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Figure 1: Mobile Apps: Revenues and Global Reach
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Notes: The left panel is mobile app revenue by year (solid red line) and ad revenue as a percentage of
this revenue (dashed line). Data are from Statista. The right panel uses data on the share of users who
are foreign for each of 35,575 apps in our data. The panel plots the cumulative distribution of these
shares. The thick line cumulates over all apps and the thin line cumulates over small apps (apps with
below-median numbers of users).

Digital services are the fastest growing component of international trade, already
accounting for a quarter of world exports and a third of US exports (OECD, 2023). A
dynamic component of this trade is mobile app services. Mobile apps did not exist two
decades ago, yet they now dominate the lives of many and are valued by consumers at
$2.5 trillion (Brynjolfsson, Collis, Liaqat, Kutzman, Garro, Deisenroth, Wernerfelt, and
Lee, 2023). Worldwide mobile app revenue has grown spectacularly, tripling in the last
six years to hit $465 billion in 2022. See the left panel of figure 1. While these revenues
are not all trade flows, the international trade dimensions of mobile app services are on
full display each time we open our smartphones. Users of mobile apps around the world
network with friends (Facebook, developed in the USA), stream short videos (TikTok
developed in China), listen to music (Spotify, developed in Sweden), navigate (Waze,
developed in Israel), and play games (PUBG, developed in South Korea). When the user
and developer are located in different countries, the developer is exporting a service to
a foreign user. The share of a typical app’s users who are foreign is shockingly high.
We have computed these shares for the most popular 35,575 mobile apps over 2015–2020

and plotted their cumulative distribution in the right panel of figure 1. Consider TikTok.
Despite being low in the distribution, just below the 20th percentile, almost half of its
users are foreign. Foreign shares are even higher for YouTube and Facebook. High
foreign shares are common throughout the size distribution of apps. Small apps (the
thin blue line) have the same profile as all apps (the thick red line). These levels of
foreign penetration are vastly higher than those for US and French manufacturers (Eaton,
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Kortum, and Kramarz, 2004, table 1) and for online web-based services (Alaveras and
Martens, 2015, table 2).

An important feature of many mobile apps is their use of artificial intelligence (AI),
both algorithms and data. For example, Facebook tracks its users and feeds the data into
algorithms that personalize content, recommend friends, categorize images, translate,
chat and more. All of these improve the user experience, which leads to more personal
data per user and more users. See Aral (2021) for an in-depth discussion and Sun, Yuan,
Li, Zhang, and Xu (forthcoming) for recent evidence on the value of personal data. In
this paper, we examine the impact of AI on international trade in mobile app services
and how this impact is mitigated by regulations restricting cross-border data flows.

The impact of AI on international trade has received almost no academic scrutiny:
Brynjolfsson, Hui, and Liu (2019) study the impact of machine translation on eBay’s
e-commerce and Beraja, Kao, Yang, and Yuchtman (2023) study the impact of Chinese
surveillance policies on China’s exports of facial recognition technologies. We study
the impact of AI algorithms on a large variety of internationally traded digital services,
namely 35,575 mobile apps that cover a wide spectrum of products from games to
productivity tools to social networking. The AI algorithms, mostly deep learning, are
those described in the 63,679 AI patents owned by app developers. We feed our app and
patent data, both of which come with rich text descriptions, into a large language model
that identifies which apps use which AI algorithms. We explain how below. Our first
result is that when AI is deployed in a mobile app, the number of foreign users (meaning exports
of the app service) increase by orders of magnitude. Ours is thus the first study of how AI
impacts international digital service trade across a wide variety of products. Of course,
the decision to deploy AI is endogenous and therefore requires an IV strategy, which we
describe below.

The rise of AI in mobile apps has led to a massive migration of data across interna-
tional borders. Foreign user data is moved to headquarters computing facilities where it
is used in increasingly sophisticated AI models. This has led to an explosion of conflicting
rules governing cross-border data flows. At one extreme, the US pushes for international
agreements promoting freedom of data flows. There are now 72 such international agree-
ments (Nemoto and López González, 2021). At the other extreme, China effectively bans
all exports of data and is rapidly exporting its state-based regulatory model worldwide.
In between, the EU allows data transfers as long as user rights such as privacy are
protected. See Bradford (2023) and O’Shaughnessy (2023). Figure 2 plots the number
of restrictions on international data flows by year. The rate of increase was greatest just
as mobile apps exploded in popularity.

Despite the rapid rise of conflicting international regulations that promote and restrict
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Figure 2: Restrictions on Cross-Border Data Flows
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Notes: This figure plots the number of data protection regulations by year. These are regulations relating
to international data transfers and local storage requirements (data localization). We are grateful to
Casalini and López González (2019, figure 1) for providing the data.

cross-border data flows, these have not been studied empirically by academic interna-
tional trade economists.1 We study how regulations restricting cross-border data flows
degrade the effectiveness of AI as a tool for improving app quality and hence as a tool
for promoting exports of mobile app services. We do this by combining our mobile app
data with custom runs of the OECD Digital Services Trade Restrictiveness Index (Ferencz,
2019). Our second result is that AI’s impact on the number of users in foreign country n is halved
if country n heavily restricts cross-border data flows. This explains why Google, Facebook,
OpenAI and other firms lobby for digital trade agreements that deregulate cross-border
data flows, which in turn explains the pressure on governments to negotiate agreements
despite privacy and national security concerns.

IV strategy: Our results are based on regressions of an app’s number of foreign users on
a measure of the AI deployed in the app. AI deployment is a firm choice variable and so
is endogenous. We develop a model of mobile app trade and AI adoption decisions that
provides a theory-consistent estimating equation and instrument. The model predicts
that AI is adopted (a) in countries where AI inputs are relatively inexpensive and (b) in
industries where AI inputs account for a large share of costs. Examples of mobile app
industries are social networking (high AI cost share) and gaming (low AI cost share).
This insight leads to a Heckscher-Ohlin-like cost-shifter instrument for AI adoption: AI
is deployed in a country-industry pair when (a) the country is AI-abundant and (b) the
industry is AI-intensive.

1We are aware of only two non-academic studies, by the USITC (Herman and Oliver, 2022) and the
OECD (López González, Sorescu, and Kaynak, 2023).
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Summarizing, we show that:

1. AI causally increases international trade in mobile app services by 2.67 log points
or by more than 10-fold.

2. This increase is halved by restrictions on cross-border data flows.

Further, these restrictions are most severe in autocracies. There are many other questions
we can address e.g., what is the role of gravity. However, due to space limitations, we
only examine international trade questions related to AI.

Use of a Large Language Model (LLM): To conduct our analysis we must link apps to
AI algorithms. Linking individual patents to individual products is notoriously difficult.
It has never been done in the international trade literature or, to our knowledge, in
any field of economics.2 All apps have detailed product descriptions that are used by
consumers when choosing apps. Critically, these descriptions are amenable to natural
language processing (NLP). Likewise, each patent has text that is amenable to NLP. The
novel way we use NLP on app descriptions and patent texts is best explained using a
simple scenario. Consider an app developer with a single app a and a single AI patent
p. We feed the app description and patent text into Google’s LLM, called BERT, and ask
it whether the app likely uses the algorithm in the patent. The answer comes back in the
form of a cosine similarity ρap which is large (small) if the app and patent texts deal with
similar (dissimilar) subject matter.3 The reader who has used ChatGPT, which is based
on the same ‘transformer’ algorithm as BERT, will appreciate the unexpected power of
LLMs to extract meaning from text. In the simple scenario above, we measure the AI
embodied in app a by AIa = ρap. A generalization of this to tens of thousands of apps
and patents and 2.4 billion ρap, leads to our key regressor measuring the AI deployed in
each app.

Externalities: Given that AI algorithms contain nonrival ideas that diffuse across firms,
we distinguish between knowledge coming internally from the firm’s own patents (AIa)
and knowledge coming externally from other firms’ patents. Building on our simple
scenario, suppose there is a second app developer with a single app a′ and no patents.
Using standard techniques such as patent citations, we would not include the second app
developer in the analysis of externalities because it has no patents and hence no citations.
In our novel methodology, we are able to measure the external AI embodied in app a′

2The linking of patents to industries and product groups has a long lineage e.g., Kortum and Putnam
(1997). An excellent recent example is Argente, Baslandze, Hanley, and Moreira (2023), who cluster Nielsen
barcode-level products into 400 groups and link these to patents. We note in passing the link of patents
to occupations in Webb (2020) and Stapleton and Webb (2023) as well as the link of firms to industries in
Hoberg and Phillips (2016) and Pellegrino (2023). None of these papers drill down to the product level
and none use LLMs.

3App descriptions are consumer-facing while patent texts are engineering- and legal-facing. They thus
do not share common words and so cannot be linked using older word frequency techniques such as TFID.
An LLM is needed.
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using its cosine similarity with the first firm’s AI patent. This allows us to expand the
set of firms under study to the large mass of firms with no patents. It also allows us to
estimate our third result:

3. External AI has economically and statistically significant impacts on international
mobile app trade. Externalities are important and affect almost all exporters in the
economy.

This provides support for mechanisms emphasized in endogenous growth theory e.g.,
Grossman and Helpman (1991).

Literature

Little is known about AI’s impact on international trade and even less about these
impacts specifically on digital service trade. Brynjolfsson et al. (2019) show that eBay’s
introduction of a machine translation system increased its exports by 17.5%. Beraja,
Yang, and Yuchtman (forthcoming) show how Chinese government security contracts
for facial recognition software provided confidential security data to Chinese firms, data
that improved these firms’ products. Beraja et al. (2023) then show how this increased
China’s exports of facial recognition technologies. Our paper scales up their excellent
research to tens of thousands of products and multiple AI technologies, digs into the
adoption decision and cross-firm diffusion mechanisms, and embeds the analysis within
an international trade model.

Sun and Trefler (2022) use a subset of the data used here. They do not use an LLM,
but instead link patent data to mobile app industries. They examine the impact of AI on
foreign downloads, the entry and exit of apps, and the welfare gains from mobile app
trade. There is thus little overlap with the current paper. Goldfarb and Trefler (2019) and
Ferencz, López González, and García (2022) provide qualitative discussions of how AI
impacts international trade.4

Digital Service Trade Restrictions and Trade: Herman and Oliver (2022) find only weak
evidence that trade in services is increased by trade agreements with provisions for free
data flows. López González et al. (2023, appendix table E.10) investigate the impact
of digital trade restrictions on trade using multiple measures of restrictions and trade.
When using a broader set of digital restriction than we do, they find large negative effects

4There are other related papers that our tangential to our study in that they do not directly measure AI
or work with digital service trade. Bailey, Gupta, Hillenbrand, Kuchler, Richmond, and Stroebel (2021) use
Facebook data to construct bilateral social connections between countries and show that these are a more
powerful determinant of bilateral trade than are traditional determinants such as distance and borders.
Unlike our research, they work with trade in goods. As well, there is a vibrant literature on robots and
trade. See Stapleton and Webb (2023) and the collection of articles in Yan and Grossman (2022).
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of restrictions on trade in goods and services. AI is not part of their study. Goldfarb and
Tucker (2019) survey the impact of regulation on the digital economy more generally.5

AI, Ads, and the Long Tail of Exporters: Our finding that even small apps have large
foreign shares is related to Arkolakis (2010) and Eaton, Kortum, and Kramarz (2011).
Advertising plays a large role in this finding and our model draws heavily on Arkolakis
(2010).6

Externalities and Trade: There is a healthy literature on externalities and trade starting
with Coe and Helpman (1997) and most recently by Aghion, Bergeaud, Gigout, Lequien,
and Melitz (2021). See Melitz and Redding (2023) for a survey. Firm-level analysis, as in
Aghion et al. (2021), examines goods trade and patenting. We examine the impact of AI
and data restrictions on digital service trade, and offer a novel measure of externalities.

The Internet and Trade: There is a large literature on online services involving a visit
to a foreign-hosted website e.g., Freund and Weinhold (2002, 2004), Blum and Goldfarb
(2006), Alaveras and Martens (2015), and Lendle, Olarreaga, Schropp, and Vézina (2016).7

Chen and Wu (2021) and Carballo, Rodriguez Chatruc, Salas Santa, and Volpe Martincus
(2022) look specifically at e-commerce websites (platforms) and show that they help
producers export more. There is an established literature on mobile apps (e.g., Ershov,
forthcoming, Bian et al., 2023), but it does not deal with AI.

This paper is organized as follows. Section 1 provides background on mobile apps
and artificial intelligence. Section 2 describes the data on mobile apps and AI patents,
and explains the LLM linking procedure. Section 3 lays out the theory underpinning
the estimating equation and instrument. Section 4 contains the IV regressions of mobile
app service exports on AI (result 1). Section 5 contains the IV regressions involving
the interaction of AI with restrictions on cross-border data flows (result 2). Section 6

examines the impact on mobile app service exports of AI knowledge spillovers (result 3).

1. Overview of AI in the Mobile App Industry

How is AI used in mobile apps? This is complicated because there are so many AI
algorithms and so many uses. Painting in very broad brushstrokes, the app producer
wants to maximize profits and typically uses AI to improve revenues rather than reduce
costs. Mobile app revenues come from three sources: 10% from streaming services (music

5Since that survey, several papers on privacy restrictions have appeared. For examples, see Johnson’s
(2022) survey of GDPR and the Bian, Ma, and Tang (2023) analysis of changes to Apple’s privacy policy.

6High foreign shares are also related to the internet literature on long tails (niche products) versus
superstars (large products) e.g., Bar-Isaac, Caruana, and Cuñat (2012). Sun et al. (forthcoming) ties long
tails to AI in an e-commerce setting, but without an international dimension.

7Blum and Goldfarb and Lendle et al. show that distance matters for online services and matters because
of spatially correlated tastes. See Goldfarb and Tucker (2019, section 5) for a broader discussion.
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and video), 20% from gaming apps, and 70% from advertising. See the dashed line in
figure 1. Revenues thus depend on the number of ads displayed and click through rates
per ad, which in turn depend on the number of users, time spent per user, and ad
personalization. This paper is about the impact of AI on the number of users.

Some examples illustrate AI’s impact on the number of users. Candy Crush does
not use AI, but plans on using it to create more frequent content updates. This keeps
users engaged. Other potential uses of AI for Candy Crush include calibrating to the
user’s skill level (avoids user frustration) and personalizing the timing of rewards (keeps
the user addicted). In battle royale games, AI is used to personalize interactions with
non-player characters. Games typically use less AI than most app categories. The
FaceBook social networking app deploys AI for (1) vision and image recognition that
categorizes content, (2) recommenders for personalized content such as social interac-
tions with friends and news feeds, (3) content moderation, (4) translation, (4) chatbots
for business pages, and much more. All of these improve the user experience, which
attracts new users and improves user retention. In short, AI is used in many ways in
many apps.

We next describe the mobile app industry. It was born in the second half of 2008

when Apple’s App Store was opened with 500 apps for the newly released IPhone 3G.
The mobile app market then exploded so that it was well-established by the start of
our sample in 2015. There are no systematic data on revenues or profits by app. Even
purchase price is usually not available as 94.9% of our apps are free to use.8 Absent
good revenue and profit data, the best available measure of app success is the number of
active users. Many apps include code that tracks each time the app is opened and some
apps track each time any app is opened. (Yes, you are being tracked.) Data purveyors
use this information to calculate the number of people that open the app at least once
in a calendar month. This measure of user engagement is called ‘monthly active users’
or ‘users’ for short. It is sold commercially to investors and app developers for business
analytics, notably as a predictor of revenues. We will use this measure.

An example illustrates the role of user numbers as an indicator of revenues. MIT
professor Sinan Aral (Aral, 2021, page 204) describes how the central room in his startup
office was dominated by a large screen displaying real-time data on the number of
users and time spent per user, “the two metrics that were most critical for managing

8Revenue data that are systematically collected, called ‘in-app’ revenue, miss most advertising revenue
and miss most revenues of big, AI-intensive apps. (Recall from the left panel of figure 1 that 70% of
revenues are from ads.) For example, in 2020, the Facebook app had almost no in-app revenue despite
its parent company Meta reporting $84 billion in digital ad revenues. As Goldfarb and Tucker (2019,
page 20) note, “many of the largest online companies — in terms of revenues, profits, and users — are
advertising-supported.”’ Not surprisingly, then, we estimate that in-app revenue is no more than one-third
of total revenue and likely closer to one-tenth. We base this on figure 1, Sensor Tower (2021), and Analysis
Group (2023).
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the business ... That, in essence, determined how much we were worth.” Users meant
eyeballs and eyeballs meant ad revenue. As the old adage goes, “If you are not paying
for the product, you are the product."

Turning to the history of AI, a brief narrative can be built around the contributions of
the three ‘godfathers of AI.’ Their pre-2008 contributions include backpropagation (1986,
co-authored by Hinton), convolutional neural networks (1998, co-authored by LeCun and
Bengio), and deep learning and generative models (2006, co-authored by Hinton). With
very few exceptions, AI was not used in commercial applications before 2012 (Agrawal,
Gans, and Goldfarb, 2018) and worldwide funding for AI did not take off until 2013

Aral (2021, figure 3.2). In that year, Hinton’s team scored a high-profile success in the
Imagenet contest and the next year Hinton and LeCun accepted positions at Google and
Facebook, respectively. After 2012, AI diffused slowly into industry. This is documented
in figure 3, where the vertical lines at 2015 indicate the start of our sample. Significant
ML advances developed by the private sector accelerated starting in 2014. US postings
for machine learning jobs accelerated starting in 2015. AI publications accelerated in
2018, after the commercial potential of AI was proven. Finally, the number of parameters
in significant ML models, a common measure of AI sunk and fixed costs, rose after 2015

and especially after the appearance of transformer-based LLMs in 2018. The log scale in
this panel obscures the fact that between 2019 and 2020 the measure grew 60-fold. This
history means that firms investing in machine learning well before 2012 likely did so
without a specific mobile app in mind. This will play into our IV strategy where we use
an app developer’s pre-2008 AI patent filings as a cost-shifter instrument for its post-2015

AI sunk and fixed costs.
Finally, deep learning was not used in mobile apps until 2016. Pre-deep-learning AI

was used in mobile apps after 2012 and continues to be used. For example, recom-
menders (“If you like this, then you will like that”) often use ensemble methods such
as clustering, tree classifiers, and nearest neighbours. See Lee and Hosanaga (2019) for
recent examples. Thus, this paper is not exclusively about deep learning.

2. Data

2.1. Mobile App Data

We purchased proprietary data from Sensor Tower, which collects data on apps available
on the App Store and Google Play Store. At the time of purchase, we concluded that
Sensor Tower had the most accurate user data. Sensor Tower tracks monthly active users.
We average across months to annualize the data. This average is our dependent variable.
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Figure 3: Commercialization of AI
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Fattorini, Brynjolfsson, Etchemendy, Ligett, Lyons, Manyika, Ngo, Niebles, Parli, Shoham, Wald, Clark,
and Perrault (2023). ‘ML Advances by Industry’ are defined as significant ML models developed by
the private sector. ‘ML Sunk and Fixed Costs’ are defined as the number of parameters of significant
machine learning systems. ‘Job Postings’ are from Goldfarb, Taska, and Teodoridis (2023) and Lightcast
(https://lightcast.io/resources/blog/lftce-04-13-2023).

We have data for the top 2,000 app developers (firms) as measured by their 2014–2020

app downloads. It is essential for our study that we link these firms to their AI patents.
We laboriously hand-matched each firm with a firm in the Bureau van Dijk (BvD) Orbis
IP database, which gives us each firm’s patent portfolio. We matched 1,276 of the top
2,000 firms and are very confident that unmatched firms are not in the BvD database.
They are either government-owned, dissolved, or small private firms. The latter are
mostly tiny game studios with a brief-lived success.9 Our analysis is at the app level.
The 1,276 firms together have 35,575 apps with user data. The median app has 65,000

9We initially matched using a variety of well-known algorithms such as FuzzyWuzzy, but these pro-
duced poor match rates. We also hand-matched as many of the next 3,000 firms as possible, but match rates
were low, again because the firms are likely not in BvD. Note that Sensor Tower unifies and standardizes
app ids and firm names, which makes matching easier and more accurate.
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users.10

We link to Orbis IP in order to track all patents owned by a business group, including
all of its subsidiaries e.g., Alphabet owns Google, Waze and DeepMind. Also, Sensor
Tower tracks where each app was developed. For example, US-based Google bought
Israel-based Waze and Sensor Tower correctly treats Waze as developed in Israel. Sensor
Tower data are not always perfect so we improve their data using the Orbis M&A
database to allocate apps made by subsidiaries to their country of origin. In the final
data, the biggest producers of apps are the US (24% of all apps) and China (11%). More
data details appear in Appendix A.

2.2. AI Patent Data

The World Intellectual Property Office (WIPO) has invested heavily in tools for iden-
tifying AI patents. See WIPO (2019) for an example. We exactly follow the WIPO
methodology as described in WIPO (2018). For each patent we check if it meets one
of three criteria.

1. The CPC code is an AI algorithm e.g., G06N 3/02 is neural networks.

2. The title or abstract has a keyword identifying it as an AI algorithm, where exam-
ples of keywords include deep learning, natural language processing, supervised
learning, reinforcement learning, and gradient tree boosting.

3. The CPC code is potentially about AI and the title or abstract has an AI-related
keyword e.g., GTL-013 is speech synthesis and is identified as AI if the title or
abstract contain the keyword ‘embedding.’

See WIPO (2018) for details. Our 1,276 firms have 10,144,089 patent filings, of which
63,679 are AI patent filings.

A natural question is the extent to which our AI patents cover deep learning as op-
posed to machine learning more generally. We do not have an exact answer, but a simple
check suggests that the majority deal with deep learning. We computed the frequency
of keywords in our AI patents and grouped them as deep learning (DL), non-DL, and
unclassified. The unclassified patents typically only have the general keywords “artificial
intelligence” or “machine learning.” Of the classified patents, 90% have keywords that
are unambiguously DL.

The left panel of figure 4 plots the cumulative number of patents that are unambigu-
ously deep learning. In 2000, just under 100 such patents were filed annually and the

10Online appendix figure A2 shows that, after netting out the top 100 blockbuster apps, our sample of
apps is representative of the apps of the top 5,000 app developers.
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Figure 4: Rise of Deep Learning
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Notes: The figure plots the cumulative number of patent filings by firms in our sample from 1992 to year
t. The left panel is for patents that we unambiguously classify as deep learning patents. The right panel is
for all AI patents.

cumulative filings hit the 1,000 mark. By the end of our sample, over 6,000 were filed
annually and the cumulative was 24,370.11

2.3. Linking AI Patents to Apps

In this subsection, we explain how we link AI patents to mobile apps. We assume that
the reader is not overly familiar with LLMs. Details for experts appear in Appendix
B. App descriptions are consumer-facing while patent texts are engineering- and legal-
facing. They thus do not share common words and so cannot be linked using older
word frequency techniques such as TFID. An LLM is needed. Most modern LLMs
are based on transformers (Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser,
and Polosukhin, 2017). A transformer extracts features from a user-submitted text and
represents these features as a numeric vector called an embedding. Think of the vector as
an arrow connecting the inputted text to one of the LLM’s subject areas. The subject areas
are created during the very expensive training stage of the model, which is why LLMs are
often called pre-trained models. Note that the embedding is not about the user-submitted
text per se, but about where that text is located within the pre-trained model’s subject

11One objection to patent data is that firms do not patent much and instead rely on trade secrets. This
objection is misleading. The right panel of figure 4 shows that there are indeed many AI patent filings.
Further, these grew exponentially once the commercial potential of AI became clear. Second, a senior
Google executive told us that while Google does not file patents to prevent infringement of its technology,
Google definitely files patents to deter other firms from suing Google and to cross-licence in exchange for
other firms’ technologies. Third, small firms use patents to raise capital (Hochberg, Serrano, and Ziedonis,
2018). Thus, while AI patents may be weak as protection against infringement, they are still of great value
to firms large and small and so paint a picture of firms’ AI research.
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areas. To use a familiar example, consider ChatGPT. ‘P’ stands for pre-trained and ‘T’
stands for transformer. The user does not train the model. Instead, the user submits a
text query to the pre-trained model, and the model returns a numeric embedding. A
novelty of ChatGPT is that the numeric embedding is then rebuilt as text that the user
can read.

The LLM we use is Google’s BERT. BERT was widely considered to be the best LLM at
the time we started our research long before the release of ChatGPT. It is still considered
to be a top LLM.12 As recommended by Google (see Devlin, Chang, Lee, and Toutanova,
2018), and following standard practice, we interpret the cosine of the angle between two
embeddings (‘cosine similarity’) as the degree to which two embeddings point to the
same subject area.13 We can now define what we mean by the AI deployed in an app.
Let a and p index apps and patents, respectively, and let ρap be the cosine similarity
between the embeddings of a’s app description and p’s patent text. ρap is our measure of
the AI in patent p deployed by app a.

With 35,575 apps and 63,679 AI patents, we have computed 2.4 billion ρap. There is
some randomness to LLM responses (think of what happens when you ask ChatGPT to
regenerate an answer). We therefore set a threshold ρ below which a cosine similarity
is deemed to be non-positive i.e., below which we conclude that the app does not use
information from the AI patent. At risk of an abuse of notation, we redefine ρap so that it
is zero whenever ρap < ρ. As our baseline we choose ρ = 0.2, but we will show that our
results hold for ρ = 0.0, 0.1.

2.4. Key Regressor: The App-Level Measure of AI Deployment

Our interest lies in regressing the number of users of an app on the AI deployed in the
app. We therefore need to aggregate the ρap across patents to get to the app level. Let
Pat be the set of AI patents filed between 1992 and t and owned by the developer of app
a. Our measure of the AI deployed in app a in year t is the sum of the ρap over this set:

AIat = ∑
p∈Pat

ρap (1)

12ChatGPT has more public recognition than BERT because of the former’s user-friendly interface.
However, within the industry it is widely known that the transformer technology was invented at Google
(Vaswani et al., 2017), was first deployed as BERT, and is the basis for Google’s lead in the field. In short,
BERT is a major LLM produced by the largest industry player. If Google is less in the spotlight, it is in part
because Google has been cautious about releasing a potentially dangerous technology. See Financial Times
(2023). Also, in small-scale experiments with ChatGPT, we found that BERT performed slightly better for
our purposes.

13The cosine similarity between two embedding vectors B and B′ with elements bi and b′i, respectively,
is Σi=1bib

′
i/(Σib

2
iΣib

′2
i )

1/2 where by construction of the embeddings Σib2
i = Σib

′2
i = 1. That is, cosine

similarity is an uncentered correlation.
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Figure 5: Bivariate Plots
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Notes: The plots are bin scatters from the OLS regression of ln(ForeignUsersat) on firm fixed effects,
industry-year fixed effects and either ln(AIat) or ln(external AIat). ln(external AIat) is described in
section 6 below.

and AIat = 0 if the developer has no AI patents. One can interpret (1) as a weighted sum
of patents, weighted by the strength of the connection between the app and the patent.
Unrelated patents (ρap = 0) receive zero weight while highly related patents (ρap = 1)
receive a large weight. 27% of apps have positive AIa,2020.

The left panel of figure 5 is a bin scatter from a regression of the log of foreign users
on ln(AIat). Firm and industry-year fixed effects are included. As is apparent, AIat is
correlated with the number of foreign users.

2.5. Validation

In this section we consider validation exercises for our ρap and AIat. We start with an
anecdote about an exchange we had at the NBER Digital Economics and AI Tutorial. We
explained our research to a data scientist working on the Google Map app. His initial
reaction was that our ρap must be invalid because he never looks at patents. We then
showed him the Google patent with the highest cosine similarity to Google Maps. He
looked shocked and responded that this was exactly what he was doing!

Our first validation exercise identifies apps known to use AI and shows they have
high AIat. Machine learning is rarely done on the phone. Instead, APIs send data
and queries to a cloud-based server where the machine learning model is housed and
responses are sent back to the phone. This makes it difficult to know with certainty
whether an app uses AI. However, a small number of apps do deep learning on-phone
and this can be tracked. Each mobile app comes with an installation file (a DMK) and
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Figure 6: Ground Truth: On-Phone Deep Learning
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within this file are software developer kits (SDKs) that may include deep learning SDKs
such as TensorFlow Lite from Google. Xu, Liu, Liu, Lin, Liu, and Liu (2021) examined
16,500 app DMKs available on Google Play in 2018 and found deep learning SDKs on
1.2% of them. Following their method, we downloaded 6,374 DMKs and found deep
learning SDKs on 1.1% of them. This gives us ground truth that these apps use AI. We
calculated percentiles of the distribution of AIat for these 6,374 apps and, in figure 6, we
plot the probability density function (pdf) of these percentiles for the subsample of apps
with on-phone deep learning. If AIat were unrelated to on-phone deep learning, the pdf
would be a horizontal line at y = 1. In fact, the pdf is heavily skewed to the right, which
means that apps known to use deep learning have among the highest values of AIat.

An anomaly in figure 6 is the bump at 0.3. This is in part an artifact of using
a binary indicator of on-phone deep learning (DL). In figure 6, apps to the right all
introduced DL in 2019–2020 while apps to the left mostly introduced DL in 2016-2017

(the earliest years of DL commercialization). This suggests that apps on the left use DL
in a rudimentary way, which is consistent with a lower AIat percentile. Nevertheless,
some of the anomaly is classical measurement error stemming from randomness in the
responses of the LLM. In the presence of classical measurement error, the probability
limit of the OLS estimator is biased downward while the probability limit of the IV
estimator is unaffected (projecting AIat onto the instrument purges the error). This will
create a tendency for IV to exceed OLS.

Our second validation exercise exploits the fact that if two app descriptions have em-
beddings with a high cosine similarity, then they deal with the same subject matter and
hence share the same App Store category. Note that an app’s description does not include
its App Store category so the category information does not enter into our embeddings.
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We validate using a procedure recommended by OpenAI (https://github.com/openai/
openai-cookbook/blob/main/examples/Customizing_embeddings.ipynb). For each pair
of apps a and a′, we know whether they are in the same App Store category (daa′ = 1) or
not (daa′ = 0). Using our app description embeddings, we construct cosine similarities
ρaa′ for each app pair. We then use agglomerative clustering on the ρaa′ to construct a
dummy d̂aa′ for whether the two apps are in the same cluster. We find that daa′ and d̂aa′

agree for 88.1% of app pairs (standard error 0.044%). Details appear in online Appendix
A. Thus, the LLM is able to use app descriptions to precisely predict whether or not
two apps are in the same app category. By implication, the LLM can also predict AI
deployment.14

3. Modelling the Estimating Equation and an Instrument for AIat

In this section we develop a model of mobile app trade and AI adoption decisions that
provides a theory-consistent estimating equation and instrument.

3.1. Consumers

An app a produced in country i is used by a consumer in country n. A consumer must
choose a single app or no app (the outside option). As in our data, apps are free. The
utility an individual obtains from app a is Uani = ln(δ′a) + εani where ln(δ′a) is mean
utility and εani is extreme value I (cumulative distribution is e−e

ε
). The outside option

is indexed by a = 0 and yields mean utility δ′0n. It is costlessly produced and freely
available e.g., a public amenity such as a park. As is well known, the share of country-n
consumers choosing app a is15

δ′a/Un where Un = δ′0n + ∑i ∑a∈Ani
δ′a (2)

and Ani is the set of apps produced in i and available in n. In what follows, we drop a

subscripts unless needed.

3.2. Firms

A firm’s mean utility has two components, δ′ = αδ, where δ is an exogenous component
and α results from an endogenous investment in AI that improves mean utility. AI

14The need to validate BERT can be exaggerated. In the year following the release of ChatGPT, (1) Geoff
Hinton left Google to caution the world that AI is evolving too quickly and (2) Microsoft, Google, and
Nvidia added $2 trillion to their combined market cap. Data scientists and investors have voted with their
feet on the validity of LLM output.

15This share is usually expressed as eln δ′a/
(
eln(δ′0n) +ΣiΣa∈Ani

eln δ′a
)

with δ′0n = 1 so that eln(δ′0n) = 1.
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adopters use AI scientists for all of their activities, meaning sunk, fixed and variable
costs. Each firm incurs an entry sunk cost fAei and draws a δ from the Pareto distribution
G(δ) = 1− δ−γ where γ > 1. If the firm decides to produce, it also incurs a fixed cost fAi .
As we saw in the right-hand panel of figure 1, selection into exporting is weak (most firms
export) so we assume that if a firm operates, it operates in all markets. As Goldfarb and
Trefler (2019) and others have noted, the countries with large numbers of AI scientists are
also the countries that develop the large models plotted in the ‘ML Sunk and Fixed Costs’
panel of figure 3. We capture this in a reduced-form way by assuming that the number
of AI scientists used for sunk and fixed costs is increasing in the country’s endowment
LAi of AI scientists:

fAei = (LAi )
ψfei and fAi = (LAi )

ψfi (3)

where ψ ∈ [0,1) controls the strength of the effect and fei and fi are positive constants.
A firm can raise its mean utility by hiring AI scientists to improve the quality of the

app. Specifically, the firm can raise mean utility from δ′ = δ to δ′ = αδ by hiring η−1
η α

η
η−1

AI scientists. We assume η > 1.
Firms earn revenue by displaying ads. We assume that firms display one ad per user.16

When advertising to a user in country n, the firm receives revenue pn per ad and hence
per user. The number of users of the app in country n is the total number of consumers
(Ln) times the firm’s share of consumers (αδ/Un). Hence, the firm’s revenue in market n
is pn[αδ/Un]Ln. The firm’s total revenue is αδP where

P ≡∑
n

pnLn/Un . (4)

The firm’s profit function is

πAi (α,δ) = αδP −wAi
(
η− 1
η

α
η
η−1

)
−wAi fAi

where wAi is the wage of AI scientists. Maximizing profits with respect to α subject to
α ≥ 1, the interior solution is

α(δ) = δη−1
(
wAi
P

)−(η−1)

. (5)

That is, the higher is a firm’s quality δ, the more it sells and hence the more it invests in
AI to improve its app. This is the standard scale effect in innovation (e.g., Schmookler,
1954, Lileeva and Trefler, 2010). Further, the lower are AI wages, the more intensively AI
is used. That is, demand for AI inputs slopes downward.17

16It does not change our results if the number of ads a firm displays is proportional to the popularity of
the app e.g., proportional to a power function of δ or αδ.

17ηfAi (LAi )
ψ > 1 is a necessary and sufficient condition for an interior solution. See Appendix C for a

proof. We assume this condition holds.
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Plugging α(δ) back into the expression for profits we obtain

πAi (δ) = wAi

{
δη
(
wAi
P

)−η 1
η
− fAi

}
. (6)

A firm produces if profits are positive. Defining the zero-profit cutoff δAi implicitly by
πAi (δ

A
i ) = 0, a firm produces if δ > δAi where

δAi =
wAi
P

(
ηfAi

)1/η
. (7)

Higher wages or fixed costs make it tougher to survive.

3.3. Equilibrium in App and Labour Markets

The free entry condition (expected profits are zero) is∫ ∞

δAi

πAi (δ)dG(δ) = wAi f
A
ei (8)

where we require γ > η for the integral to be finite. Let MA
i be the mass of firms who

pay the sunk cost. The labour-market clearing condition equates labour supply LAi with
labour demand:

LAi = MA
i

{
fAei +

∫ ∞

δAi

[
fAi +

η− 1
η

α
η
η−1

]
dG(δ)

}
. (9)

The right-hand side of (9) states that each firm must incur the sunk cost fAei and, if
it operates (δ > δAi ), the fixed cost fAi as well as the AI improvement cost. As in
Fajgelbaum, Grossman, and Helpman (2011) we treat MA

i as if it were a continuous
variable to facilitate the exposition. The above equations imply

δAi =

(
fi
fei

η

γ − η

)1/γ

,
wAi
P

= (LAi )
−ψ/η κ, MA

i =
(LAi )

1−ψ

γfei
(10)

where κ ≡ [η fi]
1/γ−1/η [(γ − η)fei]−1/γ . See Appendix C for a proof. Importantly for our

IV strategy, an AI-abundant country (large LAi ) has a low relative wage wAi /P .18

Re-introducing an app subscript on δ in order to identify the app, let Useran =

[α(δa)δa/Un]Ln be the number of country-n users of app a. We now state our main
result.

18The negative relationship between wAi and LAi requires ψ > 0, which we justified on empirical grounds;
however, the negative relationship is intuitive and can be obtained in other ways.
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Theorem 1 Country n’s demand for app a is

ln(Usersan) = lnα(δa) + ln(Ln/Un) + ln δa . (11)

The optimal AI deployed in app a is

α(δa) =
[
δa (L

A
i )

ψ/η / κ
]η−1

. (12)

See Appendix C for a proof. Equation (11) is the basis for our estimating equation.
Equation (12) is the basis for our IV strategy. We know from equation (10) that an
AI-abundant country has a low relative wage for AI scientists. Equation (12) states that
firms in an AI-abundant country thus use more AI-intensive choice of techniques.

The above is not a general equilibrium model because we have not described the
demand for advertising and so have not solved for the price of ads in each country, pn.
In online Appendix B we introduce a CES goods sector that uses the Arkolakis (2010)
advertising technology. This allows us to solve for the pn and close the model.

3.4. The Trade Prediction and a Model-Based Instrument for AI Adoption

We make two generalizations of the model to match important features of the data. First,
consumers often have many apps on their phones. We realistically assume that there are
many app industries (e.g., social networking and gaming) and that consumers either buy
one app or no app within each industry. We index app industries by c. (App industries
are called categories in the App Store.)

Adding c subscripts to the theorem 1 parameters (ηc, γc,ψc, fic,feic, δac), for an app a

in industry c we can rewrite (11) as

lnUsersanc = lnαc(δac) + λnc + εanc (13)

where λnc ≡ ln(Ln/Unc) is a country-industry fixed effect and εanc ≡ ln δac is a residual.
When country n is not the producer of app a, this is a regression of foreign users on AI
deployment αc(δac).

The endogeneity of αc(δac) is apparent. Firm heterogeneity is due to heterogeneity in
mean utilities ln(δac) i.e., heterogeneity in demand. A high level of demand is associated
with both high AI deployment and a high residual. We thus need a supply-side cost-
shifter of AI as an instrument for AI deployment. Equation (12) is the basis for this
instrument. To see this, we note that some app industries are more amenable to AI
than others. The marginal cost of improving an industry-c app is wAi α

1/(ηc−1)
c , which

is decreasing in ηc. That is, ηc is a measure of how inexpensive it is to improve an
app using AI and thus stands in for the AI-intensity of the industry. From theorem
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1, lnαc(δac) is supermodular in (LAi , ηc).19 To interpret this it is useful to think about
the Heckscher-Ohlin model in which the AI-abundant country exports the AI-intensive
industry. Here, LAi is like the AI abundance of country i and ηc is like the AI intensity of
industry c. Supermodularity implies that AI investments αc(δac) will be high in industry
c in country i when c is AI-intensive and i is AI-abundant. Thus, ηc× LAi is a model-based
instrument for AI deployment.

In our model all firms invest in AI, but in the data, many firms have no AI patents. To
accommodate this data feature, in online Appendix C we extend the model to allow firms
the choice of whether or not to deploy AI and in equilibrium not all firms deploy. This
is a second source of endogeneity, namely, the decision of whether or not to do any AI.
To instrument for this endogeneity, recall that mobile apps did not exist before mid-2008,
machine learning was in its infancy in the 2000s (figure 4), its commercial potential was
only beginning to be recognized in 2012 (figure 3), and the first trickle of mobile apps
using deep learning appeared only in 2016. We conclude from this that AI patents from
2008 or earlier were not directed at improving the quality of apps during 2015–2020, that
is, they do not belong in the second stage and so meet the exclusion restriction. We
operationalize this as follows. For any app a, let f(a) denote the firm that developed a.
Let Df(a),τ be a dummy equal to one if the firm producing a had filed an AI patent on or
before year τ . Then our instrument becomes

ηc × LAi ×Df(a),τ .

We will show that our results are the same for any of the years τ = 2006, . . . , 2011. We
use 2008 in our baseline specification.

Finally, in online Appendix D, we model Df(a),τ by introducing incumbents into the
model. These are firms who, in a pre-period τ before the model opens, developed AI
research capabilities and so already incurred the sunk costs fAei . When the model opens
they can thus deploy AI in mobile apps without incurring additional sunk costs. We
show that this does not alter theorem 1. However, it leads to the new and sensible
prediction that incumbents (firms with Df(a),τ = 1) are more likely to be AI adopters.
This result provides a theory-consistent rationale for adding Df(a),τ to our instrument.

3.5. Construction of the Instrument

AI intensity ηc: Consider an app a developed by firm f = f(a) and part of industry
c = c(a). An obvious definition of industry is the App Store categories such as social
networking and games. There are 15 categories. Let Ac(a),t be the set of apps in industry
c(a) in year t, excluding all apps developed by f(a). We exclude these apps in order to

19 ∂2 lnαc(δac)
∂ ln(LA

i )∂ ln(ηc)
= ∂

∂ ln(ηc)

[
∂ lnαc(δac)
∂ ln(LA

i )

]
= ∂

∂ ln(ηc)
[ψ(ηc − 1)/ηc] = ψ/η2

c > 0.
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purge the instrument of any information about app a that might be correlated with the
second-stage residual. We construct ηc(a),t in two steps. For each app a′ ∈ Ac(a),t , we
average the ρa′p across all patents filed on or before year t by firm f(a′). Then we average
across all apps a′ in Ac(a),t. In simple words and setting aside details, ηc(a),t is the average
value of the AI embodied in the apps of industry c.

This way of calculating ηc(a),t suffers from the fact that App Store categories are very
broad. For example, battle royale games such as Call of Duty and Fortnite usually use
AI while puzzle games such as Candy Crush Saga and Royal Match usually do not. To
deal with this, recall from our second validation exercise that if two apps a and a′ have
a large cosine similarity ρaa′ , they are correctly predicted to be in the same App Store
category. We can therefore use the ρaa′ to construct narrower industries. To this end,
redefine Ac(a),t as the set of ten apps a′ with the largest ρaa′ and calculate ηc(a),t as before,
but with Ac(a),t redefined in this way. Our results are not sensitive to using many more
or many less than 10 apps. We use this definition of At in our baseline results, but the
results are almost identical when we define Ac(a),t using App Store categories.

To give the reader a sense of the ηc(a),t we averaged them across all a within App
Store category c and across all years. The ranking of categories by this average is, from
largest to smallest: Developer Tools, Business, Social Networking, Education, Sports,
Books, Entertainment, Finance, Music, Weather, Shopping, Navigation, Lifestyle, Food
and Drink, and Games. This accords well with the practitioner literature on mobile apps.

AI abundance LAi : We need a measure of the supply of AI scientists or, more generally, a
measure of access by app developers to AI expertise in country i. We start with Microsoft
Academic Graph (MAG), which is a comprehensive database of academic articles. We
extract all articles labelled in MAG as “Artificial Intelligence” and published between
1992 and 2020. For each article, MAG lists the authors’ institutional affiliations as well as
citations by year. We sum across citations from 1992 to year t and across all institutions
located in country i. This gives us a citation-weighted number of AI publications by
country and year, which we use to proxy for the number of AI scientists LAit . The logic is
that AI researchers train university students who then go on to work in industry. More
researchers means more trained AI scientists in industry. Counting citations rather than
authors adjusts for the quality of the author and hence for the quality of training. Online
appendix figure A3 plots LAi,2008 against GDP per capita in 2008. As expected, the top
countries are USA, China, UK, Germany and Canada.20

20MAG is a large and complex database so we have not experimented with different measures of LAit .
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Instrument: Putting these elements together, our instrument for AIat is

Zat = ηc(a),t︸ ︷︷ ︸
AI intensity

× ln(1 + LAi(a),t)︸ ︷︷ ︸
AI abundance

× Df(a),2008︸ ︷︷ ︸
initial AI status

(14)

where f(a) is the developer of app a, c(a) is the industry of app a, and i(a) is the country
where app a was developed. LA

i(a),t has a small number of zeros so we use ln(1 +LA
i(a),t).

4. Result 1: The Impact of AI on Exports of Digital Services

Our first of three key results is about how AI deployment AIat makes an app more
attractive to foreign users. Since AIat is at the app-year level, we start with app-year
level regressions. To this end, in equation (13) we treat n as a single aggregate foreign
country. We also add year subscripts t and drop industry subscripts c unless necessary.
Then Usersanc becomes ForeignUsersat, the users of app a that are located outside of
the country where app a was developed. Our regression is

ln(ForeignUsersat) = β ln(1 +AIat) + λf + λct + εat (15)

where there are 35,575 apps and six years t = 2015, . . . ,2020. We only include obser-
vations with positive foreign users, leaving us with 125,486 observations.21 The theory
states that there should be industry-year fixed effects λct where industry is the 15 App
Store categories. We also always include firm fixed effects λf . Given that our ‘treatment’
AIat is at the at level, we cluster at the a level to allow for serially correlated errors.

4.1. Baseline

The results appear in table 1. The panels from top to bottom are OLS, IV, first stage,
and reduced form. To fix ideas, consider column 2 of table 1 where we have firm and
industry-year fixed effects. In the third panel, the first-stage coefficient on the instrument
is 0.60 (0.02) and has the predicted positive sign i.e., a high value of the instrument means
a low cost of deploying AI and hence a high value of AIat. The instrument has a large
weak-instruments F -statistic (1,384). In the top panel, the OLS coefficient on ln(1+AIat)

is 1.48 (0.14). In the next panel, the IV coefficient is 2.67 (0.44). Both have the predicted
positive sign, meaning that AI deployment raises the mean utility of apps. As noted
above, classical measurement error likely biases OLS to zero, which explains why OLS

21We have an unbalanced panel because many apps were introduced after 2015 and a few apps did not
survive until 2020. Only 9% of the unbalanced panel has ForeignUsersat = 0 so we do not use PPML and
using ln(1 + ForeignUsersat) on the full unbalanced panel makes no difference.
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Table 1: Foreign Users and Internal-to-the-Firm AI Deployment

(1) (2) (3) (4) (5) (6) (7)

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.58* 1.48* 1.67* 1.69* 1.20* 1.58* 1.24*
(0.13) (0.14) (0.14) (0.15) (0.12) (0.15) (0.13)

ln(1+undirected AI at ) -0.65* -0.64*
(0.11) (0.11)

ln(1+non AI ft ) -0.95* -0.35
(0.34) (0.34)

Obs. 125,486 125,486 125,467 125,024 125,486 125,486 125,486
R 2 0.25 0.25 0.25 0.27 0.25 0.25 0.25
FEs f, c, t f, ct f, ct, it f, cit f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 2.78* 2.67* 2.82* 3.10* 2.44* 2.82* 2.59*
(0.41) (0.44) (0.49) (0.52) (0.48) (0.47) (0.52)

ln(1+undirected AI at ) -0.44* -0.38*
(0.13) (0.14)

ln(1+non AI ft ) -2.16* -1.77*
(0.56) (0.63)

Weak Instrument F  (KP) 1,607 1,384 1,176 1,082 1,414 1,245 1,261

First Stage: ln(1+AI at )

Z at 0.63* 0.60* 0.56* 0.56* 0.55* 0.56* 0.51*
(0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.01)

ln(1+undirected AI at ) -0.14* -0.16*
(0.01) (0.01)

ln(1+non AI ft ) 0.90* 0.98*
(0.04) (0.04)

Reduced Form: ln(Foreign Users at )

Z at 1.76* 1.60* 1.59* 1.73* 1.35* 1.59* 1.31*
(0.26) (0.26) (0.28) (0.29) (0.26) (0.27) (0.26)

ln(1+undirected AI at ) -0.79* -0.81*
(0.11) (0.11)

ln(1+non AI ft ) 0.38 0.77
(0.32) (0.33)

Notes: This table reports estimates of equation (15). Each observation is an app a (35,575 apps) in a year
t (2015, . . . ,2020). The dependent variable is the log number of foreign users of app a in year t. The key
regressor ln(1 + AIat) is the AI deployed in app a (see equation 1). The instrument for ln(1 + AIat) is
the Heckscher-Ohlin-like cost shifter Zat (see equation 14). The four panels are OLS, IV, first-stage, and
reduced-form. For the fixed effects, consider an app a in industry c developed by firm f located in exporting
country i. Columns 1–4 contain fixed effects for (f ,c,t), (f ,ct), (f ,ct,it), and (f ,cit), respectively. Column 5
adds ln(1 + undirectedAIat), which is the sum of the ρap across patents with ρap < 0.2 i.e., across patents
p that are not cosine similar to a. Column 6 adds the count of non-AI patents owned by f . Standard errors
are clustered at the app level. * indicates 1% significance.
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is smaller than IV. In addition, we show below that heterogeneous responses likely also
contribute to OLS being smaller than IV. In the bottom panel of table 1, the reduced-form
coefficient on the instrument Zat is 1.60 (0.26) and so also has the correct sign.

Turning to magnitudes, AIat is constructed from the underlying ρap and so has no
intrinsic meaning outside the context of the LLM. We thus scale ln(1 + AIat) by its
interquartile range (iqr) so that β gives the impact of a one iqr change in ln(1 + AIat)

on the dependent variable. More generally, all independent variables in what follows are
scaled by their iqrs so that their magnitudes are easily interpreted and compared across
regressors. From column 2 of the IV panel, a one iqr increase in the AI deployed in an app leads
to a 2.67 log point increase in its foreign users or a more than 10-fold increase (e2.67 = 14). This
is the headline number for our first result.

In columns 1–4 we introduce various fixed effects. In column 3 we add exporter-year
fixed effects (it) where exporter is the country where the app was developed. In column
4 we add industry-exporter-year (cit) fixed effects. Reassuringly, across columns 1–4 the
IV coefficients on ln(1 +AIat) vary within the narrow band from 2.67 to 3.10.

Column 4 is useful for thinking about whether our results are driven by AI algorithms
or by the inherent scalability of apps that use AI e.g., social networking.22 If scalability
is driven by the demand side (e.g., network externalities as in Rosen, 1981), then it is
orthogonal to our supply-side instrument and so is netted out by our IV strategy. If
scalability is driven by the supply side either at the category level (e.g., social networking
requires cloud computing overhead) or the category-exporter level (social networking
apps can only be developed in large countries such as the US or China) then our cit fixed
effects absorb scalabilty.

4.2. The Role Played by ρap

We next turn to the role played by the ρap. Again indexing apps by a and AI patents by
p, AIat is the sum of the ρap across AI patents that are cosine similar to app a i.e., across
patents p with ρap ≥ 0.2. The AI patents with ρap < 0.2 are not directed toward the mobile
app a and so should not have a positive effect on foreign users. We therefore construct
a counterpart to AIat based on these undirected patents and call it undirectedAIat.23 If
ρap is playing its expected role, then undirectedAIat should not have a positive effect on
users. ln(1+ undirectedAIat) is added as a regressor in column 5 of table 1. As expected,
its coefficient is non-positive, so that the ρap are playing their expected role. The negative
coefficient on undirectedAIat has an obvious explanation. If a firm is filing patents in

22See Agrawal et al. (2018) for a discussion of the link between AI and scalability. See Goldfarb and
Trefler (2019) for modelling insights about the demand- and supply-side sources of scalability in AI.

23Formally, let Pundirectedat be the set of AI patents filed between 1992 and t, owned by the developer of
app a, and for which ρap < 0.2. Then undirectedAIat ≡ ∑p∈Pundirected

at
ρap.
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Figure 7: OLS and IV Estimates When ρap Are Randomly Drawn
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Notes: We randomize the ρap, recalculate the AIat, and reestimate the model. We repeat this 100 times. The
panels display the distribution of the 100 estimated coefficients on ln(1 +AIat) for OLS (left panel) and IV
(right panel). These distributions are centred on zero and the coefficients are rarely statistically significant.
This is a placebo test which shows that the ρap are playing an important role.

areas unrelated to mobile apps then it is likely redirecting its scarce innovation resources
away from mobile apps, thus reducing the attractiveness of its apps and hence reducing
the number of foreign users.

It is possible that our result about AIat is less about AI deployment in mobile apps
and more about a firm’s ‘innovativeness’ in general. Firm fixed effects capture time-
invariant innovativeness. To examine time-varying innovativeness, in column 6 of table
1 we include a regressor that is the count of the non-AI patents filed by the firm between
1992 and t. The coefficient is not positive and its inclusion does not shrink the coefficient
on ln(1 + AIat) so our result about AIat is not driven by the overall inventiveness or
patenting behaviour of the firm. Again, the negative coefficient is consistent with internal
resource re-direction. In column 7 we include both undirected AI and non-AI and arrive
at the same conclusions.

4.2.1. Two Placebos

In this subsection we consider two placebo tests. Recall that AIat is a count of patents
weighted by the ρap (equation 1). We first show that when we replace the ρap with
randomized ρap our results disappear. Consider the subsample involving firms that
have AI patents i.e., for which the ρap are defined. Let Fρ be the empirical distribution
of the ρap. We replace each ρap with a random draw from Fρ, recalculate AIat using
the randomized ρap, and reestimate the model. We repeat this 100 times and plot the
distribution of the estimated coefficients in figure 7. The 100 OLS and IV coefficients are
centred on zero. The IV coefficients are never statistically significant. The OLS coefficients
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Table 2: A Placebo: Randomly Reallocating Patents

(1) (2) (3) (4) (5) (6) (7)

IV: ln(Foreign Users at )

ln(1+AI at ) 2.97* 2.85* 2.92* 3.25* 2.61* 2.94* 2.71*
(0.47) (0.51) (0.55) (0.58) (0.54) (0.53) (0.57)

ln(1+placebo AI at ) -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.03
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

ln(1+undirected AI at ) -0.45* -0.40*
(0.13) (0.14)

ln(1+non AI ft ) -1.98* -1.56*
(0.50) (0.57)

Obs. 125,486 125,486 125,467 125,024 125,486 125,486 125,486
R 2 0.25 0.25 0.25 0.27 0.25 0.25 0.25
FEs f, c, t f, ct f, ct, it f, cit f, ct f, ct f, ct

Weak Instrument F 1,436 1,242 1,132 1,039 1,254 1,174 1,180

Notes: This table is identical to the IV panel of table 1 except for the addition of the placebo regressor
ln(1 + placeboAIat). The OLS, first-stage, and reduced-form estimates appear in online appendix table A1.
Standard errors are clustered at the app level. * indicates 1% significance.

are rarely significant and, even when significant, are so small (always less than 0.43) that
their 99% confidence intervals never overlap with the 99% confidence interval for the
OLS estimate using the actual ln(1 +AIat). We conclude from this placebo test that the
ρap are playing an important role.

In our second placebo test, we randomize patents. For firms that have patents, we
replace a firm’s AI patents with the AI patents of all other firms. Letting p′ index the
patents of all other firms, we compute the ρap′ and sum across the p′ to obtain a new
variable ln(1 + placeboAIat). It equals zero if the firm has no AI patents. Table 2 reports
the IV results when adding ln(1 + placeboAIat) to our estimating equation. Except for
this addition, the table is identical to the IV panel of table 1. In all specifications, the
coefficient on ln(1+ placeboAIat) is precisely estimated to be zero.24 Further, its inclusion
leaves unchanged the coefficients on our key regressor ln(1 +AIat).

Summarizing this section, we showed that the ρap play a key role. Our results
evaporate when we use AI patents with small ρap (undirected AI), when we randomize
the ρap, or when we replace a firm’s patents with those of other firms.

24The same conclusion holds for OLS. See appendix table A1. It also holds if, instead of adding ln(1 +
placeboAIat), we replace ln(1 +AIat) with ln(1 + placeboAIat).
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Table 3: Foreign, Domestic and All Users

(1) (2) (3)

ln(Foreign Users at ) ln(All Users at ) ln(Domestic Users at )

OLS

ln(1+AI at ) 1.48* 1.67* 1.87*
(0.14) (0.13) (0.15)

Obs. 125,486 125,486 90,409
R 2 0.25 0.21 0.38
FEs f, ct f, ct f, ct

IV

ln(1+AI at ) 2.67* 3.89* 4.93*
(0.44) (0.42) (0.49)

Weak Instrument F  (KP) 1,384 1,384 985

Reduced Form

Z at 1.60* 2.33* 2.98*
(0.26) (0.25) (0.29)

Notes: This table reports estimates of equation (15), but with the alternative dependent variables listed in
the column headers. Column 1 repeats column 2 of table 1. Columns 2 and 3 repeat the specification in
column 1, but with the dependent variables being all users (foreign plus domestic) and domestic users. The
three panels are for OLS, IV, and reduced form. The first stage appears in column 2 of table 1. If an app is
produced in a country which is not one of the 84 importing countries in our sample, we have no domestic
user information. Standard errors are clustered at the app level. * indicates 1% significance.

4.3. Domestic versus Foreign Users

The table 1 results are about foreign users, but the theory applies to domestic users as
well. An interesting question is whether the results for domestic and foreign users are
the same. A number of papers have argued that innovation is more valuable to domestic
users than to foreign users e.g., the literatures on product cycles (Vernon, 1966), directed
technical change with international technological mismatch (Acemoglu and Zilibotti,
2001, Acemoglu, Gancia, and Zilibotti, 2015), and multinational production (Arkolakis,
Ramondo, Rodríguez-Clare, and Yeaple, 2018). To assess these arguments, in table 3 we
consider different dependent variables. Column 1 is again for foreign users, column 2

is for all users, and column 3 is for domestic users. The coefficient on ln(1 + AIat) is
indeed larger for domestic users than foreign users. This supports these theories. It also
suggests that there are heterogeneous responses to AI. If the coefficient on AI is largest
for apps that are most likely to deploy AI in response to the cost factors captured by Zat,
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Table 4: Magnitudes

(1) (2) (3)
IV: ln(Foreign Users at )

ln(1+AI at ) 2.67*
(0.44)

IHS(AI at ) 2.82*
(0.47)

ln(AI at ) 3.78*
(0.72)

Obs. 125,486 125,486 27,824
FEs f, ct f, ct f, ct
Weak Instrument F  (KP) 1,384 1,346 700

Notes: This table reports IV estimates of equation (15), but with alternative measures of AI
deployment. Column 1 repeats column 2 of table 1. Columns 2 replaces ln(1 +AIat) with the
inverse hyperbolic sine of AIat, that is, with the log of AIat+ (AI2

at + 1)1/2. Column 3 uses the
restricted sample with AIat > 0 and replaces ln(1 +AIat) with ln(AIat). See online appendix
table A2 for the OLS, first-stage, and reduced-form results. Standard errors are clustered at the
app level. * indicates 1% significance.

then IV (LATE) will be bumped up relative to OLS. See Card (2001, eqn. 11).25

4.4. Coefficient Magnitudes

As is well known, the interpretation of magnitudes can be sensitive to functional form,
especially when taking logs of a variable that can be zero i.e., AIat. In table 4 we explore
magnitudes for three specifications. Column 1 repeats our baseline IV results (table 1,
column 2). Column 2 replaces ln(1 + AIat) with the inverse hyperbolic sine of AIat,
scaled by its iqr. This makes no difference. Column 3 restricts the sample to observations
having positive values of AIat and replaces ln(1 +AIat) with ln(AIat). This captures the
intensive margin of AI deployment and has a larger coefficient. These conclusions based
on IV also hold for OLS. See online appendix table A2.

4.5. Sensitivity

In the online appendix we report a large number of alternative specifications and find
that these are all consistent with our baseline specification of βIV = 2.67 (s.e. = 0.44). We
conclude this discussion of our result 1 with a few more alternative specifications.

25The fact that AI has a bigger impact on domestic users than foreign users also leads one to think about
‘gravity’ factors that place a wedge between the domestic and foreign impacts. We explore this in section
5 where we show that restrictions on cross-border data flows degrade the benefits of AI to foreign users.
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1. In constructing the instrument we defined app a’s industry c(a) using similar apps.
We can alternatively define c(a) as a’s App Store category. This does not change
our result (βIV = 2.44, s.e. = 0.38). See online appendix table A3.

2. In constructing AIat we used ρap-weighted counts of patents. Alternatively, we can
use ρap-weighted counts of patent families, in which case βIV = 2.61 (s.e. = 0.43).
We can also use ρap-weighted counts of patent citations, in which case we obtain the
larger result βIV = 5.18 (s.e. = 0.88). See online appendix table A4. The increased
size likely reflects the heavy right skew of patent citations.

3. We have not included any other time-varying firm characteristics such as firm
revenues or assets. Adding these does not change our results at all. See online
appendix table A4.

4. We have not included any other app characteristics. Following Ershov (forthcom-
ing) and Bian et al. (2023), we include app age, app price, app rating, a dummy for
in-app purchases, a dummy for whether the app displays adds, and a dummy for
whether the firm advertises the app. For the subsample with these data, our results
are unchanged at βIV = 2.52 (0.47). See online appendix table A5.

5. When we defined the instrument we included a dummy Df(a),τ for whether the
firm filed AI patents between 1992 and year τ = 2008. We also consider alternative
years τ = 2006, . . . , 2011 and find that βIV varies very little across these, between
2.64 and 2.88. See online appendix table A6.26

6. When constructing AIat = Σp∈Patρap, we set ρap = 0 whenever ρap was less than
a threshold ρ. In our baseline, we set ρ = 0.2. We also consider ρ = 0.0, 0.1, 0.2,
0.3, 0.4 and 0.5. (99% of our ρap are in this range.) While magnitudes are sensitive
to the choice of cutoff, the βIV are always economically and statistically very large
(βIV between 1.85 (s.e. = 0.22) and 4.63 (s.e. = 0.79)). See online appendix table A7.

7. In our baseline we used all AI patents rather than just deep learning patents because
many recommenders use ensemble methods that do not involve deep learning.
When we restrict ourselves to deep learning patents, βIV = 2.29 (s.e. = 0.44),
which is still very large. See online appendix table A8.

8. It would be disappointing if our results were driven entirely by blockbuster apps
such as Facebook. Blockbuster apps account for about 1% of our sample observa-
tions. In online appendix table A9 we drop app-year observations with the largest
values of the dependent variable. Dropping the top 1%, 5% and 10% of observations
leads to IV results of 2.59 (0.43), 2.54 (0.42) and 2.35 (0.40), respectively. These are

26We stop at 2011 because 2012 is the year AI commercialization began. Also, throughout this paper,
whether we cumulate patents starting in 1992 or 2000 makes no difference since AI patents were rare in
our sample before 2000.
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only slightly lower than our baseline result of 2.67 (0.44). Thus, our results are not
driven by blockbuster apps.27

9. We introduced category-exporter-year fixed effects to control for the inherent scala-
bility of apps. Scalability might still enter through the back door via the instrument.
Recall that the instrument includes LAit , which is mildly correlated with country size.
In appendix table A10, to purge size we divide LAit by country i’s year-t capital stock
and repeat our baseline table 1. Again, this makes no difference.

This review of alternative specifications demonstrates the robustness of our result 1.

5. Result 2: Restrictions on Cross-Border Data Flows

AI algorithms with limited data are typically of limited value. Data are needed to train
models and personalize predictions, both of which improve app quality. This has led
producers of mobile apps to harvest vast amounts of user data. The movement of these
data across borders has set off two conflicting trends in the international regulation of
digital commerce. The first is the explosion of trade agreements with digital chapters
which tend to liberalize data flows. There are 72 such agreements (Nemoto and López
González, 2021). In addition, the WTO is very close to an e-commerce plurilateral
involving 89 countries that may include provisions promoting cross-border data flows
and limiting the use of data localization rules (rules requiring domestic data to be stored
domestically). In contrast, there has been a trend towards unilateral national restrictions
on the cross-border outflow of citizen data, often out of concern for privacy and national
security. The most famous of these is the EU’s General Data Protection Regulation
(GDPR). See also the EU’s 2023 Digital Services Act. Far more restrictive is China’s
many new laws that include the Cybersecurity Law (2017), the Data Security Law (2021),
the Personal Information Protection Law (2021), and Measures on the Standard Contract
for the Cross-Border Transfer of Personal Information (2023). Many other countries
have related laws e.g., India’s Information Technology Act was used to ban over 200

of China’s most popular mobile apps. Figure 2 above documented the rapid rise of
domestic regulations that restrict cross-border data flows. Despite the conflicting trends
towards liberalizing and restricting cross-border data flows, there has been no academic
assessment of their impacts.

To assess how regulatory restrictions on cross-border data flows limit the effectiveness
of AI, we use the new OECD Digital Services Trade Restrictiveness Index (DSTRI),
which inventories regulatory barriers to digital trade. See Ferencz (2019). The OECD
was kind enough to provide us with the subcomponents of the index that are most

27Note that this is intended as a destructive diagnostic. Stratifying on the dependent variables produces
inconsistent estimates.
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relevant for AI and mobile apps. These subcomponents fall into two groups. (1) Data
Transfer is an index of measures restricting cross-border data flows or requiring data
to be stored locally. (2) Data Development indexes other restrictions that affect trade in
digitally enabled services in ways that reduce the number of users and hence the amount
of local data produced and available for cross-border transfer. These include restrictions
on downloading, streaming, and advertising as well as local performance requirements
that impose large compliance fixed costs e.g., commercial local presence requirements.28

The DSTRI covers 60 of the importers in our data. 2020 data for each country appear in
online appendix table A11.

The DSTRI catalogues discriminatory regulations. Thus, Data Transfer does not include
restrictions on data transfer between two firms within a country and Data Development
does not include restrictions that apply equally to domestic and foreign firms. The Data
Transfer and Data Development indexes range from zero (no restrictions) to one (very
restrictive). Let Datant ∈ [0,1] denote the DSTRI index for either Data Transfer or Data
Development. Because DSTRI inventories discriminatory regulations, Datant is relevant
for an app produced in country i and used in country n 6= i.

We introduce regulations into the model as follows. For an app a produced and used
in country n, we have as before that AI is fully effective and the number of domestic
users is

(
αct(δac) δac
Ucnt

)
Lnt where recall that Lnt is the number of consumers and the term

in parentheses is the share of consumers choosing app a from among all apps in industry
c available in n. For an app produced in i and used in country n 6= i, AI’s effectiveness
is assumed to be reduced by θDatant so that the number of users is

ForeignUsersacnt =
[αct(δac)]

1−θDatant δac
Ucnt

Lnt .

The larger is Datant, the less access the app developer has to country-n data and so the
less effective is AI for country-n users. As before, we measure ln(act(δac)) by β ln(1 +

AIat).29 This leads to

ln(ForeignUsersant) = (1− θDatant) · β ln(1 +AIat) + ln(Lnt /Ucnt) + δa

where we suppressed the industry subscript c = c(a) whenever there is already an app
subscript a. Our estimating equation is thus

ln(ForeignUsersant) = β ln(1 +AIat)− θ′Datant · ln(1 +AIat) + λcnt + λf + εant (16)

28Using the categories in Ferencz (2019), Data Transfer is the five subcomponents of ‘Infrastructure
and Connectivity’ dealing with cross-border transfer of personal data and cross-border data flows. Data
Development is all seven subcomponents of ‘Other barriers affecting trade in digitally enabled services.

29With data restrictions, the firm’s problem changes and so the optimal level of AI investment αct(δac)
changes. However, we do not need to revisit the model and recalculate this because whatever this new
optimal level is, its log will still be measured by β ln(1 +AIat).
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where θ′ = θβ, λcnt = Lnt /Ucnt are fixed effects, we include firm fixed effects λf , and
εant = δa is a residual.30

We cluster standard errors at the app level and, reassuringly, we will show that our
standard errors are similar to those in our at-level regressions.31

As before, we instrument ln(1 + AIat) with Zat. We instrument Datant · ln(1 + AIat)

with Datant · Zat. Notice that the fixed effects λcnt absorb the data regulations Datant
so that, conditional on the fixed effects, the instrument Datant · Zat is unlikely to be
correlated with the residual εant.

Table 5 presents our results. Unlike our previous regressions, which were at the app-
year at level, the data in table 5 are at the app-importer-year ant level. The top two panels
are OLS and IV. Column 1 is a basic specification without the DSTRI variables and shows
that the OLS and IV coefficients on AI are largely unchanged from the at-level regressions
above.

We consider the two types of data restrictions separately. In column 2 we interact
Data Transfernt with AI, in column 3 we interact DataDevelopmentnt with AI, and in
column 4 we include both interactions. In these columns, the OLS and IV coefficients on
all the interaction terms are negative, indicating that data restrictions reduce the effectiveness
of AI as a tool for increasing the number of foreign users. This is the second main result of this
paper. We are the first to document this finding and are thus able to provide an important input
into trade policy.

Our finding is also important in a domestic setting. In the US Department of Justice
case against Google, the central issue is whether Google’s dominant position is the result
of its algorithms or its data. The Department of Justice argues that Google uses its
dominant position to harvest data that then reinforces its position. Google argues that its
success is not due to its dominant position but to its algorithms.32 Our results show that
even superior algorithms are limited by the availability of data.

The third, fourth and fifth panels of table 5 report the first stages for ln(1 + AIat),
Datat Transfernt · ln(1 +AIat) and DataDevelopmentnt · ln(1 +AIat), respectively. One
should always have major concerns about an IV model with more than one endogenous
variable. We take a quantum of solace in the large weak-instruments F statistics.

30In εant = δa, the subscripts differ, but this is minor. It is trivial to allow mean utilities to vary by
importer, which adds an n subscript to δa. It is equally trivial to allow mean utilities to evolve over time,
which adds a t subscript to δa e.g., improvements in smartphones lead to higher mean utilities over time.

31Clustering at an produces much smaller standard errors. Two-way clustering by a and n produces
almost identical standard errors to one-way clustering by a.

32e.g., New York Times, September 18, 2023, “A Key Question in Google’s Trial: How Formidable Is Its
Data Advantage?”
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Table 5: Importer-Level (a,n,t) Regressions: Role of Data Restrictiveness

(1) (2) (3) (4) (5) (6)
OLS: ln(Foreign Users ant )

ln(1+ AI at ) 1.34* 1.40* 1.45* 1.46* 1.52* 1.66*
(0.14) (0.14) (0.14) (0.14) (0.15) (0.15)

Data Transfer nt  × ln(1+ AI at ) -1.03* -0.19 -0.54*
(0.13) (0.13) (0.18)

Data Development nt  × ln(1+ AI at ) -2.53* -2.43* -2.28*
(0.23) (0.24) (0.29)

Obs. 3,575,088 3,575,088 3,575,088 3,575,088 1,678,918 1,678,918
Number of importers 60 60 60 60 25 25
R 2 0.25 0.25 0.25 0.25 0.23 0.23
FEs f, cnt f, cnt f, cnt f, cnt f, cnt f, cnt

IV: ln(Foreign Users ant )

ln(1+ AI at ) 2.27* 2.42* 2.55* 2.58* 2.60* 3.01*
(0.53) (0.54) (0.55) (0.55) (0.54) (0.55)

Data Transfer nt  × ln(1+ AI at ) -1.90* -0.77* -2.03*
(0.18) (0.17) (0.23)

Data Development nt  × ln(1+ AI at ) -3.73* -3.34* -2.74*
(0.35) (0.37) (0.41)

Weak Instrument F  (KP) 670 333 326 217 794 257
First Stage: ln(1+AI at )

Z at 0.51* 0.50* 0.50* 0.50* 0.51* 0.50*
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Data Transfer nt  × Z at 0.02* -0.01* 0.01
(0.00) (0.00) (0.00)

Data Development nt  × Z at 0.08* 0.09* 0.09*
(0.01) (0.01) (0.01)

First Stage: Data Transfer nt  ×  ln(1+ AI at )
Z at 0.001 0.000 0.002

(0.001) (0.001) (0.001)
Data Transfer nt  × Z at 0.497* 0.496* 0.485*

(0.006) (0.006) (0.006)
Data Development nt  × Z at 0.004* 0.003*

(0.001) (0.001)
First Stage: Data Development nt  ×  ln(1+ AI at )

Z at -0.001 -0.001 -0.000
(0.001) (0.001) (0.001)

Data Transfer nt  × Z at -0.003* -0.008*
(0.000) (0.001)

Data Development nt  × Z at 0.505* 0.507* 0.504*
(0.007) (0.007) (0.007)

Notes: This table reports estimates of equation (16). Each observation is an app a (35,575 apps) used by
consumers in a country n (60 importers) in a year t (2015, . . . ,2020). The dependent variable is the log
number of users of app a in country n. DataTransfernt and DataDevelopmentnt are OECD indexes of
digital service trade restrictiveness (higher values are more restrictive). The panels report OLS, IV, and three
first-stages. All specification include firm fixed effects (f ) and industry-importer-year fixed effects (cnt).
Standard errors are clustered at the app level. * indicates 1% significance.
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Further, the first-stage results are very sensible in that each instrument targets only its
corresponding endogenous regressor. James Bond would be comforted.

A number of our 60 importing countries are small, leading one to wonder whether our
results are driven mainly by small economies. To examine the effects for large economies
we repeat the analysis for the 25 largest economies in our sample (listed below). Com-
paring columns 1 and 5, the IV coefficient rises slightly from 2.27 to 2.60, which means
our results are not driven solely by small economies. Comparing columns 4 and 6,
the coefficients on ln(1 + AIat) and Data Transfernt × ln(1 + AIat) both grow, while
the coefficient on DataDevelopmentnt × ln(1 +AIat) shrinks. The shrinkage reflects the
fact that Data Development restrictions are less used by large economies. Summarizing,
columns 5–6 establish that our results are not driven solely by small economies.

Turning to coefficient magnitudes, we first ask “By how much do data restrictions
dampen the impact of AI on foreign users?” Specifically, what happens when a country
shifts from having the highest observed level of restrictions to having the lowest observed
level of restrictions. Since there are no extreme values of either Data Transfers or Data
Development, this thought experiment is well within the sample variation we are using.
Also, we restrict ourselves to sample variation among the 25 largest economies. In
2020, Data Transfern,2020 was 0.16 for the most restrictive country (Indonesia) and 0
for the least restrictive countries (e.g., Canada and the US). We therefore consider the
change ∆Data Transfern = 0.16. In 2020, DataDevelopmentn,2020 was 0.13 for the most
restrictive country (Egypt) and 0 for the least restrictive countries, including the US and
all CPTPP partners, so we set ∆DataDevelopmentn = 0.13.33

From equation (16), AI’s impact on foreign users depends on data restrictions via
∂ ln(ForeignUsersant)/∂ ln(1 + AIat) = β − θ′Datant. As restrictions rise from 0 to
∆Datan this impact falls from β to β − θ′∆Datan i.e., falls by θ′∆Datan. From column 4

of table 5, this fall is

− 0.77∆Data Transfern − 3.34 ·∆DataDevelopmentn = −0.56 . (17)

A useful way to interpret this change is as follows. From the column 4 coefficient on
ln(1 +AIat) of 2.58, without any data restrictions the impact of AI is 2.58 and with high
restrictions it is 2.58− 0.56 = 2.02. Thus, data restrictions reduce the impact of AI from a
13.2-fold impact (e2.58) to a 7.5-fold impact (e2.02). The impact of AI on foreign users is halved
by data restrictions. This is a huge effect and is one of our headline numbers. When we

33The Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP) has a digital
chapter that deals with many of the restrictions in DataDevelopmentnt. Data for all countries appear in
online appendix table A11.
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look at the 25 largest economies in our sample, the exact same conclusion emerges. The
impact of AI on foreign users is halved.34

These results explain the heavy lobbying by major platform companies for trade
policies that liberalize cross-border data flows.35

Table 6 drills down to the impacts for each of the top 25 countries in our sam-
ple. Columns 1–2 report Data Transfern,2020 and DataDevelopmentn,2020. Columns
3–4 report the calculations in equation (17), but treating the data in columns 1–2 as
∆Data Transfersn and ∆DataDevelopmentn. Equation (17) is implemented in two ways,
using coefficients from our 60-country sample (column 4 of table 5) and using coefficients
from our 25-country sample (column 6 of table 5). From columns 3–4 of table 6, there is
a wide range of impacts of data restrictions on AI effectiveness.

A second thought experiment asks about the impact of data restrictions on users
of an app that deploys an average amount of AI. From equation (16), this is
∆ ln(ForeignUsersan) = ln(1 +AIat) (−θ′∆Datan). For the largest 25 countries (column
6 of table 5) this is

∆ ln(ForeignUsersan) = ln(1 +AIat) (−2.03∆Data Transn − 2.74 ·∆DataDevn)

where ln(1 +AIat) = 1.41 is the 2020 user-weighted average value of ln(1+AIat) among
firms that deploy AI. The results appear in column 5 of table 6. For China, foreign
users are reduced by 0.68 log points. The results are in line with the scant literature
on the topic. Sun et al. (forthcoming) find experimental evidence that when the Alibaba
platform does not use personal data for its recommendations, customer click-through
rates drop by 75%, product views drop by 33%, and customer purchases drop by 81%.
For EU countries, our impacts range from 0.20 to 0.31 (see column 5 of table 6). This is
a little higher than found in Goldberg, Johnson, and Shriver (forthcoming) where, for a
diverse set of online firms, GDPR reduced page views and e-commerce revenue by only
12%, though this rises to 20% for the display-ad and social-advertising channels. We find
it very reassuring that our results are consistent with both experimental evidence and
the GDPR shock.

Finally, column 6 reports the sum of the Polity V autocracy and democracy scores.
Autocracies are in italics and have scores below −3. Democracies have scores above 6.

34For the 25 largest economies, the calculation is −2.03 · 0.16− 2.74 · 0.13 = −0.325− 0.356 = −0.68 .
Thus, as restrictions rise the impact of AI falls from 3.01 to 3.01− 0.68 = 2.33 so that data restrictions
reduce the impact of AI from a 20.3-fold impact (e3.01) to a 10.3-fold impact (e2.33). Again, the impact is
halved.

35See United States International Trade Commission (2019) in the context of USMCA and https:

//techcrunch.com/2022/01/19/google-lobbies-for-new-privacy-shield/ in the context of EU data
regulations.
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Table 6: The Impact of AI on Foreign Users: Role of Cross-Border Data Flow Restrictions

Country
Data 

Transfer n
Data 

Development n
60-Country 

Specification
25-Country 
Specification

Reduction in 
ln(Foreign Users )

PolityV 
Score

(1) (2) (3) (4) (5) (6)
Egypt 0.08 0.13 0.50 0.52 0.74 -4 
Indonesia 0.16 0.07 0.34 0.50 0.71 9 
China 0.12 0.09 0.39 0.48 0.68 -7 
Nigeria 0.08 0.11 0.43 0.46 0.65 7 
Pakistan 0.08 0.11 0.43 0.46 0.65 7 
Russia 0.12 0.07 0.31 0.42 0.60 4 
India 0.12 0.07 0.31 0.42 0.60 9 
Turkey 0.08 0.07 0.28 0.34 0.48 -4 
South Korea 0.08 0.04 0.21 0.28 0.40 8 
Brazil 0.12 0.00 0.09 0.24 0.34 8 
Germany 0.08 0.02 0.13 0.22 0.31 10 
Belgium 0.08 0.02 0.13 0.22 0.31 8 
Italy 0.04 0.04 0.18 0.20 0.28 10 
Philippines 0.04 0.04 0.18 0.20 0.28 8 
France 0.04 0.04 0.18 0.20 0.28 10 
Netherlands 0.04 0.02 0.10 0.14 0.20 10 
Argentina 0.04 0.02 0.10 0.14 0.20 9 
Spain 0.04 0.02 0.10 0.14 0.20 10 
Mexico 0.04 0.00 0.03 0.08 0.11 8 
Japan 0.04 0.00 0.03 0.08 0.11 10 
Australia 0.04 0.00 0.03 0.08 0.11 10 
South Africa 0.04 0.00 0.03 0.08 0.11 9 
UK 0.04 0.00 0.03 0.08 0.11 8 
USA 0.00 0.00 0.00 0.00 0.00 8 
Canada 0.00 0.00 0.00 0.00 0.00 10 

Reduction in AI CoefficientOECD DSTRI Index, 2020

Notes: Columns 1 and 2 report the data we use from custom runs of the OECD DSTRI. Columns 1 and
2 report our data on DataTransfern,2020 and DataDevelopmentn,2020. Columns 3 and 4 report how the
impact of AI on foreign users responds when a country eliminates its restrictions on cross-border data flows.
It is computed as follows. ∂ ln(ForeignUsersant)/∂ ln(1 + AIat) = β − θ′Datant is the impact of AI on
foreign users and∆∂ ln(ForeignUsersant)/∂ ln(1+AIat) = −θ′∆Datan is how it responds to cross-border
data restrictions. This is what appears in columns 3–4. In column 3 (4), θ′ is taken from column 4 (6) of table
5. Column 5 is the impact of cross-border data restrictions on foreign users. Specifically, column 5 is column
4 times ln(1 +AIat) = 1.41, the 2020 user-weighted average value of ln(1 +AIat) among firms that deploy
AI. Column 6 is the sum of the Polity V autocracy and democracy scores. Countries in italics have scores
below −3. All other countries have scores above 6.
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Autocracies have the strongest restrictions on cross-border data flows and thus suffer the
most from these restrictions. Autocracy is costly.

6. External Sources of AI Knowledge

A remarkable feature of AI has been its rapid diffusion. There are many channels for
diffusion, including journal articles, academic presentations, international competitions
(ImageNet and Kaggle), repositories of algorithms (GitHub), and AI patents databases
(WIPO and Google Patents). It is clear that many mobile app developers deploy AI that
they have sourced through these channels. In this last section we explore the impact
on mobile app quality of AI sourced from outside the firm. That is, we explore AI
knowledge spillovers.

Our approach is novel. Suppose we had a rich corpus of text which described the
current state of AI. This corpus is the AI potentially available to a firm that does not
develop AI internally, but instead relies on external knowledge. For each app we could
ask whether its description is cosine similar to this AI corpus. That is, we could develop
a measure of the external AI potentially embodied in each app. We could then use this
to assess the impact of external AI potential on an app’s number of foreign users.

We implement this as follows. We treat the AI corpus at time t as the set of all AI
patents filed from 1992 to t by our sample of mobile app producers. Denote this corpus
by Ct. This misses AI knowledge available from the other channels listed above, but
patents certainly describe a significant piece of the larger AI corpus and, usefully, we
have already assembled and used this element of the larger corpus. Let At be the set of
apps developed by firms with no AI patent filings from 1992 to t. These firms must rely
on external AI. For each app a in At, we define its potential to draw on the external AI
corpus Ct as

external AIat =


∑
p∈Ct

ρap if a ∈ At

0 if a /∈ At
. (18)

This is the ρap-weighted sum of all external-to-the-firm patents in our sample. As usual,
we scale this by its interquartile range. The right panel of figure 5 above is a bin scatter
from a regression of the log of foreign users on ln(external AIat) with firm and industry-
year fixed effects. The panel shows that external AIat is correlated with the number of
foreign users.

In what follows we include external AIat as a regressor in our foreign-user regressions.
However, we first address the issue of endogeneity. external AIat is built up from
three items: (1) the patents that are being summed; (2) the text of these patents; and,
(3) the text of the app description. The first two items involve patents that were not
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filed by the developer of app a and so are orthogonal to a. The third item, the app
description, is potentially endogenous because the product characteristics it describes are
potentially endogenous. The most salient source of endogenous product characteristics
is an unobservable firm characteristic such as management that is correlated both with
the firm’s ability to use external AI and with its ability to create high-demand products.
Our inclusion of firm fixed effects controls for this source of endogeneity. We therefore
do not instrument external AIat.36

Table 7 reports our results. Consider the OLS results in the top panel. The
panel has the same format as table 1, but with three differences. First, we include
ln(1 + external AIat) as a regressor. Second, the sample is smaller because we only
include at observations involving apps developed by firms with no AI patent filings
as of year t. Third, for this sample, firms have no patents as of year t so that AIat = 0
and undirectedAIat = 0. Hence, we do not include these variables. In column 2 of the
top panel, which has our baseline firm and industry-year fixed effects, the coefficient on
ln(1 + external AIat) is 0.33 (s.e. = 0.03). There are thus statistically and economically
significant AI externalities. A one iqr increase in ln(1 + external AIat) leads to a 0.33 log
point increase in the number of foreign users. This conclusion is invariant to fixed effects
(columns 1–4) and to the inclusion of ln(1 + nonAIft).

The second and third panels use the full sample so that we can include AIat and
undirectedAIat. The second panel is OLS and the third panel is IV with ln(1 + AIat)

instrumented as before with Zat. The coefficient on ln(1 + externality AIat) is stable
across panels, meaning that our finding of externalities is robust.37

There are two economically interesting explanations for why the IV coefficient for
external AI is smaller than for AI (in column 2, 0.30 versus 2.25). First, the AI corpus may
be less relevant for an app than is a patent developed in-house. Second, the translation of
knowledge potential into practice may occur with some probability Prob, in which case
the benefit of external AI is 0.30 = Prob× 2.25. This allows us to back out the probability
using Prob = 0.30/2.25 = 0.13.

Our robust finding of knowledge spillovers across mobile app developers – spillovers
from developers that do patentable AI research to those who do not – is an important
conclusion for the vast literature on knowledge spillovers e.g., Grossman and Helpman

36Demand estimation with endogenous product characteristics is not part of the trade literature and
rarely a part of the industrial organization literature e.g., Berry and Haile (2021, page 17). Restated, the
literature typically does not control for the endogeneity of product characteristics.

37The OLS and IV estimates of the coefficient on ln(1 + AIat) are slightly smaller than in our table 1

baseline. This is to be expected because the sample variation driving the coefficient relies in part on the
contrast between the AI of patenting and non-patenting firms. This contrast is larger when non-patenters
are treated as having no AI (table 1, βIV = 2.67) as opposed to having external AI (table 7, βIV = 2.25).
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Table 7: AI Externalities

(1) (2) (3) (4) (5) (6) (7)

OLS: ln(Foreign Users at )

ln(1+external  AI at ) 0.33* 0.33* 0.33* 0.32* 0.33* 0.33* 0.33*
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

ln(1+non AI ft ) 0.12 0.12
(0.38) (0.38)

Obs. 95,301 95,301 95,283 94,836 95,301 95,301 95,301
R 2 0.26 0.26 0.27 0.28 0.26 0.26 0.26
FEs f, c, t f, ct f, ct, it f, cit f, ct f, ct f, ct

OLS: ln(Foreign Users at )

ln(1+external  AI at ) 0.34* 0.34* 0.34* 0.34* 0.32* 0.34* 0.32*
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

ln(1+AI at ) 1.09* 0.98* 1.13* 1.12* 0.83* 1.02* 0.84*
(0.13) (0.14) (0.15) (0.15) (0.13) (0.15) (0.14)

ln(1+undirected AI at ) -0.39* -0.39*
(0.11) (0.11)

ln(1+non AI ft ) -0.36 -0.02
(0.34) (0.35)

Obs. 125,486 125,486 125,467 125,024 125,486 125,486 125,486
R 2 0.25 0.25 0.26 0.27 0.25 0.25 0.25

IV: ln(Foreign Users at )

ln(1+external  AI at ) 0.29* 0.30* 0.30* 0.29* 0.29* 0.29* 0.29*
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

ln(1+AI at ) 2.39* 2.25* 2.34* 2.62* 2.15* 2.37* 2.28*
(0.43) (0.46) (0.52) (0.55) (0.49) (0.50) (0.54)

ln(1+undirected AI at ) -0.20 -0.15
(0.13) (0.14)

ln(1+non AI ft ) -1.68* -1.54
(0.58) (0.64)

Weak Instrument F  (KP) 1,762 1,519 1,295 1,185 1,494 1,371 1,333

Notes: Each observation is an app-year pair. The new regressor is ln(1 + external AIat) defined in equation
(18). The top panel is for the subsample of at observations involving apps in At (roughly, the set of apps
developed by firms with no AI patents). The bottom two panels (OLS and IV) are for the full sample and
are identical in structure to table 1 except for the inclusion of ln(1 + external AIat). To understand the fixed
effects, consider an app a in industry c developed by firm f located in exporting country i. Columns 1–4
contain fixed effects for (f ,c,t), (f ,ct), (f ,ct,it), and (f ,cit), respectively. In the top panel, columns 4–5 are the
same and columns 6–7 are the same. This is because the firms in the top-panel sample have no patents and
so have undirectedAIat = 0. (They also have AIat = 0.) The first-stage and reduced-form estimates appear
in online appendix table A12. Standard errors are clustered at the app level. * indicates 1% significance.
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(1991). To our knowledge, this is among the tightest pieces of evidence on spillovers
in the international trade literature. Other tight evidence uses patent citation data e.g.,
Aghion et al. (2021). Unlike research based on patent citations, we are drawing bilateral
connections involving firms that have no patents, which is the overwhelming majority of firms.
Our use of an LLM allows us to use a new data source, one that is available even for
firms that do not patent, and thus provides a new and widely applicable methodology.

7. Conclusion

Digital service trade is large, rapidly growing, and understudied. The most dynamic
element of this trade is mobile apps. Mobile apps did not exist two decades ago, yet
they now dominate the lives of many and are valued by consumers at $2.5 trillion
(Brynjolfsson et al., 2023). We built a sample of 35,575 apps used in 84 countries and
exported from 64 countries over 2015–2020. We showed that foreign users as a share
of total users is far higher for mobile apps than for manufactured goods or web-based
internet services such as e-commerce.

Many mobile apps rely heavily on AI algorithms and data. We developed a novel
method of linking mobile apps to AI by using a large language model to construct a
measure of the degree to which a firm’s mobile app deploys the AI described in the firm’s
patent portfolio. This linking of patents to products solved a long-standing problem in
the innovation literature dating back at least to Kortum and Putnam (1997). With this tool
in hand and using a theory-consistent estimating equation and instrument we showed
that:

1. AI causally increases international trade in mobile app services by 2.67 log points
or by more than 10-fold.

The value of deploying AI depends critically on the availability of data. The appear-
ance of mobile apps in late 2008 sparked an explosion of conflicting regulations, laws, and
trade agreements governing cross-border data flows. These have first-order implications
for international trade, as well as for privacy, national security, and foreign interference
in elections. Yet academic research by international trade economists has been absent.
We showed that:

2. AI’s causal impact on mobile app trade is halved by restrictions on cross-border
data flows. Further, autocracies have the tightest restrictions on the export of data
and this reduces these countries’ use of foreign apps by between 50% and 75%.

Finally, we provided a novel method of estimating externalities. A common method
exploits patent citations and so is restricted to firms with patents. Most firms have no
patents. We used a large language model to estimate an app’s potential to use the corpus
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of AI patents developed by other firms. We did this for apps whose developers have no
patents. We showed that:

3. The greater is an app’s potential to use the AI corpus developed by other firms, the
more foreign users the app has.

That is, there are knowledge spillovers.
In future research we will explore how our method can be used to study the interna-

tional diffusion of AI technologies and to inform discussions about international policy
coordination for AI algorithms and data.
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Appendix A. Details of Mobile App Data

The Google Play Store is not available in China. For Chinese user data we therefore
use apps available on Apple’s App Store and scale up each app’s users by (Gt +At)/At
where Gt and At are, respectively, the number of Android and iOS smartphones in China
in year t. Note that while we are imputing Chinese users (demand side), we are not
imputing the foreign users of Chinese apps. As a result, our imputation turns out to be
innocuous: All our results are unchanged when we (1) delete China as a user of apps or
(2) add industry-country-year fixed effects. The latter absorb (Gt + At)/At and would
absorb any industry-year scaling (Gct +Act)/Act.

Appendix B. BERT

The large language model we use is called BERT, which stands for Bidirectional Encoder
Representations from Transformers. We use the paraphrase-multilingual-mpnet-base-

v2 (Reimers and Gurevych, 2019) variant of BERT. This variant is multilingual, which
we need because app descriptions are in many different languages. Each embedding is
a vector of 768 elements, each between -1 and 1 and with Euclidean length of 1. 768

is a tuning parameter chosen by Google. Because BERT is a transformer, it is trained
on sentences rather than words. As is common in industrial applications, rather than
compute one embedding for the entire text (app description or patent title+abstract), we
compute embeddings for each sentence of the text.38

Consider a patent p whose text has Np sentences and an app a whose description has
Na sentences. Having computed embeddings for each sentence, we then calculate the
Np ×Na cosine similarities between each pair of app-patent embeddings. We then take
the average of the top 5 similarities across sentence pairs, which gives us ρap. This is
what we use in the main text. In online appendix table A13 we also average across the
n largest cosine similarities where n = 1, 5, 10. (Texts on average have 10.4 sentences.)
The table shows that for n = 1, 5, 10, respectively, the OLS results are 1.28 (0.13), 1.48

(0.14), and 1.30 (0.14) and the IV results are 1.98 (0.36), 2.67 (0.44), and 3.55 (0.60). All
these results imply very large impacts of AI on foreign users. We do not explore this
further because, at the sentence-level, every specification involves the manipulation of
the trillions of sentence-level cosine similarities and so is computationally intensive.

38It is easier to do just one embeddings for the entire text. However, this leads to relatively little variation
in the ρap, a well-known defect of LLMs. Data scientists at a major platform company told us that, as a
result, they work at the sentence level. An additional oft-ignored problem when computing a single
embedding for a lengthy text is token limits. LLMs truncate inputs when the number of tokens in the
inputted text hits a maximum value. Truncation obviously compromises the quality of the embedding.
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When feeding patent texts into the LLM, we feed in the title plus abstract. We use
patents translated into English by Google and downloaded from patents.google.com.
Other patent text such as claims and object of invention are often missing for non-US
patents so we do not use these.

Appendix C. Proof of Equation (10) and Theorem 1

From (6)–(7), πAi =
[
(δ/δAi )

η − 1
]
wAi f

A
i . Hence, from the Pareto distribution, the left

side of (8) equals (δAi )
−γwAi f

A
i η/(γ − η). Plugging this into (8) and using (3) yields the

expression for δAi in (10). Plugging this δAi into (7) and using (3) yields the expression
for wAi /P in (10). In (9), the term in braces equals (LAi )

ψfeiγ. Plugging this into (9) and
using (3) yields the expression for MA

i in (10).
The proof of theorem 1 is trivial. Equation (11) follows from the discussion preceding

either theorem 1 or equation (4). Equation (12) follows from plugging (10) into (5).
Finally, we show that ηfAi (L

A
i )

ψ > 1 is a necessary and sufficient condition for an
interior solution to the choice of α, meaning α(·) > 1 for all δ ≥ δAi . From the
expression for α(δ) in theorem 1, α(·) > 1 for all δ ≥ δAi iff α(δAi ) > 1. From the
expression for α(δ) in theorem 1 and the definition of κ after equation (10), α(δAi ) > 1 iff
δAi (L

A
i )

ψ/η/
[
δAi (ηfi)

−1/η] > 1 or (LAi )
ψηfi > 1 as required.
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Figure A1: ρaa′ Validation: Predicting App Categories

Appendix A. Validation of our use of an LLM

The details of the subsection 2.5 validation exercise involving ρaa′ are as follows. There
are 35,575 apps and hence more than a half-billion app pairs. To reduce the dimension-
ality of the problem while keeping the most important app pairs, for each App Store
category we select the 10 largest apps as measured by average users over 2015–2020.
There are 15 app categories and so there are 150 focal apps, which we index by a. For
each a, we calculate its cosine similarity with the remaining 35,574 apps, which we index
by a′. There are 150× 35,574 = 5,336,100 cosine similarities ρaa′ . We assign these to 15

clusters using either k-means or agglomerative clustering (they yield identical results)
and generate a binary variable d̂aa′ that is one if a and a′ are in the same cluster. We
compare this to a binary variable daa′ that is one if a and a′ are in the same Apple Store
category. For the 5,336,100 app pairs, the two binary variables agree 88.1% of the time
(standard error is 0.00044).

Figure A1 provides visual verification of this result using a plot that allows the reader
to examine all app pairs without the need for clustering. Each embedding is a 768-
element vector. We reduce its dimension to a 3-element vector by extracting the largest
3 principal components from the 768×35,575 matrix of embeddings and then by plotting
each app embedding as a point in a three dimensional space. See figure A1. Points (apps)
that are close together should be in the same App Store category while those far apart
should not be. In figure A1, the 15 categories are indicated by colours. Visual inspection
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confirms that colours are clustered, meaning that apps with similar embeddings are
located close to each other. This validates the performance of our large language model.39

Appendix B. The General Equilibrium Model with Advertising

We introduce advertising in the simplest way possible, namely, using a Krugman (1980)
model with no trade costs and an Arkolakis (2010) advertising technology. Specifically,
we introduce a differentiated consumer good that uses advertising to promote sales. It
is produced with unskilled labour having wage w̃i. Each country is endowed with the
same amount of unskilled labour, denoted L̃. The population (and customer base) is
Ln = LAn + L̃ where recall that LAn is the endowment of AI scientists.

We micro-found advertising almost exactly as in Arkolakis (2010). Let S be the number
of ads placed by a firm. Let nn(D) be the probability that a particular consumer in
country n sees the ad at least once after D ads have been sent, where nn(0) = 0. We
assume that each ad placed targets a unique consumer, which is motivated by the fact that
what an app user sees on her app is placed there either by an auction or an algorithm.40

We also assume that within a given market, the cost per consumer differs depending on
how many consumers have already been reached. In particular, the probability that a
new ad is seen by a consumer for the first time is assumed to be βnn(D)(β−1)/β where
β ∈ (0,1). That is, the probability that a new ad is seen for the first time is decreasing in
the probability that the consumer has seen the ad.41

The marginal change in the number of consumers reached through new ads is
n′n(D)Ln. Under our assumptions, n′n(D)Ln = βnn(D)(β−1)/β . Solving this differential
equation subject to the initial condition n(0) = 0 implies

nn(D) = (D/Ln)β . (A1)

Turning to the consumer-goods firm’s problem, one unit of the consumer good re-
quires one unit of unskilled labour and so costs w̃i. Note that, as in Krugman (1980), there
is no firm productivity heterogeneity. There is CES demand for consumer goods with
elasticity of substitution σ > 1. Consumer goods are costlessly traded internationally
and there are no fixed costs of exporting so that each variety produced in country i is
available worldwide at cost w̃i. Consider a variety ω produced in country i with price
p̃i(ω) and quantity demanded in country n of

q̃ni(ω) =

(
Dni(ω)

Ln

)β p̃−σ(ω)

P̃ 1−σ yn Ln (A2)

where (D/Ln)β is the fraction of consumers that buy the good when the advertising
level is D, P̃ = [∑i

∫
ω∈Ωi p̃

1−σ
i dω]1/(1−σ) is the CES price index, Ωi is the set of varieties

39An alternative approach uses UMAP. We did not try this.
40In terms of Arkolakis (2010), we are assuming that his scale parameter α equals unity. This is

completely unimportant for any of our results.
41Arkolakis instead assumes the probability is (1− nn(D))β where β > 0. This has some better

properties than our assumption, especially its implication that n′n(0) > 0 which is crucial for Arkolakis’s
point about modelling small amounts of exports. Since we assume that there are no fixed costs of exporting,
small amounts of exports will occur in our model even without advertising i.e., we do not need and do not
have n′n(0) > 0. Our assumption leads to simpler closed-form expressions.
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produced in i, and yn is per capita income available for spending on consumer goods,
yn = [wAnL

A
n + w̃nL̃]/Ln. Profits do not appear in per capita income because, with free

entry, profits are used to pay for entry costs.
The optimal price is p̃i(ω) = [σ/(σ− 1)]w̃i. Firm profits are thus

π̃i(ω) = ∑
n

{
w̃i

σ− 1
q̃ni(ω)− pnDni(ω)

}
− w̃if̃

where f̃ is the sunk cost of operating and recall that pn was defined in the discussion
preceding equation (4) as the per unit price of advertising in market n. Maximizing with
respect to Dni(ω) and using (A2) yields

pnDni(ω) =
βw̃i
σ− 1

q̃ni(ω) for all destinations n . (A3)

Plugging this into the expression for profits and setting profits to zero (free entry condi-
tion) yields

∑
n

q̃ni(ω) =
σ− 1
1− β f̃ . (A4)

Let M̃i be the measure of firms from country i. Equating supply and demand for
unskilled labour yields

L̃ = M̃i(f̃ + ∑
n

q̃ni)

or, substituting in (A4),

M̃i = M̃ ≡ L̃

f̃

1− β
σ− β . (A5)

This implies that the measure of firms is the same in all countries. Thus, the consumer-
goods market and market for unskilled labour are symmetric across countries with the
exception of total income ynLn. However, this income is spent equally across all varieties
produced in all countries so that the production side of the model remains symmetric
across both varieties and countries. We therefore consider an equilibrium with w̃i = w̃
for some w̃ and all i. Let N be the number of countries. From (A2) and (A3),42

Dni(ω) = Dn = Ln
{
(yn/pn)(β/σ)/(NM̃)

}1/(1−β) . (A6)

A firm from country i selling into country n demands Dn ads. The measure of such
firms is M̃ . Total demand for ads placed in front of country n consumers is ∑i M̃iDni.
Plugging in M̃i from (A5) and Dni from (A6), the total demand for ads in country n in
the symmetric equilibrium is

ΣiM̃iDni = NM̃Dn = (yn/pn)1/(1−β)Lnκ̃ (A7)

where κ̃ ≡ (NM̃)−β/(1−β)(β/σ)1/(1−β). From (A5), κ̃ is a constant. This is the demand
for apps.

42The proof of (A6) is as follows. In the symmetric equilibrium, p̃i = p̃ = w̃σ/(1− σ), p̃−σi /P̃ 1−σ =

p̃−σ/ΣiM̃p̃1−σ = 1/(NM̃p̃). Plugging these into (A2), p̃q̃ni = (Dni/Ln)β(ynLn)/(NM̃). But from (A3),
p̃q̃ni = (σ/β)pnDni. Equating these two expressions for p̃q̃ni and simplifying yields (A6).
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Since there is one ad per app per user, the supply of ads is the measure of consumers in
n choosing apps over the outside option. Restated, it is the share of consumers choosing
apps over the outside option times the measure of consumers:

Sn ≡
Un − δ′0n
Un

Ln . (A8)

From equation (2), Un = δ′0n + ∑i ∑a∈Ani α(δa)δa where Ani is the set of apps from i

available in n. An app from i with δ > δAi is available in all countries. Treating the
number of apps as a continuous variable, we can rewrite this welfare expression as

Un = δ′0n + ∑i

{
MA
i

∫ ∞

δAi
α(δ)δ dG(δ)

}
. (A9)

From (10), MA
i and δAi are constants. From (12), α(δ) depends on constants and δ. Hence,

the right side of (A9) is a constant. Un is thus independent of ad prices and, more
generally, is a constant. Thus, from (A8), the supply of ads Sn is a constant.

We next use a fixed-point theorem to show that there exists prices {w̃i,pi}Ni=1 that are
positive, sum to unity, and clear the markets for unskilled labour and ads. Dn − Sn is
the excess demand for ads in country n. M̃i(f̃ + ∑n q̃ni) − L̃ is the excess demand for
unskilled labour in country i, which depends on the w̃i via the q̃ni (see equation A2 and
the markup rule). These excess demand functions satisfy definition 17.B.2 of Mas-Colell,
Whinston, and Green (1995). Existence follows from their theorem 17.C.2.

We conclude by informally defining general equilibrium in our setting:
1. Wages w̃i that clear national markets for unskilled labour.
2. Prices p̃i(ω) and firm measures M̃i that clear international markets for consumer

goods and set the profits of consumer-goods firms to zero.
3. Wages wAi that clear national markets for AI scientists.
4. Numbers of firms MA

i that set the profits of app producers to zero.
5. Ad prices pi that clear markets for ads.

Appendix C. Mobile App Firms that Choose Not to Use AI

In this section we modify the model to allow for the possibility that not all firms use
AI. We note that in the data there are both big and small firms that do not use AI so
we do not want a simple Melitz selection in which big firms use AI and small firms do
not. To this end, we assume that a firm decides whether or not to enter the app market
and whether or not to do so using AI. The firm thus faces a familiar technology-choice
problem trading off fixed versus marginal costs. We also assume that there is free entry
into both AI and non-AI apps so that, even after making the choice of whether or not to
use AI, firms earn expected profits of zero.

In order to keep all of the main text model, we segment the labour markets for AI and
non-AI labour. Then all of the results in the main text continue to hold. In particular,
if a firm chooses to use AI then it hires AI workers at a wage wAi . If it chooses not
to use AI then it hires non-AI workers at a wage wi. These non-AI workers are also
skilled (they understand programming, hardware, cloud computing etc). Let Li be the
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mass of skilled labour in the economy and let si be the share of these workers who
are trained in AI so that siLi = LAi is the share of skilled labour with AI training and
(1− si)Li is the share that is not. si indexes Heckscher-Ohlin comparative advantage. In
general equilibrium, countries with high si will have relatively low AI wages (low wAi /wi)
and hence a comparative advantage in AI-intensive apps. That is, firms in AI-abundant
countries are more likely both to adopt AI and to use AI more intensively.

With this set up, the section 3 model continues to describe firms that choose to use AI.
Consider a firm from country i that choose not to use AI. The firm pays an entry sunk
cost fei and receives a demand draw δ from a Pareto distribution G(δ) = 1− δ−γ where
γ > 1. If the firm decides to produce the app it must pay a fixed costs fi. It then operates
in all markets.

Firm revenues are as in the section 3 model, but with α = 1. From the discussion
preceding equation (4), revenues are δP and so the firm’s profit function is

πi(δ) = δP −wifi .

The cutoff for producing is defined by πi(δi) = 0 so that the firm produces if

δ > δi ≡
wi
P
fi .

As in section 3, we solve for the mass of firms who pay the sunk cost (Mi) and the wage
wi using the free entry condition ∫ ∞

δi
πi(δ)dG(δ) = wifei (A10)

along with the labour market clearing condition

(1− si)Li = Mi {fei + [1−G(δi)]fi} . (A11)

The right-hand side of equation (A11) states that each firm must pay the sunk cost fei and,
with probability 1−G(δi) = δ−γi , produce and pay the fixed cost fi. Solving equations
(A10)–(A11) with Pareto is standard and yields

δi =

(
fi
fei

1
γ − 1

)1/γ

,
wi
P

=
δi
fi

, and Mi =
(1− si)Li

γfei
. (A12)

This is very similar to its AI counterpart equation (10). Likewise, the proof is identical to
the appendix Appendix C proof of (10).

To imbed this into the general equilibrium model with advertising (online Appendix
B), we need only redefine per capita income: yn = [wn(1− sn)Ln + wAn snL

A
n + w̃nL̃]/Ln

where Ln = Ln + L̃. Everything else goes through as before.
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Appendix D. Incumbent Firms and an Instrument for the Extensive
Margin of AI

We argued in the main text that before there were smartphones, mobile apps, or much
commercialization of AI, a number of firms were engaged in AI research without a mobile
app in mind. This suggests a firm-level instrument for AI deployment in mobile apps,
namely, a dummy indicating whether or not a firm was developing AI capabilities in
some year well before the 2015 start of our sample. This is easy to incorporate directly
into our model. Assume that there is an exogenous measure M̃A

i of firms that have
already incurred the sunk costs fAei of setting up for using AI. M̃A

i is exogenous to the
model. Assume further that these firms have a distribution of δ that is Pareto: G(δ) =
1 − δ−γ . Then the only modification to the model is that the labour-market clearing
condition (9) now becomes

LAi = MA
i f

A
ei +

(
MA
i + M̃A

i

) ∫ ∞

δAi

[
fAi +

η− 1
η

α
η
η−1

]
dG(δ) .

As in the baseline model, the integral equals fAei(γ − 1). Plugging this into the previous
equation yields

LAi = MA
i f

A
ei +

(
MA
i + M̃A

i

)
fAei(γ − 1) = MA

i f
A
eiγ + M̃A

i f
A
ei(γ − 1) .

Solving for MA
i and plugging in fAei = (LAi )

ψfei from equation (3) yields

MA
i =

[
LAi − M̃A

i (L
A
i )

ψfei(γ − 1)
]

/
[
(LAi )

ψfeiγ
]

. (A13)

We assume that the number of incumbents M̃A
i is small enough that MA

i > 0.
Combining this with the extension in online Appendix C we have the following.

Incumbents will always choose the AI technology over the non-AI technology. Hence,
conditional on being an incumbent and surviving, the firm deploys AI with probability
1. In contrast, recall that the number of firms that do not deploy AI is Mi (equation A12).
Hence, conditional on being a non-incumbent and surviving, the probability of deploying
AI is MA

i [1−G(δAi )]/
{
MA
i [1−G(δAi )] +Mi[1−G(δi)]

}
< 1. In short, incumbents have

a higher probability of deploying AI than do non-incumbents.

vi



On-Line Appendix – Not for Publication

Figure A2: Distribution of Users Across Apps: Comparison of Samples
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Notes: It is of interest to examine the representativeness of our data. To this end, we downloaded the top
5,000 firms along with all their apps and distinguished between the matched sample (1,276 firms with
35,575 apps) and the unmatched sample (5,000 less 1,276 firms with about 42,000 apps). The largest apps
are all in the matched sample so that it accounts for 71% of users in the two samples. However, aside
from the largest 80 apps (Facebook is #1 and Didi is #80), the two distributions of users are very similar.
For example, the median app in the unmatched sample is 59,000 users, which is only a little smaller than
the median of 65,000 users in the matched sample. The figure compares the density of users for the two
samples and shows how similar they are aside from the right tail.

Figure A3: National Abundance in 2008: Citations of AI Journal Articles by Country
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Table A1: A Placebo: Using the Patents of Other Firms

(1) (2) (3) (4) (5) (6) (7)

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.57* 1.46* 1.62* 1.65* 1.19* 1.55* 1.23*
(0.14) (0.15) (0.16) (0.16) (0.13) (0.15) (0.14)

ln(1+placebo AI at ) 0.00 0.00 0.01 0.01 0.00 0.01 0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ln(1+undirected AI at ) -0.65* -0.64*
(0.11) (0.11)

ln(1+non AI ft ) -0.99* -0.36
(0.34) (0.35)

Obs. 125,486 125,486 125,467 125,024 125,486 125,486 125,486
R 2 0.25 0.25 0.25 0.27 0.25 0.25 0.25
FEs f, c, t f, ct f, ct, it f, cit f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 2.97* 2.85* 2.92* 3.25* 2.61* 2.94* 2.71*
(0.47) (0.51) (0.55) (0.58) (0.54) (0.53) (0.57)

ln(1+placebo AI at ) -0.04 -0.04 -0.03 -0.04 -0.04 -0.03 -0.03
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

ln(1+undirected AI at ) -0.45* -0.40*
(0.13) (0.14)

ln(1+non AI ft ) -1.98* -1.56*
(0.50) (0.57)

Weak Instrument F  (KP) 1,436 1,242 1,132 1,039 1,254 1,174 1,180

First Stage: ln(1+AI at )

Z at 0.55* 0.52* 0.51* 0.50* 0.49* 0.51* 0.47*
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01)

ln(1+placebo AI at ) 0.03* 0.03* 0.03* 0.03* 0.03* 0.02* 0.02*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ln(1+undirected AI at ) -0.12* -0.14*
(0.01) (0.01)

ln(1+non AI ft ) 0.67* 0.76*
(0.04) (0.04)

Reduced Form: ln(Foreign Users at )

Z at 1.65* 1.49* 1.48* 1.63* 1.28* 1.49* 1.26*
(0.26) (0.27) (0.28) (0.29) (0.26) (0.27) (0.27)

ln(1+placebo AI at ) 0.04* 0.04* 0.05* 0.05* 0.03* 0.04* 0.02*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

ln(1+undirected AI at ) -0.77* -0.78*
(0.11) (0.11)

ln(1+non AI ft ) -0.01 0.50
(0.33) (0.34)

Notes: This table provides the OLS, IV, first-stage, and reduced-form estimates that correspond to the IV
estimates in table 2. Standard errors are clustered at the app level. * indicates 1% significance.
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Table A2: Full Version of Table 4 Magnitudes

(1) (2) (3)

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.48*
(0.14)

lHS(AI at ) 1.39*
(0.13)

ln(AI at ) 1.55*
(0.17)

Obs. 125,486 125,486 27,824
R 2 0.25 0.25 0.20
FEs f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 2.67*
(0.44)

lHS(AI at ) 2.82*
(0.47)

ln(AI at ) 3.78*
(0.72)

Weak Instrument F  (KP) 1,384 1,346 700

First Stage: ln(1+AI at )

ln(1+AI at ) lHS(AI at ) ln(AI at )

Z at 0.60* 0.57* 0.45*
(0.02) (0.02) (0.02)

Reduced Form: ln(Foreign Users at )

Z at 1.60* 1.60* 1.70*
(0.26) (0.26) (0.32)

Notes: This table provides the OLS, first-stage, and reduced-form estimates corresponding to the
IV estimates in table 4.
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Table A3: Sensitivity: Baseline with App Store Category Definition of ηc(a),t

(1) (2) (3) (4) (5) (6) (7)

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.58* 1.48* 1.67* 1.69* 1.20* 1.58* 1.24*
(0.13) (0.14) (0.14) (0.15) (0.12) (0.15) (0.13)

ln(1+undirected AI at ) -0.65* -0.64*
(0.11) (0.11)

ln(1+non AI ft ) -0.95* -0.35
(0.34) (0.34)

Obs. 125,486 125,486 125,467 125,024 125,486 125,486 125,486
R 2 0.25 0.25 0.25 0.27 0.25 0.25 0.25
FEs f, c, t f, ct f, ct, it f, cit f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 2.64* 2.44* 2.63* 2.88* 2.71* 2.66* 2.90*
(0.34) (0.38) (0.44) (0.44) (0.35) (0.43) (0.38)

ln(1+undirected AI at ) -0.39* -0.33*
(0.12) (0.12)

ln(1+non AI ft ) -2.01* -2.10*
(0.53) (0.51)

Weak Instrument F  (KP) 2019 1620 1303 1430 2170 1328 1887

First Stage: ln(1+AI at )

Z at 0.82* 0.77* 0.72* 0.77* 0.88* 0.69* 0.80*
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

ln(1+undirected AI at ) -0.20* -0.21*
(0.01) (0.01)

ln(1+non AI ft ) 0.88* 0.96*
(0.04) (0.04)

Reduced Form: ln(Foreign Users at )

Z at 2.17* 1.87* 1.90* 2.21* 2.37* 1.84* 2.32*
(0.28) (0.29) (0.32) (0.33) (0.30) (0.30) (0.30)

ln(1+undirected AI at ) -0.94* -0.95*
(0.12) (0.12)

ln(1+non AI ft ) 0.34 0.68
(0.32) (0.33)

Notes: This table is identical to table 1 except that the AI intensity of an industry (ηc(a),t) is redefined. In
constructing ηc(a),t we defined industries (c) in two ways. In the main text, an industry is defined as the
set of apps that have a high cosine similarity with app a. In this table we define an industry as the set of
apps that are in the same App Store category as a (but still excluding app a as well as all apps developed
by the developer of a). See section 3.5 for details. Comparing this table to table 1, the two definitions yield almost
identical results. Standard errors are clustered at the app a level. * indicates significance at the 1% level.
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Table A4: Sensitivity to Patent Definitions and Firm Financials

(1) (2) (3) (4) (5)

Baseline
Specification Patent Families Patent Citations

Sub-sample w.
Financial Data

Sub-sample w.
Financial Data

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.48* 1.58* 2.09* 1.44* 1.42*
(0.14) (0.14) (0.22) (0.15) (0.15)

ln(Assets ft ) 1.00*
(0.26)

ln(Revenue ft ) 0.46*
(0.16)

Obs. 125,486 125,486 125,486 62,183 62,183
R 2 0.25 0.25 0.25 0.23 0.23
FEs f, ct f, ct f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 2.67* 2.61* 5.18* 3.21* 3.17*
(0.44) (0.43) (0.88) (0.60) (0.60)

ln(Assets ft ) 0.73*
(0.27)

ln(Revenue ft ) 0.57*
(0.16)

Weak Instrument F  (KP) 1,384 1,475 467 924 928

First Stage: ln(1+AI at )

Z at 0.60* 0.61* 0.31* 0.49* 0.49*
(0.02) (0.02) (0.01) (0.02) (0.02)

ln(Assets ft ) 0.16*
(0.01)

ln(Revenue ft ) -0.08*
(0.01)

Reduced Form: ln(Foreign Users at )

Z at 1.60* 1.60* 1.60* 1.57* 1.56*
(0.26) (0.26) (0.26) (0.29) (0.29)

ln(Assets ft ) 1.22*
(0.26)

ln(Revenue ft ) 0.33
(0.16)

Notes: This table reports alternative specifications to our baseline specification in column 2 of table 1.
Column 1 repeats column 2 of table 1. The key regressor ln(1 + AIat) is the AI deployed in app a (see
equation 1) and is constructed as the ρap-weighted sum of patents. Column 2 replaces patents with patent
families. Comparing columns 1 and 2, this barely changes the OLS and IV estimates. Column 3 replaces patents
with patent citations. This increases the OLS and IV estimates. The increased size likely reflects the heavy right
skew of patent citations. Columns 4–5 restrict the sample to the half of all observations with financial data.
Column 4 is our baseline specification for this subsample. Column 5 adds the log of firm assets and the log
of firm revenues to the specification. Comparing columns 4 and 5, adding financials does not change either the
OLS or IV estimates. Standard errors are clustered at the app level. * indicates 1% significance.
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Table A5: Sensitivity to Adding App-Level Controls

OLS: ln(Foreign Users at ) IV: ln(Foreign Users at ) First Stage: ln(1+AI at ) RF: ln(Foreign Users at )

(1) (2) (3) (1) (2) (3) (1) (2) (3)

ln(1+AI at ) 1.51* 1.04* 0.93* 2.34* 2.52* 2.65*
(0.15) (0.14) (0.14) (0.51) (0.47) (0.56)

ln(1+undirected AI at ) -0.37* -0.06 -0.16*
(0.11) (0.15) (0.01)

ln(1+non AI ft ) -0.44 -2.24* 0.97*
(0.35) (0.67) (0.05)

Age a -0.08* -0.08* -0.08* -0.08* 0.00 0.00
(0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

Price a -0.00* -0.00* -0.00* -0.00* 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Rating a 0.80* 0.80* 0.80* 0.80* 0.00 0.00
(0.02) (0.02) (0.02) (0.02) (0.00) (0.00)

In-app-purchase 0.90* 0.90* 0.90* 0.90* 0.01* 0.00*
revenue dummy a (0.05) (0.05) (0.05) (0.05) (0.00) (0.00)

Show ads dummy a 1.17* 1.17* 1.16* 1.16* 0.00* 0.00*
(0.05) (0.05) (0.05) (0.05) (0.00) (0.00)

Buy ads dummy a 1.38* 1.38* 1.37* 1.37* 0.01* 0.01*
(0.05) (0.05) (0.05) (0.05) (0.00) (0.00)

Z at 0.57* 0.57* 0.48*
(0.02) (0.02) (0.02)

Obs. 109,593 109,593 109,593 109,593 109,593 109,593 109,593 109,593 109,593
FEs f, ct f, ct f, ct f, ct f, ct f, ct f, ct f, ct f, ct
R 2 0.26 0.36 0.36
Weak Instrument F  (KP) 1,054 1,063 964

Notes: This table explores the effects of adding app-level characteristics to our baseline specification. Each
group of three columns is either OLS, IV, or first stage (see the column headers). Each column 1 repeats
column 2 of table 1, but for the smaller sample of apps that have app-level characteristics. Each column 2
adds app-level characteristics. Each column 3 adds undirected AI patents and non-AI patents, as in column
7 of table 1. From the IV rows, the baseline coefficient of 2.34 changes very little when additional covariates are added.
Standard errors are clustered at the app level. * indicates 1% significance.
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Table A6: Sensitivity: Df(a),τ for τ = 2006, . . . , 2011

(1) (2) (3) (4) (5) (6)

2006 2007 2008 2009 2010 2011

IV: ln(Foreign Users at )

ln(1+AI at ) 2.88* 2.66* 2.67* 2.67* 2.64* 2.65*
(0.47) (0.44) (0.44) (0.44) (0.43) (0.42)

Obs. 125,486 125,486 125,486 125,486 125,486 125,486
FEs f, ct f, ct f, ct f, ct f, ct f, ct

Weak Instrument F  (KP) 1,188 1,360 1,384 1,398 1,420 1,445

First Stage: ln(1+AI at )

Z at 0.59* 0.60* 0.60* 0.60* 0.61* 0.61*
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Reduced Form: ln(Foreign Users at )

Z at 1.70* 1.60* 1.60* 1.59* 1.60* 1.61*
(0.28) (0.27) (0.26) (0.26) (0.26) (0.26)

Notes: Column 3 repeats our baseline specification from column 2 of table 1. In the equation (14) definition of
the instrument Zat, there is a termDf (a),2008 which equals one if firm f(a) (the firm which developed app a)
had filed an AI patent on or before 2008. 2008 was chosen because the first mobile apps were made available
in the second half of 2008. In columns 1–6 we replace 2008 with the years 2006, ..., 2011, i.e., the years before
commercial applications of machine learning appeared. The panels are IV, first stage and reduced form.
OLS is the same in all columns and appears in column 2 of table 1. Comparing columns 1–6, the choice of year
makes no difference. Standard errors are clustered at the app level. * indicates 1% significance.
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Table A7: Sensitivity to the Choice of Cutoff ρap > 0.2

(1) (2) (3) (4) (5) (6)

0.0 0.1 0.2 0.3 0.4 0.5

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.50* 1.52* 1.48* 1.11* 0.85* 0.59*
(0.15) (0.15) (0.14) (0.10) (0.07) (0.06)

Obs. 125,486 125,486 125,486 125,486 125,486 125,486
R 2 0.25 0.25 0.25 0.25 0.25 0.25
FEs f, ct f, ct f, ct f, ct f, ct f, ct
Share of ap  pairs 99.95% 96.12% 62.36% 17.49% 2.06% 0.10%

IV: ln(Foreign Users at )

ln(1+AI at ) 4.63* 4.31* 2.67* 1.85* 1.85* 2.70*
(0.79) (0.74) (0.44) (0.22) (0.30) (0.42)

Weak Instrument F 1,571 1,550 1,384 1,516 297 152

First Stage: ln(1+AI at )

Z at 0.25* 0.29* 0.60* 1.09* 0.65* 0.19*
(0.01) (0.01) (0.02) (0.03) (0.04) (0.02)

Reduced Form: ln(Foreign Users at )

Z at 1.18* 1.24* 1.60* 2.01* 1.20* 0.51*
(0.20) (0.22) (0.26) (0.24) (0.19) (0.07)

Notes: Column 3 repeats our baseline specification from column 2 of table 1. In constructing AIat = Σpρap
we only summed over patents for which ρap > 0.2. In columns 1–2, we replace 0.2 with 0.0 and 0.1,
respectively, and recalculate AIat. This does not change the OLS results but substantially raises the IV results.
In columns 4–6, we replace 0.2 with 0.3, 0.4, and 0.5, respectively, and recalculate AIat. This lowers the OLS
and IV results, but both remain economically and statistically very large. The ‘Share of ap pairs’ reports the share
of all possible ap pairs that are above the column’s ρ threshold. By this measure, columns 1, 2, 5, and 6 are
extreme cutoffs. Standard errors are clustered at the app level. * indicates 1% significance.

xiv



On-Line Appendix – Not for Publication

Table A8: Sensitivity: Deep Learning Patents Only

(1) (2) (3) (4) (5) (6) (7)

OLS: ln(Foreign Users at )
All Patents Deep Learning Patents

ln(1+AI at ) 1.48* 1.27* 1.41* 1.45* 1.02* 1.31* 1.01*
(0.14) (0.13) (0.14) (0.14) (0.12) (0.14) (0.12)

ln(1+undirected AI at ) -0.70* -0.70*
(0.11) (0.11)

ln(1+non AI ft ) -0.49 0.06
(0.33) (0.33)

Obs. 125,486 125,486 125,467 125,024 125,486 125,486 125,486
R 2 0.25 0.25 0.25 0.27 0.25 0.25 0.25
FEs f, ct f, ct f, ct, it f, cit f, ct f, ct f, ct

IV: ln(Foreign Users at )
All Patents Deep Learning Patents

ln(1+AI at ) 2.67* 2.29* 2.32* 2.53* 2.00* 2.34* 2.05*
(0.44) (0.44) (0.47) (0.50) (0.47) (0.45) (0.49)

ln(1+undirected AI at ) -1.34* -0.87
(0.49) (0.54)

ln(1+non AI ft ) -0.56* -0.54*
(0.13) (0.14)

Weak Instrument F  (KP) 1,384 1,070 983 909 1,070 1,038 1,038

First Stage: ln(1+AI at )
All Patents Deep Learning Patents

Z at 0.60* 0.71* 0.69* 0.68* 0.67* 0.69* 0.64*
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

ln(1+undirected AI at ) -0.12* -0.14*
(0.01) (0.01)

ln(1+non AI ft ) 0.78* 0.84*
(0.04) (0.04)

Reduced Form: ln(Foreign Users at )
All Patents Deep Learning Patents

Z at 1.60* 1.63* 1.61* 1.73* 1.34* 1.62* 1.31*
(0.26) (0.31) (0.33) (0.34) (0.31) (0.31) (0.31)

ln(1+undirected AI at ) -0.80* -0.82*
(0.11) (0.11)

ln(1+non AI ft ) 0.48 0.86*
(0.32) (0.33)

Notes: Column 1 repeats our baseline specification from column 2 of table 1. In this column, AIat is
constructed using all of the firm’s AI patents. In the remaining columns, AIat is defined using only the
firm’s deep learning patents. Comparison across columns shows that deep learning has a large impact on foreign
users. Standard errors are clustered at the app level. * indicates 1% significance.
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Table A9: Sensitivity to Observations in the Top 1%, 5%, and 10% of Foreign Users

(1) (2) (3) (4)

Baseline 1% 5% 10%

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.48* 1.32* 1.18* 1.02*
(0.14) (0.13) (0.13) (0.13)

Obs. 125,486 124,230 119193 112,895
R 2 0.25 0.24 0.22 0.21
FEs f, ct f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 2.67* 2.59* 2.54* 2.35*
(0.44) (0.43) (0.42) (0.40)

Weak Instrument F  (KP) 1,384 982 958 926

First Stage: ln(1+AI at )

Z at 0.60* 0.60* 0.60* 0.61*
(0.02) (0.02) (0.02) (0.02)

Reduced Form: ln(Foreign Users at )

Z at 1.60* 1.56* 1.53* 1.43*
(0.26) (0.26) (0.25) (0.24)

Omit App-Year Pairs in Top x% of User Distribution:

Notes: Column 1 repeats our baseline specification from column 2 of table 1. Column 2 omits the 1% of
observations with the highest values of ForeignUsersat. Columns 3 and 4 repeat this for the highest 5%
and 10% of observations. The table shows that the impacts of AI are felt even for apps that are much smaller than
blockbuster apps such as Facebook. Standard errors are clustered at the app level. * indicates 1% significance.
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Table A10: Sensitivity: Baseline with Scaled AI Abundance

(1) (2) (3) (4) (5) (6) (7)

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.58* 1.48* 1.67* 1.69* 1.20* 1.58* 1.24*
(0.13) (0.14) (0.14) (0.15) (0.12) (0.15) (0.13)

ln(1+undirected AI at ) -0.65* -0.64*
(0.11) (0.11)

ln(1+non AI ft ) -0.95* -0.35
(0.34) (0.34)

Obs. 125,486 125,486 125,467 125,024 125,486 125,486 125,486
R 2 0.25 0.25 0.25 0.27 0.25 0.25 0.25
FEs f, c, t f, ct f, ct, it f, cit f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 3.08* 2.94* 3.01* 3.24* 2.89* 3.14* 3.09*
(0.34) (0.38) (0.41) (0.43) (0.38) (0.41) (0.42)

ln(1+undirected AI at ) -0.36* -0.29
(0.12) (0.13)

ln(1+non AI ft ) -2.48* -2.30*
(0.51) (0.54)

Weak Instrument F  (KP) 2,266 1,883 1,662 1,539 2,025 1,653 1,788

First Stage: ln(1+AI at )

Z at 0.99* 0.93* 0.91* 0.91* 0.91* 0.86* 0.83*
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

ln(1+undirected AI at ) -0.16* -0.18*
(0.01) (0.01)

ln(1+non AI ft ) 0.89* 0.97*
(0.04) (0.04)

Reduced Form: ln(Foreign Users at )

Z at 3.03* 2.74* 2.73* 2.95* 2.63* 2.71* 2.58*
(0.33) (0.35) (0.37) (0.39) (0.34) (0.35) (0.35)

ln(1+undirected AI at ) -0.83* -0.85*
(0.11) (0.11)

ln(1+non AI ft ) 0.32 0.69
(0.32) (0.33)

Notes: This table is identical to table 1 except that the AI abundance of a country (LAit) is redefined. The
concern is that the LAit are correlated with country size and so may be picking up other things that belong
in the second stage such as demand-side home-market effects and supply-side inherent scalability of AI.
We therefore divide LAit by country i’s capital stock KA

it . KA
it is calculated using constant dollar 2005 prices

($USD) from Feenstra, Inklaar, and Timmer (2015). Comparing this table with table 1, scaling has only a modest
effect on the results. Standard errors are clustered at the app a level. * indicates significance at the 1% level.
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Table A11: OECD Digital Services Trade Restrictiveness Index, 2020

Rank Country
Data 

Transfer n ,2020
Data 

Develop n ,2020 Total Rank Country
Data 

Transfer n ,2020
Data 

Develop n ,2020 Total

1 Saudi Arabia 0.20 0.09 0.29 31 Denmark 0.04 0.02 0.06

2 Kazakhstan 0.12 0.11 0.23 32 Ireland 0.04 0.02 0.06

3 Indonesia* 0.16 0.07 0.22 33 Lithuania 0.04 0.02 0.06

4 Egypt* 0.08 0.13 0.21 34 Slovakia 0.04 0.02 0.06

5 China* 0.12 0.09 0.21 35 Luxembourg 0.04 0.02 0.06

6 Kenya 0.12 0.09 0.21 36 Netherlands* 0.04 0.02 0.06

7 Nigeria* 0.08 0.11 0.19 37 Argentina* 0.04 0.02 0.06

8 Pakistan* 0.08 0.11 0.19 38 Slovenia 0.04 0.02 0.06

9 India* 0.12 0.07 0.19 39 Peru 0.04 0.02 0.06

10 Russia* 0.12 0.07 0.19 40 Austria 0.04 0.02 0.06

11 Turkey* 0.08 0.07 0.15 41 Spain* 0.04 0.02 0.06

12 Vietnam 0.04 0.09 0.13 42 Finland 0.04 0.02 0.06

13 Greece 0.08 0.04 0.12 43 Thailand 0.04 0.02 0.06

14 Singapore 0.08 0.04 0.12 44 Mexico* 0.04 0.00 0.04

15 South Korea* 0.08 0.04 0.12 45 Colombia 0.04 0.00 0.04

16 Brazil* 0.12 0.00 0.12 46 Australia* 0.04 0.00 0.04

17 Germany* 0.08 0.02 0.10 47 Norway 0.04 0.00 0.04

18 Belgium* 0.08 0.02 0.10 48 Switzerland 0.04 0.00 0.04

19 Philippines* 0.04 0.04 0.08 49 South Africa* 0.04 0.00 0.04

20 Hungary 0.04 0.04 0.08 50 Uruguay 0.04 0.00 0.04

21 Czech Republic 0.04 0.04 0.08 51 UK* 0.04 0.00 0.04

22 Malaysia 0.04 0.04 0.08 52 Israel 0.04 0.00 0.04

23 Italy* 0.04 0.04 0.08 53 Japan* 0.04 0.00 0.04

24 France* 0.04 0.04 0.08 54 Madagascar 0.04 0.00 0.04

25 Poland 0.04 0.04 0.08 55 Ecuador 0.00 0.02 0.02

26 Portugal 0.04 0.04 0.08 56 Dominican 0.00 0.02 0.02

27 Guatemala 0.04 0.04 0.08 57 Chile 0.00 0.00 0.00

28 Sweden 0.08 0.00 0.08 58 USA* 0.00 0.00 0.00

29 New Zealand 0.08 0.00 0.08 59 Canada* 0.00 0.00 0.00

30 Ghana 0.00 0.07 0.07 60 Costa Rica 0.00 0.00 0.00

Notes: This table reports DataTransfern,2020 and DataDevelopmentn,2020. The ‘total’ column is
DataTransfern,2020 +DataDevelopmentn,2020. An asterisk indicates that the country is in our subsample
of the largest 25 economies.
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Table A12: First-Stage and Reduced-Form of Table 7: AI Externalities

(1) (2) (3) (4) (5) (6) (7)

First Stage: ln(1+AI at )

ln(1+external  AI at ) 0.03* 0.03* 0.03* 0.03* 0.02* 0.03* 0.02*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Z at 0.61* 0.57* 0.53* 0.53* 0.54* 0.54* 0.49*
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

ln(1+undirected AI at ) -0.12* -0.14*
(0.01) (0.01)

ln(1+non AI ft ) 0.91* 0.98*
(0.04) (0.04)

Reduced Form: ln(Foreign Users at )

ln(1+external  AI at ) 0.37* 0.37* 0.37* 0.37* 0.34* 0.37* 0.34*
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Z at 1.45* 1.29* 1.25* 1.39* 1.16* 1.27* 1.13*
(0.26) (0.27) (0.28) (0.29) (0.26) (0.27) (0.26)

ln(1+undirected AI at ) -0.46* -0.48*
(0.12) (0.12)

ln(1+non AI ft ) 0.47 0.69
(0.32) (0.33)

Notes: This table reports the first-stage and reduced-form estimates for the IV in table 7. Standard errors are
clustered at the app level. * indicates 1% significance.
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Table A13: Sensitivity to the Number of Sentence Embeddings Used for ρap

(1) (2) (3)

Top Sentence Top 5 Sentences Top 10 Sentences

OLS: ln(Foreign Users at )

ln(1+AI at ) 1.28* 1.48* 1.30*
(0.13) (0.14) (0.14)

Obs. 125,486 125,486 125,486
R 2 0.25 0.25 0.25
FEs f, ct f, ct f, ct

IV: ln(Foreign Users at )

ln(1+AI at ) 1.98* 2.67* 3.55*
(0.36) (0.44) (0.60)

Weak Instrument F  (KP) 1,550 1,384 1,564

First Stage: ln(1+AI at )

Z at 0.60* 0.85* 0.37*
(0.02) (0.02) (0.01)

Reduced Form: ln(Foreign Users at )

Z at 1.60* 1.68* 1.31*
(0.26) (0.30) (0.22)

Notes: Column 2 repeats our baseline specification from column 2 of table 1. As described in Appendix B,
word embeddings are calculated at the sentence level. To collapse this across sentences we use the following
industry standard. For each pair of sentences, one from the app description and one from the patent text, we
calculate a cosine similarity. We then average across sentence-level cosine similarities to obtain ρap. In our
baseline we average across the top 5 sentence-level cosine similarities. In column 3 we average across the
top 10 sentence-level cosine similarities. In column 1 we use only the largest sentence-level cosine similarity.
Comparison of columns 1–3 shows that we obtain large impacts for all methods. Standard errors are clustered at
the app level. * indicates 1% significance.
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