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ABSTRACT

For the last half-century, it has been a common and accepted practice for statistical agencies, including 
the United States Census Bureau, to adopt different strategies to protect the confidentiality of aggregate 
tabular data products from those used to protect the individual records contained in publicly released 
microdata products. This strategy was premised on the assumption that the aggregation used to generate 
tabular data products made the resulting statistics inherently less disclosive than the microdata from 
which they were tabulated. Consistent with this common assumption, the 2010 Census of Population 
and Housing in the U.S. used different disclosure limitation rules for its tabular and microdata publications. 
This paper demonstrates that, in the context of disclosure limitation for the 2010 Census, the assumption 
that tabular data are inherently less disclosive than their underlying microdata is fundamentally flawed. 
The 2010 Census published more than 150 billion aggregate statistics in 180 table sets. Most of these 
tables were published at the most detailed geographic level—individual census blocks, which can 
have populations as small as one person. Using only 34 of the published table sets, we reconstructed 
microdata records including five variables (census block, sex, age, race, and ethnicity) from the confidential 
2010 Census person records. Using only published data, an attacker using our methods can verify that 
all records in 70% of all census blocks (97 million people) are perfectly reconstructed. We further 
confirm, through reidentification studies, that an attacker can, within census blocks with perfect reconstruction 
accuracy, correctly infer the actual census response on race and ethnicity for 3.4 million vulnerable 
population uniques (persons with race and ethnicity different from the modal person on the census 
block) with 95% accuracy. Having shown the vulnerabilities inherent to the disclosure limitation methods 
used for the 2010 Census, we proceed to demonstrate that the more robust disclosure limitation framework 
used for the 2020 Census publications defends against attacks that are based on reconstruction. Finally, 
we show that available alternatives to the 2020 Census Disclosure Avoidance System would either 
fail to protect confidentiality, or would overly degrade the statistics’ utility for the primary statutory 
use case: redrawing the boundaries of all of the nation’s legislative and voting districts in compliance 
with the 1965 Voting Rights Act. You are reading the full technical report. For the summary paper 
see https://doi.org/10.1162/99608f92.4a1ebf70.
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1. Introduction

Data products from the U.S. Decennial Census of Population and Housing are widely
used for policy, research, and community planning including the allocation of approximately
$2.8 trillion in federal spending to state and local governments, nonprofits, businesses, and
households (Villa Ross, 2023). In order to support these data uses, tens of billions of
statistics are published, predominantly at the most granular level of geographic detail—the
census block, a primitive geographic unit with precisely defined geographical boundaries.
In 2010, the U.S. was subdivided into 11,078,297 mutually exclusive census blocks that
tessellated the country; of these 6,207,027 had positive populations ranging from one person
to more than 1,000 persons (see Section 6.2 for detailed statistics). With so many statistics
published at such a fine geographic detail, an important question arises: “How accurately
can a data user reconstruct the underlying confidential record-level data from the published
tables?”

Highly accurate reconstructions of the confidential record-level responses are potential
confidentiality breaches because record-level data is easy for external parties to examine for
rare or unique records. Thus, record-level data may permit direct, reliable reidentification of
census responses, which statutes specifically prohibit the Census Bureau from enabling (see
Section 2.2). In addition, many census respondents, if they worry that their confidentiality
may be breached, may have meaningful concerns about providing their data. For example,
age, sex, race, and ethnicity data about children are often missing in commercial databases
(collected and maintained by private companies) due to legal restrictions motivated by the
sensitivity of information about children, but the U.S. census collects such data on children
and publishes statistical summaries at large scale.

Working against record-level accuracy are the confidentiality protections used in census
publications. For the 1990, 2000 and 2010 Censuses, aggregation, age coarsening, noise
infusion via targeted geographic identifier swapping, and, in 2010 for group quarters only,
partially synthetic data were used as the statistical disclosure limitation (SDL) framework
to protect confidentiality (McKenna, 2018). We study the extent to which these SDL
procedures limited the accuracy of reconstructed microdata and impeded reidentification.
Hence, the related research question is: “To what extent did data aggregation and record
swapping limit the accuracy of reconstruction?”

We reconstruct the underlying person-level records (called microdata) for the features
(characteristics or variables) labeled census block, sex, age, race, and ethnicity using only a
small subset of publicly released tables. We match these reconstructed records to a lower-
quality commercial database acquired during the conduct of the 2010 Census containing
personal identifiers and to a high-quality personal identifier database constructed from an
extract of the 2010 Census data themselves. Our unique contributions to this literature
are:

• the first demonstration supported by a national statistical agency that the recon-
struction predicted by Dinur and Nissim (2003) is feasible at scale using its flagship
publication (see Sections 6.2 and 7);
• the complete empirical demonstration that separate, incompatible, confidentiality

protection frameworks for tabular and microdata publications fail if the tabular
data are too detailed (see Section 8);
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• the first mathematical proof requiring no access to confidential data that a large,
identifiable subset of reconstructed records are identical to their corresponding con-
fidential records for the specific variables we study (see Sections 4.5 and 6.1);
• the first mathematical proof of an upper bound on the percentage of reconstructed

records that can differ on no more than a single feature value from their confidential
image on the stated feature set for all feasible reconstructions (see Sections 4 and
6.1);
• the empirical demonstration that neither aggregation nor collapsing age into a

binned-age schema with narrow bins (single year of age from 0 to 21, then 2-5 year
age bins up to 85+) prevent high-precision reidentification of census respondents
from tabular data (see Section 7);
• the first empirical demonstration that reconstructed microdata succeed in reidenti-

fying vulnerable individuals (those with characteristics that differ from the modal
person—the person with the most commonly occurring characteristics—in the rele-
vant universe) with precision rates much higher than statistical baselines and com-
parable to the precision rates achieved using the confidential data themselves (vul-
nerable populations are based on racial and ethnic minorities in this work, but they
could be other sensitive characteristics like occupancy-code violations, tribal iden-
tities, or same sex partners using other 2010 Census publications) (see Sections 7.1
and 7.3);
• the first research team to place the entire reconstruction workflow in the public

domain, permitting others, including other statistical agencies, to assess the risk
in the many similar products published by other data stewards (see replication
archive), the agencies responsible for decisions about data curation and publication;
• strong demonstration that the differential privacy framework used for the 2020 Cen-

sus in its May 25, 2023 release defends against this attack at the parameter values
used to produce the 2020 Census Demographic and Housing Characteristics File–
—successor to the 2010 Census Summary File 1 (the main release of demographic
tables in the 2010 Census, especially those with very granular age detail), although
there may be attacks not yet discovered to which its algorithms remain vulnerable
(see Section 9).

This paper also shows how the potential choices for the 2020 Census Disclosure Avoidance
System—suppression, enhanced swapping, and differential privacy—addressed the risks ex-
posed by our reconstruction and reidentification studies. We included sufficient detail so
that readers could review all data needed to judge this for themselves, including empirical
results that demonstrate the extreme difficulty of guarding against reconstruction-abetted
attacks by increasing the swap rate or applying traditional suppression rules. To carefully
assess the extent of confidentiality violations, the data steward—the entity responsible for
maintaining, safeguarding, and publishing summaries of the collected data—must have a
workable definition of “vulnerable populations.” To prevent the extraction and nonstatis-
tical use of personal information statistical agencies must periodically analyze their SDL
methods because nonstatistical actors, and especially malicious actors, do not publicly ad-
vertise their plans or methods.

This article provides provides a workable definition of “vulnerable populations” by in-
troducing leave-one-out analysis, and uses this concept to assess the effectiveness of the
SDL methods used in the 2010 Census in preventing nonstatistical inferences based on



A Simulated Reconstruction and Reidentification Attack on the 2010 U.S. Census: Full Technical Report 5

the published data, in the context of what we call a reconstruction-abetted reidentifica-
tion attack. Given a specific attack or set of attacks, the data steward must show that
a comprehensive framework designed to protect all vulnerable populations actually works.
We first show that the 2010 Census disclosure avoidance system was insufficient to stop the
reconstruction-abetted reidentification attack from achieving many egregious confidentiality
violations. The risk posed by this attack motivated adoption of a differential privacy frame-
work in the 2020 Census. We therefore also show that this differential privacy framework
succeeds in defending against the reconstruction-abetted reidentification attack. We also
show that other choices—specifically, the suppression system used in the 1980 Census, and
enhanced versions of the swapping systems used in the 1990, 2000, and 2010 Censuses—do
not.

To carry out the reconstruction-abetted reidentification attack on the 2010 Census, we
first attempt to reconstruct the underlying microdata for the features of census block,
sex, age, race, and ethnicity from publicly released tables. We then attempt to match those
reconstructed records to (a) records in lower-quality commercial databases purchased during
the conduct of the 2010 Census with person and address identifiers (representing attackers
with the same quality contemporaneously available information in 2010) and (b) records
containing a limited subset of variables from the 2010 Census itself (person identifier, census
block, sex and age; representing attackers with higher-quality contemporaneous external
information). We used shared variables, called “key variables” in (Duncan et al., 2011, p.
20) or “quasi-identifiers” in (Garfinkel et al., 2023, p. 49), to determine how accurately we
could link records and then infer the race and ethnicity of the persons in (a) the commercial
records and (b) the quasi-identifier-only version of the 2010 Census records.

We compare the results in several scenarios against baseline attackers who predicted using
either (a) the most common race and ethnicity pair in the block (modal prediction from
public tables) or (b) the race and ethnicity pair proportional to the distribution of block-level
race by ethnicity combinations (proportional prediction from public tables). In all cases, we
assess the prediction accuracy using the full set of 2010 Census variables (person identifier,
census block, sex, age, race, and ethnicity). For census block, sex, race, and ethnicity we
always used the same schema. For age, we considered two different schemas: the block-
level table schema (38 narrow age categories) and the tract-level schema (111 exact age
categories).1 We note that, in all cases, the attack file does not contain race and ethnicity
information, while the reconstructed microdata does not contain person identifiers, so that
linking the two files enables the attacker to infer the race and ethnicity of each person to
whom a reconstructed record is linked.

The 2020 Census Disclosure Avoidance System (DAS) adopted to guard against recon-
struction-abetted reidentification attacks (among others) took six years to develop. The
portion that produced the data comparable to the 2010 Census tables studied in this paper
was finalized in November 2022. Experimentation with alternatives to the 2010 Census
SDL framework began in 2016. The decision in 2018 to use a differentially private frame-
work for the DAS was based exclusively on reconstruction results available at that time
(Abowd, 2018); however, continuous research confirmed that reconstruction risk does im-
ply confidentiality-violating reidentification risk.

1For the person identifier, we used the same vintage of the Census Bureau’s production record-linkage
system to replace the reported name and address with internal identifiers routinely used for person and
household record linkage.
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Our contributions are timely because traditional disclosure limitation experts continue
to dispute the efficacy of reconstruction-based attacks (Muralidhar, 2022; Muralidhar &
Domingo-Ferrer, 2023) using incomplete formulations of the problem, and domain experts
continue to assert that the methods are no better than guessing (Francis, 2022; Ruggles
& Van Riper, 2022) or ineffective (Kenny et al., 2021; Ruggles, 2024). Many of these
critiques are addressed directly in Jarmin et al. (2023) and Garfinkel (2023). However, the
analysis of how to properly assess the disclosure risk associated with publishing massive
tabulations from a single confidential input continues to focus on methods with the same
flaws that our experimental attack exploits (Hotz et al., 2022). Every major textbook or
review article on SDL (Duncan et al., 2011; Elliot & Domingo-Ferrer, 2018; Hundepool
et al., 2012; Willenborg & de Waal, 2000) recommends using distinct methods for tabular
and microdata publications. However, the format of the data publication is immaterial
because, as we show in this paper, tabulations can be converted into microdata, and an
attacker can, using only publicly available information, derive high-quality bounds on how
closely the microdata created in this way resembles the microdata used to calculate the
tabulations. The use of weaker SDL standards for tabulations as compared to microdata
is precisely the flaw that our attack exploits and the recommendation that our research
challenges.

Section 2 elaborates the legal, ethical, and statistical confidentiality requirements that
the Census Bureau’s disclosure avoidance frameworks are meant to implement. Section 3
lays out the complete schematic workflow of our research, describes all input data sources,
and provides a reference table that shows the feature sets (characteristics or variables) of
every input and output dataset used in this research. Section 4 lays out the reconstruction
methodology. Section 5 describes the matching and reidentification methodology. Section 6
assesses the solution variability of our reconstructed microdata and demonstrates the strong
agreement of our reconstructed microdata with the confidential data. Section 7 assesses the
reidentification risk of the reconstructed microdata focusing on the accuracy of inferences
for vulnerable populations—those whose characteristics differ from the modal person in the
relevant universe, and especially those who are unique on sex and binned age, within their
census block. Section 8 demonstrates that the SDL used for the 2010 Census did not meet
the Census Bureau’s stated standards for that census. Section 9 demonstrates that the
differentially private framework used for the 2020 Census successfully addresses the failures
of the methods used in 2010. Section 10 concludes.

2. Legal, Ethical and Statistical Confidentiality Requirements

2.1. Defining and diagnosing confidentiality violation in 2010 SDL methods.
Data from the 2010 Census were published and made available to the public in two primary
forms: tabulations (low-dimensional statistical summary statistics, like “Number of people
residing in California who are White alone, male, and 26 years old”) and microdata (in
a “public-use microdata sample”; individual-level census 51 responses released as part of
a “public-use microdata sample). Both tabular summaries and microdata were based on
the same Hundred-Percent Detail File (HDF)—microdata created by applying record-level
swapping to the collected, edited, and imputed microdata—but the disclosure requirements
specified by the Census Bureau in 2010 for tabular and microdata releases were very dif-
ferent. It is fundamentally important to address the confidentiality breaches arising from
this inconsistency in the SDL methods that were used for past U.S. decennial censuses.
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For the 1990, 2000, and 2010 Censuses, the primary SDL framework was household-level
record swapping (McKenna, 2018). After disclosure avoidance based primarily on record
swapping was implemented, there were separate, additional requirements for confidentiality
protection of tabular summaries (McKenna, 2018) and microdata (McKenna, 2019a). To
see the inconsistency most clearly, we quote from the technical documentation of the 2010
Census data products.

For tabular summaries, the Census Bureau required:
“Disclosure avoidance is the process of disguising data to protect confidentiality. A dis-

closure of data occurs when someone can use published statistical information to identify
an individual who provided information under a pledge of confidentiality. Using disclo-
sure avoidance, the Census Bureau modifies or removes all of the characteristics that put
confidential information at risk for disclosure. Although it may appear that a table shows
information about a specific individual, the Census Bureau has taken steps (such as data
swapping) to disguise the original data while making sure the results are useful. ...

Data swapping is a method of disclosure avoidance designed to protect confidentiality in
tables of frequency data (the number or percentage of the population with certain char-
acteristics). Data swapping is done by editing the source data or exchanging records for
a sample of cases. A sample of households is selected and matched on a set of selected
key variables with households in neighboring geographic areas (geographic areas with a
small population) that have similar characteristics (same number of adults, same number
of children, etc.). Because the swap often occurs within a geographic area with a small
population, there is no effect on the marginal totals for the geographic area with a small
population or for totals that include data from multiple geographic areas with small pop-
ulations. Because of data swapping, users should not assume that tables with cells having
a value of one or two reveal information about specific individuals.” (U.S. Census Bureau
(2012, p. 7-6, emphasis added))

For public-use microdata samples, the Census Bureau required:
“Each microdata file is a 10-percent systematic sample of the full census population. ...

Using disclosure avoidance, the Census Bureau modifies or removes all of the characteristics
that put confidential information at risk for disclosure. Although it may appear that a table
shows information about a specific individual, the Census Bureau has taken steps to disguise
the original data while making sure the results are useful. The Census Bureau’s internal
Disclosure Review Board monitors the disclosure review process and sets the confidentiality
rules for all data releases. The main disclosure avoidance method used is to limit the
geographic detail shown in the files. A geographic area must have a minimum population of
100,000 to be fully identified. A minimum threshold of 10,000 for the national population
(excluding Puerto Rico) was set for identification of groups within categorical variables in
the state-level PUMS files. Confidentiality is protected, in part, by the use of the following
processes: data-swapping, synthetic data, top-coding of selected variables, age perturbation
for large households, and reduced detail on some categorical variables.” (U.S. Census Bureau
(2015, pp. 2-1 and 2-2, emphasis added))

For tabular summaries, publications used the universe of records (no sampling), cre-
ated tables down to the census block level, and used detailed schemas for demographic
variables. Tabular summaries in the 2010 Census imposed no minimum population or
household counts on any tables in the main release—the 2010 Summary File 1 (SF1) (U.S.
Census Bureau, 2012). In contrast, the public-use microdata sample required sampling,
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minimum population in a geographic area of at least 100,000 persons, and minimum na-
tional population in one-way marginals for demographic variables of at least 10,000 persons
(McKenna, 2019a). These requirements are inconsistent if the published tabular data can
be used to reconstruct an accurate image of the underlying confidential microdata record
that includes a geographic identifier with no minimum population, has a record for every
person in the census, and includes demographic information for groups with national popu-
lations as small as one. We prove that such reconstruction is feasible, and that an attacker
can verify the correctness of the reconstruction without access to any confidential data (see
Section 4). We further show that 97 million confidential records can be reconstructed with
perfect block-level accuracy (see Section 6.2).

If an accurate reconstruction of the record-level data is possible from tabular summaries,
then the rules adopted for the 2010 Census disclosure avoidance, noted in the paragraphs
above, would require that the same disclosure avoidance procedures applied to the 2010
PUMS also be applied to the 2020 tabular summaries. These include sampling to introduce
deliberate sampling error, the suppression of most census block-level data even if the afore-
mentioned 100,000 population threshold were significantly relaxed, and the suppression or
aggregation of many race and ethnicity categories even if the population threshold of 10,000
were significantly relaxed. Thus, consistent application of the technology used in the 2010
Census to the 2020 Census data would have resulted in substantial data loss compared to
modern methods based on the differential privacy framework.

Furthermore, if an accurate reconstruction of the record-level data is possible from the
tabular summaries, it makes the published 2010 Census data susceptible to a reconstruction-
abetted reidentification attack in which an attacker reconstructs all or parts of the record-
level confidential database from the publicly available information and combines these re-
constructed records with an external source of person-level or household-level data con-
taining personal identifiers, thus potentially reidentifying the respondent or another person
in the household and learning response data associated with that person. This is a tradi-
tional attack vector that has been recognized by statistical agencies (Harris-Kojetin et al.,
2005; McKenna, 2019b), the National Institute for Standards and Technology (Garfinkel
et al., 2023), and general researchers (Dick et al., 2023; Rocher et al., 2019). When there
is sufficient detail in the reconstructed records and there are enough common variables
in the reconstructed and external microdata, the attacker may infer previously unknown
person or household-level attributes from the reconstructed database with high accuracy,
thus associating these characteristics with the individuals or households in their external
dataset. Using census data to learn specific responses supplied by identifiable individuals
is a prohibited, nonstatistical use as defined in the controlling statutes.2 It is the obliga-
tion of statistical agencies to prevent or impede such uses. We show how to perform these
reidentification attacks (see Section 5), and demonstrate that the resulting reidentifications
are far more accurate than statistical baselines, confirming that the reidentifications are
prohibited nonstatistical uses of the census data (see Section 7).

2Within the U.S., federal policy on statistical and nonstatistical uses is governed by Statistical Policy
Directive 1, now codified in the Confidential Information Protection and Statistical Efficiency Act of 2018
in 44 U.S. Code (2018, §§ 3561-4), in particular, the definitions in § 3561(8) of “nonstatistical purpose”
and § 3561(12) “statistical purpose.” For the Census Bureau such prohibited uses are also codified in The
Census Act of 1954 (as amended) in 13 U.S. Code (1954, §§ 8(b) & 9) (see Section 2.2).
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In order to understand what we mean by a prohibited, nonstatistical inference, we
must clearly define an allowable scientific, statistical, or generalizable inference. The most
straightforward way to do this is by using concepts from robust statistics, specifically leave-
one-out (LOO) estimation and inference (Wasserman, 2010). Inferences about personal
characteristics consist of associating an attribute measured in a survey or census with a
particular individual. When such inferences are based on estimators that exclude only the
individual under study, they are called LOO inferences. LOO inferences cannot be confiden-
tiality violations in our analysis because they cannot depend on the particular individual’s
confidential data—it was not used in the calculation. This connection between robust infer-
ence and privacy analysis was first noticed by Dwork and Lei (2009), where they explored
this idea while allowing for attackers to have arbitrary amounts of side information and use
arbitrarily sophisticated attacks. Here, we apply the same intuition to non-worst-case set-
tings in which attacker information is limited to specific known data sets, and the attacker
uses a specific realizable attack—the reconstruction-abetted reidentification attack—rather
than all possible attacks. LOO is a form of causal inference in the sense of Imbens and
Rubin (2015) that has also been applied to confidentiality protection in machine learning
(Ye et al., 2023). We acknowledge that this approach to defining inferences that are not
confidentiality-violating can be counterintuitive and may conflict with the common view
that any unwanted or harmful inference about a person based on a publication implies a
confidentiality breach. We agree that unwanted and harmful inference LOO inferences are
an important matter for policy consideration, but these inferences are neither “identifying”
nor confidentiality violating because the target person’s data were not used at all in the
publication. We view the selection of which generalizable inferences to permit as a policy
issue largely separate from the goal of disclosure avoidance systems and outside the scope
of this paper.

LOO inference is, by construction, generalizable scientific inference. Non-LOO inference
is a confidentiality violation if it is too precise. The difference in precision between LOO
inferences and inferences based on estimators that include the particular individual’s data
measures the extent to which the individual’s data caused the inference that associates the
feature value with the identifiable person. Therefore, when the difference in precision be-
tween the LOO inference and the non-LOO inference is large, there is a strong presumption
that the non-LOO inference is a confidentiality violation because the gain in precision from
the non-LOO inference is provably due only to the presence of data about the individual
under study in the estimator used to make the inference. Put directly, the analyst’s preci-
sion gain was caused (again, in the sense of Imbens and Rubin, 2015) by the use of data
supplied by that person. In this paper we evaluate the efficacy of our attack by focusing
on situations where the data strongly suggest that inferences based on the published 2010
Census data are much more precise than LOO inferences would be. In the language of
causal inference, the observed outcome is a statistic officially published from 2010 Census
data and the counterfactual outcome is an approximation of the same statistic published
after deleting that individual’s record from the input data, and large differences in inference
precision between these two statistics are confidentiality breaches.

We present an example here that foreshadows the results of our study. Suppose a user
of published census data wishes to learn the racial and ethnic makeup of each individual in
a small neighborhood, for example, a census block. The census block contains 20 persons:
12 non-Hispanic Whites, 5 non-Hispanic Blacks, 1 non-Hispanic Asian, 1 Hispanic White
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and 1 Hispanic Black. Suppose also that the user has other census block-level information
on age and sex sufficient to perform the reconstruction studied in this paper, and that
all individuals are 20-year-old males, except for the non-Hispanic White person, who is
a 21-year-old male. For each individual, the user might guess “non-Hispanic White” (the
modal value) or guess in proportion to the observed frequencies. Other forecast models are
feasible (e.g., guess each of the 126 possible race and ethnicity values used in the schema
for the 2010 Census with probability 1/126 or guess using a model that combines data at
different levels of geography), but this example can be adapted if such models are used. The
modal or proportional block-level forecast may be a statistical or generalizable inference,
which is permitted by the legislation and ethical standards governing statistical agencies.3

Now suppose the user independently knows the name, sex and age of each person in this
block. The same user takes published tables from the census and creates 20 records with
values of sex, age, race, and ethnicity that are consistent with the information in the block-
level tables (and possibly tract- and county-level tables containing this block). The user
then associates the race and ethnicity from these reconstructed census records with the 20
persons in the block by matching on sex and age. Now that user has name, sex, age, race,
and ethnicity for every person on the block, coded consistently with the schemas used in
the published tables.

One measure of the data user’s gain from the reconstructed microdata relative to having
only the race by ethnicity counts for the census block is the increased precision of the race
and ethnicity forecast for each person compared to the precision possible if no data for that
person were used in the published census results. Deleting the record of a non-Hispanic
White person has a relatively small effect on any of the three kinds of inference: the modal
race and ethnicity does not change, so the modal guesser makes the same prediction, the
proportional guesser has a slightly smaller chance of guessing non-Hispanic White, and the
reconstruction-abetted reidentification attack is slightly less likely to link any given 20-year-
old male auxiliary record to a non-Hispanic white reconstructed record. However, for the
sole 21-year-old male Hispanic White record, their inclusion or exclusion from the data set
is decisive: the modal guesser will still never get this person’s race and ethnicity right, and
the proportional guesser will move from a 1/20 probability of guessing Hispanic White to a
0 probability, but the reconstruction-abetted reidentification attack changes from correctly
inferring this person’s race and ethnicity with probability 1 to probability 0. Thus, even if
we conservatively think of the modal and proportional guessers as always making inferences
that are statistical or generalizable4, the reconstruction-abetted reidentification attack ex-
hibits a much larger change in inferential success than these two baseline attacks. It is this
much larger change, caused specifically by the presence or absence of the target person’s
record, that we regard as clear evidence of a non-generalizable, confidentiality-violating

3Formally, whether such an inference is statistical or nonstatistical depends on how much other data are
also released about the same individuals. As the rest of the example makes clear, the ensemble of published
data can enable nonstatistical inferences even in cases where the use of block-level race and ethnicity data
by themselves might not.

4Strictly speaking, an attacker should specify a single method of inference, not multiple; e.g., the attacker
could specify a rule for how they will use public information to determine whether to make a modal or
proportional guess, or to instead use the reconstruction-abetted reidentification inference. Here, we treat
the modal and proportional guessers as if the attacker can try all three methods of attack and keep the
one that works best, but this is not possible in practice. This is another sense in which our approach is
conservative.
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inference. These inferences can only be highly successful because they have isolated infor-
mation unique to a target person, so we further regard these as identifying in the sense of
Title 13, the statute governing Census Bureau’s confidentiality requirements, which specif-
ically prohibits the Census Bureau from enabling identification of respondents’ data (see
Section 2.2).

One might ask: “What’s the harm?” That’s a perfectly legitimate question, even if outside
the scope of the legal requirements governing the Census Bureau. One can see the harm
by considering two routine uses of census data: redistricting (the re-drawing of geographic
boundaries for legislative districts in each U.S. state) and local demographics. Experts in
both fields maintain databases that contain names, addresses, and some demographic data.
They routinely update these databases. Redistricting experts use voter registration lists
and purchase commercial data. Demographers use school district and commercial data.
Both groups have mission-valid reasons to improve the accuracy of those databases. Both
groups do this using their models and microdata-level conversions of published census tables
(Jarmin et al., 2023). When those census tables permit nonstatistical (non-LOO) inferences,
these users gain access to information about a specific person that is only possible because
that person responded to the census and that response was used in the tabulations. Even
though redistricters have legitimate interest in these data, a data steward who has made a
confidentiality pledge when collecting the data should not subsequently violate that pledge
by permitting uses that depend specifically on the response provided. Individuals have a
right to confidentiality that is reinforced by the same statute that ensures the confidentiality
of the response should the individual answer the census. That right extends to protecting
their responses from use by redistricters or school districts via confidentiality-violating
inferences. Such protection is the point of data confidentiality laws—they balance the
utility of published data against the potential for confidentiality breaches. A user might
want to know a characteristic more accurately than a statistical (LOO) inference permits,
but the data steward should not facilitate that learning by publishing data that permit
strong non-LOO inferences.

2.2. Why protections are required. Title 13 of the U.S. Code mandates that informa-
tion gathered from individuals and establishments remain confidential. Specifically, 13 U.S.
Code § 8(b) allows the Census Bureau to “furnish copies of tabulations and other statistical
materials which do not disclose the information reported by, or on behalf of, any particular
respondent,” and § 9 prohibits the release of “any publication whereby the data furnished
by any particular establishment or individual under this title can be identified.” First and
foremost, the Census Bureau is required to protect the confidentiality of respondents by
law. Additionally, it is in the best interest of data quality that the public trust the Census
Bureau to protect their data so that truthful responses are given, especially to sensitive
questions (Childs et al., 2019; Childs et al., 2012, 2015, 2020).

There is a common misconception that there is nothing sensitive in the decennial census
data. One of the reasons for this belief is that potentially harmful inferences are often
about how an individual differs from a reference population. Hence, people who belong to
demographic majorities in their area may have fewer or no concerns about confidentiality-
violating inferences. However, there are many situations in which individuals may feel
uncomfortable sharing their true data:
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• Age, sex, race, and ethnicity data about children are often missing in commercial
databases (collected and maintained by private companies) due to legal restrictions,
because information about children is generally considered more sensitive.
• Household composition may be a sensitive subject in some areas and the decision to

reveal this information in identifiable form should be up to the household and not
the Census Bureau according to the principles guiding statistical agencies (National
Academies of Sciences, Engineering, and Medicine, 2021, p. 3). This includes
the detailed (census block-level) location of same-sex spouses, unmarried partners,
mixed-race households, households with adopted children, older individuals living
alone, etc. Thus, to encourage accurate reporting, the Census Bureau should protect
the confidentiality of those responses.
• Individuals, especially those who are demographic minorities in their region, may

believe that commercial databases should not collect detailed information about
them without their consent. Race and ethnicity information are often missing or
inaccurate in commercial data but are much more accurate in census data because
they are mandatory self-report items on the questionnaire.
• Residents of rented properties in which the occupancy capacity is exceeded may

wish this information to be protected.
Another argument that some give against strong confidentiality protections for census

data is that there is so much personal information data “out there” that the census data does
not pose an incremental risk. While there are large amounts of data available externally,
the accuracy of this information is generally unknown. Our experiments demonstrate that
circa 2010 external data were indeed inaccurate, or at least very noisy, compared the the
decennial census data; however, circa 2020 external data are much more accurate (Brown
et al., 2023). Additionally, if a data steward adopts the policy that data they collect should
not be protected because it is already “out there,” then survey response rates would drop:
“why should I fill out the survey if my data is already out there, just use that and don’t
bother me?” But even when this position is accepted by a statistical agency, the relevant
confidentiality statutes still require that the census responses, including any generated from
external data, be protected. One might be able to learn respondent-specific information
collected on the census from other sources, but the census publications cannot facilitate
this learning (Statistics Canada, 2016).

2.3. Household data swapping in the 2010 Census. In the 2010 Census, the agency
used noise infusion via targeted data swapping as the primary SDL framework. Households
deemed at high risk for reidentification were swapped with a higher probability, but all
records that were not entirely imputed had some chance of being swapped (McKenna,
2018). High-risk households were those in low-population census blocks or those who had
a member with a unique race category in the census block. Pairs of swapped households
matched on two key demographic variables: the total number of persons and the number of
adults living in the household. Once swap pairs were determined, the geographic identifiers
were swapped, effectively exchanging the geographic location of the two households. The
swapped file was used to produce all tabular and microdata products. Data swapping, by
itself, is highly susceptible to attack (Kifer, 2015). For example, if the swap rate is 1%, then
each record has a 99% chance of being unaltered and hence an attacker linking to a record
can have high confidence that attributes learned from the record are correct. Furthermore,
external data can help identify swapped records and even undo data swaps. If household
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A, placed in a different census block in the swapped data than its census response, can be
linked to external data based on matching attributes that are not affected by the swap, but
does not match based on some of the attributes changed in the swap, then that household
was likely targeted for swapping. Furthermore, if household B in a nearby census block is
a better match on the attributes affected by swapping, then it is likely that A and B were
swapped with each other. For this reason, swapping is often paired with aggregation in an
attempt to further thwart attackers. Note that our reconstruction-abetted reidentification
attack only attempts to undo the aggregation and does not take the further step of undoing
the swapping protections.

2.4. Related work. Reconstruction and reidentification attacks have been studied both
theoretically and practically. Dinur and Nissim (2003) demonstrated conditions under which
a database could be reconstructed even when only perturbed queries were reported. Dwork
et al. (2017) provided an overview of reidentification and reconstruction attacks. Notable
reconstruction and reidentification attacks include reidentification of individuals in a homi-
cide database by making comparisons with public social security data (Ochoa et al., 2002),
reidentification of patients in de-identified pharmaceutical marketing data using publicly
available hospital discharge and ambulatory claims data and voting list data (Sweeney,
2011), an attack against official foreign-trade statistics released in Brazil that reidentified
companies performing import transactions (Favato et al., 2022), a genomics data recon-
struction attack (Ayoz et al., 2021), and reidentification of individuals in census microdata
publications with very high precision (Rocher et al., 2019). Dick et al. (2023) demonstrated
a simulation-based reconstruction attack on census data with a very high success rate in
identifying population uniques. There are many more examples in Garfinkel (2015) and
Garfinkel et al. (2023).

The present work differs significantly from the approaches of (Rocher et al., 2019) and
Dick et al. (2023). Rocher et al. (2019) were primarily concerned with estimating popula-
tion uniqueness given sample uniqueness, while we work with a census, where there is no
sampling variability. Dick et al. (2023) investigated a gradient-descent-based approach to
reconstruction, while our approach is based on techniques for mixed-integer linear program-
ming. Neither Rocher et al. (2019) nor Dick et al. (2023) directly evaluated the success of
reidentification in a decennial census, and neither presented a bound on how different two
possible reconstructions could be from one another, though Dick et al. (2023) suggested
an interesting heuristic measure of confidence in individual reconstructed records. Dick
et al. (2023) also specifically cite the reconstruction-reidentification attack we discuss here
as motivation for their work. Lastly, neither Rocher et al. (2019) nor Dick et al. (2023)
propose the leave-one-out approach to estimating the extent of confidentiality violation we
pursue here, though Dick et al. (2023) analyze an interesting alternative set of baselines.

2.5. Statistical inference vs. breach of confidentiality. Privacy and confidentiality
protections are subtle concepts that give rise to many misunderstandings. It is a common
but incorrect belief that breaches of confidentiality, colloquially known as privacy breaches,
occur when a dataset is used to make any harmful or unwanted inference about an individ-
ual. Such an error has made its way into many peer-reviewed papers (Jarmin et al., 2023,
SI section 5). In order to see where the problem lies, we first discuss the canonical “smoking
causes cancer” thought experiment (Dwork, 2011) and then discuss possible confidentiality
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concerns in the 2020 Census data. A more complete version of these arguments can be
found in Kifer et al. (2022).

The first Cancer Prevention Study, also known as CPS-I, followed a cohort of volunteers
from 1959 to 1972 and conclusively established the link between smoking tobacco cigarettes
as a cause of death from lung cancer and coronary heart disease (American Cancer Society,
undated). As a result of this study, we know that persons who smoke have a much higher
risk of developing lung cancer. Such inferences about smokers can definitely be unwanted,
as they result in higher health and life insurance premiums. Persons born after 1972 may
be subject to this inference caused by the study; however, since their data were not used
for the study (they were not born until after it was completed), the study cannot possibly
be considered a confidentiality breach of their data. For those people, one would say that
the inference is purely statistical in nature. Another way to phrase this is that the link
between smoking and lung cancer is a population property, or statistical use (in the sense of
the 2018 Confidential Information Protection and Statistical Efficiency Act, Title III of the
2018 Foundations of Evidence-based Policymaking Act; 44 U.S. Code § 3561(12)) that was
uncovered with the help of the data set. Enabling generalizable scientific inference like this,
or inference about large-scale populations patterns, is exactly why data sets are collected
and published.

In contrast, an unwanted inference is a confidentiality breach when it is specifically caused
by the inclusion of the individual’s information in the dataset from which the inference
was made, what we call non-LOO inference. Now consider a hypothetical CPS-I study
participant named Charlie who was a lifelong smoker. Suppose that as a result of the
study, Charlie’s insurance company decided to ask enrollees whether or not they smoked
and charge a higher premium if they did. As a result, Charlie was harmed by the result of
the study in which he was a participant. Is this now a confidentiality breach? To answer that
question, we turn to causal reasoning, and specifically consider a counterfactual in which
Charlie had not participated in the study; that is, we compare the non-LOO inference
with a properly computed LOO one. Would the outcome of the study have been different
enough without Charlie’s participation to change the findings—thus changing whether the
insurance company enacted their policy of charging smokers a higher premium policy which
harmed Charlie? Given the strength of the findings in CPS-I (Hammond & Horn, 1954), we
can be confident that the study would have drawn the same conclusions even if Charlie had
not participated. Therefore, this example would also not be considered a confidentiality
breach.

What would be considered a confidentiality breach for our hypothetical participant Char-
lie? Suppose the CPS-I data were released publicly, and Charlie’s record could be reiden-
tified in the data. If the data indicated that Charlie was one of the participants who
developed lung cancer, then Charlie’s insurance company would not have to ask him if he
was a smoker—the insurance company would only need to check the public data to learn
that he had lung cancer (whether he was a smoker or not), and could then increase his pre-
mium or deny coverage altogether. This is an example of a confidentiality breach because
the unwanted inference (Charlie has lung cancer) was only possible because of Charlie’s
participation in the CPS-I study.

One also must be careful about the conflation of harmful inferences with confidentiality
violations for another reason, which is also related to privacy and trust in statistical agencies,
again as they are expressed in 44 U.S. Code § 3561-4 and National Academies of Sciences,
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Engineering, and Medicine (2021). Specifically, sometimes a statistical inference should not
be allowed even if it is not confidentiality violating. A statistical agency might be asked to
produce data on a particular sensitive population that could reasonably expect harm from
those data even if they passed the LOO inference test. For example, in 2010, communities
with a high percentage of same-sex married couples in states that did not permit such
weddings might expect harm even if only a statistical summary were published. A statistical
summary that could have affected the 2020 Census is the proportion of residents in the
census block who were not U.S. citizens. Whether or not the government has a legitimate
statistical interest in these populations is indeed a policy question, but the policy concerns
ingesting the data with the intention to publish summaries in the first place. Barring
the collection or publication of data on the grounds that even statistical inference may be
harmful is a policy concern. In this paper, we presume that the agency’s legitimate interest
in supporting statistical inference has already been determined; that is, the collection of
data in the decennial census and their publication for statistical purposes are authorized
by Congress and undertaken consistent with the required trust and confidentiality policies.

In practice, the distinction between confidentiality-violating and statistical inferences is
not always so clear-cut as in our smoking example. Information obtained from individuals
is often aggregated, fields are suppressed (e.g., direct identifiers), and some SDL framework
beyond aggregation may also be used. Still, it is important to disentangle what could be
learned from statistical inference versus what can be specifically learned or caused by a
person’s participation/inclusion in a study or dataset. This idea is the basis for research in
the scientific field of “differential privacy” (Dwork & Roth, 2014).

3. Overview of Workflow, 2010 Census, and Commercial Data Inputs

Figure 1. Overview of the reconstruction, agreement, and reidentification workflow
Based on Summary File 1 (SF1) tables, a database with the features and rows of the con-
fidential Hundred-percent Detail File (HDF) is reconstructed, validated for agreement with
the HDF and the confidential Census Edited File (CEF), linked to commercial databases
and a quasi-identifier-only copy of the CEF (labeled CEFatkr) to determine putative rei-
dentifications, then reidentifications are confirmed by linkage to the full-feature CEF. SF1
is itself tabulated from the HDF using a processing sequence that begins with the Census
Unedited File (CUF), see Figure 2.
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3.1. Overview of the complete workflow. Figure 1 provides a high-level overview of
the databases that underlie the confidential and published versions of the 2010 Census and
also summarizes our workflow using these databases. We begin by describing the internal
Census Bureau databases from which the public SF1 was created. Next, we describe SF1
itself. We also describe the attributes and limitations of the commercial databases used
in the analysis. We deliberately abstract from some of the complexity of these databases
in order to focus on the features that are salient to our reconstruction and reidentification
attacks. Table 1 lists all data used or produced by the workflow in Figure 1.

Table 1. Feature Sets for Data Used in the Experiments

Dataset name address pik block sex age agebin race ethnicity

CUF (Census Unedited File) x x x x y x x

CEF (Census Edited File) x x x x y x x

HDF (Hundred-Percent Detail File) x x z y x x

COMRCL (Commercial Attack File) x x x x y

CEFatkr (CEF, Attack Columns) x x x x y

rHDFb,t (Single-Year-Age Reconstruction) x x z y x x

rHDFb (Binned-Age Reconstruction) x x x x x

Putative rHDFb,t (With All Links) x x x z y x x

Putative rHDFb (With All Links) x x x x x x

Confirmed rHDFb,t (Confirmed Links) x x x z y x x

Confirmed rHDFb (Confirmed Links) x x x x x x

MDG (Modal Guess Attacker) x x x z y g g

PRG (Proportional Guess Attacker) x x x z y h h

MDF (2020 DAS Output Microdata) x x z y x x

rMDFb,t (MDF Reconstruction) x x z y x x

rSWAPLob,t (Low-Swap Reconstruction) x x z y x x

rSWAPHib,t (High-Swap Reconstruction) x x z y x x

Notes: The symbol x means the feature is present in the dataset. In all cases age is based on available
birth date information and calculated as of April 1, 2010. The symbol y, used for the feature agebin,
means the available age information is sufficient to recode to the block-level 38-bin age schema. The
symbol z means that the age feature in this dataset aggregates ages 100–104, 105–109, and 110 or older
into three bins. The rows beginning Putative and Confirmed refer to the output of reidentification
experiments. The schemas for MDG and PRG include the variables required to select only putative
reidentifications based on either rHDFb,t or rHDFb. The symbol g means use the mode of the block-level
race× ethnicity table from SF1. The symbol h means assign {race, ethnicity} with probability
proportional to the counts in the block-level race× ethnicity table in SF1. The rows labeled MDF and
rMDFb,t refer to the output of the 2020 Census Disclosure Avoidance System TopDown Algorithm applied
to the 2010 CEF. The rows labeled rSWAPLob,t and rSWAPHib,t refer to the output of our
reconstruction-abetted reidentification attack applied to specially swapped versions of the 2010 CEF.
Throughout the text, features shown in this table are denoted in italics to distinguish them from ordinary
uses of the same word.

3.2. 2010 Census internal databases. The U.S. Constitution mandates a census of
population conducted every ten years. Since the 1970 Census, these enumerations have
collected primarily self-reported information on households and the individuals in those
households. For the 2010 Census, the confidential respondent microdata were stored in
several databases. For our purposes, describing the relevant feature sets and provenance
requires starting with the 2010 Census Unedited File (CUF), which contains the raw census
responses for all living quarters, unduplicated and deemed in-scope for the enumeration.
The 2010 Census Edited File (CEF) constitutes the final, fully edited (e.g., for logical
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consistency between the ages of parents and their biological children), permanent electronic
record of these responses to the 2010 Census. The application of confidentiality protections
and tabulation recodes to the CEF produces the Hundred-percent Detail File (HDF), which
is used to create all published data products. The tabulation edits in HDF recode the
residential location to the 2010 Census tabulation geography, create various age groupings,
and create a variety of race and ethnicity groupings, all described below.

As part of the internal confidentiality safeguards, the respondent’s name and address
are stored on the CUF, not the CEF. Census data processing links the physical address to
an identifier called the Master Address File Identifier (MAFID) that the Census Bureau’s
Geography Division has determined to be a living quarter that existed on April 1, 2010,
as either a housing unit or an occupied group quarters facility, and thus is in-scope for
data collection in the 2010 Census. To facilitate research while safeguarding the name
and address, the Census Bureau creates a crosswalk that relates the internal person-record
identifier on the CEF to a person identifier called a Protected Identification Key (pik)
using the production household data record-linkage system called the Person Identification
Validation System (PVS).5 While the feature sets for the full hierarchical CUF, CEF and
HDF are much larger, the portions of the CUF that we use are shown in Table 1 in the row
labeled “CUF.”

The use of the Census Bureau’s production record-linkage system, and the selection of
the 2010 Census vintage allowed us to do record linkage on name and address without
having to design our own linkage system. We ensured that the same vintage of PVS was
used for the commercial data we discuss later in this section. If the PVS recognized a
person in the 2010 Census, it is extremely likely that the same vintage of the software
would recognize the same person in the commercial data, thus assigning the same pik. All
record-linkage systems are subject to false positive and negative linkages. By employing
the same production PVS system on all data used for this paper, we accept linkages based
on piks with the error properties described in Layne et al. (2014).

Not all records in the CEF have a pik and in some cases the same pik appears on
multiple records because the PVS was not designed to unduplicate the input data set. For
the purposes of this paper, we refer to the subset of records in the CEF with a distinct pik
within the record’s census block as the data-defined population. To create the data-defined
population, if there were multiple records with the same pik within a census block, one
record was randomly chosen. The data-defined population is 276,000,000 records (89% of
all records in the CEF). Records with duplicate piks within a single block appeared in 15%
of blocks. In total, 1% of records with a pik were removed by this unduplication. The
remainder of the difference between the total 2010 Census population and the data-defined
population are incomplete or imputed census responses to which the PVS cannot assign a
pik because the CUF contained insufficient respondent-supplied data.

The MAFID is further geocoded into the 2010 Census tabulation geography. In this
paper, we distinguish two components of the 15-digit tabulation geography–census tract
(11-digit concatenation of FIPS state, county equivalent, tract) and census block (15-digit
concatenation of FIPS state, county equivalent, tract, block).6 The HDF is formed from the

5The PVS has evolved over time. The application of the production record-linkage system was completed
contemporaneously with the 2010 Census data processing using the 2010-vintage version of the PVS. For
details on pik assignment, see Wagner and Layne (2014).

6FIPS stands for Federal Information Processing Standards, and refers to numeric and two-letter alpha-
betic codes defined in U.S. FIPS Publication 5-2. FIPS 5-2 was superseded by ANSI standard INCITS
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CEF by applying the SDL methods described in Section 2.3, which are called “confidentiality
edits” in the technical documentation (U.S. Census Bureau, 2012). Finally, the parts of the
person records in CEF and HDF used in this paper have the feature sets shown in Table 1
in the appropriately labeled rows.

The confidential databases share the same schema and feature sets: one column for the
census block, one column each for the person identifier (pik), sex, age, and ethnicity (His-
panic or Latino/Not Hispanic or Latino), and six columns for the required race categories.7

Persons may self-declare multiple race categories; hence the binary race features are not
mutually exclusive. In practice, most 2010 Census respondents only identified with a sin-
gle race.8 The feature age is recorded in integer values. If a census response is missing,
the process that creates the CEF performs edits and imputation, called “allocation” in the
technical documents. There are no missing data in the CEF and, in particular, at least one
of the six race categories must be selected. Excluding pik, which is standing in for name,
we define all valid combinations of block, sex, age, race, and ethnicity as the feature space
(sample space in statistics) for CEF and HDF, χ. There are approximately 161× 109 (161
billion) such combinations which gives the cardinality |χ|.9 Finally, note that we used data
for the 50 states and the District of Columbia.10 We excluded Puerto Rico because the
2010 vintage of the Census Bureau’s production name and address record-linkage system
did not work as well for this commonwealth.

3.3. 2010 Summary File 1. The most extensive and widely used 2010 Census data prod-
uct is Summary File 1 (U.S. Census Bureau, 2012). Figure 2 illustrates the process of
creating SF1 from the internal census databases. SF1 contains counts of persons, house-
holds, families within households, group quarters residents, and housing units tabulated
at the census block, census tract, and county-equivalent geographic levels. SF1 also in-
cludes the tables released separately as the 2010 Redistricting Data (Public Law 94-171)
Summary File, which forms the basis for redistricting every legislative body in the United

38:2009. For details, see U.S. Census Bureau (2023b). Census blocks are a statistical definition of geog-
raphy, not the commonly used “city block,” with complete coverage of the entire territory of the United
States, and are the atoms in the Census Bureau’s geographic lattice that are used to build all other geo-
graphic tabulation summary levels, such as census tracts or county equivalents. Census blocks are defined
in terms of territory, not population, and tessellate the entire United States. Some blocks may therefore
be uninhabited (even underwater), others may have a very large population. See Rossiter (2011) for an
overview. For more details on the person and geography attributes, see U.S. Census Bureau (2012).

7For details on the person attributes, see U.S. Census Bureau (2012). For background on the definitions
of the required race and ethnicity categories, see Statistical Policy Directive 15 (Office of Management and
Budget, 1997). The category “some other race” is mandated by law, not statistical policy (13 U.S. Code §
5 as amended in Pub. L. 111–117, div. B, title I, Dec. 16, 2009).

8Throughout this paper, the notation {race, ethnicity} refers to the the subset of features defined by the
63-category race and 2-category ethnicity features. The notation race× ethnicity distribution refers to the
63 × 2 table using the 63-category race feature crossed with the 2-category ethnicity feature. The coding
schemes are derived from the definitions used to create lines P8 and P9 in Table 2, Panel A.

9Cardinality |χ| = 161, 109, 592, 812 = 6, 207, 027× 2× 103× 63× 2, where 6, 207, 027 is the number of
inhabited blocks in the 2010 Census, 103 is the number of single-year age categories 0 to 99 plus grouped ages
100-104, 105-109, 110+ allowed in the published tables, and 63 is the number of allowable race combinations.
Note that, for technical reasons, when we implement the reconstructions of HDF, we modify the feature set
to eliminate the age binning for ages 100+.

10The use of the term “state” in this document refers to all 51 state-equivalent political divisions.
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States and is normally released by March 31st of the year following the decennial census,
several months before SF1.11

Figure 2. Summary of the creation of SF1. Collected census data is edited (CEF), confi-
dentiality protections are applied (HDF), and then tabulated into tables, for instance SF1

The SF1 and other published tables are created by tabulating the HDF according to
various combinations of geographic and demographic detail. All published data from the
2010 Census used the same geographic hierarchy. See Appendix A of U.S. Census Bureau
(2012) for more details. The census block is the most detailed geographic category. There
were 11,078,297 blocks defined for 2010 Census publications of which 6,207,027 had nonzero
populations.12 These census blocks aggregate into 73,057 defined census tracts of which
72,531 had nonzero populations. These census tracts, in turn, aggregate into 3,143 county
equivalents, all of which had nonzero populations.

Within this hierarchy, tables of varying demographic and household detail are created. In
this paper, we focus on block- and tract-level tabular summaries of persons using only the
34 tables shown in Table 2. The census block-level tables, labeled Px in Panel A of Table 2,
provide detailed information on sex and race, but with coarsened age information for those
age 22 and over. The census tract-level summaries, labeled PCTx in Panel B of Table 2,
report most of the detail in block-level tables in addition to reporting more detailed age.13

We note for completeness that the 2010 Census PUMS, Summary File 2, and the American
Indian/Alaska Native Summary File were also created from the HDF. The 2010 HDF itself,
but not the 2010 CEF, can be used by external researchers with approved projects in the
Federal Statistical Research Data Centers.

3.4. The treatment of age in Summary File 1. 2010 SF1 tabulated age differently
depending on the specific table and the level of geographic detail. At the tract level and
above (e.g., Table PCT12), age was tabulated in single years from 0 to 99 years, then
binned into the ranges 100-104 years, 105-109 years, and 110 years and over. At the block
level in most tables (e.g., Table P12), age was binned into the following ranges: 0-4; 5-9;
10-14; 15-17; 18-19; 20; 21; 22-24; 25-29; 30-34; 35-39; 40-44; 45-49; 50-54; 55-59; 60-61;
62-64; 65-66; 67-69; 70-74; 75-79; 80-84; and 85+. Also at the block level, Tables P10 and
P11 selected only persons age 18 and older. Finally, the block-level table P14 selected only
individuals age 20 or younger and encoded age in single years. Combining the different
age binning and universe selection rules applied at the census block level defines the most
detailed age schema that these tables can support. That schema has 38 age groups: single

11The populations used for apportionment include a limited number of U.S. citizens and their families
living abroad, known as the Federally Affiliated Overseas Population. These persons do not have records
in the CEF, and their total for each state is added to the residential population for that state prior to
apportionment, see Appendix G of U.S. Census Bureau (2012). The Redistricting Data (Public Law
94-171) Summary File tables are renumbered in SF1 but are otherwise identical to the original release.

12Whether a block was inhabited or not was published without any confidentiality edits in 2010.
13The tract-level schema for race is less detailed than the block-level schema; however this does not

affect our reconstructions because we never use the tract-level data alone, and its race and ethnicity schema
is nested in the block-level schema.
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Table 2. Tables from 2010 Summary File 1 Used in Reconstruction Experiments

Panel A: Tabulated at the Census Block Level

Table Name Census Block Table Title

P1 Total Population
P6 Race (6 categories, alone or in combination)
P7 Hispanic or Latino Origin by Race
P8 Race (63 categories)
P9 Hispanic or Latino, and not Hispanic or Latino by Race
P10 Race for the Population 18 Years and Over
P11 Hispanic or Latino, and not Hispanic or Latino by Race

for the Population 18 Years and Over
P12 Sex by Age
P12A-I Sex by Age (iterated by Race and Ethnicity)
P14 Sex by Age for the Population Under 20 Years

Panel B: Tabulated at the Census Tract Level

Table Name Census Tract Table Title

PCT12 Sex by Age
PCT12A-O Sex by Age (iterated by Race and Ethnicity)

Source: 2010 Summary File 1 technical documentation (U.S. Census Bureau, 2012). Table names and
titles are taken from this documentation.

Notes: Overall, there are 8.6 billion linearly independent statistics in the census block-level tables and 241

million linearly independent statistics in the census tract-level tables. The tables for blocks with zero

population are completely zero-filled. The total number of linearly independent statistics counting only

blocks and tracts with positive population is 5.0 billion.

year of age from 0 to 21, then: 22-24; 25-29; 30-34; 35-39; 40-44; 45-49; 50-54; 55-59;
60-61; 62-64; 65-66; 67-69; 70-74; 75-79; 80-84; and 85+. We use this 38-bin age schema
(feature agebin) in our assessments of agreement of the reconstructed HDF with the HDF
and CEF. We show in the reidentification experiments that the 38-bin age schema provides
sufficient uniqueness for persons at the census block level to enable reconstruction-abetted
reidentification. It is important to note that tables P12 and P14, when combined, give
the exact number of males and females in each of the 38 age bins in each census block,
so any remaining uncertainty is in the race and ethnicity distribution within each sex and
age bin. For any reconstructed microdata based on at least the tables in Panel A of Table
2, there is only one possible reconstruction on the feature set {block, sex, agebin}; that is,
the reconstruction is exact on that feature set. In our matching algorithms, we distinguish
between matches based on exact age (feature age) and those based on binned age (feature
agebin). In Section 4.5 we present the formal mathematics for the solution variability of
our reconstructions.

3.5. Circa 2010 commercial databases. We created the commercial data (COMRCL)
used for our reidentification experiments by combining data extracts originally purchased in
support of the 2010 Census evaluations from four commercial providers between 2009 and
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2011.14 The COMRCL data serve as the background knowledge of an attacker with lower-
quality information contemporaneous with the release of the 2010 SF1. While the database
schema and the purposes for which these commercial databases were originally collected
vary, they all share certain attributes. All have basic personal identifying information
(PII) including names, addresses, sex, and birth dates. The vintage 2010 versions of these
databases that we used did not include self-reported race and ethnicity data.15

We harmonized the feature sets for the commercial data to match the schemas used in
the CEF, as indicated in the COMRCL row of Table 1. These data were originally acquired
because the features we use—name, address, sex, and birth date in particular—were ex-
pected to closely resemble those collected on the 2010 Census. In our harmonization, name
and address were mapped to pik and MAFID, respectively. The MAFIDs were originally
geocoded in 2009-2011, when these commercial databases were acquired. Because the final
2010 tabulation geography schema was not available at that time, we remapped the MAFID
to final 2010 tabulation blocks in early 2019. PII was standardized and mapped to pik using
the same 2010-vintage PVS that was used for the 2010 CUF. Table 3 shows that there were
289,100,000 records with a valid {pik, block, sex, age} in the commercial database. We
excluded the 2,449,000 COMRCL records that have census block IDs outside the 2010 CEF
universe from all reidentification studies using COMRCL. Among the COMRCL records
in the CEF universe, only 106,300,000 (37.1%) matched a CEF record on {pik, block, sex,
agebin}, i.e., using binned age instead of exact age. Because our experiments on vulnera-
ble populations—those whose characteristics differ from the modal person—use the census
block universe for the {race, ethnicity} features to define vulnerable populations, only the
106,300,000 COMRCL records that match CEF records on the feature set {pik, block} are
available for those studies. Thus, the commercial data used here are not very accurate
compared to the 2010 CEF, and we do not rule out the possibility that better quality data
may have been available in 2010.16 Better external data were available for the 2020 Census
(Brown et al., 2023), including both commercial and administrative-record sources.

4. Reconstruction Methodology

We define database reconstruction as any attempt to re-create the record-level image
of the database from which a set of published query results or tabulations were originally
calculated; in this case, that is the confidential HDF.17 Database reconstruction attempts to
reverse-engineer the confidential HDF records that were the input data used in a tabulation
system with the goal of making the reconstruction as close as possible to these confidential
data. We note that the reconstruction described here is not the most powerful feasible
reconstruction. We used only a subset of the SF1 tables, we made no attempt to reconstruct
households or characteristics of the householder (adult respondent providing the census data
on CUF), and we did not use statistical modeling to improve the reconstruction (e.g., in

14The four commercial databases were provided by Experian Marketing Solutions Incorporated, In-
fogroup Incorporated, Targus Information Corporation, and VSGI LLC. The databases used are the same
as in Rastogi and O’Hara (2012) except that we excluded data provided by the Melissa Data Corporation,
which contain address information but not sex and age data.

15Race and ethnicity data are modeled in some of the commercial databases (Rastogi & O’Hara, 2012).
16In particular, the Census Bureau did not purchase the 2010 version of the LexisNexis Public Record

Search database, another commercial product similar to the ones we used in COMRCL, because it could
only be used with its own proprietary software.

17See Garfinkel et al. (2018) for a longer discussion of how to understand database reconstruction.
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Table 3. Overlap of Data-Defined Person Records in CEF and COMRCL Databases

In CEF Universe Not in CEF
Matched Unmatched Universe Total

(×103) (×103) (×103) (×103)

Records in COMRCL 106,300 180,400 2,449 289,100
Records not in COMRCL 169,700

Total 276,000
Notes: Counts rounded to four significant digits to conform to disclosure limitation requirements. The

commercial data contain census block geocodes not found in the CEF universe. The columns “In CEF

Universe, Matched” and “In CEF Universe, Unmatched” reflect only records with 2010 census block

geocodes in the CEF universe. “Matched” means the records agree on the feature set {block, pik, sex,

agebin}. The balance of the data-defined COMRCL records are shown in the column “Not in CEF

Universe.” The research in this paper can only use those records in the CEF universe (106,300 + 180,400

= 286,700 thousand). When COMRCL records are classified as modal or nonmodal we use matched

records for which CEF attributes are known. In this case “matched” means the records agree on {pik,

block} only. A trivial number of COMRCL records that match on these two variables disagree on {sex,

agebin}. Hence, the universe for analyses that distinguish modal and nonmodal COMRCL records is also

106,300 thousand.

blocks where multiple different reconstructions were consistent with the published tables,
we did not use statistical methods to identify the most likely reconstruction). Even without
these enhancements, we show that the disclosure avoidance methods of the 2010 Census
are highly susceptible to attack.

4.1. Reconstruction overview. Table 2 shows the 34 tables we included in our recon-
struction for any universe that was part of the total population.18 These tables, computed
from the HDF person records, are multidimensional marginal counts related to sex, age,
race, and ethnicity by census block and tract. Our reconstructed microdata contain these
same variables and only these variables. The reconstructed data, therefore, necessarily re-
flect the schemas used for SF1 and are only informative about variables, in particular age,
in the schemas used for publication, as described in Section 3.4.

Our experiments use two different subsets of SF1 data as shown in Table 2. The first
reconstruction, which we denote as rHDFb,t, uses both tract and block-level SF1 tables,
taking advantage of both the geographic and race detail in the block summaries and the
age detail in the tract summaries. The second reconstruction, rHDFb, uses only the block-
level tables. Thus, the second reconstruction removes the more granular age information
found in the tract-level tables while retaining the full race and ethnicity schema used in the
block-level data. Comparing results from rHDFb,t and rHDFb to HDF and CEF shows the
loss of reconstruction accuracy from removing tract-level tables.

4.2. A simplified algebraic representation of the reconstruction problem. Be-
cause it is very useful for understanding the mathematical structure of the reconstruction

18We did not use tables where the universe was households, which means that we did not use the
“relationship to the householder” information to reconstruct household characteristics or to improve the
reconstructed data for persons in those households.
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experiments, we begin by explaining the linear algebra representation of the reconstruction
problem. Then, in Section 4.3, we provide a description of the integer program (IP) setup
we used to generate the solutions discussed in our results. This IP formulation does not
convey the high-level structure of the problem as simply but closely follows our software
implementation.

The inputs to the reconstruction are the database schema for the tabulation feature set
{block, sex, age, race, ethnicity}; the vector of all published statistics in the appropriate
order; and the matrix workload that maps the histogram representation of the HDF onto
the published statistics. We represent the table of the record-level data as the vectorized
fully saturated contingency table (called a histogram in computer science) where every cell
corresponds to a possible record type in χ and its value is the number of records of that
type. Thus, instead of a multi-dimensional array, the contingency table is flattened into
a vector (like the operation as.vector() in R or np.flatten() in numpy). Let x represent
the contingency table vector. Database reconstruction consists of finding at least one non-
negative integer solution for x in the equation system

(4.1) Ax = c such that xi ∈ Z+ for all i,

where c is K × 1 column vector of the K statistics extracted from SF1 for a given recon-
struction, A is the K × |χ| matrix for computing those SF1 tabulations from a |χ| × 1

contingency table vector x, and Z+ is the set of non-negative integers. Each row of A and
corresponding component of c, therefore, represent the formula for a single statistic and its
realized value in SF1, respectively.

There are fewer statistics published per block than points in the sample space (|χ| > K),
meaning that a unique solution to Equation 4.1 is not always guaranteed. However, many
low-population blocks have published tables that contain a large number of entries whose
values are zero. This eliminates many candidate solutions, and often there is only one
unique non-negative, integer-valued solution to Equation 4.1. There is always at least one
solution because SF1 was tabulated from a single real database with the schema encoded in
χ (i.e., the HDF). The commercial software GurobiTM has a robust toolkit for solving IPs
and related mixed integer linear programs (MILP) to produce solutions to problems such
as these. See Section 4.3 for details. When multiple solutions exist, GurobiTM will pick
one. In principle, statistical modeling could be used to select among candidate solutions to
improve reconstruction quality, but we did not do this.

Given a solution x̂ to Equation 4.1, another question of interest is how different x̂ could
be from other possible solutions. If x̂ is the only solution to Equation 4.1, then it represents
an exact reconstruction of the microdata used to tabulate SF1, namely HDF, with certainty.
Moreover, if the uniqueness of the solution can be determined from the published inputs
to Equation 4.1, then an attacker knows that those reconstructed records were present in
HDF with certainty. To examine how often the solution x̂ was strongly constrained, we
designed an algorithm for measuring solution variability by building a second IP model. Its
goal is to find a second solution, x̃, that maximizes the L1 distance to x̂. This allows an
attacker, using only public information, to determine the maximum number of records in
the reconstruction that could be incorrect. This problem is described in Section 4.5.

4.3. The integer programming version of the reconstruction model. This section
describes how the IP is implemented as a mathematical programming problem, which is the
method used in all our statistical calculations. We begin by describing how we converted the
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basic schema for the feature set {block, sex, age, race, ethnicity} into the binary variables
used in our reconstruction. The following notation describes the nine demographic features:
W, BL, AIAN, ASIAN, NHOPI, SOR, HISP, SEX, and AGE and the values allowed for
each feature.

Reconstruction Feature Sets Using Exact Age(4.2)

W = {White = 1,Not White = 0}
BL = {Black or African American = 1,Not Black or African American = 0}

AIAN = {American Indian and Alaskan Native = 1,

Not American Indian and Alaskan Native = 0}
ASIAN = {Asian = 1,Not Asian = 0}
NHOPI = {Native Hawaiian and Other Pacific Islander = 1,

Not Native Hawaiian and Other Pacific Islander = 0}
SOR = {Some Other Race = 1,Not Some Other Race = 0}
HISP = {Hispanic or Latino = 1,Not Hispanic or Latino = 0}
AGE = {0, 1, 2, . . . , 110}
SEX = {Male = 0,Female = 1}.

A potential record corresponds to a setting of the block b along with settings for the
demographic attributes (w, bl, aian, asian, nhopi, sor, hisp, a, s). Here the lowercase italic
letters index the permitted values of the uppercase feature set of the same name (e.g., aian
represents a value of the feature AIAN). We create one variable for the IP for each potential
record. Since we do not know, a priori, how many records exist with the same demographic
type and block, we must create multiple variables B(i,b,w,bl,aian,asian,nhopi,sor,hisp,a,s) for i =

0, 1, 2, . . . . We use Table P12 from SF1 (age group by sex for each census block) to obtain
an upper bound on the index i for each block and combination of demographics. For
example, for the demographic type of a 22-year-old Asian Hispanic female in a block b,
suppose Table P12 for that block indicates that there are 50 females in the age group 22-24
(See Table 4 for the age groupings in P12). This is an upper bound on the number of
potential records for 22-year-old Asian Hispanic females in the block. Thus, we create the
50 variables B(i,b,w=0,bl=0,aian=0,asian=1,nhopi=0,sor=0,hisp=1,a=22,s=1) for i = 0, . . . , 49. These
variables are binary, with a value of 1 indicating the presence of the potential record in
a candidate microdata reconstruction. Once the binary variables are assigned values, the
summation

49∑
i=0

B(i,b,w=0,bl=0,aian=0,asian=1,nhopi=0,sor=0,hisp=1,a=22,s=1)

represents the number of 22-year-old female Asian Hispanic people in that block. Formally,
we created the complete set of binary variables as follows.

• We define an age binning function AGEBIN_P12 (shown in Table 4) based on
the age groupings used in the SF1 Table P12. For any age a ∈AGE, the value of
AGEBIN_P12(a) is the bin from Table 4 containing that age.
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• For any age a, sex s, and block b, define the constant cP12
b,AGEBIN_P12(a),s to be the

count in SF1 Table P12 of the number of people in block b with sex s and an age
that is in the same age bin as age a.
• For every block b, age a, sex s, and value of the race and ethnicity variables w, bl,

aian, asian, nhopi, sor, hisp, we define the binary variables:

(4.3) B(i,b,w,bl,aian,asian,nhopi,sor,hisp,a,s) ∈ {0, 1}, for i = 0, . . . , cP12
b,AGEBIN_P12(a),s − 1

We emphasize that using SF1 Table P12 in this manner does not coarsen the age schema.
It only determines the maximum number of B(·) variables that the integer program may
use for each demographic type in the full schema.

Table 4. Index Mapping for the 23-bin Age Grouping in Table P12, z = AGEBIN_P12(a)

a 0-4 5-9 10-14 15-17 18-19 20 21 22-24 25-29 30-34 35-39
z 0 1 2 3 4 5 6 7 8 9 10

a 40-44 45-49 50-54 55-59 60-61 62-64 65-66 67-69 70-74 75-79 80-84
z 11 12 13 14 15 16 17 18 19 20 21

a 85-110
z 22

Let T represent the set of all census tract indices, and Bt represent the set of all census
block indices in tract t. We next illustrate how each SF1 table adds additional constraints on
the B(·) variables. For example, consider the tract-level table PCT_12I, which encodes the
tabulation sex by age group in each tract for people who are “White alone” and “Not Hispanic
or Latino.” The age binning used by this table is {0, 1, ..., 99, 100− 104, 105− 109, 110+},
so let AGEBIN_PCT12I(a) be the function that returns the appropriate PCT12I age bin
z for a given age a. For each tract t, PCT12I age bin z, and sex s, let cPCT12I

t,s,z be the
corresponding count in table PCT12I. Then for each t, s, z we add the following constraint:∑
b∈Bt,

∑
a: AGEBIN_PCT12I(a)=z

∑
i

B(i,b,w=1,bl=0,aian=0,asian=0,nhopi=0,sor=0,hisp=0,a,s) = cPCT12I
t,s,z

where the summation over i uses the upper bound on the number of B(·) variables in
Equation 4.3 (i.e., i = 0, . . . , cP12

b,AGEBIN_P12(a),s − 1).
We use the notational shorthand Tt[tabname,

⋃
b′∈Bt

rHDFb,t(b
′)] = ctabname

t to represent
all such constraints created by SF1 tract-level table tabname (e.g., PCT12I) for tract t.
Specifically, the notation rHDFb,t(b

′) refers to the optimization variables for records in
a block b′ when performing the rHDFb,t reconstruction, the notation

⋃
b′∈Bt

rHDFb,t(b
′)

indicates that we form the constraints using the optimization variables for all blocks b′ that
belong inside tract t (i.e., ∀b′ ∈ Bt). For example, in the case of SF1 Table PCT12I, this
means an application of Equation 4.3 for each age bin z and sex s for the record variables
in the tract. The tract-level tables used are listed in Panel B of Table 2. Similarly, we use
the shorthand Tb[tabname, rHDFb,t(b

′)] = ctabname
b′ for the block-level constraints in block

b′ created by SF1 block-level table tabname (Panel A of Table 2).
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Table 5. Index Mapping for the 38-bin Age Grouping, z = AGEBIN_BLOCK(a)

a 0 1 2 3 4 5 6 7 8 9 10
z 0 1 2 3 4 5 6 7 8 9 10
a 11 12 13 14 15 16 17 18 19 20 21
z 11 12 13 14 15 16 17 18 19 20 21

a 22-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-61 62-64 65-66
z 22 23 24 25 26 27 28 29 30 31 32

a 67-69 70-74 75-79 80-84 85-110
z 33 34 35 36 37

Notes: This 38-bin age grouping summarizes the most detailed age data tabulated in any block-level SF1

table. It also defines the relation of the feature agebin to the feature age.

With this notation, the IP problem for the rHDFb,t reconstruction model for tract t can
be written as:

max 0

(4.4)

s.t Tt[tabname,
⋃

b′∈Bt

rHDFb,t(b
′)] = ctabname

t ∀ tabname ∈ Panel B of Table 2

Tb[tabname, rHDFb,t(b
′)] = ctabname

b′ ∀ tabname ∈ Panel A of Table 2 ∀b′ ∈ Bt

The objective function “max 0” indicates that any feasible solution that satisfies the con-
straints can be returned (i.e., if there are multiple candidate solutions, no statistical mod-
eling or maximum entropy is used, and GurobiTM picks a solution arbitrarily). The opti-
mization variables are the B(·) defined in Equation 4.3. Once we have a feasible solution,
for every B(·) that is set to 1, we add a corresponding record for that block and demo-
graphic type to the reconstructed dataset. For rHDFb,t, we also recode the feature age
into agebin because our matching algorithms require access to both variables (see Section
5). Thus, upon completion, the IP from Equation 4.4 yields a reconstructed version of the
HDF, called rHDFb,t, that contains one record for each person in the 2010 Census with the
features indicated in row rHDFb,t of Table 1.19

Next, we present the IP for the reconstruction rHDFb, which uses only the SF1 block-
level tables shown in Panel A of Table 2. Block-level tables use several age binning schemes,
but their intersection is not exact age. Instead, their intersection is the age grouping shown
in Table 5, which has 38 age bins. Since this is the most fine-grained age resolution that
can possibly be obtained from block-level tables, rHDFb contains age reconstructed up to
this 38-age binning (the feature that represents this age grouping is called agebin). To
simplify the implementation, the IP uses the B(·) optimization variables from Equation 4.3.
This means that the solution provides single-year ages, but after the reconstructed rHDFb

microdata are created, we recode age into agebin as defined in Table 5. The IP for the

19Since SF1 always groups all persons 100 years of age or older into the bins: “100-104 years”, “105-109
years”, and “110 years and over” or uses even coarser age groups, the IP can never resolve the feature age
more precisely than these bins. The IP still has variables for individual ages 100, ..., 110 and so Gurobi will
arbitrarily choose a specific age within those age bins. This means that there is inherent solution variability
in the ages of the oldest sub-populations.
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block-level reconstruction is similar to the tract-level reconstruction. For each block b′,
solve

max 0(4.5)

s.t Tb[tabname, rHDFb(b
′)] = ctabname

b′ ∀ tabname ∈ Panel A of Table 2.

Again, no statistical modeling is used to return the most plausible solution if multiple
feasible solutions exist. Once we obtain a feasible solution, for every B(·) that is set to
1, a corresponding record for that block and demographic type is created. Because our
matching algorithm requires access to both age-related features, we retain the feature age
and create the feature agebin using the appropriate bin in Table 5. The resulting record is
added to the reconstructed dataset rHDFb whose feature set is shown in the row rHDFb of
Table 1.

4.4. Reconstruction implementation details. The IP formulation of the reconstruc-
tion problem is mathematically equivalent to the simplified model in Section 4.1. The only
difference is that the optimization variables B(·) in the IP implemented in our code cor-
respond to potential records, while the vector x in Equation 4.1 contains counts from the
fully saturated contingency table defined on the sample space χ. The code in the replica-
tion archive implements the IP in Equations 4.4 and 4.5, and these equations are useful
for reading the software implementation in the replication archive, whereas the histogram
representation in Equation 4.1 is useful for understanding the high-level structure of the
problem. For reconstruction outcomes, only run-time, not the space of feasible solutions,
is affected by the choice of which representation to implement. It is not obvious a priori
which representation should solve more quickly. We have direct experience solving the IP
representation, and we found it to consistently solve very quickly at default GurobiTM set-
tings for the set of tables we used in the reconstruction. Equation 4.1 is succinct, easy to
represent in any matrix programming language that implements sparse matrix storage and
MILP solvers, and yields a model with considerably fewer variables. On the other hand,
the IP representation, while it produces less succinct models, uses only binary variables in
the solution set, rather than non-negative integers, and binary variables are usually pro-
cessed more efficiently in modern MILP solvers. Our discussion switches between the two
representations to permit clarity of expression (Equation 4.1) versus fidelity to the details
of our implemented reconstruction code (Equations 4.4 and 4.5).

4.5. Solution variability. When an attacker performs a reconstruction, an important
question is whether the attacker can determine if the reconstruction in a block is unique, or
if the attacker can compute an upper bound on the number of reconstructed records that
may be erroneous (i.e., a confidence score for reconstruction accuracy). In blocks with zero
reconstruction error, an attacker would also be more confident about linking these recon-
structed records to other data sources, since swapping and record-level synthetic data would
be the only remaining disclosure avoidance techniques that could cause these reconstructed
HDF records to differ from their CEF counterparts. This would be especially problematic
if the swap rate were low. On the other hand, a high swap rate may prevent some records
from being linked, but for the remainder of the records that are linked (and hence probably
not swapped), the attacker would be more likely to learn additional attributes about those
individuals from the reconstructed data. Recall that reconstruction error is limited to the
race and ethnicity variables, along with the specific age within agebin. As explained in
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Section 3.4, SF1 tables P12 and P14 already give the exact count of males and females in
each of the 38 age bins from the block-level schema for each block. This means that an
attacker can always create microdata records with the correct sex and binned age values by
expanding those tables. In the agebin schema, the only remaining uncertainty is in which
race and ethnicity to attach to those records. In the tract-level age schema, there is also
uncertainty about single year of age within age bin except for the population 21 years and
under, since each of these age bins contains exactly one age.

For any reconstruction rHDF and geographic region g, such as a specific tract or block,
we let rHDF(g) represent the subset of records in rHDF that belong to geographic region g.
If there are two feasible reconstructions, rHDF∗ and rHDF′, we consider them equivalent
for region g if and only if the difference is the ordering of the records; that is, if one is a
permutation of the other. In other words, two reconstructions are equivalent on g if their
corresponding fully saturated contingency tables for region g are the same. Letting Hist(·)
represent the operator that converts a reconstruction into a fully saturated contingency
table, two possible reconstructions rHDF∗(g) and rHDF′(g) in region g are distinct whenever
Hist(rHDF∗(g)) ̸= Hist(rHDF′(g)).

Let i = 1, . . . , k index the k cells of the histogram representation of the contingency
table. We measure the difference between two histograms using the L1 norm:

L1{Hist(rHDF∗(g)),Hist(rHDF′(g))} =
∑

i=1,...,k

|Hist(rHDF∗(g))i −Hist(rHDF′(g))i|.

Note that the cells depend on the reconstruction schema. For example, when measuring
solution variability relative to the agebin feature, the histograms use the 38-bin age grouping
shown in Table 5. Also note that

L1(Hist(rHDF∗(g)),Hist(rHDF′(g))) ≤ 2Ng,

where Ng is the total population of geographic unit g. Equality is achieved if and only if
the two histograms completely disagree on the types of records present in g. This bound
follows because rHDF∗(g) and rHDF′(g) are both constrained to have exactly Ng records,
so we can think of rHDF′(g) as being constructed by modifying a sequence of records in
rHDF∗(g). Each such modification can increase the L1 distance by no more than 2, and at
most every one of the Ng records can be modified, for a total L1 distance of 2Ng when the
two histograms no longer have any records in common. On the other hand, the L1 norm is
0 if and only if the two histograms agree exactly on the types and multiplicities of records
present.

Given a feasible solution rHDF∗, we define solution variability relative to rHDF∗ as the
following function solvar for geographic unit g:

(4.6) solvar(rHDF∗, g) = 100× max
{feasible rHDF′}

L1{Hist(rHDF∗(g)),Hist(rHDF′(g))}
2Ng

,

where feasible solutions use Equation 4.4 when g is a tract or Equation 4.5 when g is a
block. Note that the multiplication by 100 allows us to interpret solvar(rHDF∗, g) as the
percentage of its maximum value.

If solution variability in Equation 4.6 is zero, then there is a single, unique solution to the
reconstruction problem in geounit g, and the rHDF∗ records in g must exactly match the
HDF for the variables present in records of both data sets and under the schema used to
create rHDF∗. When solution variability in Equation 4.6 is 100, there is at least one other
reconstruction rHDF′ that has no records in common with rHDF∗. In this case, rHDF∗
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may be a poor reconstruction of HDF, and any agreement between the two may be due
to happenstance. In general, solvar is an upper bound on the percentage of records in
rHDF∗ that could differ from any other possible reconstruction, including the actual HDF.
For example, if the solution variability is 10, then at most one-tenth of the records (i.e.,
10%) in rHDF∗ could differ from the actual HDF. Note that “differ” means that at least
one attribute of the record is incorrect; it does not necessarily mean all attributes in the
record were wrong.

It is worth noting that solution variability is a property specific to a given reconstruction
rHDF∗ because it measures the maximum percentage of records of rHDF∗ that can be
changed while still maintaining a feasible reconstruction. Thus two different reconstructions
rHDF∗ and rHDF† can have different solution variabilities. For instance, suppose rHDF∗ is
in the middle of the feasible region and rHDF† is in a remote corner of the feasible region.
Then, the solution variability of rHDF∗ is less than that of rHDF†.

Given that an attacker may use a different solver or statistical modeling to find a feasible
reconstruction, it is important for the data curator to understand the range of solution
variability any attacker may obtain. Fortunately, using our method, the data curator can
estimate a 100% confidence interval that is guaranteed to contain the attacker’s solvar
value. To do so, the data curator obtains a reconstruction rHDF∗, computes its solution
variability solvar(rHDF∗, g) for a region g, and appeals to the triangle inequality as follows.
For any other feasible rHDF′,

(4.7)
solvar(rHDF∗, g)

2
≤ solvar(rHDF′, g) ≤ max(2solvar(rHDF∗, g), 100),

and hence any attacker’s solvar will be within a factor of 2 of the data curator’s solvar.20

Computing solvar(rHDF∗, b) for each block b is manageable using GurobiTM, but com-
puting solvar for larger regions g can be very computationally expensive. Let Blocks(g)

denote the set of blocks composing region g and, as usual, Nb and Ng refer to the population
counts in block b and region g, respectively. Given solvar(rHDF∗, b) for each b ∈ Blocks(g),
we define cumulative solution variability, cumsolvar, as:

(4.8) cumsolvar(rHDF∗,Blocks(g)) =
1∑

b∈Blocks(g)

Nb

∑
b∈Blocks(g)

Nb × solvar(rHDF∗, b).

Recalling that Bt is the set of all the blocks in tract t, max(2cumsolvar(rHDF∗, Bt), 100)

is an upper bound on the percentage of records in tract t for which any two solutions to
rHDFb,t can differ.21 The function cumsolvar is of particular interest for regions g composed
of all blocks with solvar(rHDF∗, b) no greater than the qth percentile for different values
of q (see Table 6). In particular, we focus our attention on persons who live in the set
of blocks with cumsolvar = 0. For these blocks, we know that the attacker is certain

20These bounds also address a technical caveat which is appropriate for our implementation: as an
engineering quirk, the process we followed to produce the solution variability estimates involved re-solving
the initial reconstruction optimization problems, not directly re-loading the original reconstruction solutions
used for the initial reconstruction-abetted re-identification attack. The GurobiTM software that we used
for reconstruction is largely, but not completely, deterministic at default settings. This nondeterminism
could have caused the rHDF∗ used in solution variability problems to differ from the original reconstructed
solutions in some cases, although we suspect this would be unusual.

21The analogous claim is not true for rHDFb, because our solution variability models, described in
Equations 4.9 and 4.10, make use of some tract-level tabulations. By removing tract-level tabulations,
rHDFb is less constrained and so has a larger feasible region.
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that the reconstructed records are in HDF regardless of the method used to compute the
reconstruction.

4.6. Solution variability implementation details. The integer program that deter-
mines solution variability in geography g is computationally more expensive to solve than
solving for an initial rHDF∗. For an attacker who wants to target a small number of blocks
or tracts, that is not much of an issue. However, the data curator needs to compute the so-
lution variability for all block and tracts. We found that computing a solution to Equation
4.6, in which the feasible rHDF′ is required to be consistent with the block and tract level
tables, is too expensive to perform for the entire nation. Hence, we relaxed the optimization
problem to make it easier to solve while still allowing us to bound the solution variability
for an attacker who performs a reconstruction using block and tract-level tables. While
concerted research on this problem class is likely to yield faster solutions, we found that the
following changes made the problem easier to solve. First, we use the 38-bin age groupings
(feature agebin) that appear in the block-level tables.

Next, we change the starting solution, rHDFS0, around which solvar is computed by
relaxing the tract-level constraints that define a feasible solution from equality constraints
to inequality constraints. For a given block b′ and its containing tract t, we solve the
following optimization problem:

rHDFS0(b′) = argmax 0

(4.9)

s.t. Tt[tabname, rHDFS0(b′)] ≤ ctabname
t ∀ tabname ∈ Panel B of Table 2

Tb[tabname, rHDFS0(b′)] = ctabname
b′ ∀ tabname ∈ Panel A of Table 2.

The differences from the reconstruction in Equation 4.4 are that equality constraints for
tract-level tables become inequality constraints, and the other blocks in tract t are ignored
when computing a reconstruction for block b′. Specifically, only optimization variables for
block b′ are used when forming the tract-level constraints, hence the left-hand side of the
tract-level constraint is an underestimate of the counts in the tract-level tables.

Once we have rHDFS0(b′) for a block b′, we search for the rHDF′(b′) that is furthest
from rHDFS0(b′) while satisfying the same constraints. Specifically, for a given rHDFS0(b′)

corresponding to block b′ in tract t, we solved the following IP:

solvar(rHDFS0, b′) = 100× max
{feasible rHDF′}

L1{Hist(rHDFS0(b′)),Hist(rHDF′(b′))}
2Nb′

(4.10)

s.t. Tt[tabname, rHDFS0(b′)] ≤ ctabname
t ∀ tabname ∈ Panel B of Table 2

Tb[tabname, rHDFS0(b′)] = ctabname
b′ ∀ tabname ∈ Panel A of Table 2.

Note that the tract-level tables in the solvar Equation 4.10 appear in inequality constraints.
Variables for records in other blocks b ̸= b′ within the same tract t do not appear in this
optimization problem for block b′.

We note that the IP for the initial solution for rHDFS0 is a strict relaxation of the con-
straints used for the reconstruction rHDFb,t solving Equation 4.4. This implies that the
feasible region for rHDFS0 is a superset of the feasible region for rHDFb,t. Similarly, the
solvar IP in Equation 4.10 also searches for rHDF′ from a strictly larger solution space.
This property implies that max(2cumsolvar(rHDFS0,Bt), 100) upper-bounds the solvar



A Simulated Reconstruction and Reidentification Attack on the 2010 U.S. Census: Full Technical Report 31

value for tract t that an attacker would get using the stronger tract-level constraints. In
other words, max(2cumsolvar(rHDFS0, Bt), 100) upper-bounds the percentage of records
by which any two solutions to rHDFb,t can differ because first, the union ∪b∈BtrHDFS0(b)

is a solution to a problem with a strictly larger solution space than rHDFb,t, and sec-
ond, 2

∑
b∈Bt

solvar(rHDFS0, b) upper-bounds the percentage of records by which any two
solutions to this problem can disagree.

The problem relaxations we adopted, like the use of inequality rather than equality con-
straints for tract-level tabulations, probably made our upper bound on solution variability
much looser. Additionally, we have derived a bound on the distance between any two solu-
tions, but it would be sufficient for most purposes to derive a bound only on the distance
between the initial reconstructed solution and an alternative solution, which suggests our
solution variability values will often over-state the true solution variability by at least a
factor of two. Hence, strengthened (and even more concerning) solution variability bounds
may be produced in the future. However, since summing the block-level solution to Equa-
tion 4.10 and multiplying by two is also an upper bound on the exact solution variability for
the tract-level problem, the large number of blocks with zero block-level solution variability
will still contribute zero to the tract-level solution variability in the agebin schema. Thus,
the variability in these blocks is already upper-bounded by zero and cannot get tighter.
Tracts with zero tract-level solution variability found in solving the optimization problem
IP 4.10 must also have zero solution variability in any stronger tract-level IP.

We found that solution variability could be readily computed using the optimization in
Equation 4.10 for all 6,207,027 blocks with positive population in the 2010 Census tabula-
tions. This demonstrates that attackers have a public, computationally feasible method for
independently identifying blocks for which aggregation into tables introduces no additional
uncertainty about the underlying microdata beyond the SDL measures that were applied at
the record level to generate the HDF. No access to confidential data is required to perform
these solution variability calculations. Furthermore, population uniques found in blocks
with zero solution variability are provably population uniques in the HDF, again without
using any confidential data. And population uniques using the agebin feature are provably
population uniques on the exact age feature. Finally, incorporating additional SF1 tables
to the ones shown in Table 2 can only decrease solution variability. Since we used only 18
of the 177 census block-level tables and 16 of the 84 census tract-level tables, our solutions
to Equation 4.10 are also upper bounds on the solution variability of reconstructions that
use additional tables.

5. Matching and Reidentification Methodology

To assess the quality of the reconstructed microdata and execute the reidentification
experiments we perform several different types of matching between various data sources.
Referring again to Figure 1, we now discuss the methodology employed to compute agree-
ment between the reconstructed and confidential data and to measure the success of our
reidentification experiments using those reconstructions.

For either rHDFb,t or rHDFb, our first-order assessment of the quality of the reconstructed
microdata matches these reconstructions directly to both the HDF and CEF. This is not a
record-linkage assessment. It compares the reconstructed microdata directly to the source
microdata for the contingency tables in SF1, namely HDF, and to the source microdata for
HDF, namely CEF. We label this step the agreement match because it provides measures
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of agreement in record-level feature values between rHDFb,t or rHDFb and the confidential
HDF and CEF. After the agreement match, we do record-linkage based reidentification
matches to see how accurately an attacker can infer race and ethnicity from the recon-
structed microdata. Thus, we link rHDFb,t and rHDFb separately to both commercial data
and a specially constructed extract from the CEF called CEFatkr that includes linking vari-
ables (quasi-identifiers) from the schema in Equation 4.2 and the person identifier pik but
no other variables—specifically, not race or ethnicity. These feature sets are shown in the
rows COMRCL and CEFatkr on Table 1.

By record linkage of the quasi-identifiers {block, sex, (age or agebin)} in reconstructed
microdata to attacker databases that include names (feature pik), we create putative rei-
dentifications. To enhance the attacker’s database, we attach the data on {race, ethnicity}
found on rHDFb,t or rHDFb to the {pik, block, sex, (age or agebin)} information in the
attacker’s database—either COMRCL or CEFatkr. The feature sets for the records in these
putative reidentification databases are shown in the rows labeled Putative rHDFb,t and
Putative rHDFb in Table 1. Finally, to evaluate the accuracy of the putative reidentifi-
cations, and classify confirmed reidentifications, we match putative reidentifications to the
full CEF, linking on {pik, block, sex, (age or agebin)} and comparing the {race, ethnicity}
inferred from the reconstructed microdata (attached to a putatively reidentified person) to
that person’s actual census responses in the CEF. We label the reidentification confirmed,
when {pik, block, sex, (age or agebin), race, ethnicity} all match in either the schema in
Equation 4.2 for the feature age or the schema in Table 5 for the feature agebin. The
feature sets for these confirmed reidentifications are shown in the rows labeled Confirmed
rHDFb,t and Confirmed rHDFb in Table 1. Finally, we use the ratio of confirmed to putative
reidentifications as the measure of precision or accuracy for the attack.

To make the meaning of this exercise as clear as possible, we state the attacker model
we are simulating concisely here. The attacker is an entity external to the Census Bureau
with no access to the confidential data contained in HDF or CEF. The attacker has access
to all published 2010 Census data—every table in SF1, in particular. The attacker selects
a subset (possibly the universe) of these tables and performs record-level reconstruction,
possibly using the algorithms in this paper. The attacker also has access to an external
database that contains name and address (or some other personal identifying information
sufficient to tag a unique person like Social Security Number) and quasi-identifiers—features
that match some of the features in SF1—specifically, census block (geocoded from address),
sex, and age. Notice that we have explicitly used the same feature set definitions for the
attacker’s database as we used in our reconstruction. This is an essential characteristic of
a record-linkage attack—the attacker knows enough about the definitions of the feature set
for SF1 to construct quasi-identifiers with the same schemas. The attacker matches the
external data to the reconstructed record-level data from SF1 using the matching variables
(quasi-identifiers) {block, sex, age} and adds the other variables reconstructed from SF1
to the external database. These added variables can include any feature tabulated in SF1,
including those tabulated for housing units and householders because those data can be
reconstructed as part of the record for “person 1” or “householder,” the individual who com-
pleted the census responses for the persons living in the housing unit. In our experiments
the extra variables are {race, ethnicity}.

Implementing additional features in the reconstructed data is outside the scope of this
paper; however, it is straightforward to add the feature “relationship to householder.” We
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sketch the details here. See the documentation for Table P29 Household Type by Rela-
tionship (U.S. Census Bureau, 2012, pp. 6-46–6-47). Notice that the universe is “Total
Population,” which implies that the marginal total in each of these block-level tables is
the block population in Table P1. Create binary variables for the 20 mutually exclusive
and exhaustive relationships defined in Table P29: family male householder, family female
householder, spouse, biological child, adopted child, stepchild, grandchild, brother or sister,
parent, parent-in-law, son-in-law or daughter-in-law, other relatives, nonrelatives, nonfam-
ily male householder living alone, nonfamily male householder not living alone, nonfamily
female householder living alone, nonfamily female householder not living alone, nonfamily
nonrelatives, group quarters institutionalized person, and group quarters noninstitutional-
ized person. Add the statistics from Table P29 to the set in Table 2. Add the constraints
implied by these tables to the IP in Equations 4.4 and 4.10. To further reduce solution
variability, if any, in the relationship variables and {race, ethnicity}, add Tables P29A–P29I
Household Type by Relationship for major {race, ethnicity} categories. To further reduce
the solution variability, if any, in the household population universe, add Table P30. To
further reduce the solution variability, if any, for children add Tables P31 and P32. To
further reduce the solution variability, if any, for persons ages 65 and older, add Table P34.
It is not necessary to add the full variable “relationship to householder” to further reduce
solution variability in the features {race, ethnicity}. Using only “lives in household” (all
relationships except the last two) and “lives in group quarters” (the last two relationships),
use Tables P16A–P16I Population in Households by Age for major {race, ethnicity} cat-
egories. Once the relationship “householder” has been reconstructed (all categories that
contain the word householder), solution variability for the householder’s {race, ethnicity}
can be further reduced by adding Tables P18A–P18I Household Type for major {race, eth-
nicity} categories. Many tract-level SF1 tables also contain information that can further
reduce remaining solution variability.

At this point the attacker is using the information from what we call putative reidentifi-
cations as record-level variables on the external database. The attacker may not care about
the quality of these putative reidentifications; however, because the solution variability in
the schema of our attack is zero for 70% of all census blocks using just the 34 tables in
Table 2, the attacker may be satisfied with the 97 million persons for whom they know
with certainty they have exactly the information on the confidential internal database. Al-
ternatively, the attacker can keep adding tables from SF1 until solution variability is zero
for as large a portion of the target population as desired. For all records for which solution
variability is 0, the attacker knows with certainty that the data added from SF1 for those
persons match the confidential source records exactly. That is, the attacker knows that they
have an image of the confidential Hundred-percent Detail File (HDF) that is completely
accurate in the schema of the feature set used for SF1 and the attack. Traditional SDL did
not anticipate the possibility of reconstructing accurate microdata from published tables.
That is the new feature of our experiments. However, the reidentification attacks we sim-
ulate using the record-level reconstructed data exactly match the textbook descriptions of
such attacks. See, for example, Duncan et al. (2011, Figure 2.1, pp. 56-58).

In our experiments, we use the CEF itself as a labeled database to confirm the accuracy
of inferences about {race, ethnicity}. An external attacker would need a similar labeled
database to confirm the accuracy of those inferences. It need not be a complete enumeration
like the CEF. Small-scale sample surveys or methods like those in Rocher et al. (2019) and
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Dick et al. (2023) could be used. Or the data steward could allow the publication of data
about how accurate those inferences would be, as the Census Bureau is doing by releasing
the statistics found in this paper. If those inferences are sufficiently more accurate than
well-specified baselines, then the confidentiality protections have failed. Such failure is not
a {0,1} event. It is a continuum on [0, 1]. Our methodology calibrates this continuum
using the precision of inferences about the features added to the external data from SF1 via
the record-linkage attack—specifically, the ratio of confirmed to putative reidentifications.
Our vulnerable population is persons who are different from their neighbors on race and
ethnicity. We use the census block to define their neighbors. Other vulnerable populations
in the 2010 Census include those for whom any characteristic collected on that census differs
from their neighbors.

Our methodology properly distinguishes between vulnerable populations—those where
baseline statistical models have low precision and fail to make correct inferences—and non-
vulnerable populations—those where baseline statistical models have high precision and
generally make correct inferences. We use the results for vulnerable populations to illus-
trate the confidentiality protection failures in the 2010 Census publications. Specifically,
the high reidentification precision rates for vulnerable populations are entirely due to the
use of the vulnerable person’s data in the published tables. The most vulnerable persons
are population uniques. Delete their data, and the tables that would have contained their
responses are completely silent on the risky feature values; that is, the precision of baseline
statistical inferences is exactly 0. The vulnerable populations were supposed to be pro-
tected by the use of record-level swapping targeting specific population-unique households,
but those protections did not recognize how widespread such vulnerable populations were
nor how their data could be reconstructed from the ensemble of tables. This confidentiality
protection failure can be addressed within a variety of SDL frameworks. We use our re-
construction and reidentification methodology to evaluate three such frameworks: the 2020
Census DAS (Disclosure Avoidance System), which uses a differential privacy framework to
generate noisy estimates of various census tabulations, then uses mathematical optimiza-
tion to find microdata that closely approximates these noisy estimates; enhanced versions
of the household swapping framework used for the 1990, 2000 and 2010 Censuses; and the
incomplete suppression system used for the 1980 Census.

5.1. Agreement match. Algorithm 1 is the basic matching algorithm used generically as
part of the agreement, putative, and confirmation matches. Given two databases and a
set of common features, Algorithm 1 matches records on the set of features exactly and
without replacement.The algorithm iterates over the rows in the left database (L) searching,
in order, over the rows in the right database (R) to look for the first (if any) record that
matches on all the selected features. If a matching record is found, the matching records
in the left and right databases are both removed and the algorithm continues to the next
record in the left database, again looking for a match in the right database. Notice that
an essential feature of this matching algorithm is that every record in the left and right
databases is at risk for one, and only one, match. It is not possible for a common record
type in, say, the right database to be linked to many records in the left database. Failure
to enforce this condition results in spurious claims about match rates as, for example, in
Ruggles and Van Riper (2022).

The rHDFb,t, rHDFb, CEF, and HDF have an overlapping feature set that supports the
schema in Equation 4.2, namely {block, sex, age, race, ethnicity}, as well as the schema
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Algorithm 1 Match
Require: Data L, R, and a set of features P where p = dim(P ), that L and R have in

common. The notation L[l, {1, . . . , p}] selects row l and features 1, . . . , p from L and
similarly for R[r, {1, . . . , p}].
Returns: Index M of link records
Returns: Data L,R reduced to non-matches
Returns: Count of matches

1: procedure MATCH(L,R, P )
2: Match ← 0
3: for l← 1 to rows(L) do
4: for r ← 1 to rows(R) do
5: if L[l, {1, . . . , p}] = R[r, {1, . . . , p}] then ▷ MATCH = TRUE
6: pop(l);pop(r) ▷ Remove records indexed by l and r

7: M ← (M, {l, r}) ▷ Append to link index
8: BREAK ▷ Break out of r loop
9: end if

10: end for
11: end for
12: Match ← rows(M) ▷ Count
13: return L,R, Match, M ▷ L and R have been reduced by Match records
14: end procedure

in Table 5 supporting IP 4.5 where age is replaced by agebin. In order to measure how
well reconstructed records match the underlying confidential data in HDF and CEF, we use
Algorithm 2 to match the reconstructed microdata to our confidential databases on common
features. Algorithm 2 works block-by-block implementing Algorithm 1 in two passes. First
it finds all matches using {block, sex, age, race, ethnicity}, and then it finds any remaining
matches using {block, sex, agebin, race, ethnicity}. The algorithm returns the unmatched
records, counts of the matched records in both passes, and indices of the matched records
in the original database for both passes by census block.
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Algorithm 2 Agreement
Require: Data L, with n records and features P = {block, sex, race, ethnicity, age, agebin}
Require: Data R, with m records and features P = {block, sex, race, ethnicity, age,

agebin}
block is the geo identifier on L and R

1: procedure agreement(L,R)
2: P1 ← {block, sex, race, ethnicity, age} ▷ Matching Features Pass 1
3: P2 ← {block, sex, race, ethnicity, agebin} ▷ Matching Features Pass 2
4: for block ∈ L do
5: Lblock ← Select block ∈ L

6: Rblock ← Select block ∈ R

7: ExactAgeMatch[block] ← 0 ▷ Indexed by [block]
8: BinAgeMatch[block] ← 0 ▷ Indexed by [block]
9: L′, R′,ExactAgeMatch[block],M ′ ← MATCH(Lblock, Rblock, P1) ▷ Pass 1

10: L′′, R′′,BinAgeMatch[block],M ′′ ← MATCH(L′, R′, P2) ▷ Pass 2
11: end for
12: return M ′,M ′′,ExactAgeMatch,BinAgeMatch
13: end procedure

5.2. Reidentification match. Our reconstruction-abetted reidentification attack uses the
common features between the reconstructed database and the attacker database (either
COMRCL or CEFatkr) to attach features previously unknown to the attacker, in this case
{race, ethnicity}, to the attacker database by linking on the common features {block, sex,
(age or agebin)}. Thus, the attacker learns information about the database members that
was previously not available. To evaluate the strength of the inference an attacker might
achieve from access to improved auxiliary data, we compare the results from the lower-
quality commercial data that were acquired by the Census Bureau contemporaneously with
the 2010 Census with higher-quality attacker database formed by extracting {pik, block,
sex, age} directly from the CEF, called CEFatkr. When CEFatkr is the attacker database,
we exclude pik from the putative match linkage, using only the linking features {block,
sex, (age or agebin)}, as we do with the commercial data. In general, we denote the
attacker’s external database as DX and the reconstructed database as DR. Note that
DX may have incomplete coverage, rows(DX) < rows(DR) and may contain incorrect
information relative to the confidential data.
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Algorithm 3 Putative reidentification, using DR

Require: Data L = DR, with n records and features PR = {block, sex, race, ethnicity,
age, agebin}

Require: Data R = DX , with m records and features PX = {pik, block, sex, age, agebin}
block is the geo identifier on L and R

1: procedure Putative(L,R)
2: P1 ← {block, sex, age} ▷ Pass 1 matching features
3: P2 ← {block, sex, agebin} ▷ Pass 2 matching features
4: PS = {race, ethnicity} ▷ Sensitive features
5: for block ∈ L do
6: Lblock ← Select block ∈ L

7: Rblock ← Select block ∈ R

8: ExactAgeMatch[block] ← 0 ▷ Indexed by [block]
9: BinAgeMatch[block] ← 0 ▷ Indexed by [block]

10: L′, R′, ExactAgeMatch[block], M ′ ← MATCH(Lblock, Rblock, P1) ▷ Pass 1
11: L′′, R′′, BinAgeMatch[block], M ′′ ← MATCH(L′, R′, P2) ▷ Pass 2
12: end for
13: return M ′,M ′′, ExactAgeMatch, BinAgeMatch
14: end procedure

Attach sensitive features
15: D1

X ← DX ∩r M ′ ∩l DR[l, PS ] ▷ Exact age matches
16: D2

X ← DX ∩r M ′′ ∩l DR[l, PS ] ▷ Bin age matches
17: DX+ ← (D1

X , D2
X).

A successful match between records in DR and DX , based on the common features {block,
sex, (age or agebin)}, is called a putative reidentification, since the attacker must collect
additional information, possibly through independent field work or simulation studies, to
verify that the putative match is correct.22 Our record-linkage algorithm for generating
putative matches is shown in Algorithm 3. Like the agreement match algorithm, Algo-
rithm 3 consists of two passes that first match on age for the complete input databases and
then match on agebin for the unmatched residual from pass one. The algorithm returns an
enhanced attacker external database DX+ consisting of records from DX for which a match
was found in the reconstructed database with sensitive features {race, ethnicity} appended.

Given the enhanced attacker external database DX+, we next determine if the {race,
ethnicity} values appended from the reconstructed data match the confidential census re-
sponses in the CEF exactly. Algorithm 4 encodes this procedure. Like the agreement and
putative reidentification algorithms, Algorithm 4 consists of two passes that first match on
age for the complete input databases and then match on agebin for the unmatched residual
from pass one. Records that meet the matching criteria are called confirmed reidentifica-
tions.

22If the process of classifying the putative reidentifications in the reconstructed data as “correctly
matched” or “incorrectly unmatched” to the external database is considered a statistical classifier, then
the attacker needs a labeled training sample.



A Simulated Reconstruction and Reidentification Attack on the 2010 U.S. Census: Full Technical Report 38

Algorithm 4 Confirmed reidentification
Require: Data L = DX+, with q < n records and features PCEF = {pik, block, sex, race,

ethnicity, age, agebin}.
Require: Data R = DCEF , with n records and features PCEF .
1: procedure Confirmation(L,R)
2: P1 ← {pik, block, sex, race, ethnicity, age}. ▷ Pass 1 matching features
3: P2 ← {pik, block, sex, race, ethnicity, agebin}. ▷ Pass 2 matching features
4: for block ∈ L do
5: Lblock ← Select block ∈ L

6: Rblock ← Select block ∈ R

7: ExactAgeMatch[block] ← 0 ▷ Indexed by [block]
8: BinAgeMatch[block] ← 0 ▷ Indexed by [block]
9: L′, R′, ExactAgeMatch[block],M ′ ← MATCH(Lblock, Rblock, P1) ▷ Pass 1

10: L′′, R′′, BinAgeMatch[block],M ′′ ← MATCH(L′, R′, P2) ▷ Pass 2
11: end for
12: return M ′,M ′′, ExactAgeMatch, BinAgeMatch
13: end procedure

5.3. Statistical baselines. In order to capture confidentiality-violating (non-LOO) infer-
ences rather than statistical or generalizable (LOO) inferences, the results of the reiden-
tification attack need to be compared to inferences that would be possible in a privacy-
preserving counterfactual setting in which the same data are provided, except that a target
individual’s record has been removed. In this case, we would compare inferences made
about the removed person from the published 2010 Census data to inferences that would
be made in the counterfactual world in which the person was removed. Exact comparisons
of this sort are difficult because they involve removing a target individual, re-swapping and
re-tabulating the data, performing reconstruction and reidentification to make inferences
about the individual, and then repeating this process for every person in the United States,
or at least a meaningful subset.

In lieu of explicitly leaving each record out, as in the first-best approach, we develop base-
lines that focus on small populations (census blocks) and emphasize inferences about persons
not matching the modal race and ethnicity in their block. The intuition is that persons with
nonmodal {race, ethnicity} and who are unique on {block, sex, age} or {block, sex, agebin},
according to the operative schema, are of particular interest. In these cases, the recon-
struction-abetted reidentification attack could not have even identified a corresponding
record as a putative reidentification had the target record been absent from the CEF.
These cases are not uncommon—fully 44% of all persons in the CEF are unique on these
three variables. We posit two “statistical guessing” baselines that generate inferences by
using either the modal {race, ethnicity} in the block-level race × ethnicity distribution
(MDG, for modal guesser), or by guessing with probabilities proportional to the frequency
of each {race, ethnicity} in the block-level race×ethnicity distribution (PRG, for probabil-
ity guesser). We compare the performance of these statistical baselines to the performance
achieved by the reconstruction-abetted reidentification attack. Our statistical baselines sim-
ulate the counterfactual world in which statistical (non-confidentiality-violating) methods
based on the CEF are used to generate an inference about a person who had been removed
from the CEF.



A Simulated Reconstruction and Reidentification Attack on the 2010 U.S. Census: Full Technical Report 39

Using these statistical baselines, we emphasize the analysis of small populations that
differ significantly from the people around them because inferences on these target popu-
lations are likely to be especially sensitive to the presence or absence of a target person’s
record. We attempt to approximate performance in the counterfactual world (removing
the target person’s record) by comparing to attackers armed with statistical information.
By considering only a small subset of possible inferences and by allowing these statistical
guessers to use information that implicitly treats the release of block-level race× ethnicity
distribution even in very low-population blocks as statistical, this approach probably un-
derestimates the true extent of confidentiality violations. However, it is computationally
tractable and identifies a class of inferences and a group of target persons for which it is
difficult to view the resulting inference precision as anything but a confidentiality violation.

We illustrate these baselines with an example: given the homogeneity of race and eth-
nicity within blocks, it would be reasonable to use the {race, ethnicity} data from other
individuals in a block to make inferences about the target person. For example, suppose
a block consisted of 10 people {r1, . . . , r10}, with the first 9 being White alone, and the
10th person being Asian alone. All are non-Hispanic.23 When the target person is r1, the
attacker in the counterfactual world (r1’s record is removed) would see 8 White-alone indi-
viduals and 1 Asian alone. MDG would predict that the target person is White while PRG
would guess randomly in proportion to each type, assigning White alone with probability
8/9 and Asian alone with probability 1/9. Alternatively, if the target person is r10, the at-
tacker in the counterfactual world would see 9 White-alone individuals, and both the modal
and proportional guessers would incorrectly guess White alone. Repeating such an exercise
across all individuals would result in a modal guesser achieving an accuracy of 90% (the
only mistake coming when the target individual is Asian alone) while the expected accuracy
of the proportional guesser is approximately 81.1%. To simplify the calculations of these
baselines, we use upper bounds. An upper bound on the accuracy of the modal guesser is
the fraction of the census block’s population that reports the modal {race, ethnicity} in
the block. The upper bound on the accuracy of the proportional guesser is

∑
i p

2
i , where

{p1, p2, . . . } are the proportions of the block’s population of each race× ethnicity cell.
Note that the modal guesser is targeting overall accuracy and would perform poorly when

guessing the race and ethnicity of minorities within a block. The proportional guesser would
perform better with minorities at the expense of overall accuracy, and so both baselines
deserve consideration. Comparing the accuracy of reidentification experiments in small,
nonmodal populations involving the reconstructed microdata (rHDFb,t and rHDFb) and
the statistical baselines (MDG and PRG) estimates the improved inference about these
individuals due to the used of their actual census responses in the data—the privacy cost
of the individual’s participation in the census. In terms of causal inference, the statistical
baselines represent the inference accuracy of alternative estimates from the counterfactual
world (in which the target person’s data were not used in the publications) whereas the
inferences from the reconstructed data represent the inference accuracy of the observed
world (in which the target person’s data were used in the publications).

23In Census Bureau nomenclature, “White alone” means the individual responded White in the WHITE
set of schema 4.2 and did not select any of the other five choices. Similarly, the Asian-alone respondent
selected Asian from the ASIAN schema and did not select any of the other five choices. All 10 respondents
selected Not Hispanic or Latino in the HISP schema.
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There are two additional points worth making. The first is that the feature set {race,
ethnicity} can also be inferred using the name of the target individual (in which case, the
name needs to be part of the observed world and counterfactual inferences). However,
since the reconstruction and reidentification algorithms used in this paper do not model
this interaction, it is reasonable to omit it from the baseline. What is important for the
comparison between the reconstruction and the statistical baseline results is: (1) all else
being equal, the estimated privacy cost of being included in the census data publications is
the difference in inference accuracy of the reconstruction versus the statistical baseline,24

and (2) the contrast between the reconstruction and the statistical baseline inferences gives
a lower bound on this privacy cost—the actual confidentiality breach could be larger but
not smaller.

Furthermore, had the reconstruction used additional variables in the published tables
(including household composition), the reconstructed data could have included additional
attributes that are much harder to predict using only statistical information than are race
and ethnicity. In those cases, the gap between inference due to reidentification and statisti-
cal inference would be much larger. Hence, this is another sense in which the experiments
we performed understate the true privacy cost.

In order to assess the relative accuracy of reidentifications using either the MDG or
PRG, we generate two databases, one containing the modal value of race × ethnicity in
the census block (used by MDG) and the other containing one guess per record using the
probabilities proportional to the distribution of race× ethnicity in the census block (used
by PRG). Specifically, we use the HDF to create a frame of {block, sex, agebin} to which
we attach the statistical baseline guesses of {race, ethnicity}. For the MDG database, we
then compute, for each block, the modal value of the race × ethnicity distribution and
attach it to each record in the block.25 For the PRG database, we randomly select a {race,
ethnicity} pair for each record, guessing each {race, ethnicity} in proportion to its relative
frequency within the block-level race × ethnicity distribution.26 We substitute each of
these statistical baselines for the reconstructed HDF in the reidentification experiments to
generate the baseline statistics. Note that the rHDFb, rHDFb,t, MDG, and PRG databases
have identical putative match rates using the binned age schema in Table 5 by construction,
since all rely on an identical frame of {block, sex, agebin} and both reconstructions perfectly

24A large difference between the reconstruction accuracy and the statistical baseline accuracy when less
information is used, that is, when name is not used for the race and ethnicity inference, is particularly
concerning because it directly indicates that confidentiality has already been breached and that additional
information from the census response could be precisely revealed in a larger attack based on all SF1 tables.

25Given a tie in the block-level modal {race, ethnicity} or a block population of 1, we attempt to assign
the block-group-level modal value. (In the Census Bureau geographic hierarchy, the level between census
tract and census block is the block group.) In the rare event that no block group mode can be assigned,
either because of a block-group-level tie or a block group population of 1, we assign the block the national
modal {race, ethnicity}, which is non-Hispanic, White alone. Using this methodology, 95.58% of blocks
(housing 99.44% of total population) had a unique modal value for race × ethnicity and 4.42% of blocks
were assigned the block group-level modal value. 0.00% of blocks required resolution using the national
modal value. A similar exercise could be performed using published tables. One could use the tabulations
in tables P12 and P14 from SF1 to create a frame of microdata records containing {block, sex, agebin},
then use SF1 Tables P8 and P9 to compute the block-level MDG modal values.

26Similarly to MDG, the public tables can can be used to proportionally select {race, ethnicity} PRG
values.
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replicate this frame because tables P12 and P14 are fully saturated for {block, sex, agebin}.
The feature sets for MDG and PRG are shown in the the rows so labeled in Table 1.

Finally, we define several reidentification metrics that capture the accuracy of inferences
an attacker can make about the target sensitive characteristics. Putative reidentifications
are the records for which the attacker attempts to infer {race, ethnicity}. Confirmed rei-
dentifications are the records for which the attacker is correct. The attacker’s precision is
the ratio of the number of correct inferences to the number of attempted inferences. Thus,
we define the putative and confirmed reidentification rates as well as the precision rate as
follows:

(5.1) Putative Reidentification Rate = 100× count of putative reidentification records
count of attacker records

,

(5.2) Confirmed Reidentification Rate = 100× count of confirmed reidentification records
count of attacker records

,

(5.3) Reidentification Precision Rate = 100× count of confirmed reidentification records
count of putative reidentification records

.

We use these statistics to compare our reidentification results with nonstatistical baselines like the HDF
itself (i.e., how much better would the reidentification be if the reconstruction were a perfect match to
HDF) and with the statistical baselines MDG and PRG. In all cases, the attacker model is the same. The
attacker begins with tabular summaries produced from a confidential source, the HDF. Then, the attacker
reconstructs record-level images of the persons represented in the tables using either the schema rHDFb,t

or rHDFb as illustrated in Table 1. Next, the attacker uses a record-level image that contains identifiable
names (pik, in this work) and linking variables using the same schema as the reconstructed data, as in the
COMRCL and CEFatkr rows of Table 1, to perform a record-linkage attack that associates the features
race and ethnicity with each record in the attacker database. This step produces a record-level database
with the features noted in the putative rows of Table 1. Finally, we assess the accuracy of the attack by
linking the putative files back to the original confidential data using the features pik and block for linkage,
but assessing the accuracy by comparing all features in the row CEF in Table 1.

In summary, the principal indicator of a confidentiality breach is that the precision rate in Equation 5.3
for inferences based on the reconstructed microdata substantially exceeds the precision rate for inferences
based on the statistical baselines. The gain in precision, which we will also call the gain in inference
accuracy, from the reconstructed data compared to the statistical baseline need not be infinite to constitute
a confidentiality breach. The upper-bound on the precision rate of any inference is the precision of that
inference based on the CEF itself, since we take it as self-evident that releasing every person record in the
CEF for the feature set {block, sex, age, race, ethnicity} is a breach of confidentiality.

6. Reconstruction Solution Variability Is So Limited
That Simulation Assessment Is Unnecessary

6.1. Solution variability. In this section we show that the reconstructed 2010 Census microdata have
remarkably little solution variability. That is, about one-third of the reconstructions are exact for the
census block-level variables (binned-age schema). The remaining records have very little error—none at all
in census block, sex, and binned age, and a small amount in race and ethnicity. Given these results, there
is no real advantage to generating additional reconstruction solutions. The main conclusions can be drawn
from the 97 million records that are solved exactly. Hence, given the very low solution variability, we assess
the agreement of the full image of HDF embodied in rHDFb,t and rHDFb by comparing our reconstructed
microdata directly to the confidential HDF and CEF using Algorithm 2. Because the solutions are not
highly variable, using a single reconstruction is computationally simpler than simulation assessments like
those of Dick et al. (2023) and Rocher et al. (2019) while still allowing the quantification of worst-case
variability.

Table 6 shows every fifth percentile of the cumulative distribution of solvar, which is always assessed
using the {block, sex, agebin, race, ethnicity} feature set. The cumulative distribution shown in the table
is computed over census blocks, not persons. Thus there are 6, 207, 027/20 = 310, 351 blocks in each cell of
the cumulative distribution, the population of which is shown in the “Population (×103)” column.
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Table 6. Empirical Percentiles for Census Block-Level Solution Variability

Block Maximum Cumulative Cumulative Maximum
Percentile solvar solvar Population Population solvar Cumulative

(%) (%) (%) (×103) (×103) (%) solvar (%)

5 0.0 0.0 6,398 6,398 0.0 0.0
10 0.0 0.0 6,376 12,774 0.0 0.0
15 0.0 0.0 6,381 19,155 0.0 0.0
20 0.0 0.0 6,372 25,527 0.0 0.0
25 0.0 0.0 6,391 31,918 0.0 0.0
30 0.0 0.0 6,376 38,294 0.0 0.0
35 0.0 0.0 6,376 44,670 0.0 0.0
40 0.0 0.0 6,376 51,046 0.0 0.0
45 0.0 0.0 6,381 57,427 0.0 0.0
50 0.0 0.0 6,372 63,799 0.0 0.0
55 0.0 0.0 6,412 70,211 0.0 0.0
60 0.0 0.0 6,376 76,587 0.0 0.0
65 0.0 0.0 6,380 82,967 0.0 0.0
70 0.0 0.0 14,271 97,238 0.1 0.2
75 1.7 3.4 34,272 131,510 0.9 1.8
80 4.7 9.3 28,281 159,790 1.8 3.6
85 7.3 14.6 28,776 188,566 2.9 5.8
90 10.5 21.1 30,319 218,884 4.2 8.4
95 14.6 29.3 36,466 255,351 6.1 12.3

100 21.1 42.1 53,395 308,746 10.0 20.1

Notes: This table is based entirely on public data. All statistics are displayed to full precision. Solution
variability is the statistic solvar in Equation 4.10, which has been sorted in increasing order by census
block. Maximum solvar is an upper bound on the solution variability of any reconstruction as given in
Equation 4.7. Cumulative solvar is the statistic cumsolvar in Equation 4.8 when the blocks have been
sorted in increasing order of solvar. Maximum cumulative solvar is an upper bound on the cumulative
solution variability of any solution to the rHDFb,t reconstruction. Percentiles are defined over census
blocks, not persons. Block ties in the definition of solvar percentiles were broken randomly. Consequently,
running the replication package for this table may result in minor variations in the population, cumulative
population, and cumulative solution variability columns. Cumulative solvar is subject to accumulated
tiny fractional values of solvar, which is why it is 0.1 for the 70th percentile and not 0.0.

For 70% of all blocks, representing 97,238,000 person records, solution variability is 0. The reconstructed
records for those individuals are guaranteed to match their confidential HDF records exactly using the
agebin schema. The maximum solution variability for any block in the 75th quantile is 3.4%. Since there
are 34,272,000 people in this quantile, this means that at most 1,165,000 records in this quantile can differ
from their confidential source on race or ethnicity. The maximum cumulative solution variability given any
feasible solution for all census blocks, containing all 308,746,000 persons, is just 20.1%. Because this bound
applies to any feasible solution, and because the solution variability IP in Equation 4.10 upper-bounds
solvar even when using additional constraints, in any other reconstruction solution for rHDFb,t no more
than 20.1% of all records can differ from their HDF record on the value of even a single feature, evaluated on
the {block, sex, agebin, race, ethnicity} schema, and all additional age variability in solutions for rHDFb,t

must be within agebin categories. Thus, if agebin is sufficient for both high agreement rates and high
reidentification precision, the additional solution variability of the feature age within the feature agebin
does not matter for our assessments.
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Finally, we note that Abowd and Hawes (2023) and Hawes (2022) report reconstruction agreement and
solution variability results based on 32 of the 34 tables shown in Table 2—excluding P8 and P10.27 When
those two tables are omitted, solution variability is zero for only 65% of blocks (82.9 million persons),
demonstrating empirically the mathematical property of the solution variability IP 4.10—as more tables
are added the solutions become less variable. In this case, two tables with additional race data for all
persons and persons age 18 and older increased the number of zero solution variability records by 14.3
million. That is 14.3 million additional people for whom the attacker is certain that the reconstructed
record matches the HDF record exactly using the agebin schema.

Our solution variability results imply that for much of the U.S. population the record-level image of the
features used to create the census tract and block-level data shown in Table 2 is essentially an exact copy
of HDF on the binned-age schema. Thus, the SF1 data shown in Table 2 are equivalent to the microdata
HDF records for the {block, sex, agebin, race, ethnicity} feature set. The release of these microdata was
prohibited by the 2010 Census disclosure avoidance rules (McKenna, 2019a).

Permission to release the reconstructed HDF was approved in 2022 under clearance number CBDRB-
FY22-DSEP-004. The public replication archive for this paper includes a sample of the reconstructed
records in 29 tracts with zero solution variability, all necessary inputs and programs to reconstruct the
entire 308,745,538 person records for rHDFb,t and rHDFb from public data, and everything required to
confirm our solution variability results.

We conclude from Table 6 that evaluation of the vulnerability of the reconstructed data to record-linkage
attacks can be assessed without using simulation methods. The upper-bound on the 100% confidence inter-
val for any percentage point solution variability statistic s, when computed on the universe of reconstructed
records, reported in these results is [max(0, s−20.1),min(100, s+20.1)]. When the statistic s is calculated
on the universe with zero solution variability, the upper-bound on the 100% confidence interval is s± 0.28

Table 7. Population Uniques and Solution Variability by Census Block Size

Census Zero Solution Variability
Block Population Unique Count Blocks Count

Size Blocks (×103) (%) Blocks (×103) (%) (%)

1-9 1,823,665 8,070 81.7 1,815,218 8,011 99.5 99.3
10-49 2,671,753 67,598 50.3 2,096,508 48,409 78.5 71.6
50-99 994,513 69,073 26.9 324,641 21,474 32.6 31.1

100-249 540,455 80,021 12.2 67,884 9,156 12.6 11.4
250-499 126,344 42,911 3.4 3,718 1,174 2.9 2.7
500-999 40,492 27,029 0.8 308 196 0.8 0.7
1,000+ 9,805 14,043 0.2 105 169 1.1 1.2

Notes: Census Block Size is the population range in the census block. The Blocks, Population, and Zero
Solution Variability Count statistics are displayed to full precision because they can be determined
entirely from public data. The Unique (%) column is based on the CEF and rounded to no more than
four significant digits to conform to disclosure limitation requirements. Unique (%) shows the percentage
of total population in the block that are data-defined and unique for values of the feature set
{block, sex, agebin}.

Table 7 shows the percent of population uniques by census block size, for all blocks, and for those with
zero reconstruction solution variability. Over 99% of the population in the smallest blocks are in blocks
where there is only one set of microdata records consistent with the published tables, meaning that a
population unique on {block, sex, agebin} is identified with certainty. Even among blocks with population
from 10 to 49, 71.6% of individuals are in blocks with unique reconstructed microdata, meaning that in

27These results were the basis for presentations the Census Bureau’s Scientific Advisory Committee,
whose working group on differential privacy was monitoring the research and implementation decisions
underlying the 2020 Census Disclosure Avoidance System.

28Because the reconstruction target is a finite database, HDF, and the solvar IP in Equation 4.10 upper
bounds any feasible reconstruction, the meaning of the term 100% confidence interval is that no feasible
solution outside the stated confidence interval exists.
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those blocks a population unique on {block, sex, agebin} is also identified with certainty. Among blocks
with 50-99 individuals, zero solution variability blocks are less common, but still substantial. Overall, 70%
of all blocks had no solution variability, representing 97,238,000 persons, as shown in Table 6. Since a
record that is population unique on the feature set{block, sex, agebin} must also be unique on {block, sex,
age}, no access to confidential data is required to learn the uniqueness of the most basic set of quasi-
identifiers—residence location, sex, and age—and, therefore, the associated feature values {race, ethnicity}
in the confidential HDF. Traditional SDL considers this exposure of population uniqueness in released data
de facto prohibited disclosure: “[i]f a unit is population unique then disclosure will occur if a snooper knows
it is unique” Duncan et al., 2011, pp. 42-43). Swapping the confidential CEF to create the confidential
HDF introduces some uncertainty in the inference about the learned feature values {race, ethnicity}, but
that uncertainty is upper bounded by the swap rate, which the Office of National Statistics in the United
Kingdom has acknowledged by publishing the swap rate and stating that adding additional noise to every
tabular summary was also required, effectively mimicking the consequences of the U.S. Census Bureau’s
2020 DAS without using a differential privacy framework (Office for National Statistics, 2023a, 2023b;
Spicer, 2020).

6.2. Reconstructed data agreement with the confidential data. Having established that (1) there
is no solution variability for 97,238,000 records (more than 1/3 of the data-defined records); (2) no more
than 20.1% of all records can differ on the value of a single feature in any alternative reconstruction; and,
finally, (3) adding tables to the reconstruction cannot increase solution variability and usually decreases it
(e.g., adding Tables P8 and P10 raised the percentage of 0-solvar blocks from 65% to 70%), we conclude
that simulation-based assessments are not required. We perform agreement and reidentification assessments
using the methods described in Section 5.

We begin by comparing rHDFb,t and rHDFb directly to HDF and CEF. To calibrate this comparison,
we also compare HDF to CEF, which measures the agreement between the confidential databases. The
agreement of HDF with CEF shows the effects of the record-level statistical disclosure methodology that
was applied to create HDF from CEF. It also represents an upper bound on the agreement rate for any
reconstructed HDFs compared to the CEF. If our reconstructions were perfect images of the HDF, then
their agreement with the CEF would be identical to that of HDF. Any incremental error in the agreement
of reconstructed HDFs with the CEF can thus be attributed to reconstruction error.

Agreement results are based on the matching methodology described in Section 5.1. We tabulate the
number of records that agree on the reconstructed features relative to the total number of records; that is,
we consider all records in HDF and CEF, not just those that are data-defined, when assessing reconstruction
agreement. When reporting on matches based on the agebin feature, we count the records that matched
on either exact age or binned age from Algorithm 2. Therefore, exact-age results always lower bound
binned-age results.

Table 8 shows the agreement match results for all census blocks (top panel) and for each of the seven
census block-size intervals we considered throughout this work. Note that since HDF-HDF and CEF-
CEF comparisons always yield 100% agreement, these rows are not shown. Consider first the HDF-CEF
comparison. We find that the error introduced by the 2010 SDL methodology is relatively small. Less than
4% of all person records disagree using either the age or agebin schema. The reconstruction rHDFb,t agrees
with the HDF using exact age for 48.5% of records, and using binned age for 95.2% of records. Comparing
rHDFb,t to CEF decreases the agreement rates only slightly for binned age (from 95.2% to 91.9%) or exact
age match (from 48.5% to 46.6%), indicating that many of the reconstructed ages are off by a small number
of years, but that this error in the reconstruction is entirely within the narrow bands of the agebin schema,
implying that reidentification based on binned age will be almost as reliable as using exact age, especially
for the population 21 and under, for which the agebin schema is the same as the exact age schema.

The rHDFb reconstruction agreement rates with HDF and CEF are all slightly less than the respective
rHDFb,t agreement rates. Thus, using tract-level information improves the reconstruction accuracy relative
to using only block-level tables even when using the binned-age feature. The agreement gain of rHDFb,t

over rHDFb with respect to the HDF of 2.3 percentage points when comparing with the binned-age feature
(= 95.2−92.9) is entirely an improvement in {race, ethnicity} matching because there is never any solution
variability in the features {block, sex, agebin}. We always find the same the solution for these features once
the tables P12 and P14 in Panel A of Table 2 are used because these two tables fully saturate this feature
set. The agreement gain with respect to the HDF of 4.3 percentage points (= 48.5 − 44.2) can, therefore,
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be decomposed into 2.3 percentage points of improved agreement on {race, ethnicity} and 2.0 percentage
points of improved agreement on age due to the information in the tract-level tables of shown in Panel B
Table 2.

Table 8. Agreement between Reconstructed HDFs and the Confidential
Databases HDF and CEF by Census Block Size

Census
Data (L-R in Block Population Agreement (×103) Agreement (%)
Algorithm 2) Size (×103) Exact Age Binned Age Exact Age Binned Age

HDF-CEF All 308,746 297,200 297,600 96.3 96.4
rHDFb,t-CEF All 308,746 143,800 283,600 46.6 91.9
rHDFb-CEF All 308,746 132,200 276,900 42.8 89.7
rHDFb,t-HDF All 308,746 149,600 294,000 48.5 95.2
rHDFb-HDF All 308,746 136,500 286,700 44.2 92.9

HDF-CEF 1-9 8,070 5,866 5,973 72.7 74.0
rHDFb,t-CEF 1-9 8,070 2,419 5,971 30.0 74.0
rHDFb-CEF 1-9 8,070 2,325 5,968 28.8 74.0
rHDFb,t-HDF 1-9 8,070 3,492 8,063 43.3 99.9
rHDFb-HDF 1-9 8,070 3,275 8,056 40.6 99.8

HDF-CEF 10-49 67,598 63,460 63,580 93.9 94.1
rHDFb,t-CEF 10-49 67,598 29,500 62,870 43.6 93.0
rHDFb-CEF 10-49 67,598 28,990 62,330 42.9 92.2
rHDFb,t-HDF 10-49 67,598 31,810 66,760 47.1 98.8
rHDFb-HDF 10-49 67,598 30,860 66,090 45.6 97.8

HDF-CEF 50-99 69,073 66,560 66,630 96.4 96.5
rHDFb,t-CEF 50-99 69,073 31,280 64,330 45.3 93.1
rHDFb-CEF 50-99 69,073 30,600 63,130 44.3 91.4
rHDFb,t-HDF 50-99 69,073 32,560 66,570 47.1 96.4
rHDFb-HDF 50-99 69,073 31,540 65,230 45.7 94.4

HDF-CEF 100-249 80,021 78,370 78,420 97.9 98.0
rHDFb,t-CEF 100-249 80,021 36,840 73,810 46.0 92.2
rHDFb-CEF 100-249 80,021 34,690 71,940 43.4 89.9
rHDFb,t-HDF 100-249 80,021 37,590 75,190 47.0 94.0
rHDFb-HDF 100-249 80,021 35,160 73,180 43.9 91.4

HDF-CEF 250-499 42,911 42,320 42,340 98.6 98.7
rHDFb,t-CEF 250-499 42,911 20,750 39,240 48.3 91.4
rHDFb-CEF 250-499 42,911 18,170 37,960 42.3 88.5
rHDFb,t-HDF 250-499 42,911 20,970 39,680 48.9 92.5
rHDFb-HDF 250-499 42,911 18,270 38,330 42.6 89.3

HDF-CEF 500-999 27,029 26,720 26,740 98.9 98.9
rHDFb,t-CEF 500-999 27,029 14,220 24,550 52.6 90.8
rHDFb-CEF 500-999 27,029 11,380 23,480 42.1 86.9
rHDFb,t-HDF 500-999 27,029 14,310 24,750 52.9 91.6
rHDFb-HDF 500-999 27,029 11,410 23,640 42.2 87.5

HDF-CEF 1,000+ 14,043 13,930 13,940 99.2 99.3
rHDFb,t-CEF 1,000+ 14,043 8,835 12,870 62.9 91.7
rHDFb-CEF 1,000+ 14,043 6,009 12,120 42.8 86.3
rHDFb,t-HDF 1,000+ 14,043 8,863 12,940 63.1 92.1
rHDFb-HDF 1,000+ 14,043 6,014 12,170 42.8 86.7
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Table 8 Continued

Census
Data (L-R in Block Population Agreement (×103) Agreement (%)
Algorithm 2) Size (×103) Exact Age Binned Age Exact Age Binned Age

Notes: Census Block Size is the population range in the census block. The denominator in
the Agreement (%) column is the Population column in the indicated row. Comparisons to
CEF and HDF are rounded to four significant digits to conform to disclosure limitation
requirements. Populations are displayed to full precision since only public data were used
to compute the block populations. The Block Population column shows the ranges for the
populations of the census blocks included in that row.

Next consider Table 8, which illustrates how agreement of rHDFb,t and rHDFb with HDF and CEF
varies as a function of census block size. Because low-population blocks are much more likely to have had
the targeted 2010 Census SDL treatment applied, agreement between the HDF and CEF is only 74.0%
in blocks with populations of 1-9 persons. This does not mean the SDL was effective; as we show in
Section 7, when a record linkage is made, additional attributes about a record can be accurately learned.
Furthermore, we made no attempt to undo household record swaps. Using the binned-age schema, rHDFb,t

and rHDFb also agree with the CEF for 74.0% of records in the 1-9 person block size, as the next two rows
of Table 8 show because virtually all persons who live in these low-population blocks have zero solution
variability (see Table 7). For persons living in blocks with population of 10-49, the HDF agrees with the
CEF for 94.1% using the binned-age schema. rHDFb,t and rHDFb agree with the CEF for 93.0% and
92.2%, respectively. However, once again, because the vast majority of these persons have zero solution
variability, the reconstructions agree with the HDF 98.8% and 97.8%, respectively. Thus, the certainty
with which low-population blocks can be reconstructed—there is almost always only one solution to the
reconstruction and that one solution is provably identical to the HDF record— results in extremely high
empirical agreement between the reconstructed and confidential HDFs.

As we proceed to larger block populations, we find that the agreement between HDF and CEF increases,
reaching 99.3% for blocks with populations of 1,000 or more persons. This reflects the decreasing probability
that any SDL treatment was applied to records in those blocks. On the other hand, while not monotonic,
agreement of rHDFb,t and rHDFb with CEF decreases as block size increases using the binned-age schema,
reflecting the effect of increased solution variability as block populations increase (and reflecting that no
statistical modeling was used to select “realistic” reconstructions rather than algorithmically convenient so-
lutions). However, the agreement of rHDFb,t with HDF using the exact-age criterion increases dramatically
in the 1,000+ panels because of the increased presence of group quarters residents, where the populations
tend to be much more homogeneous on age, in these blocks.

We have two final comments on these reconstruction and solution variability results. First, both recon-
struction and solution variability can be computed using only public data, meaning that an attacker would
be able to use these methods to target particular blocks for which the reconstruction is unique—access to
confidential data is not required to confirm that these records are exact images of the HDF. Second, infer-
ences about persons in low-population blocks tend to be more sensitive to the absence of a record because
leaving out a unique or near-unique record type in such blocks is much more likely to change the inference
than leaving out one of a large number of records of the same type, say the modal {race, ethnicity}. When
there is zero solution variability, as there is in the vast majority of blocks with fewer than 50 people, this
effect is even stronger because in these blocks a record unique in rHDFb is provably unique in the HDF,
while in blocks with greater solution variability, this may not be the case.

Taken together, the patterns in Table 8 imply that the rHDFb,t matches the CEF as well as the actual
HDF matches the CEF for smaller blocks, which means that the Census Bureau was correct in considering
low-population geographies a significant disclosure risk in microdata but incorrect in assuming that tabular
aggregation could mitigate this risk. Thus, Table 8 demonstrates conclusively that the 2010 Census disclo-
sure avoidance system was fatally flawed by the failure to use SDL treatments for tabular data that were
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consistent with rules for microdata.29 For microdata, and specifically the Public-Use Microdata Sample
(PUMS), the requirements were very different: sampling, aggregating geographic identifiers to populations
of 100,000+, and aggregating demographic groups to national populations of 10,000+ probably protected
the PUMS adequately considering that, unlike the 2000 Census PUMS, there were no long-form data to
include. As we show in the next section, these reconstructed microdata permit prohibited confidentiality
breaches just as the 2010 PUMS would have permitted had the Census Bureau used only its 2010 Census
tabular data SDL treatment for the 2010 PUMS.

7. Reidentification Results

Having demonstrated that it is possible to reconstruct an accurate image of HDF from the publicly
released tables, we now analyze the results of experiments that characterize what an attacker could learn
from these data. We want to assess the range of possible confidentiality breaches as a function of the
quality of the attacker’s external information holding constant the quality of the microdata reconstruction
from published tables and the record-linkage algorithms. The COMRCL database (see Section 3.5) has
deficiencies in both coverage and accuracy relative to the CEF. As indicated in Table 3, only 37.1% of
COMRCL records with valid {pik, block, sex, agebin} feature values matched an in-universe record on
the CEF. Because we use information from the CEF to characterize vulnerable populations and because
confirmation requires that all values of {pik, block, sex, (age or agebin), race, ethnicity} match, this poor
agreement between COMRCL and CEF limits the achievable putative and confirmed reidentification rates
but does not affect reidentification precision rates. More accurate commercial databases exist today, and
other forms of external data are also feasible attacker information—for example, government databases,
web-scraped data, or informal knowledge from friendships or coworkers. To model an attacker with access
to higher quality external data, we use the specially prepared extract from the CEF called CEFatkr that
includes only {pik, block, sex, age} as the attacker’s data (see Section 5).30 When using CEFatkr as the
attacker’s data, all data-defined CEF records are potentially at risk of confirmation.

To calibrate the reidentification rates from rHDFb,t and rHDFb as the source of {race, ethnicity}, we
also analyze two types of alternatives or baselines, each of which provide different insights. First, we use the
CEF and HDF themselves as the source of {race, ethnicity}. Using these data as the source of the target
characteristics demonstrates how accurate the attacker’s inferences would be if the confidential microdata
themselves were released without any SDL treatment (CEF) or using only record-level SDL treatments
(HDF) with a naive attacker that does not attempt to undo swaps.31 Second, we also incorporate two
statistical baselines as the source of {race, ethnicity} (see Section 5.3). The first, MDG, attaches the
within-block modal values of {race, ethnicity} to all records in the block. The second, PRG, randomly
assigns {race, ethnicity} in proportion to the share of each pair within the census block. Because the MDG
and PRG baselines assign {race, ethnicity} from the HDF matching on {block, sex agebin} and because
rHDFb,t perfectly replicates the {block, sex, agebin} feature values from HDF, the binned-age putative
matches are identical for experiments using rHDFb,t, rHDFb, MDG, and PRG.32

We next present reidentification metrics for the data-defined national population by census block size
(see Section 7.1). Despite demonstrating high precision on inferences about {race, ethnicity} from reiden-
tifications resulting from augmenting an external database using the reconstructed HDF, it is difficult to
draw conclusions about confidentiality breaches based on the national block-size statistics. Hence, we con-
sider vulnerable populations by presenting results for nonmodal persons and contrasting these results with

29In other words, continuing with the 2010 technology, instead of designing a new disclosure avoidance
system for 2020, would likely have involved both dramatically increasing the swap rate and heavy use of
suppression of block level tables.

30While better informed than an attacker using COMRCL, the CEFatkr attacker is still not worst-case
because we hold constant the methodology used to reconstruct HDF and match to the external data.
In particular, we use a straightforward record-linkage attack algorithm without any enhancements. Using
strong linkage models, including models that search for a match in nearby blocks, would certainly strengthen
the attack.

31When the attacker’s external data is CEFatkr, we only perform the experiment using the HDF as the
source of {race, ethnicity}.

32When we use COMRCL records that match to the CEF on {pik, block}, putative reidentifications are
not identical to those obtained from MDG and PRG.
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those for modal persons (see Section 7.2). We complete the discussion of vulnerable populations by con-
sidering nonmodal persons with zero solution variability who are population uniques in the reconstructed
HDF and, hence, also unique in the HDF due to the zero solution variability (see Section 7.3). While it
is unclear which inferences about individuals are statistical versus confidentiality-breaching in the overall
population, our analysis of vulnerable populations identifies inferences about {race, ethnicity} pairs that
are clearly confidentiality breaches because the improvement in reidentification precision is due primarily
(for nonmodal persons) or exclusively (for population unique, zero solution variability, nonmodal persons)
to the presence of the target individual’s data in the published tables.

To illustrate the significance of this point, consider the data for the state of Montana in the 2010 SF1.
According to SF1 Table P9, 87.8% of Montana residents in 2010 indicated non-Hispanic White alone as
their race and ethnicity. From this fact alone we can make many high-quality inferences. For a randomly
selected COMRCL record in Montana, we expect that record to be non-Hispanic White alone with about
88% probability. This does not, however, suggest that publishing a modest number of state-level statistics
generates prohibited confidentiality violations because although these are inferences about individuals, they
are precise because of racial and ethnic homogeneity in Montana and are, thus, predictable on a purely
statistical basis. However, our results also show that the single person living in Montana who responded
Not Hispanic or Latino, White, American Indian/Alaska Native, Asian, Native Hawaiian/Other Pacific
Islander—a rare non-Hispanic 4-race response that is a zero solution variability population unique on
{block, sex, agebin, race, ethnicity}—can be reidentified with precision of 95.2%. That is, the “guess” that
this person has the unusual non-Hispanic, 4-race feature value is wrong less than 1 time in 20. Had that
person not responded to the 2010 Census, the precision would have been exactly zero for the modal guesser
and, approximately, 1/989, 414 or effectively 0.0% for the proportional guesser. That is, the attacker would
“never have guessed” that response. The only reason this unusual person can be geolocated in a block of
15 persons and reidentified so precisely in the 2010 Census tables is that the actual response was used in
all tables of SF1. Such inferences are confidentiality breaches.

The replication archive contains an ExcelTM workbook (rhdf_bt_0solvar_extract.xlsx) with recon-
structed records from 29 census tracts in which every block has zero solution variability. Tags identify
every row that is population unique on {block, sex, agebin} and {block, sex, agebin, race, ethnicity} in
the spreadsheet. No access to confidential data is required to produce or confirm these tables, and any
population unique on agebin must also be population unique on age. Every population unique in that
spreadsheet is known with certainty to be a population unique in the confidential HDF. The only rea-
son the reidentification precision is not 100% is the record-level SDL that was applied to CEF to create
HDF. But that SDL treatment was not designed to protect (1) full enumeration microdata files, as op-
posed to a 10% microdata sample, (2) full enumeration microdata files containing geographic areas with
populations as small as 1 person, as opposed to the 100,000 minimum required for microdata samples, or
(3) full enumeration files containing {race, ethnicity} responses as rare as non-Hispanic, White, American
Indian/Alaska Native, Asian, and Native Hawaiian/Other Pacific Islander, which has a national popula-
tion of only 7,460 as opposed to the 10,000 national population minimum required for microdata samples
(McKenna, 2019a). This is a classic example of inconsistent SDL. Evaluated according to the 2010 Census
tabular data rules (McKenna, 2018) the release is “safe.” Evaluated under the 2010 Census microdata rules,
it fails catastrophically. But it is exactly the same data release expressed in two mathematically equivalent
representations—34 tabular summaries shown in Table 2 and 308,745,538 microdata records using the same
feature set shown in Equation 4.2.

Differentiating statistical or generalizable inferences from confidentiality-violating inferences can be sub-
tle. In the absence of computational or time constraints, an ideal experiment for estimating the distribution
of empirical privacy loss in the 2010 Census publications would iteratively remove each individual’s record,
treat it as a target, and repeat the entire set of reconstruction and reidentification experiments, examining
inferences about that target person (see Section 5.3). The intuition behind this approach is especially clear
in the case of reidentification. If the target person’s data were not in the confidential database then we
could not assert that the feature values we attached to their record in the attacker’s data, either COMRCL
or CEFatkr, were the result of a prohibited reidentification. Indeed, the Census Act (13 U.S. Code §§ 8(b)
& 9) specifically identifies the source of the confidential information protected by statute as “information re-
ported by, or on behalf of, any particular respondent,” and “data furnished by any particular establishment
or individual,” which reflects the legal focus on data present in internal response databases (see Section
2.2). The ideal experiment extends this concept, arguing that even if an inference is made about a target
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person whose record is in the CEF, this inference should not be regarded as confidentiality-violating if that
same inference could have been made after removing the target person’s record from the CEF. But, as the
Montana example makes clear, if that inference could only have been made because the target person’s
record was present in the CEF, that is a confidentiality breach.

Unfortunately, “leaving out” each record in the U.S. population, simulating the 2010 Census SDL treat-
ments, then performing the reconstruction and reidentification attacks for each such record is prohibitively
expensive in time and computational resources. To approximate the logic of this ideal experiment, however,
we have focused on vulnerable populations—infrequently occurring records that would be very difficult or
impossible to reidentify if not for their participation in the 2010 Census. Specifically, we focus on records
with {race, ethnicity} not equal to the modal value within their block, and which are unique in {block, sex,
agebin}. We also further subset to cases for which the attacker can be confident that the reconstructed
microdata exactly match the confidential HDF—blocks with zero solution variability. Accurate inferences
about such records in our our experiments would be much more difficult, and often impossible, had the
person’s record not been present in the CEF.

7.1. National results. Table 9 presents the statistics for putative reidentifications (numerator in Equation
5.1), confirmed reidentifications (numerator in Equation 5.2), and precision rates (Equation 5.3) for all
data-defined persons in the 2010 Census for all data-defined persons in COMRCL and CEFatkr. Detailed
results by census block size appear in Appendix Table 12, the top panel of which is identical to Table
9. The results in Table 9 are refinements of those first released in 2019 (Abowd, 2019). They show that
when the attacker uses the lower-quality COMRCL data, the reconstruction rHDFb,t produces 166,100,000
putative reidentifications (57.9% putative rate for the data-defined population) of which 68,480,000 are
confirmed (23.9% confirmation rate for the data-defined population) with a reidentification precision rate of
41.2%. When the attacker uses the high-quality quasi-identifier data in CEFatkr, the reconstruction rHDFb,t

yields 267,800,000 putative reidentifications (97.0% of the data-defined population) of which 208,500,000
are confirmed (75.5% of the data-defined population) with a precision rate of 77.9%.

Table 9. All Data-Defined Persons: Putative and Confirmed Reidentifica-
tions

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF All 286,700 167,500 82,760 49.4 276,000 276,000 237,500 86.1
HDF All 286,700 166,100 80,540 48.5 276,000 267,800 228,400 85.3
rHDFb,t All 286,700 166,100 68,480 41.2 276,000 267,800 208,500 77.9
rHDFb All 286,700 166,100 67,450 40.6 276,000 267,800 203,100 75.9
MDG All 286,700 166,100 76,270 45.9 276,000 267,800 205,100 76.6
PRG All 286,700 166,100 66,260 39.9 276,000 267,800 177,700 66.3

Notes: Census Block Size is the population range in the census block. Counts rounded to four
significant digits to conform to disclosure limitation requirements. Population for attacker
COMRCL is the total number of data-defined records in COMRCL that are also in the CEF
universe (see Table 3). Population for attacker CEFatkr is the total number of data-
defined CEF records.

The Census Bureau released similar reidentification results as part of litigation surrounding the 2020
Census and to its Scientific Advisory Committee between 2019 and 2022 (Abowd, 2021; Abowd & Hawes,
2023; Hawes, 2022) based on earlier versions of the models presented in this paper. Some researchers noted
that baselines similar to MDG and PRG could produce reidentifications apparently comparable to those
of rHDFb,t (Francis, 2022; Ruggles & Van Riper, 2022). The rows MDG and PRG in the COMRCL panel
confirm that claim but only, as we shall see, if one ignores nonmodal and vulnerable populations. By
construction, these two strategies have the same overall putative reidentifications as rHDFb,t, and their
confirmation and precision rates are also comparable. Comparison to statistical baselines at the national
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level highlights the fact that national reidentification rates, while informative about the scale of the match
(e.g., 68,480,000 individuals had confirmed {race, ethnicity} in the COMRCL experiment using rHDFb,t),
are difficult to interpret in terms of privacy loss. The misleading similarity between statistical baselines and
rHDFb,t requires using leave-one-out reasoning to resolve, which we do below. rHDFb,t is able to reidentify
the race and ethnicity of nonmodal individuals that are unique in the linking quasi-identifiers {block, sex,
agebin} in blocks with zero solution variability, where MDG and PRG completely fail—a much clearer
demonstration of privacy loss.33

Surprisingly, releasing the CEF itself with the full feature set in Table 1 (except pik) would produce
only relatively modest increase in the putative reidentification rates compared to HDF, rHDFb,t, rHDFb or
either baseline, as shown in the first row of Table 9 for both COMRCL and CEFatkr. As noted in Table
3, COMRCL data did not align well with the data collected in the 2010 Census. But even if the attacker
used high-quality input data, as in CEFatkr, releasing the CEF (except pik) with the feature set in Table 1
would still produce only modestly more putative reidentifications, and releasing the HDF with the feature
sets shown in Table 1 would produce exactly the same putative reidentifications, as rHDFb,t, rHDFb, or
either baseline. From the viewpoint of records at risk for record-linkage reidentification, the reconstructed
microdata and the statistical baselines accurately replicate HDF. The confirmation and precision rates for
CEF and HDF are marginally higher than those for rHDFb,t, rHDFb and MDG, and substantially better
than PRG.

7.2. Detailed results for nonmodal and modal race-ethnicity records by census block size.
Figures 3 and 4 summarize the results, by census block size, for the lower quality COMRCL and higher
quality CEFatkr data, respectively. The detailed data are shown in Appendix Tables 12, 13, and 14. The first
column of both figures shows the results for all data-defined persons by census block size. As summarized in
the national results discussion, except for the lowest population blocks (1 to 9 persons), there are very few
discernible differences between the CEF, HDF, rHDFb,t, rHDFb, MDG, and PRG results. Comparing the
results for nonmodal data-defined persons (middle column) with those of modal data-defined persons (last
column) reveals the power in the reconstructed microdata vis-à-vis the statistical baselines. There is only one
substantive analytic difference between the COMRCL and CEFatkr results. Because we use the CEF itself to
determine a nonmodal person, the data-defined populations in the COMRCL nonmodal and modal columns
are a strict subset of the data-defined population in the all persons column: only the 106,300,000 records in
the top left cell of Table 3 can be used to contrast the vulnerable (nonmodal) and nonvulnerable (modal)
populations, whereas all 286,700,000 data-defined COMRCL records in the CEF universe can be used for
the all persons column. All data-defined persons in the CEF can be studied in the CEFatkr results. For
both attacker models, the denominators in the nonmodal and modal putative and confirmed reidentification
rates from Equations 5.1 and 5.2 are the actual at-risk data-defined subpopulations (nonmodal and modal,
respectively). The reidentification precision rate defined in Equation 5.3 is unaffected by restricting the
domain of COMRCL. An external attacker using either COMRCL or higher quality data would still have to
make inferences directly from the reconstructed microdata or form independent estimates of the race and
ethnicity of the census block to estimate the putative or confirmed reidentification rate. But the external
attacker’s estimate of the precision rate would still depend only on independent field work using a labeled
sample of the attacker’s putative reidentification (see Section 5.2).

For comparing and contrasting the nonmodal and modal persons results, the interpretation does not
depend on the attacker database, so we characterize them generically. In these figures, nonmodal data-
defined persons are the vulnerable population. Except for blocks with populations of 1-9 persons, CEF,
HDF, rHDFb,t, rHDFb, MDG, and PRG putatively reidentify nonmodal persons at essentially the same
rates because SF1 Tables P12 and 14 contain all the information used for putative reidentifications. It is the
confirmation and precision rates that reveal the contrast with the modal person subpopulation. In blocks
with 1-9 persons, the HDF, rHDFb,t, and rHDFb have essentially identical confirmation and precision rates,
whereas the MDG baseline is nearly zero for both confirmation and precision rates, and the PRG baseline is
greater than the MDG but substantially less than either rHDFb,t or rHDFb. As the population in the census
block increases, the confirmation and precision rates of rHDFb,t and rHDFb decline but remain high, much
closer to the rates for CEF and HDF than MDG (always essentially zero) and approaching proportional

33Since this paper is primarily a proof of concept, a larger-scale attack using more tables and recon-
structing additional features would result in less solution variability and more population uniques.
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Figure 3. Comparison of Putative Reidentification Rates, Confirmed Reidentification
Rates, and Reidentification Precision Rates for COMRCL by Census Block Size
Notes: The denominator used in the first column is the COMRCL Population column in Ta-
ble 12, which totals to 286,700,000. The denominator in the second column is the COMRCL
population in Table 13, and the denominator in the third column is the COMRCL popu-
lation in Table 14. The denominators in the second and third columns sum to 106,300,000
because only that subset of COMRCL records can be classified as modal and nonmodal
from the CEF. See Table 3.

guessing only for the most populous census blocks. Even though there are 125 possible nonmodal {race,
ethnicity} combinations, the reidentification precision rate of the reconstructed data is greater than 50% for
23,765,000 persons living in census blocks with populations of 1-99 persons (more than 1/3 of all nonmodal
data-defined persons) compared to essentially zero for the modal guesser. For these 23,765,000 persons, the
smallest gain in the reidentification precision rate relative to the proportional guesser is 32.6 percentage
points.34 This enormous gain in accuracy occurs only because the nonmodal person’s data were used in the
SF1 tabulations. When the vulnerable population is defined as persons who differ from the predominant
characteristics in small neighborhoods, in this case nonmodal {race, ethnicity} persons in lower-population
census blocks, the statistical baselines either fail completely (MDG) or fair no better than chance (PRG),
but the reconstructed microdata are correct at rates that approach the correctness of the confidential data
themselves as the neighborhood population decreases.

Our interpretation of the mechanism causing the increased precision for vulnerable persons—the use
of their specific response in the census tabulations—is further supported by examining the results for
modal data-defined persons. In this case, the reidentification precision rates convey the main result. As
expected, the modal guesser (MDG) has essentially perfect precision because our modal population was
defined using the actual mode in the confidential data, and that is also the mode in the overwhelming
majority of published block-level {race, ethnicity} tables, even in the census blocks with population of 1-9
persons, where the MDG precision rate takes its smallest value of 98.7%. But even in this nonvulnerable
population, where the deck is deliberately stacked in favor of the modal guesser, rHDFb,t and rHDFb have
reidentification precision rates substantially closer to the CEF and HDF than the proportional guesser. In
blocks with populations of 1-9 persons, the precision rate of rHDFb,t is at most 0.3 percentage points worse
than HDF, while the precision rate of PRG is at best 4.0 percentage points worse than HDF. As the block
population increases, the reidentification precision rates for CEF, HDF, rHDFb,t, and rHDFb all decrease,

34Supplemental text Table 13, Census Block Size 50-99, COMRCL attacker, rHDFb reconstruction.



A Simulated Reconstruction and Reidentification Attack on the 2010 U.S. Census: Full Technical Report 52

Figure 4. Comparison of Putative Reidentification Rates, Confirmed Reidentification
Rates, and Reidentification Precision Rates for CEFatkr by Census Block Size
Notes: The denominator used in the first column is the CEFatkr Population column in Ta-
ble 12, which totals to 276,000,000. The denominator in the second column is the CEFatkr

population in Table 13, and the denominator in the third column is the CEFatkr population
in Table 14. The denominators in the second and third columns sum to 276,000,000 because
all records in CEFatkr can be classified as modal and nonmodal from the CEF. See Table 3.

approaching but remaining greater than the precision rate for PRG. Even in the largest population census
blocks, the precision of rHDFb,t is at worst 3.3 percentage points lower than HDF while the precision of
PRG is at best 4.8 percentage points lower than HDF. Even for less vulnerable populations, in this case
modal {race, ethnicity} persons living in any size census block, the reconstructed microdata outperform
proportional guessing, delivering prediction accuracy closer to the performance of the confidential data than
this statistical baseline. Of course, the modal guesser outperforms even the confidential data in this case
because of way it is defined.

7.3. Results for the most vulnerable populations. We now discuss the results for the most tightly
constrained definition of the vulnerable population—nonmodal data-defined persons living in blocks with
zero solution variability whose reconstructed records are population uniques for {block, sex, agebin}. Panel
A of Table 10 shows the results for nonmodal persons living in zero solution variability blocks and Panel
B shows the results for the subset of these persons who are population unique on {block, sex, agebin}.
Recalling that population uniqueness on {block, sex, agebin} implies population uniqueness on {block, sex,
age} and that zero solution variability implies that the record in the reconstructed data is provably the
same as the record in HDF without referencing any confidential data, Table 10 Panel B establishes that the
reidentification precision rates of rHDFb,t and HDF are essentially identical 95.4 versus 96.4 in COMRCL
and 95.2 versus 95.6 in CEFatkr. These reidentification precisions are far in excess of the modal guesser’s
(3.3 for COMRCL and 2.5 for CEFatkr) or the proportional guesser’s (20.9 and 20.2, resp.). Thus, the
correct {race, ethnicity} has been exposed for more than 19 of 20 persons in the population of nonmodal,
0-solvar, {block, sex, agebin} uniques—essentially the same exposure as publishing the HDF itself, and
only five percentage points worse than publishing the CEF itself. Statistical baselines are either almost
always wrong or wrong for 4 of 5 persons in this vulnerable population. These results definitively show
that the published SF1 tables result in confidentiality breaches since the high statistical precision of the
reconstructed microdata is only possible because the target person’s data were used in the SF1 tabulations.
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If HDF was unsafe to release under the 2010 Census disclosure limitation framework, then the Summary
File 1 statistics in Table 2 were also unsafe to release.

Table 10. Putative Reidentifications, Confirmed Reidentifications, and
Precision Rates for Nonmodal Persons in Blocks with Zero Solution Vari-
ability

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
Data (L in lation tive firmed sion lation tive firmed sion
Algorithm 3) (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

Panel A: Nonmodal Persons
CEF 2,098 1,925 1,633 84.8 6,517 6,517 5,727 87.9
HDF 2,098 1,646 1,278 77.7 6,517 5,189 4,209 81.1
rHDFb,t 2,098 1,557 1,009 64.8 6,517 5,305 3,634 68.5
rHDFb 2,098 1,516 914 60.3 6,517 5,304 3,369 63.5
MDG 2,098 1,646 33 2.0 6,517 5,189 88 1.7
PRG 2,098 1,646 274 16.6 6,517 5,189 890 17.2
MDF 2,098 593 103 17.3 6,517 1,866 353 18.9
rMDFb,t 2,098 593 103 17.3 6,517 1,866 352 18.9
rSWAPLob,t 2,098 1,733 1,236 71.3 6,517 6,242 4,693 75.2
rSWAPHib,t 2,098 1,255 680 54.1 6,517 4,270 2,482 58.1

Panel B: Nonmodal Uniques on {block, sex, agebin}
CEF 908 834 834 100.0 3,364 3,364 3,364 100.0
HDF 908 649 625 96.4 3,364 2,418 2,311 95.6
rHDFb,t 908 587 560 95.4 3,364 2,418 2,301 95.2
rHDFb 908 565 537 95.0 3,364 2,418 2,237 92.5
MDG 908 649 21 3.3 3,364 2,418 61 2.5
PRG 908 649 136 20.9 3,364 2,418 488 20.2
MDF 908 193 42 21.6 3,364 671 147 21.8
rMDFb,t 908 193 42 21.7 3,364 671 147 21.8
rSWAPLob,t 908 723 710 98.2 3,364 3,194 3,111 97.4
rSWAPHib,t 908 485 371 76.4 3,364 2,014 1,568 77.9

Notes: Counts rounded to four significant digits to conform to disclosure limitation
requirements. The rows labeled MDF and rMDFb,t (light gray highlight) are the
analogs of rHDFb,t and HDF, respectively, when the 2020 Census DAS is applied
to the 2010 CEF. The rows labeled rSWAPLob,t and rSWAPHib,t (medium gray
highlight) are the analogs of rHDFb,t when alternative swapping parameters are
used (see discussion in Section 9). Population for attacker COMRCL is data-defined
nonmodal person records in COMRCL that match CEF on the feature set {pik, block}.
Population for attacker CEFatkr is all data-defined nonmodal persons in CEF.

8. The 2010 Census Statistical Disclosure Limitation Framework
Did Not Meet the Census Bureau’s Own Standards

As indicated by the 95% binned-age agreement displayed in Table 8, it is possible to create an extremely
accurate reconstruction of the underlying HDF microdata from publicly available sources, effectively un-
doing any confidentiality protection resulting from releasing tabular summaries instead of releasing the
same features as a microdata extract of the universe of HDF person records. There is no reconstruction
solution variability for 70% of populated blocks, meaning that the reconstructed records in rHDFb,t were
the exact image of the records in HDF for the feature set {block, sex, agebin, race, ethnicity}. For these
blocks, housing-unit swapping and synthetic data for the group quarters population are the only sources
of uncertainty about their correctness relative to the CEF. These SDL measures do affect the accuracy of
the reconstruction relative to the CEF, especially in the blocks with the smallest population sizes (74%
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agreement in blocks with population size of 0-9), but the accuracy is still very high overall (and could
be higher for attackers who attempt to undo the swapping). When the reconstructed data are linked to
an external dataset, an attacker can learn extra characteristics about members of their dataset that they
previously did not know, and could not learn statistically, with very high accuracy for select publicly identi-
fiable subgroups. The attacker’s successful inference depends on several factors. First, the more accurately
the external dataset matches the linking variables {block, sex, agebin}, the more records the attacker will
successfully link and the better the inference about the value of the other census responses will be. In our
experiment, only about 40% of the records in our lower quality commercial data were correct matches to
the CEF on these linking variables. Consequently, even though we could make a large number of puta-
tive matches, many were not confirmed—not because of incorrect inference on the unknown characteristics
{race, ethnicity}, but because the characteristics on the external dataset were inaccurate quasi-identifiers.
In our experiments using a much more accurate external database (either the CEFatkr or the subset of
records in the commercial database that matched the CEF) the confirmation and precision rates were much
higher. As the accuracy of the external data improves, the success of our attack improves, indicating that
any conclusions based on the relatively lower quality of commercial name and address databases in 2010
should be tempered by the improved quality of such data by 2020.

Our reconstruction-abetted reidentification attack was much more accurate in successfully inferring the
{race, ethnicity} of records with a value that was different than the most common (modal) {race, ethnicity}
in the block in comparison with the baseline inferential methods of guessing the modal {race, ethnicity} and
guessing the {race, ethnicity} with probability proportional to publicly released counts. It also vastly out-
performed the baseline methods when making inferences about records that were unique and had nonmodal
{race, ethnicity}, facts that the attacker could infer exactly in blocks with zero solution variability without
consulting any confidential data. Therefore, while it is possible to make accurate inferences with these
baseline methods when statistical information is used, the reconstruction-abetted reidentification attack
exposes the vulnerability of the confidentiality protections by permitting accurate inferences on persons
with statistically uncommon and rare characteristics. The accurate inference of the race and ethnicity of a
person who is a population unique is only possible because that person’s record was available in rHDFb,t.
Such an inference is nonstatistical using the framework we laid out previously (see Section 5). Record-level
data swapping marginally reduced the number of records in the rHDFb,t at risk for a putative match, but
it had no discernible effect on the precision of nonstatistical inferences for the vast majority of records.

The conclusion from this analysis is that the disclosure avoidance system applied to the 2010 Census did
not meet the requirements for approval set forth by the Census Bureau’s Data Stewardship Executive Policy
(DSEP) Committee for 2010 Census publications and, in light of current algorithmic and computational
capabilities, it is not viable for future use. The results of the this experiment motivated the Census Bureau
to change the SDL methods used for the 2020 Census (Abowd, 2018). Instead of record swapping, synthetic
group quarters data, and aggregation, the Bureau used differentially private mechanisms for all tabulations,
microdata, and other statistical products computed from the 2020 Census (Abowd et al., 2022). Had the
Census Bureau continued to use the 2010 technology for 2020, it would have had to use the same rules for
microdata as for tabular data, likely resulting in a much higher swap rate and a large amount of suppression
of block-level data.

9. The 2020 Census Statistical Disclosure Limitation System
Addressed the Failures of the 2010 System

Our final discussion addresses whether any SDL method can simultaneously defend against reidentifica-
tion attacks and other nonstatistical uses while allowing publication of data that are fit for use in the primary
applications. Christ et al. (2022) demonstrated that the Census Bureau’s differentially private disclosure
avoidance system could provide fitness-for-use in the redistricting application comparable to swapping but
with superior confidentiality protection. They also noted that “[s]wapping places a disproportionate privacy
burden on minority groups,” while differential privacy protections apply to all sub-populations. These
results, which we confirm in this paper, are in contrast to the erroneous conclusions drawn by Kenny et al.
(2021) who failed to distinguish between generalizable and confidentiality-violating inferences (Jarmin et
al., 2023). Wright and Irimata (2021) demonstrated that the 2020 Census Redistricting Data (P.L. 94-171)
Summary File was fit for use in redistricting and scrutiny under Section 2 of the 1965 Voting Rights Act
(52 U.S. Code Subtitle I, 1965).
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On October 20, 2022, DSEP approved the final production settings for the 2020 Census disclosure
avoidance system as applied to the Demographic and Housing Characteristics (DHC) File, the successor
to the 2010 Summary File 1 used in this paper. DHC was produced using an extension of the algorithms
described in Abowd et al. (2022) that includes the 2020 Census version of the tables used in this paper
(Cumings-Menon et al., 2025). The statistical summaries presented for the DSEP decision included an
analysis of the effectiveness of the same reconstruction-abetted reidentification attack studied here based
on the 2010 Census. The analysis compared the confidentiality protections from the original SF1 tables
shown in Tables 2, 3 and 4 with the protection afforded by the differentially private disclosure avoidance
system, when executed at the DHC production settings applied to the 2010 Census data, and the protection
afforded by housing unit-level data swapping at rates of 5% and 50%, i.e., swapping 5% or half of all housing
units to a new location in a different block, tract, or elsewhere in the state (for details, see Appendix C).

Table 11 shows the agreement rates overall and by census block size between the 2010 CEF and

• HDF,
• rHDFb,t,
• rHDFb,
• rMDFb,t—reconstructed Microdata Detail File (MDF), (Abowd et al., 2022), the production ver-

sion output of the differentially private DAS for the DHC when applied to 2010 Census data and
processed into the equivalents of the Table 2 statistics,

• MDF—actual MDF from the same 2020 DAS output; i.e., not processed into tables, so there is no
reconstruction of the microdata—these are the actual microdata from which DHC was tabulated,

• rSWAPLob,t—the results of the 5% swap-rate experiment when similarly processed.
• rSWAPHib,t—the results of the 50% swap-rate experiment when process through our reconstruction-

abetted reidentification attack,

The rMDFb,t, MDF, and rSWAPHib,t reduce the agreement with the 2010 CEF substantially, with the
rMDFb,t and MDF reducing agreement more than rSWAPHib,t. The rSWAPLob,t agrees with the CEF at
essentially the same rate as rHDFb,t except for blocks with populations of 1-9 persons, where HDF, rHDFb,t,
and rHDFb all agree with the CEF for 74.0% of records using binned age while rSWAPLob,t agrees with
94.9% of these records. The experimental swap methodology did not single-out low-population blocks for
relatively greater swapping.

Table 11. Selected Reconstruction Agreement Statistics with Comparisons
to Output from the 2020 DAS and Specially Swapped Versions of the CEF
Using the 2010 Census as Input by Census Block Size

Census
Data (L−R in Block Population Agreement (×103) Agreement (%)
Algorithm 2) Size (×103) Exact Age Binned Age Exact Age Binned Age

HDF-CEF All 308,746 297,200 297,600 96.3 96.4
rHDFb,t-CEF All 308,746 143,800 283,600 46.6 91.9
rHDFb-CEF All 308,746 132,200 276,900 42.8 89.7
rMDFb,t-CEF All 308,746 58,520 113,100 18.9 36.6
MDF-CEF All 308,746 75,950 113,300 24.6 36.7
rSWAPLob,t (5%)-CEF All 308,746 144,500 281,200 46.8 91.1
rSWAPHib,t (50%)-CEF All 308,746 100,800 193,200 32.7 62.6
HDF-CEF 1-9 8,070 5,866 5,973 72.7 74.0
rHDFb,t-CEF 1-9 8,070 2,419 5,971 30.0 74.0
rHDFb-CEF 1-9 8,070 2,325 5,968 28.8 74.0
rMDFb,t-CEF 1-9 8,070 232 647 2.9 8.0
MDF-CEF 1-9 8,070 276 647 3.4 8.0
rSWAPLob,t (5%)-CEF 1-9 8,070 3,278 7,660 40.6 94.9
rSWAPHib,t (50%)-CEF 1-9 8,070 1,803 4,280 22.3 53.0
HDF-CEF 10-49 67,598 63,460 63,580 93.9 94.1
rHDFb,t-CEF 10-49 67,598 29,500 62,870 43.6 93.0
rHDFb-CEF 10-49 67,598 28,990 62,330 42.9 92.2
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Table 11 Continued

Census
Data (L−R in Block Population Agreement (×103) Agreement (%)
Algorithm 2) Size (×103) Exact Age Binned Age Exact Age Binned Age

rMDFb,t-CEF 10-49 67,598 4,999 12,330 7.4 18.2
MDF-CEF 10-49 67,598 6,216 12,320 9.2 18.2
rSWAPLob,t (5%)-CEF 10-49 67,598 30,320 63,370 44.9 93.8
rSWAPHib,t (50%)-CEF 10-49 67,598 18,110 38,330 26.8 56.7
HDF-CEF 50-99 69,073 66,560 66,630 96.4 96.5
rHDFb,t-CEF 50-99 69,073 31,280 64,330 45.3 93.1
rHDFb-CEF 50-99 69,073 30,600 63,130 44.3 91.4
rMDFb,t-CEF 50-99 69,073 8,350 18,830 12.1 27.3
MDF-CEF 50-99 69,073 10,670 18,820 15.5 27.2
rSWAPLob,t (5%)-CEF 50-99 69,073 31,190 63,300 45.2 91.6
rSWAPHib,t (50%)-CEF 50-99 69,073 20,200 41,180 29.2 59.6
HDF-CEF 100-249 80,021 78,370 78,420 97.9 98.0
rHDFb-CEF 100-249 80,021 34,690 71,940 43.4 89.9
rHDFb,t-CEF 100-249 80,021 36,840 73,810 46.0 92.2
rMDFb,t-CEF 100-249 80,021 15,030 30,810 18.8 38.5
MDF-CEF 100-249 80,021 19,750 30,790 24.7 38.5
rSWAPLob,t (5%)-CEF 100-249 80,021 36,310 71,880 45.4 89.8
rSWAPHib,t (50%)-CEF 100-249 80,021 25,740 50,530 32.2 63.2
HDF-CEF 250-499 42,911 42,320 42,340 98.6 98.7
rHDFb-CEF 250-499 42,911 18,170 37,960 42.3 88.5
rHDFb,t-CEF 250-499 42,911 20,750 39,240 48.3 91.4
rMDFb,t-CEF 250-499 42,911 12,220 22,570 28.5 52.6
MDF-CEF 250-499 42,911 16,290 22,600 38.0 52.7
rSWAPLob,t (5%)-CEF 250-499 42,911 20,470 38,250 47.7 89.2
rSWAPHib,t (50%)-CEF 250-499 42,911 15,830 29,030 36.9 67.7
HDF-CEF 500-999 27,029 26,720 26,740 98.9 98.9
rHDFb,t-CEF 500-999 27,029 14,220 24,550 52.6 90.8
rHDFb-CEF 500-999 27,029 11,380 23,480 42.1 86.9
rMDFb,t-CEF 500-999 27,029 10,280 17,210 38.0 63.7
MDF-CEF 500-999 27,029 13,540 17,310 50.1 64.0
rSWAPLob,t (5%)-CEF 500-999 27,029 14,090 24,060 52.1 89.0
rSWAPHib,t (50%)-CEF 500-999 27,029 11,480 19,130 42.5 70.8
HDF-CEF 1,000+ 14,043 13,930 13,940 99.2 99.3
rHDFb,t-CEF 1,000+ 14,043 8,835 12,870 62.9 91.7
rHDFb-CEF 1,000+ 14,043 6,009 12,120 42.8 86.3
rMDFb,t-CEF 1,000+ 14,043 7,407 10,670 52.8 76.0
MDF-CEF 1,000+ 14,043 9,204 10,820 65.5 77.0
rSWAPLob,t (5%)-CEF 1,000+ 14,043 8,798 12,720 62.7 90.6
rSWAPHib,t (50%)-CEF 1,000+ 14,043 7,678 10,730 54.7 76.4

Notes: Census Block Size is the population range in the census block. Counts rounded to
four significant digits, except block populations, to conform to disclosure limitation
requirements. Agreement percentages use the block populations in that row as the base.
The rows labeled rMDFb,t and MDF (light gray highlight) are the analogs of rHDFb,t

and HDF, resp., when the 2020 Census DAS is applied to the 2010 CEF. Rows labeled
rSWAPLob,t and rSWAPHib,t (medium gray highlight) are the results of applying the full
reconstruction-abetted reidentification attack to the specially swapped versions of CEF
described in the text and Appendix C.
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Figures 5 and 6 compare the putative reidentification, confirmed reidentification, and reidentification
precision rates by census block size when the attacker is COMRCL or CEFatkr, respectively. Their inter-
pretation is identical to the interpretation of Figures 3 and 4. Detailed statistics can be found in Appendix
Tables 15, 16, and 17.

Figure 5. Comparison of Putative Reidentification Rates, Confirmed Reidentification
Rates, and Reidentification Precision Rates for Alternative Disclosure Limitation Imple-
mentations Applied to the 2010 Census Edited File for Attacker COMRCL by Census Block
Size
Notes: The denominator used in the first column is the COMRCL Population column in Ta-
ble 15, which totals to 286,700,000. The denominator in the second column is the COMRCL
population in Table 16, and the denominator in the third column is the COMRCL popu-
lation in Table 17. The denominators in the second and third columns sum to 106,300,000
because only that subset of COMRCL records can be classified as modal and nonmodal
from the CEF. See Table 3.

Only the output of the 2020 DAS (rMDFb,t and MDF) and rSWAPHib,t succeed in reducing putative
reidentification rates because only those SDL treatments introduce substantial noise in the quasi-identifiers
{block, sex, agebin}. Without noise in those quasi-identifiers, putative reidentification rates will always be
very close to those of the CEF.

The second important feature of Figures 5 and 6 is the very low, nearly uniform by block size, reiden-
tification precision rates for rMDFb,t and MDF for the nonmodal data-defined persons (middle column).
These are the only SDL treatments shown in the figures that accomplish this reduction. As the data in
Appendix Table 16 show, the reidentification precision rate for nonmodal persons never exceeds 26.4% and
averages 20.1% to 20.4%. An attacker using the methods in this paper would be wrong four times in five
guessing the {race, ethnicity} from either the reconstructed MDF, rMDFb,t, or the MDF itself. This is
essentially the same as the failure rate on nonmodal persons for the PRG statistical baseline, 16.0% to
16.7%, shown in Appendix Table 13.

Table 10 contains the final piece of evidence that the 2020 DAS effectively countered reconstruction-
abetted reidentification attacks as we have modeled them here. For the nonmodal persons living in zero
solution variability blocks who are population unique on {block, sex, agebin} (Panel B), the reidentification
precision rates of rMDFb,t and MDF vary between 21.6% and 21.8%, essentially identical to the precision
rates for the proportional guesser (20.9% and 20.2% for COMRCL and CEFatkr, resp.). Neither the low
nor high swap rate experiments deliver precision rates for this vulnerable population below 76.4%. An
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Figure 6. Comparison of Putative Reidentification Rates, Confirmed Reidentification
Rates, and Reidentification Precision Rates for Alternative Disclosure Limitation Imple-
mentations Applied to the 2010 Census Edited File for Attacker CEFatkr by Census Block
Size
Notes: The denominator used in the first column is the CEFatkr Population column in Ta-
ble 15, which totals to 276,000,000. The denominator in the second column is the CEFatkr

population in Table 16, and the denominator in the third column is the CEFatkr population
in Table 17. The denominators in the second and third columns sum to 276,000,000 because
all records in CEFatkr can be classified as modal and nonmodal from the CEF. See Table 3.

attacker using rSWAPHib,t and our methods would be correct about the population unique nonmodal
{race, ethnicity} approximately three times out of four, even though 50% of the housing unit records have
been swapped.

The replication archive also contains an ExcelTM (rmdf_bt_0solva_extract.xlsx) workbook with recon-
structed MDF records from the same 29 census tracts in which every block has zero solution variability for
rHDFb,t that are shown in rhdf_bt_0solvar_extract.xlsx. Tags also identify every row that is population
unique on {block, sex, agebin} and {block, sex, agebin, race, ethnicity} in the spreadsheet. Inspection of
the record-level data in these two workbooks shows how the DAS reduced both putative reidentification
and reidentification precision rates.

Because we have demonstrated that the tabular and microdata formats for publishing data processed by
the 2020 DAS are properly protected either when reconstructed from DHC tables into rMDFb,t or as the
MDF itself, both could be safely released. The 2020 DAS, therefore, demonstrably fixes the inconsistency
flaw in the 2010 Census SDL framework.

We have only considered the ability of the 2020 DAS to defend against reconstruction-abetted reidentifi-
cation attacks; however, both the redistricting and DHC data products were extensively tuned for accuracy.
These results are available in other sources (Abowd et al., 2022; Cumings-Menon et al., 2025; U.S. Census
Bureau, 2023a) and in the replication archive for this paper. The replication archive also contains the same
extensive set of metrics for rSWAPLob,t and rSWAPHib,t. The low swap rate experiment has accuracy
comparable to SF1. The high swap rate experiment has accuracy far worse than the production DHC on
most statistics.

The other feasible alternative to the 2020 DAS was a variant of the suppression methods used in the
1980 Census. Suppression can defend against an important subset of reconstruction attacks—isolating the
records of population uniques; however, successful suppression systems, such as the one used for economic
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censuses (Cox, 1995), require both primary and complementary suppression. Appendix D lays out the rules
used for the 1980 Census as we adapted them to testing suppression for the 2020 Census. Only primary
and whole table suppression were used. Without complementary suppression there is no provable defense
against reconstruction of population unique records. We considered only the four primary tables in the
Redistricting Data (P.L. 94-171) Summary File (tables P8–P11 in Summary File 1). Appendix Tables
18 and 19 show that the use of just the 1980 Census primary suppression rules would have resulted in
zeroing out up to 83.8% of the cells in these tables, suppressing up to 87.7% of the block-level redistricting
tables, and suppressing 38.7% of the other block-level tables in the 2010 SF1. Suppression destroys the
redistricting use case—missing block-level tables prevent the creation of new voting districts, which have
unknown boundaries at the time of data publication. The new districts must have approximately equal
populations and be drawn in compliance with Section 2 of the 1965 Voting Rights Act. This limitation of
suppression was known in 1980 and constituted one of the main reasons for using swapping in the 1990
Census data (McKenna, 2018).

10. Conclusions

This paper directly addresses the concept at the heart of traditional statistical disclosure limitation: the
claim that as long as there is any uncertainty regarding whether or not a particular respondent’s data were
used in a particular statistic the agency has provided meaningful confidentiality protection to respondents,
so-called “plausible deniability.” We establish that the 2010 Census attacker does not need access to the
confidential data to reconstruct a close approximation to the confidential HDF, to know that many records
are identical in the reconstructed data and the HDF (using the 38-age-bin schema), and, in many cases,
to know which records those are (see Section 6.1). While this is strictly true for “only” 97 million persons,
adding more tables and more features can only increase this number. If the reconstructed microdata meet
the conditions for a microdata-based record-linkage attack, then such an attack must be defended in the SDL
framework. Therefore, the plausible deniability argument turns on whether the 2010 Census aggregation
and swapping were adequate. We argued here that they were not. In particular, if the released tabular
data have reidentification precision rates that are essentially identical to the original confidential data as in
Table 10, then either those data could have been released without aggregation, which the Census Bureau has
consistently argued would violate Title 13, or the tabular data are too disclosive, which is what we conclude.
From the lens of discussion of on why protections are necessary, any respondent who does not wish their
or their child’s race or ethnicity to be learned from the 2010 Census publications may understandably find
these results concerning, since they imply that a reconstruction-abetted reidentification attack could infer
the correct race and ethnicity with high confidence. Furthermore, such an attack only succeeds because
the respondent provided this information (see Section 2.2). Although many other respondents may not
find inference about their race and ethnicity concerning, we also remind the reader that race and ethnicity
were used here as an example for illustration, not because of any special structure these variables have that
is useful for a reconstruction-abetted reidentification attack. Possibly, many more respondents would be
concerned if a similar attack could exploit their specific 2010 Census responses to infer whether they were
in a same-sex marriage, whether their child was adopted, whether they were an older person living alone,
if they exceeded their lease’s occupancy limit, etc.

This paper has also demonstrated that the decision to replace the SDL system used for the 2010 Census
was based on sound scientific evidence that those methods would fail if applied to the 2020 Census and/or
would lead to unacceptable data accuracy loss. First, we demonstrated that based on only 5 billion of
the 150 billion statistics published from the 2010 Census, the confidential microdata from the tabulation
input file, the Hundred-percent Detail File, could be recreated with at least 95% accuracy on the schema
used for all block-level data (see Section 6.2 and Table 8). This image of the 2010 HDF, rHDFb,t, fails
three contemporaneous confidentiality requirements for the 2010 Census: (i) it is not a sample; (ii) the
minimum population in the geographic identifier is 1 person, not 100,000; (iii) the minimum national
population for cells in one-dimensional marginals is less than 10,000 (see Sections 2 and 8). Similar criteria
are still in place for public-use microdata samples for other Census Bureau household surveys. Second,
in Table 6, we demonstrated that the Census Bureau was correct to insist on minimum populations in
microdata for both the geographic identifiers and demographic characteristics because for more than 70% of
all blocks, the records in rHDFb,t are provably identical to their counterparts in the HDF using the binned-
age schema; hence, there is no confidentiality protection from aggregation over the geographic identifier
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population. Third, we demonstrated that rHDFb,t could be used to make high-precision confidentiality-
violating inferences: as shown in Table 10, the reidentification precision rate on inferences for nonmodal
vulnerable populations is at least 60.3% and at worst 95.4% whereas the best precision rate for scientific
inferences in vulnerable populations is 20.9%, and a modal guesser never exceeds 3.3% precision. Finally,
we demonstrated that the differentially private SDL methods applied to the 2020 DHC, the successor to the
2010 SF1, successfully counter this reconstruction-abetted reidentification attack by greatly reducing the
putative reidentification rates and by limiting the precision rates on nonmodal vulnerable populations to
at most 21.8% (see Table 10). Although such a demonstration does not mean the public 2020 Census data
are protected against an arbitrary attack into the indefinite future, it does mean that they are substantially
better protected than they would have been had the methods applied to the 2010 Census been used.
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Appendix A. Detailed Tables Referenced in Section 7

Table 12. All Data-Defined Persons: Putative and Confirmed Reidentifi-
cations by Census Block Size

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF All 286,700 167,500 82,760 49.4 276,000 276,000 237,500 86.1
HDF All 286,700 166,100 80,540 48.5 276,000 267,800 228,400 85.3
rHDFb,t All 286,700 166,100 68,480 41.2 276,000 267,800 208,500 77.9
rHDFb All 286,700 166,100 67,450 40.6 276,000 267,800 203,100 75.9
MDG All 286,700 166,100 76,270 45.9 276,000 267,800 205,100 76.6
PRG All 286,700 166,100 66,260 39.9 276,000 267,800 177,700 66.3

CEF 1-9 10,180 3,470 2,976 85.8 7,373 7,373 7,357 99.8
HDF 1-9 10,180 2,862 2,303 80.5 7,373 5,517 5,427 98.4
rHDFb,t 1-9 10,180 2,862 2,201 76.9 7,373 5,517 5,402 97.9
rHDFb 1-9 10,180 2,862 2,196 76.7 7,373 5,517 5,395 97.8
MDG 1-9 10,180 2,862 2,228 77.9 7,373 5,517 5,193 94.1
PRG 1-9 10,180 2,862 2,170 75.8 7,373 5,517 5,054 91.6

CEF 10-49 70,300 34,250 23,300 68.0 61,820 61,820 60,350 97.6
HDF 10-49 70,300 33,730 22,430 66.5 61,820 58,630 56,840 96.9
rHDFb,t 10-49 70,300 33,730 19,600 58.1 61,820 58,630 54,540 93.0
rHDFb 10-49 70,300 33,730 19,430 57.6 61,820 58,630 53,840 91.8
MDG 10-49 70,300 33,730 20,870 61.9 61,820 58,630 50,620 86.3
PRG 10-49 70,300 33,730 19,010 56.4 61,820 58,630 46,250 78.9

CEF 50-99 66,980 38,160 21,200 55.6 62,760 62,760 58,450 93.1
HDF 50-99 66,980 37,980 20,780 54.7 62,760 60,970 56,440 92.6
rHDFb,t 50-99 66,980 37,980 17,120 45.1 62,760 60,970 51,230 84.0
rHDFb 50-99 66,980 37,980 16,860 44.4 62,760 60,970 49,880 81.8
MDG 50-99 66,980 37,980 18,980 50.0 62,760 60,970 48,170 79.0
PRG 50-99 66,980 37,980 16,500 43.5 62,760 60,970 41,990 68.9

CEF 100-249 71,870 45,320 20,440 45.1 71,410 71,410 61,190 85.7
HDF 100-249 71,870 45,250 20,240 44.7 71,410 70,400 60,030 85.3
rHDFb,t 100-249 71,870 45,250 16,660 36.8 71,410 70,400 52,650 74.8
rHDFb 100-249 71,870 45,250 16,350 36.1 71,410 70,400 50,890 72.3
MDG 100-249 71,870 45,250 18,940 41.9 71,410 70,400 52,190 74.1
PRG 100-249 71,870 45,250 16,120 35.6 71,410 70,400 44,310 62.9

CEF 250-499 36,740 24,680 8,923 36.2 37,660 37,660 28,480 75.6
HDF 250-499 36,740 24,670 8,878 36.0 37,660 37,400 28,140 75.3
rHDFb,t 250-499 36,740 24,670 7,608 30.8 37,660 37,400 24,940 66.7
rHDFb 250-499 36,740 24,670 7,459 30.2 37,660 37,400 24,090 64.4
MDG 250-499 36,740 24,670 8,886 36.0 37,660 37,400 26,520 70.9
PRG 250-499 36,740 24,670 7,409 30.0 37,660 37,400 22,050 59.0

CEF 500-999 21,620 15,090 4,416 29.3 23,270 23,270 15,250 65.5
HDF 500-999 21,620 15,090 4,398 29.2 23,270 23,180 15,110 65.2
rHDFb,t 500-999 21,620 15,090 3,898 25.8 23,270 23,180 13,700 59.1
rHDFb 500-999 21,620 15,090 3,809 25.3 23,270 23,180 13,230 57.1
MDG 500-999 21,620 15,090 4,664 30.9 23,270 23,180 15,370 66.3
PRG 500-999 21,620 15,090 3,748 24.9 23,270 23,180 12,430 53.6
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Table 12 Continued

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF 1,000+ 8,976 6,510 1,510 23.2 11,670 11,670 6,432 55.1
HDF 1,000+ 8,976 6,510 1,505 23.1 11,670 11,650 6,403 55.0
rHDFb,t 1,000+ 8,976 6,510 1,380 21.2 11,670 11,650 5,986 51.4
rHDFb 1,000+ 8,976 6,510 1,339 20.6 11,670 11,650 5,779 49.6
MDG 1,000+ 8,976 6,510 1,699 26.1 11,670 11,650 7,056 60.6
PRG 1,000+ 8,976 6,510 1,305 20.1 11,670 11,650 5,576 47.9
PRG 1,000+ 8,976 6,510 1,305 20.1 11,670 11,650 5,576 47.9

Notes: Census Block Size is the population range in the census block. Counts rounded to four
significant digits to conform to disclosure limitation requirements. Population for attacker
COMRCL is the total number of data-defined records in COMRCL that are also in the CEF
universe, per Table 3. Population for attacker CEFatkr is the total number of data-defined
CEF records.

Table 13. Nonmodal Data-Defined Persons: Putative and Confirmed Rei-
dentifications by Census Block Size

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF All 17,320 15,330 9,746 63.6 65,850 65,850 42,070 63.9
HDF All 17,320 14,780 8,967 60.7 65,850 62,530 38,120 61.0
rHDFb,t All 17,320 13,910 6,147 44.2 65,850 62,810 27,180 43.3
rHDFb All 17,320 13,680 5,514 40.3 65,850 62,810 23,990 38.2
MDG All 17,320 14,780 170 1.2 65,850 62,530 580 0.9
PRG All 17,320 14,780 2,473 16.7 65,850 62,530 10,000 16.0

CEF 1-9 150 146 143 97.9 480 480 472 98.3
HDF 1-9 150 91 81 89.2 480 276 249 90.2
rHDFb,t 1-9 150 88 75 85.4 480 279 240 86.0
rHDFb 1-9 150 87 74 84.4 480 279 236 84.7
MDG 1-9 150 91 8 9.0 480 276 20 7.2
PRG 1-9 150 91 29 32.3 480 276 88 31.8

CEF 10-49 2,733 2,537 2,242 88.4 9,545 9,545 8,713 91.3
HDF 10-49 2,733 2,250 1,865 82.9 9,545 7,971 6,904 86.6
rHDFb,t 10-49 2,733 2,099 1,435 68.4 9,545 8,084 5,777 71.5
rHDFb 10-49 2,733 2,058 1,344 65.3 9,545 8,082 5,397 66.8
MDG 10-49 2,733 2,250 59 2.6 9,545 7,971 184 2.3
PRG 10-49 2,733 2,250 444 19.7 9,545 7,971 1,587 19.9

CEF 50-99 3,957 3,558 2,748 77.2 13,740 13,740 11,200 81.5
HDF 50-99 3,957 3,411 2,527 74.1 13,740 12,790 10,060 78.6
rHDFb,t 50-99 3,957 3,143 1,688 53.7 13,740 12,900 7,221 56.0
rHDFb 50-99 3,957 3,080 1,525 49.5 13,740 12,900 6,422 49.8
MDG 50-99 3,957 3,411 47 1.4 13,740 12,790 157 1.2
PRG 50-99 3,957 3,411 576 16.9 13,740 12,790 2,111 16.5

CEF 100-249 5,055 4,457 2,797 62.8 18,670 18,670 12,460 66.8
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Table 13 Continued

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

HDF 100-249 5,055 4,400 2,700 61.4 18,670 18,210 11,870 65.2
rHDFb,t 100-249 5,055 4,116 1,706 41.4 18,670 18,260 7,645 41.9
rHDFb 100-249 5,055 4,045 1,496 37.0 18,670 18,260 6,553 35.9
MDG 100-249 5,055 4,400 35 0.8 18,670 18,210 132 0.7
PRG 100-249 5,055 4,400 706 16.0 18,670 18,210 2,798 15.4

CEF 250-499 2,703 2,328 1,063 45.6 10,970 10,970 5,275 48.1
HDF 250-499 2,703 2,320 1,047 45.1 10,970 10,870 5,142 47.3
rHDFb,t 250-499 2,703 2,219 687 31.0 10,970 10,880 3,337 30.7
rHDFb 250-499 2,703 2,188 591 27.0 10,970 10,880 2,807 25.8
MDG 250-499 2,703 2,320 12 0.5 10,970 10,870 51 0.5
PRG 250-499 2,703 2,320 359 15.5 10,970 10,870 1,586 14.6

CEF 500-999 1,807 1,536 537 35.0 7,846 7,846 2,735 34.9
HDF 500-999 1,807 1,534 532 34.7 7,846 7,812 2,690 34.4
rHDFb,t 500-999 1,807 1,490 383 25.7 7,846 7,813 1,945 24.9
rHDFb 500-999 1,807 1,474 331 22.5 7,846 7,813 1,664 21.3
MDG 500-999 1,807 1,534 6 0.4 7,846 7,812 28 0.4
PRG 500-999 1,807 1,534 236 15.4 7,846 7,812 1,116 14.3

CEF 1,000+ 914 771 216 28.1 4,602 4,602 1,213 26.4
HDF 1,000+ 914 770 215 28.0 4,602 4,595 1,203 26.2
rHDFb,t 1,000+ 914 757 174 22.9 4,602 4,595 1,017 22.1
rHDFb 1,000+ 914 750 154 20.5 4,602 4,595 911 19.8
MDG 1,000+ 914 770 2 0.2 4,602 4,595 8 0.2
PRG 1,000+ 914 770 122 15.9 4,602 4,595 717 15.6

Notes: Census Block Size is the population range in the census block. Counts rounded to four
significant digits to conform to disclosure limitation requirements. COMRCL and CEFatkr use
only data-defined records. Only the 106,300,000 records in COMRCL that match CEF on the
feature set {pik, block}, per Table 3, can be used to identify a nonmodal person. For each
attacker, the column Population shows the number of at-risk records.

Table 14. Modal Data-Defined Persons: Putative and Confirmed Reiden-
tifications by Census Block Size

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF All 88,930 77,620 73,010 94.1 210,100 210,100 195,400 93.0
HDF All 88,930 76,300 71,570 93.8 210,100 205,200 190,300 92.7
rHDFb,t All 88,930 69,260 62,330 90.0 210,100 204,900 181,300 88.5
rHDFb All 88,930 69,070 61,940 89.7 210,100 204,900 179,100 87.4
MDG All 88,930 76,300 76,100 99.7 210,100 205,200 204,500 99.7
PRG All 88,930 76,300 63,790 83.6 210,100 205,200 167,700 81.7

CEF 1-9 2,901 2,836 2,833 99.9 6,893 6,893 6,886 99.9
HDF 1-9 2,901 2,243 2,222 99.1 6,893 5,241 5,177 98.8
rHDFb,t 1-9 2,901 2,151 2,126 98.8 6,893 5,239 5,163 98.5
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Table 14 Continued

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

rHDFb 1-9 2,901 2,149 2,123 98.8 6,893 5,239 5,159 98.5
MDG 1-9 2,901 2,243 2,220 99.0 6,893 5,241 5,173 98.7
PRG 1-9 2,901 2,243 2,141 95.4 6,893 5,241 4,966 94.8

CEF 10-49 23,020 21,330 21,050 98.7 52,270 52,270 51,630 98.8
HDF 10-49 23,020 20,880 20,570 98.5 52,270 50,660 49,930 98.6
rHDFb,t 10-49 23,020 18,830 18,170 96.5 52,270 50,550 48,760 96.5
rHDFb 10-49 23,020 18,780 18,090 96.3 52,270 50,550 48,450 95.8
MDG 10-49 23,020 20,880 20,810 99.7 52,270 50,660 50,440 99.6
PRG 10-49 23,020 20,880 18,570 88.9 52,270 50,660 44,660 88.2

CEF 50-99 21,680 19,170 18,450 96.3 49,020 49,020 47,250 96.4
HDF 50-99 21,680 18,990 18,250 96.1 49,020 48,180 46,380 96.3
rHDFb,t 50-99 21,680 16,810 15,430 91.8 49,020 48,070 44,010 91.5
rHDFb 50-99 21,680 16,760 15,340 91.5 49,020 48,080 43,460 90.4
MDG 50-99 21,680 18,990 18,940 99.7 49,020 48,180 48,010 99.7
PRG 50-99 21,680 18,990 15,930 83.9 49,020 48,180 39,880 82.8

CEF 100-249 22,380 19,010 17,640 92.8 52,740 52,740 48,730 92.4
HDF 100-249 22,380 18,940 17,540 92.6 52,740 52,200 48,150 92.3
rHDFb,t 100-249 22,380 17,100 14,960 87.5 52,740 52,140 45,000 86.3
rHDFb 100-249 22,380 17,060 14,860 87.1 52,740 52,150 44,330 85.0
MDG 100-249 22,380 18,940 18,900 99.8 52,740 52,200 52,060 99.7
PRG 100-249 22,380 18,940 15,410 81.4 52,740 52,200 41,510 79.5

CEF 250-499 10,920 8,901 7,860 88.3 26,690 26,690 23,200 86.9
HDF 250-499 10,920 8,885 7,831 88.1 26,690 26,520 23,000 86.7
rHDFb,t 250-499 10,920 8,278 6,921 83.6 26,690 26,510 21,610 81.5
rHDFb 250-499 10,920 8,250 6,868 83.3 26,690 26,510 21,280 80.3
MDG 250-499 10,920 8,885 8,874 99.9 26,690 26,520 26,470 99.8
PRG 250-499 10,920 8,885 7,049 79.3 26,690 26,520 20,460 77.1

CEF 500-999 5,873 4,668 3,879 83.1 15,430 15,430 12,510 81.1
HDF 500-999 5,873 4,663 3,866 82.9 15,430 15,370 12,420 80.8
rHDFb,t 500-999 5,873 4,447 3,516 79.1 15,430 15,370 11,760 76.5
rHDFb 500-999 5,873 4,426 3,477 78.5 15,430 15,370 11,570 75.3
MDG 500-999 5,873 4,663 4,658 99.9 15,430 15,370 15,340 99.8
PRG 500-999 5,873 4,663 3,512 75.3 15,430 15,370 11,310 73.6

CEF 1,000+ 2,147 1,699 1,293 76.1 7,066 7,066 5,219 73.9
HDF 1,000+ 2,147 1,699 1,290 76.0 7,066 7,056 5,200 73.7
rHDFb,t 1,000+ 2,147 1,653 1,206 73.0 7,066 7,056 4,969 70.4
rHDFb 1,000+ 2,147 1,643 1,185 72.1 7,066 7,056 4,868 69.0
MDG 1,000+ 2,147 1,699 1,697 99.9 7,066 7,056 7,048 99.9
PRG 1,000+ 2,147 1,699 1,183 69.6 7,066 7,056 4,859 68.9

Notes: Census Block Size is the population range in the census block. Counts rounded to four
significant digits to conform to disclosure limitation requirements. COMRCL and CEFatkr use
only data-defined records. Only the 106,300,000 records in COMRCL that match CEF on the
feature set {pik, block}, per Table 3), can be used to identify a modal person. For each attacker,
the column Population shows the number of at-risk records.
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Appendix B. Detailed Tables Referenced in Section 8

Table 15. All Data-Defined Persons: Putative and Confirmed Reidentifi-
cations Using the 2020 Disclosure Avoidance System Applied to the 2010
Census and Using Specially Swapped Versions of the 2010 Census Edited
File by Census Block Size

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF All 286,700 167,500 82,760 49.4 276,000 276,000 237,500 86.1
HDF All 286,700 166,100 80,540 48.5 276,000 267,800 228,400 85.3
rHDFb,t All 286,700 166,100 68,480 41.2 276,000 267,800 208,500 77.9
MDF All 286,700 112,100 32,790 29.3 276,000 130,800 82,510 63.1
rMDFb,t All 286,700 112,100 32,380 28.9 276,000 130,800 81,670 62.5
rSWAPLob,t All 286,700 166,200 68,440 41.2 276,000 266,700 207,900 78.0
rSWAPHib,t All 286,700 154,300 50,600 32.8 276,000 207,100 140,000 67.6

CEF 1-9 10,180 3,470 2,976 85.8 7,373 7,373 7,357 99.8
HDF 1-9 10,180 2,862 2,303 80.5 7,373 5,517 5,427 98.4
rHDFb,t 1-9 10,180 2,862 2,201 76.9 7,373 5,517 5,402 97.9
MDF 1-9 10,180 894 260 29.1 7,373 785 584 74.5
rMDFb,t 1-9 10,180 894 260 29.1 7,373 785 584 74.4
rSWAPLob,t 1-9 10,180 3,345 2,719 81.3 7,373 7,016 6,966 99.3
rSWAPHib,t 1-9 10,180 2,273 1,564 68.8 7,373 4,038 3,900 96.6

CEF 10-49 70,300 34,250 23,300 68.0 61,820 61,820 60,350 97.6
HDF 10-49 70,300 33,730 22,430 66.5 61,820 58,630 56,840 96.9
rHDFb,t 10-49 70,300 33,730 19,600 58.1 61,820 58,630 54,540 93.0
MDF 10-49 70,300 15,470 4,966 32.1 61,820 14,950 10,770 72.0
rMDFb,t 10-49 70,300 15,470 4,939 31.9 61,820 14,950 10,720 71.7
rSWAPLob,t 10-49 70,300 33,610 19,530 58.1 61,820 58,970 55,000 93.3
rSWAPHib,t 10-49 70,300 28,270 12,870 45.5 61,820 38,790 33,100 85.3

CEF 50-99 66,980 38,160 21,200 55.6 62,760 62,760 58,450 93.1
HDF 50-99 66,980 37,980 20,780 54.7 62,760 60,970 56,440 92.6
rHDFb,t 50-99 66,980 37,980 17,120 45.1 62,760 60,970 51,230 84.0
MDF 50-99 66,980 22,360 6,954 31.1 62,760 23,180 15,570 67.2
rMDFb,t 50-99 66,980 22,360 6,896 30.8 62,760 23,180 15,450 66.7
rSWAPLob,t 50-99 66,980 37,790 16,900 44.7 62,760 60,180 50,480 83.9
rSWAPHib,t 50-99 66,980 34,510 12,280 35.6 62,760 44,300 32,500 73.4

CEF 100-249 71,870 45,320 20,440 45.1 71,410 71,410 61,190 85.7
HDF 100-249 71,870 45,250 20,240 44.7 71,410 70,400 60,030 85.3
rHDFb,t 100-249 71,870 45,250 16,660 36.8 71,410 70,400 52,650 74.8
MDF 100-249 71,870 32,330 9,745 30.1 71,410 36,710 23,600 64.3
rMDFb,t 100-249 71,870 32,330 9,628 29.8 71,410 36,710 23,370 63.7
rSWAPLob,t 100-249 71,870 45,130 16,470 36.5 71,410 69,080 51,450 74.5
rSWAPHib,t 100-249 71,870 43,060 12,930 30.0 71,410 55,870 35,980 64.4

CEF 250-499 36,740 24,680 8,923 36.2 37,660 37,660 28,480 75.6
HDF 250-499 36,740 24,670 8,878 36.0 37,660 37,400 28,140 75.3
rHDFb,t 250-499 36,740 24,670 7,608 30.8 37,660 37,400 24,940 66.7
MDF 250-499 36,740 20,800 5,974 28.7 37,660 25,640 15,840 61.8
rMDFb,t 250-499 36,740 20,800 5,875 28.3 37,660 25,640 15,640 61.0
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Table 15 Continued

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

rSWAPLob,t 250-499 36,740 24,670 7,558 30.6 37,660 36,850 24,500 66.5
rSWAPHib,t 250-499 36,740 24,320 6,338 26.1 37,660 32,110 18,630 58.0

CEF 500-999 21,620 15,090 4,416 29.3 23,270 23,270 15,250 65.5
HDF 500-999 21,620 15,090 4,398 29.2 23,270 23,180 15,110 65.2
rHDFb,t 500-999 21,620 15,090 3,898 25.8 23,270 23,180 13,700 59.1
MDF 500-999 21,620 13,920 3,540 25.4 23,270 18,820 10,700 56.9
rMDFb,t 500-999 21,620 13,920 3,463 24.9 23,270 18,820 10,540 56.0
rSWAPLob,t 500-999 21,620 15,110 3,892 25.8 23,270 22,980 13,560 59.0
rSWAPHib,t 500-999 21,620 15,220 3,391 22.3 23,270 20,940 10,850 51.8

CEF 1,000+ 8,976 6,510 1,510 23.2 11,670 11,670 6,432 55.1
HDF 1,000+ 8,976 6,510 1,505 23.1 11,670 11,650 6,403 55.0
rHDFb,t 1,000+ 8,976 6,510 1,380 21.2 11,670 11,650 5,986 51.4
MDF 1,000+ 8,976 6,299 1,346 21.4 11,670 10,700 5,450 50.9
rMDFb,t 1,000+ 8,976 6,299 1,314 20.9 11,670 10,700 5,357 50.1
rSWAPLob,t 1,000+ 8,976 6,524 1,379 21.1 11,670 11,610 5,958 51.3
rSWAPHib,t 1,000+ 8,976 6,690 1,233 18.4 11,670 11,010 5,044 45.8

Notes: Census Block Size is the population range in the census block. Counts rounded to four
significant digits to conform to disclosure limitation requirements. The row rMDFb,t (light gray
highlight) uses the full reconstruction-abetted reidentification attack on 2010 Census data processed
using the 2020 Disclosure Avoidance System with final production parameters and reported
using the same tabular schema as the 2010 Census Summary File 1. The row MDF (light gray
highlight) implements only the reidentification attack using the Microdata Detail File created from
the 2010 Census as input. The rows rSWAPLob,t and rSWAPHib,t (medium gray highlight) implement
the full reconstruction-abetted reidentification attack using the specially swapped versions of the
2010 CEF described in the main text.

Table 16. Nonmodal Data-Defined Persons: Putative and Confirmed Rei-
dentifications Using the 2020 Disclosure Avoidance System Applied to the
2010 Census and Using Specially Swapped Versions of the 2010 Census
Edited File by Census Block Size

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF All 17,320 15,330 9,746 63.6 65,850 65,850 42,070 63.9
HDF All 17,320 14,780 8,967 60.7 65,850 62,530 38,120 61.0
rHDFb,t All 17,320 13,910 6,147 44.2 65,850 62,810 27,180 43.3
MDF All 17,320 8,782 1,795 20.4 65,850 35,360 7,192 20.3
rMDFb,t All 17,320 8,778 1,775 20.2 65,850 35,380 7,108 20.1
rSWAPLob,t All 17,320 14,130 6,456 45.7 65,850 63,920 28,720 44.9
rSWAPHib,t All 17,320 12,240 4,235 34.6 65,850 51,600 17,170 33.3

CEF 1-9 150 146 143 97.9 480 480 472 98.3
HDF 1-9 150 91 81 89.2 480 276 249 90.2
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Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

rHDFb,t 1-9 150 88 75 85.4 480 279 240 86.0
MDF 1-9 150 18 5 26.4 480 56 14 25.5
rMDFb,t 1-9 150 18 5 26.2 480 56 14 25.4
rSWAPLob,t 1-9 150 135 127 94.3 480 457 432 94.6
rSWAPHib,t 1-9 150 80 68 85.2 480 264 229 86.5

CEF 10-49 2,733 2,537 2,242 88.4 9,545 9,545 8,713 91.3
HDF 10-49 2,733 2,250 1,865 82.9 9,545 7,971 6,904 86.6
rHDFb,t 10-49 2,733 2,099 1,435 68.4 9,545 8,084 5,777 71.5
MDF 10-49 2,733 745 160 21.5 9,545 2,404 538 22.4
rMDFb,t 10-49 2,733 745 160 21.5 9,545 2,405 535 22.3
rSWAPLob,t 10-49 2,733 2,256 1,645 72.9 9,545 9,110 6,920 76.0
rSWAPHib,t 10-49 2,733 1,633 921 56.4 9,545 6,017 3,647 60.6

CEF 50-99 3,957 3,558 2,748 77.2 13,740 13,740 11,200 81.5
HDF 50-99 3,957 3,411 2,527 74.1 13,740 12,790 10,060 78.6
rHDFb,t 50-99 3,957 3,143 1,688 53.7 13,740 12,900 7,221 56.0
MDF 50-99 3,957 1,550 322 20.8 13,740 5,147 1,087 21.1
rMDFb,t 50-99 3,957 1,550 321 20.7 13,740 5,148 1,079 21.0
rSWAPLob,t 50-99 3,957 3,176 1,751 55.1 13,740 13,180 7,583 57.5
rSWAPHib,t 50-99 3,957 2,595 1,067 41.1 13,740 9,708 4,149 42.7

CEF 100-249 5,055 4,457 2,797 62.8 18,670 18,670 12,460 66.8
HDF 100-249 5,055 4,400 2,700 61.4 18,670 18,210 11,870 65.2
rHDFb,t 100-249 5,055 4,116 1,706 41.4 18,670 18,260 7,645 41.9
MDF 100-249 5,055 2,636 538 20.4 18,670 9,668 1,981 20.5
rMDFb,t 100-249 5,055 2,636 533 20.2 18,670 9,673 1,958 20.2
rSWAPLob,t 100-249 5,055 4,101 1,700 41.4 18,670 18,080 7,585 42.0
rSWAPHib,t 100-249 5,055 3,637 1,156 31.8 18,670 14,680 4,557 31.0

CEF 250-499 2,703 2,328 1,063 45.6 10,970 10,970 5,275 48.1
HDF 250-499 2,703 2,320 1,047 45.1 10,970 10,870 5,142 47.3
rHDFb,t 250-499 2,703 2,219 687 31.0 10,970 10,880 3,337 30.7
MDF 250-499 2,703 1,772 354 20.0 10,970 7,502 1,493 19.9
rMDFb,t 250-499 2,703 1,771 350 19.8 10,970 7,506 1,471 19.6
rSWAPLob,t 250-499 2,703 2,213 679 30.7 10,970 10,750 3,270 30.4
rSWAPHib,t 250-499 2,703 2,085 527 25.3 10,970 9,442 2,237 23.7

CEF 500-999 1,807 1,536 537 35.0 7,846 7,846 2,735 34.9
HDF 500-999 1,807 1,534 532 34.7 7,846 7,812 2,690 34.4
rHDFb,t 500-999 1,807 1,490 383 25.7 7,846 7,813 1,945 24.9
MDF 500-999 1,807 1,337 268 20.0 7,846 6,361 1,234 19.4
rMDFb,t 500-999 1,807 1,336 262 19.6 7,846 6,364 1,217 19.1
rSWAPLob,t 500-999 1,807 1,489 381 25.6 7,846 7,755 1,916 24.7
rSWAPHib,t 500-999 1,807 1,451 329 22.7 7,846 7,118 1,467 20.6

CEF 1,000+ 914 771 216 28.1 4,602 4,602 1,213 26.4
HDF 1,000+ 914 770 215 28.0 4,602 4,595 1,203 26.2
rHDFb,t 1,000+ 914 757 174 22.9 4,602 4,595 1,017 22.1
MDF 1,000+ 914 723 148 20.5 4,602 4,224 844 20.0
rMDFb,t 1,000+ 914 722 144 20.0 4,602 4,225 834 19.7
rSWAPLob,t 1,000+ 914 757 173 22.9 4,602 4,582 1,012 22.1
rSWAPHib,t 1,000+ 914 756 166 22.0 4,602 4,368 880 20.2
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Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

Notes: Census Block Size is the population range in the census block. Counts rounded to four
significant digits to conform to disclosure limitation requirements. COMRCL and CEFatkr use only
data-defined records. See notes to Table 13 for details of the universe for nonmodal data-defined
persons in the COMRCL data. The column Population for each attacker is the number of at-risk
records. The row rMDFb,t (light gray highlight) uses the full reconstruction-abetted
reidentification attack on 2010 Census using the 2020 Disclosure Avoidance System with final
production data parameters and reported using the same tabular schema as the 2010 Census
Summary File 1. The row MDF (light gray highlight) implements only the reidentification
attack using the Microdata Detail File created from the 2010 Census as input. The rows
rSWAPLob,t and rSWAPHib,t (medium gray highlight) implement the full reconstruction-
abetted reidentification attack using the specially swapped versions of the 2010 CEF described
in the main text.

Table 17. Modal Data-Defined Persons: Putative and Confirmed Reiden-
tifications Using the 2020 Disclosure Avoidance System Applied to the 2010
Census and Using Specially Swapped Versions of the 2010 Census Edited
File by Census Block Size

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

CEF All 88,930 77,620 73,010 94.1 210,100 210,100 195,400 93.0
HDF All 88,930 76,300 71,570 93.8 210,100 205,200 190,300 92.7
rHDFb,t All 88,930 69,260 62,330 90.0 210,100 204,900 181,300 88.5
MDF All 88,930 37,350 30,990 83.0 210,100 95,410 75,320 78.9
rMDFb,t All 88,930 37,220 30,600 82.2 210,100 95,400 74,560 78.2
rSWAPLob,t All 88,930 68,950 61,990 89.9 210,100 202,800 179,200 88.4
rSWAPHib,t All 88,930 56,500 46,360 82.1 210,100 155,500 122,800 79.0

CEF 1-9 2,901 2,836 2,833 99.9 6,893 6,893 6,886 99.9
HDF 1-9 2,901 2,243 2,222 99.1 6,893 5,241 5,177 98.8
rHDFb,t 1-9 2,901 2,151 2,126 98.8 6,893 5,239 5,163 98.5
MDF 1-9 2,901 317 256 80.7 6,893 729 570 78.2
rMDFb,t 1-9 2,901 317 255 80.5 6,893 729 569 78.1
rSWAPLob,t 1-9 2,901 2,602 2,592 99.6 6,893 6,558 6,533 99.6
rSWAPHib,t 1-9 2,901 1,535 1,496 97.5 6,893 3,773 3,672 97.3

CEF 10-49 23,020 21,330 21,050 98.7 52,270 52,270 51,630 98.8
HDF 10-49 23,020 20,880 20,570 98.5 52,270 50,660 49,930 98.6
rHDFb,t 10-49 23,020 18,830 18,170 96.5 52,270 50,550 48,760 96.5
MDF 10-49 23,020 5,714 4,805 84.1 52,270 12,540 10,230 81.6
rMDFb,t 10-49 23,020 5,707 4,779 83.7 52,270 12,540 10,190 81.2
rSWAPLob,t 10-49 23,020 18,550 17,880 96.4 52,270 49,860 48,080 96.4
rSWAPHib,t 10-49 23,020 13,230 11,950 90.3 52,270 32,770 29,450 89.9

CEF 50-99 21,680 19,170 18,450 96.3 49,020 49,020 47,250 96.4
HDF 50-99 21,680 18,990 18,250 96.1 49,020 48,180 46,380 96.3
rHDFb,t 50-99 21,680 16,810 15,430 91.8 49,020 48,070 44,010 91.5
MDF 50-99 21,680 7,942 6,632 83.5 49,020 18,030 14,480 80.3



A Simulated Reconstruction and Reidentification Attack on the 2010 U.S. Census: Full Technical Report 69

Table 17 Continued

Attacker (R in Alg. 3): COMRCL Attacker (R in Alg. 3): CEFatkr

Data Census Popu- Puta- Con- Preci- Popu- Puta- Con- Preci-
(L in Block lation tive firmed sion lation tive firmed sion
Alg. 3) Size (×103) (×103) (×103) (%) (×103) (×103) (×103) (%)

rMDFb,t 50-99 21,680 7,929 6,575 82.9 49,020 18,030 14,370 79.7
rSWAPLob,t 50-99 21,680 16,550 15,150 91.6 49,020 47,000 42,890 91.3
rSWAPHib,t 50-99 21,680 13,420 11,210 83.5 49,020 34,590 28,360 82.0

CEF 100-249 22,380 19,010 17,640 92.8 52,740 52,740 48,730 92.4
HDF 100-249 22,380 18,940 17,540 92.6 52,740 52,200 48,150 92.3
rHDFb,t 100-249 22,380 17,100 14,960 87.5 52,740 52,140 45,000 86.3
MDF 100-249 22,380 10,980 9,207 83.8 52,740 27,050 21,620 79.9
rMDFb,t 100-249 22,380 10,950 9,095 83.1 52,740 27,040 21,410 79.2
rSWAPLob,t 100-249 22,380 16,930 14,770 87.2 52,740 51,000 43,870 86.0
rSWAPHib,t 100-249 22,380 14,850 11,770 79.3 52,740 41,190 31,420 76.3

CEF 250-499 10,920 8,901 7,860 88.3 26,690 26,690 23,200 86.9
HDF 250-499 10,920 8,885 7,831 88.1 26,690 26,520 23,000 86.7
rHDFb,t 250-499 10,920 8,278 6,921 83.6 26,690 26,510 21,610 81.5
MDF 250-499 10,920 6,724 5,620 83.6 26,690 18,140 14,350 79.1
rMDFb,t 250-499 10,920 6,689 5,525 82.6 26,690 18,130 14,170 78.2
rSWAPLob,t 250-499 10,920 8,237 6,879 83.5 26,690 26,100 21,230 81.3
rSWAPHib,t 250-499 10,920 7,609 5,811 76.4 26,690 22,670 16,400 72.3

CEF 500-999 5,873 4,668 3,879 83.1 15,430 15,430 12,510 81.1
HDF 500-999 5,873 4,663 3,866 82.9 15,430 15,370 12,420 80.8
rHDFb,t 500-999 5,873 4,447 3,516 79.1 15,430 15,370 11,760 76.5
MDF 500-999 5,873 4,067 3,272 80.5 15,430 12,450 9,468 76.0
rMDFb,t 500-999 5,873 4,039 3,201 79.3 15,430 12,450 9,319 74.9
rSWAPLob,t 500-999 5,873 4,439 3,511 79.1 15,430 15,230 11,640 76.4
rSWAPHib,t 500-999 5,873 4,236 3,062 72.3 15,430 13,820 9,383 67.9

CEF 1,000+ 2,147 1,699 1,293 76.1 7,066 7,066 5,219 73.9
HDF 1,000+ 2,147 1,699 1,290 76.0 7,066 7,056 5,200 73.7
rHDFb,t 1,000+ 2,147 1,653 1,206 73.0 7,066 7,056 4,969 70.4
MDF 1,000+ 2,147 1,603 1,198 74.8 7,066 6,477 4,606 71.1
rMDFb,t 1,000+ 2,147 1,591 1,169 73.5 7,066 6,476 4,523 69.8
rSWAPLob,t 1,000+ 2,147 1,653 1,205 72.9 7,066 7,030 4,945 70.3
rSWAPHib,t 1,000+ 2,147 1,617 1,066 65.9 7,066 6,641 4,164 62.7

Notes: Census Block Size is the population range in the census block. Counts rounded to four
significant digits to conform to disclosure limitation requirements. COMRCL and CEFatkr use only
data-defined records. See notes to Table 13 for details of the universe for modal data-defined
persons in the COMRCL data. The column Population for each attacker is the number of at-risk
records. The row rMDFb,t (light gray highlight) uses the full reconstruction-abetted
reidentification attack on 2010 Census using the 2020 Disclosure Avoidance System with final
production data processed parameters and reported using the same tabular schema as the 2010
Census Summary File 1. The row MDF (light gray highlight) implements only the reidentification
attack using the Microdata Detail File created from the 2010 Census as input. The rows
rSWAPLob,t and rSWAPHib,t (medium gray highlight) implement the full reconstruction-
abetted reidentification attack using the specially swapped versions of the 2010 CEF described
in the main text.
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Appendix C. Details of the Swapping Experiments in the Main Text

In total, we performed more than 40 different swapping experiments. Only two are discussed in the
text—the ones with the lowest and highest swap rates considered. This section describes the swapping
experiment code supporting the study of reconstruction-abetted reidentification using variants of the 2010
swapping algorithm. The 2010 swapping algorithm includes a match key and geographic constraints. The
match key gives the aspects of the household that must be identical among any pair of swapped households.
The algorithm used here is more flexible than the actual 2010 swapping algorithm with respect to geography:
it favors swapping households within particular geographic boundaries, but it will allow some percentage
of swaps outside of those boundaries.

Our testing algorithm retains the general framework of the 2010 swapping algorithm but uses additional
randomness to widen the range of possible swaps. For the match key, we use a noisy version of the household
size (number of people), so that households that agree on the match key will sometimes differ in size by
± 1 or 2. We also create a noisy version of the household’s geography and attempt to swap records that
agree on those noisy values, thus deliberately creating swaps across geographic boundaries and controlling
the frequencies of such swaps. The swap header file, which controls the overall swap target rate, includes
the settings for the perturbations in household size and geography. The 2010 algorithm also prioritizes
households for swapping based on measures of their risk of being reidentified. Our testing algorithm gives
every household equal probability of being swapped.

The match key is noisy household size. We add discrete noise from the set {-1,0,1} to household size
and then use the noisy household size as the swapping match key. Households are randomly assigned to
one of three groups:

• No change in household size
• Household size increase by 1 person
• Household size decrease by 1 person

The noisy household groups are assigned randomly based on probabilities specified before running the
code. For example, if we want 50% of records to keep the same household size value, 25% to increase by
1, and 25% to decrease by 1, then we randomly assign records to groups such that each record has a 50%
chance of being assigned group 1, 25% chance of being assigned group 2, and 25% chance of being assigned
group 3. The noisy household size is then used in the match key. Variables used in the match key must
match exactly between swapped records. Households retain their original size. The noisy household sizes
are used only to facilitate the swapping and may be discarded after the swapping is performed.

Assigning 100% of households to group 1 and 0% to the other groups tunes the noise to zero and reverts
to the original 2010 version of household size in the match key. This scheme only allows households to swap
with other households that are different in size by at most 2. This change to the swap protocol eliminates
the block-level population invariant, making the swapping more comparable to the DAS treatment of
population.

We explored four different noise distributions:

• 0% probability of decreasing by 1 person, 100% probability of staying the same, 0% probability of
increasing by 1 person,

• 25% probability of decreasing by 1 person, 50% probability of staying the same, 25% probability
of increasing by 1 person,

• 10% probability of decreasing by 1 person, 80% probability of staying the same, 10% probability
of increasing by 1 person,

• 40% probability of decreasing by 1 person, 20% probability of staying the same, 40% probability
of increasing by 1 person.

We also created noisy pseudo-geographies for the swapping experiments. For the purpose of determining
swaps, each household also receives a noisy pseudo-geography. First, we split the households in the state
randomly into groups 1, 2 and 3, based on i.i.d. draws from a discrete distribution on these three values
with predetermined probabilities (for example, 50% in group 1, 30% in group 2, 20% in group 3). For
households in group 1, the pseudo-tract is equal to the household’s actual tract. For households in group
2, group households into counties. Within each county, randomly permute the tract of group 2 households,
and assign a pseudo-tract based on the permutation (e.g., the first household’s pseudo-tract is the first tract
in the permuted list of tracts). A household’s pseudo-county is equal to the household’s original county. For
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households in group 3, randomly permute the list of tracts of group 3 households within state, and assign
pseudo-tract based on that permutation (e.g., the first household’s pseudo-tract is the first tract in the
permuted list of tracts ). Each household’s pseudo-county is the county associated with its pseudo-tract.
For all groups, also retain the original tract and county. Under this scheme, each pseudo-tract has the same
number of housing units as the corresponding original geography. The pseudo-geography algorithm used
the following probabilities for assigning groups 1, 2 and 3:

• Tract unperturbed (group 1) 100%, tract perturbed within county (group 2) 0%, tract perturbed
within state (group 3) 0% (household size unperturbed)

• Group 1 30%, group 2 40%, group 3 30%,
• Group 1 50%, group 2 30%, group 3 20%,
• Group 1 50%, group 2 10%, group 3 40%.

When the swapping algorithm is run, swaps are between households within the same pseudo-tract when-
ever possible; when that’s not possible, swaps are between households within the same pseudo-county if
possible, and within the state otherwise (regardless, swap households only if they have the same value for
the match key, i.e., the same perturbed household size bin). Smaller match keys allow for higher swap
rates within geography; the pseudo-tract construct will allow more swaps outside of actual tract with these
smaller keys. Pseudo-geographies are discarded after the algorithm has been run unless needed for audit-
ing, as their only purpose is to facilitate swapping. Tuning the probabilities with which households are
assigned to each group allows us to control the approximate probabilities of swapping within and across
different geographic levels (the probabilities are a function of the group proportions and the sizes of different
geographic levels).

The results labeled rSWAPLob,t in the main text used a 5% swap rate, the (0%, 100%, 0%) household size
noise parameters (household size was not perturbed), and the (100%, 0%, 0%) pseudo-geography parameters
(all swaps were within tract). The results labeled rSWAPHib,t in the main text used a 50% swap rate, the
(25%, 50%, 25%) household size noise parameters, and the (30%, 40%, 30%) pseudo-geography parameters.

Appendix D. The Effects of the 1980 Suppression Rules if
Applied to the 2010 Census Summary File 1

To study the suppression rules as implemented in the 1980 Census, we had to coarsen the 63-category
race feature. Using the full set of race categories would have resulted in suppressing nearly all tables. We
implemented coarsening based on the Office of Management and Budget (1997) version of Statistical Policy
Directive 15 as adopted in 1997 by the Department of Justice Voting Section at that time for use in the
redistricting that followed the 2000 Census. The coarsened race categories are:

• White alone
• Black alone or in combination with White
• Asian alone or in combination with White
• Native Hawaiian or other Pacific Islander alone or in combination with White
• American Indian or Alaska Native alone or in combination with White
• Some other race alone or in combination with White
• Two or more races, except as explicitly noted in the categories above

We used the same Hispanic or Latino feature as in the 2010 Census:

• Hispanic or Latino
• Not Hispanic or Latino

The rules for the P.L. 94-171 Redistricting Data Summary File were:

• Table Suppression: Whole tables were suppressed (not published) for geographies with between 1
and 14 persons in any of the race and ethnicity groups; applied to

– Redistricting Table P3 (SF1 Table P10) Race for the Population 18 Years and Over, and
– Redistricting Table P4 (SF1 Table P11) Hispanic or Latino, and not Hispanic or Latino, by

Race for the Population 18 Years and Over
• Cell Suppression: Cell counts of 1 or 2 were replaced by 0; applied to

– Redistricting Table P1 (SF1 Table P8) Race
– Redistricting Table P2 (SF1 Table P9) Hispanic or Latino, and not Hispanic or Latino by

Race
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Table 18. 1980 Primary Cell Suppression Rules Applied to Selected Tables from the 2010
Census

Total Cells Changed Percentage of
Geography Cells to Zero Cells Changed

Panel A: P.L. 94-171 Table P1 (SF1 P8)
Race

National 7 0 0.0
State 357 0 0.0
County 22,001 530 2.4
Tract 507,717 28,024 5.5
Block Group 1,518,048 153,914 10.1
Block 43,449,189 3,538,888 8.1

Panel B: P.L. 94-171 Table P2 (SF1 P9)
Hispanic or Latino, and Not Hispanic or Latino by Race

National 14 0 0.0
State 714 0 0.0
County 44,002 2,987 6.8
Tract 1,015,434 110,081 10.8
Block Group 3,036,096 440,539 14.5
Block 86,898,378 5,071,570 5.8

Panel C: P.L. 94-171 Table P3 (SF1 P10)
Race For The Population 18 Years and Over

National 1 0 0.0
State 51 0 0.0
County 3,143 1,610 51.2
Tract 72,531 61,177 84.3
Block Group 216,864 207,643 95.7
Block 6,206,505 5,204,047 83.8

Panel D: P.L. 94-171 Table P4 (SF1 P11)
Hispanic or Latino, and not Hispanic or Latino
by Race for the Population 18 Years and Over

National 14 0 0.0
State 714 0 0.0
County 44,002 4,078 9.3
Tract 1,015,434 146,400 14.4
Block Group 3,036,096 533,314 17.6
Block 86,891,070 5,822,712 6.7

Notes: The four tables shown here are the basic redistricting data tables in the 1980 format (U.S. Census
Bureau, 2006) using table numbers from the 2010 Census. The 1980-format tables are equivalent to the
fully saturated table {age under 18, age 18+} × {Hispanic or Latino, Not Hispanic or Latino} ×
{7-category race variable}, which has 28 total interior cells. This is much less sparse than the official 2010
P.L. 94-171 redistricting tables, where the 7-category race variable used here was replaced with a
63-category race variable, creating a fully saturated contingency table with 252 interior cells (U.S. Census
Bureau, 2012, SF1 table numbering). The vast majority of the official 2010 redistricting data would have
failed the primary suppression tests shown here.

• Additional Summary File 1 (SF1) Tables
– Table Suppression: For all person-level tables, whole tables that are not dedicated solely to

race and ethnicity data were suppressed if their geographies had total populations between
1 and 14 persons
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Table 19. 1980 Primary Table Suppression Rules Applied to Selected Tables from the 2010
Census

Total Suppressed Percentage of
Geography Tables Tables Tables Suppressed

Panel A: P.L. 94-171 Table P3 (SF1 P10)
Race for the Population 18 Years and Over

National 1 0 0.0
State 51 0 0.0
County 3,143 1,610 51.2
Tract 72,531 61,177 84.3
Block Group 216,864 207,643 95.7
Block 6,206,505 5,204,047 83.8

Panel B: P.L. 94-171 Table P4 (SF1 P11)
Hispanic or Latino, and not Hispanic or Latino
by Race for the Population 18 Years and Over

National 1 0 0.0
State 51 0 0.0
County 3,143 2,645 84.2
Tract 72,531 72,346 99.7
Block Group 216,864 216,759 100.0
Block 6,206,505 5,445,153 87.7

Panel C: Geographies Meeting Criteria for Person
Table Suppression in 2010 Summary File 1

National 1 0 0.0
State 51 0 0.0
County 3,143 0 0.0
Tract 72,531 131 0.2
Block Group 216,864 204 0.1
Block 6,207,027 2,401,802 38.7

Notes: The two redistricting tables shown here use the 1980 table suppression rules applied to tables
defined in the 2010 P.L. 94-171 Redistricting Data Summary File. The SF1 table shows the number of
geographies that would fail the 1980 population threshold for including any table that does not have race
or ethnicity as a margin. P.L. 94-171 Tables P3 and P4 have been reformatted to 1980 specifications as
noted in Table 18.
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