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Summary In this survey we discuss the recent causal panel data literature. This
recent literature has focused on credibly estimating causal effects of binary interven-
tions in settings with longitudinal data, emphasizing practical advice for empirical
researchers. It pays particular attention to heterogeneity in the causal effects, often in
situations where few units are treated and with particular structures on the assign-
ment pattern. The literature has extended earlier work on difference-in-differences or
two-way-fixed-effect estimators. It has more generally incorporated factor models or
interactive fixed effects. It has also developed novel methods using synthetic control
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Todo list

1. INTRODUCTION

In recent years, there has been a fast-growing and exciting body of research on new meth-
ods for estimating causal effects in panel or longitudinal data settings where we observe
outcomes for a number of units repeatedly over time. This literature has taken some of
the elements of the earlier panel data literature and combined them with insights from
the causal inference literature. It has largely focused on the case with binary treatments,
although the insights obtained in this body of work extend beyond that setting. Much
of this work focuses on settings where traditionally Difference-In-Differences (DID) and
Two-Way-Fixed-Effect (TWFE) methods (we largely use the two terms interchangeably,
primarily using the TWFE acronym) have been popular among empirical researchers.
In this survey, we review some of the methodological research and make connections to
various other parts of the panel data literature.

Although we intend to make this survey of interest to empirical researchers, it is
not primarily a guide with recommendations for specific cases. Rather, we intend to
lay out our views on this literature in order that practitioners can decide which of the
methods they wish to use in particular settings. In line with most of the literature, we

1This paper originated in the Sargan lecture presented online at the 2021 Royal Economic Society
Meetings. We are grateful for the comments by Manuel Arellano, Apoorva Lal, Ganghua Mei, the editor,
Jaap Abbring and two reviewers. We thank the Office of Naval Research for support under grant numbers
N00014-17-1-2131 and N00014-19-1-2468 and Amazon for a gift.
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see the models and assumptions used in this literature not as either holding exactly
or not holding, but as approximations that may be useful in particular settings. For
example, the TWFE setup has been criticized as making assumptions that are too strong.
At some level, that is true almost by definition: parallel trends are unlikely to hold
over any extended period of time for a large number of units. Similarly, assuming the
absence of dynamic effects is unlikely to ever hold exactly, and treatment effects are
surely heterogeneous. Nevertheless, in many cases, fixed-effect models with time-invariant
constant treatment effects may be effective baseline models. Understanding when those
models are adequate, when relaxing them is likely to improve estimation, and what useful
generalizations to relax their underlying assumptions are, is what we intend to do in this
survey.

Ultimately, and this is perhaps our strongest statement on the relative merits of the
various methods, we recommend against the current routine use of the standard TWFE
estimator or related estimators. These methods have been very popular in empirical work
and, in fact, continue to increase in popularity. See Goldsmith-Pinkham (2024) for a dis-
cussion tracing trends in their usage in recent years. Nevertheless, there are now many
methods that generalize this estimator that we view as more attractive in practice. Some
of these are based on strictly more general models for the potential outcomes (in partic-
ular factor models). Other use local versions of the TWFE estimator through weights on
the cross-sectional and/or time dimension (building on the synthetic control literature).
Both approaches often use regularization to ensure good performance by avoiding over-
fitting even when the simpler methods (e.g., based on the standard TWFE model) are
adequate. Although both approaches, more general outcome models and weights, are in
our view superior to the standard TWFE methods, their relative performance varies by
context and the relative merits are the subject of ongoing research. We therefore offer
no specific recommendations for any one particular method. In addition, the more gen-
eral methods still share some of the unattractive features of the TWFE estimator. In
particular they often pay little explicit attention to dynamics and time-series structure
in potential outcomes. In addition many of the methods pay limited attention to the
assignment mechanism. Developing methods that address these concerns is a promising
and practically relevant area of future research.

A second recommendation concerns some of the specific issues raised in the recent
TWFE literature. This literature has generated valuable new insights into the compli-
cations raised by the presence of heterogeneity in treatment effects. These insights have
improved our understanding of the challenges with panel data. The new estimators de-
veloped in this literature do not, however, in our view, fully address all the practical
challenges. On the positive side, they allow for much more heterogeneity in treatment
effects than the earlier panel literature. On the negative side, like the earlier TWFE
literature, the proposed estimators rely on unrealistically strong additivity and linearity
assumptions on the potential outcomes, limiting the credibility of the estimates of coun-
terfactuals. In our view there needs to be more balance in the richness of the models for
the control potential outcomes and the richness of the models for the treatment effects.
Putting no structure on the heterogeneity of the treatment effects is at odds with the
typical goal of predicting the effect of implementations of the new policies to other lo-
cations, populations, or time periods rather than simply evaluating those policies on the
currently exposed populations.

The paper is organized as follows. After the introduction, we first discuss in Section 2
some of the earlier econometric panel data literature. This serves both to set the stage
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for the framing of the questions of the current literature as well as to clarify differences
in emphasis between the traditional and new literatures. We also point out that some
important conceptual issues that had been raised in the earlier literature have received
less attention recently and that some are even in danger of being entirely ignored in the
current literature.

Next, in Section 3, we discuss three ways of organizing the panel data literature. First
we consider a classification by types of data available, e.g., proper panel data, repeated
cross-sections, or row and column exchangeable data. (The latter refers to a matrix of data
where both rows and columns are exchangeable, similar to panel data without any time-
series structure.) Second we discuss an organization by shapes of the data frame, e.g.,
many units or many periods. Finally we discuss a classification based on the assignment
for the causal variable of interest, e.g., block assignment, single treated unit, single treated
period, or staggered adoption. We find these classifications useful because they matter for
the relevance of various methods that have been proposed and they help organize them.
Although the earlier econometric panel data literature also stressed the importance of the
relative magnitude of the time and unit dimension as we do in our second classification,
the realization that the structure of the assignment process is important is a more recent
insight. Many of the recent papers focus on particular parts of the general space of panel
data inferential problems. For example, the vast literature assuming unconfoundedness
in panel data settings has focused largely on the setting with a large number of units
and relatively few time periods, and a subset of the units treated in the last period. In
contrast, the Synthetic Control (SC) literature has primarily focused on the setting where
the cross-section and time series dimension are comparable in size, and where one or few
units are treated from some period onwards. The recent DID/TWFE literature has paid
particular attention to the setting with staggered adoption patterns in the assignment.
The singular focus of some of these literatures has helped in advancing them more rapidly,
but occasionally, insights from related settings have been overlooked.

In Section 4 we introduce some of the notation and estimands. We use, as in much of
the causal inference literature, the potential outcome notation that makes explicit the
causal nature of the questions.

In Section 5 we introduce the standard DID/TWFE setup as a stepping stone to the
discussion of the recent developments in causal panel data literature. We see four main
threads in the new causal panel literature, which we discuss in Sections 6 through 10.

First, in Section 6, we discuss the staggered adoption case. Much of the earlier TWFE
literature concentrated on the case with a common adoption date, In contrast, one strand
of the recent literature has focused on the setup where different groups adopt treatments
at different points in time. In this staggered adoption case, recent research has high-
lighted some specific concerns with the standard TWFE estimator. In particular, in cases
with general treatment effect heterogeneity, the implicit negative weights on the building
blocks of the TWFE estimator have been argued to be unattractive, and alternatives
have been proposed. We argue that these concerns have perhaps been exaggerated.

Second, as discussed in Section 7, the recent literature has generalized the popular
TWFE structure to factor models. An important part of this literature is the SC ap-
proach developed in a series of influential papers by Alberto Abadie and coauthors
(Abadie and Gardeazabal, 2003; Abadie, Diamond, and Hainmueller, 2010). Although
this literature shares key features with the TWFE literature, it has largely developed
separately, ignoring some of the gains that can arise from combining the insights from
each of them.
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Table 1: Acronyms

DID Difference In Differences
TWFE Two Way Fixed Effect
SC Synthetic Control
GRCS Grouped Repeated Cross Section
RCED Row Column Exchangeable Data
SDID Synthetic Difference in Differences
CIC Changes in Changes
NNMC Nuclear Norm Matrix Completion

In the third strand, we consider in Section 8 a different class of generalizations of the
TWFE setup, allowing for nonlinear models.

Fourth, as discussed in Section 9, the modern causal panel literature has sometimes
taken a design-based approach to inference where the focus is on uncertainty arising from
the assignment mechanism rather than a model-based or sampling-based perspective that
is common in the earlier literature.

In Section 10, we discuss open questions in the causal panel data literature which we
view as exciting avenues for future research.

Finally, in Section 11, we discuss some recommendations for empirical practice.
There are some excellent recent discussions of the new DID/TWFE and causal panel

data literature that are complementary to this survey. They differ in their focus and in the
perspectives of the authors and complement ours in various ways. Some of these surveys
(De Chaisemartin and d’Haultfoeuille, 2023; Roth et al., 2023) focus more narrowly
on the DID/TWFE setting with heterogeneous treatment effects. They do not stress
the connections with the synthetic control methods and factor models that we view as
an important feature of the current panel data literature. In contrast, Abadie (2021)
focuses primarily on synthetic control methods. In the current survey, we stress deeper
linkages between these ideas and the TWFE literature as well as the potential benefits
of combining them. Recent surveys in the political science literature, Liu et al. (2022);
Xu (2023), more in line with the current survey, also discuss the connections between
synthetic control, unconfoundedness, and TWFE approaches.

In this discussion, we use a number of acronyms. For reference, we list those that we
use regularly in Table 1.

2. THE ECONOMETRICS PANEL DATA LITERATURE

Although the new panel literature ostensibly focuses on different estimands and settings
and emphasizes different concerns about internal and external validity, many of the meth-
ods are closely related to those discussed in the earlier econometric panel data literature.
Here we discuss at a high level some of the key insights from the earlier literature, in so
far they relate to the current literature, and some marked differences between the two.
We come back to some of the specific areas of overlap in later sections. We do not at-
tempt to review the earlier econometric literature, partly because that is a vast literature
in itself, but mainly because there are many excellent surveys and textbooks, including
Arellano and Honoré (2001); Arellano (2003); Baltagi (2008); Hsiao (2022); Wooldridge
(2010); Arellano and Bonhomme (2011b).
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First of all, by the econometric panel data literature, we mean primarily the literature
from the 1980s to the early 2000s, as for example, reviewed in the surveys and textbooks,
including Chamberlain (1982, 1984); Hsiao (2022); Arellano (2003); Arellano and Honoré
(2001); Baltagi (2008); Wooldridge (2010); Arellano and Bonhomme (2011b). This lit-
erature was initially motivated by the increased availability of various large public-use
longitudinal data sets starting in the 1960s. These data sets included the Panel Study of
Income Dynamics, the National Longitudinal Survey of Youth, which are proper panels
where individuals are followed over fairly long periods of time, and the Current Pop-
ulation Survey, which, although primarily a repeated cross-section data set, has some
short-term panel features, and at the state level can be viewed as a longer panel data set.
These data sets vary substantially in the length of the time series component, motivating
different methods that could account for such data configurations.

The primary focus of the econometric literature has been on estimating invariant or
structural parameters in the sense of Goldberger (1991). Part of the literature analyzed
fully parametric models, but more often semiparametric settings were considered. The
parameters of interest could be causal in the modern sense, but the term itself would
rarely be used explicitly. A major concern in this literature has been the presence of
time-invariant unit-specific components. The literature distinguished between two types
of such components: first, the so-called fixed effects and random effects. Fixed effects
were conditioned on in the analyses and were modeled as unrestricted in their correla-
tion with other variables. Random effects were treated as stochastic and often assumed
to be uncorrelated with observed covariates (though not always, see the correlated ran-
dom effects discussion in Chamberlain, 1984).1 See for general discussions Hsiao (2022);
Bell and Jones (2015). This distinction between fixed and random effects was often used
as an organizing principle for the panel data literature, in combination with the re-
liance on fixed T versus large T asymptotic approximations. A substantial literature was
devoted to identification and inference results in settings with fixed effects leading to var-
ious forms of what Neyman and Scott (1948) labeled the incidental parameter problem.
Especially when the fixed effects entered in non-additive and non-linear ways in short
(with asymptotic approximations based on fixed length) panels, with limited dependent
or discrete outcomes, this led to challenging identification problems e.g., Chamberlain
(1980); Honoré (1992); Magnac (2004); Bonhomme (2012). In cases where identification
in fixed length settings was not feasible, the literature introduced various methods for
bias-correction (see Arellano and Hahn (2007) for a survey) or developed bounds analy-
ses (e.g., Honoré and Tamer (2006)). More recently, these bias-reduction ideas have been
extended to nonlinear two-way models (e.g., Fernández-Val and Weidner, 2016, 2018).

The earlier econometric panel data literature paid close attention to the dynamics in
the outcome process, arising from substantive questions such as the estimation of struc-
tural models for production functions and dynamic labor supply. Motivated by these
questions, this literature distinguished between state dependence and unobserved het-
erogeneity (e.g., Heckman (1981); Chamberlain (1984)) and various dynamic forms of
exogeneity (e.g., weak, strong and strict exogeneity, and predeterminedness, see Engle
et al. (1983); Arellano and Bond (1991)). These issues have not received as much attention
yet in the current literature. The earlier literature also studied models that combined
the presence of unit-fixed effects with lagged dependent variables, leading to concerns

1The terms fixed effects and random effects are not ideal and have led to some confusion, but they are
by now so widely used that we use them as well.
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about biases of least squares estimators in short panels (the so-called Nickell bias, Nick-
ell (1981)) and the use of instrumental variable approaches (Nickell, 1981; Arellano and
Bond, 1991; Blundell and Bond, 1998; Hahn and Kuersteiner, 2002; Alvarez and Arel-
lano, 2003). This literature had a huge impact on empirical work in social sciences, but
the recent literature has not connected much to these issues.

In contrast, an important theme in the current literature that was not discussed as
much in the earlier literature concerns the presence of general heterogeneity in causal
effects, both over time and across units, associated with observed as well as unobserved
characteristics. The recognition of the importance of heterogeneity has led to findings
that previously popular estimators are sensitive to the presence of such heterogeneity
and to the development of more robust alternatives. These results are related to a subset
of the econometric panel data literature, e.g., Chamberlain (1992); Arellano and Bon-
homme (2011a); Graham and Powell (2012); Chernozhukov et al. (2013), which modeled
heterogeneity in a way that is more in line with the current literature. We discuss this
connection in detail in Section 6.

3. SETUP AND DATA CONFIGURATIONS

In this section, we consider three classifications of the literature. The first is based on
different types of data. The second, in terms of the relative size of the cross-section
and time-series dimensions, is familiar from the earlier literature. The third, in terms of
the assignment mechanism, is original to the current literature. In the earlier literature,
there was an additional classification that made a distinction that depended on the
heterogeneity between cross-section units being modeled as fixed effects or random effects,
e.g., Chamberlain (1984). This distinction plays less of a role in the current literature,
although it is relevant for the design-based literature we discuss in Section 9. All three
classifications are helpful in understanding which specific methods may be useful and
what type of asymptotic approximations for inference are credible. In addition, they allow
us to place the individual papers, which often focus on particular settings, in context.

To put the following discussions into context, it is also helpful to remember that most
of the recent literature has focused on the average causal effect of some intervention
on the outcomes for the treated units during the periods they were treated. We do so
here too, but one should keep in mind that one might be interested in an average effect
beyond the study sample, or in an effect over time periods beyond the sample period.
Later, we are more precise about the exact estimands we focus on and, in particular, how
some of the assumptions, such as the absence of dynamic effects, affect both the choice
of estimand and its interpretation.

3.1. Data Types

Although we focus in this paper mostly on the proper panel data setting where we observe
outcomes for a number of units over a number of time periods, we also consider some
other settings with observations at different points in time that we collectively refer to
as panel data. Here we want to clarify the distinction and be precise about the notation.

3.1.1. Panel Data. In the proper panel data case we have observations on N units,
indexed by i = 1, . . . , N , over T periods, indexed by t = 1, . . . , T . The outcome of
interest is denoted by Yit, and the treatment is denoted by Wit, both doubly indexed by



Causal Panel Data Models 7

the unit and time indices. These observations may themselves consist of averages over
more basic units as in the grouped repeated cross-section case from Section 3.1.2. We
collect the outcomes and treatment assignments into two N × T matrices:

Y =


Y11 Y12 Y13 . . . Y1T
Y21 Y22 Y23 . . . Y2T
Y31 Y32 Y33 . . . Y3T

...
...

...
. . .

...
YN1 YN2 YN3 . . . YNT

 , W =


W11 W12 W13 . . . W1T

W21 W22 W23 . . . W2T

W31 W32 W33 . . . W3T

...
...

...
. . .

...
WN1 WN2 WN3 . . . WNT

 ,

with the rows corresponding to units and the columns corresponding to time periods.
We may also observe other exogenous variables, denoted by Xit or Xi, depending on

whether they vary over time or only by unit. Typically, we focus on a balanced panel
where for all units i = 1, . . . , N we observe outcomes for all t = 1, . . . , T periods. In
practice, concerns can arise from the panel being unbalanced either because we observe
units for different lengths of time or because data is missing for some of them. We ignore
both complications in the current discussion.

Classic examples of this proper panel setting include Ashenfelter (1978) with informa-
tion on earnings for over 90,000 individuals for 11 years, and Abowd and Card (1989)
with information on wages for 1,448 individuals also for 11 years. Another classic example
is Card and Krueger (1994) with data for two periods and 399 fast-food restaurants.

3.1.2. Grouped Repeated Cross-Section Data. In a Grouped Repeated Cross-Section
(GRCS) data setting, we have observations on N units. Each unit is observed only once,
in period Ti for unit i, with the time period indexed by i to account for the fact that
different units may be observed at different points in time. Typically Ti takes on only a
few values (the repeated cross-sections) relative to the number of units, e.g., often just
two or three, with many units sharing the same value for Ti. For some of the methods
this is formally not required. The outcome and treatment received for unit i are denoted
by Yi and Wi respectively, both indexed just by the unit index i.2 The set of units is
partitioned into two or more groups, with the group that unit i belongs to denoted by
Gi ∈ G = {1, 2, . . . , G}.

Define the average outcome for each group/time-period pair:

Y gt ≡
N∑
i=1

1Gi=g,Ti=tYi

/
N∑
i=1

1Gi=g,Ti=t,

and similar for W gt. If we view the G×T group averages Y gt, instead of the original Yi,
as the unit of observation, this grouped repeated cross-section setting is just like a panel
as in Section 3.1.1, immediately allowing for methods that require repeated observations
on the same unit. This was pointed out in Deaton (1985); Wooldridge (2010). Many
methods in the GRCS literature do not use the data beyond the group/time averages,
and so the formal distinction between the grouped repeated cross-section and proper
panel case becomes moot. However, in practice, empirical applications with grouped
repeated cross-section data have typically many fewer groups than proper panel data

2Some empirical studies continue to use the panel notation that includes two indices for the outcomes
and treatments in the repeated cross-section case, but that is confusing because Yit and Yit′ do not refer
to the same unit i in the repeated cross-section case.
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have units, sometimes as few as two or three, limiting the scope for high-dimensional
parametric models and raising concerns about the applicability of large-N asymptotics.

In a seminal application of DID estimation with repeated cross-section data, with two
groups and two periods, Meyer et al. (1995), the units are individuals getting injured
on the job, and we observe individuals getting injured at most once. The time periods
correspond to the year the individuals are injured, with data available for two years.
Similarly, in Eissa and Liebman (1996) the units are different taxpayers in two different
years, with the number of groups again equal to two. The case with more than two groups
is studied in Bertrand et al. (2004), and in countless other studies, often with the groups
corresponding to states, and the treatment regulations implemented at the state level.

3.1.3. Row and Column Exchangeable Data One data type that has not received as
much attention as either panel or repeated cross-section data corresponds to what we refer
to as row-column exchangeable data (RCED), (Aldous (1981); Lynch (1984)). Like proper
panel data, these data are doubly indexed, with outcomes denoted by Yij , i = 1, . . . , N ,
j = 1, . . . , J . The difference with panel data is that there is no ordering for the second
index (time in the proper panel case). An example of such a data type is supermarket
shopping data, where we observe expenditures on item j for shopper i, or data from a
rideshare company, where we observe outcomes for trips involving customer i and driver
j, or a customer/product setting for an online retailer (Abadie et al., 2024). Although
this is not a particularly common data configuration, it is useful to contrast it explicitly
with proper panel and cross-section data. Proper panel data differ in two aspects from
cross-section data: the double indexing and the time ordering: the RCED setting is in-
between the cross-section and proper panel case, with the double indexing but no time
ordering.

In this case, where the second index is not time, it is natural to model both units
i = 1, . . . , N and j = 1, . . . , J as exchangeable, whereas with proper panel data, the
exchangeability of the time periods is typically implausible. It is interesting to note
that many, but not all, methods ostensibly developed for use with panel data are also
applicable in this RCED setting. For example, TFWE methods, factor models, and many
SC estimators, all discussed in more detail below, can be used with such data. The fact
that those methods can be used in the RCED setting directly means that such estimators
do not place any value on knowledge of the time series ordering of the data. If ex ante
one believes such information is valuable, one may wish to use methods that exploit it.

A related but even more general data type involves RCED with repeated observations.
An example of such a data frame is a panel of matched employer-employee data (e.g.,
Abowd et al., 1999; Card et al., 2022). See Bonhomme (2020) for a recent survey of the
relevant methods.

3.2. Shapes of Data Frames

Our second classification of the panel data literature is organized by the shape of the
data frame. This is not an exact classification, and which category a particular data
set fits, and which methods are appropriate, in part depends on the magnitude of the
cross- section and time-series correlations and not just on the magnitude of N and T .
Nevertheless, it is useful to reflect on the relative magnitude of the cross-section and
time-series dimensions as it has implications for the properties of statistical methods
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for the analysis of such data. In particular, it often motivates the choice of asymptotic
approximations based on large N and fixed T , or large N and large T .

3.2.1. Thin Data Frames: Many Units, Few Time Periods (N � T ) Much of the
traditional panel data case considers the setting where the number of cross-section units
is large relative to the number of time periods:

Ythin =
(N � T )



Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33
Y41 Y42 Y43
Y51 Y52 Y53
Y61 Y62 Y63

...
...

...
YN1 YN2 YN3


This is a common setting when the units are individuals and it is challenging or expen-
sive to get repeated observations for many periods for the same individual. The PSID
and NLS panel data fit this setting, with often thousands of units. In this case infer-
ential methods often rely on asymptotic approximations based on large N for fixed T .
Incidental parameter problems of the type considered by Neyman and Scott (1948) are
particularly relevant (see Lancaster (2000) for a modern discussion). Specifically, if there
are unit-specific parameters, e.g., fixed effects, it is not possible to estimate those param-
eters consistently. This does not necessarily imply that one cannot estimate the target
parameters consistently, and the traditional literature developed many procedures that
allowed for the elimination of these fixed effects, even if they enter nonlinearly, e.g.,
Honoré (1992); Chamberlain (2010); Bonhomme (2012). However, the fact that the time
series dimension is small or modest does mean that random effect assumptions are poten-
tially powerful because they place a stochastic structure on the individual components
so that these individual components can be integrated out.

3.2.2. Fat Data Frames: Few Units, Many Time Periods (N � T ) The second setting
is one where the number of time periods is large relative to the number of cross-section
units:

Yfat =
(N � T )


Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 . . . Y1T
Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28 . . . Y2T
Y31 Y32 Y33 Y34 Y35 Y36 Y37 Y38 . . . Y3T
Y41 Y42 Y43 Y44 Y45 Y46 Y47 Y48 . . . Y4T


This setting is more common when the cross-section units are aggregates, e.g., states or
countries, for which we have observations over many time periods, say output measures
for quarters, or unemployment rates per month.

This setting is closely related to the traditional time series literature, but the insights
from that literature have not always been fully appreciated in the modern causal panel
literature. There are some exceptions that take more of a time-series approach to this
type of panel data, e.g., Brodersen et al. (2015); Ben-Michael et al. (2023). The work on
inference using conformal methods is also in this spirit, e.g., Chernozhukov et al. (2021).
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3.2.3. Square Data Frames: Comparable Number of Units and Time Periods: (N ≈ T )
In the third case the number of time periods and cross-section units is roughly compa-
rable:

Ysquare =
(N ≈ T )


Y11 Y12 Y13 . . . Y1T
Y21 Y22 Y23 . . . Y2T
Y31 Y32 Y33 . . . Y3T

...
...

...
. . .

...
YN1 YN2 YN3 . . . YNT


A common example is that where the units are states and the time periods are years or
quarters. We may have observations on 50 states for 30 years or for 80 quarters. This is
a particularly challenging case and, at the same time, increasingly common in practice.
Many empirical studies using DID/TWFE, SC, or related estimators fit into this setting.

Whether in this case asymptotic approximations based on large N and fixed T , or
large N and large T , or neither, are appropriate is not always obvious. Simply looking
at the magnitudes of the time series and cross-section dimension itself is not sufficient
to make that determination because the appropriate approximations also depend on the
magnitude of cross-section and time-series correlations. There is an important lesson in
this regard in the weak instrument literature. In the influential Angrist-Krueger analysis
of the returns to schooling Angrist and Krueger (1991), the authors report results based
on over 300,000 units and 180 instruments. Because of the relative magnitude of the
number of units and instruments, one might have expected that asymptotic approxima-
tions based on a fixed number of instruments and an increasing number of units would
be appropriate. Nevertheless, it turned out that the Bekker asymptotic approximation,
developed by Bekker (1994) and based on letting the number of instruments increase pro-
portionally to the number of units, is substantially more accurate because of the weak
correlation between the instruments and the endogenous regressor (years of education in
the Angrist-Krueger study).

The earlier econometric panel data literature discusses the tradeoffs between various
asymptotic approximations for the analysis of dynamic linear models, e.g., see Hahn
and Kuersteiner (2002); Alvarez and Arellano (2003). In dynamic models the fixed effect
estimator is inconsistent in short panels. Alternative estimators have been proposed using
lagged outcomes as instruments (Arellano and Bond (1991); Blundell and Bond (1998)).
As the panel becomes longer, the number of instruments grows. However, the more distant
lags are often only weakly correlated with the endogenous regressors, leading to many
weak instruments problems. One important aspect of the panel data analysis is that the
fixed effect estimator is consistent in the large-T limit but not in the fixed T setting.

3.3. Assignment Mechanisms

The third classification for panel data methods we consider is based on features of the
assignment process for the treatment. As in the classification based on the relative mag-
nitudes of the components of the data frame, features of the assignment process are
important for determining which statistical methods and which asymptotic approxima-
tions are reasonable. This classification is not present in the earlier panel data literature
but features prominently in the current literature. This reflects the more explicit focus
on causal effects in general in the econometric literature of the last three decades. It
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should be noted that this classifications is not so much based on assumptions such as
endogeneity or exogeneity, as it is about facts, regarding the assignment process.

One feature that is common to many applications of the methods is that the fraction
treated unit/time-period pairs is small. This has two implications. First, the focus is
typically on the average effect on the treated unit/time-period pairs. This may be for
substantive reasons but it is also motivated by the fact that if the fraction of treated pairs
is small, the precision of estimates for the overall average effect will be considerably lower
than the precision of estimates for the average effect for the treated pairs. Second, building
statistical models for the treated outcomes will be of low value, as such models will not
increase the precision of standard estimators. Thus, important modeling questions are
about the control outcomes.

3.3.1. The General Case In the most general case the treatment may vary both across
units and over time, with units switching in and out of the treatment group:

Wgen =
(general)



1 1 0 0 . . . 1
0 0 1 0 . . . 0
1 0 1 1 . . . 0
1 0 0 1 . . . 0
...

...
...

...
. . .

...
1 0 1 0 . . . 0


(3.1)

With this type of data, we can use variation of the treatment within units and varia-
tion of the treatment within time periods to identify causal effects. Especially in settings
without dynamic effects, the presence of both types of variation may improve the credi-
bility of estimators for causal effects. This setting is particularly relevant for the RCED
configurations but it is less common in proper panel data settings. Some examples in-
clude marketing settings with the units corresponding to products and the treatment
corresponding to promotions or discounts.

In this setting, assumptions about the absence or presence of dynamic treatment effects
are particularly important. In applications where dynamic treatment effects are present,
many commonly used methods assuming their absence lead to difficult-to-interpret re-
sults.

3.3.2. Single Treated Period One important special case arises when a substantial num-
ber of units is treated, but these units are only treated in the last period.

Wlast =
(last period)



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 1
0 0 0 0 . . . 1
...

...
...

...
. . .

...
0 0 0 0 . . . 1


.

In settings where the number of time periods is relatively small, this case is often analyzed
as a cross-section problem. The lagged outcomes are simply used as exogenous covariates
or pre-treatment variables that should be adjusted for in treatment-control comparisons
based on an unconfoundedness assumption (Rosenbaum and Rubin, 1983). A classic ex-
ample in the economics literature is the Lalonde-Dehejia-Wabha data originally collected
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in LaLonde (1986) with the data set now commonly used constructed and analyzed in De-
hejia and Wahba (1999). This data set has served as a valuable playground for assessing
new methodological advances in the literature on unconfoundedness. In that case, there
are three periods of outcome data (earnings) but only one post-treatment outcome. The
original study LaLonde (1986) reported results for a variety of models, including some
two-way-fixed-effect regressions. Much of the subsequent literature since Dehejia and
Wahba (1999, 2002) has focused more narrowly on methods relying on unconfounded-
ness, sometimes in combination with functional form assumptions. See Imbens and Xu
(2024) for a recent discussion. Asymptotics are typically, and appropriately so, based on
large N and fixed T .

Given that the treatment is observed only in the last period, the presence of dynamic
effects is not testable, and dynamics do not really matter in the sense that their presence
only leads to a minor change in the interpretation of the estimand, typically the average
effect for the treated units and time periods. Because of the shortness of the panel, these
are obviously short-term effects, with little evidence regarding the long-term impacts of
the interventions.

3.3.3. Single Treated Unit Another key setting is that with a single treated unit, treated
in multiple periods.

Wsingle =
(single unit)



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 1 1 . . . 1


.

This setting is prominent in the original applications of the synthetic control literature:
Abadie and Gardeazabal (2003); Abadie et al. (2010); Abadie (2021). This literature has
exploded in terms of applications and theoretical work in the last twenty years. Here the
number of time periods is typically too small to rely credibly on large T asymptotics,
creating challenges for inference that are not entirely resolved. Large N asymptotics
creates its owm, different, challenges, stemming from the lack of multiple treated units.

3.3.4. Single Treated Unit and Single Treated Period An extreme case is that with only
a single unit ever treated, and this unit only treated in a single period, typically the last
period:

Wone =
(single unit/period)



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


.

This is a challenging setting for inference: we cannot rely on large sample approximations
for the average outcomes for the treated unit/periods because there is only a single treated
unit/period pair. Instead of focusing on population parameters it is natural here to focus
on the effect for the single treated/time-period pair and construct prediction intervals.
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Because it is a special case of both the single treated period and the single treated unit
case it is conceptually important for comparing estimation methods popular for those
settings.

3.3.5. Block Assignment Another important case in practice is that with block assign-
ment, where a subset of units is treated every period after a common starting date:

Wblock =
(block)



0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
0 0 0 1 . . . 1 1
...

...
...

...
. . .

...
...

0 0 0 1 . . . 1 1


This assignment matrix is the basis of the simulations reported in Bertrand et al. (2004)
and Arkhangelsky et al. (2021). In this case there is typically a sufficient number of
treated unit/time-period pairs to allow for reasonable approximations to be based on
that number being large.

Here the presence of dynamic effects changes the interpretation of the average effect
for the treated. The average effect for the treated now becomes an average over short
and medium term effects during different periods. There is limited ability to separate
out heterogeneity across calendar time and dynamic effects because, in any given time
period, there are only treated units with an equal number of treated periods in their
past.

3.3.6. Staggered Adoption The recent DID/TWFE literature has focused on the stag-
gered adoption case where units remain in the treatment group once they adopt the
treatment, but they vary in the time at which they adopt the treatment. Some may
adopt early, while others adopt later:

Wstag =
(staggered adoption)



0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 1
0 0 0 1 . . . 1 1
...

...
...

...
. . .

...
...

0 1 1 1 . . . 1 1


This case is also referred to as the absorbing treatment setting. Clearly, this setting
leads to much richer information about the possible presence of dynamic effects, with the
ability, under some assumptions, to separate dynamic effects from heterogeneity across
calendar time.

A second issue is whether, for units adopting in period t, the best controls are units
adopting in period t + 1, or later, or possibly the units never adopting the treatment
(Callaway and Sant’Anna, 2020).
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3.3.7. Event Study Designs A closely related design is the event-study design, where
units are exposed to the treatment in at most one period.

Wevent =
(event study)



0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 1 . . . 0 0


In this setting there are often dynamic effects of the treatment past the time of initial
treatment. If these effects are identical to the initial effect, the analysis can end up being
very similar to that of staggered adoption designs. Canonical applications include some
in finance, e.g., Fama et al. (1969).

3.3.8. Clustered Assignment Finally, in many applications, units are grouped together
in clusters, with units within the same clusters always assigned to the same treatment.
The example below has C clusters, with a subset of the clusters assigned to the treatment
from a common period onwards in a block assignment structure.

Wcluster =
(cluster/block)



cluster
↓

0 0 0 0 . . . 0 0 1
0 0 0 0 . . . 0 0 1
0 0 0 0 . . . 0 0 1
0 0 0 0 . . . 0 0 2
0 0 0 0 . . . 0 0 2
0 0 0 1 . . . 1 1 3
...

...
...

...
. . .

...
...

...
0 0 0 1 . . . 1 1 C
0 0 0 1 . . . 1 1 C


The clustering creates particular complications for inference, whether it is in the block
assignment case, or other settings, in particular because often there are relatively few
clusters. It also creates challenges for estimation if there are cluster components to the
outcomes.

4. POTENTIAL OUTCOMES, GENERAL ASSUMPTIONS, AND ESTIMANDS

In this section we collect in a single section the notation that allows us to cover various
parts of the literature. We focus on the proper panel data case with N units and T
periods. We use the potential outcome notation (see Rubin, 1974; Imbens and Rubin,
2015). We also discuss basic estimands that have been the focus of this literature and
some of the maintained assumptions.

Let w denote the full T -component column vector of treatment assignments,

w ≡ (w1, . . . , wT )>,

and Wi the vector of treatment values for unit i. Let wt the t-component column vector
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of treatment assignments up to time t:

wt ≡ (w1, . . . , wt)
>,

so that wT = w, and similar for Wt
i. In general we can index the potential outcomes for

unit i in period t by the full T -component vector of assignments w:

Yit(w).

Even this notation already makes a key assumption, the Stable Unit Treatment Value
Assumption, or SUTVA (see Rubin, 1978; Imbens and Rubin, 2015). SUTVA requires
that there is no interference or spillovers between units. This is a strong assumption, and
in many applications, it may be violated. There has been little attention paid to models
allowing for such interference in the recent causal panel data literature to date, although
there is extensive literature on interference in cross-section settings, e.g., in clustering
settings (Hudgens and Halloran, 2008; Manski, 1993), in network settings (Leung, 2023;
Auerbach, 2022), and in the general case (Aronow and Samii, 2017).

In applications where the spillover effects are only present within certain groups, e.g.,
clusters, or economic markets, and the treatment is assigned at the same level, one can
justify SUTVA by aggregating the individual data to the cluster or group level. In this
case, the potential outcome introduced above would correspond to the aggregated data.
This is directly connected to our discussion of Grouped Repeated Cross Section (GRCS)
data in Section 3.1.2. Of course, the aggregation changes the interpretation of the causal
effects, which would now incorporate both direct and spillover effects.

Without further restrictions, our setup describes for each unit and each time period
2T potential outcomes, as a function of multi-valued treatment w. As a result we can
define for every period t unit-level treatment effects for every pair of assignment vectors
w and w′:

τ
w,w′

it ≡ Yit(w′)− Yit(w), (4.2)

with the corresponding population average effect defined as

τ
w,w′

t ≡ E [Yit(w
′)− Yit(w)] .

These unit-level and average causal effects are the basic building blocks of many of the
estimands considered in the literature. Note that we implicitly assume there is a large
population over which we can take the expectation. Part of the literature has focused on
finite sample issues using a design perspective. See Section 9 for more discussion on this.

If we are only interested in average causal effects of the form τ
w,w′

t , then we have,
in essence, a problem similar to the cross-sectional version of the problem of estimating
average causal effects. One approach would be to analyze such problems using standard
methods for multi-valued treatments under unconfoundedness, e.g., Imbens (2000). Here
this would require comparing outcomes in period t for units with treatment vectors w
and w′.

If we have completely random assignment, all average causal efects of the type τ
w,w′

t

are identified, given sufficient variation in the treatment paths. That also means that we
can identify in this setting dynamic treatment effects. For example, in the two-period
case

τ
(1,1),(0,1)
2 ,

is the average effect in the second period of being exposed to the sequence (1, 1) rather
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than the sequence (0, 1), so it measures the dynamic effect of a sequence of treatments on
period 2 outcomes, being exposed to the treatment in both periods versus being exposed
only in the second period.

A key challenge is that there are many, 2T−1× (2T − 1) to be precise, distinct average

effects of the form τ
w,w′

t . Even with T = 2 there are already six different average causal
effects, and with T larger, this number quickly increases. This means that in practice we
need to limit or focus on summary measures of all these causal effects, e.g., averages over
effects at different times. Typically we also put additional structure on these causal effects
in the form of cross-temporal restrictions on the potential outcomes Yit(w). That enables
us to give comparisons of outcomes from different time periods a causal interpretation.
See Chamberlain (1984) for a discussion of this in the case of linear models. Note that

without additional restrictions, all the average treatment effects τ
w,w′

t are just-identified,
so any additional assumptions will typically imply testable restrictions.

The first restriction that we consider is the commonly made no-anticipation assump-
tion, e.g., Athey and Imbens (2021); Callaway and Sant’Anna (2020); Sun and Abraham
(2020). This requires that potential outcomes do not depend on future treatments.

Assumption 4.1. (No Anticipation) The potential outcomes satisfy

Yit(w) = Yit(w
′),

for all i, and for all combinations of t, w and w′ such that wt = w′t.

With experimental data, and sufficient variation in treatment paths, this assumption
is testable. To do so we can compare outcomes in period t for units with the same
treatment path up to and including t, but whose treatment paths diverge in the future,
that is, after period t. The average difference between such average outcomes should be
zero in expectation under the no-anticipation assumption.

This substantive assumption is appealing in situations where units are not active
decision-makers but rather passive recipients of the treatment. In such cases, the no-
anticipation assumption can, in principle, be guaranteed by design. If random units are
assigned treatment each period, or, in the staggered adoption case, if the adoption date is
randomly assigned, potential outcomes cannot vary with the future random assignment.
Of course, in observational studies, the assumption need not hold. In many applications,
treatments are state-level regulations that are known to be coming prior to the time they
formally take effect. One remedy for this problem is to allow for limited anticipation,
assuming the treatment can be anticipated for a fixed number of periods, as in Callaway
and Sant’Anna (2020). Algorithmically, this amounts to redefining w by shifting it by
the fixed number of periods.

At the same time, there are numerous economic applications where units are involved
in an active decision-making process. Units can make decisions about variables for which
w is an important input, and beliefs about future treatment paths would affect those de-
cisions. For example, current taxes and beliefs about future tax changes can be important
determinants of current consumption. In this case, researchers first need to address a key
conceptual issue. The premise of the potential outcome framework is that it describes the
exhaustive set of counterfactual outcomes that can be realized in an experiment where
the researcher controls the assignment of w. However, if the units are making decisions
in environments with uncertainty, then they can change their behavior in response to
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different distributions of the future treatment paths, in line with Lucas’s critique (Lu-
cas Jr, 1976). As a result, one cannot express potential outcomes as functions of w only
but also needs to view them as functions of the experimental design itself, i.e., the known
or anticipated distribution of w.

One solution to this problem is to define potential outcomes for a given randomized
experimental design. Assumption 4.1 then becomes innocuous because the beliefs about
the future treatment paths are incorporated in the definition of the potential outcomes,
and the actual values are by construction unknown. This does, however, change the inter-
pretation of the causal effects. This issue is well understood in macroeconomic literature,
which emphasizes the distinction between the effect of a surprise deviation from a given
policy rule versus the effect of a permanent change in the policy rule itself. While the for-
mer quantity can be learned using various quasi-experimental strategies (see Nakamura
and Steinsson (2018) for a discussion), the identification of the latter typically relies on
an economic model (see, however, McKay and Wolf, 2023). Causal panel data literature
could benefit from explicitly incorporating these ideas. See Abbring and Heckman (2007)
for a related discussion and additional references.

The situation becomes considerably more complicated in observational studies, where
one cannot directly control the information about the future treatment paths available to
the units. Nevertheless, in some applications, the researchers directly observe the arrival
of such information. In this case, to make the Assumption 4.1 plausible, one needs to
guarantee that different units face the same informational environment. Failure to do so
is akin to comparing outcomes across units participating in experiments with different
designs. Abbring and Van den Berg (2003) and Abbring and Heckman (2007) show
that many economic applications have data that would allow researchers to measure the
information inflow and discuss how to adjust for the differences across units in this inflow
to ensure that Assumption 4.1 holds.

The no anticipation assumption reduces the total number of potential treatment effects
from 2T−1× (2T −1) to (

∑T
t=1 2t−1)(

∑T
t=1 2t−1). The basic building blocks, unit-period

specific treatment effects, are now of the type

τ
wt,wt′

it ≡ Yit(wt′)− Yit(wt), (4.3)

with the potential outcomes for period t indexed by treatments up to period t only.
This current structure still allows us to distinguish between static treatment effects,

i.e., τ
(wt−1,0),(wt−1,1)
it , which measures the response of current outcome to the current

treatment, holding the past ones fixed, and dynamic ones, i.e., τ
(wt−1,wt),(w′t−1,wt)
it , which

does the opposite. In the earlier panel data literature, the dynamic effects were explicitly
modeled by putting a particular structure on them, but in principle, one can identify them
without imposing additional restrictions on the potential outcomes given assumptions
on the assignment mechanism, such as random assignment, e.g., Bojinov et al. (2021).
There is also a large literature in biostatistics on dynamic models that is relevant for
these problems, e.g., Robins et al. (2000); Murphy (2003).

A stronger assumption is that the potential outcomes only depend on the contempo-
raneous assignment, ruling out dynamic effects of any type.

Assumption 4.2. (No Dynamic / Carry-over Effects) The potential outcomes
satisfy

Yit(w) = Yit(w
′),
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for all i and for all combinations of t, w and w′ such that wit = w′it.

This is not a design assumption that can be guaranteed by randomization in a suitably
designed experiment. It restricts the treatment effects and, thus, the potential outcomes
for the post-treatment periods. Like the no-anticipation assumption it has testable re-
strictions given the random assignment of the treatment and sufficient variation in the
treatment paths. Note that it does not restrict the time path of the potential outcomes
in the absence of any treatment, Yit(0), where 0 is the vector with all elements equal
to zero. In fact, these outcomes can exhibit arbitrary correlations in the sequence of
potential outcomes Yit(w) for any given w.

If we are willing to make the no-dynamic effects assumption, we can write the potential
outcomes, with some abuse of notation, as Yit(0) and Yit(1) with a scalar argument. In
this case, the total number of treatment effects for each unit is greatly reduced to T (one
per period), and we can simplify them to

τit ≡ Yit(1)− Yit(0), (4.4)

where τit has no superscripts because there are only two possible arguments of the po-
tential outcomes, w ∈ {0, 1}.

So far, we have discussed assumptions on potential outcomes themselves. A conceptu-
ally different assumption is that of absorbing treatments, that is where the assignment
mechanism corresponds to staggered adoption.

Assumption 4.3. (Staggered Adoption)

Wit ≥Wit−1 ∀t = 2, . . . , T.

Defining the adoption date Ai as the date of the first treatment, Ai ≡ T + 1−
∑T
t=1Wit

for units that are treated in the sample, and Ai ≡ ∞ for never-treated ones. In the
staggered adoption case, we can write the potential outcomes, again with some abuse
of notation, in terms of the adoption date, Yit(a), for a = 1, . . . , T,∞, and the realized
outcome as Yit = Yit(Ai).

There are two cases that are sometimes viewed as staggered adoption designs but that
are different in substance although not always in terms of analyses. First, there may
be interventions that are adopted and remain in place. States or other administrative
units adopt new regulations at different times. For example, states adopted speed limits
or minimum drinking ages at different times (Ashenfelter and Greenstone, 2004), and
counties adopted enhanced 911 policies at different times (Athey and Stern, 2002). These
staggered adoption designs were introduced in Section 3.3.6. Second, there may be one-
time interventions that have a long-term or even permanent impact. We refer to such
settings, introduced in Section 3.3.7 as event studies. In that case, the post-intervention
period effects would be dynamic effects.

Given staggered adoption but absent the no-anticipation and no-dynamics assump-
tions, we can write the building blocks as

τa,a
′

it ≡ Yit(a′)− Yit(a), (4.5)

with the corresponding population average

τa,a
′

t ≡ E [Yit(a
′)− Yit(a)] .
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We also introduce notation for the average for subpopulations defined by the adoption
date:

τa,a
′

t|a′′ ≡ E [Yit(a
′)− Yit(a)|Ai = a′′] .

Compared to previously defined estimands, this one explicitly depends on the details of
the assignment process, which determines which units adopt the treatment and when
they do so. This estimand is conceptually similar to the average effect on the treated
in cross-sectional settings, with the important difference that selection now operates
over two dimensions: units and periods. As in the cross-sectional setting, this matters
for interpretation in observational studies, in which the researcher does not control the
assignment process.

In the two-period case where all units are exposed to the control treatment in the initial
treatment, the estimand τ0,1t|1 , the average effect of the treatment in the second period for

those who adopt in the second period is very much like the average effect for the treated,
In settings with more variation in the adoption date there are many such average effects,
depending on when the units adopted, and which period we are measuring the effect in.

5. TWO-WAY-FIXED-EFFECT AND DIFFERENCE-IN-DIFFERENCES
ESTIMATORS

In this section we give a brief introduction to conventional Difference-In-Differences (DID)
or Two-Way-Fixed-Effect (TWFE) estimation. The discussion is framed in terms of the
potential outcomes framework from the modern causal inference literature, but otherwise
it is largely standard and following textbook discussions. For other recent surveys of this
literature see Chiu et al. (2023); De Chaisemartin and d’Haultfoeuille (2023); Roth et al.
(2023).

5.1. The Two-Way-Fixed-Effect Characterization

We start with the Two-Way-Fixed-Effect (TWFE) specification in a proper panel setting
with no anticipation and no dynamics and parallel trends or constant treatment effects.
Traditionally this specification often motivates the DID estimator.

Assumption 5.1. (The Two-Way-Fixed-Effect Model) The control outcome Yit(0)
satisfies a two-way-fixed-effect structure:

Yit(0) = αi + βt + εit. (5.6)

The unobserved component εit is (mean-)independent of the treatment assignment Wit.

Assumption 5.2. (Parallel Trends Assumption) The potential outcomes satisfy

Yit(1) = Yit(0) + τ ∀(i, t).

The combination of these two assumptions leads to a model for the realized outcome,
defined as Yit ≡WitYit(1) + (1−Wit)Yit(0),

Yit = αi + βt + τWit + εit. (5.7)
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We can estimate the parameters of this model by least squares:

(τ̂TWFE, α̂, β̂) = arg min
τ,α,β

N∑
i=1

T∑
t=1

(Yit − αi − βt − τWit)
2
. (5.8)

Here we need to impose one restriction on the αi or βt (e.g., fixing one of the αi or one of
the βt equal to zero) to avoid perfect collinearity of the regressors, but this normalization
does not affect the value for the estimator of the parameter of interest, τ.

Under a block assignment structure we have Wit = 1 only for a subset of the units
(the “treatment group” with i ∈ I, where the cardinality for the set I is N tr, and
N co ≡ N −N tr), and those units are treated only during periods t with t > T0 (“post-
treatment”). Defining the averages in the four groups as

Y
tr,post ≡

∑
i∈I
∑
t>T0

Yit

N tr(T − T0)
, Y

tr,pre ≡
∑
i∈I
∑
t≤T0

Yit

N trT0
,

Y
co,post ≡

∑
i/∈I
∑
t>T0

Yit

N co(T − T0)
, and Y

co,pre ≡
∑
i/∈I
∑
t≤T0

Yit

N coT0
,

we can write the estimator for the treatment effect as

τ̂TWFE = τ̂DID =
(
Y

tr,post − Y tr,pre
)
−
(
Y

co,post − Y co,pre
)
,

in the familiar double difference form that motivated the DID terminology.
It is convenient to use the TWFE characterization based on least squares estimation of

the regression function in (5.7) because this characterization also applies in settings where
the estimator does not have the double difference form, including the staggered adoption
setting and even more general assignment processes. For this reason we also generally
use the TWFE rather than the DID terminology in the remainder of this discussion.

5.2. The Difference-In-Differences Estimator in the Grouped Repeated Cross-Section
Setting

Here we study the grouped repeated cross-section case where we observe each physical
unit only once, obviously implying that we observe different units at different points in
time. We continue to focus on the case with the blocked assignment. To reflect this, our
notation now only has a single index for the unit, i = 1, . . . , N . Let Gi ∈ G = {1, . . . , G}
denote the cluster or group unit i belongs to, and Ti ∈ {1, . . . , T} the time period unit i
is observed in. The set of clusters G is partitioned into two groups, a control group GC
and a treatment group GT , with cardinality GC and GT respectively.

Units belonging to a group Gi with Gi ∈ GC are not exposed to the treatment, ir-
respective of the time the units are observed. Units with Gi ∈ GT are exposed to the
treatment if and only if they are observed after the treatment date T0, so that the treat-
ment indicator is Wi = 1Gi∈GT ,Ti>T0

. Let Di = 1Gi∈GT be the treatment group indicator
that indicates whether unit i is in one of the treated groups, irrespective of whether this
unit is observed in the post-treatment period, so that Wi = Di1Ti>T0

.
To define the DID estimator we first average outcomes and treatments for all units

within a cluster/time period and construct Y gt and W gt. By assumption that the treat-
ment within group and time period pairs is constant, the cluster/time-period average
treatment W gt is binary if the original treatment is. The DID estimator is then the
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double difference

τ̂DID =
1

GT (T − T0)

∑
g∈GT ,t>T0

Y gt −
1

GC(T − T0)

∑
g∈GC ,t>T0

Y gt

− 1

GTT0

∑
g∈GT ,t≤T0

Y gt +
1

GCT0

∑
g∈GC ,t≤T0

Y gt

Alternatively we can use the TWFE specification at the group level (it cannot be used
at the unit level because we do not observe any unit multiple times). At the group level
we do have a proper panel setup:

Y gt(0) = αg + βt + εgt, Y gt(1) = Y gt(0) + τ, (5.9)

similar to that in (5.6). The potential outcomes Y gt(0) and Y gt(1) should here be in-
terpreted as the average of the potential outcomes if all units in a group/time-period
pair are exposed to the control (active) treatment. The group-level TWFE estimator is
identical to the DID estimator.

5.3. Inference

To conduct inference about τ̂DID or τ̂TWFE we need to be explicit about the sampling
and assignment schemes. In situations where the assignment process is known, such as
in randomized experiments, we can do design-based or randomization-based inference.
We discuss this approach in detail in Section 9. Outside of such situations, researchers
typically rely on sampling-based inference, which we outline below.

In the proper panel setting, one often assumes that all units are randomly sampled
from a large population and thus exchangeable. In this case, inference about τ̂TWFE

reduces to joint inference about four means with i.i.d. observations. This approach was
used by Card and Krueger (1994) to quantify the uncertainty about the estimated effect
of the minimum wage.

With GRCS data and the cardinality of the control and treatment groups GC and GT
larger than one, the situation is different. Now in addition to accounting for variation
within a group at the unit level, one can allow for non-vanishing errors at the group level,
the εgt in the model in Equation (5.9). This cannot be done in the two-group/two-period
case as in Card and Krueger (1994) because one cannot estimate the between-group
variation in the presence of group fixed effects, and mechanically the estimated residuals
ε̂gt are all equal to zero. The clustering approach allowing for non-vanishing εgt was
advocated in Liang and Zeger (1986); Arellano (1987); Bertrand et al. (2004); Donald
and Lang (2007); Ibragimov and Müller (2016), and is routinely used in situations where
the number of groups or periods exceeds two. See Abadie et al. (2023) for a recent
discussion in a design setting.

In addition to accounting for the presence of non-vanishing εgt, since Bertrand et al.
(2004) inference for TWFE estimators has typically taken into account the correlation
in outcomes over time within units in applications with more than two periods. This
implies that if one estimates the average treatment effect as in (5.8), it is not appropriate
to use the robust, Eicker-Huber-White standard errors. Instead, one can use clustered
standard errors (Liang and Zeger, 1986; Arellano, 1987), based on clustering observations
by units. The appropriate standard errors can also be approximated by bootstrapping
all observations for each unit. Hansen (2007) discusses a more general hierarchical setup.
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5.4. The Parallel Trend Assumption

The fundamental justification for the TWFE estimator, in one form or another, is based
on a parallel trend assumption. This states that, in one form or another, the units who
are treated would have followed, in the absence of the treatment, a path that is parallel
to the path followed by the control units, in an average sense. The substantive content
and the exact form of the assumption depend on the specific setup, the proper panel
case versus the grouped repeated cross-section case, whether one takes a model-based or
design-based perspective, the number of groups, and the averaging that is performed.

Let us first consider the proper panel case, with block assignment and Di the indicator
for the event that unit i will be exposed to the treatment in the post-treatment period
(after T0). Then, the assumption is that the expected difference in control outcomes in
any period for units who later are exposed to the treatment and units who are always in
the control group is constant:

Assumption 5.3. For all t, t′,

E[Yit(0)|Di = 1]− E[Yit(0)|Di = 0] = E[Yit′(0)|Di = 1]− E[Yit′(0)|Di = 0]. (5.10)

Equivalently we can formulate this assumption in terms of changes over time. In that
formulation, the assumption is that the expected change in control outcomes is the same
for those who will eventually be exposed to the treatment and those who will not:

E[Yit(0)− Yit′(0)|Di = 1] = E[Yit(0)− Yit′(0)|Di = 0] ∀t, t′.

To motivate this assumption for the panel case an alternative is to postulate a TWFE
model for the control outcomes, as in (5.7), with the additional assumption that the treat-
ment assignment Di is independent of the vector of residuals εit, t = 1, . . . , T conditional
on fixed effects:

Di ⊥⊥ (εi1, . . . , εiT )|αi,
as in, for example, Arellano (2003). From the point of view of the modern causal inference
literature, the parallel trend assumption is somewhat non-standard because it combines
restrictions on the potential outcomes with restrictions on the assignment mechanism
(see Ghanem et al. (2022); Roth and Sant’Anna (2023) for additional discussion).

Consider next the Grouped Repeated Cross-Section (GRCS) case. Suppose in the pop-
ulation all groups are large (infinitely large) in each period, and we have random samples
from these populations for each period. Then the expectations are well defined as popula-
tion averages. In that case, the parallel trends assumption can be formulated as requiring
that the difference in expected control outcomes between two groups remains constant
over time:

Assumption 5.4. For all pairs of groups g, g′ and for all pairs of time periods t, t′, the
average difference between the groups remains the same over time, irrespective of their
treatment status:

E
[
Ygt(0)

∣∣∣Di = 1
]
−E
[
Yg′t(0)

∣∣∣Di = 0
]

= E
[
Ygt′(0)

∣∣∣Di = 1
]
−E
[
Yg′t′(0)

∣∣∣Di = 0
]
. (5.11)

Again an alternative formulation is as the assumption that the expected change between
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periods t′ and t is the same for all groups:

E
[
Ygt(0)

∣∣∣Di = 1
]
− E

[
Ygt′(0)

∣∣∣Di = 1
]

= E
[
Yg′t(0)

∣∣∣Di = 0
]
− E

[
Yg′t′(0)

∣∣∣Di = 0
]
,

for all g, g′, t, t′. If we were to observe Ygt(0) for all groups and time periods, then the
presence of two groups and two time periods would be sufficient for this assumption
to have testable implications. However, with at least one of the four cells defined by
the group and time period exposed to the treatment, there are no testable restrictions
implied by this assumption in the two-group / two-period case, as in for example in the
New-Jersey/Pennsylvania minimum wage study in Card and Krueger (1994).

Because we can view the panel case as a two-group setting, with the defined in terms of
the indicator Di ∈ {0, 1}, there are only testable restrictions from this assumption when
we have more than two periods. With more than two groups, just as in the case with more
than two periods, there are testable restrictions implied by the parallel trend assumption.
In an early paper Ashenfelter and Card (1985) argued against using the TWFE model
for evaluation of training programs based on the failure of parallel trends detected in
the data. See Roth, Sant’Anna, Bilinski, and Poe (2023); Rambachan and Roth (2023);
Jakiela (2021) for a discussion and bounds based on limits on the deviations from parallel
trends. Bridging some of the gap between design and sampling-based approaches Roth
and Sant’Anna (2023) show how parallel trends can be implied by random assignment
of treatment. They also discuss the sensitivity to transformations of the parallel trend
assumption. We return to this in Section 8, where we discuss nonlinear methods.

5.5. Pre-treatment Variables

Often researchers observe time-invariant characteristics of the units in addition to the
time path of the outcome. Such characteristics cannot be incorporated simply by adding
them to the TWFE specification in (5.7) because they would be perfectly colinear with the
individual components αi. Nevertheless, the pre-treatment variables can be important by
facilitating a decomposition of these effects into explained components as in (Plümper and
Troeger (2007)), or by allowing the relaxation of some of the key assumptions. Specifically,
one can assume that the parallel trend and constant treatment effect assumptions hold
only within subpopulations defined by these characteristics. Two specific proposals have
been made for the applications with time-invariant covariates.

5.5.1. Abadie (2005) In an early paper Abadie (2005) proposes flexible ways of ad-
justing for time-invariant covariates while continuing with a conditional version of the
parallel trends assumption. His solution was based on re-weighting the differences in
outcomes by the propensity score to ensure balance.

5.5.2. Sant’Anna and Zhao (2020) Sant’Anna and Zhao (2020) use recent advances in
the cross-section causal inference literature to adjust for time-invariant covariates in a
doubly robust way by combining inverse-propensity score weighting with outcome model-
ing. In cross-sectional settings, such doubly robust methods have been found to be more
attractive than either outcome modeling or inverse-propensity-score weighting on their
own. They do maintain the parallel trends assumption conditional on covariates.

With finite T , strictly exogenous time-varying covariates Xit can be converted to time-
invariant Xi ≡ (Xi1, . . . , XiT ). Applied researchers rarely follow this practice and instead
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rely on linear specifications with contemporaneous covariates. For a discussion of the
problems with the conventional specifications and a potential solution, see Caetano et al.
(2022).

5.6. Unconfoundedness

One key distinction between the repeated cross-section and proper panel case (and also
the grouped-repeated-cross-section case after aggregration) is that in the case with proper
panel data there is a natural alternative to the TWFE estimator. This is most easily il-
lustrated in the case with blocked assignment, where the treatment group is only exposed
to the treatment in the last period. Viewing the pre-treatment outcomes as covariates,
one could assume unconfoundedness:

Di ⊥⊥
(
YiT (0), YiT (1)

) ∣∣∣ Yi1, . . . , YiT−1. (5.12)

If one is willing to make this assumption, the larger literature on the estimation of treat-
ment effects under unconfoundedness applies. See Imbens (2004) for a survey. Modern
methods include doubly robust methods that combine modeling outcomes with propen-
sity score weighting. See, for example, Bang and Robins (2005); Chernozhukov et al.
(2017); Athey et al. (2018).

Consider the case with two periods, T = 2. Because unconfoundedness is equivalent to
assuming

Di ⊥⊥
(
Yi2(0)− Yi1, Yi2(1)− Yi1

) ∣∣∣ Yi1,
it follows that the issue in the choice between TWFE and unconfoundedness is really
whether one should adjust for differences between treated and control units in the lagged
outcome, Yi1. The TWFE approach implies one should not and that doing so may intro-
duce biases that are otherwise absent, and the unconfoundedness approach implies one
should adjust for these differences.

The unconfoundedness assumption and TWFE model validate different non-nested
comparisons and applied researchers often do not carefully and explicitly motivate their
choices in this regard. The key difference between the two models is the underlying
selection mechanism. The TWFE model assumes that the treated units differ from the
control ones in unobserved characteristics that are potentially correlated with a persistent
component of the outcomes – the fixed effect αi. The unconfoundedness assumption, on
the other hand, is satisfied when the selection is based solely on past rather than future
outcomes (and potentially other observed pre-treatment variables).

The methodological literature does not provide a lot of guidance on the choice between
these two strategies, with exceptions in Angrist and Pischke (2008); Xu (2023). It is
somewhat segmented, with some subliteratures focusing solely on fixed effect strategies
and some solely focusing on unconfoundedness approaches. For example, there is a large
literature re-analyzing the data originally studied in LaLonde (1986) (see also Dehejia
and Wahba (1999); Imbens and Xu (2024)) where the researcher has observations on two
lagged outcomes. Although LaLonde reports estimates from various TWFE models in
addition to estimates that adjust for initial period outcomes, in the subsequent literature
the focus is almost entirely on methods assuming unconfoundedness. In contrast, most of
the literature reanalyzing the data originally studied in Card and Krueger (1994) where
the researcher observes outcomes for a single pre-treatment period has focused on TWFE
and related methods with relatively little attention paid to unconfoundedness approaches.
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It is not clear what motivates the differences in emphasis in these two applications. In
an early study, Ashenfelter and Card (1985) carefully point out the limitations of the
TWFE model and, in particular, its inability to capture temporary declines in earnings
prior to enrollment in labor market programs, the so-called Ashenfelter dip. In our view
the unconfoundedness approach is perhaps under-utilized in the empirical panel data
literature with the case for the fixed effect specification overstated.

There are two important cases where the unconfoundedness and TWFE approaches
lead to similar results. Again, this is most easily seen in the two-period case. The results
from the two approaches are similar if the averages of the initial period outcomes are
similar for the two groups or if the average in the control group did not change much
over time. One way to think about this case is to view it as one where there are multiple
potential control groups. One can use the contemporaneous control group, or one can use
the treatment group in the first period. If either the control group does not change over
time, or if the treatment group and the control group do not differ in the first period, then
the two potential control groups deliver the same results. See for more on this multiple
control group perspective Rosenbaum (2002).

When the control group changes over time, and in addition the control group and treat-
ment group differ in the initial period, then the TWFE and unconfoundedness approaches
give different results. However, the differences can be bounded, albeit under additional
assumptions. Suppose unconfoundedness holds and the distribution of the pretreatment
outcomes in the treatment group stochastically dominates that in the control group.
Then, the TWFE estimator will underestimate the true effect. On the other hand, if
the TWFE model holds, then assuming unconfoundedness and adjusting for the lagged
outcome will overestimate the true effect. See Chapter 5.4 in Angrist and Pischke (2008)
for a derivation in the linear case and Ding and Li (2019) for a nonparametric general-
ization that allows for heterogeneity in treatment effects, i.e., failure of Assumption 5.2.
Imai et al. (2021) takes a middle ground between unconfoundedness assumptions and
TWFE/DID methods by conditioning on lagged outcomes other than the most recent
one, which is differenced out in a TWFE approach.

5.7. Distributional effects

Our discussion in this section has focused on an average effect τ . This is without essential
loss of generality as long as Assumption 5.2 holds, but in practice, researchers do not
expect this assumption to hold exactly. As we discuss in the next section, heterogeneity
in treatment effects does not create problems for the DiD estimator, which continues to
estimate an interpretable average treatment effect. At the same time, when treatment
effects are heterogeneous, researchers can be interested in estimands that capture the dis-
tributional effects of the treatment, and panel data provides the opportunity to estimate
such effects.

In particular, in Bonhomme and Sauder (2011), the authors show how to use deconvo-
lution techniques to identify the full distribution of the treatment effects for the treated
units, as long as the treatment effects and treatment assignment Wit are statistically
independent of the idiosyncratic errors εit introduced in Assumption 5.1. Note that this
restriction does not put any structure on the correlation between the assignment, unit
fixed effects αi, and treatment effects, thus allowing for rich selection patterns, e.g.,
selection on the treatment effects themselves.

In Callaway, Li, and Oka (2018); Callaway and Li (2019), the authors use a different
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strategy and show that as long as the difference in outcomes is not correlated with the
treatment assignment, researchers can identify quantile treatment effects under additional
stability restrictions on the joint distribution of the potential outcomes. Their approach
is connected to the Changes-In-Changes setup in Athey and Imbens (2006), which we
discuss in more detail in Section 8.

6. THE STAGGERED ADOPTION CASE

Although much of the panel literature starts with the TWFE model for control out-
comes (Assumption 5.1) with constant treatments effects (Assumption 5.2), the constant
treatment effect assumption is not important in the setting with block assignment. Main-
taining the TWFE for control outcomes but allowing unrestricted heterogeneity in the
treatment effects Yit(1)−Yit(0), the TWFE estimator (which then has the double differ-
ence form) continues to estimate a well-defined average causal effect, namely the average
treatment effect for the treated in the periods in which they received the treatment,

1∑N
i=1

∑T
t=1Wit

N∑
i=1

T∑
t=1

Wit

(
Yit(1)− Yit(0)

)
.

The interpretation is more complex in settings with dynamic treatment effects, but the
underlying estimand is still well-defined. This robustness to treatment effect heterogeneity
does not extend to settings outside of block assignment.

Part of the new causal panel literature builds on traditional TWFE methods in the
staggered adoption setting, allowing for general heterogeneity in the treatment effects.
The twin goals are understanding what is estimated by TFWE estimators in this setting
that is common in empirical work (see De Chaisemartin and d’Haultfoeuille, 2023 for
evidence on how common this setting is), and proposing modifications that ensure that
a meaningful average causal effect is estimated. We review that literature here. Recall
the staggered adoption setting,

Wstag =
(staggered adoption)



0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 1
0 0 0 1 . . . 1 1
...

...
...

...
. . .

...
...

0 1 1 1 . . . 1 1



(never adopter)
(very late adopter)

(late adopter)
(medium adopter)

...
(early adopter)

Let Ai ≡ T + 1 −
∑T
t=1Wit be the adoption date (the first time unit i is treated if a

unit is ever treated), with the convention that Ai ≡ ∞ for units who never adopt the
treatment, and recall that Na is the number of units with adoption date Ai = a. Define
also the average treatment effect by time and adoption date,

τt|a ≡ E [Yit(1)− Yit(0)|Ai = a] .

The key is that these average treatment effects can vary both by time and by adoption
date. Such heterogeneity was rarely allowed for in the earlier literature, with an early
exception in Chamberlain (1992) and more recently in Arellano and Bonhomme (2011a);
Graham and Powell (2012); Chernozhukov et al. (2013). We discuss the connection be-
tween this literature and the modern one at the end of this section. Note that in this
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setting, we cannot separate the presence of dynamic effects from heterogeneity in the
treatment effects over time and by adoption date.

6.1. Decompositions of the TWFE Estimator

Here we discuss the interpretation of the TWFE estimator τ̂ based on the least squares
regression

min
α,β,τ

N∑
i=1

T∑
t=1

(Yit − αi − βt − τWit)
2
,

in the staggered adoption case. This decomposition is based on the discussion in Goodman-
Bacon (2021). We maintain Assumption 5.1, which implies the TWFE structure for the
control outcomes and the mean-independence between the residuals and the treatment
indicator.

Define for all time-periods t and all adoption dates a the average outcome in period t
for units with adoption date a:

Y t|a ≡
1

Na

∑
i:Ai=a

Yi,t.

Then, for all pairs of time periods t > t′ and pairs of adoption dates a, a′ such that
t′ < a ≤ t (units with adoption date a change treatment between t and t′) and either
a′ ≤ t′ or t < a′ (units with adoption date a′ do not change treatment status between t
and t′, they are either already treated before period t′, or only adopt the treatment after
period t), define the following double difference that is the building block for the TWFE
estimator:

τ̂a,a
′

t,t′ ≡
(
Y t|a − Y t′|a

)
−
(
Y t|a′ − Y t′|a′

)
(6.13)

The interpretation of this double difference plays a key role in the interpretation of the
TWFE estimator τ̂ . The group with adoption date a changes treatment status between
periods t′ and t, so the difference Y t|a − Y t′|a reflects a change in treatment but this
treatment effect is contaminated by the time trend in the control outcome under the
TWFE structure:

E
[
Y t|a − Y t′|a′

]
= βt − βt′ + τt|a.

For the group with an adoption date a′, the difference Y t|a′ − Y t′|a′ does not capture a
change in treatment status. If t < a′, it is a difference in average control outcomes, and

τ̂a,a
′

t,t′ is a standard DID estimand, which under the TWFE model for the control outcomes
has an interpretation as an average treatment effect. Roth, Sant’Anna, Bilinski, and Poe
(2023) refer to this as a “clean” comparison.

However, if a′ < t′, the difference Y t|a′−Y t′|a′ is a difference in average outcomes under
the treatment. In the presence of treatment effect heterogeneity, and in the absence of a
TWFE model for the outcomes under treatment, its expectation can be written as

E
[
Y t|a′ − Y t′|a′

]
= βt − βt′ +

(
τt|a′ − τt′|a′

)
.

Hence, in the case with a′ < t′, the basic building block in (6.13) has expectation

E
[
τ̂a,a

′

t,t′

]
= τt|a −

(
τt|a′ − τt′|a′

)
.
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This is a weighted average of treatment effects, with the weights adding up to one but with
some of the weights negative. This is sometimes referred to as a “forbidden” comparison
(Roth et al. (2023)). If the treatment effects are all identical, this does not, in fact, create
a concern. However, if there is reason to believe there is substantial heterogeneity, as is
likely in practice, researchers may be reluctant to report weighted averages with negative

weights. Note that the concern with the comparisons τ̂a,a
′

t,t′ when a′ < t′ but not when
a′ > t fundamentally treats the treated state and the control state asymmetrically: the
parallel trends assumption is maintained for the control outcomes, but not for the treated
outcomes.

The TWFE estimator τ̂TWFE can be characterized as a linear combination of the
building blocks τ̂a,a

′

t,t′ , including those where the non-changing group has an early adop-
tion date a′ < t′. The coefficients in that linear combination depend on various aspects of
the data, including the number of units Na in each of the corresponding adoption groups,
as discussed in detail in Goodman-Bacon (2021); Baker et al. (2021) for the staggered
adoption case and in Imai and Kim (2021) for the general case. As a result, the TWFE
estimator has two distinct problems. First, without further assumptions, the estimator
does not have an interpretation as an estimate of an average treatment effect with non-
negative weights in general. Second, the combination of weights on the building blocks
chosen by the TWFE regression depends on the data, in particular on the distribution
of units across the adoption groups. As a result, two identical populations in terms of
potential outcome distributions (and thus identical treatment effect distributions) that
have different adoption patterns would lead to different estimated quantities.

We emphasize that the expectations above are computed with respect to the errors
εit holding the adoption dates fixed. This is in line with the fixed-effects tradition in the
panel data literature, which does not restrict the conditional distribution of unit-specific
parameters, such as τit, given the covariates of interest, which in our case corresponds to
Ai. In some situations, e.g., in randomized experiments, the adoption date is unrelated to
the τit and thus the conditional distribution of the τit is equal to its marginal distribution,
and the negative weights issue does not necessarily arise, e.g., Arkhangelsky et al. (2021).
We return to this point and its connection to the random-effects tradition in the panel
data literature in Section 9.

We also note that in other settings, including linear regression, researchers often report
estimates that in the presence of treatment effect heterogeneity represent weighted aver-
ages of treatment effects with some of the weights negative. While that is not necessarily
ideal, there are in the current setup tradeoffs with other assumptions, including the par-
allel trend assumptions, that may force the researcher to make some assumptions that
are, at best, approximations. Similar tradeoffs motivate the use of higher-order kernels
in nonparametric regression, which also lead to estimators with negative weights. We,
therefore, do not view the negative weights of some estimators as necessarily disqual-
ifying. We also find the terminology “clean” and “forbidden” not doing justice to the
potential benefits from such methods.

6.2. Alternative DID-type Estimators for the Staggered Adoption Setting

To deal with the negative weights, researchers have recently, more or less contempora-
neously, proposed a number of different modifications to the TWFE estimator. Here we
discuss four of these modifications that have attracted considerable attention. It should
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be noted that all maintain the TWFE assumption for the control outcomes, and all four
avoid the additional assumption on treatment effect heterogeneity.

6.2.1. Callaway and Sant’Anna (2020) Callaway and Sant’Anna (2020) propose two
ways of dealing with the negative weights. Their first approach takes a group with adop-
tion date a, and compares average outcomes in any post-adoption period t ≥ a (Y t|a for
t ≥ a) to average outcomes for the same group (the group with adoption date a) imme-
diately prior to the adoption (Y a−1|a). It then subtracts the difference in outcomes for
the same two time periods for the single group that never adopts the treatment (a =∞).
Formally, consider, for t ≥ a, the double difference

τ̂a,∞t,a−1 =
(
Y t|a − Y a−1|a

)
−
(
Y t|∞ − Y a−1|∞

)
. (6.14)

A concern is that this particular control group, those who never adopt the treatment,
may not be particularly attractive. One might worry that the very fact that this group
never adopts the treatment is an indication that they are fundamentally different from
the other groups and thus less suitable as a comparison for the trends in the absence of
the treatment. In addition, very few of these never-adopters may exist, especially in long
panels, so the precision of the estimators based on such comparisons may make them
unattractive.

Recognizing this concern Callaway and Sant’Anna (2020) suggest using as an alterna-
tive control group the average of the groups that do adopt the treatment, but restricting
this to those who adopt after period t:

τ̂a,>tt,a−1 ≡
(
Y t|a − Y a−1|a

)
− 1

T − t

T∑
a′=t+1

(
Y t|a′ − Y a−1|a′

)
Given these two estimators, Callaway and Sant’Anna (2020) suggest reporting averages

over periods t and adoption dates a, using a variety of possible weight functions ω(a, t)
that depend on the adoption date and the time period. One of their preferred weight
functions is

ωe(a, t) = 1a+e=t · pr(Ai = a|Ai ≤ T − e),
which leads to an average of treatment effects, over different adoption dates, at exactly
e periods after adoption, for their two control groups,

τ̂CS,I(e) =
T−e∑
a=2

ωe(a, t) · τ̂a,∞t,a−1, or τ̂CS,II(e) =
T−e∑
a=2

ωe(a, t) · τ̂a,>tt,a−1.

We should note that Callaway and Sant’Anna (2020) also allow for the possibility that
the treatment is anticipated, and so that up to some known number of periods prior to
the treatment, the outcome may already be affected by this.

6.2.2. Sun and Abraham (2020) Sun and Abraham (2020) start with one of the same
building blocks as Callaway and Sant’Anna (2020), τ̂a,∞t,a−1 in (6.14). Given double differ-
ences of this type they suggest reporting the average of this:

τ̂SA =
T∑
t=2

t∑
a=2

τ̂a,∞t,a−1 ·
pr(Ai = a|2 ≤ Ai ≤ t) · 12≤a≤t≤T

T − 1
.

This is a simple unweighted average over the periods t after the first period, with the
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weights within a period equal to the fraction of units with an adoption date prior to that,
excluding first period adopters.

An additional issue emphasized by Sun and Abraham (2020) is related to the validation
of the two-way model. In applications, this validation is done by testing for parallel trends
using pre-treatment data. Sun and Abraham (2020) show that common implementation of
such tests using two-way specifications with leads of treatments also include comparisons
with negative weights. As a result, they caution against such procedures.

6.2.3. de Chaisemartin and d’Haultfœuille, 2020 De Chaisemartin and d’Haultfœuille
(2020) deal with the negative weights by focusing on one-period ahead double differences,
with control groups that adopt later (a > t):

τ̂ t,at,t−1 =
(
Y t|t − Y t−1|t

)
−
(
Y t|a − Y t−1|a

)
.

They aggregate these by averaging over all groups that adopt later:

τ̂+,t =
1

T − (a− 1)

∑
a>t

τ̂ t,at,t−1.

Then they average over the time periods, weighted by the fraction of adopters in each
period:

τ̂CH =
T∑
t=2

τ̂+,t · pr(Ai = a|Ai ≥ 2).

One challenge with the De Chaisemartin and d’Haultfœuille (2020) approach is that
by limiting the comparisons to those that are separated by a single period, the standard
errors may be large relative to those for estimators based on more comparisons. Although
the additivity assumption may be more likely to hold over such short horizons, there is
also increased sensitivity to the presence of dynamic effects.

6.2.4. Borusyak, Jaravel, and Spiess, 2021 Borusyak et al. (2021) focus on a model for
the baseline outcomes that is richer than the TWFE model:

Yit(0) = A>itλi +X>it δ + εit

where Ait and Xit are observed covariates, leading to a factor-type structure. This setup
reduced to the TWFE for Ait ≡ 1 and Xit ≡ (1t=1, . . . ,1t=T ). They propose estimating
λi and δ by least squares using only observations for control units only, and later construct
unit-time specific imputations for the unobserved control outcomes for the treated units,
leading to unit/period-specific treatment effect estimates:

τ̂it = Yit −A>it λ̂i +X>it δ̂.

These unit-specific estimators can then be aggregated into an estimator for the target of
interest; let us call the estimator τ̂BJS. Notably, despite each unit-time specific treatment
effect estimator τ̂it being inconsistent, after these objects are averaged, the estimator
is well-behaved. Moreover, Borusyak et al. (2021) show that the resulting estimator is
efficient as long as εit is i.i.d. over i and t, which relies on a version of the Gauss-Markov
theorem for their setup.
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6.2.5. Discussion If one is concerned with the negative weights in the TWFE estimator
in a setting with staggered adoption, how should one choose between these four alter-
natives, τ̂CS,I (or τ̂CS,II), τ̂SA, τ̂CH, and τ̂BJS? The first key issue is the choice of the
estimand. In staggered designs there are many average effects one can estimate, and the
choice of which one to report should be addressed carefully depending on the underlying
research question. Once this choice is made, there are some substantive arguments that
matter for the choice of the estimator: (i) the never-adopter group may well be substan-
tively different from groups that eventually adopt, (ii) for long differences (where we
compare outcomes for time periods far apart) the assumption that differences between
units are additive and stable over time becomes increasingly less plausible, (iii) one-
period differences may be quite different from differences based on comparisons separated
by multiple periods if there are dynamic effects, and (iv) efficiency considerations. These
concerns do not lead to one proposal clearly dominating the others, and in practice,
looking for a single estimator may be the wrong goal.

What should one do instead? One option is to report all of the proposed estimators, as,
for example, Braghieri et al. (2022), who report estimates based on all four approaches
in addition to the standard TWFE estimator. However, that does not do justice to the
fact that the estimators rely on fundamentally different assumptions, in particular about
treatment effect heterogeneity, and focus on different estimands. Moreover, some of these
comparisons may have little power in terms of uncovering heterogeneity of particular
forms. Finally, other than Borusyak et al. (2021), the methods all rely on some version
of parallel trend assumptions. Ultimately, instead of reporting all estimators, we there-

fore recommend exploring directly the presence of systematic variation in the τ̂a,a
′

t,t′ , by
adoption date, a, by the length of the period between before and after, t − t′, and the
time since adoption, t− a.

6.2.6. Relation to earlier literature Here we relate the discussion in this section to some
earlier results in econometric panel data literature. In Chamberlain (1992), Graham and
Powell (2012) and Arellano and Bonhomme (2011a), the authors analyze a class of panel
data models that incorporates the two-way model with heterogeneous treatment effects
as a special case. For example, Arellano and Bonhomme (2011a) postulate the following
model:

Yi = Ziδ + Xiγi + εi, E[εi|γi,Zi,Xi] = 0, (6.15)

where Yi is a T -dimensional vector of outcomes, and Zi and Xi are matrices of regressors
for unit i and εi is a T -dimensional vector of errors. To see that this model includes
those discussed in this section, first define Zi = IT , a T × T identity matrix, and δ =
(β1, . . . , βT )>. Next, define

Xi =


1 Wi,1 0 . . . 0
1 0 Wi,2 . . . 0
. . .
1 0 0 . . . Wi,T


and γi = (αi, τi1, . . . , τiT )>. Equation (6.15) then reduces to the two-way model with
heterogeneous treatment effects:

Yit = αi + βt + τitWit + εit.
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A similar relation applies to the setup described in Graham and Powell (2012). Both of
these models are a particular instance of the setup described in Section 4 of Chamberlain
(1992).

The earlier econometric literature did not focus on the properties of the fixed effects
estimator for a misspecified version of (6.15) but instead was concerned with directly
estimating distributional characteristics of γi, such as E[γi] in Chamberlain (1992); Gra-
ham and Powell (2012), or V[γi] and higher-order moments in Arellano and Bonhomme
(2011a). Because of this, the key assumption in these papers is the presence of units for
which the matrix X>i Xi has a full rank. This assumption is needed to impute the value
of γi:

γ̂i =
(
X>i Xi

)−1
X>i (Yi − Ziδ̂),

where δ̂ is a consistent estimator for the common parameter δ, which is typically available.
Because of the dimension of Xi, this approach is infeasible in the two-way model

with heterogeneous treatment effects, and it is impossible to identify any distributional
characteristics of γi for any subpopulation of units without additional assumptions. At
the same time, often we are not interested in the distributional characteristics of the
entire vector γi but instead focus on components thereof, such as the average treatment
effect in the periods when units are treated. For such estimands the results are more
positive as illustrated by the causal panel data literature. From this perspective, one can
view the strategies discussed above, in particular, the imputation approach of Borusyak
et al. (2021), as an extension of Arellano and Bonhomme (2011a) to settings where only
some components of γi can be estimated.

Chernozhukov et al. (2013) is another example from the econometric panel data lit-
erature that emphasizes the heterogeneity in treatment effects. For cases with binary
regressors, their model has the following structure:3

Yit = βt + λt (αi + τiWit) + εit, E[εit|αi, τi,Wi1, . . . ,WiT ] = 0.

This model allows for more flexible baseline potential outcomes generalizing Assumption
5.1. This aspect connects it to factor models we discuss in Section 7. At the same time,
the heterogeneity in treatment effects is limited and connected to heterogeneity in the
baseline outcomes, unlike in other models discussed in this section. The authors show that
certain average treatment effects can be estimated in this model as long as there is enough
variation in the treatment Wit. These results would typically apply to staggered designs
as long as there are at least two different adoption periods. The authors also discuss the
estimation of quantile effects, which relies on additional distributional restrictions on εit.

6.3. Modeling heterogeneity

In Section 4, we discussed that the distinctive feature of the panel data analysis arises
from restricting the potential outcomes. Assumptions 5.1 and 5.2 do exactly that by
imposing a very special structure on the underlying potential outcomes. Both of these
assumptions are restrictive, and the new causal panel data literature discussed in this

3For binary regressors, this form is equivalent to the nonseparable model described in the paper. The
assumptions the authors make imply additional distributional restrictions on εit, which are not needed
for the estimation of average effects.
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section focused on fully relaxing Assumption 5.2 while maintaining the two-way model
for a particular set of potential outcomes that are effectively used as a control group.

In practice, the choice of the control group depends on application details and, to a
certain degree, is arbitrary. From this perspective, the analysis that fully relaxes As-
sumption 5.2 while keeping Assumption 5.1 is somewhat internally inconsistent. If we
are willing to assume that the baseline potential outcomes follow a simple model, then it
is not clear why we would not be willing to make a similar assumption for the treatment
effects. After all, the differences in the baseline potential outcomes partly arise due to
other unobserved treatments, and if their effect is fully heterogeneous, then the two-way
model is unlikely to hold.

One interpretation of the results in this section is that we do not need to take a stand
on the degree of treatment effect heterogeneity because there exist methods that are fully
robust to it as long as the two-way model holds, allowing us to relax one assumption
at a time. This conclusion, however, is unlikely to hold in more complicated settings,
e.g., see Arellano and Honoré (2001) for a related impossibility result in sequentially
exogenous models. One can still attempt to relax Assumption 5.2 but simultaneously
relax at least part of Assumption 5.1. Which one of those approaches deserves more
attention is fundamentally an empirical question. More broadly, we recommend letting
the data determine the degree of underlying heterogeneity in potential outcomes. In the
next section, we discuss a class of methods that does exactly that.

7. MOVING AWAY FROM THE TWO-WAY FIXED EFFECT STRUCTURE

A key strand of the recent causal panel literature starts with the introduction of the Syn-
thetic Control (SC) method by Alberto Abadie and coauthors, initially in Abadie and
Gardeazabal (2003), with more detailed methodological discussions in Abadie, Diamond,
and Hainmueller (2010) and Abadie et al. (2015). This brought a substantially different
perspective to the questions studied in the TWFE literature. Initially, the SC literature
remained very separate from the TWFE discussions. The SC literature focused on im-
puting missing potential outcomes by creating synthetic versions of the treated units
constructed as convex combinations of control units. This more algorithmic, as opposed
to model-based, approach has inspired much new research, ranging from factor-model ap-
proaches that motivate synthetic-control type algorithms to hybrid approaches that link
synthetic control methods to the earlier TWFE methods and highlight their connections.

In this section we first discuss the basic synthetic control method in Section 7.1. Next,
in Section 7.2, we discuss the direct estimation of factor models. In Section 7.3 we discuss
some hybrid methods that combine synthetic control and TWFE components.

7.1. Synthetic Control Methods

In the original paper, Abadie and Gardeazabal (2003) were interested in estimating the
causal effect on terrorism on the Basque region economy. They constructed a comparison
for the Basque region based on a convex combination of other regions in Spain. The
weights were chosen to ensure that this synthetic Basque region matched the actual
Basque region closely in the years pre-treatment (prior to the terrorism) years.

In a short period of time, this synthetic control method has become a very widely
used approach, popular in empirical work in social sciences, as well as in the popular
press (including The Economist and The Guardian), with many theoretical advances
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in econometrics, statistics, and computer science. The key papers by Abadie, Diamond,
and Hainmueller that discuss the details of the original synthetic control proposals are
Abadie, Diamond, and Hainmueller (2010, 2015). For recent reviews see Abadie (2021)
and Samartsidis et al. (2019).

7.1.1. Estimation Here we use a characterization of the SC method as a least squares
estimator, as discussed in Doudchenko and Imbens (2016), that is slightly different from
that in Abadie, Diamond, and Hainmueller (2010). We focus on the case without covari-
ates. Suppose unit N is the sole treated unit, and is treated in period T only. Define the
weights ω̂ as the regression estimates subject to restrictions:

ω̂ ≡ arg min
ω|ω≥0,

∑
j ωj=1

T−1∑
t=1

YNt − N−1∑
j=1

ωjYjt

2

, (7.16)

and then impute the missing potential outcome as

ŶNT (0) =
N−1∑
j=1

ω̂jYjT .

The nonnegative weights ω̂j define the “synthetic” control that gave the methods its
name. One remarkable finding in the initial papers by Abadie and coauthors is that this
solution is typically sparse, with positive weights ω̂j > 0 typically only for a small sub-
set of the control units. Although this is not always important substantively, it greatly
facilitates the interpretation of the results. For example, in the German reunification ap-
plication in Abadie et al. (2015) where the full set of potential controls consists of sixteen
OECD countries, only five countries, Austria, Japan, The Netherlands, Switzerland, and
the US, have positive weights.

The characterization of the SC estimator in (7.16) allows for an interesting comparison
with methods based on the unconfoundedness assumption discussed in Section 5.6. With
a linear model specification, unconfoundedness would suggest an estimator

β̂ = arg min
β

N−1∑
i=1

(
YiT − β0 −

T−1∑
s=1

βsYis

)2

, (7.17)

followed by the imputation of the missing potential outcome as

ŶNT (0) = β̂0 +
T−1∑
s=1

β̂sYNs.

The difference is that in, using the terminology of Athey, Bayati, Doudchenko, Imbens,
and Khosravi (2021), SC in the regression in (7.16) relies on vertical regression with
T − 1 observations and N − 1 predictors, with some restrictions on the parameters (with
the units of observations corresponding to the columns of Y), and (7.17) relies on hori-
zontal regression with N − 1 observations and T regressors after including an intercept
(with the units of observations corresponding to the columns of Y). If the minimizers in
these least squares regressions are not unique, we take the solution to be the one that
minimizes the L2 norm (Spiess et al., 2023). See Shen, Ding, Sekhon, and Yu (2022) for
more insights into the comparison between the horizontal and vertical regressions in this
setting. In particular, they demonstrate the interesting insight that point estimates for
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the counterfactuals are identical for the vertical and horizontal regressions in the absence
of the nonnegativity and adding up restrictions.

One interesting aspect of the synthetic control approach is that it is more algorith-
mic than many other methods used in these settings. Consider the estimator based on
unconfoundedness in (7.17). Such an approach is typically motivated by a linear model

YiT = γ0 +
T−1∑
s=1

γsYis + εi,

with assumptions on the εi given the lagged outcomes. The corresponding model for the
SC estimator would be

YNt =
N−1∑
j=1

ωjYjt + ηt,

with assumptions on ηt given the contemporaneous outcomes for other units. However,
such assumptions are rarely postulated, and for good reason. It would postulate a rela-
tionship between the cross-section units, e.g., states, that is oddly asymmetric. If, as in
the application in Abadie, Diamond, and Hainmueller (2010), California is the treated
state, this model would postulate a relationship between California and the other states
of a form that cannot also hold for all other states. Attempts to specify models that justify
the synthetic control estimator had limited success. Abadie, Diamond, and Hainmueller
(2010) discusses factor models as a data generating process, but that begs the question
of why one would not directly estimate the factor model. Researchers have done so, as
discussed in Section 7.2 below, but interestingly, such attempts have not always out-
performed the Abadie-Diamond-Haimueller synthetic control methods, suggesting the
latter have attractive properties that are not fully understood yet. See the review in
Abadie (2021) for more discussion on conditions under which synthetic control methods
are appropriate.

In Arkhangelsky and Samkov (2024), the authors show that in environments where
the contribution of idiosyncratic errors to the overall variation in the outcomes is small,
i.e., most of the variation is explained by the two-way fixed effects and the factor model,
a version of the SDID estimator discussed in Section 7.3 is asymptotically equivalent
to a particular methods-of-moments estimator for the underlying factor model. These
results are relevant for applications where researchers rely on aggregated data, such as
the GRCS data discussed in Section 3.1.2, and bridge the gap between methods that
directly estimate factors models and those based on the SC ideas. Further theoretical
research is needed to better understand this connection in other settings.

7.1.2. Modifications A number of modifications have been suggested to the basic ver-
sion of the SC estimator. Hsiao et al. (2012); Doudchenko and Imbens (2016) and Ferman
and Pinto (2021) suggest making the estimator more flexible by allowing for an intercept
in the regression (or, equivalently, applying the method to outcomes in deviations from
time-averages). Hsiao et al. (2012); Doudchenko and Imbens (2016); Gardeazabal and
Vega-Bayo (2017) also discuss allowing the weights to be outside the unit interval. This
improves the in-sample fit but has the potential of making the out-of-sample predictions
less accurate.

Li (2023) proposes an alternative to TWFE estimation that relies on selecting a set of
controls. One can think of this as a special case of SC where the weights for the control
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units are either zero, or 1/NC , where NC is the number of control units selected. The
proposal includes a greedy algorithm for selecting the set of controls with an objective
function that closely mimics the SC criterion for the case with an intercept.

Typically, in the synthetic control method, only the control units are weighted. In
principle, however, one could also weight the treated units to make it easier to find a set
of (weighted) control units that are similar to these weighted treated units during the
pre-treatment period, as suggested in Kuosmanen et al. (2021).

Kellogg et al. (2021) suggest combining matching and synthetic control methods.
Whereas synthetic control methods avoid extrapolation at any cost, combining it with
matching allows researchers to lower the bias from either method.

7.1.3. Regularization In settings where the number of control units is large relative to
the number of pre-treatment periods, this requires some form of regularization. Hsiao
et al. (2012) use statistical information criteria. Doudchenko and Imbens (2016) suggest
regularizing the weights by imposing an elastic net penalty on the weights ωi, with the
penalty chosen by cross-validation. Spiess et al. (2023) avoid the choice of a penalty
term by choosing the minimum L2 norm value for the weights within the set of weight
combinations that lead to the optimal in-sample fit, in the spirit of the recent double
descent literature (Belkin et al., 2019). Abadie and L’hour (2021) recognizes that weights
that a convex combination of control units that are all far away from the treated unit are
not as attractive as a convex combination of control units that are all close to the target
treated unit. They suggest choosing the weights by minimizing the sum of the original
synthetic control criterium and a term that penalizes the distance between any of the
control units and the target unit

ω̂ = arg min
ω|ω≥0,

∑
j ωj=1

T−1∑
t=1

YNt − N−1∑
j=1

ωjYjt

2

+ λ
N−1∑
j=1

ωj

T−1∑
t=1

(YNt − Yjt)2,

with the tuning parameter λ chosen through cross-validation, for example, on the control
units.

7.1.4. Inference Inference has been a major challenge in synthetic control settings, and
there is, as of yet, no consensus regarding the best way to estimate variances or construct
confidence intervals. One particular challenge is that the methods are often used in
settings with just a single treated unit/period, or relatively few treated unit/period pairs,
making it difficult to rely on central limit theorems for the distribution of estimators. In
applications where the number of units and periods is large, the situation is different; see
the results in Arkhangelsky et al. (2021); Ferman (2021).

One approach has been to use placebo methods to test sharp null hypotheses, typically
for the null hypothesis of no effect of the intervention. Abadie, Diamond, and Hainmueller
(2010) proposes such a method. Suppose there is a single treated unit, say unit N . Abadie,
Diamond, and Hainmueller (2010) construct a distribution of estimates based on each
control unit being analyzed as the treated unit and then calculate the p-value for unit N
as the quantile in that distribution of placebo estimates. See also Firpo and Possebom
(2018) for an extension and additional analysis of this method.

Doudchenko and Imbens (2016) suggests that the same placebo approach can be based
on changing the time period that was treated. Essentially here the idea is to think of the
time of the treatment as random, generating a randomization distribution of estimates.
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In a related approach Chernozhukov, Wüthrich, and Zhu (2021); Viviano and Bradic
(2023); Lei and Candès (2021) develop conformal inference procedures that rely on the
exchangeability of the residuals from some model over time. Cattaneo, Feng, and Titiunik
(2021) propose the construction of prediction intervals for the counterfactual outcome.

7.2. Matrix Completion Methods and Factor Models

A second set of methods that relaxes the TWFE assumptions focuses directly on factor
models, where the outcome is assumed to have the form

Yit(0) =
R∑
r=1

αirβtr + εit. (7.18)

First, note that this generalizes the TWFE specification: if we fix the rank at R = 2, and
set αi2 = 1 for all i and βt1 = 1 for all t, this is identical to the TWFE specification, but
the factor model obviously allows for more general dependence structures in the data.
Although such factor models have a long tradition in panel data, e.g., Anderson (1984);
Chamberlain and Rothschild (1983); Stock and Watson (1998); Bai and Ng (2002); Bai
(2009), the recent causal literature has used them in different ways.

7.2.1. Matrix Completion with Nuclear Norm Regularization Athey, Bayati, Doud-
chenko, Imbens, and Khosravi (2021) take an approach that models the entire matrix of
potential control outcomes as

Yit(0) = Lit + αi + βt + εit,

where the εit is random noise, uncorrelated with the other components. The matrix L
with typical element Lit is a low-rank matrix. As mentioned above the unit and time
components αi and βt could be subsumed in the low-rank component as they on their
own form a rank-two matrix, but in practice it improves the performance of the estimator
substantially to keep these fixed effect components in the specification separately from
the low-rank component L. The reason is that we regularize the low rank component L,
but not the individual and time components. Building on the matrix completion litera-
ture (Candès and Recht (2009); Candès and Plan (2010)), Athey, Bayati, Doudchenko,
Imbens, and Khosravi (2021) propose the Nuclear-Norma-Matrix-Completion (NNMC)
estimator based on minimizing

N∑
i=1

T∑
t=1

(1−Wit) (Yit − Lit − αi − βt)2 + λ‖L‖∗,

over L, α, and β. The missing Yit(0 values are then imputed using the estimated parame-
ters. Here the nuclear norm ‖L‖∗ is the sum of the singular values σl(L) of the matrix L,
based on the singular value decomposition L = SΣR, where S is N ×N , Σ is the N × T
diagonal matrix with the singular values and R is T × T . The penalty parameter λ is
chosen through out-of-sample crossvalidation. The nuclear norm regularization shrinks
towards a low rank estimator for L, similar to the way LASSO shrinks towards a sparse
solution in linear regression.

7.2.2. Robust Synthetic Control Amjad, Shah, and Shen (2018) focus on the case with
a single treated unit. They start with a factor model Y = L+ε. They would like to use a
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synthetic control estimator with denoised matrix L as the control outcomes, rather than
the actual outcomes Y. They implement this through a two step procedure. In the first
step the matrix L is estimated by taking the singular value decomposition, and setting
all singular values below a threshold µ equal to zero. This leads to a low-rank estimate L̂,
which is then scaled by one over p, where p is the maximum of the fraction of observed
outcomes and 1/((N − 1)T ).

In the second step Amjad, Shah, and Shen (2018) use the part of this rescaled matrix
corresponding to the control units, in combination with the pre-treatment-period values
of for treated unit, in a standard synthetic control approach. The idea is that using
de-noised outcomes L̂ instead of the actual outcomes Y leads to better predictors by
removing an estimate of the noise component ε. In this second synthetic control step
Amjad, Shah, and Shen (2018) do not impose the convexity restrictions on the weights,
but do add a regularization penalty.

7.2.3. Interactive Fixed Effect or Factor Models Building on the factor model literature
in econometrics (Chamberlain and Rothschild, 1983; Holtz-Eakin, Newey, and Rosen,
1988; Chamberlain, 1992; Pesaran, 2006; Bai, 2009; Moon and Weidner, 2015, 2018;
Freyberger, 2018), Xu (2017) studied direct estimation of factor models as an alternative
to synthetic control methods. The basic setup models the control potential outcome as in
(7.18). The number of factor is then estimated or pre-specified and the model is directly
estimated after some normalization. Based on this model on can impute the missing
potential outcomes for the treated unit/time-period pairs and use that to estimate the
average effect for the treated. See Gobillon and Magnac (2016) for an application.

7.2.4. Grouped Panel Data Bonhomme and Manresa (2015); Bonhomme et al. (2022)
consider a factor model but impose a group structure. In our causal setting, their setup
would correspond to

Yit(0) = θGi,t + εit,

with the group membership unknown. They focus on the case with the number of groups
G known. In that case one can write the model as a factor model with G factors λrt and
the loadings equal to indicators, αir = 1Gi=r, so that

Yit(0) = θGi,t + εit =
G∑
r=1

αirλrt + εit.

Computationally this grouped structure creates substantial challenges. Mugnier (2022);
Chetverikov and Manresa (2022) suggest alternative estimation methods that are com-
putationally more attractive.

7.2.5. Tuning One disadvantage the methods discussed in this section share is the need
to specify the tuning parameters. This sets them apart from the conventional TWFE
methods we discussed before and makes them harder to adopt in practice. In the case of
the matrix completion estimator proposed by Athey, Bayati, Doudchenko, Imbens, and
Khosravi (2021), this tuning parameter is the regularization parameter λ that quantifies
the importance of the nuclear norm penalty. In the context of the standard interactive
fixed effects estimators, one needs to specify the rank of the underlying factor model.
The same applies to the estimator based on finitely many groups. In principle, one can
use traditional techniques from the machine learning literature, such as cross-validation,
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to find appropriate values of these parameters. The panel dimension, however, creates an
additional challenge on how exactly to implement the cross-validation. It is thus attractive
to have methods that generalize the two-way methodology and do not require explicit
tuning. One such proposal is Moon and Weidner (2018), where the authors analyze the
limiting version of the estimator from Athey, Bayati, Doudchenko, Imbens, and Khosravi
(2021) with λ approaching zero. They show that the resulting estimator is consistent
under relatively weak assumptions, albeit it can converge at a slower rate.

7.3. Hybrid Methods

Two recent methods combine some of the benefits from the synthetic control approach
with either TWFE ideas or with unconfoundedness methods. These methods are partic-
ularly attractive because the nest TWFE, while being able to accomodate more flexible
outcome models. There are in essence two approaches. One can directly generalize the
outcome model, or one can use a local version of the TWFE model. This is somewhat
similar to the way one can generalize a linear regression model by making the regression
function more flexible through the inclusion of additional function of the regressors, or
by estimating it locally through kernel methods.

7.3.1. Synthetic Difference In Differences For expositional reasons let us consider the
case with a single treated unit and time period, say unit N in period T , although the
insights readily extend to the block assignment case. Once the researcher has calculated
the SC weights, the SC estimator for the treatment effect can be characterized as a
weighted least squares regression,

min
β,τ

N∑
i=1

T∑
t=1

ω̂i (Yit − βt − τWit)
2
. (7.19)

It is useful to contrast this with the TWFE estimator, which is based on a slightly
different least squares regression:

min
β,α,τ

N∑
i=1

T∑
t=1

(Yit − αi − βt − τWit)
2
. (7.20)

The two differences are that (i) , the SC regression in (7.19) uses weights ω̂i, and (ii) the
TWFE regression in (7.20) has unit-specific fixed effects αi.

In the light of of this comparison, and more generally in the context of the larger panel
data literature, the omission of the unit fixed effects from the synthetic control regression
may seem surprising. Arkhangelsky, Athey, Hirshberg, Imbens, and Wager (2021) exploit
this by proposing what they call the Synthetic Difference In Difference (SDID) estimator
that includes both the unit fixed effects αi and the SC weights ω̂i, as well as analogous
time weights λ̂t, leading to

min
β,α,τ

N∑
i=1

T∑
t=1

ω̂iλ̂t (Yit − αi − βt − τWit)
2
.

The time weights λ̂t are calculated in a way similar to the unit weights,

min
λ

N−1∑
i=1

(
YiT −

T−1∑
s=1

λsYis

)2

,
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subjet to the restriction that λs ≥ 0, and
∑T−1
s=1 λs = 1. The weights for treated units

and periods are equal to 1.

7.3.2. Augmented Synthetic Control Ben-Michael et al. (2021) augment the SC esti-
mator by regressing the outcomes in the treatment period on the lagged outcomes using
data for the control units. Suppose that, following Ben-Michael et al. (2021) one uses
ridge regression for this first step, again in the setting with unit N and period T the only
treated unit/time-period pair:

η̂ = arg min
η

N−1∑
i=1

(
YiT − η0 −

T−1∑
s=1

ηsYis

)2

+ λ
T−1∑
s=1

η2s ,

with ridge parameter λ chosen through cross-validation. A standard unconfoundedness
approach would predict the potential control outcome for the treated unit/time period
pair as

ŶNT = η̂0 +

T−1∑
s=1

η̂sYNs.

The augmented SC estimator modifies this by combining it with SC weights in a way
that can be seen either as a bias-adjustment to the unconfoundedness estimator, or a
bias-adjustment to the SC estimator:

ŶNT = η̂0 +
T−1∑
s=1

η̂sYNs +
N−1∑
i=1

ωi

(
YiT − η̂0 −

T−1∑
s=1

η̂sYis

)

=
N−1∑
i=1

ωiYiT +
T−1∑
s=1

η̂s

YNs − N−1∑
j=1

ωjYjs

 .

Ben-Michael, Feller, and Rothstein (2022) extend this approach to the case with staggered
adoption.

7.3.3. The Connection Between Unconfoundedness, Difference-In-Differences, Synthetic
Control and Matrix Completion Although methods based on unconfoundedness, and
synthetic control estimators, difference-in-differences, and matrix completion estimators
appear to be quite different, they are in fact closely related. We want to highlight two
insights regarding these connections.

We focus on the case with a single treated unit/period pair, say unit N in period T ,
The observed control outcomes are Y, an N × T matrix with the (N,T ) entry missing.
We partition this matrix as

Y =

(
Y0 y1

y>2 ?

)
,

where Y0 is a (N−1)×(T −1) matrix, and y1 and y2 are (N−1) and (T −1) component
vectors, respectively.

First, Shen, Ding, Sekhon, and Yu (2022) discuss an interesting connection between
SC estimators and estimators based on unconfoundedness in combination with linearity.
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In that case we first estimate a linear regression

YiT = γ0 +
T−1∑
s=1

γsYis + εi,

and then impute the missing outcome as ŶNT = γ̂0 +
∑T−1
s=1 γ̂sYNs. Shen, Ding, Sekhon,

and Yu (2022) show that if we drop the intercept from this regression, γ0 = 0, then the
unconfoundedness imputation is identical to the SC imputation (where we also restrict
the weights to be nonnegative and sum to one).

In an alternative connection, Athey, Bayati, Doudchenko, Imbens, and Khosravi (2021)
show that in some cases linear versions of all four estimators can all be characterized as
solutions to the same optimization problem, subject to different restrictions on parame-
ters of that optimization problem. To see this, define for a given positive integer R, an
N × R matrix U, an T × R matrix V, an N -vector α and a T -vector β, and a scalar λ
the objective function

Q(R,U,V, α, β, λ) ≡
N∑
i=1

T∑
t=1

(1−Wit)

(
Yit −

R∑
r=1

UirVtr − αi − βt

)2

(7.21)

+λ

(
N∑
i=1

R∑
r=1

U2
ir +

T∑
t=1

R∑
r=1

V 2
tr

)
.

When R = 0, we take the product UV> to be the N×T matrix with all elements equal to
zero. Given U, V, α and β the imputed value for YNT is ŶNT =

∑R
r=1 UNrVTr−αi−βt.

First note that minimizing the objective function (7.21) over the rank R, the matrices
U, V and the vectors α and β given λ = 0, does not lead to a unique solution. By choosing
the rank R to the minimum of N and T , we can find for any pair α and β a solution for
U and V such that (1−Wit)(Yit−

∑R
r=1 UirVtr − γi− δt) = 0 for all (i, t), with different

imputed values for YNT . The implication is that we need to add some structure to the
optimization problem. The next result shows that unconfoundedness regression, the SC
estimator, the DID estimator, and the MC estimator can all be expressed as minimizing
the objective function under different restrictions on, or with different approaches to
regularization of, (R,U,V, α, β).
Nuclear Norm Matrix Completion The nuclear norm matrix completion estimator
chooses λ through cross-validation.
Unconfoundedness The unconfoundedness regression is based on regressing Y1 on y>2
and an intercept. It can also be characterized as the solution to minimizing (7.21) with
the restrictions

R = T − 1, U =

(
Y0

y>2

)
, α = 0, β1 = β2 = . . . = βT−1 = 0, λ = 0.

Synthetic Control The SC estimator imposes the restrictions subject to

R = N − 1, V =

(
Y>0
y>1

)
, α = 0, β = 0, ∀ i, UiT ≥ 0,

N−1∑
i=1

UiT = 1, λ = 0.

Difference In Differences The DID estimator fixes R = 0.
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7.3.4. The Selection Mechanism Another set of insights concerning the differences be-
tween the various estimators emerges from a focus on the selection mechanism. First,
Ghanem, Sant’Anna, and Wüthrich (2022) show that outside of a few special cases, to
justify the conventional parallel trends assumption, one needs to assume that the treat-
ment is unrelated to time-varying components of the outcomes. The restrictiveness of this
assumption presents a challenge for the DID estimator, which relies on this parallel trends
assumption. These concerns are less relevant for other estimators; see Arkhangelsky and
Hirshberg (2023); Imbens and Viviano (2023) for two recent discussions.

We can see this in the setting with the block design, where there are T0 + 1 periods,
and some units are treated in the last period, with Di being the treatment indicator,
Di = 1WiT=1. Suppose the underlying potential outcomes follow a static two-way model
of Section 5:

Yit(0) = αi + βt + εit, εit ⊥⊥ αi, τ = Yit(1)− Yit(0).

The key feature that determines the performance of different algorithms in this environ-
ment is the relationship between Di and the vector of errors (εi1, . . . , εiT0+1). As long as
Di is mean-independent from (εi1, . . . , εiT0+1), then the discussed estimators will have
good statistical properties. This should not be surprising for the DID (which does not
rely on large T0) or matrix completion estimator because their statistical properties are
established under this assumption. The fact that the SC estimator would work well in
this situation follows from the results in Arkhangelsky, Athey, Hirshberg, Imbens, and
Wager (2021) and Arkhangelsky and Hirshberg (2023).

This conclusion changes dramatically if we allow (εi1, . . . , εiT0+1) to be correlated with
Di. If this correlation is completely unrestricted, then any observed differences in out-
comes in the two groups can be attributed to differences in errors, and it is impossible to
identify the effect using any method. Suppose, however, that we make a natural selection
assumption

Di ⊥⊥ YiT0+1(0)|αi, Yi1, . . . , YiT0
(0),

which restricts the correlation of Di with εi,T0+1. Note that this restriction combines both
the selection on fixed effect assumption discussed in Section 5.4 and the unconfoundedness
assumption discussed in Section 5.6.

As long as εit are autocorrelated, the DID estimator is inconsistent, even when T0 goes
to infinity. The reason for this failure is that εiT0+1 −

∑
t≤T0

εit/T0 remains correlated
with Di which introduces bias. The performance of the SC estimator is different, and the
results in Arkhangelsky and Hirshberg (2023) show that the SC estimator is consistent
and asymptotically unbiased as long as T0 goes to infinity. The consistency properties of
the matrix completion estimator and the unconfoundedness regression are not established
for this setting.

Imbens and Viviano (2023) focuses on a factor model with block assignment where
Di can be correlated with the factor loadings and the time of initial exposure can be
correlated with the factors. They present conditions under which the SC estimator is
consistent.

This discussion illustrates that to analyze the behavior of algorithmically related es-
timators one needs to take a stand on the underlying selection mechanism. Most of the
recent results in the causal panel data literature are established under strict exogeneity,
which does not allow Di to be correlated with εit. Understanding the performance of
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different estimators in environments where such correlation is present is an attractive
area of future research that can benefit from the econometric panel data literature.

7.3.5. Simulation Comparisons There have been a number of studies comparing various
DID and SC estimators in simulations. These have not always been in realistic settings,
limiting their usefulness for practitioners. In fact, it is not as easy in longitudinal setting to
come up with realistic simulation settings that capture both the degree of cross-section
and time-series dependence that is present in a given data set. In pure cross-section
settings, Athey et al. (2021) suggests using generative adversarial networks to generate
realistic data-generating processes, but that does not immediately extend to longitudinal
settings. Arkhangelsky et al. (2021) compare DID, SC, SDID, and NNMC estimators
in settings motivated by state and country panel data sets. They first estimate factor
models with four factors and use that to construct a data-generating process with additive
fixed effects, four additional factors, and an autoregressive error process. They find that
there is substantial variation in the performance of the methods, with SDID typically
outperforming the other methods.

8. NONLINEAR MODELS

In this section, we discuss some nonlinear panel data models. By nonlinear models, we
mean here models where the conditional mean function is not linear in parameters. Part of
this literature is motivated by the concern that the standard fixed effect models maintain
additivity and linearity in a way that does not do justice to the type of data that are
often analyzed. With binary outcomes, it is particularly difficult to justify the standard
TWFE model. At the same time, estimating the unit and time fixed effects inside a
logistic or probit model does not lead to consistent estimators for the effects of interest
in typical settings.

8.1. Changes-In-Changes

Athey and Imbens (2006) focus on the repeated cross-section case with two periods and
two groups, one treated in the second period and one never treated. They are concerned
with the functional-form dependence of the standard TWFE specification in levels. If the
model

Yi(0) = µ+ α1Ci=1 + β1Ti=1 + εi,

holds in levels, then obviously it cannot hold in general in logarithms. In fact, in some
cases, one can test that the model cannot hold in levels. Suppose the outcome is binary,
and suppose that the potential control outcome averages by group and time period are
Y 11(0) = 0.2 (for the first-period control group), Y 12 = 0.8 (for the second-period control
group), and Y 21(0) = 0.7 (for the first-period treatment group). Then the additive TWFE
model implies that the second-period treatment group, in the absence of the treatment,
would have had average outcome 0.7+(0.8-0.2)=1.3, which of course, is not feasible with
binary outcomes.

To address this concern Athey and Imbens (2006) propose a scale-free changes-in-
changes (CIC) model for the potential control outcomes,

Yi = g(Ui, Ti),

where the Ui is an unobserved component that has a different distribution in the treat-
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ment group and the control group but a distribution that does not change over time.
The standard TWFE model can be viewed as the special case where g(u, t) is additively
separable in u and t:

g(u, t) = β0 + u+ β1t,

implying that the expected control outcomes can be written in the TWFE form as

E[Yi(0)|Ti = t, Gi = g) = β0 + β1t+ αE[Ui|Gi = g]− E[Ui|Gi = 1].

Athey and Imbens (2006) show that if Ui is a scalar, and g(u, t) is strictly monotone in
u, one can infer the second-period distribution of the control potential outcome in the
treatment group as

FYi(0)|Ti=2,Gi=2(y) = FYi(0)|Ti=1,Gi=2

(
F−1Yi(0)|Ti=1,Gi=1

(
FYi(0)|Ti=2,Gi=1(y)

))
.

This, in turn, can be used to estimate the average effect of the intervention on the
second-period outcomes for the treatment group.

The expression for the counterfactual distribution of the control outcome for the
second-period treatment group has an analog in the literature on wage decompositions,
see Altonji and Blank (1999). Arkhangelsky (2019) discusses a similar approach to the
CIC estimator in Athey and Imbens (2006), where the role of the groups and time pe-
riods are reversed and also considers an extension for multiple outcomes. Wooldridge
(2022) also studies nonlinear versions of DID/TWFE approaches. In the two-period-two-
group setting, his starting point assumes there is a known function g : R 7→ R such that
E[Yit(0)|Di] = g(µ + αD + γt), so that there is a parallel trend inside the known trans-
formation g(·). The transformation g(·) could be the exponential function, g(a) = exp(a)
in case of non-negative outcomes, or the logistic function g(a) = exp(a)/(1 + exp(a)) in
case of binary outcomes.

8.2. Distributional Synthetic Controls

Gunsilius (2023) develops a model that has similarities to both the CIC and SC con-
trol approaches. He focuses on a setting with repeated cross-sections, where we have a
relatively large number of units observed in a modest number of groups, with a mod-
est number of time periods. As in the canonical synthetic control case there is a single
treated group. Whereas the synthetic control method chooses weights on the control units
so that the weighted controls match the treated outcomes in the pre-treatment periods,
the Gunsilius (2023) approach chooses weights on the control groups so that the marginal
distribution for the weighted controls matches that for the treated group. The metric is
based on the quantile function F−1Ygt

(v), for group g and period t. First, weights ω̂tg are
calculated separately for each pre-treatment period t based on the following objective:

ω̂tg = arg min
ω:ω≥0,

∑G−1
g=1 ωgt=1

1

M

M∑
m=1

(
G−1∑
g=1

ωgtF̂
−1
Ygt

(Vm)− F̂−1YGt
(Vm)

)2

,

where the quantile functions are evaluated at M randomly choosing values v1, . . . , vM .
In the next step the weights are averaged over time,

ω̂g =
1

T − 1

T−1∑
t=1

ω̂gt.
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Finally the quantile function for the treated group in the absence of the treatment is
estimated as the synthetic control average of the control quantile functions:

F̂−1GT (v) =
G−1∑
g=1

ω̂gF̂
−1
gT (v).

Note that in the case with G = 2, so there is just a single control group, the quantile
function for the treated group in the last period in the absence of the treatment is identical
to the quantile function for the control group in the last period, and the pre-treatment
distributions are immaterial.

8.3. Balancing Statistics to Control for Unit Differences

Arkhangelsky and Imbens (2022) focus on settings where the treatment can switch on
and off, as in the assignment matrix in Equation (3.1), unlike the staggered adoption case
where the treatment can only switch on. They also assume there are no dynamic effects.
Their focus is on flexibly adjusting for differences beyond additive effects. Allowing for
completely unrestricted differences between units would require relying solely on within-
unit comparisons. Often the number of time periods is not sufficient to rely on such
comparisons and still obtain precise estimates. Arkhangelsky and Imbens (2022) balance
these two concerns, the restrictiveness of the TWFE model and the lack of precision
when focusing purely on within-unit comparisons, by making assumptions that allow the
between-unit differences to be captured by a low-dimensional vector, which then can be
adjusted for in a flexible, nonlinear way using some of the insights from the cross-section
causal inference literature.

To see the insights most clearly it is useful to start with a simpler setting. Specifi-
cally, let us first consider a clustered sampling setting with cross-section data studied in
Arkhangelsky and Imbens (2023). In that case a common approach is based on a fixed
effect specification

Yi = αCi + τWi + βXi + εi,

where Ci is the cluster indicator for unit i. Estimating τ by least squares is the same as
estimating the following regression function by least squares,

Yi = µ+ τWi + γWCi + βXi + δXCi + ηi,

W c is the cluster average of the treatment for cluster c, and similar for Xc. This equiv-
alence has been known since Mundlak (1978).

Arkhangelsky and Imbens (2023) build on the Mundlak insight, still in the clustered
setting, by making the unconfoundedness assumption that

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi, XCi
,WCi

.

Implicitly this uses the two averages XCi
and WCi

as proxies for the differences between
the clusters. This idea is related to Altonji and Matzkin (2005), who also use exchange-
ability to control for unobserved heterogeneity. Given this uconfoundedness assumption,
one can then adjust for differences in (Xi, XCi

,WCi
) in a flexible way, through non-

parametric adjustment methods, possibly in combination with inverse propensity score
weighting. Arkhangelsky and Imbens (2023) then generalize this by assuming that

Wi ⊥⊥
(
Yi(0), Yi(1)

) ∣∣∣ Xi, SCi
,
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where the sufficient statistic Sc captures the relevant features of the cluster, possibly
including distributional features such as the average of Wi in the cluster, but also other
averages such as the average of the product of Xi and Wi in the cluster.

Arkhangelsky and Imbens (2022) extend these ideas from the clustered cross-section
case to the panel data case. They focus on the no-dynamics case where the potential
outcomes are indexed only by the binary contemporaneous treatment. In panel data
settings, an alternative to two-way fixed effect regressions is the least squares regression

Yit = τẄit + εit,

where Ẅit is the double difference

Ẅit = Wit −W i· −W ·t +W,

with

W i· =
1

T

T∑
t=1

Wit, W ·t =
1

N

N∑
i=1

Wit, and W =
1

NT

N∑
i=1

T∑
t=1

Wit.

See, for example, Vogelsang (2012). Wooldridge (2021) shows the same estimator can be
obtained by through what he calls the Mundlak regression

Yit = τWit + γW i· + δW ·t + εit.

Arkhangelsky and Imbens (2022) postulate the existence of a known function Si(Wi1, . . . ,WiT )
that captures all the relevant components of the assignment vector W i = (Wi1, . . . ,WiT )
(and possibly other covariates, time-varying or time-invariant). Given this balancing
statistic, they assume that the potential outcomes are independent of the treatment
assignment vector given this balancing statistic:

W i ⊥⊥ Yit(w)
∣∣∣ Si. (8.22)

Consider the case where the balancing statistic is fraction treated periods, Si = W i. The
unconfoundedness assumption in (8.22) implies that one can compare treated and control
units in the same period, as long as they have the same fraction of treated periods over
the entire sample. More generally Si could capture both the fraction of treated periods,
as well as the number of transitions between treatment and control groups.

The estimator proposed by Arkhangelsky and Imbens (2022) has a built-in robustness
property: it remains consistent if the two-way model is correctly specified or the uncon-
foundedness given Si holds. As a result, it does not require researchers to commit to a
single identification strategy. This approach creates a link between the TWFE literature
and the design-based analysis we discuss in Section 9.

8.4. Negative Controls, Proxies, and Deconvolution

The results in Arkhangelsky and Imbens (2022) show how to use panel data to construct
a variable that eliminates the unobserved confounding. A related but different strategy
is to use a panel to construct a set of proxy measures for the unobservables. If these
proxy measures do not directly affect either outcomes or treatments, then this restriction
can be used for identification. In biostatistics, such proxy variables are called negative
control variables. To emphasize the connections between this literature and economic
applications, we use these two terms, proxy variables and negative controls, interchange-
ably. In biostatistics a recent literature focuses on non-parametric identification results
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for average treatment effects that are based on negative controls (Sofer et al., 2016; Shi
et al., 2020). See Ying et al. (2021) for an introductory article. This literature is closely
connected to econometric literature on non-parametric identification with measurement
error (Hu and Schennach, 2008) and the CIC model (Athey and Imbens, 2006). In a
DID setting one can view the pre-treatment outcomes as proxies or negative controls
in the sense of this literature. Recently, these arguments have been extended to prove
identification results for a class of panel data models in Deaner (2021b).

Proxy variables have a long history in economics. In early applications Griliches (1977);
Chamberlain (1977) use data on several test scores to estimate returns to schooling
accounting for unobserved ability (see also Deaner, 2021a). Using modern terminology,
these test scores serve as negative controls. Versions of these strategies have also been
successfully used in the traditional panel data literature. For example, Holtz-Eakin et al.
(1988) use data on past outcomes to estimate a dynamic linear panel data model with
interactive fixed effects with a finite number of periods. They achieve this by eliminating
the interactive fixed effects via a quasi-differencing scheme, which is called a bridge
function in the negative control literature (see Imbens et al., 2021; Ying et al., 2021).

A similar idea is used in Freyaldenhoven et al. (2019), where the authors consider a
setting with an unobserved confounder that can vary arbitrarily over i and t. To eliminate
this confounder, the authors assume the presence of a proxy variable that is affected by
the same confounder but is not related to the treatment. As a result, one can eliminate the
unobservables by subtracting a scaled proxy variable from the outcome of interest. The
appropriate scaling is estimated using the pre-treatment data. In essence, this strategy
is analogous to quasi-differencing and is another example of using bridge functions.

An important aspect of the negative control literature, which it shares with most
of the methods discussed in this survey, is that it aims to isolate and eliminate the
unobserved confounders rather than identify causal effects conditional on unobservables.
Alternatively, one can obtain identification under different distributional assumptions
that connect the unobservables to outcomes and treatments using general deconvolution
techniques. This approach has been successfully employed to answer causal questions
in linear panel data models (Bonhomme and Sauder, 2011; Arellano and Bonhomme,
2011a) and nonlinear quantile panel data models (Arellano and Bonhomme, 2016), but
so far has not been widely adopted by a broader causal community.

8.5. Combining Experimental and Observational Data

Another direction this literature has explored is the combination of experimental and
observational data. Athey et al. (2020) study the case with an experimental data set
that has observations on short-term outcomes, and an observational sample that has
information on the short-term outcome and the primary outcome. A key assumption is
that the observational sample has an unobserved confounder that leads to biases in the
comparison of the short-term outcome by treatment group. The experimental data allows
one to remove the bias and isolate the unobserved confounder, which then can be used to
eliminate biases in the primary outcome comparisons essentially as a proxy variable as
discussed in the previous section. See also Ghassami et al. (2022); Imbens et al. (2021);
Kallus and Mao (2020).
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9. DESIGN-BASED APPROACHES TO ESTIMATION AND INFERENCE

An issue that features prominently in the recent panel data literature but is largely
absent in the earlier one is a re-interpretation of the uncertainty in the estimates as
coming from the stochastic nature of the causal variables. In most empirical analyses
in economics and in most of the methodological literature in econometrics, uncertainty
is assumed to be arising from sampling variation. This is a natural perspective if, say,
we have data on individuals that can be at least approximately viewed as a random
sample from a well-defined population. Had we sampled a different set of individuals,
our estimates would have been different, and the standard errors reflect the variation
that would have been seen if we repeatedly obtained different random samples from that
population. This sampling-based perspective is still a natural one in panel data settings
when the units can be viewed as a sample from a larger population, e.g., individuals in
the Panel Study of Income Dynamics or the National Longitudinal Survey of Youth.

The sampling-based perspective is less natural in cases where the sample is the same as
the population of interest. This is quite common in panel data settings, for example, when
we analyze state-level data from the United States, or country-level data from regions
of the world, or all firms in a particular class. It is not clear why viewing such a sample
as a random sample from a population is appropriate. Researchers have struggled with
interpreting the uncertainty of their estimates in that case. Manski and Pepper write
in their analysis of the impact of gun regulations with data from the fifty US states:
“measurement of statistical precision requires specification of a sampling process that
generates the data. Yet we are unsure what type of sampling process would be reasonable
to assume in this application. One would have to view the existing United States as the
sampling realization of a random process defined on a superpopulation of alternative
nations.” (Manski and Pepper, 2018, p. 234).

An alternative approach to formalizing uncertainty focuses on the random assignment
of causes, taking the potential outcomes as fixed. This approach has a long history in
the analysis of randomized experiments (e.g., Fisher (1937); Neyman (1990)), where the
justification for viewing the causes as random is immediate. For modern discussions, see
Imbens and Rubin (2015); Rosenbaum (2023). Recently these ideas have been used to
capture uncertainty in observational studies, see Abadie et al. (2020, 2023). The justifi-
cation in panel data settings is not always quite as clear. Consider one of the canonical
applications of synthetic control methods to estimate the causal effect of German re-
unification in 1989 on West German Gross Domestic Product (GDP). A design-based
approach would require the researcher to contemplate an alternative world where either
other countries would have joined with East Germany or an alternative world where
the reunification with West Germany would have happened in a different year. Both
are difficult to contemplate. On the other hand, a sampling-based approach would re-
quire the researcher to consider a world with additional countries that could experience
a unification event, which again is not an easy task.

Design-based perspective has interesting connections with the econometric panel data
literature. One such connection comes from the part of the panel data analysis that treats
fixed effects as parameters rather than realizations of unobserved random variables, thus
tying the inference to a particular set of observed units. The uncertainty in these models
comes from errors, which we can interpret as realizations of unobserved treatments. In
contrast, the design-based uncertainty comes from realizations of the observed treatment.
A different connection is with panel data literature on random effects, which assumes
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that unit-level heterogeneity is uncorrelated with the regressors. This assumption is un-
likely to hold in observational studies, but it holds by design in experiments. Again, the
difference in analysis comes from fixing different quantities. The traditional analysis fixes
the covariates and focuses on the distribution of the unit-level heterogeneity, whereas the
design-based analysis does the opposite.

9.1. The TWFE Estimator in the Staggered Adoption Case with Random Adoption
Dates

As an example of a design-based approach Athey and Imbens (2021) analyze the prop-
erties of the TWFE estimator under assumptions on the assignment process in the stag-
gered adoption setting, keeping the potential outcomes fixed. In that case the assignment
process is fully determined by the distribution of the adoption date. Athey and Imbens
(2021) derive the randomization-based distribution of the TWFE estimator under the
random assignment assumption alone and present an interpretation for the estimand cor-
responding to that estimator. They show that as long as the adoption date is randomly
assigned, the estimand can be written as a linear combination of average causal effects on
the outcome in period t if assigned adoption date a′ relative to being assigned adoption
date a:

τa,a
′

t =
1

N

N∑
i=1

(
Yit(a

′)− Yit(a)
)
, (9.23)

with the weights summing to one but generally including negative weights.
Athey and Imbens (2021) show the implications for the estimand of the assumption

that there is no anticipation of the treatment (so that the potential outcomes are invariant
to the future date of adoption). They also show how the interpretation of the estimand
changes further under the additional assumption that there are no dynamic effects so that
the potential outcomes only depend on whether the adoption has taken place or not, but
not on the actual adoption date. Rambachan and Roth (2020) discuss the implications
of variation in the assignment probabilities and the biases this can create.

9.2. Switchback Designs

One design that has recently received considerable attention after a long history is what
Cochran (1939) called the rotation experiment, and what more recently has been referred
as a switchback experiment in Bojinov et al. (2022) or crossover experiment in Brown Jr
(1980). In such experiments units are assigned to treatment or control in each of a
number of periods, with individual units potentially switching between treatment and
control groups. Such experiments were originally used in agricultural settings, where, for
example, cattle were assigned to different types of feed for some period of time. Using each
unit as its own control can substantially improve the precision of estimators compared
to assigning each unit to the treatment or control group for the entire study period.
Such designs have become popular in tech company settings to deal with spillovers. For
example, Lyft and Uber often randomize markets to treatment and control groups, with
the assignment changing over time.
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9.3. Experimental Design with Staggered Adoption

This subsection focuses on the design of experiments where the adoption date, rather
than the treatment in each period, is randomly assigned. Early studies, including Hem-
ming, Haines, Chilton, Girling, and Lilford (2015); Hussey and Hughes (2007); Barker,
McElduff, D’Este, and Campbell (2016) focused on simple designs, such as those where
a constant fraction of units adopted the treatment in each period after the initial period.
Sometimes these designs suggested analyses that allowed for spillovers so outcomes for
one or two periods after the adoption would be discarded from the analyses if the focus
was on the average treatment effect.

Xiong et al. (2019) focused on the question of optimally choosing the fraction of
adopters in each period and showed that instead of it being constant, it was initially
small and then larger for some periods, after which it declined again. Bajari et al. (2023)
discuss randomization-based inference for some of these settings and present exact vari-
ances for some estimators.

9.4. Design with Dynamic Effects

Bojinov et al. (2021) propose unbiased estimators and derive their properties under
the randomization distribution. They allow for dynamics in the treatment effects and
essentially unrestricted heterogeneity. They also discuss the biases of the conventional
TWFE specifications in their setting. Bojinov et al. (2022) discuss optimal design from a
minimax perspective, allowing for carryover effects where the treatment status in recent
periods may affect current outcomes.

9.5. Robust Methods

The design-based approach to estimation and inference is natural in the context of ran-
domized experiments. However, in practice, applied researchers continue using conven-
tional panel data methods, such as TWFE, even with experimental data (e.g., Broda
and Parker (2014); Colonnelli and Prem (2022)). There are multiple practical reasons for
this: one can believe that the experiment’s description is inconsistent with how it was
implemented or think that the TWFE estimator is more precise. These concerns are even
more salient in quasi-experimental environments where the data does not come from an
experiment, but it is appealing to treat it as such (e.g., Borusyak and Hull (2022)).

To address these issues Arkhangelsky et al. (2021) propose a version of the TWFE
estimator that incorporates the design information. The key property of this method is
that it delivers a consistent estimator even if the design assumptions do not hold as long
as the TWFE model is correctly specified. Algorithmically, it amounts to estimating a
weighted version of the standard TWFE model:

(τ̂ rob, α̂, β̂) = arg min
τ,α,β

N∑
i=1

T∑
t=1

(Yit − αi − βt − τWit)
2
ωi, (9.24)

where the weights {ωi}ni=1 are constructed using the information about the design. In
particular, in environments with staggered design, this amounts to estimating a dura-
tion model for the treatment adoption time. See Shaikh and Toulis (2021) for a related
approach of using duration models for inference in staggered adoption designs.
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10. OPEN QUESTIONS FOR FURTHER RESEARCH

Here we discuss some open questions in the current causal panel data literature.

10.1. Modeling Dynamics in Potential Outcomes

The recent panel data literature has only paid limited attention to dynamic treatment
effects, compared to the earlier literature (Heckman and Navarro, 2007; Anderson and
Hsiao, 1981 (see Abbring and Heckman (2007) for an overview), as well as compared to its
importance in practice. For example, a curious feature of many of the current methods,
including factor models and synthetic control methods, is that they pay essentially no
attention to the time-ordering of the observations. If the time labels were switched, the
estimated causal effects would not change. This seems implausible. Suppose one has data
available for T0 pre-treatment periods. For many of the methods, the researcher would
be indifferent between having available the first T0/2 pre-treatment period versus the
second T0/2 pre-treatment observations, whereas in practice, one would think that the
more recent data would be more valuable.

It seems likely the current literature will take the dynamics more seriously. One direc-
tion may be to follow Robins (1986) and a number of follow-up studies that developed a
sequential unconfoundedness approach. Viviano and Bradic (2021) discuss this approach
in economic contexts and propose an implementation that combines traditional linear
models with modern balancing approaches. This analysis, however, ignores unobserved
heterogeneity, which is central to the current empirical practice. See also Brodersen et al.
(2015); Ben-Michael et al. (2023); Masini and Medeiros (2022, 2021) for studies that take
the time series dimension of these settings more seriously. Other recent work includes
Han (2020); Brown and Butts (2023).

10.2. Validation

LaLonde (1986) has become a very influential paper in the causal inference literature
because it provided an experimental data set that could be used to validate new meth-
ods for estimating average causal effects under unconfoundedness. There are few longer
panel data sets that can deliver the comparisons for validating the various new methods.
However, there are methods that can be used to assess the performance of proposed esti-
mators with purely observational data. An early paper with suggested tests is Heckman
and Hotz (1989). Currently, many approaches in panel data rely on placebo tests where
the researcher pretends the treatment occurred some periods prior to when it actually
did; the researcher then estimates the treatment effect for these periods where, in the ab-
sence of anticipation effects, the treatment effect is known to be zero. Finding estimates
close to zero, both substantially and statistically, is then taken as evidence in favor of the
proposed methods. See for examples Imbens, Rubin, and Sacerdote (2001) and Abadie
et al. (2015). This strategy, however, relies on strict exogeneity and can backfire in mod-
els where the selection into treatment is based on shocks to past outcomes, as discussed
in Section 7.3.4. See Arkhangelsky and Hirshberg (2023) for a particular illustration of
this point and a discussion of alternative validation strategies.
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10.3. Connections with Macroeconomics

Nakamura and Steinsson (2018) discuss the impact that ideas from the causal inference
literature had on empirical research in macroeconomics. At the same time, the causal
inference literature itself can benefit from incorporating macroeconomic ideas, which
are particularly relevant in applications with panel data. For example, in Section 4, we
discuss that Lucas’s critique can be relevant for the interpretation of causal quantities in
applications in microeconomics. More broadly, panel data sets allow us to connect micro-
level and aggregate time-series variation, providing identification strategies for aggregate
effects (e.g., Gabaix and Koijen, 2020) as well as local-level effects (e.g., Arkhangelsky and
Korovkin, 2019). Wolf (2023) shows how to combine credible micro and macro evidence
to analyze policy-relevant counterfactual in macroeconomic models. We view this as an
attractive area of future research.

10.4. Bridging Unconfoundedness and the TWFE Approach

Much of the discussion on unconfoundedness and the TWFE model has been framed in
terms of a choice. It is difficult to imagine that a clear consensus will emerge, and finding
practical methods that build on both approaches would be useful.

10.5. Continuous Treatments

Much of the recent literature has emphasized the binary treatment case. This has led
to valuable new insights, but it is clear that many applications go beyond the binary
treatment case. There is a small literature studying these cases, including Callaway et al.
(2021) and De Chaisemartin and d’Haultfoeuille (2023), and earlier work in the cross-
section setting, e.g., Imbens (2000), but more work is needed. Note that the earlier
econometric panel data literature did not distinguish between settings where the variables
of interest were binary or continuous.

11. RECOMMENDATIONS FOR EMPIRICAL PRACTICE

The recent literature has greatly expanded the set of methods available to empirical
researchers in social sciences in settings that are important in practice. This survey is an
attempt to put these methods in context and show the close relationship between various
approaches, including two-way-fixed-effect and synthetic control methods, to provide
practitioners with additional guidance on when to use the various methods.

11.1. The Blocked Assignment Setting

Although the standard TWFE estimator (simplifying to the double difference or DID
estimator in the special case with the blocked assignment) continues to be widely used,
there are now methods available that have superior properties in settings with both cross-
section and time dimensions at least modestly large. (In cases with few units and few
time periods, there may not be enough information in the data to go beyond the simpler
methods.) These methods relax the parallel trends assumption that is unattractive both
from a conceptual perspective (because it is tied to a particular functional form) and
from a practical perspective (because it is unlikely to hold over long periods of time).
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Some of the new methods allow for factor structures that generalize the two-way fixed
effect setup. Others use synthetic control approaches, sometimes in combination with
fixed effects. While none of these methods is likely to dominate uniformly, preliminary
simulation evidence in the blocked assignment case (e.g., Arkhangelsky et al. (2021))
suggests that many of them dominate TWFE in realistic settings. Recent results in
Arkhangelsky and Hirshberg (2023) also suggest that some of these methods, in particular
those based on synthetic control, dominate TWFE in settings with more complicated
selection mechanisms.

11.2. The Staggered Adoption Case

The staggered adoption case, common in empirical work, opens up new opportunities
for estimation strategies (exploiting the variation in adoption times), but also forecloses
some options (the standard synthetic control estimator). Some of the recent proposals
modify the TWFE estimator and relax the parallel trends assumptions by limiting the
comparisons between treated and control outcomes to a subset of the set of possible
comparisons. This subset may avoid comparisons distant in time, avoid the use of units
that are to be treated at a future date as controls, or, in contrast, avoid the use of units
that are never treated. In all cases there is an asymmetry in the way treated outcomes and
control outcomes are used that does not appear to do justice to the ex ante arbitrariness
in the treatment versus control labels. There have not been systematic simulation studies
that are informative about realistic settings. Nevertheless, we expect that methods that
model both treated and control potential outcomes, implying models for both control
outcomes and treatment effects, taking account of dynamic effects as the earlier panel
literature did more carefully, will be the most effective.
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