville, TN:
American Economic Association,” the distributor is “Ann Arbor, MI: Inter-university Consortium for Political and Social Research,” and the

publication year is 2021.
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Appendix Table 2: Testing the Tightness of the SK Bound

Panel A: Minimum
number of crossings

Panel B: Illustration of algorithm

Crossings Num. objects
0 37
1 34
2 9
3 1

25 20 15 10 5 0
Value of object of interest

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Di
ffe

re
nc

e 
in

 C
DF

s
Num. crossings = 2

Optimal path
Confidence band

Notes: Panel A shows the minimum number of crossings between the density of the bootstrap distribution and the density of the default
normal report that is statistically consistent with the authors’ replicates. We compute the minimum number of crossings consistent with
the replicates by finding the path through a 95% uniform (DKW) confidence band on the difference in CDFs between the bootstrap
distribution and the default normal distribution that changes direction the least number of times. Panel B illustrates the algorithm used
to determine this path. The algorithm traverses either the least increasing or greatest decreasing path through the uniform confidence
band, changing direction only when necessary to stay within the band. The illustration is drawn for the object of interest with the largest
signed Kolmogorov distance between the bootstrap replicates and the default normal report, with the values of replicates normalized by
dividing by their standard deviation.
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Appendix Figure 1: Signed Kolmogorov Distance, Nonparametric vs. Bayes Bootstrap
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Notes: The plot is a scatterplot. The unit of analysis is an object of interest, with the area of each
point inversely proportional to the total number of objects of interest in the same paper as the
given object. We include objects of interest for which we were able to compute a Bayes bootstrap
by adapting the authors’ original bootstrap code. The y-axis reports the signed Kolmogorov
distance between the distribution of a set of nonparametric bootstrap replicates and the default
normal report, whose mean is given by the point estimate and whose standard deviation is given
by the bootstrap standard error. The x-axis reports the signed Kolmogorov distance between
the distribution of a set of Bayes bootstrap replicates and the default normal report. In both
cases, the number of replicates is equal to the number used in the authors’ original bootstrap.
For all objects of interest, the displayed 45-degree line passes through a rectangle formed as the
Cartesian product of a 95% confidence interval for the signed Kolmogorov distance between
the nonparametric bootstrap distribution and the default normal report, and a 95% confidence
interval for the signed Kolmogorov distance between the Bayes bootstrap distribution and the
default normal report, where these confidence intervals are constructed based on 95% uniform
(DKW) bands for the bootstrap distributions.

13



Appendix Figure 2: Distribution of Signed Kolmogorov Distance to Normal Report, Using
Quantiles
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Notes: The plot is a weighted empirical CDF. The unit of analysis is an object of interest and,
for each paper, we weight each object of interest by the inverse of the number of objects of
interest associated with the paper. For each object of interest we calculate the signed Kolmogorov
distance between the distribution of bootstrap replicates and the quantile normal report, whose
mean is given by the point estimate and whose standard deviation is taken to match the difference
between the 97.5th and 2.5th quantiles of the empirical distribution of the replicates. We also
calculate the signed Kolmogorov distance between the distribution of the bootstrap replicates
and the closest normal report, whose mean and standard deviation are chosen to minimize SK
distance. The plot shows the weighted empirical CDF of each of these two distances across the
objects of interest in our census.
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Appendix Figure 3: Distribution of Total Variation Distance to Default Normal Report
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Notes: The plot is a weighted empirical CDF. The unit of analysis is an object of interest and, for
each paper, we weight each object of interest by the inverse of the number of objects of interest
associated with the paper. For each object of interest we estimate the total variation distance
between the bootstrap distribution and the default normal report, whose mean is given by the
point estimate and whose standard deviation is given by the bootstrap standard error. The plot
shows the weighted empirical CDF of this distance across the objects of interest in our census.
To estimate the total variation distance, we smooth the empirical distribution of the J bootstrap
replicates using a kernel density smoother with Gaussian kernel. To choose the bandwidth of the
kernel, we take J draws from the default normal report, smooth the draws using a kernel density
smoother with Gaussian kernel, and choose the smoother’s bandwidth to minimize the total
variation distance between the smoothed distribution of the J draws from the default normal
report and the exact distribution of the default normal report. We then take the total variation
distance between the smoothed distribution of the bootstrap replicates and the exact distribution
of the default normal report, subtracting the total variation distance between the smoothed
normal draws and the exact distribution of the default normal report as a bias correction.
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Appendix Figure 4: Illustration of the Class of Reference Priors

Paper Least SK distance Greatest SK distance
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Notes: Each row corresponds to an article in our bootstrap census for which it is possible to

compute a Bayes bootstrap by modifying the authors’ original bootstrap code. Each plot shows

draws from the Dirichlet process distribution DP(αn,Pn) for several values of α in powers of

2, where α=1 corresponds to the Bayes bootstrap distribution and α→0 corresponds to the

limiting prior whose posterior is the Bayes bootstrap distribution. The number of draws is

given by the number of bootstrap replicates in the authors’ original bootstrap procedure. Each

row includes two plots, corresponding to the two objects in Figure 3, with rows following the

order in Figure 3. All values are normalized by dividing by the bootstrap standard error. Draws

more than 10 bootstrap standard errors away from the mean are excluded from the plots.
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Appendix Figure 5: Illustration of Bootstrap Confidence Interval
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Appendix Figure 5 (continued): Illustration of Bootstrap Confidence Interval
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Appendix Figure 5 (continued): Illustration of Bootstrap Confidence Interval
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Appendix Figure 5 (continued): Illustration of Bootstrap Confidence Interval
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Appendix Figure 5 (continued): Illustration of Bootstrap Confidence Interval
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Notes: Each row corresponds to an article in our bootstrap census and focuses on the object of

interest with the greatest signed Kolmogorov distance as defined in Figure 3. The first column

compares the empirical CDF of the bootstrap replicates to the CDF of the default normal

report, whose mean is given by the point estimate and whose standard deviation is given by the

bootstrap standard error. In the first column, the vertical dashed lines depict the endpoints of a

bias-corrected 95% confidence interval (CI). The second column compares the empirical CDF of

the bootstrap replicates to the CDF of the distance-minimizing normal report, whose mean and

standard deviation are chosen to minimize the signed Kolmogorov distance to the distribution

of the bootstrap replicates. In the second column, the vertical dashed lines depict the endpoints

of a centered 95% credible interval based on the distance-minimizing normal report. Each plot

legend reports the number of replicates and the mean and standard deviation of the normal.

All values are normalized by dividing by the standard deviation of the bootstrap replicates.

Rows (papers) are in descending order according to their greatest signed Kolmogorov distance.
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