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1 Introduction

Medical innovation is crucial for improving health outcomes and extending life expectancy.

Yet, the majority of scholarly work on this subject predominantly focuses on developed

economies, the pioneers in medical innovation.1 Developing and emerging economies, on

the other hand, often lag in this area, with challenges arising from both governmental and

market failures (Kremer, 2002). How can latecomers improve their potential in medical

innovation? It appears that strategies that have shown some success in other sectors, such

as fostering innovation through foreign direct investment (FDI) or government-led indus-

trial policy, have not yet yielded significant results in the realm of medical innovation.2

In this paper, we emphasize the potential effectiveness of overhauling regulatory practices

that have fallen behind as a viable pathway to improve medical innovation in emerging

markets.

A critical aspect of medical regulation is the time taken to approve various stages of

new drug development, which varies significantly worldwide. As depicted in Figure 1, de-

veloped regions like Australia, Canada, Europe, Japan, and the U.S. typically have swifter

approval processes. However, there is a marked variation in approval time among de-

veloping nations. For instance, emerging markets such as China and South Africa might

experience approval processes that are up to four times lengthier than those in developed

nations. Conversely, regulatory enhancements in the early 2010s in countries like Malaysia

and Brazil resulted in notably reduced approval duration by 2016 (Patel, McAuslane and

Liberti, 2019; Sani et al., 2020).
1Influential research has investigated the role of market size (Acemoglu and Linn, 2004; Finkelstein,

2004; Blume-Kohout and Sood, 2013; Dubois et al., 2015; Clemens and Rogers, 2020; Agha, Kim and Li,
2022), patent terms (Budish, Roin and Williams, 2015; Sampat and Williams, 2019), and regulatory practices
(Stern, 2017; Chandra et al., 2022; Rogers, 2022). See Lakdawalla (2018) for an overview and more of our
discussion later.

2The roles of FDI and state-led industrial policy in medical innovation remain to be systematically studied.
Scholars have argued that because the pharmaceutical market is often controlled by nation-states or superna-
tional organizations, making global market integration challenging (Zhou and Coplin, 2022). Furthermore,
traditional state-led industrial policies, which have achieved some success in East Asia, have repeatedly fallen
short when applied to the pharmaceutical and biotechnological sectors (Taylor, 2013).
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Figure 1: Median Approval Time for New Drugs Approved in 2016

Notes: The data (except for China) is drawn from reports by the Centre for Innovation in Regulatory Science (CIRS), based on the
official statistics. The data for China is computed by the authors using China’s drug application data. Blue bars refer to developing
countries, whereas grey bars refer to developed countries.

To what extent can enhanced regulation foster medical innovation in emerging mar-

kets? This policy-relevant inquiry holds significant importance for many developing economies,

yet it has received relatively limited attention from the medical innovation literature. We

address this question by studying a pivotal case within these endeavors: a substantial regu-

latory reform introduced in China in 2015. Similar to various other emerging markets, the

China Food and Drug Administration (CFDA) confronted a critical shortage of proficient

personnel and limited regulatory expertise, which subsequently caused delays and back-

logs in the processing of drug approval applications. In response, in 2015, CFDA adopted

a strategy reminiscent of the Prescription Drug User Fee Act (PDUFA) enacted in the U.S..

This strategy involved the collection of user fees from applicants to facilitate the recruit-

ment of personnel and the enhancement of systems, resulting in a significant reduction in

the approval time for investigational new drugs (INDs), which serves as the critical first

stage in the new drug development process. This reform presents an apt context to illu-

minate the impact on innovation when an emerging market adopts regulatory approaches

employed by frontier countries such as the U.S.
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Our study investigates the impact of regulatory reform on the quantity and novelty of

drug innovation, utilizing the variation in reduction time at the drug level, measured across

the three years before and after the regulatory reform (i.e., 2015–2017 vs. 2012–2014).3

To guide our empirical analysis, we propose a straightforward framework. The essence

of the reform—reducing waiting times—likely enhanced the expected returns from inno-

vation. This change is expected to stimulate innovation efforts and attract new firms to

the market. Consequently, we anticipate an increase in the quantity of innovation, driven

by both existing and newly entering firms. However, the effect on the overall innovative-

ness of the pharmaceutical industry is more ambiguous. It hinges on whether the reform

stimulates incumbent firms to be more innovative and induces the entry of more or less

innovative firms, a question we address through empirical investigation. This investigation

will also shed light on the cost of ineffective regulatory practices.

Our first set of analysis concentrates on the quantitative aspect, specifically the count of

IND approvals and their related clinical trials. We examine the number of INDs across 109

drug categories during 2011–2021. Through a standard difference-in-difference approach,

we find that a one-standard-deviation reduction (227 days) in approval time corresponds

to a 68% increase in INDs during the period of 2018–2021. However, no such correlation

existed prior to the regulatory reform. This finding is robust to considering a variety of

drug characteristics. A closer examination of the firms reveals that incumbent companies

are accountable for half of this upswing in INDs, with the remaining half attributed to

new firms. This rise in INDs is also reflected in an increase in clinical trials across Phase

I, II, and III. Additionally, our analysis at the firm level provides further support to the

observations made at the drug level, reinforcing our findings.

In our subsequent analysis, we turn to understanding the implications of the reform

on innovativeness of the drug industry. Motivated by the long-standing discussion on im-

itation and innovation in our context, we introduce a novel metric for innovativeness,
3Upon examining the relationships between reduction time and diverse drug characteristics, we unveil

limited correlations. Notably, an exception is the connection between pre-reform approval time (or backlogs)
and reduction time. These findings align with insights gleaned from our interviews, which attribute delays
primarily to a shortage of evaluation personnel. Further elaboration can be found in Section 2.
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focusing on whether drug applications adopt targets already established in the U.S. (or

Europe). It is noteworthy that innovativeness can be influenced through two avenues:

within-drug innovation and firm composition. We discover no substantiating evidence for

a change in novelty within drug categories following the reform. Nevertheless, there is a

sizable enhancement in drug novelty resulting from shifts in firm composition. The regula-

tory reform contributes to 38% of the increase in new targets observed in the post-reform

period, with new firms playing a significant role in elevating aggregate innovativeness.

Specifically, new firms account for 74% of the contribution to aggregate innovativeness,

given their inclination for innovation and propensity to explore novel targets.

Our main analysis centers around INDs, a critical initial stage in new drug approvals.

Notably, only a few INDs post-reform have progressed to the final approval stage of new

drug applications (NDAs). To assess market reactions as an indicator of the reform’s im-

pact, we further explore stock market responses to NDAs before and after the reform. It’s

important to note that some INDs for post-reform NDAs may have been filed before the

reform. Therefore, this analysis aims not to evaluate the market value of post-reform INDs

directly, but rather to assess market reactions to the regulatory reform. By comparing the

stock market reactions to the approval of new drugs with those of generic drugs, both

before and after the regulatory reform, we find a notably positive stock market response

to the final approvals of NDAs following the reform, a contrast to the limited response

observed prior to the reform. This shift suggests that the market recognizes and values the

improvements brought about by the regulatory changes. It supports our interpretation that

the reform has led to increased expected returns, reflecting a positive market perception

of the reform’s impact on drug innovation.

Our primary contribution is to enhance our understanding of the relationship between

regulation and innovation, especially medical innovation in emerging economies. Unlike

developed nations such as the U.S., emerging countries like China grapple with applica-

tion backlogs due to limited resources and human capital. These prolonged review pro-

cesses amplify innovation costs, subsequently dampening the incentives to innovate.4 This
4See, for example, DiMasi, Grabowski and Hansen (2016) and Martin et al. (2017).
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presents significant opportunities for enhancement and introduces wide variations across

drug categories, ripe for analysis. Most of the existing work on regulation in medical inno-

vation focuses on evaluating the speed and safety trade-off of FDA review times, including

the studies on the Prescription Drug User Fee Acts (PDUFA) in the U.S.—a precursor to the

2015 regulatory reform in China (Berndt et al., 2005; Philipson et al., 2008; Grabowski and

Wang, 2008) and studies on more recent changes (Chandra et al., 2022; Rogers, 2022).5

In developed economies, the central dilemma in medical regulation is balancing quantity

and safety. Though this is crucial in emerging nations like China, there’s an added dimen-

sion: the authenticity of the innovation’s novelty. This raises inquiries such as, are these

firms truly innovating or merely imitating their U.S. counterparts? Our study sheds light

on this vital, relatively untapped domain of medical innovation in emerging markets.

Our study reveals an important link between quantity and novelty in innovation, due

to firm entry. In our setting, quantity improvement leads to composition change, which

implies novelty improvement at the aggregate level. To the best of our knowledge, this

link has not been well studied in the literature on innovation, which commonly tends to

analyze quantity and novelty separately (Romer, 1990; Grossman and Helpman, 1991).

Our findings document that new firms play a considerable role in medical innovation. This

pattern relates to a recent literature highlighting the substantial impact of firm entry in

explaining China’s economic growth (Khandelwal, Schott and Wei, 2013; Brandt and Lim,

2019). Our study adds new insights into the importance of understanding firm composi-

tion in the context of innovation. It also highlights the costs associated with ineffective

regulation, specifically how it can deter more innovative firms from entering the market.

5Berndt et al. (2005) use a linear model to adjust for the preexisting downward trend and determine
that PDUFA was responsible for approximately two-thirds of the reduction in review time from 1991 to
2002. Grabowski and Wang (2008) use a negative binomial regression model and, after accounting for
various observable factors, find no correlation between the FDA’s review time and the occurrence of adverse
drug events. Philipson et al. (2008) utilize data on the distribution of approval and withdrawal times of
drugs as well as the distribution of sales of the approved drugs to estimate producer and consumer surplus.
The findings indicate that PDUFA remains highly cost-effective, even in the most conservative estimates.
Chandra et al. (2022) study FDA’s Breakthrough Therapy Designation (BTD) for drugs and find that a 23
percent reduction in development times did not have adverse effects on safety. Rogers (2022) examines
FDA’s deregulation for medical devices and documents improvement in both the quantity and quality of
innovation.
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Broadly speaking, our study adds to a growing literature on medical innovation men-

tioned above by emphasizing that regulatory practices can hinder or foster innovation.

Additionally, our study joins an extensive literature on regulation and innovation across

diverse domains (e.g., Van Reenen, Aghion and Bergeaud, 2023; Akcigit et al., 2023). Im-

portantly, our study does not center around the impact of more or fewer regulations or

wholesale adoption of regulatory approaches; rather, it reveals the value of pinpointing

specific regulatory practices that have demonstrated efficacy in frontier countries.

2 Context

2.1 Drug Innovation in China

The Chinese pharmaceutical market is the world’s second largest pharmaceutical market,

with sales reaching $115 billion in 2015, trailing only behind the U.S.. However, the indus-

try’s challenges in innovating new drugs have been well-documented (Friedman, 2010; Ni

et al., 2017), historically focusing mainly on the development and production of generics.

As China accelerates its shift from being primarily a pharmaceutical manufacturing hub to

a significant player in the global pharmaceutical R&D sector, its industry finds itself in the

initial phases of this transformative journey. A comparison between the R&D pipelines of

the top 20 Chinese pharmaceutical companies and their international counterparts over

a decade (2012–2021) shows a considerable innovation gap: while multinational firms

collectively introduced 313 new drugs, Chinese companies introduced around 31, high-

lighting a substantial disparity. This disparity extends to the novelty of new drugs in devel-

opment, where most leading multinational companies have pipelines boasting over 50% of

drugs with novel targets, whereas the majority of Chinese companies have less than 30%

of products with innovative mechanisms of action (Kong et al., 2023). Overall, China’s

pharmaceutical innovation landscape is evidently in its early stages.

Since 2010, Chinese pharmaceutical companies have started building capabilities and

investing in innovative drugs, with the number of IND applications growing by more than
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30% annually in 2010–2020 (Su et al., 2022). However, it was widely recognized that the

regulatory system did not keep up with the development of the pharmaceutical industry

as of 2015. The China Food and Drug Administration (CFDA), the regulatory agency

responsible for overseeing drug development and approval, faced intense criticism for its

slow approval of clinical trials and new drugs. For example, in the year 2014, the CFDA

received a total of 8,868 new applications. However, they managed to complete only 5,261

applications, leading to an accumulated backlog of 18,597 applications, which included

unresolved cases from previous years.6 As a contrast, in the U.S., starting from 2004, an

IND application is deemed approved if the FDA does not reach a decision within 30 days of

receiving the application. This streamlined process ensures that all submitted applications

are cleared within a month, eliminating the possibility of a backlog.7

2.2 Regulatory Reform in 2015

As part of the government’s efforts to promote innovation, the CFDA initiated a large-

scale regulatory reform to promote drug innovation in 2015. The primary goal of the

CFDA’s regulatory reform is to tackle the backlog of drug approval applications and reduce

processing times.

Figure 2 illustrates the process of new drug development and application. Initially,

potential drug candidates undergo preclinical research in laboratory settings to establish

their potential efficacy. Prior to clinical trials, a submission of an IND application to the

regulatory authority, in this case the CFDA, is required. Clinical trials can commence

only after receiving regulatory approval. A primary objective of the recent reform is to

shorten the IND application process, highlighted by the red arrow in Figure 2. Following

the completion of three stages of clinical trials, if the new drug demonstrates sufficient

efficacy and safety, the drug developer will proceed with an NDA to the CFDA, the final

regulatory approval needed before market release.
6National Medical Products Administration: “2014 Annual Drug Evaluation Report” http://www.

cjpi.org.cn/zryyxxw/spypnb/webinfo/2017/01/1485614814619329.htm
7Title 21 of the Code of Federal Regulations (CFR) https://www.ecfr.gov/current/title-21/

chapter-I/subchapter-D/part-312/subpart-C/section-312.40
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In analysis, we focus on IND approvals as the main outcome. Additionally, we examine

clinical trials and NDAs to help interpret our findings.

Figure 2: New Drug Development and Application Procedures in China

The CFDA was targeting a processing time of 60 or fewer working days for clinical

trial applications. To achieve this, the CFDA has implemented a strategy similar to the

Prescription Drug User Fee Act (PDUFA) in the U.S., collecting user fees from applicants

to fund staff recruitment and system upgrades. The application fee was made transparent

and publicly available, with a fee of 192,000 RMB for clinical trial applications of new

drugs (the U.S. required a fee of $550,300 in 2015). Funding support from user fees has

led to significant improvements of the evaluation personnel, with the number of evaluation

staff increasing from around 70 at the start of the reform to approximately 800 by 2018

(Han et al., 2021).

To expedite the evaluation process, the CFDA has implemented several additional

changes. First, the agency provides priority review tracks for drugs with significant clinical

value at various stages of development, allowing them to skip the generic drug application

queue. Second, fees for submitting applications and penalties for detected data falsifica-

tion have been raised, as low fees and little punishment were previously blamed for con-
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tributing to a high number of substandard applications. Third, the criteria for evaluating

applications have been made clear and publicly accessible, ensuring that applicants have

a clear understanding of what the regulator is looking for. This change helped China join

The International Council for Harmonisation of Technical Requirements for Pharmaceu-

ticals for Human Use (ICH) in 2017, further integrating China’s pharmaceutical industry

into the global market by complying with international standards.8 In our analyses, we

consider these changes as channels to achieve the targeted policy and do not attempt to

separate each of these changes.

We provide a summary of the main policy documents regarding the approval time in

Appendix A. Achieving the reduction in processing time was a gradual process, and in the

following sections, we will gather data and analyze the implications of this development.

3 Conceptual Framework

To guide our empirical analysis, we introduce a straightforward conceptual framework,

the specifics of which are detailed in Appendix B. This model illustrates our interpretation

of the regulatory reform, showing its likely beneficial effects on the volume of innovation

and its ambiguity impact on the overall novelty of innovation.

We consider a drug market featured by many different varieties and monopolistic com-

petition. The quantity demanded for each variety ω is given by x(ω) = u(ω)p(ω)−σP σX,

where u(ω) and p(ω) are the novelty and the price of variety ω, respectively, and σ is the

elasticity of substitution between varieties. P and X denote the aggregate price index and

demand, respectively.

We assume consumption occurs at time t = 0. Drug varieties result from producers’

innovation efforts. Nonetheless, to effectively serve the market at t = 0, a prospective

drug producer must also await approval from the government regulatory bureau for drug

innovation procedures, such as clinical trials. We presume the waiting time to be g. Thus,

8Source: Press release ICH Assembly meeting in Montreal, Canada, May/June 2017 https://www.
ich.org/news/press-release-ich-assembly-meeting-montreal-canada-mayjune-2017
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the expected return from application approval is:

π = (1 + t)−g(σ̃c)1−σP σX/σ (1)

where σ̃ = σ/(σ − 1) is the markup, and c is the production cost per unit of drug variety.

Firms are heterogeneous in their innovation capabilities, denoted by θi > 0. They

decide on their innovation intensity, ki, where higher intensities correspond to a greater

number of drug applications. The innovation costs are represented by ψk(ki)
γ, with γ > 1

signifying a convex function. We assume that the expected number of new applications

approved is given by θiki. By multiplying θi, we posit that more innovative firms are likely

to successfully generate more innovation outcomes given the same innovation intensity.

In addition to selecting innovation quantities, firms can also choose the novelty of their

drug applications. A higher novelty u will proportionally increase drug profits; however,

enhancing novelty would necessitate costs ψuu
ϕ per unit of drug application, where ϕ > 1

indicates that the costs are convex in novelty u.

There exist two separate categories of producers: incumbents and potential entrants

(new firms). The measure of incumbents and potential entrants is denoted by M and Me,

respectively, both with innovation capacity distributions represented by F (θ). In order to

initiate innovation and apply for drug approvals, potential entrants must bear an extra

fixed entry cost, labeled as f . The fixed cost might include expenditures such as registra-

tion fees, which are not applicable to incumbents since they are already registered and

may produce some established drugs concurrently. We assume that the fixed cost f for

each firm is a random variable drawn from the distribution G(f |θ),9 which allows for the

possibility of more innovative firms having distinct fixed cost distributions, as they may

have incentives to recruit highly educated individuals for better innovation. Finally, the

production cost per unit of drug variety is identical (denoted by c > 0) for all firms.

9G(·|θ) is a distribution function with G(0|θ) = 0 and limf→∞ G(f |θ) = 1.
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Positive Impact on Innovation Quantity Using this simple framework, we can ana-

lytically explore the impact of a regulatory policy change. In our model, the regulatory

policy change that reduces the waiting, g′ < g, is reflected by an increase in the expected

profits of drug applications. The rise in expected profits stimulates innovation for both

incumbents and new firms. Additionally, when comparing these two outcomes, our model

forecasts a more substantial proportional increase in innovation from new firms relative

to incumbents. The discrepancy in responses between new firms and incumbents is due

to the extensive margin of new firms (weighted by their innovation capacities), as higher

innovation profits also drive increased entry by these firms.

Ambiguous Implication on Innovation Novelty Equally important, the overall change

in novelty is ambiguous, which reflects the interplay of two forces. First, for incumbents,

the rise in profits motivates them to enhance the novelty of their drugs. The extent of

this enhancement varies and requires empirical investigation to determine its magnitude.

Second, the average change in new firms’ novelty is ambiguous, as the reform has an

ambiguous impact on the composition of new firms’ innovation capacities. On one hand,

lowering entry barriers might lead to the entrance of less innovative firms. On the other

hand, higher expected returns could encourage more innovative firms to make the nec-

essary investments and enter the market. The interaction of these two forces creates an

ambiguous outcome for the aggregate innovativeness of the industry. This nuanced effect

is something we aim to unravel through our empirical examination,

4 Data and Measurement

Drug-level Approval Time Change Prior to the regulatory reform, the backlog problem

affected drugs to different extents. The aim of the reform was to streamline and stan-

dardize the application process for all drugs, resulting in a more consistent approval time.

This change in approval time allows us to examine the impact of regulatory reform on

innovation outcomes at the drug level.
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Figure 3 plots the average approval time and the number of IND applications by year.

Consistent with the policy reform, the approval time for IND applications has experienced

declines starting from 2015. Between 2011 and 2014, the approval time was around 500

days, and it declined to fewer than 100 days in 2021, representing a more than 80%

decline in approval time.

Figure 3: Average IND Approval Time across Years

Notes: The implementation of the reform commenced in August 2015.

To measure the drug-level change in approval time, we use China’s medical registration

data between 2011 to 2021. The data includes information such as applicant names,

application dates, approval dates (if any), and targets. The drugs are classified according to

the Anatomical Therapeutic Chemical (ATC) classification system, which divides them into

different groups based on their anatomical, therapeutic, pharmacological, and chemical

properties.10 Our analysis uses 4-digit level ATC categories due to data availability. There

are 287 ATC categories in our data, such as “anti-infectives and antiseptics for local oral
10The ATC classification system categorizes drugs into five levels. The first level is represented by a

single letter and indicates the anatomical main group. The second level, consisting of two digits, indi-
cates the therapeutic subgroup. The third level, represented by a single letter, indicates the therapeu-
tic/pharmacological subgroup. The fourth level, also represented by a single letter, indicates the chemi-
cal/therapeutic/pharmacological subgroup. Finally, the fifth level, consisting of two digits, indicates the
chemical substance.
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treatment” (A01AB), which corresponds to anti-infective drugs used for oral diseases.

We focus on applications for INDs and also examine whether these INDs have translated

into clinical trials. Since the full registration process for drug applications takes several

years, very few drugs that began registration after the reform completed the entire process

in our sample. Our data set includes 9,642 IND applications and 2,222 different applicants

during the 2011–2021 period. Appendix Figure C.1 shows a strong correlation between

the days spent on approval of first trials and the days spent from approval of the first trial

to final registration for drugs that completed the entire registration process in our data set.

As the major reform occurred between 2015 and 2017, we measure the decline in

approval time within three years (2015–2017) in the post-reform period relative to that

within three years (2012–2014) in the pre-reform period to measure the magnitude of the

reform. Some (relatively small) ATC categories do not have applications in either 2012–

2014 or 2015–2017. We compute the decline in approval time for 109 ATC categories,

covering 93% of drug applications during the 2011–2021 period. In addition, we employ

pre-reform backlogs as an alternative measure.

We analyze the correlations between the decrease in approval time and various pre-

reform characteristics across ATC categories. Existing literature suggests market size and

market structure as crucial factors shaping innovation levels (Acemoglu and Linn, 2004;

Aghion et al., 2005). To capture these two factors, we compute the number of applications

and the Herfindahl-Hirschman index of INDs at the ATC level for the pre-reform period.11

Furthermore, as we focus on post-reform innovation, we control for pre-reform innovation

patterns at the ATC level. Specifically, we calculate the share of IND applications in all

ATC-level applications as a proxy for ATC-level innovation capacity, as all applications

encompass other types (e.g., applications for generic drugs) with lower innovation levels

than IND. Additionally, we evaluate the level of innovativeness of IND applications at the

ATC level by assessing the proportion of targets that have already been demonstrated in

11We calculate the Herfindahl-Hirschman index of IND applications by summing the squared shares of
each firm’s IND applications in relation to the total IND applications. This index serves as a measure of the
concentration of innovation within the market.
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the U.S.. Finally, recognizing that reductions in approval time in China may reflect global

trends, we utilize U.S. drug application data to gauge the U.S.’s levels and declines of

ATC-level approval time around the time of China’s reform.

As reported in Appendix Table C.2, we do not find strong correlations between re-

duction time and these characteristics. In contrast, pre-reform approval time is highly

correlated with reduction time (with a correlation of 0.60, see Appendix Figure C.3). It

is also strongly correlated with the share of backlogs in 2012–2014 (with a correlation

of 0.28, see Appendix Figure C.4).12 These patterns align with our interview: the most

significant regulatory challenge before the reform is the scarcity of evaluation personnel.

The drug-level backlogs do not appear to be driven by drug characteristics but are more

plausibly attributable to the availability of personnel resources.

Quantity and Novelty of Drug Innovation At the drug level, we use the number of

IND applications to measure the quantity of innovation. As shown in Figure 3, the av-

erage yearly number of IND applications was 509 during 2011–2014 but rose to 1,087

during 2015–2021. We further collect data on clinical trials from the Chinese Clinical Trial

Database. Among the post-2015 INDs, the shares that have progressed to Phase I, II, III

clinical trials are 79%, 55%, and 34%. The rate from INDs to Phase III is akin to that

of the U.S., as reported by Takebe, Imai and Ono (2018). Additionally, only 15% of the

post-reform approved INDs have reached the NDA stage by the end of our study period,

limiting our capability to examine the final drugs.

To complement this quantity-based approach, we propose a new measure to capture

the novelty of drug innovation. Specifically, we examine whether the targets of each drug

have been previously registered in the U.S. drug registration system (the data dates back to

1982) before the drug’s application date. Our rationale for this measure is that innovative

drugs often explore new targets that could treat previously incurable diseases or existing

diseases more efficiently. Targets refer to biomacromolecules or biomolecular structures

12We compute the pre-reform share of backlogs as: among all the IND applications that were submitted in
2012–2014, the share of applications that had not been approved by the end of 2014.
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that bind to specific drugs and produce therapeutic effects. Our conversations with indus-

try experts suggest that drugs with targets that have already been developed in the U.S.

are less likely to be truly innovative. For robustness, we also consider a similar measure

using targets that have been explored by European firms.

Firm-level Data To study how firms respond to the regulatory change, we use applicant

names in the medical registration data to identify firms involved in the applications. Thus,

for each firm involved, we can obtain its number of IND applications and the characteristics

of its IND applications in each year between 2011–2021. Our data involves 2,222 firms

that had ever done IND applications during our sample period, and the average number of

IND applications per firm was 4.88 in the 2011–2021 period, with great variation between

firms: 40% of firms only made one application in the 2011–2021 period, whereas 10% of

firms made more than 10 applications in the same period.

To identify both incumbent firms and new entrants following the regulatory reform, we

utilized firm names to match our data with China’s Business Registration Data for 2021.13

China’s Business Registration Data contains information on the year of establishment for

all firms established before 2021. To evaluate the market responses after the medical

regulatory reform, we also use firm names to match our data with the firm data from the

CSMAR Database for firms that are listed in the stock market.

5 Regulatory Reform and Innovation Quantity

In this section, we study how the regulatory reform impacted the quantity of drug innova-

tion. In Section 5.1, we provide suggestive evidence using the raw data. We then perform

formal estimations regarding how the regulatory reform impacted the innovation quan-

tities across different drug categories in Section 5.2 and across different firms in Section

5.3.
13Before matching datasets using firm names, we followed a similar procedure for cleaning and consoli-

dating firm names as described in He et al. (2018).
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5.1 Descriptive Evidence

In Figure 4, we plot the relationship between the reduction in approval time and the logged

change in the number of IND applications at the drug level. We construct post-reform

change in the number of IND applications by computing the log change in the average

yearly number of IND applications in the post-reform period (2015–2021) relative to the

pre-reform period (2011–2014). As shown, there is a positive correlation, indicating that

the decrease in approval time may result in increased pharmaceutical innovation. We find

that drug categories related to anticancer drugs, systematic hormonal preparations, car-

diovascular system, and musculoskeletal system experienced larger reductions in approval

time. These categories also experienced a larger increase in IND applications after the

reform.

Figure 4: Relationship between Decline in Approval Time and Post-reform Growth in Num-
ber of IND Applications

Notes: This graph shows the post-reform change in the number of IND applications (y-axis) on the decline in approval time between

2015–2017 and 2012–2014 (x-axis), across 4-digit ATC categories. We truncate 5% of the decline in approval time to avoid extreme

values on the two tails in the graph. The circle size reflects the amount of IND applications in the pre-reform period for each ATC

category.
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5.2 Drug-level Analyses

Research Design We now examine whether drugs that experienced a decline in approval

time changed their innovative activities more systematically. Given that IND applications

are count data and have many zeros, we use Poisson regressions for the formal empir-

ical analysis. This approach has been recommended in recent literature (e.g., Tenreyro

and Silva, 2006; Cohn, Liu and Wardlaw, 2022) to address issues related to zero values.

Therefore, we will adopt the following regression equation:

yjt = exp(βtdeclinej + αt + γj + Xj × αt) + ϵjt (2)

where yjt is the number of IND applications for ATC category j in year t. declinej is the

decline in approval time within three years (2015–2017) in the post-reform period rela-

tive to that within three years (2012–2014) in the pre-reform period, which measures the

impact of the policy reform on approval time for category j. We consider parameters βt

to capture the time-varying impact of the policy reform. For ease of interpretation, we

standardize declinej with the standard deviation of declinej across different categories,

and thus βt represents the proportional change in the number of applications due to one

standard-deviation decline in approval time (227 days). γj is ATC-level fixed effects, cap-

turing time-invariant heterogeneity in the patterns of drug applications across different

ATC categories. We set β2014 = 0 for the period immediately before the policy reform, and

therefore βt in other years corresponds to changes in βt relative to year 2014.

Xj indicates a set of pre-reform characteristics at the drug level, including the Herfindahl-

Hirschman index, the share of targets already shown in the U.S., and the share of IND

applications in total ATC-level applications (which also include other types of applications

such as applications for generic drugs) in the 2012–2014 period. Specifically, considering

that China introduced bioequivalence evaluation for generic drugs simultaneously with

the reform for new drugs, the share of IND applications during the pre-reform period can
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serve as a control for the potential substitution between generic and new drugs.14 Ap-

pendix Table D.1 presents the summary statistics of the variables used in our empirical

analysis.

Drug-level Results: INDs and Associated Clinical Trials Figure 5 presents the esti-

mated values of βt and their corresponding 90% confidence intervals for different years.

The plot illustrates the relationship between the approval time and the number of IND ap-

plications after the regulatory reform. The results suggest a positive association between

the decline in approval time and the number of IND applications, which has become sig-

nificant since 2017. Specifically, after 2017, a one-standard-deviation decrease in approval

time led to a more than 50% increase in the number of IND applications, indicating a sub-

stantial impact of the regulatory reform on medical innovations. Importantly, the analysis

shows no systematic correlation between the decline in approval time and the number of

IND applications before the regulatory reform in 2015. These findings provide reassurance

that the observed association is not driven by pre-existing trends in the data. Appendix Ta-

ble D.2 provides the estimates of βt for regression (2), and we find that the coefficients are

robust to incorporating controls.15 Finally, in Columns (1)–(2) of Table 1, we provide the

standard difference-in-difference estimates by exploiting the interactions between the de-

cline in approval time and time dummies indicating the post-reform periods, which show

that the impact becomes significant and round 51% during 2018–2021.

One particular concern is that firms may submit INDs solely for the purpose of signaling

their efforts or to secure a position, without actually making any significant contributions.

To investigate this, we link IND data with China’s clinical trial data using the applicant

name and drug name. The analysis reveals that, prior to the reform, only 61% of INDs were

14We also experimented with keeping only IND and generic drugs’ applications and then computing the
share of IND applications in ATC-level applications. The regression results are quantitatively very similar
with this alternative control variable.

15Including the decline in approval time for the U.S. applications reduces the amount of observations,
because this variable is only available for a few ATC drug categories. We find that the regression results are
very similar regardless of whether we incorporate the decline in approval time for the U.S. applications or
not.
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Figure 5: Impact of Decline in Approval Time on Number of IND Applications

Notes: This graph shows the βt parameters estimated by equation (2), with the corresponding 90% confidence intervals. Controls
include the Herfindahl-Hirschman index, the share of targets already shown in the U.S., and the share of IND applications in total
ATC-level applications in the 2012–2014 period, for each ATC category. As the controls are time-invariant and absorbed by ATC-level
fixed effects, we interact the control variables with the dummy indicating the post-reform period. The standard errors are clustered at
the ATC category level.

Table 1: Difference-in-Difference Estimates

# IND Apps # IND Apps (Incumbents) # IND Apps (entrants)
(1) (2) (3) (4) (5) (6)

Poisson Poisson Poisson Poisson Poisson Poisson

decline×post2015−2017 .33∗ .14 .38∗∗ .24∗ .56 .56
(.20) (.15) (.18) (.13) (.58) (.58)

decline×post2018−2021 .68∗∗ .51∗∗∗ .67∗∗ .54∗∗∗ 1.38∗∗ 1.38∗∗

(.30) (.19) (.29) (.17) (.60) (.60)

Drug and Year FE Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes
Obs 1,199 1,199 1,199 1,199 413 413
R-squared 0.84 0.85 0.80 0.81 0.87 0.87
Mean 8.31 8.31 5.20 5.20 2.23 2.23

Notes: We perform a simplified difference-in-difference version of equation (2): yjt = exp(β1declinej×post2015−2017+β2declinej×
post2018−2021 + αt + γj + Xj × αt) + ϵjt, where post2015−2017 and post2018−2021 indexes the 2015–2017 and 2018–2021 periods,
respectively. For new firms, because the data starts from 2015 and we use 2015 as the baseline year in our event study, we construct
post2015−2017 as an indicator for the 2016–2017 period. In Columns (1)–(2), the dependent variable is the number of IND applications.
In Columns (3)–(4), the dependent variable is the number of IND applications by incumbent firms, and in Columns (5)–(6), the
dependent variable is the number of IND applications by new entrants. Controls include the Herfindahl-Hirschman index, the share
of targets already shown in the U.S., and the share of IND applications in total ATC-level applications in the 2012–2014 period, for
each ATC category. As the controls are time-invariant and absorbed by ATC-level fixed effects, we interact the control variables with the
dummy indicating the post-reform period. Standard errors are clustered at the ATC category level. We compute * p < .10, ** p < .05,
*** p < .01.
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found in the clinical trial data, whereas in the post-reform period, this figure increased to

79%, indicating that the concern may not be valid. We also perform an additional test in

which we replace the dependent variable in equation (2) with the number of INDs that

resulted in any clinical trials, Phase I clinical trials, Phase II clinical trials, and Phase III

clinical trials, respectively. The results, presented in Figure 6, indicate that a decrease in

approval time always led to an increased number of INDs associated with clinical trials

of all stages, supporting the notion that firms genuinely made efforts in relation to their

submitted INDs.16

Robustness Checks We conduct robustness checks on our reform measurement and as-

sess the potential influence of other reforms implemented post-2015. The detailed results

of these checks can be found in Appendix D.3. First, our results remain consistent when

we employ the pre-reform share of backlogs at the drug level as an alternative measure for

the reform’s intensity in regression equation (2), as illustrated by Appendix Figure D.3.

Second, our findings are not driven by another significant medical reform that occurred

during the same period, namely, the modification of the drug reimbursement list for public

health insurance. To challenge our findings, any other policies would need to be correlated

with reductions in approval times at the drug level. However, as reported by Appendix

Table D.3, our analysis reveals no significant correlation between the reduction in approval

times and the number of drugs covered by insurance at the drug level.

A Decomposition of the Drug-level Effect: Entry and Incumbents We investigate

whether the change in IND applications after the reform was driven by new firms or

incumbent firms. As mentioned earlier, to identify new firms, we match our data with

China’s Business Registration Data for 2021, which contains information on the year of

establishment for all firms established before 2021. We define a firm as new if it was es-

tablished during the post-reform period (after 2015). Overall, new firms made up 36% of

all innovative firms in the post-reform period.
16As mentioned above, the probability of post-2015 approved IND passing the NDA is still low (15%). Due

to this data limitation, we have not yet found a strong impact of the regulation on NDAs.
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(a) Num of INDs with Any Trials (b) Num of INDs with Phase I Trials

(c) Num of INDs with Phase II Trials (d) Num of INDs with Phase III Trials

Figure 6: Impact on the Number of INDs with Clinical Trials

Notes: This graph shows the βt parameters estimated by equation (2), with the corresponding 90% confidence intervals, for the number
of INDs that resulted in any clinical trials, Phase I clinical trials, Phase II clinical trials, and Phase III clinical trials, respectively. Controls
include the Herfindahl-Hirschman index, the share of targets already shown in the U.S., and the share of IND applications in total
ATC-level applications in the 2012–2014 period, as well as the decline in approval time for the U.S. applications after 2015, for each
ATC category. As the controls are time-invariant and absorbed by ATC-level fixed effects, we interact the control variables with the
dummy indicating the post-reform period. The standard errors are clustered at the ATC category level.
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We then evaluate how the decline in approval time affected both incumbents’ and new

firms’ innovative activities. We thus replace the dependent variable in equation (2) with

the amount of incumbents’ and new firms’ IND applications, respectively. Figure 7 shows

that the decline in approval time had a positive impact on both incumbents’ and new firms’

innovative activities. (See Appendix Table D.2 for the estimation results). Columns (3)–(6)

of Table 1 summarize the difference-in-difference estimates.

(a) Number of IND by Incumbents (b) Number of IND by New Firms

Figure 7: Impact of Decline in Approval Time on Incumbents’ and New Firms’ Innovation

Notes: This graph shows the βt parameters estimated by equation (2), with the corresponding 90% confidence intervals. New firms

barely had innovations before 2015: few firms appeared to apply for IND before being formally established. Thus, for regressions

regarding new firms’ IND applications, we set β2015 = 0, and therefore βt in other years corresponds to changes in βt relative to

year 2015. Controls include the Herfindahl-Hirschman index, the share of targets already shown in the U.S., and the share of IND

applications in total ATC-level applications in the 2012–2014 period, for each ATC category. As the controls are time-invariant and

absorbed by ATC-level fixed effects, we interact the control variables with the dummy indicating the post-reform period. The standard

errors are clustered at the ATC category level.

Together, we find that the proportional increase in the amount of IND applications due

to declines in approval time was stronger for new firms than incumbents, especially in the

2018–2021 period: the magnitude for new firms more than doubles that for incumbents.

However, as the new firms were generally smaller, their overall contribution to innovation

due to declines in approval time was similar to that of the incumbents at the aggregate

level: for the quantity increase in INDs, the incumbents and new entrants accounted for

56% and 44%, respectively.
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Who invested in these new firms? Has the reform attracted new investment from re-

gions with advanced pharmaceutical technologies to China? In Appendix Figure D.4, we

use detailed investors’ information for medical firms to investigate the presence of foreign

investment in China’s pharmaceutical innovation. Our findings indicate that the aver-

age share of equity held by foreign investors (including Hong Kong, Taiwan, and Macau)

among newly established firms was approximately 30% during the 2011–2021 period,

highlighting a significant foreign investment presence. Furthermore, following the regula-

tory reforms in 2015, the average share of equity held by foreign investors among newly

established firms increased from 23.6% in the pre-reform period to 35.0% in the post-

reform period. Additionally, our analysis reveals that the main regions of origin for foreign

equity are Hong Kong and the U.S., which are associated with advanced pharmaceutical

technologies.

Interpretation In sum, these findings are consistent with our conceptual framework. Ex-

pecting a higher return for innovation, both incumbents and new firms increased their

innovation quantities. Moreover, increased firm entry led to larger proportional responses

from new firms compared with incumbents. In Appendix Figure D.5, we further contrast

the yearly responses of the number of new firms with those of the number of new firms’

IND (derived from Panel (b) of Figure 7) to the decrease in approval time. We find that

the difference in responses between the number of new firms’ IND and the number of new

firms is similar in magnitude to the response of the number of incumbents’ IND (Panel

(a) of Figure 7). This is in accordance with our conceptual framework, which demon-

strates that the difference in responses to regulatory policy changes between new firms

and incumbents is attributable to the increased entry of new firms.

5.3 Firm-level Evidence

Since drug innovation and applications are undertaken by firms, it is useful to directly

understand firms’ responses to regulations, which complements our drug-level analyses.
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Similar to the ATC-level regression, we adopt the following regression equation:

yit = exp(βtdeclinei + γi + αt + Xi × αt) + ϵit (3)

where declinei is the decline in approval time between the 2012–2014 period and the

2015–2017 period for firm i’s IND applications. As we require information on approval

time for both the pre-reform and post-reform periods, we can construct declinei for 166

firms, which were incumbent firms according to our definitions in the previous subsection

and accounted for around 40% of all IND applications in the 2011–2021 period. The rest of

IND applications are from incumbent firms that did not innovate in either the 2012–2014

period or the 2015–2017 period, and new firms that were established after the reform.

Xi is a set of pre-reform firm characteristics, including the Herfindahl-Hirschman index,

the share of targets already shown in the U.S., and the share of IND applications in total

ATC-level applications in the 2012–2014 period. As the controls are initially computed

based on ATC categories, we aggregate them into firm-level variables based on the firm’s

pre-reform composition of applications across ATC categories.

The error term ϵit may be correlated with declinei, as firms may select into research on

drugs that experienced larger decreases in the application time, which suggests a positive

correlation between ϵit and declinei and an upward bias of OLS coefficients. There could

also be measurement errors in the construction of declinei, which suggests a downward

bias of OLS coefficients. Thus, we construct a Bartik-type instrument based on the firm’s

pre-reform composition of applications:

xi =
∑
j

sijdeclinej (4)

where sij is the share of firm i’s IND applications in ATC category j in the pre-reform

period, and declinej is the ATC-level decline in approval time within three years in the

post-reform period relative to that within three years in the pre-reform period.

Our instrument aims to capture plausibly exogenous variation in the decline of approval
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time that is uncorrelated with firm i’s error term. The identification of such shift-share

instrument relies on the orthogonality of the shifts or the shares (Goldsmith-Pinkham,

Sorkin and Swift, 2020; Borusyak, Hull and Jaravel, 2022). Our identification tends to

hold because each firm is relatively small and unlikely drives the policy reform.

Figure 8 plots the coefficients from the OLS and IV regressions. We find that the OLS

and IV results both suggest a significantly positive effect of the decline in approval time

on the number of firm-level IND applications. The IV coefficients are slightly larger than

the OLS coefficients, suggesting a potentially downward bias of the OLS coefficients due

to the measurement errors. Nevertheless, the magnitude of the OLS and IV coefficients are

similar to our previous results based on ATC-level regressions (Figure 5).

(a) OLS (b) IV

Figure 8: Impact of Decline in Approval Time on Firm-level Innovation

Notes: This graph shows the βt parameters estimated by equation (3) using the OLS and the instrument constructed in equation (4),

with the corresponding 90% confidence intervals. We control the Herfindahl-Hirschman index, the share of targets already shown in

the U.S., and the share of IND applications in total ATC-level applications in the 2012–2014 period, as well as the decline in approval

time for the U.S. applications after 2015. As the controls are initially ATC-level, we aggregate them into firm-level variables based on

the firm’s pre-reform composition of applications across ATC categories. We also add the interaction of the control variables with the

dummy indicating the post-reform period. The standard errors are clustered at the firm level.
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6 Implications on Innovation Novelty

Using drug-level and firm-level data, we have demonstrated that the regulatory reform

increased IND applications. What is the implication of these findings on innovation novelty

of China’s pharmaceutical industry? To answer this question, we employ a novel measure

of innovativeness—whether the drug applications adopt the targets already used in the

U.S.–and conduct a few robustness checks around this measure.

In Figure 9, we plot the share of drug applications adopting the targets already used in

the U.S., which declined by 12 percentage points (from 86% to 74%) between 2011 and

2021, suggesting a large increase in the informativeness of China’s drug applications. It is

useful to have two benchmarks to better understand the magnitude of this improvement in

drug novelty. First, China’s progress is even more visible against a global trend. In Figure

E.1, we exploit global trial data (as we lack drug application data for other countries)

and compare the innovativeness of Phase I clinical trials (the step following IND) in both

China and the U.S.. We find that between 2011 and 2021, the share of Phase I clinical

trials adopting the targets already used in the U.S. remained largely unchanged in the

U.S., but experienced a sharp decline by 15 percentage points from 97% to 82% in China,

the magnitude of which echos our finding in Figure 9. Second, in the U.S. in year 2021,

79% of Phase I clinical trials adopted the existing targets. These comparisons suggest that

China has been moving toward the frontier during the past decade.

Importantly, aggregate innovation novelty can be affected by both within-drug change

and across-drug change. We denote the yearly share of drugs with targets already used in

the U.S. registration as Zt and formalize these two channels as follows:

Zt =
∑
j

yincjt∑
j y

inc
jt + ynewjt

hincjt +
ynewjt∑

j y
inc
jt + ynewjt

hnewjt , (5)

where yincjt and ynewjt are the numbers of ATC category j’s IND applications in year t by

incumbent and new firms, respectively. Thus,
yinc
jt∑

j y
inc
jt +ynew

jt
and

ynew
jt∑

j y
inc
jt +ynew

jt
represent the
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Figure 9: Impact of Changes in Approval Time on Drug Applications’ Innovativeness
through Changes in Composition

Notes: In this graph, for Chinese drugs that have information available on their targets, we illustrate the percentage of Chinese drugs
that have adopted targets already demonstrated in U.S. registered drugs.

shares of ATC category j’s IND applications in overall IND applications for incumbent and

new firms, respectively. hincjt and hnewjt are the shares of ATC category j’s drugs with targets

already used in the U.S. in year t for incumbent and new firms, respectively.

Equation (5) illustrates that the regulatory reform can affect innovation novelty via

two channels: a within-drug innovativeness channel hincjt and hnewjt , and the composition

channel yincjt and ynewjt . Next, we examine them separately.

The Within-drug Innovativeness Channel hincjt and hnewjt Using a specification similar to

equation (2), we examine innovatiness as the outcome. Specifically, Figure 10 plots the

the βt parameters estimated by equation yit = βtdeclinei + γi + αt + Xi × αt + ϵit, with

the corresponding 90% confidence intervals, where yit is one minus the share of targets

already shown in U.S. registration for each ATC category and each year, which measures

the share of innovative targets and thus proxies the drug innovativeness. New firms barely

had innovations before 2015: few firms appeared to apply for IND before being formally

established. Thus, for regressions regarding new firms’ innovativeness, we set β2015 = 0,
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and therefore βt in other years corresponds to changes in βt relative to year 2015 (for

incumbents, we set β2014 = 0). As shown, there are no statistically significant effects

observed across all years. Thus, it appears that the regulatory reform does not lead to

noticeable improvements in within-drug innovativeness (i.e., hincjt and hnewjt ) in our studied

period.

(a) Incumbents’ Innovativeness (b) New Firms’ Innovativeness

Figure 10: Impact of Decline in Approval Time on Incumbents’ and New Firms’ Drug
Innovativeness (ATC-level)

Notes: This figure shows the βt parameters estimated by equation yit = βtdeclinei + γi + αt + Xi × αt + ϵit, with the corresponding

90% confidence intervals, where yit is one minus the share of targets already shown in U.S. registration for each ATC category and

each year, which measures the share of innovative targets and thus proxies the drug innovativeness. Controls include the Herfindahl-

Hirschman index, the share of targets already shown in the U.S., and the share of IND applications in total ATC-level applications in the

2012–2014 period, as well as the decline in approval time for the U.S. applications after 2015, for each ATC category. As the controls

are time-invariant and absorbed by ATC-level fixed effects, we interact the control variables with the dummy indicating the post-reform

period. The standard errors are clustered at the ATC category level.

The Composition Channel yincjt and ynewjt In Section 5, we showed that the policy re-

form significantly impacted the quantity of new drug applications, and the impact differed

across ATC categories with different declines in approval time after the reform. We then

use the estimated policy impact to construct yincjt or ynewjt in the counterfactual scenario

with no medical reform being implemented. The corresponding overall novelty based on
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this counterfactual scenario is

Z ′
t =

∑
j

yincjt exp(−βinc
t declinej)h

inc
jt + ynewjt exp(−βnew

t declinej)h
new
jt∑

j y
inc
jt exp(−βinc

t declinej) +
∑

j y
new
jt exp(−βnew

t declinej)
.

βinc
t and βnew

t denote the estimated responses of the number of IND applications to the

decline in approval time for incumbent and new firms, respectively, as shown in Figure 7.

As shown by the blue line in Figure 9, without the policy reform, the counterfactual

composition would imply a larger share of Chinese drugs adopting mature U.S. targets.

Quantitatively, we find that the policy reform reduced the share of Chinese drug applica-

tions adopting mature U.S. targets by 3.3 percentage points and can explain 36% of the

post-reform decline (9.2 percentage points) in the share of Chinese new drugs adopting

mature U.S. targets through changes in the composition of new drug applications.

It is worth noting that new entrants are more innovative than incumbents. In Appendix

Figure E.2, we plot the share of targets that had been explored in the U.S. by incumbents

and new entrants. For the incumbents, the share gradually declined from 85% in 2012 to

80% in 2020. For the new entrants, the share change was from 80% in 2015 to 67% in

2020. The fact that new entrants are more innovative and the previous finding that new

firms’ innovative quantity responds more to the policy reform (Figure 7) have important

implications on the aggregate change on innovation novelty.

Specifically, in Figure 9, we plot the orange line representing the counterfactual novelty

when we only consider responses of the number of new firms’ drugs to the policy reform.

We find that 80% of the improved innovativeness due to the policy reform was driven by

the responses of the number of new firms’ drug applications. We summarize the quantita-

tive channels in Table 2. During 2015–2021, the share of targets already shown in the U.S.

declined by 9.2 percentage points, out of which the decline of approval time can explain

35.8% (3.3 percent points). Within this improvement due to regulatory reforms, new firms

contributed to 78.8%, due to their higher innovativness and more responses to the reform.

These findings offer an interesting contrast between quantity and novelty in innovation:

new firms’ contribution to innovative quantity change is sizable but not dominant, but
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Table 2: Impact of Changes in Approval Time on Drug Applications’ Innovativeness
through Changes in Composition

∆ Share of Targets Already Shown in U.S. Registration, 2015–21

Actual decline -9.2 p.p.
Due to responses of all firms’ IND
to changes in approval time -3.3 p.p.

Due to responses of new firms’ IND
to changes in approval time -2.6 p.p.

their contribution in terms of novelty appears even more important.

Robustness Checks As a robustness check, we construct the innovativeness measure

based on European drug registration data, which is collected from the European Medicines

Agency and the Head of Medicines Agency. Appendix E.3 depicts the share of drug appli-

cations adopting the targets already used in Europe. We notice an 8.6-percentage-point

decrease in the share in the post-reform period (after 2015). Using equation (5), we de-

termine that the policy reform lowered the share of Chinese drug applications adopting

established European targets by 2.9 percentage points and accounts for 34% of the post-

reform reduction. Additionally, we find that 76% of the enhanced innovativeness owing

to the policy reform was propelled by the responses regarding the quantity of new firms’

drug applications.

An additional concern is that if Chinese drugs’ targets do not align with those of mature

drugs in the U.S. or EU, they may be specific to China and of inferior novelty. To address

this concern, we remove all Chinese drugs with targets that have never appeared in U.S.

clinical trials. As a result, the remaining targets have been or are being investigated in

the U.S., and we utilize this subset of targets to determine the percentage of Chinese

drugs adopting mature targets found in registered U.S. medicines. Appendix Figure E.4

replicates Figure 9 with this constraint and demonstrates that the findings are very similar

quantitatively.
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Interpretation Our conceptual framework predicts an increase in incumbents’ novelty

and an ambiguous change in new firms’ novelty in response to the reform. In our empirical

analysis, we observe that the reform has attracted a large number of innovative new firms

to enter the market, and this shift in the composition of market players accounts for a

significant portion of the overall enhancement in drug novelty. These empirical findings

highlight the fact that inadequate regulatory practices can discourage the participation of

innovative newcomers, ultimately hindering progress in the industry.

7 Further Evidence: Stock Market Responses

As further evidence to examine whether the reform leads to a better innovation environ-

ment, we study how a firm’s stock price reacts to NDAs. In the previous section, we use

the number of INDs to quantify medical innovation. However, since INDs represent the

early stage of drug development, significant uncertainty surrounds their success, making

it difficult to generate significant stock market responses. To more accurately assess the

market response to medical innovation and its change after the regulatory reform, this

section focuses on the final approval of new drugs, which marks the end of the new drug

application process and allows the drug to be sold in the market.

As emphasized above, the majority of the NDAs we study started their IND applications

before the reform. Thus, the exercise here is not to directly evaluate the value of INDs in

our main analysis. Instead, it offers suggestive evidence on how the market perceives the

reform.

There are anecdotal instances indicating that, in recent years, the stock market has

responded favorably to the sanctioning of new drug applications, hinting at an enhance-

ment in the novelty of innovation. Take, for example, when Fuzuloparib, an orally active

PARP inhibitor, devised by Jiangsu Hengrui Pharmaceuticals Co., Ltd., received the nod

from the CFDA on December 16th, 2020. The ensuing day witnessed a 5.5% surge in

Hengrui’s stock price, an ascent that stood 4.2 percentage points above the market’s aver-
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age.17 Though there are similar cases associated with other new drugs, skepticism persists

regarding the significance of new drug approvals. Therefore, discerning the consistency of

the positive stock market response pre and post the reform can shed lights on the caliber

of innovation.

7.1 Motivational Evidence and Research Design

We are interested in how the stock market responded to new drug approval before and

after the reform. To see these patterns, we present the results of our event-study designs

in Figure 11, focusing on examining stock returns as the outcome. In order to address

concerns related to insider trading problems in China, we selected two days before the

approval as the reference date. This choice is in line with previous research by Qiu, He

and Xiao (2018) and He, Wang and Zhu (2023), who have highlighted the possibility of

insiders with favorable information engaging in buying or selling stocks ahead of time.

In these specifications, we control for firm fixed effects and day fixed effects. As shown

in Panels (a) and (b), while there was no clear market response before the reform, the

market responded positively to NDAs in the days following the news. In addition, we plot

the estimates using generic drug approvals in Panels (c) and (d), which can be considered

as placebo tests: the market response is not driven by time trend but is specific to new

drugs.

Motivated by these patterns, we employ a triple-difference design to estimate the im-

pact of the reform on stock market responses:

Ri,g,t =α0 + β1PostApprovalg,t + β2PostApprovalg,t × Treati,g

+ β3PostApprovalg,t × PostReformt + β4PostReformt × Treati,g

+ β5Treati,g × PostApprovalg,t × PostReformt + γi,g + γg,t + γmarkettype,g + ϵi,g,t

(6)

Following Cengiz et al. (2019), we consider each grant of a new drug as a distinct event
17Fuzuloparib is distinguished as the inaugural PARP inhibitor pioneered by a Chinese enterprise.

Presently, the global market acknowledges four other PARP inhibitors, the brainchildren of renowned corpo-
rations like AstraZeneca, Pfizer, Clovis, and Zai Lab.
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(a) New Drugs, 2011–2014 (b) New Drugs, 2015–2022

(c) Generic Drugs, 2011–2014 (d) Generic Drugs, 2015–2022

Figure 11: Dependent Variable: Stock Returns (Daily)

Notes: This graph shows the βτ parameters estimated from event studies for new drugs and generic drugs, with the corresponding 90%
confidence intervals. The standard errors are clustered at the event-firm level.
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(denoted by g) and create separate treatment and control groups based on these events.

The control group consists of all firms that did not receive any grants for new drugs during

the event period. We define the daily stock return of firm i at time t during event g as

Ri,g,t = log(pi,t) − log(pi,t−1), where pi,t is the stock price of stock i at time t. The variable

PostApprovalg,t is a dummy variable that indicates whether the time t is before or after

the two periods before the approval of a new drug for event g. Similarly, PostReformt

is a dummy variable that indicates whether the year of date t is before or after the drug

reform. Treati,g is a dummy variable indicating whether firm i is treated during event g.

In order to account for the overall patterns in stock returns during specific event periods

or in certain stock markets in China, we introduce event-firm fixed effect (γi,g), event-date

fixed effect (γg,t) and event-market fixed effect(γmarkettype,g) into the regression analysis.18

To capture these trends, we include changes in stock prices (during the same time period

as the events) for medical firms that did not have any new drug approvals during our

sample period.

7.2 Results

We draw stock price data from CSMAR Database. There are totally 467 medical listed

firms that have ever existed between 2010 and 2022. Among all these firms, there were

139 new drugs granted between 2010 and 2022 owned by 58 firms.19 Since the listing

process for new firms takes time, only six firms were established and listed after 2015

and had no record of approved drugs before 2022. As a placebo test, we also perform

the event study for the reaction of the stock returns to the grant of generic drugs, which

use the same active ingredients as brand-name medicines after the patents on the original

drugs expire and are thus generally less profitable and innovative than new drugs. Among

18The medical firms that have been sampled for our study are listed across various markets, including
A-share market (in Shanghai, Shenzhen, and Beijing), B-share market (in Shanghai and Shenzhen), Growth
Enterprise Market, and Sci-Tech Innovation Board.

19We define the medical firm as the firm of which the industry is the pharmaceutical based on the Guide-
lines for the Industry Classification of Listed Companies (2012 Revision), or the firm of which the name
contains the “medical” (yi in Chinese) or “pharmaceutical” (yao in Chinese).
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Table 3: Dependent Variable: Stock Returns (Daily)

Pre-reform Period Post-reform Period All Period
DID DID Triple DID

(1) (2) (3) (4) (5) (6)

Panel A: New Drug
Treat×PostApproval 0.0001 0.0042 0.0001
(window=2 days) (0.0035) (0.0036) (0.0035)
Treat×PostApproval 0.0014 0.0080*** 0.0014
(window=3 days) (0.0026) (0.0030) (0.0026)
Treat×PostApproval×PostReform 0.0042
(window=2 days) (0.0050)
Treat×PostApproval×PostReform 0.0066*
(window=3 days) (0.0039)
Obs 16,756 25,640 68,022 102,091 84,778 127,731
R-square 0.2480 0.2480 0.2935 0.2548 0.2837 0.2536

Panel B: Generic Drug
Treat×PostApproval -0.0021 -0.0001 -0.0021
(window=2 days) (0.0015) (0.0014) (0.0015)
Treat×PostApproval -0.0026 -0.0001 -0.0026*
(window=3 days) (0.0014) (0.0011) (0.0014)
Treat×PostApproval×PostReform 0.0019
(window=2 days) (0.0019)
Treat×PostApproval×PostReform 0.0024
(window=3 days) (0.0015)
Obs 71579 109860 292759 425127 3364338 535372
R-square 0.3905 0.3603 0.2909 0.2665 0.3164 0.2913

Notes: The dependent variable in each column is the daily stock return. In Panel A, we focus on the event of the grant of the new drug.
As a placebo test, we analyze the event of the grant of the generic drug in Panel B. For each event of the drug grant, we perform the
difference-in-difference analysis to explore the effect of that event. We set the observation window as ±2 days in odd columns and ±3
days in even columns around two days before the approval (consistent with our event study), respectively. We control for event-firm
fixed effects, event-date fixed effects, and event-market fixed effects. Standard errors are clustered at the firm-date level. Significance
levels: 10% *, 5% **, 1% ***.

listed medical firms, 120 listed firms had 784 generic drugs granted between 2010 and

2022.

Before reporting the triple-difference estimates, we present the DID estimates for the

periods before and after the reform in Columns (1)–(4) of Table 3. As shown, before the

reform, the stock market response to NDAs was positive but not always significant. After

the reform, however, the positive response more than doubled in magnitude and became

significant.

Columns (5)–(6) present the triple-difference estimates. According to these estimates,

the stock returns to new drugs after the reform are statistically and economically mean-

ingful. According to Column (6), in the post-reform period, there was a cumulative stock
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return of approximately 1.9% over the three days starting from one day before the ap-

proval announcement (τ = −1, 0, 1). To assess the market evaluation of new drugs in

absolute terms, we take into account the market value of the treated firms on the event

date, which had an average value of 85.6 billion RMB. Based on this analysis, we can ob-

serve that the market has assigned an average value of 1.63 billion RMB (approximately

0.23 billion dollars) to each approved new drug, which is sizable economically.

Interpretation Again, we should note that most of firms in this analysis are established

incumbents, and most of the NDAs started their IND applications prior to the reform. We

interpret these findings as an indication that the market perceives an enhancement in

drug innovation novelty post-reform, rather than as a comprehensive assessment of the

value of drug innovation following the reform. These results are consistent with how

we interpret the reform in our conceptual framework: the improvement in regulation

increases expected returns from innovation.

8 Conclusion

This paper examines the impact of adopting specific regulatory practices in frontier coun-

tries on fostering innovation in emerging markets. Although China is just one of several

economies that have implemented such regulatory reforms, this pivotal policy research

question has not been extensively investigated prior to this study. 20

Our paper makes three main findings. First, regulatory reform plays a constructive role

in bolstering the volume of innovation. Second, the reform’s influence extends beyond

mere quantity. It acts as a catalyst for the infusion of novel, forward-thinking enterprises

into the market and triggers a transformative shift in the composition of firms. This re-

calibration significantly impacts the overall innovativeness of the pharmaceutical industry.

20For example, in 2012, Mexico streamlined its review process for applications pre-reviewed by certified
external entities, leading to a notable decrease in median review durations (Patel, McAuslane and Liberti,
2019). In a similar vein, Malaysia’s regulatory authority took strides in 2013 to align with international
standards, minimizing repetitive testing and hastening the market entry of new products.
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Third, the stock market responses appear to support a novelty improvement in new drugs

after the reform.

Our findings can be interpreted through a straightforward framework, in which the

regulatory reform increased the anticipated returns from innovation by reducing waiting

time, leading to an uptick in innovation efforts and prompting the entry of new firms.

Importantly, we find that these new firms deterred by the old regulatory regime could be

more innovative than the incumbent firms.

Evidently, a pronounced discrepancy in innovation prowess persists between burgeon-

ing economies and their developed counterparts. This gap, stemming from a complex

interplay of factors, implies the ongoing challenges. Despite the efforts to enact regulatory

reforms and elevate the standards of innovation, China’s pharmaceutical sector remains

in the nascent stages of its innovation journey. Zooming in on the regulatory landscape,

it becomes apparent that many critical junctures merit consideration. These range from

fine-tuning the regulations governing the distribution of pharmaceuticals from manufac-

turers to medical institutions, to the pivotal matter of regulating physicians’ prescriptions

to patients. Our investigation indicates that, rather than advocating for more or fewer reg-

ulations or wholesale adoption of regulatory approaches, identifying and adopting specific

effective regulatory practices can yield useful insights.
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A 2015 Regulatory Reform in China

The National Center for Drug Evaluation (CDE), a subsidiary of the National Medical Prod-

ucts Administration (NMPA),21 is responsible for reviewing applicants’ information on drug

efficacy and safety, approving clinical studies, and evaluating clinical results. In 2014 and

2015, the CDE faced a backlog of 18,597 and over 21,000 applications, respectively, result-

ing in delays in drug access for patients and increased costs and uncertainty for pharma-

ceutical companies (Zhou et al., 2017). These issues led to widespread industry complaints

and demands for change. A series of reforms were initiated in 2015 to address the chal-

lenges faced by the system, marked by “The Opinions on Reforming Review and Approval

Process for Drugs and Medical Devices” (hereafter, “The Opinions”) submitted by the CFDA

to the State Council.22

The implementation of the series of reforms involved several steps. After the publica-

tion of “The Opinion” in August 2015, numerous other policy documents were issued to

address various aspects of the issue. For instance, on November 11th, 2015, the NMPA

released the “Announcement of the State Administration for Several Policies concerning

Drug Registration Review and Approval.”23 This document mandated that generic drugs

must pass the “Generic Quality Consistency Evaluation (GQCE)” before submitting an ap-

plication. The evaluation’s objective is to ensure that the original brand-name drug and its

generic counterpart are essentially bioequivalent, a standard practice in the global phar-

maceutical market for decades but not previously required in China. Additionally, this doc-

ument introduces new punishment standards for under-qualified applications and detected

data falsification, allowing applicants to withdraw their already submitted applications to

avoid potential penalties.

Achieving a reduction in process time was a gradual process. In August 2016 and

21Previously, the center was named the China Food and Drug Administration (CFDA). The CFDA changed
its name to NMPA in March 2018.

22Guo Fa [2015] No. 44: http://www.gov.cn/zhengce/content/2015-08/18/content_
10101.htm

23https://www.nmpa.gov.cn/directory/web/nmpa/xxgk/ggtg/qtggtg/
20151111120001229.html
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October 2017, the NMPA published two revised versions of “Measures for the Adminis-

tration of Drug Registration” to solicit public opinion.24 The 2017 draft version explicitly

set time limits for drug approval applications—60 working days for IND applications and

100 working days for New Drug Applications (NDAs). In October 2017 and October 2018,

these time limits were incorporated into two revised drafts of “The Medicinal Product Ad-

ministration Law of the People’s Republic of China,” which was eventually adopted at the

12th Session of the Standing Committee of the Thirteenth National People’s Congress of

the People’s Republic of China on August 26, 2019.25 As shown in Figure 3, we notice

a steady decrease in the average process time since 2015, stabilizing in 2019 at around

fewer than 100 calendar days. This informs our identification strategy of measuring the

reduction in approval time during the transition period from 2015 to 2017 compared to

the pre-reform years.

B A Simple Framework

We develop a parsimonious model to motivate our analysis. Our model allows for endoge-

nous firm entry and novelty choices, augmented by taking into account product quantities

and regulatory time lags.

B.1 Model Setup

We consider two types of goods as in Acemoglu and Linn (2004). First, there is a basic

good, which can be consumed, or used for the production of drugs, or for research inputs.

We treat the basic good as the numeraire with its price normalized to one. Second, there

is a drug with many varieties that can be potentially supplied by many producers.

242016: https://www.nmpa.gov.cn/directory/web/nmpa/xxgk/zhqyj/zhqyjyp/
20160725154601588.html; 2017: https://www.nmpa.gov.cn/directory/web/nmpa/
zhuanti/ypqxgg/ggzhqyj/20171023174301598.html

25https://gkml.samr.gov.cn/nsjg/fgs/201909/t20190917_306828.html
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Medical Demand Suppose that the economy is inhabited by a representative household

with a fixed endowment of the basic good, Y . This representative household can be

thought of as aggregating all the demand for basic goods and drugs across all the indi-

viduals with different income levels and diseases in the economy. The utility function is

expressed as:

U = ZδX1−δ,

s.t. Z + PX = Y.
(2.7)

Z represents the consumption of the basic good, and δ denotes the share of expenses ded-

icated to the basic good. X is an aggregate quantity of the drug comprising the quantities

demanded for various varieties manufactured by different producers, as described by the

following function:

X =

(∫
u(ω)

1
σx(ω)

σ−1
σ dω

) σ
σ−1

, (2.8)

where we employ ω to index each variety. As a drug’s effectiveness depends on its novelty,

we consider u(ω) to be the novelty of variety ω, and x(ω) to be the quantity. The elasticity

of substitution among different varieties, σ > 1, conveys the idea that multiple varieties

may serve as imperfect substitutes due to aspects like brand and taste, reflecting the real-

world coexistence of numerous drug varieties in the market. The quantity demanded for

each variety ω is given by x(ω) = u(ω)p(ω)−σP σX, where P =
(∫

u(ω)p(ω)1−σdω
)1/(1−σ) is

the aggregate price index for the drug. Given that there is a continuum of varieties, the

drug market is under monopolistic competition.

Regulatory Policy For the sake of analytical simplicity, we assume consumption occurs

at time t = 0. Drug varieties result from producers’ innovation efforts, as we will describe

below. Nonetheless, to effectively serve the market at t = 0, a prospective drug producer

must also await approval from the government regulatory bureau for drug innovation

procedures, such as clinical trials. We presume the waiting time to be g. Consequently, a

potential producer must initiate the innovation process at t = −g to cater to the market.
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Innovation and Novelty Choices Firms are heterogeneous in their innovation capabili-

ties, denoted by θi > 0. They decide on their innovation intensity, ki, where higher intensi-

ties correspond to a greater number of drug applications. Each application corresponds to

one drug variety. The innovation costs are represented by ψk(ki)
γ, with γ > 1 signifying a

convex function, as often assumed in the literature (e.g., Klette and Kortum, 2004; Lentz

and Mortensen, 2008). For the sake of simplicity, we assume that the expected number

of new applications approved is given by θiki. By multiplying θi, we posit that more inno-

vative firms are likely to successfully generate more innovation outcomes given the same

innovation intensity.26

We assume that, in addition to selecting innovation quantities, firms can also choose

the novelty of their drug applications. A higher novelty u will proportionally increase

drug profits; however, enhancing novelty would necessitate costs ψuu
ϕ per unit of drug

application, where ϕ > 1 indicates that the costs are convex in novelty u.

Firm Types There exist two separate categories of producers: incumbents and potential

entrants (new firms). The measure of incumbents and potential entrants is denoted by M

and Me, respectively, both with innovation capacity distributions represented by F (θ). In

order to initiate innovation and apply for drug approvals, potential entrants must bear an

extra fixed entry cost f . These fixed costs might include expenditures such as registration

fees, which are not applicable to incumbents since they are already registered and may

produce some established drugs concurrently. We assume that the fixed cost f for each firm

is a random variable drawn from the distribution G(f |θ), which allows for the possibility of

more innovative firms having distinct fixed cost distributions, as they may have the need

to recruit highly educated individuals, which can entail significant expenses. Lastly, the

production cost per unit of drug variety is identical (denoted by c > 0) for all firms.

26We could also assume that, with the same innovation intensity, more innovative firms incur lower inno-
vation costs. Such an alternative assumption would lead to very similar analytical predictions about how the
regulatory policy change affects the number of drug applications by incumbents and new firms.
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B.2 Solving the Model

Incumbents’ Problem We now solve the incumbent’s innovation decisions by backward

induction. First, given the choice of innovation intensity k and choice of novelty u, incum-

bent i chooses the optimal price to maximize the profits at t = 0:

max
pi

θik(pi − c)xi

s.t. xi = u (pi)
−σ P σX.

(2.9)

According to the first-order condition, we can obtain pi = σ̃c, where σ̃ = σ/(σ − 1).

Due to the waiting time of regulatory bureaus, the producer needs to initiate innovations

at t = −g. For ease of notation, we define π = (1 + r)−g(σ̃c)1−σP σX/σ as the present

value of profits per approved application (when novelty u = 1) at the time of initiating

innovations, where r is the interest rate. Thus, the producer’s problem at the time of

initiating innovations is:

max
{k,u}

k
[
θiuπ − ψuu

ϕ
]
− ψkk

γ. (2.10)

As the drug applications are homogeneous, the firm will choose the same novelty u for its

all drug varieties. According to the first-order conditions, we find that besides variables

and parameters common to every firm, the optimal innovation quantity and novelty of firm

i depend on its innovation capability θi:

u(θi) =

(
θiπ

ϕψu

) 1
ϕ−1

, (2.11)

k(θi) =

(
(ϕ− 1) (θiπ)

ϕ
ϕ−1

ϕ
ϕ

ϕ−1ψ
1

ϕ−1
u ψkγ

) 1
γ−1

. (2.12)

The optimal quantity and novelty of innovation increases with the firm’s innovation effi-

ciency θi and the potential profits π. The total number of drug applications by incumbents

is N =M
∫∞
0
k(θ)dF (θ).
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New Firms’ Problem We also solve new firms’ innovation decisions by backward induc-

tion. Similar to incumbents’ problem in equation (2.9), each new firm i’s optimal pricing

strategy in the drug market is also pi = σ̃c. Then, the new firm’s problem at the time of

initiating innovations is:

max
{k,u,I}

I
{
k
[
θiπu− ψuu

ϕ
]
− ψkk

γ − f
}
. (2.13)

where I ∈ {0, 1} indexes whether the new firm chooses to actively innovate. Given active

innovation status I = 1, we can solve new firm i’s innovation intensity and novelty choices,

which are identical to equations (2.11)–(2.12).

A new firm will engage in innovation if and only if the profits from innovation net of

entry costs are positive, and these profits decrease with the fixed cost f . Consequently, we

can determine the threshold of the fixed cost for new firms with innovation capacity θ to

participate in innovation as follows:

f̄(θ) = (γ − 1)ψk

(
(ϕ− 1) (θiπ)

ϕ
ϕ−1

ϕ
ϕ

ϕ−1ψ
1

ϕ−1
u ψkγ

) γ
γ−1

. (2.14)

Hence, for new firms that must incur fixed entry costs, only those with lower fixed costs

than f̄(θ) will participate in the innovation process. The total number of drug applications

by new firms is Ne = Me

∫∞
0
k(θ)G(f̄(θ)|θ)dF (θ). The average innovation capacity of new

firms is given by
∫∞
0
θG(f̄(θ)|θ)dF (θ)/

∫∞
0
G(f̄(θ)|θ)dF (θ).

B.3 Model Predictions on Regulatory Policy Changes

We now examine a regulatory policy change that reduces the waiting time for government

decisions from g to g′, where g′ < g. The subsequent proposition encapsulates the findings.

Proposition 1 (Regulatory Policy Change and Innovation). In the event that the waiting

time for government decisions decreases from g to g′ < g, we can derive the following results:

(i) The present value of profits per approved application increases, π′ > π.
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(ii) The proportional change in the number of drug applications by incumbents is:

N ′

N
=

(
π′

π

) ϕ
(ϕ−1)(γ−1)

> 1. (2.15)

(iii) The proportional change in the number of drug applications by new firms is:

N ′
e

Ne

=

∫∞
0
θ

ϕ
(ϕ−1)(γ−1)G(f̄ ′(θ)|θ)dF (θ)∫∞

0
θ

ϕ
(ϕ−1)(γ−1)G(f̄(θ)|θ)dF (θ)

(
π′

π

) ϕ
(ϕ−1)(γ−1)

>

(
π′

π

) ϕ
(ϕ−1)(γ−1)

> 1. (2.16)

where the change in the cost threshold is given by f̄ ′(θ)/f̄(θ) = (π′/π)
ϕγ

(ϕ−1)(γ−1) > 1, which

implies that conditional on innovation capacity θ, a greater proportion of new firms initiate

innovation following the decrease in waiting time.

(iv) The proportional change in novelty for incumbents is as follows:

u′(θi)

u(θi)
=

(
π′

π

) 1
ϕ−1

> 1. (2.17)

The change in novelty is ambiguous for new firms due to the ambiguous impact on the com-

position of new firms’ innovation capacities.

(v) With more innovations and better novelty, the drug’s aggregate price index P ′ < P .

Proof: See Appendix B.4.

In response to a regulatory policy change that reduces the waiting time for government

decisions, our model expects an increase in the expected profits of drug applications, even

in the face of heightened competition brought about by this change. Results (ii) and (iii)

demonstrate that the rise in expected profits stimulates innovation for both incumbents

and new firms. Additionally, when comparing these two outcomes, our model forecasts a

more substantial innovation response from new firms relative to incumbents. The discrep-

ancy in responses between new firms and incumbents is solely due to the extensive margin

of new firms (weighted by their innovation capacities), as higher innovation profits also

drive increased entry by these firms. Result (iv) suggests an improvement in the novelty
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of drug applications for existing incumbents. However, the average change in new firms’

novelty is ambiguous, as the reform has an ambiguous impact on the composition of new

firms’ innovation capacities. Lastly, Result (v) reveals that, as a consequence of increased

innovations and enhanced drug innovativeness, the aggregate price index of the drug mar-

ket would decrease, indicating more competition in the drug market and an equilibrium

that is more favorable for consumers.

B.4 Proof of Proposition 1

We first prove Result (i) by contradiction. Suppose that the present value of profits π′

declines. According to equations (2.11), (2.12), and (2.14), this would imply that for each

firm i, its quantity and novelty of innovation declines, and the capability threshold for new

firms increases. Thus, this would indicate a higher level of aggregate price, P ′ > P . We

also note that:

π′ =
(1 + t)−g′

σ
(σ̃c)1−σ(P ′)σX ′ =

(1 + t)−g′

σ
(σ̃c)1−σ(P ′)σ−1(1− δ)Y (2.18)

where P ′X ′ = (1 − δ)Y is the total expenditures on drugs according to Cobb-Douglas

preferences. Thus, we would have π′/π = (1 + r)g−g′(P ′/P )σ−1, which is strictly larger

than 1 if P ′ > P . This violates the assumption that the present value of profits π′ declines.

Similarly, we can prove that π′ cannot be equal to π. Thus, it must be that π′ > π.

To prove Result (ii), we note that N =M
∫∞
0
k(θ)dF (θ). Thus,

N ′

N
=

∫∞
0
k′(θ)dF (θ)∫∞

0
k(θ)dF (θ)

=

(
π′

π

) ϕ
(ϕ−1)(γ−1)

> 1, (2.19)

where the second equality uses the solution for k(θ) in equation (2.12).
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For Result (iii), we notice that Ne =Me

∫∞
0
G(f̄(θ)|θ)dF (θ). Thus,

N ′
e

Ne

=

∫∞
0
k′(θ)G(f̄ ′(θ)|θ)dF (θ)∫∞

0
k(θ)G(f̄(θ)|θ)dF (θ)

=

∫∞
0
θ

ϕ
(ϕ−1)(γ−1)G(f̄ ′(θ)|θ)dF (θ)∫∞

0
θ

ϕ
(ϕ−1)(γ−1)G(f̄(θ)|θ)dF (θ)

(
π′

π

) ϕ
(ϕ−1)(γ−1)

>

(
π′

π

) ϕ
(ϕ−1)(γ−1)

> 1.

(2.20)

where the second equality uses the solution for k(θ) in equation (2.12), and the first in-

equality uses f̄ ′(θ)/f̄(θ) > 1 according to equation (2.14) when π′ > π. Result (iv) can

be directly proved using the formula for novelty in equation (2.11). However, the reform

has an ambiguous impact on the composition of new firms’ innovation capacities and the

average innovation capacity of new firms (
∫∞
0
θG(f̄(θ)|θ)dF (θ)/

∫∞
0
G(f̄(θ)|θ)dF (θ)).

Finally, given that each firm’s quantity and novelty of innovation increases, and the

fixed cost threshold for new firms increases (more entry), this would indicate a lower level

of aggregate price for the household, P ′ < P , as reported in Result (v).
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C Additional Results for Section 4

C.1 IND Approval Time vs. IND-Final Approval Time
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Figure C.1: Correlation between Approval Times

Notes: This graph shows the correlation between IND approval time and the time spent from IND approval to final registration, for each

drug application with available data.
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C.2 Decline in Approval Time vs Drug Characteristics

Table C.2: Correlation between Decline in Approval Time and Characteristics

Dependent Variable: Decline in Approval Time

(1) (2) (3) (4) (5) (6)

Num of applications 12–14 0.52

(1.68)

HHI innovation 12–14 62.43

(97.35)

Share of targets shown in U.S. 12–14 -24.89

(132.72)

Share of IND Applications 12–14 -126.97

(209.93)

U.S. approval time before 2015 .13

(.10)

Decline in U.S. approval time after 2015 .12

(.12)

Constant 179.85∗∗∗ 168.57∗∗∗ 209.53∗∗ 215.93∗∗∗ 117.75∗∗ 200.58∗∗∗

(49.80) (33.91) (98.10) (50.22) (54.66) (33.35)

Obs 109 109 109 109 92 80

R-squared 0.00 0.00 0.00 0.00 0.02 0.02

Mean 190.59 190.59 190.59 190.59 190.59 190.59

Notes: “HHI” is short for the Herfindahl-Hirschman index. Standard errors are clustered at the ATC category level. * p < .10, **

p < .05, *** p < .01
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C.3 Approval Decline vs. Pre-reform Approval Time

Figure C.3: Relation to Previous Approval Time

Notes: This graph shows the decline in approval time between 2015–2017 and 2012–2014 (y-axis) on the average days of approval in

2012–2014 (x-axis), across 4-digit ATC categories. We truncate 5% of the decline in approval time to avoid extreme values in the graph.

C.4 Approval Decline vs. Backlogs

Figure C.4: Relation to Pre-reform Share of Backlogs

Notes: This graph shows the decline in approval time between 2015–2017 and 2012–2014 (y-axis) on the pre-reform share of backlogs

(x-axis), across 4-digit ATC categories. We compute the pre-reform share of backlogs as: among all the IND applications that were

submitted in 2012–2014, the share of applications that had not been approved by the end of 2014. We truncate 5% of the decline in

approval time to avoid extreme values in the graph.
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D Additional Results for Section 5

D.1 Summary Statistics

Table D.1: Summary Characteristics

Variable N Mean Std

ATC Drug Level

Number of IND apps (yearly) 1,199 8.31 60.10

Number of applying firms in each year 1,199 2.54 15.19

Decline in approval time (days) 109 197.40 228.45

HHI in innovation 12–14 109 0.35 0.22

Share of targets already shown in the U.S. 12–14 109 0.76 0.16

U.S. approval time (NDA) before 2015 92 615.05 274.58

Decline in U.S. approval time after 2015 80 232.48 242.07

Firm Level

Number of IND apps (yearly) 1,826 2.30 5.29

Decline in approval time 12–14 166 218.89 261.73

HHI in innovation 12–14 166 0.24 0.18

Share of targets already shown in the U.S. 166 0.74 0.11

U.S. approval time (NDA) before 2015 158 515.50 162.33

Decline in U.S. approval time after 2015 151 177.43 133.21

Notes: This table reports the summary statistics for variables used in the regressions. We compute the number of applications, the

Herfindahl-Hirschman index (HHI), the share of targets already shown in the U.S., and the share of IND applications in total ATC-level

applications for each ATC category in the 2012–2014 period, using our medical registration data. In drug-level regressions, where

applications may have multiple applicants, we handle these applications by treating them as if each applicant applied separately. This

approach helps us analyze incumbents and new firms separately. Notably, the regression results presented in Figure 5 remain very

similar even when considering applications with multiple applicants as a single application. We compute the approval time for the

U.S. drug applications using the drug data from the U.S. Food and Drug Administration (FDA), and the data is only available for NDA

applications of approved drugs. We then assign the ATC category for each drug application, according to each drug’s main ingredient

and the WHO database. We can therefore compute the decline in approval time for the U.S. applications that were received after 2015

relative to the applications that were received before 2014, for each ATC category.
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D.2 The Impact on IND Applications: Event-study Estimates

Table D.2: The Impact of Decline in Approval Time on the Number of IND Applications

# IND Apps # IND Apps (Incumbents) # IND Apps (entrants)

(1) (2) (3) (4) (5) (6)

Poisson Poisson Poisson Poisson Poisson Poisson

β2011 -.25 -.21 -.47∗ -.41∗ .00 .00

(.24) (.19) (.28) (.23) (.) (.)

β2012 .59 .42 .26 .20 .00 .00

(.50) (.29) (.42) (.30) (.) (.)

β2013 .08 .07 -.02 -.02 .00 .00

(.22) (.18) (.21) (.17) (.) (.)

β2015 .20 -.01 .01 -.13 .00 .00

(.26) (.27) (.26) (.25) (.) (.)

β2016 .23 .02 .28 .15 .46 .46

(.29) (.26) (.28) (.20) (.78) (.78)

β2017 .63∗∗ .44∗∗ .53∗∗ .41∗∗ .61 .61

(.28) (.19) (.26) (.18) (.71) (.71)

β2018 .61∗∗ .42∗∗ .49∗ .37∗ .98 .98

(.29) (.19) (.30) (.21) (.65) (.65)

β2019 .68∗∗ .50∗∗ .53 .41∗ 1.21∗ 1.21∗

(.34) (.21) (.34) (.22) (.65) (.65)

β2020 .72∗∗ .54∗∗∗ .55 .44∗∗ 1.61∗∗∗ 1.61∗∗∗

(.33) (.19) (.35) (.22) (.62) (.62)

β2021 .80∗∗∗ .63∗∗∗ .66∗∗ .56∗∗∗ 1.43∗∗ 1.43∗∗

(.30) (.20) (.33) (.21) (.61) (.61)

Controls No Yes No Yes No Yes

Obs 1,199 1,199 1,199 1,199 413 413

R-squared 0.86 0.87 0.82 0.83 0.91 0.91

Mean 8.31 8.31 5.20 5.20 2.23 2.23

Notes: We always include firm and year fixed effects in all regressions. Controls include the Herfindahl-Hirschman index, the share

of targets already shown in the U.S., and the share of IND applications in total ATC-level applications in the 2012–2014 period, for

each ATC category. As the controls are time-invariant and absorbed by ATC-level fixed effects, we interact the control variables with the

dummy indicating the post-reform period. Standard errors are clustered at the ATC category level. ∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01.
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D.3 Robustness Checks for Section 5.2

Alternative Measure of the Reform’s Strength. As discussed in Section 4, drug-level

approval time change is affected by pre-reform backlogs. Thus, we also use the drug-level

pre-reform share of backlogs as an alternative measure for the strength of the reform, as

the reform was driven by the need to tackle the backlogs. We thus perform equation (2)

but substitute the independent variable declinej with the share of backlogs in the pre-

reform period. Appendix Figure D.3 shows that after 2015, an increase in the pre-reform

share of backlogs had a significantly positive impact on innovation levels, which aligns

with our evidence that drugs with a large share of backlogs in the pre-reform period could

experience a more substantial decline in approval time afterward (Appendix Figure C.4).

Other Reforms During the Same Period. During the same period, another major reform

was initiated in the Chinese healthcare system, involving the negotiation of the public

health insurance drug reimbursement list. Prior to this reform, the most recent national

drug formulary dated back to 2009 and had not been updated. In November 2015, the

National Health Commission officially started the national drug price negotiation pilot.

Consequently, the 4th version of the national public health insurance drug formulary was

released in 2017.27 Since then, the formulary has been annually updated. This negotiation

primarily targets newly marketed innovative drugs, aiming to enhance patient affordability

and stimulate innovation within the pharmaceutical industry.

We considered the possibility that drug categories with a substantial reduction in ap-

proval times might also receive more extensive coverage under public insurance during

the formulary adjustment. Such a scenario would necessitate a reevaluation of our pa-

rameters. To address potential confounding factors from the demand side, we analyzed

the relationship between the decrease in approval times and the number of drugs covered

by insurance at the ATC level, as presented in Appendix Table D.3. The coverage is cat-

egorized into two tiers, with Tier 1 offering more comprehensive benefits. Consequently,
27Ministry of Human Resources and Social Security Issues the 2017 Edition of the Drug Formulary https:

//www.gov.cn/xinwen/2017-02/23/content_5170392.htm
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Figure D.3: Impact of Pre-reform Share of Backlogs on IND Applications

Notes: This graph shows the βt parameters estimated by equation (2), using the share of backlogs in the pre-reform period as the
measure of the reform, with the corresponding 90% confidence intervals. Controls include the Herfindahl-Hirschman index, the share
of targets already shown in the U.S., and the share of IND applications in total ATC-level applications in the 2012–2014 period, for
each ATC category. As the controls are time-invariant and absorbed by ATC-level fixed effects, we interact the control variables with the
dummy indicating the post-reform period. The standard errors are clustered at the ATC category level.

we separately investigated the correlation between our primary explanatory variable and

the number of drugs in each tier. Our findings do not reveal any significant correlations,

suggesting that the regulatory reforms impacting the supply side are independent of the

insurance policy changes targeting the demand side.
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Table D.3: Correlation between Decline in Approval Time and Insurance Coverage

(1) (2) (3)

#Drugs .87
(2.50)

#Drugs in Tier 1 23.42
(19.57)

#Drugs in Tier2 .59
(2.74)

Constant 171.56∗∗∗ 160.26∗∗∗ 175.35∗∗∗

(37.14) (28.95) (37.42)

N 102 102 102

Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

D.4 Foreign Investment in Firm Entry

(a) Equity by Foreign Investors (b) Sources of Foreign Equity

Figure D.4: Foreign Equity of Newly Established Firms
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D.5 The Impact on the Number of New Firms

Figure D.5: Impact of Decline in Approval Time on New Firms

Notes: This graph shows the βt parameters estimated by equation (2). New firms barely had innovations before 2015: few firms

appeared to apply for IND before being formally established. Thus, for regressions regarding new firms, we set β2015 = 0, and

therefore βt in other years corresponds to changes in βt relative to year 2015. Controls include the Herfindahl-Hirschman index, the

share of targets already shown in the U.S., and the share of IND applications in total ATC-level applications in the 2012-2014 period,

for each ATC category. As the controls are time-invariant and absorbed by ATC-level fixed effects, we interact the control variables with

the dummy indicating the post-reform period. To avoid ambiguity, we do not display the confidence intervals on this graph.
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E Additional Results for Section 6

E.1 Innovativeness of Phase I Clinical Trials in China and the U.S.

Figure E.1: Innovativeness of Phase I Clinical Trials in China and the U.S.

Notes: For China, we gather information from the Chinese Clinical Trial Database provided by China’s Bureau of Medicine and the WTO

Database. For the U.S., we rely on the PharmaGO Global Clinical Trial Database. This database is sourced from the U.S. ClinicalTrials.gov

database and encompasses clinical trials with public or private funding from over 220 countries.
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E.2 Innovativeness of Drug Applications by New and Incumbent Firms

Figure E.2: Innovativeness of Drug Applications by New and Incumbent Firms

Notes: This graph depicts the proportion of drugs adopting targets that have already been demonstrated in U.S. registration for both

incumbents and new firms. To account for drug composition across ATC categories, we implement the following procedure: (1) we

calculate the share of new firms’ drugs adopting targets already demonstrated in U.S. registration for each ATC category per year; and

(2) we then utilize the number of incumbents’ IND applications across ATC categories in the corresponding year as weights to compute

the reweighted aggregate share of drugs adopting targets already demonstrated in the U.S. registration for new firms. The reweighted

share is illustrated by the blue dash line.

63



E.3 Taragets in the EU Drugs

Figure E.3: Impact of Changes in Approval Time on Drug Applications’ Innovativeness
through Changes in Composition

E.4 New Targets Also Explored by the U.S. in Clinical Trials

Figure E.4: Impact of Changes in Approval Time on Drug Applications’ Innovativeness
through Changes in Composition
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