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1 Introduction

In 1950, Isaac Asimov published I, Robot, a collection of short stories about the dilem-

mas of a world where robots powered by artificial intelligence (AI) interact with hu-

mans. Recent advances in AI have brought these dilemmas from the realm of science

fiction to the pages of newspapers and the halls of parliaments.

AI algorithms can outperform humans in tasks such as playing chess (Silver et al.,

2017) and Go (Silver et al., 2018), recognizing images (Langlotz et al., 2019), and pre-

dicting protein structures (Jumper et al., 2021). They have also made great strides

in understanding, translating, and generating content (Eloundou et al., 2023) and

solving business forecast problems (Agrawal et al., 2022). These and other break-

throughs promise significant societal benefits but also carry the risk of generating

considerable societal costs.

Some of these costs stem from the alignment problem highlighted by Norbert

Wiener (Wiener, 1960). Misalignments occur when AI algorithms optimize narrow

goals that overlook the broader spectrum of human objectives. For instance, social

media algorithms may prioritize engagement at the expense of user well-being (Rus-

sell et al., 2015, Amodei et al., 2016).

There is significant disagreement about AI’s potential societal impact. For exam-

ple, neural network pioneers Geoffrey Hinton and Yann LeCun offer starkly differ-

ent perspectives. Hinton has recently expressed serious concerns about AI’s possible

negative societal consequences (see, e.g., Heaven, 2023), while LeCun believes that

benefits far outweigh the risks, suggesting that fears about societal costs are exag-

gerated (see, e.g., Hart, 2024).

AI’s rapid development has outpaced regulatory efforts, creating an urgent need

to make private benefits consistent with societal interests. Europe and the United

States are developing frameworks to address these challenges (European Commis-

sion, 2020, European Commission, 2022, Benifei and Tudorache, 2023, Biden, 2023).
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Proposed approaches include mandatory testing, making developers liable for ad-

verse outcomes, and classifying AI technologies into risk tiers, with a ban on those

posing unacceptable risks.

To assess these regulatory approaches, it is useful to divide the potential costs of

AI into two categories. The first is negative externalities, such as fueling political po-

larization, facilitating fraud, disseminating false information, jeopardizing financial

stability, and weakening democracies (see, e.g., Acemoglu, 2021, and Beraja, Kao,

Yang, and Yuchtman, 2023). The second is “internalities,” a term coined by Herrn-

stein et al. (1993) for situations where people act against their self-interest because

of misinformation, self-control issues, cognitive biases, and time inconsistency prob-

lems.

Our analysis explores different public policies toward AI using a model designed

to capture the key features of the algorithms currently being developed: uncertainty

and disagreement about the likelihood of their societal costs. We evaluate differ-

ent regulatory approaches starting with scenarios with homogeneous expectations

about AI’s external effects and then addressing more complex situations with het-

erogeneous expectations.

In our model, an AI developer selects the innovation level of the algorithm rela-

tive to the current state of the art, facing ex-ante uncertainty about potential adverse

external and internal effects. This uncertainty increases with the gap between the

algorithm’s level of innovation and the status quo. Experimentation, which we call

beta testing, can reduce uncertainty about potential negative effects by releasing the

algorithm to a small group before wider deployment. While commonly used to eval-

uate effectiveness, the beta testing we emphasize here assesses an algorithm’s social

costs.

Pigouvian taxes are often used to equate private and societal interests, but their

application to AI is challenging. We consider two types of Pigouvian taxes. Ex-

ante taxes charge developers the expected welfare cost of external effects. Ex-post
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taxes charge them for the realized welfare cost of external effects. Although effective

with homogeneous expectations, ex-post taxes fall short under limited liability, as

developers ignore social damages exceeding their liability cap.

Ex-ante taxes are effective under limited liability but impractical due to their com-

plexity, especially when regulators and developers have different expectations. De-

signing these taxes requires eliciting the developer’s expectations, a challenging task

since the developer has the incentive to conceal their true beliefs and feign pessimism

about external effects.

In sum, the Pigouvian taxes that equate private and social incentives are too com-

plex to implement in practice. What should regulators do? We discuss the optimal

time-consistent combination of beta testing and regulatory approval. Although this

policy does not ensure optimal resource use–developers may choose innovation lev-

els that are not socially optimal–it allows society to benefit from a given AI’s poten-

tial while mitigating its downsides.

In Section 2, we review the related literature. We discuss our benchmark model

in Section 3. In Section 4, we evaluate various regulatory approaches. We study

scenarios in which AI algorithms create internalities in Section 5. We conclude by

discussing the implications of our model for the regulatory proposal under consid-

eration in the U.S. and the European Union.

2 Related literature

Our paper relates to four important strands of research. The first is a nascent eco-

nomics literature on AI regulation, which we briefly discuss below.

Blattner et al. (2021) explore a delegation game where an agent designs a predic-

tion algorithm under regulatory constraints set by a principal. The agent can opt for

complex prediction functions, which the principal can regulate using only simplified

descriptions. The authors find that restricting agents to using fully transparent, sim-
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ple algorithms is inefficient when the misalignment between the principal and agent

is limited, and complex algorithms offer significantly better performance.

Acemoglu and Lensman (2023) study the optimal adoption of an AI technology

that might cause a disaster. Uncertainty about this disaster is resolved over time,

regardless of whether the technology is adopted. For this reason, there is an incentive

to delay adoption.

Gans (2024) argues that when there is learning-by-doing about the social costs of

AI, it may be optimal to accelerate AI adoption, especially when this adoption can

be reversed if necessary.

Callander and Li (2024) consider a model in which firms have superior informa-

tion about the impact of technology. They show that increased competition weak-

ens the regulator’s ability to obtain reliable information, reducing the likelihood of

approving beneficial innovations. This outcome occurs because the regulator’s in-

terests are more closely in line with those of incumbent firms. They both benefit

from the status quo and only want innovation that improves upon it. In contrast,

new entrants, who have nothing to gain from the status quo, push for innovation

approval whenever it serves their private interests, irrespective of broader societal

consequences.

Our work makes three contributions to this literature. First, we study how un-

certainty about internal and external effects and disagreement about the likelihood

of these effects impact the design of optimal AI policies considering both full and

limited liability settings. Second, we explore the important role that beta testing can

play in mitigating the downside risk of AI. Third, we analyze the effectiveness of

various regulatory approaches that the U.S. and the European Union are consider-

ing.

A second line of research related to our work studies the economic impact of

AI (e.g., Burstein, Morales, and Vogel, 2019, Acemoglu and Restrepo, 2022, Jones,

2023, Ide and Talamas, 2023, and Martinez, 2021) and the critical role of data in AI
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algorithms (e.g., Jones and Tonetti, 2020 and Farboodi and Veldkamp, 2021). Our

contribution relative to this literature is to characterize the optimal policy to deal

with the externalities and internalities stemming from AI algorithms and discuss

potential implementation strategies.

A third related strand of research studies the value of experimentation (e.g., Callan-

der, 2011 and Ilut and Valchev, 2023). Relative to this work, we consider the possi-

bility of conducting beta tests before the full product launch, including determining

the ideal sample size for such tests.

A fourth related research area analyses settings relevant to the design and exe-

cution of clinical trials. These situations feature multiple options and unknown re-

wards, commonly known as the multi-armed bandit problem (e.g., Thompson, 1933

and Gittins, 1974). Relative to this literature, we consider a setting where private

and social incentives diverge and offer policy solutions that equate these incentives

in settings with homogeneous and heterogeneous expectations.

3 Benchmark model

We consider a two-period model with a continuum of identical households and a

single AI developer. We interpret the first period as the short run and the second

as the long run.1 In our model, AI usage is risky because, as we discuss below, it

can create misalignments that can produce considerable social costs. To evaluate

these costs, the developer can test the algorithm in the first period. Based on the

outcome of this test, they can then decide whether to release the algorithm in the

second period.

In this section, we consider the case where expectations about AI-related external

and internal effects are homogenous. We discuss the household problem, the AI

developer’s problem, and the unregulated equilibrium. Then, we characterize the

1We omit time subscripts throughout the text when this omission does not reduce clarity.
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social optimum and compare it with the unregulated equilibrium.

3.1 Unregulated equilibrium

Household problem The economy has a continuum of households indexed by j ∈
[0, N], where N denotes the total number of households in the population. Each

household lives for two periods.

Household j’s momentary utility in period t, vj,t, has a quasi-linear form:

vj,t = yt + [u (ℓ)− Et(i2
t )− pt]× Ij,t − Et(e2

t ), (1)

where yt is the fixed exogenous income earned in period t = 1, 2. E1(·) denotes

the unconditional expectation at the beginning of period one and E2(·) denotes the

expectation conditional on the information obtained at the end of period one.

The utility from using an algorithm with innovation level ℓ is given by u (ℓ).

This utility function is increasing (u′ > 0), concave (u′′ < 0), and satisfies the Inada

condition (limℓ↓0 u′(ℓ) = ∞). We normalize u(0) = 0, where ℓ = 0 represents the

status quo level of algorithm development.

The indicator function Ij,t takes the value one if household j buys the AI license

and zero otherwise. The mass of AI users at time t is µt ≡
� N

0 Ij,tdj.

Alignment problems In the introduction, we discuss misalignments that arise when

AI systems optimize for narrow goals that fail to encompass the complex and multi-

faceted aims of humans. From the standpoint of designing public policy, it is useful

to classify misalignments into two types.

The first is internal misalignments that impact the AI user’s utility directly. For

instance, AI algorithms might manipulate households into making decisions that

lower their welfare. Households that do not use the algorithm are not affected by

this type of misalignment. An internal misalignment, it, decreases momentary util-

ity by i2
t . Although households that use the algorithm cannot avoid this misalign-
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ment, they consider its impact when making their purchase decision. Therefore, in

equation (4), the utility of buying the algorithm is reduced by the expected welfare

cost of the internal misalignment, E(i2
t ). In Section 5, we explore a scenario where,

due to behavioral biases, the household neglects the potential internal effects of the

algorithm when deciding whether to use it.

The second is external misalignments imposed on a given household through

the use of the AI algorithm by other households. For example, using a form of so-

cial media powered by AI algorithms might polarize public opinion and distort the

outcome of elections. An external misalignment, et, reduces momentary utility by

e2
t . This reduction is increasing in the measure of users, µt.

Households have control over the welfare impact of internal misalignments be-

cause they can choose not to buy the algorithm. However, they have no control over

external misalignments, as these are influenced by whether others use the algorithm.

Short- and long-run misalignments We assume that the short-run impact of

internal and external misalignments on utility is equal to the long-run impact plus a

mean-zero random variable, ξx for x ∈ {i, e}:

i2
1 = ϕi(ℓ)

2 + ξi, i2
2 = ϕi(ℓ)

2,

e2
1 = ϕe(ℓ)

2µ1 + ξe, e2
2 = ϕe(ℓ)

2µ2.

The random variables ξx capture the idea that the full consequences of AI usage may

not be fully realized in the short run but emerge over the long run.

For each innovation level ℓ, ϕx(ℓ), x ∈ {i, e}, are random variables. Positive

and negative values of ϕx(ℓ) represent undesirable misalignments between the user

objectives and AI outcomes.

We assume that the distributions of ϕx(ℓ), for x ∈ {i, e}, satisfy two properties.

First, the expected value of ϕx(ℓ) is zero:

E1[ϕx(ℓ)] = 0.
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Second, the uncertainty about the potential misalignments increases with the inno-

vation level, ℓ. Let σ2
x(ℓ) denote the uncertainty about the potential misalignment of

an algorithm with innovation level ℓ:

σ2
x (ℓ) = E1

[
ϕx(ℓ)

2
]

.

We assume that σ2
x(ℓ) is increasing and convex in ℓ and that there is no uncertainty

about the status quo: σ2
x (0) = 0.

Information from beta testing Upon testing or releasing the algorithm in pe-

riod one, society receives signals regarding the algorithm’s internal and external mis-

alignments. For simplicity, instead of specifying the underlying distributions of the

random variables ξx, we model the impact of this new information on the posterior

beliefs. We assume that if µ1 > 0, then the posteriors for the expected value and the

variance of ℓ are given by

E2[ϕx(ℓ)] = ϕ̂x, VAR2(ϕx(ℓ)) = σ̂2
x(ℓ) < σ2

x(ℓ)

Beta testing reduces uncertainty but does not eliminate it as long as σ̂2
x(ℓ) > 0. Con-

sequently, the decisions that affect long-run welfare must be made under some resid-

ual uncertainty.

To simplify, we consider the case in which the information generated by the beta

test is independent of the number of people adopting the algorithm. In the Ap-

pendix, we consider the case in which testing might fail to produce any information

about the internal and external effects, and the likelihood of this failure decreases as

the number of participants increases.

The posterior beliefs satisfy the following conditions,

E1[E2(ϕx)] = E1(ϕ̂x) = 0 and E1[E2(ϕ
2
x)] = E1[ϕ̂

2
x + σ̂2

x(ℓ)] = σ2
x(ℓ).
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Household decisions Household j chooses whether to purchase an algorithm li-

cense in each period to maximize their expected lifetime utility, which is given by

Uj = (1 − β)vj,1 + βE1(vj,2). (2)

The household buys an AI license in period t if the expected private benefits, net of

internal effects caused by the algorithm, exceed the price of the algorithm. In period

one, this condition is

u(ℓ)− σ2
i (ℓ) ≥ p1.

A similar condition applies in period two:

u(ℓ)− E2[ϕi(ℓ)
2] ≥ p2.

The expected negative welfare consequences of internal misalignments reduce

the price that the household is willing to pay for the algorithm in periods one and

two.

The AI developer’s problem There is a single AI developer who, at the beginning

of period one, chooses the level of innovation of the algorithm, ℓ, and incurs a devel-

opment cost, f (ℓ). This cost function is increasing and convex in ℓ, with f (0) = 0.

In period one, the developer can beta test the algorithm by releasing it to a subset

of the population, µ1 < N. Alternatively, it can choose not to release the algorithm

(µ1 = 0) or make it available to the whole population (µ1 = N). We assume that the

decision to deploy the algorithm in period one can be reversed in period two. If this

reversal occurs, the algorithm does not influence the utility in period two.

The developer’s problem in period two At the beginning of period two, the

developer decides whether to release the algorithm to the population, choosing the

number of AI licenses to offer for sale (µ2) and the price of each license (p2). At the

end of period two, uncertainty about internal and external misalignments is realized.
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The developer’s utility in the second period is,

V2 =

{
p2µ2 − E2[ϕe(ℓ)2]µ2, if p2 ≤ u(ℓ)− E2[ϕi(ℓ)

2],
0, otherwise.

We assume that the developer is immune to the algorithm’s internal effect but expe-

riences disutility from the externality in the same way households do.

If the developer markets the algorithm, the optimal license price is

p2 = u(ℓ)− E2[ϕi(ℓ)
2].

The developer, acting as a monopolist, sets the price to capture the expected con-

sumer surplus.2

The cost of developing the algorithm is sunk because it was incurred at the be-

ginning of period one. In period two, the developer releases the algorithm if the

maximum price the household is willing to pay is greater than the reduction in the

developer’s utility caused by the externality associated with the algorithm, i.e., if

p2 ≥ E2[ϕe(ℓ)2].

If the algorithm is released in period one (µ1 > 0), the posterior means of ϕ2
x(ℓ),

for x ∈ {i, e}, are given by E2[ϕ
2
x(ℓ)] = ϕ̂2

x + σ̂2
x(ℓ). Using this information, the

developer releases the algorithm in period two if

u(ℓ)− [ϕ̂2
i + σ̂2

i (ℓ)] ≥ ϕ̂2
e + σ̂2

e (ℓ),

otherwise the algorithm is not released (µ2 = 0).

If the algorithm was not released in period one (µ1 = 0), it is released in period

two to the whole population (µ2 = N) if

u(ℓ)− σ2
i (ℓ) ≥ σ2

e (ℓ),

2This pricing strategy is a form of perfect price discrimination, which does not generate dead-
weight losses associated with the developer’s market power, but simply redistributes resources from
the households to the monopolist.
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and not released otherwise (µ2 = 0).

Given that an algorithm with innovation level ℓ was developed and µ1 licenses

were sold in the first period, the optimized developer utility in period two is,

V∗
2 (ℓ, µ1) =

{
max{u(ℓ)− ∑x∈{i,e}[ϕ̂

2
x + σ̂2

x(ℓ)], 0}N, if µ1 > 0,
max{u(ℓ)− ∑x∈{i,e} σ2

x(ℓ), 0}N, if µ1 = 0.

The asterisk indicates that the value function is evaluated in period two at the devel-

oper’s optimal price and implementation strategy.

To make the problem interesting, we assume that the distribution of ϕx(ℓ) is such

that there is a strictly positive probability that both u(ℓ) > ∑x∈{i,e}[ϕ̂
2
x + σ̂2

x(ℓ)], in

which case the developer releases the algorithm, and u(ℓ) < ∑x∈{i,e}[ϕ̂
2
x + σ̂2

x(ℓ)] in

which case the algorithm is not released. This assumption means that the probability

of the algorithm being implemented in period two is strictly positive but less than

one.

The following lemma shows that, from the perspective of period two, there is

a strictly positive value of having beta tested in period one. The intuition for this

result is that the developer is better off because it can make decisions contingent on

the acquired information.

Lemma 1 (Private benefits of beta testing in period one). The developer’s expected util-

ity in the second period is higher when there is beta testing in the first period,

E1[V∗
2 (ℓ, µ1)] > V∗

2 (ℓ, 0), if µ1 > 0.
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Proof. If µ1 > 0:

E1[V∗
2 (ℓ, µ1)] = E1

max

{
u(ℓ)− ∑

x∈{i,e}
[ϕ̂2

x + σ̂2
x(ℓ)], 0

}
N


> max

{
u(ℓ)− E1

 ∑
x∈{i,e}

[ϕ̂2
x + σ̂2

x(ℓ)]

 , 0

}
N

= max

{
u(ℓ)− ∑

x∈{i,e}
σ2

x(ℓ), 0

}
N = V∗

2 (ℓ, 0).

The inequality holds because the expected value of the maxima is higher than the

maximum of the expected value. The inequality is strict because the probability

that the algorithm is implemented in period two, given the information obtained in

period one, is strictly positive but less than one.

The developer’s problem in period one At the beginning of the first period,

the developer chooses the level of innovation, ℓ. Then, they choose the number of

licenses, µ1, and the price per license, p1. The developer’s objective function is given

by:

V = (1 − β)

({
p1µ1 − σ2

e (ℓ)µ1, if p1 ≤ u(ℓ)− σ2
i (ℓ)

0, if p1 > u(ℓ)− σ2
i (ℓ)

)
+ βE1[V∗

2 (ℓ, µ1)]− f (ℓ).

The optimal price for the developer is the maximum price the household is willing

to pay: p = u(ℓ)− σ2
i (ℓ).

From the perspective of period one, it is optimal to set µ1 = N if u(ℓ)− σ2
i (ℓ) ≥

σ2
e (ℓ) and µ1 = 0 if u(ℓ) − σ2

i (ℓ) < σ2
e (ℓ). However, experimenting in the first

period, µ1 > 0, creates value by generating information that the developer can use

in the second period.

Given the discontinuity in information generation from µ1 = 0 to µ1 > 0, the

problem may have a supremum but not a maximum. For a given ℓ, if u(ℓ) <
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∑x σ2
x(ℓ) then the static optimal decision would be µ1 = 0. However, choosing an

infinitesimal, positive value of µ1 yields strictly larger utility than setting µ1 to zero

(see Lemma 1). Therefore, the optimal number of households trying the technology

in period one should be strictly positive but kept as low as possible (µ1 ↓ 0). We re-

fer to this setting as the experimentation solution: the developer sells AI licenses to an

infinitesimal fraction of households to test the algorithm and then decides whether

to sell the algorithm given the information revealed in period two.

Table 1 summarizes the developer’s testing and release decisions. The developer

may choose to withdraw the product from the market even if the expected value

of the misalignment, ϕ̂x, is relatively low in absolute value, as long as the residual

uncertainty, σ̂2
x , remains significant. This result reflects the fact that the negative con-

sequences are not fully known in the short run, leading households and developers

to be cautious about the algorithm’s long-run consequences.

Table 1 also summarizes the socially optimal testing and release decisions, which

we now turn to.

3.2 The first-best solution (planner’s problem)

We consider a central planner that can choose, in the first period, both the innova-

tion level of the AI algorithm and the number of households that can use it. If the

algorithm is implemented in the first period, the planner obtains information about

its internal and external effects. In the second period, the planner decides whether

to make the algorithm available and how many licenses to offer.

We define social welfare as the sum of the households’ and developer’s utili-

ties,
� N

0 Uidi + V . With quasi-linear utility, maximizing this social-welfare function

is equivalent to maximizing efficiency. Any distribution of utilities can be achieved

using lump-sum transfers.
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Table 1: Testing, release, and withdrawal decisions

Time 1

Uncertainty Low Medium High

σ2
e (ℓ)

[
0, u(ℓ)−σ2

i (ℓ)
N+1

) [
u(ℓ)−σ2

i (ℓ)
N+1 , u(ℓ)− σ2

i (ℓ)

) [
u(ℓ)− σ2

i (ℓ), ∞
)

Developer release release test

Social optimum release test test

Time 2

Expect. + res. uncert. Low Medium High

ψe

[
0, u(ℓ)−ψi

N+1

) [
u(ℓ)−ψi

N+1 , u(ℓ)− ψi

)
[u(ℓ)− ψi, ∞)

Developer release release withdraw

Social optimum release withdraw withdraw

Notes: Here ψx ≡ ϕ̂2
x + σ̂2

x(ℓ) for x ∈ {i, e} denotes the sum of expected damage and uncertainty.

To compute the socially optimal allocations, we start by describing the solution

to the second-period problem, contingent upon the choices made in the first period

about ℓ and µ1.
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The planner’s problem in period two The expected social welfare in the second

period, considering the available information, is given by:

W2 =

{
Ny2 +

[
u (ℓ)− [ϕ̂2

i + σ̂2
i (ℓ)]− (N + 1) [ϕ̂2

e + σ̂2
e (ℓ)]

]
µ2 if µ1 > 0,

Ny2 +
[
u (ℓ)− σ2

i (ℓ)− (N + 1) σ2
e (ℓ)

]
µ2 if µ1 = 0.

We now determine the optimal µ2. If µ1 > 0, then the posteriors are given by

E2[ϕ
2
x(ℓ)] = ϕ̂2

x + σ̂2
x(ℓ). In this case, releasing the algorithm is optimal if

u(ℓ)− [ϕ̂2
i + σ̂2

i (ℓ)]

N + 1
≥ ϕ̂2

e + σ̂2
e (ℓ),

otherwise, µ2 = 0.

If µ1 = 0, then µ2 = N if

u(ℓ)− σ2
i (ℓ)

N + 1
≥ σ2

e (ℓ),

and otherwise µ2 = 0 .

In period two, the planner only releases AI algorithms that are expected to be

socially beneficial, taking into account the expected external effects on the entire

population, (N + 1)E2[ϕe(ℓ)2]. In contrast, the developer considers only its own

expected loss of utility due to the externality, E2[ϕe(ℓ)2]. This difference implies

that the developer is willing to commercialize AI algorithms that are detrimental to

society.

The resulting social welfare in period two is given by:

W∗
2 (ℓ, µ1) = Ny2 +

{
max{u(ℓ)− [ϕ̂2

i + σ̂2
i (ℓ)]− (N + 1)[ϕ̂2

e + σ̂2
e (ℓ)], 0}N, if µ1 > 0

max{u(ℓ)− σ2
i (ℓ)− (N + 1)σ2

e (ℓ), 0}N, if µ1 = 0,

where the asterisk indicates that the value function has been maximized with respect

to the choice of price and implementation in period two.

We assume that there is a strictly positive probability that u(ℓ)− [ϕ̂2
i + σ̂2

i (ℓ)] >

(N + 1)[ϕ̂2
e + σ̂2

e (ℓ)], in which case it is optimal to release the algorithm, and u(ℓ)−
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[ϕ̂2
i + σ̂2

i (ℓ)] < (N + 1)[ϕ̂2
e + σ̂2

e (ℓ)], in which case it is not. This assumption means

that the probability of releasing the algorithm in the second period, given the infor-

mation obtained in the first period, is strictly positive but less than one.

The equivalent of Lemma 1 for the planner is as follows.

Lemma 2 (Social benefits of beta testing in period one). Expected social welfare is higher

in the second period when there is beta testing in the first period:

E1[W∗
2 (ℓ, µ1)] > W∗

2 (ℓ, 0), if µ1 > 0.

Proof. If µ1 > 0:

E1[W∗
2 (ℓ, µ1)] = Ny2 + E1

(
max

{
u(ℓ)− [ϕ̂2

i + σ̂2
i (ℓ)]− (N + 1)[ϕ̂2

i + σ̂2
i (ℓ)], 0

}
N

)

> Ny2 + max

{
u(ℓ)− E1

(
ϕ̂2

i + σ̂2
i (ℓ)

)
− (N + 1)E1

(
ϕ̂2

i + σ̂2
i (ℓ)

)
, 0

}
N

= Ny2 + max

{
u(ℓ)− σ2

i (ℓ)− (N + 1)σ2
e (ℓ), 0

}
N = V∗

2 (ℓ, 0).

The planner’s problem in period one Expected social welfare is given by

W = (1 − β)
[

Ny1 +
{

u(ℓ)− σ2
i (ℓ)− (N + 1)σ2

e (ℓ)
}

µ1

]
+ βE1[W∗

2 (ℓ, µ1)]− f (ℓ).

We now consider the optimal choice of µ1 for a given ℓ. Setting µ1 = 0 is never

optimal. It is always better to set µ1 to an infinitesimal value to generate information

that can be used in period two.

From the standpoint of the first period, it is optimal to set µ1 = N if

u(ℓ)− σ2
i (ℓ)

N + 1
≥ σ2

e (ℓ)

and µ1 equal to an infinitesimal value (the experimentation solution) otherwise.
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The planner is more cautious than the developer when deciding between beta

testing and releasing the algorithm to the general population. At certain innovation

levels, the developer prefers an immediate release to the general public, while the

planner opts for beta testing.

Upon obtaining information about the external misalignments of the AI algo-

rithm in period one, there are algorithms that the planner withdraws from the mar-

ket in the second period, but the developer finds privately beneficial to continue

commercializing.

In summary, for a given ℓ, because the planner considers the impact of externali-

ties on the entire population, it is more cautious than the developer in the sense that

it implements beta testing for externalities in the first period more often than the

developer. The planner is also more conservative in releasing the algorithm in the

second period.

Table 1 compares the planner’s and developer’s decision to test the algorithm in

the first period or release it to the entire population. When the algorithm is similar

to the status quo (ℓ is low), there is low uncertainty about its external impacts, and

the developer and the planner concur that it is optimal to release it to the whole

population in period one. When ℓ significantly deviates from the status quo so that

uncertainty about external effects is high, there is a unanimous decision that the

algorithm should undergo testing in period one to assess its suitability for release.

There is disagreement in situations with moderate uncertainty levels: the developer

releases the algorithm without prior testing, whereas it is socially optimal to test the

algorithm to evaluate whether it should be released.

Table 1 also compares the developer’s and planner’s decision to release the algo-

rithm in the second period. Since the algorithm was either tested or released to the

entire population in the first period, information about its misalignments is available

in the second period. The developer and planner make the same release decisions

when external effects are low or high. However, there is disagreement when exter-
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nal effects are in an intermediate range: the developer opts to release the algorithm,

whereas the planner chooses not to. This disparity occurs because the developer

disregards the external effects of the algorithm on the population.

Surprisingly, the social optimum can feature a higher innovation level, ℓ, than the

unregulated equilibrium. With beta testing, the planner can be cautious in two ways.

The first is choosing a lower, less risky innovation level ℓ. The second is beta testing

and withdrawing the algorithm when the net social benefits are negative. Because it

exercises more caution than the planner in testing and implementing for any given

ℓ, the planner might prefer a higher innovation level. We show an example of this

possibility in Appendix A.

4 Regulating AI

The level of social welfare in the unregulated equilibrium is lower than that in the

social optimum because developers ignore AI’s external impact on household wel-

fare.

We now show that using Pigouvian taxes to align developers’ incentives with

societal interests is challenging because AI’s external effects are uncertain, and there

is disagreement about their probability distribution.

As discussed in the introduction, we consider two types of Pigouvian taxes: ex-

post, which hold developers fully liable for the realized external damages, and ex-

ante, which charge developers the expected external effects. While ex-post taxes are

effective when expectations about external misalignments are homogeneous, they

fail under limited liability scenarios because developers ignore social damages be-

yond their liability cap. Ex-ante taxes, though theoretically effective under limited

liability, are impractical because it is difficult to take into account differing expecta-

tions between regulators and developers and it is challenging to enforce these taxes.

Given the impracticality of Pigouvian taxes for regulating AI, we discuss an al-
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ternative approach that combines controlling beta testing and regulating approval.

This second-best policy does not guarantee the efficient use of resources, as devel-

opers might still choose suboptimal levels of innovation. Still, it offers a pragmatic

way to balance AI’s potential benefits and risks.

4.1 Pigouvian taxes with homogeneous beliefs

We first consider ex-post and ex-ante Pigouvian taxes in an economy with homoge-

neous beliefs.

4.1.1 Ex-post Pigouvian taxes with full liability

We can align private and social incentives by imposing, at the end of each period,

ex-post taxes on the developer (τt) that are equal to the welfare cost of the realized

external effects imposed on the households:

τ1 = N × e2
1 = N × [ϕe(ℓ)

2µ1 + ξe,1],

τ2 = N × e2
2 = N × ϕe(ℓ)

2µ2.

The expected value of these ex-post taxes are

E1(τ1) = Nσ2
e (ℓ)µ1,

E2(τ2) = N(ϕ̂2
e + σ̂2

e (ℓ))µ2.

In the presence of these taxes, the expected utility of the developer at the begin-

ning of period one is

V = (1 − β)

({
p1µ1 − σ2

e (ℓ)µ1 − E1(τ1), if p1 ≤ u(ℓ)− σ2
i (ℓ)

0, if p1 > u(ℓ)− σ2
i (ℓ)

)
+ βE1(V2)− f (ℓ),

19



where V2, the expected utility of the developer at the beginning of period two, is

given by

V2 =

{
p2µ2 − E2[ϕe(ℓ)2µ2 − τ2], if p2 ≤ u(ℓ)− E2[ϕi(ℓ)

2],
0, if p2 > u(ℓ)− E2[ϕi(ℓ)

2].

It is still optimal for the AI developer to charge the maximum price the household

is willing to pay pt = u(ℓ)− Et[ϕ2
i (ℓ)]. Replacing this price and the expected taxes

into the utility of the developer, we see that it coincides with the objective function

of the social planner up to a constant term:

V = (1 − β)[u(ℓ)− σ2
i (ℓ)− (N + 1)σ2

e (ℓ)]µ1 + βE(V2)− f (ℓ),

where

V2 =

{
[u(ℓ)− [ϕ̂2

i + σ̂2
i (ℓ)]− (N + 1)[ϕ̂2

e + σ̂2
e (ℓ)]]µ2, if µ1 > 0,

[u(ℓ)− σ2
i (ℓ)− (N + 1)σ2

e (ℓ)]µ2, if µ1 = 0.

With these taxes, V coincides with W up to the constant term (1 − β)Ny1 + βNy2.

It follows that private and social incentives are in line, so privately optimal deci-

sions coincide with the social optimum. We summarize these results in the following

proposition.

Proposition 1 (Full liability). Private and social incentives coincide if the regulator levies

an ex-post tax on the developer equal to the welfare cost of the algorithm’s realized external ef-

fects. This concurrence implies that the developer’s testing, implementation, and innovation

decisions coincide with the socially optimal ones.

One important element of this policy is that the developer is fully liable for the

external effects caused by the algorithm. In practice, it is impossible to enforce full

liability, so we now consider the more realistic case of limited liability.
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4.1.2 Ex-post Pigouvian taxes with limited liability

To study the consequences of limited liability, we consider the simple case in which

the taxes paid by the developer in each period cannot exceed their revenue:

τt ≤ ptµt.

In this scenario, the taxes levied by the regulator on the AI developer are:

τ1 = min{N(ϕe(ℓ)
2µ1 + ξe,1), p1µ1},

τ2 = min{Nϕe(ℓ)
2µ2, p2µ2}.

It is still optimal for the developer to charge pt = u(ℓ)− Et[ϕi(ℓ)
2].

Under limited liability, the developer’s optimal algorithm release policy differs

from the social optimum. This divergence arises because the developer’s potential

losses are capped, encouraging it to release moderately risky algorithms relying on

limited liability to protect itself if significant negative external effects occur.

Consider the problem in period two. The developer is willing to release the algo-

rithm as long as

u(ℓ)− E2[ϕi(ℓ)
2] > E2[ϕe(ℓ)

2] + NE2[min{ϕe(ℓ)
2, p2}],

while it is socially optimal to release the algorithm only if

u(ℓ)− E2[ϕi(ℓ)
2] > (N + 1)E2[ϕe(ℓ)

2].

As long as the probability that ϕe(ℓ)2 > p2 is strictly positive, the liability limit

binds and E2(τ2) < E2[Nϕe(ℓ)2]. In this case, the expected value of the taxes on

the developer is lower than the expected social welfare cost of the externality.

The same logic implies that the developer may forgo beta testing in period one

and release the algorithm immediately, knowing it is protected by limited liability if

dire external effects materialize. As a result, the developer may act with less caution

than would be socially optimal.
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4.1.3 Ex-ante Pigouvian taxes

We now consider a scenario in which the regulator imposes the following ex-ante

Pigouvian taxes at the beginning of each period

τex−ante
t = Et

(
N × e2

t

)
= NEt

[
ϕe (ℓ)

2
]

µt

These taxes are euqla to the expected external welfare damage of the algorithm for

households. If the developer decides not to release the algorithm in period t (µt = 0),

ex-ante taxes are zero.

Since τex−ante
t = Et[τt], then these ex-ante taxes affect decisions in the same way

as the ex-post taxes when there is full liability. So, these taxes equate private and

social incentives, resulting in a regulated equilibrium that coincides with the social

optimum.

A key advantage of ex-ante taxes is that they implement the social optimum,

even with limited liability. We have described the ex-ante taxes with full liability.

Imposing limited liability means that

τex−ante
t = min

{
NEt

[
ϕe (ℓ)

2
]

µt, ptµt

}
.

Trivially, if limited liability is not binding, then private and social incentives coincide.

But, what if limited liability binds? Since pt = u(ℓ)−Et[ϕi(ℓ)
2], then limited liability

binds whenever u(ℓ)−Et[ϕi(ℓ)
2] < NEt

[
ϕe (ℓ)

2
]
. In that case, the developer makes

zero profits from selling the algorithm. However, they still suffer from the externality

created. It follows that whenever limited liability binds, developers strictly prefer

not to release the algorithm. As it turns out, limited liability only binds whenever the

regulator would strictly prefer not to release the algorithm too since NEt[ϕe(ℓ)2] <

(N + 1)Et[ϕe(ℓ)2]. So, whenever limited liability binds, both the developer and the

regulator agree not to release the algorithm.

Implementing these taxes can lead to situations where developers must pay sig-

nificant upfront taxes based on anticipated external misalignments that ultimately
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do not occur. These situations can complicate the enforcement of ex-ante taxes.

These challenges become even greater when the regulator and the developer have

heterogeneous expectations with respect to external effects. We now turn to this case.

4.2 Pigouvian taxes with heterogeneous beliefs

Up to this point, we’ve assumed that beliefs about external effects are homogeneous.

However, as discussed in the introduction, there are notable differences in beliefs

regarding alignment problems.

We analyze how the two policies that implement the social optimum with homo-

geneous expectations, ex-post Pigouvian taxes with full liability and ex-ante Pigou-

vian taxes (with or without full liability), fare when beliefs are heterogeneous. For

simplicity, we consider a scenario where households and the regulator share the

same beliefs, which differ from the developer’s.

We let

Ed
1[ϕx(ℓ)

2] = σ2
d,x(ℓ), Ed

2[ϕx(ℓ)
2] = ϕ̂2

d,x + σ̂2
d,x(ℓ)

denote the developer’s beliefs and

Es
1[ϕx(ℓ)

2] = σ2
s,x(ℓ), Es

2[ϕx(ℓ)
2] = ϕ̂2

s,x + σ̂2
s,x(ℓ)

denote the beliefs held by the households and regulators.

4.2.1 Ex-ante Pigouvian taxes with heterogenous beliefs

Consider first the case in which ex-ante taxes are based on the regulator’s beliefs.

τex−ante
1 = Nσ2

s,e(ℓ)µ1,

τex−ante
2 = N(ϕ̂2

s,e + σ̂2
s,e(ℓ))µ2.

The developer’s expected utility at the beginning of period one is given by:

V = (1 − β)

({
p1µ1 − σ2

d,e(ℓ)µ1 − τ1, if p1 ≤ u(ℓ)− σ2
s,i(ℓ)

0, if p1 > u(ℓ)− σ2
s,i(ℓ)

)
+ βEd

1(V2)− f (ℓ),
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where V2 is

V2 =

{
p2µ2 − Ed

2[ϕe(ℓ)2µ2]− τ2, if p2 ≤ u(ℓ)− Es
2[ϕi(ℓ)

2],
0, if p2 > u(ℓ)− Es

2[ϕi(ℓ)
2].

Because of their differing expectations, the developer’s utility differs from the

social welfare function, so these taxes do not fully equate private and social incen-

tives. When developers are more optimistic about external effects than society, i.e.,

Ed
t [ϕe(ℓ)2] < Es

t [ϕe(ℓ)2], they have an incentive to release algorithms that society

perceives as too risky.

Alternatively, we can design taxes that correct the difference in beliefs and imple-

ment the social optimum. These taxes are given by:

τex−ante
t = NEs

t

[
ϕe (ℓ)

2
]

µt +
(

Es
t

[
ϕe (ℓ)

2
]
− Ed

t [ϕe(ℓ)
2]
)

µt

The first term internalizes the externality according to the regulator’s expectations.

The second term corrects for the difference in expectations between the developer

and the regulator. The developer should face a higher tax when they are relatively

optimistic, Ed
t [ϕe(ℓ)2] < Es

t [ϕe(ℓ)2], and a lower tax when they are relatively pes-

simistic, Ed
t [ϕe(ℓ)2] > Es

t [ϕe(ℓ)2].

These taxes equate private and social incentives to release the algorithm in both

periods. However, they will not align development incentives because

Es
1

[
max

{
u (ℓ) N − (N + 1)Es

2

[
ϕe (ℓ)

2
]

N, 0
}]

̸=

Ed
1

[
max

{
u (ℓ) N − (N + 1)Es

2

[
ϕe (ℓ)

2
]

N, 0
}]

,

that is, the regulator and the planner have different beliefs in period one about what

they will believe in period two.

Another significant problem with this policy is that the developer’s expectations

are generally unobservable. Suppose the regulator has to elicit these expectations.

In that case, the developer has the incentive to misrepresent their expectations by
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claiming pessimistic views regarding external effects, i.e., high values of Ed
t [ϕe(ℓ)2]

to receive a subsidy instead of paying a tax. Even if the regulator could accurately

measure the developer’s expectations, this policy would be difficult to design and

enforce.

4.2.2 Ex-post Pigouvian taxes with full liability and heterogenous beliefs

When the developer is more optimistic (pessimistic) than society, the ex-post Pigou-

vian taxes that implement the social optimum are higher (lower) than the actual

damages.

τ1 = N × [ϕe(ℓ)
2µ1 + ξe,1] +

(
Es

1

[
ϕe (ℓ)

2
]
− Ed

1[ϕe(ℓ)
2]
)

µ1

τ2 = N × ϕe(ℓ)
2µ2 +

(
Es

2

[
ϕe (ℓ)

2
]
− Ed

2[ϕe(ℓ)
2]
)

µ2

Like ex-ante Pigouvian taxes, these taxes would be difficult to design and even

more challenging to enforce. Developers would still have an incentive to feign

greater pessimism about external effects than the planner to minimize their tax bur-

den. Additionally, while these taxes may align private and social incentives to re-

lease the algorithm, they do not align the choice of the level of innovation.

In summary, the conventional approach to dealing with externalities, Pigouvian

taxes, is unworkable in an AI context.

4.3 Testing and approval policies

Considering the challenges associated with Pigouvian taxes, we now explore policies

where the regulator can mandate beta testing in the first period and control whether

the algorithm is released.

4.3.1 An optimal but time-inconsistent policy

There is a straightforward testing and approval policy that achieves the social op-

timum. The regulator announces that it will not approve any algorithm with an
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innovation level ℓ different from the social optimum, ℓ∗,

µ1 = µ2 = 0 for all ℓ ̸= ℓ∗.

When a developer creates an algorithm with the socially optimal level of ℓ, the regu-

lator applies the optimal beta testing policy (as outlined in Table 1) and, when there

is testing, conditions the algorithm’s release in period two on the test results.

Unfortunately, this policy is time-inconsistent because it requires the regulator

to prohibit the release of algorithms that improve social welfare ex-post. Once the

developer incurs the costs to develop an algorithm with an innovation level that is

not socially optimal, the regulator has an incentive to release the algorithm if uncer-

tainty about external effects is low; otherwise, conduct beta testing and condition the

release of the algorithm in the second period on the test results. This approach yields

higher welfare ex-post (after ℓ has been chosen) than simply banning the algorithm’s

release.

4.3.2 The optimal sequential testing and approval policy

We now consider a setting where the regulator has the same instruments as in Section

4.3.1 but has no commitment. The timing is as follows: (1) the developer chooses ℓ,

(2) given ℓ, the regulator decides whether to allow immediate release or require beta

testing, (3) nature draws the results of the beta test, generating posteriors, and (4) the

regulator decides whether to allow the release of the algorithm in the second period.

The optimal sequential policy solves the following problem: for each ℓ

W reg(ℓ) =max
µ1

{
(1 − β)

(
u (ℓ)− σ2

s,i(ℓ)− (N + 1) σ2
s,e (ℓ)

)
µ1

βEs
1

{
max

µ2

{(
u (ℓ)− Es

2

[
ϕ2

i (ℓ)
]
− (N + 1)Es

2

[
ϕ2

e (ℓ)
])

µ2

}}}
− f (ℓ)
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The regulator mandates beta testing if

u(ℓ)− σ2
s,i(ℓ)

N + 1
< σ2

s,e(ℓ).

Otherwise, the algorithm is released. Given the test results, the regulator approves

the release of the algorithm if

u(ℓ)− [ϕ̂2
s,i + σ̂2

s,i(ℓ)]

N + 1
≥ ϕ̂2

s,e + σ̂2
s,e(ℓ),

and they forbid the algorithm’s release, µ2 = 0, otherwise. So, for each ℓ, testing and

release coincide with those of the social optimum.

We now show that when the regulator controls beta testing and release, the de-

veloper can have incentives to develop algorithms that are too risky from a social

perspective, i.e., they choose a level of innovation ℓ that exceeds the socially optimal

level. To establish this result, let ς2
s,x(ℓ) denote the regulator’s ex-ante uncertainty

about the AI’s internal effects (x = i) or external effects (x = e) in period two:

ς2
s,x(ℓ) ≡ Es

1

(
Es

2[ϕx(ℓ)
2]µ∗

2(ℓ)
)

, (3)

where µ∗
2(ℓ) denotes the random variable which is equal to N if the regulator allows

the AI to be commercialized in period two and equal to zero otherwise. We define

ς2
d,x(ℓ) anologously according to the expectations of the developer.

Proposition 2. Suppose that (i) the regulator implements the sequentially optimal testing

and approval policy and (ii) both the first-best solution and the regulated equilibrium feature

beta testing in period one.

• Suppose that beliefs are homogeneous. If ς2
s,e(ℓ) is increasing in ℓ, then the developer

chooses a larger innovation level than the first best.

• Suppose that beliefs are heterogeneous. If ς2
s,e(ℓ) is increasing in ℓ, ex-ante uncertainty

features decreasing differences

ς2
d,x
(
ℓ′
)
− ς2

d,x (ℓ) ≤ ς2
s,x
(
ℓ′
)
− ς2

s,x (ℓ) ,
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and ex-ante expected revenue features increasing differences

Ed
1[u(ℓ

′)µ∗
2(ℓ

′)]− Ed
1[u(ℓ)µ

∗
2(ℓ)] ≥ Es

1[u(ℓ
′)µ∗

2(ℓ
′)]− Es

1[u(ℓ)µ
∗
2(ℓ)],

then the developer chooses a larger innovation level than the first best.

In sum, developers can still have an incentive to take excessive risks by over-

investing in AI, choosing innovation levels in excess of what is socially optimal. Al-

though the policy described above does not guarantee the efficient use of resources,

it allows society to harness the potential benefits of AI while mitigating its negative

impacts.

This policy parallels the regulations currently governing the pharmaceutical in-

dustry in many countries. Pharmaceutical drugs undergo testing to assess their effi-

cacy and side effects, with approval granted only if the expected benefits outweigh

their expected costs. Similarly, AI algorithms are evaluated for their broader societal

impacts and are approved only if their expected benefits exceed expected costs.

The private sector currently dominates the development of large AI models. Ac-

cording to Rahman et al. (2024), most large-scale AI algorithms have been developed

by industry (71), with a smaller number resulting from industry-academia collabo-

rations (6) and only a few created by academic (2) and government (2) institutions.

To implement testing and approval policies like the one just discussed, governments

must close the gap with the private sector, which will require significant public in-

vestment in computational infrastructure and expertise.

5 A model with internalities

In this section, we consider a model that incorporates deviations from rational be-

havior, known as internalities. These deviations lead households to make decisions

that are not in their self-interest because of misinformation, self-control issues, cog-
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nitive biases, or time inconsistency problems, all of which can be exploited by AI

algorithms.

5.1 Unregulated equilibrium

Household’s problem In Section 3, we assume that households take the expected

welfare reduction caused by internal effects, Et(i2
t ), into account when deciding

whether to use the algorithm. Here, we consider the case where households dis-

regard these internal effects due to behavioral biases when making their purchase

decision.

We formalize this idea by assuming that Uj, defined in equation (2), is the house-

hold’s “experienced utility,” but that households base their choices on a different,

misspecified, objective function that we refer to as the “decision utility.”3 Lifetime

decision utility takes the form:

U b
j = (1 − β)vb

j,1 + βE1(vb
j,2),

where decision momentary utility is

vb
j,t = yt + [u (ℓ)− pt]× Ij,t − E(e2

t ). (4)

The household decides whether to purchase the AI algorithm to maximize U b
j .

The resulting decision rule is to buy the algorithm whenever pt ≤ u(ℓ). Recall that

in the absence of behavioral biases, the decision rule is to buy the algorithm when

pt ≤ u(ℓ)− Et[ϕi(ℓ)
2].

We assume that the developer is immune to the algorithm’s internal effects, either

because it does not use the algorithm or is more sophisticated than the households.4

3This terminology is common in the behavioral price theory literature, e.g., Farhi and Gabaix
(2020).

4Extending our analysis to the case where the algorithm’s internal effects also affect the developer
is straightforward. Such an extension would not significantly alter our findings.
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What are the key differences between this model and our benchmark model? Be-

cause households ignore expected negative internal effects on utility, the developer

can charge them a higher price: pt = u(ℓ) instead of pt = u(ℓ)− Et[ϕi(ℓ)
2].

Internalities widen the gap between the unregulated equilibrium and the social

optimum. In period one, the developer beta tests the algorithm when σ2
e (ℓ) > u(ℓ)

and releases the algorithm otherwise. In contrast, the planner has a lower threshold

for the level of uncertainty required for beta testing. It is socially optimal to beta test

whenever σ2
e (ℓ) > [u(ℓ)− σ2

i (ℓ)]/(N + 1).

In period two, the developer withdraws the algorithm only when ϕ̂2
e + σ2

e (ℓ) >

u(ℓ). The planner uses a lower uncertainty threshold for withdrawal. It is socially

optimal to withdraw the algorithm whenever ϕ̂2
e + σ2

e (ℓ) > [u(ℓ)− ϕ̂2
i − σ2

i (ℓ)]/(N +

1).

In the model with externalities, the developer overlooks the external impacts on

the broader population but personally experiences these effects, just like any house-

hold. These external effects increase with the number of algorithm users. Conse-

quently, when externalities are high, the developer is dissuaded from releasing the

algorithm. This restraining factor is absent with respect to internalities because the

developer is not personally affected by internalities and the price does not reflect the

internal effects experienced by households.

We can design ex-ante Pigouvian taxes that align private and social incentives.

But, these taxes are even more complex than the ones discussed in Section 4.

The optimal time-consistent combination of beta testing and regulatory approval

is the one described in subsection 4.3.2 and summarized in Table 1. However, this

policy is more challenging to implement in the current setting because it requires

regulators to consider external and internal effects. In subsection 4.3.2, households

account for the internal effects in their purchasing decisions, eliminating the need

for regulators to consider these effects.
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6 Conclusion

In this paper, we study how to regulate AI, taking into account two key aspects of

the algorithms currently being developed: significant uncertainty regarding their

potential social costs and widespread disagreement about the likelihood of these

costs.

Our analysis yields two key insights. First, the complexity of Pigouvian taxes

needed to align private and social incentives renders them impractical. Second, a

combination of beta testing and regulatory approval can mitigate AI’s risks while

still harnessing its benefits.

What are the implications of our model for the efficacy of the regulatory propos-

als currently being discussed in the U.S. and the European Union? Simply banning

the development of algorithms that pose a high risk of negative externalities is insuf-

ficient to achieve the social optimum because the unregulated equilibrium diverges

from the social optimum at intermediate levels of uncertainty (see Table 1). Hold-

ing developers liable for external effects can lead to excessive risk-taking for two

reasons. First, liability is typically capped in practice, which allows developers to

overlook negative externalities that exceed their liability limits. Second, developers

may have a more optimistic outlook about external effects than regulators, leading

them to take on more risk than is socially optimal, even with full liability in place.

We discuss optimal AI regulation in a single-country setting. However, interna-

tional cooperation is generally required when algorithm use in one country imposes

external effects on other countries.

Implementing beta testing and regulatory approval and coordinating these poli-

cies worldwide requires substantial public investment in computational resources

and expertise. It is a formidable task but also an urgent one. As Isaac Asimov ob-

served, ”The saddest aspect of life right now is that science gathers knowledge faster

than society gathers wisdom.”
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A Example where social optimum has a higher level of
innovation than the unregulated equilibrium

In this appendix, we provide an example in which, by being more cautious in beta

testing and algorithm release, the social planner chooses a higher level of innovation

than the developer.

The numerical example is as follows. Suppose that u(ℓ) =
√
ℓ, f (ℓ) = χℓ2/2

with χ = 10, and that there are no internalities ϕi(ℓ) = 0. In addition, assume that

β = 0.7 and that ϕe(ℓ) is such that

ϕe(ℓ) =


φℓ2, with prob. 1−α

2
0, with prob. α

−φℓ2, with prob. 1−α
2 .

We set φ = 1.0079 and α = 0.1. In this case:

σ2
e (ℓ) = (1 − α) φ2ℓ4.

We assume that beta testing fully reveals the external effect at the end of period one.

In this case, the developer chooses an innovation level of 0.6 and releases the al-

gorithm to the population in period one. If the social planner was forced to release

the algorithm to the entire population in period one, it would choose a lower inno-

vation level, ℓ = 0.16. However, by beta testing the algorithm in period one, the

planner prefers a much higher innovation level: ℓ = 10.7.
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Figure 1: Example where social optimum has higher level of innovation than the
unregulated equilibrium

B Proof of Proposition 2

Let O(ℓ, a) denote the objective function of the developer for a given ℓ if a = 1, given

the testing and approval policy, or the objective function of the first-best planner if

a = 0.

O(ℓ, 0) ≡− f (ℓ) + (1 − β)
{

u (ℓ)− σ2
s,i (ℓ)− (N + 1) σ2

s,e (ℓ)
}

µ∗
1 (ℓ)

+β
{

Es
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

s,i(ℓ)− (N + 1)ς2
s,e(ℓ)

}
O(ℓ, 1) ≡− f (ℓ) + (1 − β)

{
u (ℓ)− σ2

d,i (ℓ)− σ2
d,e (ℓ)

}
µ∗

1 (ℓ)

+β
{

Ed
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

d,i(ℓ)− ς2
d,e(ℓ)

}
,

where µ∗
t (ℓ) denotes the optimal testing and implementation strategy as defined by

the regulator (which coincides with the first-bets one). The first-best level of inno-

vation solves maxℓ O(ℓ, 0), while the optimal level of innovation for the developer
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solves maxℓ O(ℓ, 1). Our proof strategy is to show that O(ℓ, a) satisfies the single-

crossing property and then apply the monotone comparative statics results in Mil-

grom and Shannon (1994) to establish that ℓ∗(1) ≥ ℓ∗(0).5

Since ℓ∗(1) and ℓ∗(0) are such that beta testing is needed, we focus only on

choices made in the set (ℓ, ∞) where ℓ is such that u(ℓ)− σ2
s,i(ℓ)− (N + 1)σ2

s,e(ℓ) = 0,

i.e., for all ℓ > ℓ, u(ℓ)− σ2
s,i(ℓ)− (N + 1)σ2

s,e(ℓ) < 0.

Take ℓ′ > ℓ ∈ (ℓ, ∞), we show that

O(ℓ′, 0) ≥ O(ℓ, 0) ⇒ O(ℓ′, 1) > O(ℓ, 1).

Note that O(ℓ′, 0) ≥ O(ℓ, 0) implies that

− f
(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− ς2

s,i(ℓ
′)− (N + 1)ς2

s,e(ℓ
′)
}

≥− f (ℓ) + β
{

Es
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

s,i(ℓ)− (N + 1)ς2
s,e(ℓ)

}
⇔− f

(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− ς2

s,i(ℓ
′)− (N + 1)[ς2

s,e(ℓ
′)− ς2

s,e(ℓ)]
}

≥− f (ℓ) + β
{

Es
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

s,i(ℓ)
}

since ς2
s,e(ℓ) is increasing in ℓ then ς2

s,e(ℓ
′)− ς2

s,e(ℓ) > 0, which implies that

⇒− f
(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− ς2

s,i(ℓ
′)− [ς2

s,e(ℓ
′)− ς2

s,e(ℓ)]
}

>− f
(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− ς2

s,i(ℓ
′)− (N + 1)[ς2

s,e(ℓ
′)− ς2

s,e(ℓ)]
}

≥− f (ℓ) + β
{

Es
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

s,i(ℓ)
}

Taking the first and last expressions in that inequality sequence, we obtain

− f
(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− ς2

s,i(ℓ
′)− [ς2

s,e(ℓ
′)− ς2

s,e(ℓ)]
}

> − f (ℓ) + β
{

Es
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

s,i(ℓ)
}

⇔− f
(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− ς2

s,i(ℓ
′)− ς2

s,e(ℓ
′)
}

> − f (ℓ) + β
{

Es
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

s,i(ℓ)− ς2
s,e(ℓ)

}
,

5For simplicity, we assume that the maximizer set is a singleton.
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which implies that O(ℓ′, 1) > O(ℓ, 1) if beliefs are homogeneous.
With heterogeneous beliefs, we can equivalently write:

− f
(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− Es

1 [u(ℓ)µ
∗
2(ℓ)]− [ς2

s,i(ℓ
′)− ς2

s,i(ℓ)]− [ς2
s,e(ℓ

′)− ς2
s,e(ℓ)]

}
> − f (ℓ).

Assuming that

Ed
1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− Ed

1 [u(ℓ)µ
∗
2(ℓ)] ≥ Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− Es

1 [u(ℓ)µ
∗
2(ℓ)]

ς2
d,x(ℓ

′)− ς2
d,x(ℓ) ≤ ς2

s,i(ℓ
′)− ς2

s,i(ℓ),

we find that the above expression implies

− f
(
ℓ′
)
+ β

{
Ed

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− Ed

1 [u(ℓ)µ
∗
2(ℓ)]− [ς2

d,i(ℓ
′)− ς2

d,i(ℓ)]− [ς2
d,e(ℓ

′)− ς2
d,e(ℓ)]

}
≥ − f

(
ℓ′
)
+ β

{
Es

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− Es

1 [u(ℓ)µ
∗
2(ℓ)]− [ς2

s,i(ℓ
′)− ς2

s,i(ℓ)]− [ς2
s,e(ℓ

′)− ς2
s,e(ℓ)]

}
> − f (ℓ).

We can equivalently represent this expression as

− f
(
ℓ′
)
+ β

{
Ed

1
[
u(ℓ′)µ∗

2(ℓ
′)
]
− ς2

d,i(ℓ
′)− ς2

d,e(ℓ
′)
}

> − f (ℓ) + β
{

Ed
1 [u(ℓ)µ

∗
2(ℓ)]− ς2

d,i(ℓ)− ς2
d,e(ℓ)

}
⇔O(ℓ′, 1) > O(ℓ, 1).

These results establish that O(ℓ, a) satisfies the strict single-crossing property.

Following Milgrom and Shannon (1994), we now establish that this property im-

plies that the maximizer is greater when a = 1 than under a = 0. To establish a

contradiction, suppose that ℓ∗(0) > ℓ∗(1). Then, since ℓ∗(0) is a maximizer, it satis-

fies

O(ℓ∗(0), 0) ≥ O(ℓ∗(1), 0).

By the single-crossing property, the previous expression implies that

O(ℓ∗(0), 1) > O(ℓ∗(1), 1),

which contradicts the assumption that ℓ∗(1) maximizes O(ℓ, 1).
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Online Appendix
Regulating Artificial Intelligence

A Model where beta testing outcomes depend on sam-
ple size

This section considers a version of the model where the outcome of beta testing de-

pends on the number of people who participate in the test. To evaluate external

misalignments, the developer can test the algorithm in a sample of µ1 users in the

first period. Based on the outcomes of this test, the developer can decide whether

to release the algorithm in the second period. Despite the differences in the beta

testing process, our qualitative results are essentially unchanged in this generalized

framework.

We assume that the probability that the beta test generates information depends

on the number of individuals involved in the test. The beta test is successful with

probability π(µ1), upon which the expectations are updated as in the baseline model.

With probability 1−π(µ1), the test generates no information. We define an indicator

function B that takes the value one if the test is successful, and zero otherwise.6 For

concreteness, we assume the following functional form π(µ1) = (µ1/κ)α if µ1 ≤ κ

and π(µ1) = 1 otherwise. Here, κ ≤ N denotes the minimal number of participants

required to learn ϕe(ℓ) with certainty. If κ = N, we only learn ϕ(ℓ) with certainty by

releasing the software to the whole population.

The parameter α determines the test’s effectiveness. As α → 0, then π(µ1) → 1 if

µ1 > 0 and π(µ1) = 0 if µ1 = 0. In this limiting case, minimal beta testing generates

information with certainty. As α → ∞, π(µ1) = 0 if µ1 < κ and π(µ1) = 1 if

µ1 = κ. In this case, testing reveals ϕ(ℓ) with certainty only if the entire population

6The baseline model is a special case of this model in which π(0) = 0 and π(µ1) = 1 if µ1 > 0.
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participates in the test.

As in the baseline analysis, we begin by describing the unregulated equilibrium.

We then compute the social optimum and compare it to the unregulated equilibrium.

A.1 Unregulated equilibrium

Household problem The household problem is the same as that in the baseline

model. The household is willing to purchase an AI license in period t if the private

benefits exceed the price of the algorithm

u(ℓ)− Et[ϕi(ℓ)
2] ≥ pt.

AI developer’s problem The developer’s problem is analogous to the baseline

model, modified to include the effect of µ1 on the likelihood of obtaining information

about external effects.

The solution to the time two problem is the same. The developer chooses the

price p2 = u(ℓ)−E2[ϕi(ℓ)
2] and releases the algorithm if u(ℓ)−E2[ϕi(ℓ)

2] ≥ E2[ϕe(ℓ)2].

Let E1[V∗
2 (ℓ)] denote the expected value of the developer’s period two utility

computed at the beginning of period one. Then,

dE1[V∗
2 (ℓ)]

dµ1
= π′(µ1)×

(
E1

[
max

{
u(ℓ)− ∑

x
E2[ϕx(ℓ)

2]N, 0

}]
− max

{
u(ℓ)− ∑

x
σ2

x(ℓ)N, 0

})
≥ 0

which establishes the analogue of Lemma 1:

Lemma 3. The developer’s expected utility in the second period is increasing in µ1.

The problem in period one is to choose ℓ, µ1 and p1 to maximize

V = (1 − β)

({
µ1p1 − σ2

e (ℓ)µ1, if p1 ≤ u(ℓ)− σ2
i (ℓ)

0, if p1 > u(ℓ)− σ2
i (ℓ)

)
+ βE1[V∗

2 (ℓ)]− f (ℓ).

The optimal price for the developer is p1 = u(ℓ)− σ2
i (ℓ).
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From a static perspective, it is still optimal to set µ1 = N if u(ℓ)− σ2
i (ℓ)− σ2

e (ℓ) ≥
0 and µ1 = 0 if u(ℓ)− σ2

i (ℓ)− σ2
e (ℓ) < 0. However, experimenting in the first period,

µ1 > 0, creates value by generating information that the developer can use in the

second period.

If u(ℓ)− σ2
i (ℓ)− σ2

e (ℓ) ≥ 0, then releasing the algorithm generates expected gains

in period one and increases expected utility in period two. Therefore, it is optimal to

release the algorithm to the whole population, µ1 = N.

Instead, if u(ℓ)− ∑x σ2
x(ℓ) < 0, releasing the algorithm to the whole population

may not be optimal. As long as α ≤ 1, the developer’s utility is increasing in the

neighborhood of µ1 = 0, so the optimal solution features µ1 > 0. The intuition for

this result is that the benefits from learning increase sufficiently fast with µ1 to offset

the costs of testing, which are given by [u(ℓ) − ∑x σ2
x(ℓ)]µ

2
1. Instead, if α > 1, the

utility is convex, so the solution is either µ1 = 0 or µ1 = κ depending on parameters.

The intuition for this result is that when α is large, beta tests on small samples are

unlikely to generate information about external effects. The developer then adopts

an “all-or-nothing” approach: they either do not release the algorithm or release it to

the whole population. Proposition 3 summarizes the optimal release in periods one

and two from the developer’s point of view. In describing the solution, it is useful to

define the information benefit-cost ratio, Λd(ℓ):

Λd(ℓ) ≡ β

1 − β

E
[
max

{
u (ℓ)− ∑x E2[ϕx (ℓ)

2], 0
}]

∑x σ2
x (ℓ)− u (ℓ)

.

This variable compares the expected benefits of increasing the probability of learn-

ing the external effects of the AI algorithm, βE
[
max

{
u (ℓ)− ∑x E2[ϕx (ℓ)

2], 0
}]

,

to the immediate costs of selling the AI algorithm to an additional person today,

(1 − β)[∑x σ2
x (ℓ)− u (ℓ)].

Proposition 3 (Uncertainty, beta testing, and algorithm release). In an unregulated

equilibrium, the number of user licenses offered by the developer in the first period depends

3



on the level of uncertainty, the effectiveness of beta testing, and the information benefit-cost

ratio. The solution is as follows:

1. The developer always foregoes beta testing and releases the AI algorithm to the entire

population in the first period (µ1 = N) when uncertainty about external effects is low

σ2
e (ℓ) ≤ u(ℓ)− σ2

i (ℓ).

2. If uncertainty about external effects is relatively high σ2
e (ℓ) > u(ℓ)− σ2

i (ℓ), then:

• If α ≤ 1, beta testing is sufficiently effective. The developer beta tests the algo-

rithm on

µ1 = min

{[
αΛd(ℓ)

N
κ

] 1
1−α

, 1

}
κ. (5)

• If α > 1. Then the developer chooses the largest beta-test sample µ1 = κ if

the information benefit-cost ratio is larger than the ratio of maximum test size to

total population, Λd(ℓ) ≥ κ/N. If the information benefit-cost ratio is small, the

developer neither releases nor beta tests the algorithm, µ1 = 0.

A.2 The first-best solution (planner’s problem)

The planner’s problem is analogous to the baseline model. If the AI algorithm is

implemented in the first period, the planner learns its externality with probability

π(µ1). In the second period, the planner decides whether to make the AI algorithm

available and how many licenses to offer.

We begin by describing the solution to the second-period problem, contingent

upon the choices made in the first period about ℓ and µ1.

The solution to the period-two problem is the same. The planner chooses to al-

low licenses at if u(ℓ)− E2[ϕi(ℓ)
2] ≥ (N + 1)E2[ϕe(ℓ)2]. Let E1[W∗

2 (ℓ)] denote the

expected value of the developer’s period-two utility evaluated in the beginning of

period one. Then note that

4



dE1[W∗
2 (ℓ)]

dµ1
= π′(µ1)× E1

[
max

{
u(ℓ)− E2[ϕi(ℓ)

2]− (N + 1)E2[ϕe(ℓ)
2], 0

}
N
]

− π′(µ1)× max
{

u(ℓ)− σ2
i (ℓ)− (N + 1)σ2

e (ℓ), 0
}

N ≥ 0

which establishes the analog of Lemma 2:

Lemma 4. Expected social welfare in the second period is increasing in µ1.

The problem in period one is to choose ℓ and µ1 to maximize

W = (1− β)

({
Ny1 + µ1[u(ℓ)− σ2

i (ℓ)− (N + 1)σ2
e (ℓ)]µ1, if p1 ≤ u(ℓ)− σ2

i (ℓ)

0, if p1 > u(ℓ)− σ2
i (ℓ)

)
+ βE1[W∗

2 (ℓ)]− f (ℓ).

From a static perspective, it is still optimal to set µ1 = N if u(ℓ)− σ2
i (ℓ)− (N +

1)σ2
e (ℓ) ≥ 0 and µ1 = 0 if u(ℓ)− σ2

i (ℓ)− (N + 1)σ2
e (ℓ) < 0. However, experimenting

in the first period, µ1 > 0 creates value by generating information that the developer

can use in the second period.

If u(ℓ) − σ2
i (ℓ) − (N + 1)σ2

e (ℓ) ≥ 0, then releasing the algorithm generates ex-

pected gains in period one and increases expected utility in period two. Therefore, it

is optimal to release the algorithm to the whole population, µ1 = N.

Instead, if u(ℓ)− σ2
i (ℓ)− (N + 1)σ2

e (ℓ) < 0, releasing the algorithm to the whole

population may not be optimal. As long as α ≤ 1, the developer’s utility is increasing

in the neighborhood of µ1 = 0, so the optimal solution features µ1 > 0. If α > 1, the

utility is convex, so the solution is either µ1 = 0 or µ1 = κ depending on parameters.

The intuition for these results is similar to that described in the discussion of the

developer’s problem.

Proposition 3 summarizes the optimal release policy in periods one and two from

the developer’s point of view. In describing the solution, it is useful to define the

information benefit-cost ratio, Λs(ℓ):

Λs(ℓ) ≡ β

1 − β

E
[
max

{
u (ℓ)− E2[ϕi (ℓ)

2]− (N + 1)E2[ϕe (ℓ)
2], 0

}]
(N + 1)σ2

e (ℓ) + σ2
i (ℓ)− u (ℓ)

.
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This variable compares the expected benefits of increasing the probability of learning

the external effects of the AI algorithm, βE
[
max

{
u (ℓ)− E2[ϕi (ℓ)

2]− (N + 1)E2[ϕe (ℓ)
2], 0

}]
,

to the immediate costs of selling the AI algorithm to an additional person today,

(1 − β)[(N + 1)σ2
i (ℓ) + σ2

i (ℓ)− u (ℓ)].

Proposition 4 (Uncertainty, beta testing, and algorithm release). In the first best, the

number of user licenses offered in the first period depends on the level of uncertainty, the

effectiveness of beta testing, and the information benefit-cost ratio. The solution is as follows:

1. The planner always foregoes beta testing and releases the AI algorithm to the entire

population in the first period (µ1 = N) when uncertainty is low σ2
e (ℓ) ≤

u(ℓ)−σ2
i (ℓ)

N+1 .

2. If uncertainty is relatively high σ2
e (ℓ) >

u(ℓ)−σ2
i (ℓ)

N+1 , then:

• If α ≤ 1, beta testing is sufficiently effective. The developer beta tests the algo-

rithm on

µ1 = min

{[
αΛs(ℓ)

N
κ

] 1
1−α

, 1

}
κ. (6)

• If α > 1. Then the developer chooses the largest beta-test sample µ1 = κ if the

information benefit-cost ratio is larger than one, Λs(ℓ) ≥ κ/N. If the informa-

tion benefit-cost ratio is small, the developer neither releases nor beta tests the

algorithm, µ1 = 0.

The planner is more conservative than the developer when deciding whether to

conduct beta tests instead of releasing the algorithm to the whole population. There

are AI innovation levels for which the developer prefers an immediate release to the

general public, while the planner opts for beta testing. Moreover, the planner tends

to favor more cautious beta tests that involve smaller sample sizes.

When α ≤ 1, beta testing is relatively effective. In this case, when uncertainty is

sufficiently high, the developer and planner agree to beta-test the algorithm. How-

ever, they disagree on the acceptable risk in that beta test–the risk level increases with

6



the number of testers involved. Since the planner has a smaller information benefit-

cost ratio than the developer, the planner favors smaller sample sizes, µ∗
1 ≤ µe

1.

When α > 1, beta testing is relatively ineffective. In this case, the planner and

developer favor “all-or-nothing” strategies in which the algorithm is either fully re-

leased in period one or not. However, the planner remains more cautious, requiring

a higher information benefit-cost ratio than the developer for a full market release.

Upon learning some of the external effects of the AI algorithm in the initial pe-

riod, there are scenarios where the developer sees continued commercialization in

the second period as privately beneficial, while the planner opts to pull the algo-

rithm from the market. If the algorithm’s external consequences are not learned, the

planner is also more cautious than the developer regarding the release of the AI in

the second period. There are medium levels of uncertainty where the developer is

willing to proceed with a full release, but the planner deems it too risky.

Both of these observations stem from the fact that the planner considers the exter-

nalities affecting the entire population, while the developer is only concerned with

the impact of the externality on its own utility.

B Regulating AI

Despite the differences between the two models, our results on Pigouvian taxes are

unchanged. Ex-post full liability delivers the efficient allocation with homogeneous

beliefs. However, it fails to do so when developers are protected with limited liabil-

ity. Ex-ante liability, while immune to the limited liability concern, is very difficult

to implement if developers and the regulator have different beliefs.

In terms of testing and approval policies, there continues to be a policy that en-

sures that the equilibrium delivers the efficient allocation. This policy requires the

regulator to commit to rejecting any algorithm that does not feature the optimal in-

novation level, controlling the test size, and conditionally approving any algorithm

7



with the optimal innovation level. As before, this policy is not time-consistent be-

cause the regulator must commit to rejecting algorithms that might be welfare im-

proving ex-post.

The optimal sequential testing and approval policy is now more complicated be-

cause beta testing is not certain to produce information in this generalized model. In

period two, if the beta test was unsuccessful, then the regulator allows the developer

to sell AI licenses if and only if

σ2
s,e ≤

u(ℓ)− σ2
s,i(ℓ)

N + 1
.

If the beta test was successful, then the regulator conditionally approves the algo-

rithm in the second period if and only if

ϕ̂2
s,e + σ̂2

s,e(ℓ) ≤
u(ℓ)− ϕ̂2

s,i − σ̂2
s,i(ℓ)

N + 1
.

In period one, the regulator allows free commercialization of the algorithm if

σ2
s,e ≤

u(ℓ)−σ2
s,i(ℓ)

N+1 . Instead, if uncertainty is too high and α ≥ 1, the regulator forbids

commercialization of the AI if Λs(ℓ) < κ/N and allows free commercialization of

the AI otherwise. If uncertainty is too high and α < 1, then the regulator mandates

a size of the beta test which solves

µ1 = min

{[
αΛs(ℓ)

N
κ

] 1
1−α

, 1

}
κ.

These conditions are the natural generalization of the baseline model to this more

general setting.
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