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1 Introduction

In 1950, Isaac Asimov published I, Robot, a collection of short stories about the dilem-

mas of a world where robots powered by artificial intelligence (AI) interact with

humans. Recent advances in AI have brought these dilemmas from the realm of sci-

ence fiction to the pages of newspapers and the halls of parliaments. In this paper,

we discuss the efficacy of different approaches to AI regulation.

Over the past decade, the declining costs of computing power and the availability

of vast data sets allowed neural networks and other forms of AI to accomplish re-

markable feats. Reinforcement learning algorithms beat humans at games of perfect

information, like chess and go (Silver et al., 2017, Silver et al., 2018). AI algorithms

outperformed humans in games of imperfect information, such as poker (Brown

and Sandholm, 2019). Convolutional neural networks achieved remarkable accu-

racy in image recognition tasks (Langlotz et al., 2019). Natural language processing

models like Generative Pre-trained Transformers have made significant strides in

language understanding, translation, and content generation (Eloundou, Manning,

Mishkin, and Rock, 2023). AI algorithms, in general, have improved prediction accu-

racy in many domains relevant to business applications (Agrawal, Gans, and Gold-

farb, 2022).

These and other breakthroughs in AI hold the promise of delivering significant

benefits to society. However, they also carry the risk of imposing considerable soci-

etal costs. These costs include negative externalities, such as fueling political po-

larization, facilitating fraud, disseminating false information, jeopardizing finan-

cial stability, and weakening democracies (Beraja, Kao, Yang, and Yuchtman, 2023).

Other costs take the form of “internalities,” a term coined by Herrnstein, Loewen-

stein, Prelec, and Vaughan Jr (1993) that refers to situations in which individuals are

manipulated to act against their self-interest through misinformation or exploitation

of self-control and time inconsistency problems.
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In May 2023, a consortium of prominent figures in the field of AI signed a state-

ment declaring that “Addressing the existential risks posed by AI should be a global

priority, on par with other worldwide challenges like pandemics and nuclear war-

fare.” The leaders of the G7 nations initiated the Hiroshima AI Process to harmonize

AI regulation.

Europe and the United States have started to design regulatory frameworks to

address the challenges posed by AI (see European Commission, 2020, Benifei and

Tudorache, 2023, and Biden, 2023). Two approaches proposed so far include manda-

tory testing of AI algorithms and holding AI developers accountable for the adverse

outcomes resulting from the use of their technology. Policymakers are also consider-

ing classifying AI technologies into risk tiers (unacceptable, high, limited, and min-

imal risk), forbidding the development of algorithms that create unacceptable risks

(European Commission, 2022).

We assess these approaches to regulate AI using a model designed to capture

the key aspect of ongoing developments in AI: there is substantial uncertainty about

the resulting societal costs and benefits. We evaluate the efficacy of different regu-

latory frameworks by comparing the resulting equilibrium outcomes with the social

optimum, i.e. the solution to the planner’s problem.

As discussed earlier, the social costs of AI fall into two broad categories: nega-

tive externalities and internalities. In the main text, we focus our discussion on the

potential negative externalities generated by AI algorithms. In the Appendix, we

revisit our results for scenarios where AI algorithms can cause internalities.

We explore two settings. In both settings, an AI developer chooses the novelty of

its AI algorithm relative to the state of the art. There is ex-ante uncertainty about the

negative externalities that this algorithm might cause. This uncertainty grows with

the difference between the new algorithm’s novelty and the status quo.

In the first setting, uncertainty is not resolved until an AI algorithm is fully im-

plemented, and this implementation is irreversible. Potential negative externalities
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drive a wedge between the social optimum and the unregulated equilibrium. The

planner wants to be more cautious than private markets–the optimal level of AI nov-

elty for society is lower than what naturally emerges in an unregulated setting.

In the second setting, uncertainty regarding potential negative externalities can

be resolved through experimentation, which we call beta testing. This testing in-

volves making the algorithm available to a small group of households and using the

test results to decide whether to make the algorithm available to the population as

a whole. Developers regularly engage in beta testing to assess how effective their

algorithm is from a user’s perspective. The beta testing we emphasize in this paper

serves a distinct purpose: to measure an algorithm’s social costs (negative externali-

ties or internalities).

In the unregulated equilibrium, the developer has weaker incentives for beta test-

ing than the planner. Once again, the planner exhibits greater caution than private

markets.

We show three results. First, subjecting algorithm release to regulatory approval

is insufficient to implement the social optimum–developers still have an incentive to

create algorithms that are too risky. Second, simply holding developers accountable

for the negative externalities produced by their algorithms implements the social

optimum if developers are not protected by limited liability. However, this policy

is also insufficient to implement the social optimum if developers are protected by

limited liability. Third, we can achieve a solution close to the social optimum when

regulators mandate beta testing to assess externalities and hold developers liable

for the adverse externalities of their algorithms, even if there is limited liability. One

advantage of this solution is that developers do not need to seek regulatory approval

before implementing their algorithms.

In Appendix A, we show that the impact of negative externalities and internal-

ities is broadly similar. One interesting difference is that developers refrain from

releasing algorithms with large externalities but do not refrain from releasing algo-
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rithms with large internalities.

Our paper is related to four important strands of literature. The first studies the

value of experimentation (e.g., Callander, 2011 and Ilut and Valchev, 2023). The sec-

ond analyses settings relevant to the design and execution of clinical trials. These

situations feature multiple options and unknown rewards, commonly known as the

multi-armed bandit problem (e.g., Thompson, 1933 and Gittins, 1974). The third con-

siders the importance of data as an input into AI algorithms (e.g., Jones and Tonetti,

2020 and Farboodi and Veldkamp, 2021). The fourth researches the impact of AI on

the economy (e.g., Burstein, Morales, and Vogel, 2019, Acemoglu and Restrepo, 2022,

and Jones, 2023).

In Section 2, we study the model without beta-testing. We introduce beta-testing

in Section 3. In Section 4, we evaluate different regulatory proposals. We study sce-

narios in which AI algorithms create internalities in Section A. Section 5 concludes.

2 Model without beta testing

This section considers a model in which an AI algorithm cannot be tested before it

is released and in which the release is irreversible. The model features a continuum

of identical households and a single AI developer. We discuss the household prob-

lem, the problem of the AI developer, and the unregulated equilibrium. Then, we

characterize the social optimum and compare it with the unregulated equilibrium.

2.1 Unregulated equilibrium

Household problem The economy has a continuum of households indexed by

i ∈ [0, N], where N denotes the number of households in the population. Each

household has a constant exogenous income level denoted by y. Households decide

whether to purchase a license to use an AI algorithm with novelty ℓ at a price p.
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Their utility, Ui, has a quasi-linear form:

Ui = y + [u (ℓ) µ − p]× Ii − E[e2]. (1)

The utility derived from using the AI algorithm is u (ℓ) µ. We assume that the func-

tion u is increasing (u′ > 0) and concave (u′′ < 0) in the novelty level, ℓ, and satisfies

the Inada condition (limℓ↓0 u′(ℓ) = ∞). We also normalize u(0) = 0, where ℓ = 0

represents the status quo. The indicator function Ii takes the value one if household

i buys the AI license and zero otherwise. To capture positive network externalities,

we assume that this utility is proportional to the number of users µ =
´
Iidi.

AI usage can cause a negative externality e that reduces utility by e2. We assume

that the externality is proportional to the measure of users, µ, and takes the form:

e = ϕ (ℓ)× µ,

For each value of the novelty level ℓ, ϕ(ℓ) is a random variable. Both positive and

negative values of ϕ(ℓ) represent undesirable, negative externalities.

We assume that the distribution ϕ(ℓ) satisfies two properties. First, the expected

value of ϕ(ℓ) is zero:

E[ϕ(ℓ)] = 0.

Second, the uncertainty about the potential externality is an increasing function of

the novelty level ℓ. Let σ2(ℓ) denote the uncertainty about the potential externality

of an algorithm with novelty level ℓ:

σ2 (ℓ) = E
[
ϕ(ℓ)2

]
.

We assume that σ2(ℓ) is increasing and convex in ℓ, and σ (0) = 0, i.e., there is no

uncertainty in the status quo.

Replacing e in equation (1), we can write the household problem as choosing Ii

to maximize

Ui = y + [u(ℓ)µ − p]× Ii − σ2(ℓ)µ2.
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Households are willing to purchase a license to use the AI algorithm whenever pri-

vate benefits exceed the price,

u (ℓ) µ ≥ p.

AI developer’s problem We consider a single AI developer who chooses the algo-

rithm’s novelty level, ℓ, the license price, p, and the number of available licenses,

µ.

The cost of developing an algorithm with novelty level ℓ is f (ℓ). This cost is

increasing and convex in ℓ and f (0) = 0.

The developer experiences disutility from the externality in the same way that

households do. However, the developer does not take into account the negative ex-

ternality endured by the households. The expected utility of the developer depends

on the price it chooses as follows:

V =

{
µp − σ2 (ℓ) µ2 − f (ℓ) if p ≤ u (ℓ) µ,
0 − f (ℓ) if p > u (ℓ) µ.

If the developer markets the AI algorithm, the optimal license price is p = u (ℓ) µ.

The developer uses its monopoly position to capture the entire consumer surplus.

This pricing strategy does not generate deadweight losses; it simply redistributes

resources from the households to the monopolists.

Given that p = u (ℓ) µ, the optimal levels of ℓ and µ solve the following problem:

max
ℓ≥0, 0≤µ≤N

u (ℓ) µ2 − f (ℓ)− σ2 (ℓ) µ2.

We characterize the solution to this problem in two steps. First, taking ℓ as given,

we ask what is the optimal release strategy: how many licenses, µ, should be made

available at a price, p. Second, we consider the optimal choice of ℓ from the devel-

oper’s standpoint.
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Given ℓ, the optimal release strategy depends on the sign of u (ℓ) − σ2 (ℓ). If

this expression is positive, it is optimal to make the algorithm available to the whole

population (µ = N). Otherwise, the algorithm is not released (µ = 0).

Given ℓ, the utility of the AI developer is:

V (ℓ) =

{{
u (ℓ)− σ2 (ℓ)

}
N2 − f (ℓ) if u (ℓ)− σ2 (ℓ) ≥ 0,

− f (ℓ) if u (ℓ)− σ2 (ℓ) < 0.

If [u (ℓ)− σ2 (ℓ)]N2 < f (ℓ) for all ℓ, the developer produces no algorithm.

When it is optimal to produce an algorithm and the solution for ℓ is interior, it

satisfies the first-order condition:{
u′ (ℓ)− ∂σ2 (ℓ)

∂ℓ

}
N2 − f ′ (ℓ) = 0.

Unregulated equilibrium We now describe the characteristics of an equilibrium

without regulation in which ℓ has an interior value. The superscript e denotes the

values of various variables in this equilibrium. These variables satisfy the following

conditions:

µe = N,{
u′ (ℓe)− ∂σ2 (ℓe)

∂ℓ

}
N2 − f ′ (ℓe) = 0,

and ℓe is such that the utility of the developer is positive,

V (ℓe) =
{

u (ℓe)− σ2 (ℓe)
}

N2 − f (ℓe) ≥ 0.

2.2 The planner’s problem

The total household welfare in an economy in which µ households use the AI algo-

rithm is ˆ N

0
Uidi = Ny + {u(ℓ)µ − p} µ − Nσ2(ℓ)µ2.
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Social welfare is the sum of the households’ and developer’s utilities:

W =

ˆ N

0
Uidi + V = Ny +

{
u (ℓ)− (N + 1) σ2 (ℓ)

}
µ2 − f (ℓ) .

With quasi-linear utility, we can think of this social welfare function as maximizing

the total surplus in the economy.

The following proposition compares the social optimum with the unregulated

equilibrium.

Proposition 1 (Conservatism in ℓ). The socially desirable novelty level, ℓ∗, is lower than

the level that emerges in the unregulated equilibrium, ℓe.

In the appendix, we prove this proposition using monotone comparative statics.

Below, we sketch a proof for the case in which the solution is interior. The socially

optimal solution, ℓ∗, satisfies the first-order condition:[
u′ (ℓ∗)− (N + 1)

∂σ2 (ℓ∗)

∂ℓ

]
N2 − f ′ (ℓ∗) = 0.

The optimality condition for the developer evaluated at the socially optimal level of

novelty, ℓ∗, is [
u′ (ℓ∗)− ∂σ2 (ℓ∗)

∂ℓ

]
N2 − f ′ (ℓ∗) > 0,

and therefore

ℓe > ℓ∗.

The key driver of this result is that when selecting ℓ, the developer disregards the

externality on the rest of society.
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Regulating AI

One regulatory approach to align the decisions of AI developers with societal inter-

ests is to impose an upper bound on the degree of novelty, ℓ, that developers can

implement. This method resembles the European Commission’s proposal of classi-

fying AI algorithms into risk tiers (unacceptable, high, limited, and minimal) and

forbidding the development of algorithms with unacceptable risks (European Com-

mission, 2022).

In the model we have been considering, where there is no beta testing, setting the

upper bound for ℓ equal to the socially optimal novelty level is sufficient to imple-

ment the first best. As shown in the next section, this result no longer holds in the

model with beta testing because incentives to test and implement algorithms are not

aligned by simply placing an upper bound on ℓ.

Another regulatory approach is to hold AI developers liable for the social costs

of the AI algorithm. As discussed in Section 4, without liability limits, this regula-

tion is sufficient to implement the social optimum in settings with and without beta

testing. However, with limited liability, the policy is no longer sufficient to align

incentives because AI developers do not fully internalize the external consequences

of the AI algorithm when ϕ(ℓ) is very large. In Section 4, we discuss a combination

of beta testing controlled by the regulator and limited liability that approximately

implements the social optimum.

3 Model with beta testing

This section considers a two-period version of the previous model. Time is discrete

and indexed by t = 1, 2. To evaluate the externalities, the developer can test the

algorithm in the first period in a sample of µ1 users. Based on the outcomes of this

test, they can then decide whether to release the algorithm in the second period.

For simplicity, we consider the case in which the external effects, ϕ(ℓ), are perfectly
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revealed after the AI algorithm is tested in the first period.

People assign weights 1 − β and β to the utility of the first and second period,

respectively. The model without beta testing is a particular case of this more general

model where β = 0.

As β converges to one, the weight of the first period’s utility falls, and the cost of

testing in the first period, which is the opportunity cost of not deploying the algo-

rithm in this period, becomes negligible.

As in the previous section, we begin by describing the unregulated equilibrium.

We then compute the social optimum and compare it to the unregulated equilibrium.

3.1 Unregulated equilibrium

Household problem The household lives for two periods. They choose whether

or not to buy an algorithm license in periods one and two to maximize their lifetime

utility given by

Ui = (1 − β)
{

y + [u(ℓ)µ1 − p1]I1,i − E(e2
1)
}
+ βE

{
y + [u(ℓ)µ2 − p2]I2,i − e2

2

}
.

The household is willing to purchase an AI license in period t if the private ben-

efits exceed the price

u(ℓ)µt ≥ pt.

AI developer’s problem In period one, the AI developer makes three decisions:

which novelty level to develop (ℓ), how many AI licenses to offer for sale (µ1), and

what price to charge for each license (p1). Development costs are incurred in the first

period.

If µ1 equals zero, the developer obtains no information about the externalities

of the AI algorithm in period two and the decision-making process in this period

resembles that of the model without beta testing.
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If µ1 is greater than zero, the developer obtains information about the external

effects of the AI algorithm in period two. Using this information, the developer

chooses µ2, the number of AI licenses to offer for sale in period two, and p2, the price

per license.

The utility of the developer in period two is,

V2 =


µ2p2 − ϕ(ℓ)2µ2

2, if p2 ≤ u(ℓ)µ2 and µ1 > 0,
µ2p2 − σ2(ℓ)µ2

2, if p2 ≤ u(ℓ)µ2 and µ1 = 0,
0, if p2 > u(ℓ)µ2.

As before, the price that maximizes the developer’s utility is p2 = u(ℓ)µ2.

If µ1 > 0, then µ2 = N if u(ℓ)− ϕ(ℓ)2 ≥ 0 and µ2 = 0 otherwise. If µ1 = 0, then

µ2 = N if u(ℓ)− σ2(ℓ) ≥ 0 and µ2 = 0 otherwise.

Given that an algorithm with novelty ℓ was developed and µ1 licenses were sold

in the first period, the optimized developer utility in period two, V∗
2 (ℓ, µ1) is,

V∗
2 (ℓ, µ1) = max

{
u(ℓ)− ϕ(ℓ)2I(µ1 > 0)− σ2(ℓ)(1 − I(µ1 > 0)), 0

}
N2,

where I(µ1 > 0) = 1 if µ1 > 0 and zero otherwise. The * indicates that the value

function has been maximized with respect to the choice of price and implementation

in period two.

To make the problem interesting, we assume that ϕ(ℓ) is such that there is a

strictly positive probabilities that both u(ℓ)− ϕ(ℓ)2 > 0 and u(ℓ)− ϕ(ℓ)2 < 0. This

assumption means that the probability that the AI algorithm is implemented in pe-

riod two, given the information obtained in period one, is strictly positive but less

than one.

Lemma 1 (Private benefits of beta testing in period one). The developer’s expected util-

ity in the second period is higher when there is beta testing in the first period,

E[V∗
2 (ℓ, µ1)] > V∗

2 (ℓ, 0), if µ1 > 0.
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Proof. Let µ0
2 denote the optimal choice of µ2 when µ1 = 0. Note that µ0

2 is necessarily

non-state contingent, so µ0
2 = N or µ0

2 = 0 depending on the degree of uncertainty

regarding the externality. Then, if µ1 > 0:

E[V∗
2 (ℓ, µ1)] = E

{
max

[(
u(ℓ)− ϕ(ℓ)2

)
N2, 0

]}
> E

[(
u(ℓ)− ϕ(ℓ)2

)
(µ0

2)
2
]
=
(

u(ℓ)− σ2(ℓ)
)
(µ0

2)
2 = V∗

2 (ℓ, 0),

where the strict inequality follows from the fact that the probability that the AI algo-

rithm is implemented in period two, given the information obtained in period one,

is strictly positive but less than one.

The problem in period one is to choose ℓ, µ1 and p1 to maximize

V = (1 − β)

({
µ1p1 − σ2(ℓ)µ2

1, if p1 ≤ u(ℓ)µ1

0, if p1 > u(ℓ)µ1

)
+ βE[V∗

2 (ℓ, µ1)]− f (ℓ).

The optimal price for the developer is p = u(ℓ)µ1.

From the standpoint of period one, it is still optimal to set µ1 = N if u(ℓ) −
σ2(ℓ) ≥ 0 and µ1 = 0 if u(ℓ) − σ2(ℓ) < 0. However, experimenting in the first

period, µ1 > 0, creates value by generating information that the developer can use

in the second period.

Given the discontinuity in information generation from µ1 = 0 to µ1 > 0, the

problem may have a supremum but not a maximum. For a given ℓ, if u(ℓ)− σ2(ℓ) <

0 then the static optimal decision would be µ1 = 0. However, choosing an infinites-

imal, positive value of µ1 yields strictly larger utility than setting µ1 to zero (see

Lemma 1). Therefore, the optimal number of households trying the technology in

period one should be strictly positive but kept as low as possible (µ1 ↓ 0). We refer

to this setting as the experimentation solution: the developer sells AI licenses to an in-

finitesimal fraction of households to test the algorithm and then decides whether to

sell the algorithm given the information revealed in period two.1

1We could extend the model to the case in which the information revealed is an increasing function
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Proposition 2 (Uncertainty, beta testing, and algorithm release). In an unregulated

equilibrium, the number of user licenses (µe
1) offered by the developer in the first period

depends on the level of uncertainty as follows:

1. The developer does beta testing (µe
1 ↓ 0) when the degree of uncertainty is high

σ2(ℓ) > u(ℓ).

2. The developer foregoes beta testing and releases the AI algorithm to the entire popula-

tion in the first period (µe
1 = N) when uncertainty is low

σ2(ℓ) ≤ u(ℓ).

In both scenarios, the developer learns the externality of the AI algorithm in the second period

and then:

1. Withdraws the algorithm from the market (µe
2 = 0) if the personal cost to the developer

arising from externalities is substantial,

ϕ(ℓ)2 > u(ℓ).

2. Makes the algorithm available to the whole population (µe
2 = N) if the personal cost to

the developer arising from externalities is relatively minor

ϕ(ℓ)2 ≤ u(ℓ).

Since µe
1 is always positive, then

V∗
2 (ℓ, µe

1) = max{[u(ℓ)− ϕ(ℓ)2]N2, 0},

and so

V = (1 − β)max{[u(ℓ)− σ2(ℓ)]N2, 0}+ βE [V∗
2 (ℓ, µe

1)]− f (ℓ).
of the number of households involved in beta testing. In this extension, µ1 would still be positive, but
the model is more complex.

13



3.2 The planner’s problem

We consider a central planner who can decide, in the first period, both the novelty of

the AI algorithm developed and the number of households that can access it. If the

AI algorithm is implemented in the first period, the planner learns its externality. In

the second period, the planner decides whether to make the AI algorithm available

and how many licenses to offer.

As in the model without beta testing, we compute the allocations that maximize

the social surplus
´ 1

0 Uidi + V . With quasi-linear utility, this problem is equivalent to

maximizing efficiency. Any distribution of utilities can be achieved using lump-sum

transfers.

We begin by describing the solution to the second-period problem, contingent

upon the choices made in the first period about ℓ and µ1.

Social problem, second period Development costs are incurred in the first period.

If µ1 > 0, then the planner learns the externality of the AI algorithm, ϕ(ℓ). If µ1 =

0, then the planner faces the same uncertainty about the AI algorithm’s potential

externalities, E[ϕ(ℓ)2] = σ2(ℓ) as in the model without beta testing.

The expected social welfare in the second period, considering the available infor-

mation, is given by:

W2 =

{
Ny +

[
u (ℓ)− (N + 1) ϕ (ℓ)2

]
µ2

2 if µ1 > 0,

Ny +
[
u (ℓ)− (N + 1) σ2 (ℓ)

]
µ2

2 if µ1 = 0.

We now determine the optimal µ2. If µ1 > 0, it is optimal to make the algorithm

available to the entire population, µ2 = N, if u(ℓ) − (N + 1)ϕ(ℓ)2 ≥ 0 and to not

release the AI algorithm otherwise (µ2 = 0). If µ1 = 0, then µ2 = N if u(ℓ)− (N +

1)σ2(ℓ) ≥ 0 and µ2 = 0 otherwise.

In period two, the planner only releases AI algorithms that are socially beneficial,

taking into account the externality on the entire population, (N + 1)ϕ(ℓ)2. In con-
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trast, the developer considers only its own loss of utility due to externality, ϕ(ℓ)2.

This difference implies that the developer is willing to commercialize AI algorithms

that are detrimental to society.

Proposition 3 (Socially optimal restrictions on algorithm release). The central planner

does not release AI algorithms that would be commercialized in an unregulated equilibrium

under two circumstances:

1. If µ1 > 0, the externality on the population are larger than the social benefits of im-

plementing the AI algorithm, but the private benefits to the developer of implementing

the algorithm are positive:

u(ℓ)
N + 1

< ϕ(ℓ)2 ≤ u(ℓ).

2. If µ1 = 0, the expected negative externalities on the population are larger than the

benefits of implementing the AI algorithm, while the private expected benefits to the

developer of implementing the algorithm are positive:

u(ℓ)
N + 1

< σ2(ℓ) ≤ u(ℓ).

The resulting social welfare in period two is given by:

W∗
2 (ℓ, µ1) = Ny+max

{
u(ℓ)− (N + 1)

[
ϕ(ℓ)2I(µ1 > 0) + σ2(ℓ)(1 − I(µ1 > 0))

]
, 0
}

N2,

where the * indicates that the value function has been maximized with respect to the

choice of price and implementation in period two. As before, we assume that ϕ(ℓ)

is such that there is a strictly positive probability that both u(ℓ)− (N + 1)ϕ(ℓ)2 > 0

and u(ℓ)− (N + 1)ϕ(ℓ)2 < 0. This assumption means that the probability that the

AI algorithm is implemented in the second period, given the information obtained

in the first period, is strictly positive but less than one.
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Lemma 2 (Social benefits of beta testing in period one). It is not optimal to choose

µ1 = 0. Expected social welfare is higher in the second period when there is beta testing in

the first period:

E[W∗
2 (ℓ, µ1)] > W∗

2 (ℓ, 0), if µ1 > 0.

Proof. Let µ0
2 denote the optimal choice of µ2 when µ1 = 0. Note that µ0

2 is not state-

contingent, it’s either µ0
2 = N or µ0

2 = 0, depending on the uncertainty regarding

externality. Then, if µ1 > 0:

E[W∗
2 (ℓ, µ1)] = Ny + E

{
max

[(
u(ℓ)− (N + 1)ϕ(ℓ)2

)
N2, 0

]}
> Ny + E

{[
u(ℓ)− (N + 1)ϕ(ℓ)2

]
(µ0

2)
2
}

= Ny +
[
u(ℓ)− (N + 1)σ2(ℓ)

]
(µ0

2)
2

= W∗
2 (ℓ, 0),

where the strict inequality follows from the fact that the probability that the AI algo-

rithm is implemented in period two, given the information obtained in period one,

is strictly positive but less than one.

Social problem, first period The overall expected social welfare is given by

W = (1 − β)
[

Ny +
{

u(ℓ)− (N + 1)σ2(ℓ)
}

µ2
1

]
+ βE[W∗

2 (ℓ, µ1)]− f (ℓ).

Setting µ1 = 0 is never optimal. It is always better to set µ1 to an infinitesimal value

to generate information that can be used in period two.

From the standpoint of the first period, it is optimal to set µ1 = N if u(ℓ)− (N +

1)σ2(ℓ) ≥ 0 and µ1 = 0 if u(ℓ)− (N + 1)σ2(ℓ) < 0. However, beta testing in the first

period generates information that is valuable in the second period (see Lemma 2),

i.e., if µ1 > 0

E[W∗
2 (ℓ, µ1)] > W∗

2 (ℓ, 0).
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Just like in the unregulated equilibrium, the discontinuity in information genera-

tion from µ1 = 0 to µ1 > 0, implies that the problem may have a supremum but not

a maximum. As before, we consider an experimentation solution: the planner makes

AI licenses available to an infinitesimal fraction of households to test the algorithm

and then decides whether to release the algorithm given the information revealed in

period two.

Proposition 4 (Socially optimal implementation of an AI algorithm in periods one

and two). Given ℓ, the social optimal number of users in the first period (µ∗
1) involves:

1. Beta testing (µ∗
1 ↓ 0) if uncertainty is sufficiently large

σ2(ℓ) >
u(ℓ)

N + 1
.

2. Immediate implementation (µ∗
1 = N) if uncertainty is sufficiently small

σ2(ℓ) ≤ u(ℓ)
N + 1

.

In both cases, upon learning the externality consequences of the AI, the planner:

1. Does not implement the AI algorithm (µ∗
2 = 0) if the externalities are sufficiently large

ϕ(ℓ)2 >
u(ℓ)

N + 1
.

2. Implements the AI algorithm (µ∗
2 = N) if the externalities are sufficiently small

ϕ(ℓ)2 ≤ u(ℓ)
N + 1

.

The planner either implements beta testing or releases the algorithm to the pop-

ulation in the first period. However, the planner always adopts a more cautious

stance than the developer when deciding whether to beta test rather than make the

algorithm available to the whole population. There are AI novelty levels for which
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the developer prefers an immediate release to the general public, while the planner

opts for beta testing.

Upon learning in period one the externality of the AI algorithm, there are algo-

rithms that the developer would find privately beneficial to continue commercializ-

ing in the second period that the planner withdraws from the market. Both of these

observations stem from the fact that the planner considers the externalities affecting

the entire population, while the developer is only concerned with the impact of the

externality on its own utility.

In summary, because the planner considers the impact of externalities on the en-

tire population, it is more cautious than the developer in the sense that it implements

beta testing for externalities more often than the developer. The planner is also more

conservative in releasing the algorithm in the second period.

Proposition 5 (Caution in beta testing and implementation). Fix ℓ. In period one:

1. If uncertainty is substantial, σ2(ℓ) ≥ u(ℓ), both the planner and the developer agree

to beta test.

2. If uncertainty is moderate, u(ℓ)
N+1 < σ2(ℓ) < u(ℓ), the planner and the developer

disagree. It is optimal for the planner to do beta testing but the developer finds full-

scale implementation without testing privately optimal.

3. If uncertainty is low, σ2(ℓ) ≤ u(ℓ)
N+1 , both the planner and the developer agree to release

the algorithm to the entire population without beta testing.

In period two:

1. If externalities are substantial, ϕ(ℓ)2 ≥ u(ℓ), both the planner and the developer agree

to withdraw the algorithm from the market.

2. If externalities are moderate, u(ℓ)
N+1 < ϕ(ℓ)2 < u(ℓ), the planner wants to withdraw

the algorithm from the market, but the developer does not.
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3. If externalities are low, ϕ(ℓ)2 ≤ u(ℓ)
N+1 , both the planner and the developer agree to

release the algorithm to the entire population.

Surprisingly, in contrast to the model without beta testing, the first best can fea-

ture a higher novelty level, ℓ, than the unregulated equilibrium. In the model with

beta testing, the planner can be cautious in two ways. The first is choosing a lower,

less risky novelty level ℓ. The second is beta testing and withdrawing the algorithm

when the net social benefits are negative. The planner withdraws the algorithm from

the market more often than the developer. Because it exercises caution in testing and

implementing, the planner might prefer a higher novelty level. We show an example

of this possibility in the Appendix B.

Table 1: Testing or releasing in the first period, model with externalities

Uncertainty Low Medium High

σ2(ℓ) σ2(ℓ) ≤ u(ℓ)
N+1

u(ℓ)
N+1 ≤ σ2(ℓ) ≤ u(ℓ) σ2(ℓ) ≥ u(ℓ)

Developer release release test

Planner release test test

Table 1 compares the decision to test the algorithm in the first period or release it

to the entire population. When the algorithm is similar to the status quo (ℓ is low),

there is low uncertainty about its external impacts, and the developer and the plan-

ner concur that it is optimal to release it immediately. When ℓ significantly deviates

from the status quo so that uncertainty about external effects is high, there is a unan-

imous decision that the algorithm should undergo testing to assess its suitability for

release. There is disagreement in situations with moderate uncertainty levels: the

developer releases the algorithm without prior testing, whereas it is socially optimal
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to test the algorithm to evaluate whether it should be released.

Table 2: Release decisions in the second period, model with externalities

Externality Low Medium High

ϕ(ℓ)2 ϕ(ℓ)2 ≤ u(ℓ)
N+1

u(ℓ)
N+1 ≤ ϕ(ℓ)2 ≤ u(ℓ) ϕ(ℓ)2 ≥ u(ℓ)

Developer release release not release

Planner release not release not release

Table 2 compares the developer’s and planner’s decision to release the algorithm

in the second period. Since the algorithm was either tested or released to the entire

population in the first period, its external effects are known in the second period. The

developer and planner align their release decisions when external effects are low or

high. However, there is disagreement when external effects are in an intermediate

range: the developer opts to release the algorithm, whereas the planner chooses not

to. This disparity occurs because the developer disregards the external effects of the

algorithm on the population.

Tables 1 and 2 show that simply banning the development of algorithms that

pose a high risk of adverse external effects is insufficient to implement the social

optimum.

4 Regulating AI

In this section, we use the model with beta testing to study the implications of two

forms of regulation.2 The first regulation is to control beta testing in period one

2Recall that the model without beta testing is a particular case of the general model with β = 0.
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and make the release of the algorithm conditional on the test results. The second is

making developers liable for the external effects of their algorithms.

4.1 Beta testing with conditional approval

Suppose the regulator mandates either beta testing or immediate release in period

one and approves the implementation of the technology in period two only if

ϕ2 ≤ u(ℓ)
N + 1

.

For a given ℓ, conditional approval in period two generates lower ex-ante uncer-

tainty about the effects of the externality

ς2(ℓ) =

ˆ √
u(ℓ)
N+1

−
√

u(ℓ)
N+1

ϕ2dGℓ(ϕ) ≤ σ2(ℓ),

where Gℓ denotes the CDF of ϕ(ℓ). The ex-ante uncertainty about the externality at

time two is given by the variance of the externality conditional on approval multi-

plied by the probability of approval in the second period.

The following proposition shows that this popular policy proposal does not im-

plement the social optimum.

Proposition 6 (Regulatory approval of algorithm release). Suppose the regulator con-

trols whether an algorithm is implemented in both periods. Suppose, furthermore, that ex-

ante uncertainty ς2(ℓ) is increasing in ℓ. Then, the developer chooses a novelty level higher

than the social optimum.

To streamline the exposition, we relegate the proof to the appendix. The intu-

ition for this proposition is that, for a given ℓ that is worthwhile for the developer

to implement, the developer’s utility is higher than social welfare, and this differ-

ence increases in ℓ. This difference in objectives occurs because the developer cares

relatively less about the externality than the regulator.
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4.2 Developers are liable for externalities

Suppose that the regulator allows the developer to freely choose the novelty level

and whether to implement the AI algorithm but makes the developer liable in each

period for any negative externalities. This policy means that the developer is forced

to pay:

τt(ϕ(ℓ), µt) = Nϕ(ℓ)2µ2
t ,

where µt denotes the number of households to whom the developer sells licenses.

In this case, the utility of the developer is given by

V = (1− β)

({
µ1p1 − σ2(ℓ)µ2

1 − E[τt(ϕ(ℓ), µ1)], if p1 ≤ u(ℓ)µ1

0, if p1 > u(ℓ)µ1

)
+ βE[V2]− f (ℓ),

where

V2 =


µ2p2 − ϕ(ℓ)2µ2

2 − τt(ϕ(ℓ), µ2), if p2 ≤ u(ℓ)µ2 and µ1 > 0,
µ2p2 − σ2(ℓ)µ2

2 − E[τt(ϕ(ℓ), µ2)], if p2 ≤ u(ℓ)µ2 and µ1 = 0.
0, if p2 > u(ℓ)µ2.

It is still optimal for the AI developer to set pt = u(ℓ)µt. Replacing this price

and the liability payments, we see that the utility of the developer coincides with the

objective function of the social planner (up to a constant term) when choosing the

novelty level and making implementation decisions:

V = (1 − β)[u(ℓ)− (N + 1)σ2(ℓ)]µ2
1 + βE[V2]− f (ℓ),

where

V2 =

{
[u(ℓ)− (N + 1)ϕ(ℓ)2]µ2

2, if µ1 > 0,
[u(ℓ)− (N + 1)σ2(ℓ)]µ2

2, if µ1 = 0.

Private and social incentives become aligned when AI developers are liable for ex-

ternal effects. It follows that the privately optimal decisions coincide with the social

optimum. We summarize these results in the following proposition.
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Proposition 7 (Full liability). If the developer is liable for the algorithm’s external effects,

then private and social incentives are aligned. This alignment implies that the testing, im-

plementation, and novelty level ℓ chosen by the developer are the same as in the first best.

4.2.1 Limited Liability

The previous policy may require the developer to pay large sums. Suppose there is

limited liability, in the sense that the liability payment each period cannot exceed the

developer’s revenue

τt(ϕ(ℓ), µt) ≤ ptµt.

In this case, the taxes imposed by the regulator on the AI developer are:

τt(ϕ(ℓ), µt) = min{Nϕ(ℓ)2µ2
t , ptµt}.

In this regulatory environment, it is still optimal for the developer to charge the

maximum price pt = u(ℓ)µt.

As before, releasing or beta testing the AI algorithm is always optimal. So, we

only need to consider the case with full information in period two. This result im-

plies that

V∗
2 (ℓ, µ1) = [u(ℓ)− ϕ(ℓ)2]µ2

2 − min{Nϕ(ℓ)2µ2
2, u(ℓ)µ2

2}.

Suppose that Nϕ(ℓ)2 < u(ℓ), then the developer decides to withdraw the AI

algorithm from the market if ϕ(ℓ)2 > u(ℓ)/(N + 1) and to sell AI licenses to the

whole population if ϕ(ℓ)2 ≤ u(ℓ)/(N + 1).

Instead, if Nϕ(ℓ)2 ≥ u(ℓ), then the developer makes no profits from selling AI

licenses but still suffers the external consequences of the AI algorithm. In this case,

the developer withdraws the AI algorithm from the market. Importantly, note that if

Nϕ(ℓ)2 ≥ u(ℓ), then ϕ(ℓ)2 > u(ℓ)/(N + 1). It follows that the social planner agrees

to withdraw the AI algorithm from the market.
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In sum, even in the presence of limited liability, making AI developers liable for

the external costs of their algorithms is sufficient to align incentives in the second

period. We summarize these results in the following proposition.

Proposition 8 (Limited liability). Suppose that the regulator makes AI developers liable

for the externality of the AI algorithm subject to limited liability. Then, the developer and the

regulator agree on the implementation strategy in period two, i.e.,

1. If externalities are substantial, ϕ(ℓ)2 > u(ℓ)/(N + 1), both the regulator and the AI

developer agree to withdraw the algorithm from the market.

2. If externalities are low, ϕ(ℓ)2 ≤ u(ℓ)/(N + 1), both the regulator and the AI devel-

oper agree to release the algorithm to the entire population.

It follows from Proposition 8 that, with limited liability, V∗
2 (ℓ, µ1) = W∗(ℓ, µ1)−

Ny. However, note that because E[τ1(ϕ(ℓ), N)] < Nσ2(ℓ), then incentives in the first

period are not aligned.

In the presence of limited liability, the AI developer chooses a different level of ℓ

than the planner. The AI developer sells licenses to the whole population if

u(ℓ) > σ2(ℓ) + E[min{Nϕ(ℓ)2, u(ℓ)}]

and beta tests the AI algorithm if

u(ℓ) ≤ σ2(ℓ) + E[min{Nϕ(ℓ)2, u(ℓ)}].

The utility of the AI developer is given by

V = (1− β)max{u(ℓ)− σ2(ℓ)−E[min{Nϕ(ℓ)2, u(ℓ)}]}N2 + β[W∗(ℓ)− Ny]− f (ℓ).

So, in general, making AI developers liable for external effects is insufficient to im-

plement the social optimum in the presence of limited liability.
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4.2.2 Limited liability with beta testing

Consider now an environment with limited liability in which the regulator always

mandates beta testing for externalities and makes the developer liable for the exter-

nal effects of the AI in period 2. This policy implements the first best in cases where

immediate release is not socially optimal.

Proposition 9 (Limited liability and mandatory beta testing). Suppose that there is lim-

ited liability and the regulator always mandates beta testing. This regulatory environment

does not implement the social optimum when beta testing is not optimal. When beta testing

is socially optimal, private and social incentives are aligned: it is optimal for the AI developer

to set the novelty level of their algorithms equal to the socially optimal novelty level. The AI

developer beta tests the algorithm in the first period and releases the algorithm to the entire

population in the second period if and only if externalities are low ϕ2 ≤ u(ℓ)/(N + 1).

The cost of beta testing is missing the opportunity to release the algorithm to

the entire population in the first period. As beta converges to one, this opportunity

cost converges to zero. The social optimum can be implemented in this limit by

making the developers responsible for any external effects with limited liability and

requiring mandatory beta testing.

Given that the beta testing phase typically represents only a small fraction of the

AI algorithm’s usage period, enforcing mandatory beta testing is nearly optimal in

real-world applications.

Table 3 summarizes the optimality properties of various forms of regulation, in-

cluding those discussed in propositions 7, 8, and 9. The developer controls the choice

of ℓ and the decision to release the algorithm in the second period in all scenarios.

The first column indicates who controls the testing/release decision in the first pe-

riod: either the developer freely decides whether to test or release (first row), or the

regulator makes testing mandatory (second row). Imposing mandatory testing is a

simple regulatory policy, but it creates some inefficiency when uncertainty is low. In
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Table 3: Social optimality of different types of regulation, model with externalities

Testing Decision No Liability Limited Liability Unlimited Liability

Chosen by
ℓ suboptimal suboptimal optimal

developer t = 1 Testing/release suboptimal suboptimal optimal

t = 2 Release suboptimal optimal optimal

Mandatory

ℓ suboptimal optimal† optimal†

t = 1 Testing/release optimal† optimal† optimal†

t = 2 Release suboptimal optimal optimal

† when testing is socially optimal.

such scenarios, it’s socially optimal to deploy the algorithm to the entire population

in the first period instead of conducting beta testing.

Unlimited liability (fifth column) ensures social optimality when the developer

makes all the decisions. The outcome is consistently suboptimal under no liabil-

ity (third column). With limited liability, optimality is achieved when the testing is

mandatory, provided that immediate release is not optimal.

A natural policy not included in Table 3 is for the regulator to impose the beta

testing policy used in the social optimum. However, this policy does not achieve the

first best in a setting with limited liability. The objectives of the developer and the

social planner differ. As a result, when it is socially optimal to release the algorithm

without testing in the first period, the developer chooses a value of ℓ that is not

socially optimal.
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4.3 Internalities versus externalities

We end this section by briefly comparing models with externalities and internali-

ties, which are deviations from rationality that lead households to make choices that

are not in their self-interest. Appendix A contains our analysis of the model with

internalities.

In the model with externalities, the developer overlooks the external impacts on

the broader population but still personally experiences these effects, just like any

household. These external effects increase with the number of algorithm users. Con-

sequently, when externalities are high, the developer is dissuaded from releasing the

algorithm. This restraining factor is absent in the model with internalities. This ab-

sence results from the following natural assumption: the developer is not affected

by internalities in its own choices, either because it does not use the AI algorithm or

because it is more sophisticated than the households. Therefore, in the model with

internalities and without regulation, the developer always sells AI licenses to the

whole population in the first period and never withdraws the product in the second

period.

5 Conclusion

In this paper, we study an environment with substantial uncertainty about the so-

cial costs and benefits of new AI technologies. We use this environment to assess

different regulatory proposals put forth by policymakers in Europe and the United

States.

We discuss optimal AI regulation in a setting with a single country. International

coordination might be necessary to achieve a global optimum in a world with mul-

tiple nations.

Suppose externalities are local, that is, using an AI algorithm in one country does

not impose externalities on other countries. National regulators can achieve a global
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optimum without limited liability by holding developers accountable for local ex-

ternalities. With limited liability, local regulators must enforce optimal beta testing

policies and make developers liable for externalities. These implementations do not

require global coordination.

International cooperation is generally required when there is tax competition or

global externalities, that is when using an AI algorithm in one country imposes ex-

ternalities on other countries. This cooperation is more challenging when some gov-

ernments pursue objectives that are different from social welfare (see Beraja, Kao,

Yang, and Yuchtman, 2023 for empirical evidence along these lines).

Cooperation aside, the basic regulatory principle that emerges from our norma-

tive analysis is that, in an environment with limited liability, private and public in-

centives are approximately aligned when regulators mandate beta testing to iden-

tify externalities or internalities and hold developers liable for the adverse impacts

caused by their algorithms.

Working out how to measure externalities and internalities to implement this

basic regulatory principle is an arduous task that requires substantial investment in

expertise and computational resources by regulatory bodies. But as Isaac Asimov

writes in his Foundation trilogy, ”It has been my philosophy of life that difficulties

vanish when faced boldly.”
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A Proof of Proposition 1
Define

O(ℓ, d) =

{
{u(ℓ)− σ2(ℓ)}N2 − f (ℓ) if d = 1,
{u(ℓ)− (N + 1)σ2(ℓ)}N2 − f (ℓ) if d = 0.

If d = 1, then O(ℓ, 1) is the objective function of the AI developer, whereas if d = 0,

then O(ℓ, 0) is the objective function of the social planner.

Define the maximum admissible level of novelty considered by the developer

and the social planner ℓ(d) for d = 0 and d = 1 respectively. Note that O(ℓ, 1) >

O(ℓ, 0). Given our assumptions on u, σ, and f , this condition implies that

ℓ(1) > ℓ(0).

This result shows that the social planner implements lower levels of novelty than

the developer. In particular, because the social planner has a higher weight on the

externality, it does not allow the implementation of any novelty level ℓ ∈ (ℓ(0), ℓ(1)].

Finally, let

ℓ∗(d) = arg max
ℓ

O(ℓ, d)

be the optimal novelty level for the developer if d = 1 and the social planner if

d = 0. If ℓ∗(1) ̸∈ [0, ℓ(0)], then it immediately follows that ℓ∗(0) < ℓ∗(1) since

ℓ∗(0) ∈ [0, ℓ(0)].

Then, suppose that ℓ∗(1) ∈ [0, ℓ(0)]. We first show that the function O(ℓ, d)

satisfies strict single crossing in (ℓ, d). Then, using the monotone comparative statics

results in Milgrom and Shannon (1994), we find that ℓ∗(1) > ℓ∗(0).

Take ℓ′ > ℓ, we show that

O(ℓ′, 0) ≥ O(ℓ, 0) ⇒ O(ℓ′, 1) > O(ℓ, 1).
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Note that

O(ℓ′, 0) ≥ O(ℓ, 0)

⇔{u(ℓ′)− (N + 1)σ2(ℓ′)}N2 − f (ℓ′) ≥ {u(ℓ)− (N + 1)σ2(ℓ)}N2 +− f (ℓ)

⇔{u(ℓ′)− σ2(ℓ′)}N2 − f (ℓ′)− N(σ2(ℓ′)− σ2(ℓ))N2 ≥ {u(ℓ)− σ2(ℓ)}N2 − f (ℓ)

⇔O(ℓ′, 1)− N(σ2(ℓ′)− σ2(ℓ))N2 ≥ O(ℓ′, 0).

Since σ2(ℓ′) > σ2(ℓ) and ς2(ℓ′) > ς2(ℓ), then the previous expression implies

that

O(ℓ′, 1) > O(ℓ′, 0).

Since O(ℓ, d) satisfies the single-crossing property, the results in Milgrom and

Shannon (1994) imply that ℓ∗(d) is increasing in d. In other words,

ℓ∗(1) ≥ ℓ∗(0),

i.e., the developer chooses a higher novelty level than the social planner. We prove

this result by contradiction. Suppose that ℓ∗(1) < ℓ∗(0). Since ℓ∗(0) is optimal at

d = 0, it must be that

O(ℓ∗(0), 0) ≥ O(ℓ∗(1), 0).

Since O satisfies the single-crossing property, then it follows that

O(ℓ∗(0), 1) > O(ℓ∗(1), 1),

which is contradicts the fact that ℓ∗(1) is optimal at d = 1.

B Example where social optimum has higher novelty
than unregulated equilibrium

In this appendix, we provide an example in which, by being more cautious in beta

testing and implementation, the social planner opts for a higher level of novelty than

the AI developer.
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The numerical example is as follows. Suppose that u(ℓ) = 2
√
ℓ and that f (ℓ) =

χℓ2/2 with χ = 10. In addition, assume that β = 0.7 and that ϕ(ℓ) is such that

ϕ(ℓ) =


φℓ2, with prob. 1−α

2
0, with prob. α

−φℓ2, with prob. 1−α
2 .

We set φ = 1.0079. In this case:

σ2(ℓ) = (1 − α) ϕψ2φ4.

0 5 10 15
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2500

Figure 1: Example where social optimum has higher novelty than developer’s opti-
mum

In this case, the developer chooses a novelty level of 0.6 and immediately releases

the algorithm to the whole population in period one. If the social planner was forced

to release the algorithm to the whole population, it would choose a lower novelty

level ℓ = 0.16. However, by beta testing the algorithm in period one, the planner

prefers a much higher novelty level: 10.7.
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Suppose the developer was forced to beta test the algorithm in the first period;

we see that they would choose the same novelty level as the planner. This result

follows from the fact that, in this example, both the developer and planner agree to

commercialize the AI at time 2 only if ϕ(ℓ) = 0. However, beta testing is privately

suboptimal since it would cost the developer the profits earned in the first period.

C Proof of Proposition 6
Define

O(ℓ, d) =


(1 − β){u(ℓ)− σ2(ℓ)}(µ∗

1)
2 + β

´√ u(ℓ)
N+1

−
√

u(ℓ)
N+1

[u(ℓ)− hi2]dGℓ(ϕ)− f (ℓ) if d = 1,

(1 − β){u(ℓ)− (N + 1)σ2(ℓ)}(µ∗
1)

2 + β
´√ u(ℓ)

N+1

−
√

u(ℓ)
N+1

[u(ℓ)− (N + 1)ϕ2]dGℓ(ϕ)− f (ℓ) if d = 0.

If d = 1, then O(ℓ, 1) is the objective function of the AI developer, whereas if d = 0

then O(ℓ, 0) is the objective function of the social planner. Let

ℓ∗(d) = arg max
ℓ

O(ℓ, d),

be the optimal novelty level for the developer if d = 1 and the social planner if d = 0.

We first show that the function O(ℓ, d) satisfies strict single crossing in (ℓ, d).

Then, using the monotone comparative statics results in Milgrom and Shannon (1994),

we find that ℓ∗(1) > ℓ∗(0).

Take ℓ′ > ℓ, we show that

O(ℓ′, 0) ≥ O(ℓ, 0) ⇒ O(ℓ′, 1) > O(ℓ, 1).

Let α(ℓ) = P
[
ϕ(ℓ)2 ≤ u(ℓ)

N+1

]
be the ex-ante probability that the AI algorithm is
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implemented in period 2. Note that

O(ℓ′, 0) ≥ O(ℓ, 0)

⇔(1 − β){u(ℓ′)− (N + 1)σ2(ℓ′)}(µ∗
1)

2 + β{u(ℓ′)α(ℓ′)− (N + 1)ς2(ℓ′)} − f (ℓ′)

≥ (1 − β){u(ℓ)− (N + 1)σ2(ℓ)}(µ∗
1)

2 + β{u(ℓ)α(ℓ)− (N + 1)ς2(ℓ)} − f (ℓ)

⇔(1 − β){u(ℓ′)− σ2(ℓ′)}(µ∗
1)

2 + β{u(ℓ′)α(ℓ′)− ς2(ℓ′)} − f (ℓ′)

− (1 − β)N(σ2(ℓ′)− σ2(ℓ))(µ∗
1)

2 − βN(ς2(ℓ′)− ς2(ℓ))

≥ (1 − β){u(ℓ)− σ2(ℓ)}(µ∗
1)

2 + β{u(ℓ)α(ℓ)− ς2(ℓ)} − f (ℓ)

⇔O(ℓ′, 1)− (1 − β)N(σ2(ℓ′)− σ2(ℓ))(µ∗
1)

2 − βN(ς2(ℓ′)− ς2(ℓ)) ≥ O(ℓ′, 0).

Since σ2(ℓ′) > σ2(ℓ) and ς2(ℓ′) > ς2(ℓ), it follows from the previous formula that

O(ℓ′, 1) > O(ℓ′, 0).

Because O(ℓ, d) satisfies the single-crossing property, then the results in Milgrom

and Shannon (1994) imply that ℓ∗(d) is increasing in d. In other words,

ℓ∗(1) ≥ ℓ∗(0),

i.e. the developer opts for a higher novelty level than what the social planner. We

prove this result by contradiction. Suppose that ℓ∗(1) < ℓ∗(0). Since ℓ∗(0) is optimal

at d = 0, it must be that

O(ℓ∗(0), 0) ≥ O(ℓ∗(1), 0).

Since O satisfies the single-crossing property, then it follows that

O(ℓ∗(0), 1) > O(ℓ∗(1), 1),

which is contradicts the fact that ℓ∗(1) is optimal at d = 1.

36



Online Appendix
Regulation Artificial Intelligence

A A model with internalities

In this Appendix, we study a model where the adverse effects of AI algorithms take

the form of internalities instead of externalities. We consider only a model with

beta testing since the analogous model without beta testing is a particular case when

β = 0.

A.1 Unregulated equilibrium

Household’s problem The household utility is given by,

Ui = (1 − β)
{

y + [u (ℓ)− p1]× I1,i − E[ϕ (ℓ)2]× I1,i

}
+ βE

[
y + [u (ℓ)− p2]× I2,i − ϕ (ℓ)2 × I2,i

]
,

where It,i is an indicator function that takes the value one if the household uses the

AI algorithm and zero otherwise. In this model, households potentially experience

adverse effects, ϕ (ℓ), whenever they use an AI algorithm with novelty ℓ. House-

holds might be manipulated by the algorithm to act against their best interest be-

cause, in deciding to use the algorithm, they overlook its negative consequences. We

formalize this idea by assuming that Ui is the household’s “experienced utility,” but

that households base their choices on a different, misspecified, objective function

that we refer to as the “decision utility”:3

U s
i = (1 − β) {y + [u (ℓ)− p1]× I1,i}+ βE [y + [u (ℓ)− p2]× I2,i] .

3This terminology is common in the behavioral price theory literature, see, e.g., Farhi and Gabaix
(2020).

1



To simplify the problem, we abstract from positive network externalities in AI usage.

Introducing these network externalities would not alter our conclusions.

The household decides whether to purchase the AI algorithm to maximize U s
i .

The resulting decision rule is to buy the algorithm whenever pt ≤ u(ℓ).

We maintain the assumptions about the ϕ(ℓ) distribution previously discussed in

Section 2.

The AI developer’s problem In the first period, the AI developer chooses ℓ, how

many AI licenses to offer for sale (µ1), and the pricing of these licenses (p1).

We proceed under the assumption that the developer does not use the algorithm.

As a result, the developer is not personally impacted by the internalities generated

by the AI algorithm. Expanding our analysis to consider scenarios where the algo-

rithm’s internalities also influence the developer is straightforward. However, such

an extension would not significantly alter our findings.

The utility of the developer in the second period is:

V2 =

{
µ2p2 if p ≤ u (ℓ) ,
0 if p > u (ℓ) .

As before, the price that maximizes the developer’s utility is p2 = u(ℓ). Unlike in

the model with externalities, here it is always optimal for the developer to release

the AI algorithm to the entire population, µ2 = N. The developer benefits from

the resulting sales revenue and does not experience any adverse effects. This set-

ting contrasts with the externality model, where the developer bore its share of the

adverse external effects.

The developer’s maximized utility in the second period is

V∗
2 (ℓ) = u(ℓ)N.

Given that the developer always chooses to make the AI algorithm available to
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the entire population, the developer’s utility in the second period is independent of

the information about internalities gathered in the first period.

The developer’s problem in period one is to choose ℓ, µ1 and p1 to maximize

V = (1 − β)

({
µ1p1, if p1 ≤ u(ℓ)
0, if p1 > u(ℓ)

)
+ βE[V∗

2 (ℓ)]− f (ℓ).

The optimal price for the developer in the first period is p1 = u(ℓ). As in the

second period, it is optimal for the developer to release the AI algorithm to the whole

population in the first period, µ1 = N.

Proposition 10 (Beta testing and algorithm release). In an unregulated equilibrium, the

developer always foregoes beta testing and releases the AI algorithm to the entire population

in the first period (µe
1 = N). Regardless of the information generated in the first period

about internalities, the developer makes the algorithm available to the entire population in

the second period (µe
2 = N).

Because the developer releases the algorithm to the whole population at a price

pt = u(ℓ) in both periods, the optimal value of ℓ is the one that maximizes u(ℓ)N −
f (ℓ.) The first-order for the problem of maximizing the developer’s utility is

u′(ℓe)N = f ′(ℓe).

A.2 The planner’s problem

The central planner maximizes the social surplus,
´ 1

0 Uidi + V . In the first period, the

planner decides the novelty level of the AI algorithm and the number of households

that will have access to it.

If the AI algorithm is released in the first period, the planner learns its internal-

ities. In the second period, the planner determines whether to release the AI algo-

rithm and decides the number of licenses to distribute.

We examine the solution to the second-period problem, contingent on the deci-

sions about ℓ and µ1 made in the first period.
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Social problem, second period If the algorithm is released in period one (µ1 > 0),

then the planner learns the internal effects of the AI algorithm.

The expected social welfare in the second period, considering the available infor-

mation, is given by:

W2 =

{
Ny +

[
u (ℓ)− ϕ (ℓ)2

]
µ2 if µ1 > 0,

Ny +
[
u (ℓ)− σ2 (ℓ)

]
µ2 if µ1 = 0.

The optimal value of µ2 is as follows. If µ1 > 0 and u(ℓ) ≥ ϕ(ℓ)2 or if µ1 = 0 and

u (ℓ) ≥ σ2 (ℓ), then it is optimal to release the algorithm to the whole population

in the second period, µ2 = N. In all other scenarios, it is not optimal to release the

algorithm (µ2 = 0).

The planner chooses to release only those AI algorithms that provide a net benefit

to the household, taking into account the internalities. In contrast, the developer

maximizes its profits and disregards the internalities that affect the households. As a

result, the developer may choose to release AI algorithms that reduce social welfare.

Proposition 11 (Optimal restrictions on algorithm release). The central planner refrains

from releasing AI algorithms that would be deployed in an unregulated equilibrium under

two circumstances:

1. When µ1 > 0 and the internal effects outweigh the benefits of using the AI algorithm,

u(ℓ) < ϕ(ℓ)2.

.

2. When µ1 = 0 and the expected social benefits of implementing the AI algorithm are

negative:

u(ℓ) < σ2(ℓ).

The resulting social welfare in the second period is:

W∗
2 (ℓ, µ1) = Ny + max

{
u(ℓ)−

[
ϕ(ℓ)2I(µ1 > 0) + σ2(ℓ)(1 − I(µ1 > 0))

]
, 0
}

N,

4



where the * indicates that the value function has been maximized with respect to the

choice of price and implementation in period two.

Lemma 3 (Social benefits of beta testing in period one). Expected social welfare is higher

in the second period when there is beta testing in the first period:

E[W∗
2 (ℓ, µ1)] > W∗

2 (ℓ, 0), if µ1 > 0.

Proof. Let µ0
2 denote the optimal choice of µ2 when µ1 = 0. Note that µ0

2 is not state-

contingent, it’s either µ0
2 = N or µ0

2 = 0, depending on the uncertainty regarding

internalities. Then, if µ1 > 0:

E[W∗
2 (ℓ, µ1)] = Ny + E [max {(u(ℓ)− ϕ(ℓ)) N, 0}]

> Ny + E
[(

u(ℓ)− ϕ(ℓ)2
)

µ0
2

]
= Ny +

[
u(ℓ)− σ2(ℓ)

]
µ0

2

= W∗
2 (ℓ, 0).

Social problem, first period The overall expected social welfare is given by

W = (1 − β)
[

Ny +
{

u(ℓ)− σ2(ℓ)
}

µ1

]
+ βE[W∗

2 (ℓ, µ1)]− f (ℓ).

Setting µ1 = 0 is never optimal. It is always better to set µ1 to an infinitesimal value

to gather information for use in the second period.

From the standpoint of period one, alone, it is optimal to set µ1 = N if u(ℓ) −
σ2(ℓ) ≥ 0 and µ1 = 0 if u(ℓ)− σ2(ℓ) < 0. However, conducting beta testing in the

first period generates valuable information that can be used in the second period

(see Lemma 3), i.e., if µ1 > 0

E[W∗
2 (ℓ, µ1)] > W∗

2 (ℓ, 0).

As in the model with externalities, the discontinuity in information generation

from µ1 = 0 to µ1 > 0, implies that the problem may have a supremum but not a
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maximum. As before, we consider an experimentation solution: the planner makes AI

licenses available to an infinitesimal subset of households to test the algorithm and

then make informed decisions about its release in the second period.

Proposition 12 (Optimal implementation of an AI algorithm in periods one and two).

Given ℓ, the social optimum number of users in period one (µ∗
1) involves:

1. Beta testing (µ∗
1 ↓ 0) if uncertainty is sufficiently large

σ2(ℓ) > u(ℓ).

2. Immediate implementation (µ∗
1 = N) if uncertainty is sufficiently small

σ2(ℓ) ≤ u(ℓ).

In both cases, upon learning the internalities of the AI algorithm, the planner:

1. Does not implement the AI algorithm (µ∗
2 = 0) if the internalities are sufficiently large

ϕ(ℓ)2 > u(ℓ).

2. Implements the AI algorithm (µ∗
2 = N) if the internalities are sufficiently small

ϕ(ℓ)2 ≤ u(ℓ).

As in the model with externalities, the planner is more cautious than the devel-

oper. This caution is evident in the planner’s more frequent implementation of beta

testing to assess internalities. Additionally, the planner demonstrates a more con-

servative approach when deciding whether to release the algorithm in the second

period.

Proposition 13 (Caution in testing and implementation). Fix ℓ. In period one:
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1. If uncertainty is substantial, σ2(ℓ) > u(ℓ), the planner and the developer disagree.

It is optimal for the planner to do beta testing but the developer finds full-scale release

without testing privately optimal.

2. If uncertainty is low, σ2(ℓ) ≤ u(ℓ), both the planner and the developer agree to release

the algorithm to the entire population without beta testing.

In period two:

1. If internalities are large, u(ℓ) < ϕ(ℓ)2, the planner wants to withdraw the algorithm

from the market, but the developer does not.

2. If internalities are low, ϕ(ℓ)2 ≤ u(ℓ), both the planner and the developer agree to

release the algorithm to the entire population.

Table 4: Testing or releasing in the first period, model with internalities

Uncertainty Low High

σ2(ℓ) σ2(ℓ) ≤ u(ℓ) σ2(ℓ) > u(ℓ)

Developer release release

Planner release test

Table 4 compares the testing or release decisions made by the planner and the de-

veloper in the first period. When the algorithm is similar to the status quo (ℓ is low),

there is low uncertainty about its internalities. Under these conditions, both the de-

veloper and the planner agree that it is optimal to immediately release the algorithm

to the whole population. When ℓ significantly deviates from the status quo so that

there is substantial uncertainty about internality effects, there is disagreement: the
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developer releases the algorithm without prior testing, whereas it is socially optimal

to test the algorithm to evaluate whether it should be released to the entire popula-

tion.

Table 5: Release decisions in the second period, model with internalities

Uncertainty Low High

ϕ(ℓ)2 ϕ(ℓ)2 ≤ u(ℓ) ϕ(ℓ)2 > u(ℓ)

Developer release release

Planner release not release

Table 5 compares the release decisions made by the developer and the planner in

the second period. Given that the algorithm was either beta-tested or made available

to everyone in the first period, its internal effects are known by the second period.

The developer and planner agree to release the algorithm when internal effects are

low. However, their decisions diverge when these effects are substantial: the devel-

oper favors fully releasing the algorithm, while the planner opts against it.

In the model with externalities, the developer overlooks the external impacts on

the broader population but still personally experiences these effects, just like any

household. These external effects increase with the number of algorithm users. Con-

sequently, when externalities are high, the developer is dissuaded from releasing the

algorithm, a restraining factor absent in this model. In the version of the model with

internalities, the developer is not a user of the algorithm, so it is not affected by the

internality.
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A.3 Regulating AI

This section studies the regulatory approaches considered in the model with exter-

nalities.

A.3.1 Beta testing with conditional approval

Consider a situation where the regulator decides to either beta test or release in the

first period and only authorizes the algorithm’s release in the second period if

ϕ2 ≤ u(ℓ).

For a specific ℓ, conditional approval in the second period reduces the initial un-

certainty about the internalities’ impact

ς2(ℓ) =

ˆ √
u(ℓ)

−
√

u(ℓ)
ϕ2dGℓ(ϕ) ≤ σ2(ℓ),

where Gℓ is the CDF of ϕ(ℓ).

The following proposition states that this policy proposal does not achieve the

social optimum.

Proposition 14 (Regulatory approval of algorithm release). Suppose that the regulator

controls the release of the algorithm in both periods. Suppose, furthermore, that ex-ante

uncertainty ς2(ℓ) is increasing in ℓ. In this scenario, the developer chooses a higher level of

novelty than is socially optimal.

The detailed proof is provided in the appendix. The intuition for this proposition

is that for any ℓ, the developer’s utility is higher than social welfare, with this dis-

crepancy increasing with ℓ. This divergence in objectives stems from the developer’s

disregard for the internality.
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A.3.2 Developers are liable for negative consequences

Suppose the regulator allows the developer to choose the novelty level and whether

to release the AI algorithm but holds the developer liable for any adverse internali-

ties. Under this policy, the developer is obligated to pay:

τt(ϕ(ℓ), µt) = ϕ(ℓ)2µt,

where µt represents the number of households to whom the developer sells licenses.

In this case, the utility of the developer is given by

V = (1 − β)

({
µ1p1 − E[τt(ϕ(ℓ), µ1)], if p1 ≤ u(ℓ)
0, if p1 > u(ℓ)

)
+ βE[V2]− f (ℓ),

where

V2 =


µ2p2 − τt(ϕ(ℓ), µ2), if p2 ≤ u(ℓ) and µ1 > 0,
µ2p2 − E[τt(ϕ(ℓ), µ2)], if p2 ≤ u(ℓ) and µ1 = 0.
0, if p2 > u(ℓ).

When the AI developer is fully accountable for internalities, the optimal pricing

strategy remains pt = u(ℓ)µt. Replacing this price and the liability payments, we see

that the utility of the developer coincides (up to a constant) with the social planner’s

objective function, so both choose the same novelty level and release decisions:

V = (1 − β)[u(ℓ)− σ2(ℓ)]µ1 + βE[V2]− f (ℓ),

where

V2 =

{
[u(ℓ)− ϕ(ℓ)2]µ2, if µ1 > 0,
[u(ℓ)− σ2(ℓ)]µ2, if µ1 = 0.

Private and social incentives become aligned when AI developers are fully liable for

internalities. As a result, the decisions that are optimal from a private standpoint are

also socially optimal. These findings are summarized in the following proposition:

Proposition 15 (Optimality of regulated equilibrium with full liability). If the devel-

oper is held accountable for the internal effects of the algorithm, then the private and social
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incentives become aligned. This alignment means that the developer’s decisions regarding

testing, release, and the selection of the novelty level coincide with the first best.

Limited Liability Suppose there is limited liability, in the sense that the liability

payment cannot exceed the developer’s revenue

τt(ϕ(ℓ), µt) ≤ ptµt.

In this case, the taxes imposed by the regulator on the AI developer are:

τt(ϕ(ℓ), µt) = min{ϕ(ℓ)2µt, ptµt}.

In this regulatory environment, it is still optimal for the developer to charge a price

pt = u(ℓ).

As before, it is never optimal to set µ1 = 0, it is always optimal to either beta-test

the AI algorithm or release it to the entire population. So, we only need to consider

the case where there is full information in the second period. This result implies that

V∗
2 (ℓ) = [u(ℓ)− min{ϕ(ℓ)2, u(ℓ)}]µ2.

Suppose that ϕ(ℓ)2 ≤ u(ℓ), then the developer and the planner agree to release

AI licenses to the whole population. On the other hand, if ϕ(ℓ)2 > u(ℓ), then the

planner does not release the algorithm. Since the developer makes no profits from

selling AI licenses, it is indifferent between releasing the algorithm or not.

In conclusion, even in the presence of limited liability, making AI developers

liable for the internalities of their algorithms is sufficient to align incentives in the

second period. We summarize these results in the following proposition.

Proposition 16 (No restrictions on algorithm release with limited liability). Suppose

that the regulator makes AI developers liable for the internalities of the AI algorithm subject

to limited liability. Then, the developer and the regulator agree on the release strategy in

period two, i.e.,
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1. If internalities are significant, ϕ(ℓ)2 > u(ℓ), both the regulator and the AI developer

agree to withdraw the algorithm from the market.

2. If internalities are low, ϕ(ℓ)2 ≤ u(ℓ), both the regulator and the AI developer agree to

make the algorithm available to the entire population.

It follows from Proposition 16 that, with limited liability, V∗
2 (ℓ, µ1) = W∗(ℓ, µ1)−

Ny. However, because E[τ1(ϕ(ℓ), N)] < σ2(ℓ)N, incentives in the first period are not

aligned.

In the presence of limited liability, the AI developer chooses a different level of ℓ

than the planner. The AI developer sells licenses to the whole population if

u(ℓ) > E[min{ϕ(ℓ)2, u(ℓ)}]

and beta tests the AI algorithm if

u(ℓ) ≤ E[min{ϕ(ℓ)2, u(ℓ)}].

The utility of the AI developer is given by

V = (1 − β)max{u(ℓ)− E[min{ϕ(ℓ)2, u(ℓ), 0}]}N + β[W∗(ℓ, µ1)− Ny]− f (ℓ).

So, with limited liability, making AI developers liable for internalities is insufficient

to implement the social optimum

Limited liability with beta testing Consider now an environment with limited

liability in which the regulator always mandates beta testing for internalities, and

the developer is liable for the internalities of the AI in the second period. This policy

implements the first best in cases where releasing the algorithm in the first period is

not socially optimal.

Proposition 17 (Limited liability and beta testing). Suppose that there is limited liability

and the regulator always mandates beta testing. This regulatory setting does not implement
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Table 6: Optimality of different types of regulation, model with internalities

Testing choice Decision No Liability Limited Liability Unlimited Liability

Developer

ℓ suboptimal suboptimal optimal

t = 1 Testing suboptimal suboptimal optimal

t = 2 Release suboptimal optimal optimal

Regulator

ℓ ℓeq > ℓ∗ optimal† optimal

t = 1 Testing suboptimal optimal optimal

t = 2 Release suboptimal optimal optimal

† when testing is socially optimal.

the social optimum when beta testing is not optimal. When beta testing is socially optimal,

private and social incentives are aligned. The AI developer beta tests the algorithm in the

first period and releases the algorithm to the entire population if and only if internalities are

low ϕ2 ≤ u(ℓ). Furthermore, the developer’s novelty choice is equal to the social optimum.

Table 6 summarizes the effectiveness of various regulatory approaches. In all

scenarios, the developer makes the decision regarding the novelty level (ℓ) and the

release of the algorithm. The first column indicates who makes the testing decision.

Testing is either decided by the developer (first row) or mandated by the regulator

(second row).

Unlimited liability (fifth column) ensures optimality regardless of who makes the

testing decision. The outcome is consistently suboptimal under no liability (third

column), even when the regulator controls testing. With limited liability, optimal-

ity is achieved when the regulator mandates unconditional testing, provided that
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immediate release is not optimal.
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