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Over the past 40 years, the US economy has witnessed a notable decline in the labor

share, particularly in major sectors like manufacturing and retail trade, a significant shift

away from routine jobs in both factories and offices, and a sizable increase in wage inequality,

with wages for workers without college degrees stagnating. While some of these trends are

most pronounced in the US, they are visible in other advanced economies.1

One explanation for these trends emphasizes the role of automation technologies: ad-

vances that enable substituting capital for labor at a widening range of tasks or processes.

Examples include the developments of robotics enabling the substitution of robots for

workers in manufacturing, the development of computer-numerically controlled machines,

eliminating the need for machine operators, and the development of software systems that

automate clerical tasks, such as handling payroll, logistics, and sales.2

This article reviews the literature on automation and its effects on labor markets and

the economy. My point of departure is the task model of automation, in Section 1. The task

model adopts the perspective that producing goods and services requires completing tasks.

To produce a car, one has to design it, procure parts, assemble them, weld them, and so on.

Tasks are assigned to groups of workers with different skills. But increasingly, automation

technologies allow firms to produce their tasks using software systems, dedicated machinery,

or industrial robots instead of workers. This displaces workers from automated tasks—the

displacement effect—but lowers their cost—the productivity effect.

The task model highlights the distinct implications of automation for workers, firms,

industries, and the occupational and wage structure:

� Automation reduces the labor share of adopting firms and industries.

� Automation shifts the occupational structure of firms, industries, and the economy

by reducing labor demand in exposed occupations (those in which workers perform

tasks that become automated).

� Automation reduces the relative demand for groups of workers who performed auto-

mated tasks via its displacement effect.

� Automation can reduce real wages and employment for displaced workers if they

1For a summary of empirical trends in the US occupational and wage structure see Goldin and Katz
(2008), Acemoglu and Autor (2011), and Autor (2019). For the labor share, see Karabarbounis and Neiman
(2013), Dao et al. (2019), Grossman and Oberfield (2021), and Hubmer and Restrepo (2021).

2Historically, we have also had the automation (or mechanization) of tasks performed by workers. For
example, the development of threshing machines in agriculture substituted for farm labor, while spinning
and weaving machines substituted for skilled artisans during the Industrial Revolution.
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cannot reallocate to non-automated tasks and its productivity gains are modest.

The task model also explains that these implications are unique to automation, distinguish-

ing it from other forms of technological progress that do not displace workers from their

tasks. These results single out automation as a potential driver of the labor share decline

and the shifts in occupational and wage structures seen since the 1980s.

Section 2 turns to the empirical literature. This literature traces the development and

diffusion of specific automation technologies (most notably, the introduction of industrial

robots in manufacturing) and explores their impact on labor markets, the demand for skills,

employment, factor shares, and productivity. This literature finds qualitative support for

the implications of task models and the displacement effects of automation.

This section reviews the growing literature using firm data to explore how the adoption

of new automation technology affects firms. Most work using firm-level data reports a

reduction in adopting firms’ labor shares and a shift in their workforce composition. Papers

in this literature also report increased sales and employment among adopting firms relative

to competitors. The theory section clarifies that firm-level employment expansions are to

be expected but are not informative of the aggregate impacts of automation.

Section 3 concludes by discussing limitations of this literature and areas for future

work. I emphasize the need to improve existing measures of automation and go beyond

reduced-form evidence.

1 The Task Model

This section introduces the task model. My treatment follows Acemoglu and Restrepo

(2022) and extends this by introducing firms to connect with the empirical literature.3

The Framework

A final good y is produced from differentiated products yn with n ∈ N = {1, . . . ,N}. Prod-

ucts are combined using a constant-returns to scale technology y = f({yn}n∈N ). Depending

on the application, products represent industries or firms.

3The idea of modeling the substitution of capital for labor at the task level is from Autor et al. (2003).
The model in Acemoglu and Restrepo (2022) builds on Zeira (1998), Grossman and Rossi-Hansberg (2008),
Acemoglu and Autor (2011), Acemoglu and Restrepo (2018), and Aghion et al. (2018). For complementary
approaches see Jackson and Kanik (2020), Martinez (2021), Ocampo (2022), and Hémous and Olsen (2022).
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Each product requires completing a mass 1 of tasks x from disjoint sets Tn.4 Task

quantities yx are aggregated with a constant elasticity of substitution λ ≥ 0

yn = (∫
x∈Tn

y
λ−1
λ

x ⋅ dx)

λ
λ−1

.

Tasks can be produced using labor or task-specific capital—software and equipment

designed for this process. Workers belong to skill groups g ∈ {1, . . . ,G}. Depending on the

application, groups can be interpreted as workers with the same skills, observable attributes

(i.e., education and age), or in a region. The total quantity of task x produced is

yx = ∑
g

ψgx ⋅ ℓgx + ψkx ⋅ kx,

where ℓgx is the quantity of labor allocated to task x, kx is the quantity of task-specific

capital in use, and ψgx ≥ 0 and ψkx ≥ 0 denote their productivity in task x. The ψs vary by

tasks and groups and encode their comparative advantage.

Task-specific capital and workers are perfect substitutes in the production of task x.

This feature of the model captures in a stark way the fact that, in all instances of automation

listed in the introduction, we have a machine or software that can, for all practical purposes,

perfectly substitute for workers at narrowly defined tasks. A welding robot is a perfect

substitute for humans in the task of welding car parts. A software system is a perfect

substitute for humans in the task of receiving and dispatching sales orders.5

Capital kx is produced from the final good at a constant unit cost 1/qx, where qx is the

efficiency with which the investment sector produces this capital. The remaining output is

used for consumption c. Capital is produced and used each instant so that the economy’s

resource constraint is6

c +∑
n
∫
x∈Tn
(kx/qx) ⋅ dx ≤ y.

4Assuming disjoint sets eases notation and is without loss of generality since tasks can be relabeled
(assembling product n can be labeled as a different task from assembling product n′).

5This can be relaxed in two ways: one could assume automation is partial and capital must be combined
with other workers to produce task x (e.g., spinning and weaving machines tended by women and children
replacing skilled artisans, or software systems maintained by engineers substituting for workers in clerical
positions). One could also allow for differentiation in tasks produced by capital and labor. This is relevant
for customer interaction tasks, where some might prefer dealing with humans.

6This can also be viewed as the steady state of an economy that accumulates task-specific capital over
time and faces a constant interest rate in the long run, with the constant user cost of capital folded in qx.
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Group g’s labor supply is ℓg = mg ⋅ wε
g with ε ≥ 0 and wg group’s g wage. This labor

supply can result from households’ optimization over consumption and leisure or labor-

market frictions as in Kim and Vogel (2021). Labor-market clearing for g requires

∑
n
∫
x∈Tn

ℓgx ⋅ dx =mg ⋅w
ε
g.

Firms and industries pay the same wages wg. There is no monopsony power or rents.7

A competitive equilibrium is given by a wage vector w = {wg} and a product price vector

p = {pn} such that markets clear and the task allocation minimizes costs. Acemoglu and

Restrepo (2022) provide conditions for the existence and uniqueness of equilibrium and

conditions under which each task is assigned to a unique factor (except for a zero-measure

indifference set). I assume these conditions hold so that the equilibrium is a partition of

tasks into those assigned to capital and different workers, as in Figure 1.

Figure 1: Task assignment, task shares, and automation. The figure represents the
tasks needed to complete different products n = 1, . . . ,N and how these tasks are assigned to
workers of different skills (g) or capital (k). The gray areas represent newly automated tasks and
the displacement effects.

Representing the equilibrium in terms of task shares

Equilibrium outcomes depend on the schedules of workers and capital productivities across

tasks ⟨{ψgx}g, ψkx, qx⟩ , which determine workers’ comparative advantage and guide the as-

signment of tasks to factors. Previous theoretical work proposed specific parameterizations

of these schedules to derive properties of the equilibrium and comparative statics. Recent

7See Acemoglu and Restrepo (2023) for studies exploring the role of rents in task models.
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work by Acemoglu and Restrepo (2019) and Acemoglu and Restrepo (2022) developed a

general approach to characterize the equilibrium in terms of task shares.

The task shares of capital and group g in product n are defined as

Γnk(w) =∫
Tnk(w)

(ψkx ⋅ qx)
λ−1 ⋅ dx, Γng(w) =∫

Tng(w)
ψλ−1
gx ⋅ dx,

where Tnk(w) and Tng(w) denote the set of product-n tasks assigned to capital and labor

when wages are w = {wg}. Task shares are functions of technology and wages. They capture

the importance of tasks assigned to capital and workers at each wage level and summarize

all information on the assignment of tasks relevant to equilibrium outcomes.

All equilibrium objects can be computed in terms of task shares. For example, equilib-

rium wages w = {wg}, good prices p = {pn}, and output y solve the system of equations:

� the price of the final good is 1,

cf(p) = 1,(1)

where cf(p) is the unit cost function associated with f (its dual);

� pn equals the marginal cost of producing yn

pn = (Γnk(w) +∑
g

Γng(w) ⋅w
1−λ
g )

1
1−λ

;(2)

� the labor market for g workers clears

wg = (
y

mg

)

1
λ+ε

⋅
⎛

⎝
∑
n

sny(p) ⋅ p
λ−1
n ⋅ Γng(w)

⎞

⎠

1
λ+ε

,(3)

with sny(p) =
∂ ln cf (p)
∂ lnpn

the share of product n in expenditure (Shephard’s lemma).

Moreover, the equilibrium output of product n can be written as a constant elasticity of

substitution (CES) production function, with task shares appearing as endogenous weights

yn = (Γnk(w)
1
λ ⋅ k

λ−1
λ

n +∑
g

Γng(w)
1
λ ⋅ ℓ

λ−1
λ

ng )

λ
λ−1

.(4)

Relative to the usual CES, the novel aspect here is that the weight parameters that govern
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the distribution of income are endogenous and respond to technology and wages. This

allows task models to capture rich substitution patterns, including substitution between

tasks (governed by λ) and within tasks (governed by the derivatives of task shares). This

also allows for the possibility that technology, and in particular automation technologies,

impact production by shifting these weights.

Modeling Automation

The examples show that automation technologies operate at the extensive margin: they

substitute capital for labor in tasks that can now be automated but used to be performed

by labor, displacing workers from these tasks. The simplest way to capture this process is

by having qx = 0 for some tasks assigned to workers initially. One can model the arrival of

new automation technology as an exogenous increase in qx from zero to q′x > 0 for a specific

set of tasks A that can now be automated. To simplify the exposition, I assume that q′x is

large so that all tasks in A are automated.8 This process is illustrated in Figure 1.

As shown in Acemoglu and Restrepo (2022), one can summarize the impact of this

technology by two sufficient statistics: the direct task displacement it generates across

groups, and the cost-saving gains from automating these tasks.

The direct task displacement on group g in product n is

d lnΓd
ng =

∫Ang
ψλ−1
gx ⋅ dx

∫Tng(w)ψ
λ−1
gx ⋅ dx

,

where Ang = A ∩ Tng denotes the set of tasks produced by workers of skill g in product

n that become automated, and d lnΓd
ng gives the percent reduction in g’s task share from

automating these tasks. This is computed at initial wages and does not account for the

endogenous reassignment of tasks in response to wage changes.

The cost-saving gains from automating task x in Ang (at initial wages) is

πx =
1

1 − λ
⋅
⎛

⎝
1 − [

wg ⋅ ψkx ⋅ q′x
ψgx

]

λ−1
⎞

⎠
.

This is positive whenever the cost of producing the task with labor, wg/ψgx, exceeds the

cost of producing it with the new capital 1/(ψkx ⋅ q′x), which holds for all tasks in Ang by

8This can be extended to allow for a costly adoption margin (as in Hubmer and Restrepo, 2021) or by
endogenizing advances as resulting from R&D investments (as in Acemoglu and Restrepo, 2018).
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assumption.9 I let πng > 0 denote the cost-saving gains per task from automating tasks in

Ang, defined as an (employment-weighted) average of πx over these tasks.

The direct task displacement d lnΓd
ng describes how automation technology shifts task

shares on impact, which depends on its capabilities to substitute for workers in different

tasks.10 The cost-saving gains πng tells us how the productivity gains from automation

vary depending on the technology and context. Automation technologies can bring large

cost-saving gains if they are highly productive and the skills replaced are scarce, or small

cost-saving gains otherwise (what Acemoglu and Restrepo, 2019, call “so-so” technologies).

Equation (4) helps illustrate this notion of automation and how it reshapes the produc-

tion process. Automation corresponds to an exogenous shift in task shares, expanding the

CES weight of capital and reducing the CES weights of workers whose tasks were auto-

mated by d lnΓd
ng. Automation can thus be conceived as a shift in the production process,

placing more weight on capital and a lower weight on displaced workers.11

Implications of Automation for Labor Shares, Occupations, and Workers

The next formulas summarize the impact of the exogenous arrival of a new automation

technology. The formulas provide first-order approximations valid when the measure of

automated tasksA is small and are written in terms of the sufficient statistics {d lnΓng, πng}.

I provide two types of formulas. The first considers direct effects: the impact of au-

tomation on firm-level or industry-level outcomes, holding wages, aggregate output y, and

aggregate product-price indices constant. These formulas give the differential effect of

automation technologies on adopting firms’ outcomes relative to (otherwise comparable)

non-adopting firms or industries and connect the theory to empirical work reporting cross-

sectional estimates using firm and industry data.12 The second considers general equilibrium

9πx can be approximated as πx ≈ ln(wg/ψgx) − ln(1/(ψkx ⋅ q′x))—the percent reduction in the cost of
task x when automated. This approximation is valid when λ→ 1 or wg/ψgx → 1/(ψkx ⋅ q′x) from above.

10Different waves of automation cause distinct shifts in task shares depending on their capabilities. Task
models can thus explain why automation in the past was “de-skilling” (skilled artisans lost tasks to spinning
and weaving machines) while it became “polarizing” in recent years (workers in middle-pay jobs lost tasks
to robotics and software systems).

11This notion of automation is missing from previous approaches, including work by Krusell et al. (2000)
on capital-skill complementarity. These approaches start from production functions of the form y = g(Ak ⋅
k,{Ag ⋅ ℓg}), where g is a CES (or nested CES) with exogenous weights and represent technology by an
increase in some or all A’s (i.e., factor-augmenting improvements) or as an increase in k due to greater
investment efficiency. These models capture some aspects of technology but miss the shifting-weight role
of automation. One exception is the work by Zuleta (2008) and Peretto and Seater (2013), who emphasize
the possibility that technology shifts capital elasticities in a Cobb-Douglas production function.

12Section E in the Supplementary Materials provides the details for this connection. The idea is that firm
outcomes can be written as a function of output, a vector of aggregate product-price indices, wages, and
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effects on output and on group wages and employment levels. These formulas connect to

empirical work that estimates the impact of automation on groups of workers (defined by

skill, demographics, or regions). I denote direct effects by δa and GE effects by da.

Labor shares. I refer to pn ⋅ yn interchangeably as “sales” and “value added” since there

are no other intermediates and to sℓn =
∑g wg ⋅ℓng

pn⋅yn as the labor share (in both sales and value

added). The direct effect of automation on firm or industry n labor share is

δ ln sℓn = − ∑
g

ωg
n ⋅ d lnΓ

d
ng

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
displacement effects

+(1 − λ) ⋅ sℓn ⋅ ∑
g

ωg
n ⋅ d lnΓ

d
ng ⋅ πng

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
task-price effects

, (with ωg
n =

wg ⋅ ℓng

∑j wj ⋅ ℓnj
).(5)

The displacement effect captures the negative impact of automation on the labor share due

to the extensive margin reallocation of tasks from labor to capital. The task-price effect

results from the reduction in the price of automated tasks. When λ < 1 so that tasks are

complements, the cheaper automated tasks account for a smaller share of costs, raising the

labor share. When λ > 1 so that tasks are substitutes, the cheaper automated tasks account

for a higher share of costs, further reducing the labor share.

The displacement effect dominates for all values of λ, and automation reduces labor

shares for adopting firms and industries relative to others. Section E shows that, in general,

this also translates into an increase in sales per worker at adopting firms and industries.13

One important point is that the displacement effect from automation reduces adopters’

labor share independently of whether the elasticity of substitution between capital and

labor is above or below one. In the task model, this elasticity (for product n) is

σn = λ +
1

1 − sℓn
⋅ ∑

g

ωg
n ⋅ (−∑

j

∂ lnΓng(w)

∂ lnwj

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
substitution within marginal tasks (≥0)

.

This exceeds λ, since firms can also substitute labor for capital at marginal tasks (the

second term above). But σn might well be below one, depending on parameters. The

product n task shares. Well-identified empirical studies compare units with equal exposures to changes in
output, product-price indices, and factor prices, all necessary for parallel trends. These studies identify the
direct effects of automation working through changes in product n technology holding aggregates constant.

13Not all technological advances benefiting a firm increase sales per worker, even though this is commonly
used as a measure of productivity. An increase in sales per worker relative to a competitor facing the
same wages means that the firm is becoming more capital or skill intensive, not that it has become more
productive.
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reason why the effects of automation on the labor share are disconnected from σn is that

elasticities of substitution summarize the impact of changes in input prices on firms’ factor

shares but are silent about the effects of shifts in task shares at the extensive margin. The

task model thus reconciles the evidence for a negative labor share impact of automation

reported below with studies that estimate σn < 1 (i.e., Oberfield and Raval, 2020).

A second important point is that the formula in (5) provides direct effects. The general

equilibrium effects of automation on the aggregate labor share are derived in the appendix

and are harder to sign. Besides its direct negative effect on the labor share of adopting

firms and industries, automation affects the aggregate labor share by raising wage levels

(as in Grossman and Oberfield, 2021) and reallocating economic activity across firms (as

in Oberfield and Raval, 2020) or industries (as in Acemoglu and Restrepo, 2022).14

Occupational structure. While the task model is described in terms of tasks, employ-

ment and wage data are often collected and reported in terms of occupations. A simple

way of thinking about occupations is as a partition of tasks, with each occupation o ∈ O

defined as a bundle of tasks.

Denote by Γong(w) the task share of group g workers in occupation o tasks in product n,

and by d lnΓd
ong the percent reduction in Γong(w) from automating tasks in A. Differences

in d lnΓd
ong capture the presence of tasks with varying potential for automation across

occupations. For example, middle-pay occupations such as clerical or production jobs

involve routine tasks that are easier to codify and automate (Autor et al., 2003). If recent

automation technologies substitute for workers in routine tasks, the reduction in task shares

d lnΓd
ong will concentrate on occupations involving routine tasks.

Let ωo
n denote the share of wage payments made to workers in occupation o as a share

of wages paid in n. The direct impact of automation on firm or industry n occupational

wage shares is

δ ln
ωo
n

ωo′
n

= ∑
g

ωg
o′n ⋅ d lnΓ

d
o′ng

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exposure to automation, o′

− ∑
g

ωg
on ⋅ d lnΓ

d
ong,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exposure to automation, o

(with ωg
on =

wg ⋅ ℓong

∑j wj ⋅ ℓonj
).(6)

14These equilibrium effects are likely small for automation, with available estimates pointing to a weak
increase in wage levels and a modest reallocation of economic activity across sectors in response to this
shock. For example, in their quantitative exercise, Acemoglu and Restrepo (2022) estimate that automation
increased wage levels by 6% and had a small impact on the sectoral composition of the economy since 1980.
For firms, Oberfield and Raval (2020) find small differences in factor intensities across plants in an industry,
implying a modest contribution from reallocation across firms to aggregate labor share changes.
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This means that automation reduces firm and industry shares of wage payments (and

employment) in occupations that are highly exposed to the technology, as measured by the

reduction in task shares for workers in this occupation, ∑g ω
g
on ⋅ d lnΓd

ong.

GE effects on group-level outcomes, output, and product prices. Consider a

shock directly changing group g wages (the right-hand-side of 3) by 1
λ+ε ⋅zg. In equilibrium,

this shock leads to a reassignment of tasks, creating a fixed-point problem:

d lnwg =
1

λ + ε
⋅ zg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
shocks

+
1

λ + ε
⋅ JΓ ⋅ d lnw.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
task reassignment

The reassignment of tasks is governed by the Jacobian JΓ, a G × G matrix where entry

(g, j) is the elasticity of ∑n s
n
y(p) ⋅ p

λ−1
n ⋅ Γng(w) with respect to wj (holding p constant).

The solution to this fixed-point problem is

d lnwg = Θg ⋅ stackj(zj),

where stackj(zj) is the column vector (z1, z2, . . . , zG). The change in group g wages depends

on the vector of shocks experienced by all other groups and mediated by the propagation

matrix Θ = 1
λ+ε (I −

1
λ+ε ⋅ JΓ)

−1
. This matrix has positive entries θgj ≥ 0, giving the extent

to which a shock reducing the demand for j lowers g wages via the reassignment of tasks.

This can be because j competes against g for tasks, or because j competes against other

groups that compete with g, and so on. Θ is a Leontief inverse accumulating these effects.

The propagation matrix tells us how easily workers can reallocate and how this affects

the incidence of labor demand shocks. If workers cannot easily reallocate, the propagation

matrix will have large diagonal entries relative to off-diagonal ones and exposed groups

will bear most of the incidence of shocks affecting them. If workers can easily reallocate,

the propagation matrix will have small diagonal entries relative to off-diagonal ones and

exposed groups will share the incidence of shocks with competing workers.

Using this matrix, one can compute the general equilibrium effects of automation on

group outcomes, output, and product prices by solving a linear system of equations.
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First, we have an equation for wage changes, obtained by differentiating (3):

d lnwg = Θg ⋅ stackj( d ln y

´¹¹¹¹¹¸¹¹¹¹¹¹¶
productivity effect

+ ∑
n

(ωn
j − s

n
y) ⋅ d ln ζn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
change in product mix

− ∑
n

ωn
j ⋅ d lnΓ

d
nj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
displacement effects

).(7)

Here, ωn
g = ℓng/ℓg is the share of group g workers employed in n. The equilibrium effects

on employment have a similar expression, computed from d ln ℓg = ε ⋅ d lnwg.

Second, output changes are pinned down by the dual version of Solow’s residual:

∑
g

sgy ⋅ d lnwg = ∑
n

sny ⋅ d ln tfpn (with sgy =
wg ⋅ ℓg
y
),(8)

where d ln tfpn denotes the increase in total factor productivity in product n:

d ln tfpn = s
ℓ
n ⋅ ∑

g

ωg
n ⋅ d lnΓ

d
ng ⋅ πng ≥ 0.

This is positive in an efficient economy and depends on the cost-saving gains from automa-

tion πng > 0. Equation (8) shows that mean wage changes across groups add up to the

aggregate TFP gains from automation. This holds in any competitive model with constant

returns to scale and a fully elastic supply of capital.15

Third, we have an expression for the product shifters d ln ζn:

d ln ζn = (λ − 1) ⋅ d lnpn + JF ⋅ d lnp, with d lnpn = s
ℓ
n ⋅ ∑

g

ωg
n ⋅ d lnwg − d ln tfpn.(9)

Here, the Jacobian JF is an N ×N matrix whose entry (n,m) is the elasticity of sny with

respect to a change in pm. For example, if F is a CES aggregator across products with an

elasticity of substitution η, sny ∝ p1−ηn and JF is a matrix with 1 − η in its diagonal.

Equations (7), (8), and (9) form a system of equations for the change in wages, prices,

and output. From these equations, one can compute the effects of automation on group-

level outcomes as a function of its sufficient statistics {d lnΓd
ng, πng}.

Equation (7) bears particular relevance as it summarizes the channels through which

automation affects wages and employment for group g.

� First, we have a positive productivity effect captured by the output expansion d ln y.

15The idea that automation (and technology) increases mean wages in an efficient economy with an
elastic capital supply goes back to Simon (1965) and was recently studied in Caselli and Manning (2019)
and Moll et al. (2022).
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This is positive and determined by the productivity gains from automation, {πng}.

� Second, we have changes in product mix, captured by the shifters d ln ζn. These cap-

ture the reallocation of economic activity towards firms and industries with different

skill intensities. For example, automation could reallocate activity from manufactur-

ing to high-skill service industries, increasing relative demand for skilled labor.16

� Third, and key to understanding the impact of automation, we have the task dis-

placement effects on g workers, ∑n ω
n
g ⋅ d lnΓ

d
ng. Displacement effects reduce relative

wages for exposed groups by leaving them with fewer employment opportunities.

� Fourth, general equilibrium effects depend on workers’ ability to reallocate and the

substitution patterns summarized by the propagation matrix Θ.

To illustrate the implications of the displacement effects, consider a case with no product

shifters and where the rows of the propagation matrix Θ add up to a common value so that

all workers benefit equally from the productivity effect and changes in product mix.

Equation (7) shows that an automation shock displacing g workers reduces this group’s

wage and employment relative to non-exposed groups. This is because the propagation

matrix satisfies θgg > θjg for j ≠ q. This makes intuitive sense: workers displaced from

some of their tasks are left with fewer employment opportunities than other groups. They

can only reallocate by taking a (relative) wage cut. Exposed groups’ relative wage and

employment decline is more pronounced when they cannot easily reallocate so that the

propagation matrix is more diagonal and θgg is high relative to θjg.

Equation (7) also shows that automation can reduce group g real wages and employment

if (i) workers cannot easily reallocate (θgg is high) and (ii) the cost-saving gains from

automation πng are small—as in “so-so” automation technologies. Both conditions are

necessary. In the limit where workers can reallocate by taking small wage cuts, θgg = θjg

for all j, and all wages change by the same amount. Solow’s dual in (7) implies that all

real wages increase. Conversely, if the cost-saving gains from automation πng are large, the

productivity effect dominates the displacement effect for all workers, increasing wages.

Taking stock: The results in this section explain how automation can contribute to re-

cent trends. They show that automation is a plausible driver of the observed labor share

16Structural transformation, trade in final goods, and reallocation across firms affect the demand for
skills through this channel (see Buera et al., 2021, for work on the role of sectoral shifts).
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decline in the aggregate and especially in manufacturing. They also show that automa-

tion can explain the changing occupational structure in the US and Europe, featuring a

pronounced decline in the employment in routine middle-pay occupations, as these occupa-

tions contain tasks that can be more easily automated given recent technological advances.

Finally, they show that the shifts in the US wage structure can be due to the automa-

tion of tasks previously performed by non-college workers that brought small productivity

gains and left them with limited opportunities to reallocate. The formulas also emphasize

the role of the displacement effects from automation and explain why this key feature is

necessary to account for the observed trends.

I conclude this section by discussing the different implications of automation and other

forms of technological progress, and by comparing the aggregate effects of automation on

wages and employment to firm-level estimates found in the empirical literature. These dis-

tinctions are important for interpreting recent empirical work on the impact of automation.

Automation vs. Other Technologies

One important feature of the task model is that it recognizes that technology is multifaceted

and can affect production via distinct margins. In particular, the task model distinguishes

automation from other forms of technological progress that do not create displacement

effects, including the creation of new tasks and products and advances in the productivity

of capital at the intensive margin.17

The creation of new tasks and products increases output by providing workers with ad-

ditional (or better) productive opportunities (as in Acemoglu and Restrepo, 2018; Hémous

and Olsen, 2022). One can model new product creation as an increase in N , which raises

output via a love-for-variety effect and shifts the demand for labor in favor of skills used

in new products. New labor-intensive products can raise the labor share and benefit all

workers, offsetting the displacement effects from automation.

Advances in capital at the intensive margin increase the productivity (or reduce the cost)

of task-specific capital in use (as in Acemoglu and Restrepo, 2019; Jones and Liu, 2022).

For example, firms may replace older vintages of capital with newer ones performing the

same task more effectively (think of firms replacing a steam engine with an electric motor

17In principle, one can view these processes as separate from automation. In practice, broader technolog-
ical developments may affect production through various margins. For example, the arrival of computers
led to the development of automated software systems used for automation, but computers also facilitated
the introduction of new products and services. Even in these cases, it is helpful to distinguish conceptually
and empirically between automation and other margins, as these have different implications.
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or upgrading cranes and conveyors to more rapid ones). Or firms may use existing machines

more intensively when their price drops due to advances in capital production.

None of these forms of investment displace workers from their tasks, distinguishing them

from automation. Equation (4) illustrates the distinction. Intensive-margin advances in

capital are isomorphic to an increase in kn—these are equivalent to having firms operate

with more capital holding their CES weights constant. This differs from automation, which

maps to a direct shift in the CES weights as firms automate tasks at the extensive margin.

Unlike automation, intensive-margin capital advances do not produce any direct shift

in adopting firms’ occupational structure and only affect firm and industry labor shares via

task prices, reducing it in the relevant case with λ < 1. Intensive margin advances can also

benefit all workers equally—even if they cannot reallocate across tasks. For example, in

the case analyzed above with no product shifters and a common row sum for Θ, intensive-

margin advances in capital increase all group wages and employment by the same amount.

The distinction between automation and other technologies is relevant for interpreting

historical patterns and recent trends. For example, Acemoglu and Restrepo (2018) and

Jones and Liu (2022) show that ongoing automation in the past can be consistent with the

historical balanced growth experience if accompanied by the creation of new labor-intensive

tasks and/or intensive-margin advances in machinery. Deviations from balanced growth

result from automation outpacing these countervailing forms of technological progress.

The distinction is also relevant for empirical work, highlighting the importance of sep-

arating automation from other forms of technological progress to identify their distinct

implications for firm and worker outcomes.

Reallocation and Firm and Industry Employment.

A growing body of work estimates the impact of automation on firm sales and employment.

This section derives the direct effects of automation on firm sales and employment and

discusses their interpretation.

Consider a scenario where n denotes firms producing differentiated goods yn. The direct

effect of automation on firm n sales compared to non-adopters is

δ ln(pn ⋅ yn) = (ϵn − 1) ⋅ d ln tfpn,(10)
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and the direct effect on firm n employment compared to non-adopters is

δ ln ℓng = (ϵn − λ) ⋅ d ln tfpn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Scale vs. substitution effects

− d lnΓd
ng.

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
displacement effect

(11)

Here, ϵn > 1 is the demand elasticity faced by firm n.

The first term in (11) captures scale and substitution effects. Scale effects result from

sales reallocation from non-adopters to adopting firms holding aggregates constant (gov-

erned by the demand elasticity ϵn). The substitution effect results from firms substituting

away from labor-intensive tasks that have not been automated (governed by λ). Realloca-

tion dominates when εn > λ, which is a common empirical configuration. The second term

in (11) captures the negative contribution of displacement effects to firm-level employment.

This term is unique to automation. For example, advances in capital at the intensive margin

only affect firm employment via scale and substitution effects and increase it if εn > λ.

Equation (11) shows that cross-sectional comparisons of firms provide information on

whether reallocation dominates the displacement and substitution effects. The net impact

on firm-level employment depends on the strength of reallocation across firms, governed

by εn. For low demand elasticities, automation can simultaneously increase firm sales and

reduce employment (and this holds even for εn > λ). With highly elastic demand, adopters

will see employment growth relative to non-adopters, although at a slower rate than sales.

Though relevant for some questions, firm-level estimates are not informative of the

aggregate consequences of automation for wages and employment of displaced workers

(shown in equation 7). First, reallocation across firms (the product-mix term in 7) has

no clear aggregate implications. It can be neutral for aggregates if ωn
g = s

n
y for all g, so

that firms employ inputs in equal proportions. And yet, it but would continue to show

up positively in firm-level effects. Second, as discussed above, the key determinants of the

general equilibrium effects of automation on employment and wages are (i) how strong

the productivity effect d ln y is relative to displacement effects and (ii) how easily workers

reallocate. Cross-sectional firm estimates entirely miss these forces.18

The same formulas and limitations apply to industry-level effects. The main difference is

that when n denotes industries, the elasticity εn can be below one if goods are complements.

In this case, industry-level estimates capture the negative reallocation away from adopting

18This discussion also clarifies that the emphasis on demand elasticities εn as a key determinant of
the impact of automation (and technology more broadly) on aggregates is misplaced. Demand elasticities
determine the strength of reallocation across firms and industries, which has no clear aggregate implications.
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industries, which has no clear aggregate implications either and cannot be taken as evidence

of a negative impact of automation on displaced workers’ wages and employment.

2 Empirical Work on Automation

This section reviews the empirical literature exploring the implications of different automa-

tion technologies for factor shares, occupational structure, exposed workers, and firm and

industry-level outcomes.

Automation and the labor share

The prediction that automation reduces the labor share in value added and increases sales

per worker has been documented in various contexts by studies exploring the impact of

automation technologies on industries and firms. Most of this literature has studied the

impact of industrial robots, which provide a clear example of an automation technology.

Recent contributions have extended these findings to other technologies.

Acemoglu and Restrepo (2020) studied the introduction of industrial robots across

US industries in the 1990s and 2000s. They show that the adoption of industrial robots

in the US was driven by technological developments abroad (in Japan, Germany, and

other European countries). They document that US industries benefiting from advances in

industrial robotics increased value added and reduced employment. This resulted in higher

output per worker and a lower labor share. Moving one industry from zero robots to 10

robots per thousand workers (the level in metalworking industries) increases value added

by 12.5%, reduces employment by 6.25%, and lowers its labor share by 5 pp.

Graetz and Michaels (2018) explored this link for a broader set of European countries

with higher levels of robot adoption than the US. They show that industries intensive in

tasks that can be automated via industrial robots (picking, reaching, and others) adopted

more robots and saw a greater increase in value added per worker from 1993 to 2007. They

estimate that moving from the lowest (zero robots) to the highest level of adoption (the level

in car manufacturing) increases value added per worker in an industry by 66–100 log points

and raises average wages by 10 log points. This implies a 56-90 log point decrease in labor

shares. Their appendix tables document that these results are accompanied by a 50–60 log

point increase in value added and a 20–50 log point decrease in employment (though their

employment estimates are imprecise and cannot rule out zero or large negative effects).
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These findings align with the growing literature exploiting the adoption of industrial

robots across firms discussed below, which finds that this technology is associated with

declining firm labor shares.

Recent work has turned to a broader range of automation technologies.

Boustan et al. (2022) studied the introduction of computer-numerically-controlled (CNC)

machinery in the US, which preceded the arrival of industrial robots. CNC machinery (in-

cluding lathes, milling machines, and others) automated the role of semi-skilled machine

operators in metalworking industries. As in the case of industrial robots, the adoption of

CNC machinery in the 1970s and 1980s was driven by technological developments abroad

(most notably in Japan and Germany). Manufacturing industries benefiting from these

developments saw declining labor shares. A 10 pp increase in the share of imported CNC

machinery in an industry (among all machine tools) is associated with a 1.6 pp decline in

its labor share and a 20% increase in output per worker during 1960–2010. The increase in

output per worker results from a 24% increase in output and a 4% decrease in employment,

though their employment estimates cannot rule out zero effects.

Acemoglu and Restrepo (2022) considered the role of dedicated machinery (includ-

ing CNC machines and other automatic machinery with specific functions, such as self-

checkouts and ATMs) and specialized software systems (including custom software devel-

oped for inventory, customer, and human resource management). Using BLS detailed asset

tables for 49 US industries, they compute the change in the share of dedicated machinery

services and specialized software services for 1987–2016. They find that 50% of the labor

share decline across US industries during this period can be explained by the increased

use of dedicated machinery, specialized software services, and industrial robots. This re-

lationship is robust to controlling for changes in markups, rising sales concentration, and

declining unionization rates across industries.

Kogan et al. (2021) and Dechezleprêtre et al. (2023) provide additional evidence on

the impact of automation technologies on the labor share using text-analysis techniques.

Kogan et al. (2021) create a measure of similarity between the capabilities of breakthrough

innovations (based on the text of highly-cited patents’ descriptions) and tasks in an occu-

pation (from ONET). Their analysis focuses on high-similarity breakthrough innovations,

which are presumably the ones capable of substituting for worker tasks. Using NBER-CES

manufacturing data for 1958–2018, they show that a one-standard-deviation increase in the

number of high-similarity patents in an industry is associated with a 2.8% increase in labor

productivity and a 1.25% decline in its labor share over five year periods. Dechezleprêtre
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et al. (2023) use text analysis to classify patents as automation if they substitute for labor

in some tasks. They find that a 1 pp increase in the share of automation patents in an

industry is associated with a 1.3 pp decline in its labor share (for reference, their share of

automation patents increased by 10 pp from 1980 to 2015 in most countries).

The idea that automation contributed to the labor share decline also aligns with broader

sectoral patterns.19 In the US, most of the labor share decline concentrates in manufacturing—

the sector with the greatest adoption of automation technologies (see Acemoglu et al.,

2022)—and in equipment and software-intensive sub-industries (see Hubmer, 2023).20

Automation and the changing occupational structure

The available evidence supports the view that advances in automation contributed to the

shift away from middle-pay occupations, including routine cognitive and manual jobs, as

these were highly exposed to advances in automation technologies over the last 50 years.

Autor et al. (2003) were the first to emphasize this possibility. They argue that computer

capital substitutes for workers in routine tasks because these follow codifiable rules. Using

US data for 1960–2000, they document that the decline in routine tasks concentrated in

rapidly computerizing industries and that these shifts accelerated in the 1970s as computer

prices declined. Since then, a vast literature has documented a decline in routine jobs in

various countries (see Acemoglu and Autor, 2011; Goos et al., 2014). Dechezleprêtre et al.

(2023) show that the decline in routine occupations is also more pronounced in industries

with the greatest increase in automation patents.

Recent contributions have moved beyond the classification of occupations into routine

jobs and have used text analysis to measure the extent to which new technologies af-

fect occupations. These studies produce indices of occupational exposure to technological

advances, defined by the similarity between tasks in an occupation (obtained from text de-

scriptions in ONET or similar sources) and the capabilities of new technologies described

in patent documents. The robust finding in these papers is that exposed occupations have

seen a sizable employment decline over time, contributing to the changing US occupational

19An alternative view is that the labor share decline is due to rising markups. This runs counter to
the fact that most of the decline in the US labor share is in manufacturing—the sector with the smallest
increase in sales concentration and estimated increase in markups (see Hubmer and Restrepo, 2021).

20One challenge to the view that automation contributed to the labor share decline is that the labor share
of a typical firm has not decreased. Autor et al. (2020) and Kehrig and Vincent (2021) document that,
while the aggregate labor share in the US declined, the labor share of the median firm and an unweighted
mean of labor share changes across firms remained unchanged since the 1980s. Hubmer and Restrepo
(2021) show that a model with a fixed cost of automation per task can reproduce these facts.
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structure. A reasonable interpretation of these findings is that exposure indices capture

technology’s capacity to substitute for worker tasks in an occupation.

Webb (2020) used this approach to create indices of occupational exposure to robotics,

software, and artificial intelligence. His indices show that exposure to robotics is high for

middle and low-pay blue-collar occupations, and exposure to software is high for middle-

pay white-collar occupations. He estimates that moving from the median (technicians) to

the highest (machine feeders) percentiles of robot exposure is associated with a decline

in employment of 20% and wages of 15% during 1980-2010. Similarly, moving from the

median (economists) to the highest (power-plant operators) percentiles of software exposure

is associated with a decline in employment of 7–15% and wages of 2–6.5%.

Kogan et al. (2021)’s work listed above measures occupational exposure to breakthrough

innovations for 1900–2000. They find that middle-pay occupations were more exposed to

breakthrough innovations, with routine-manual jobs more exposed early on and routine-

cognitive jobs more exposed after 1980. Using Census data for 1910-2010 and CPS data

for 1983–2010, they show that a one standard deviation increase in exposure is associated

with a 20% decrease in employment and a 4% decrease in wages in the next 20 years.

Autor et al. (2022) develop text-based measures of occupational exposure to automa-

tion technologies and augmenting technologies. Their automation measure is computed

from the text similarity between patents and tasks in a job. Their augmentation measure

is computed from the text similarity between patents and job titles in an occupation, ob-

tained from the Census Alphabetical Index of Occupations and Industries. The argument is

that job titles capture the services rendered in an occupation (and not the tasks involved

in rendering these services). Related patents presumably capture innovations that help

workers render these services. Using US data for 1940–1980 and 1980–2018, they show

that the share of employment and wage payments expanded in occupations exposed to

augmenting innovations and contracted for those exposed to automation innovations. A

one standard deviation increase in automation patents is associated with an 8–16% decline

in employment for exposed occupations.

The evidence from these studies aligns with work studying how the adoption of robots

or CNC machinery impacted the employment composition of industries and firms. For

example, Acemoglu and Restrepo (2020) and Boustan et al. (2022) document that US

manufacturing industries benefiting from advances in industrial robotics and CNC machin-

ery saw a decrease in the share of workers employed in blue-collar routine occupations. The

evidence for firms discussed below supports a similar conclusion.
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Automation and group-level outcomes

The task model predicts that groups displaced from their tasks by automation will experi-

ence a relative decline in wages and employment, especially if they cannot reallocate. The

literature has explored this implication by tracing the impact of automation on individually

exposed workers, workers in exposed regions, and workers in exposed skill groups.

Evidence using panel data to trace the outcomes of individual workers exposed to au-

tomation includes work by Cortes (2016), Kogan et al. (2021), Bessen et al. (2023), and

work from a unique historical context by Feigenbaum and Gross (2020). These designs

estimate the incidence of displacement effects on individual workers directly exposed to

automation and study their adjustment. One can think of these settings in the task model

by letting g index groups of incumbent workers in an occupation, industry, or firm that

adopts automation technologies.

Cortes (2016) uses data from the Panel Study of Income Dynamics to explore how

workers in routine occupations adjusted to the automation of these jobs. He documents

that although some incumbents reallocated, exposed workers suffered a sizable income loss.

On average, workers who held routine jobs in 1980 saw a 17% income decline over the next

20 years relative to non-exposed workers.

Kogan et al. (2021) use data from the US Social Security Administration to trace

workers in occupations exposed to labor-replacing technologies, according to their text-

based measure. Workers in exposed occupations experienced a 2.3% income decline (relative

to non-exposed workers) ten years after a one-standard-deviation improvement in labor-

replacing technology.

Bessen et al. (2023) study the impacts of firm investments in automation technologies

on incumbent workers using Dutch employer-employee matched data for 2000–2016. They

use a unique survey reporting firm expenditures on third-party automation technology

providers. These include payments made to integrators—companies offering engineering

and software solutions for various automation technologies. They document that invest-

ments in integration are lumpy and take place in spikes. These spikes provide a compelling

proxy for the adoption of automation technologies at the extensive margin since significant

reorganizations of production require assistance from integrators. In the five years following

an investment spike in automation services, incumbent workers experience an increase in

separation rates and a cumulative labor income loss totaling 10% of their annual income

relative to non-exposed workers.
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Feigenbaum and Gross (2020) study the effects of mechanizing telephone operation in

the US between 1920 and 1940 on incumbent workers and new cohorts of young women.

They identify women employed as telephone operators before this shock and trace their

labor-market outcomes over time by linking decennial Censuses. They find that after a

city switches to mechanical operation, the number of young women employed as operators

immediately declined by 50–80%. Incumbent (female) workers experience a subsequent

decline in employment of 8 pp, providing evidence of the negative consequences of the

displacement effect on exposed workers. Even though some managed to reallocate to clerical

jobs in other industries, they were generally forced into lower-paying occupations. New

cohorts of women reallocated more swiftly and experienced no decline in employment,

though some might have taken lower-paying jobs.

These studies support the view that workers whose tasks and jobs are automated expe-

rience worse labor market outcomes subsequently relative to other workers, as they are left

with fewer employment opportunities. Workers’ ability to reallocate mitigates these adverse

impacts to some degree, though this mechanism is most relevant for young workers in new

cohorts. However, these designs miss broader equilibrium impacts on non-incumbent work-

ers with similar skills operating through task competition with directly displaced workers.

A second set of studies estimates the impact of automation on local labor markets, such

as US commuting zones. One can think of this setting in the task model by letting g index

the group of workers in a local labor market.21 These studies cannot tell us what happens

to individual workers who are displaced but are informative of the broader equilibrium

effects on regional outcomes.

Acemoglu and Restrepo (2020) use this approach to explore the implications of advances

in robotics on exposed US regions. They find that from 1990 to 2007, US commuting zones

that specialized in industries experiencing significant advances in industrial robots saw

a relative decline in employment and wages. Advances leading to the adoption of one

industrial robot per thousand workers in a commuting zone reduce wages by 0.8 percent

and its employment-to-population ratio by 0.4 pp relative to other regions, with 0.15–0.2

pp of the employment decline coming from manufacturing. This implies a reduction of 2–3

manufacturing jobs per robot in exposed regions. This evidence is consistent with a world

where workers in exposed regions suffer the displacement effects from automation while

21With this interpretation, the propagation matrix captures the effects of migration across regions, as
in work by Borusyak et al. (2022). Due to low migration flows (at least in the US), the propagation
matrix will be close to diagonal, which implies that exposed commuting zones bear most of the incidence
of automation and other shocks to their labor demand.
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productivity gains are shared nationally.

Dauth et al. (2021) extend this approach to Germany. They estimate that technological

advances leading to an extra robot in a region reduce its manufacturing employment by

two jobs—a magnitude comparable to Acemoglu and Restrepo (2020). However, they

find no adverse effects on total regional employment, as young workers entering the labor

market find jobs in the expanding business services sector. One plausible interpretation is

that the displacement effects from robot adoption in Germany and the US are of a similar

magnitude, but in Germany, the productivity gains from automation are higher and benefit

exposed labor markets the most. This could be because advances in robotics lead to the

expansion of integrators and robot producers in exposed regions.

Boustan et al. (2022) study the local-labor market effects of advances in CNC machinery

from 1970 to 2000 in the US. A one standard deviation increase in exposure to CNC

machinery (instrumented by advances abroad in Germany and Japan) for a commuting zone

reduces the share of the population employed in metal-working manufacturing industries

by 3.5 pp but has no adverse effect on total manufacturing employment. This, too, points

to a displacement effect in metal-working manufacturing that is offset by productivity gains

benefiting other local manufacturing industries.

Mann and Puttmann (2023) study the local labor market effects of advances in au-

tomation identified from patent data. They find that US commuting zones that specialize

in industries with a higher rate of automation patenting saw gains in employment. Coelli

et al. (2023) revisit this conclusion using an updated classification of automation patents

and report a negative employment effect in exposed industries and US commuting zones

over the 1980-2010 period. The different findings reflect their measurement of automa-

tion patents. Mann and Puttmann (2023) classify a patent as automation if it refers to a

technology capable of performing functions independently. This definition captures mainly

innovations in computers and communications that do not automate tasks performed by

workers, with 90% of patents in computers and communications labeled as automation.

Coelli et al. (2023) use the classification from Dechezleprêtre et al. (2023), which codes

a patent as automation if it describes an innovation capable of substituting for current

worker tasks, matching the definition in the task model.

The third set of studies estimates the impact of automation on entire skill groups, de-

fined by workers’ demographic and educational characteristics. While these designs cannot

tell us what happens to individual workers who are displaced, they are informative of the

broader equilibrium effects on group-level outcomes at the national level.
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Acemoglu and Autor (2011) pioneered this approach. Their work shows that demo-

graphic groups of workers specialized in routine occupations experienced a subsequent

decline in wages from 1960 to 2010.

Acemoglu and Restrepo (2022) further developed this approach to estimate the impact

of automation on group-level wages and employment, using data for 500 groups of US

workers. These groups are defined by gender, age, education, race, and birthplace, though

they also provide robustness checks expanding the definition of their groups to account

for region of residence. Their approach relies on measuring the direct task displacement

experienced by each group from 1980 to 2016 (i.e., ∑n ω
g
n ⋅ d lnΓd

ng in the model) and then

regressing the change in group-level outcomes during this period on this measure. Their

measures of direct task displacement are associated with large reductions in group wages

and employment. A 10% increase in direct task displacement (i.e., a reduction in the task

share of group g by 10% due to automation) is associated with a 15% reduction in group

relative wages and a 4.4 pp decline in their employment rate during 1980–2016. This effect

is robust to controlling for educational dummies and industry shifters. Moreover, their task

displacement measure explains 50% of the observed change in group wages in this period.

Automation and firm-level outcomes

A growing literature has turned to firm-level data to study the implications of automation

technologies. The robust finding is that firms adopting automation technologies increase

their sales and employment but see a reduction in their labor share and a change in their

workforce composition.

Acemoglu et al. (2020a) use data for French manufacturing firms for 2011–2014 and

document that robot users expanded value added by 20%, employment by 10%, and saw

no change in average wages. This results in a 10% (or 4.3 pp) reduction in their labor

share. Other papers on robot adoption find similar estimates. Using data for Spanish

manufacturing firms, Koch et al. (2021) find that robot adoption is associated with a 25%

increase in sales, a 10% increase in employment, and a 6.5 pp decline in the labor share of

value added. Using data for Danish manufacturing firms, Humlum (2020) finds that robot

adoption events are associated with a 20% increase in sales, a 10% increase in employment,

and a 10% decline in the labor share. Using data for Dutch manufacturing firms, Acemoglu

et al. (2023b) report similar estimates. Recent work by Bonfiglioli et al. (2020) using French

data also finds a 13% increase in labor productivity associated with robot adoption, driven

23



by a 23% increase in sales and a 10% increase in employment.22

These papers also document a shift in the composition of employment away from pro-

duction and routine-manual jobs and an increase in the demand for skilled labor. The work

by Humlum (2020) for Danish firms stands out for having high-quality data on employ-

ment by detailed occupation at the firm level. He finds that in the five years following the

adoption of industrial robots, firms see a 20% reduction in the share of wage payments to

workers in production jobs (such as assembly or welding).

Other studies support the idea that a broader set of automation technologies, includ-

ing CNC machinery or specialized software, reduce firms’ labor shares and change their

workforce composition, though the evidence is not as conclusive as for robots.

Cheng et al. (2021) use data for China for 2015–2018 and exploit city-level variation in

a government program subsidizing the adoption of industrial robots and CNC machinery

for identification. Their estimates imply that a 10% subsidy for investments in robots and

CNC is associated with a 2–3.5 pp decline in firms’ labor shares.

Dinlersoz and Wolf (2023) use the Survey of Manufacturing Technologies (SMT) from

1991 and show that in the cross section of US manufacturing plants, those using automation

technologies have lower labor shares and employ a lower share of production workers.

Acemoglu et al. (2022) use data from the Annual Business Survey (ABS) for 2016–2018

and document that US firms using robotics, specialized software, and dedicated equipment

in 2016–2018 had lower labor shares and higher sales per worker. The evidence in these

two papers is descriptive, as it relies on cross-sectional comparisons. Nonetheless, it aligns

with the fact that a significant share of firms in the SMT and ABS report adopting these

technologies to automate workers’ tasks. For example, the ABS data shows that 30.4% of

US workers and 50% of US manufacturing workers in 2016–2018 were employed at firms

using some advanced technology for automation.

A notable aspect of the firm-level evidence is that the majority of papers estimate

an expansion of employment at firms adopting automation technologies. This is what

we should expect if firms operate in highly competitive environments with very elastic

demands, causing adopting firms to expand at the expense of their competitors—as docu-

mented in Acemoglu et al. (2020a) and Koch et al. (2021). The theory clarifies that this

reallocation across firms has no straightforward aggregate consequences and that because

22One limitation of these studies is that adopters may be on a more steep growth trajectory than
competing firms (as shown in Acemoglu et al., 2023a, for the US) or that firms may time their adoption
to periods of high demand.
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of this, firm-level employment estimates do not tell us much about the aggregate impact of

automation on the wages and employment of displaced workers.

Automation vs. other investment margins

The task model draws a clear distinction between the implications of firms adopting new

automation technologies and the effects of investments in capital at the intensive margin

or in technologies associated with new goods and products. This distinction is relevant for

interpreting recent work by Curtis et al. (2021), Hirvonen et al. (2022), and Aghion et al.

(2023), who report no effects of increased firm investment in response to tax benefits or

lower equipment prices on firms’ labor shares and skill composition.

Curtis et al. (2021) estimate the impact of accelerated depreciation policies on invest-

ment and firm-level employment in the US from 2001 to 2011. They find that firms that

benefited from the policy increased capital investment and employment relative to a control

group but saw no decline in their labor share nor increases in their demand for skills.

Hirvonen et al. (2022) study a program that subsidized investments in dedicated equip-

ment in Finland. They report an expansion in firm sales and employment but no changes

in firm labor shares or workforce composition.

Aghion et al. (2023) use French manufacturing data to study the implications of in-

vestments in imported automation equipment. Their main design exploits improvements

in foreign suppliers’ productivity as an exogenous shock increasing imports of automation

equipment. Using supplier shocks as instruments, they estimate an expansion in firm and

industry employment but find no effects on firms’ labor shares or the share of wages paid

to production and non-college workers.

One way of understanding these findings through the lens of the task model, is as

reinforcing the point that not all investments in manufacturing technologies generate dis-

placement effects. More precisely, these results align with the view that investments in

capital at the intensive margin or in machinery for new products generate no displacement

effects and are, therefore, qualitatively different from investments in automation technolo-

gies at the extensive margin. For example, the accelerated depreciation scheme in Curtis

et al. (2021) can induce firms to use more capital at the intensive margin, especially if

perceived as a temporary benefit. The subsidy program studied in Hirvonen et al. (2022)

worked by getting firms to purchase machinery for new products. Aghion et al. (2023)’s

approach using supplier shocks exploits variation for firms that have already imported
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automation equipment from a supplier, isolating the effect of further investments at the

intensive margin.23 These forms of investment create no displacement effects, explaining

why these studies find no changes in firms’ labor shares, demand for skills, and occupational

structure and why the results here differ from previous findings.24

3 Areas for Future Work

Improving the measurement of automation

The empirical evidence provides qualitative support for the implications of automation in

task models. However, most of the evidence is reduced form and relies on indirect proxies

for automation without clear magnitudes, such as ordinal indices of occupational exposure.

The few instances where we have measures of actual investment in automation technologies

are confined to specific technologies such as industrial robots. For this reason, existing

empirical work does not yet provide clear-cut quantitative answers to questions such as

“What share of worker tasks has been automated in the last ten years?” or “Has the

rate of automation accelerated since the 1980s?” To address these questions, the literature

needs to develop better measures of automation and quantitative strategies to go beyond

reduced-form analyses.

Measuring automation The objective is to develop a systematic approach to identify

automation technologies, measure expenditures in these technologies and their direct task

displacement, and quantify the productivity gains associated with their deployment.

One approach would proceed as follows:

� Identify technological developments that lead to the automation of tasks performed

23Aghion et al. (2023) offer a different interpretation. They see the increase in employment as evidence
of a strong scale effect that dominates the displacement effect, in part because French firms compete in
international markets. Either way, the findings in these papers have clear policy relevance: they show that
blanket taxes on capital and equipment imports have limited distributional benefits and distort investments
that do not generate displacement effects (see Acemoglu et al., 2020b; Donald, 2022, for work exploring
the implications of policy tools that can target the extensive margin of automation).

24Previous work by Acemoglu and Restrepo (2020); Feigenbaum and Gross (2020); Kogan et al. (2021);
Autor et al. (2022); Boustan et al. (2022) isolates the extensive margin by identifying the arrival of new
automation technologies and estimating the effects of their initial adoption and deployment across firms,
industries, occupations, or regions. Firm-level studies on the implications of robots isolate the extensive
margin by identifying the time at which firms became robotized, and tracing firm outcomes following
this event. The exception is Acemoglu et al. (2020a) who use data for 2011-2015 and cannot distinguish
between firms adopting robots for the first time (extensive margin) or purchasing additional robots over
time without automating more processes (intensive margin).
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by workers, either by using patent data (as in Kogan et al., 2021; Autor et al.,

2022; Dechezleprêtre et al., 2023) or by relying on the engineering literature and

historical accounts of what specific technologies do (as in Acemoglu and Restrepo,

2020; Boustan et al., 2022; Feigenbaum and Gross, 2020).

� Confirm that we have identified an automation technology by correlating its initial

adoption across firms or industries with a declining labor share and rising labor

productivity, as many papers do via reduced-form analyses.

� Measure investments (both in quantities and value) at using firms and industries in

this technology. This key missing step can be accomplished by using customs data

or detailed firms’ balance sheets to measure expenditures in equipment or software

embodying the technology. This can also be accomplished by using firm-to-firm trade

data to measure sales by customer for technology providers, integrators, and third-

party providers of automation solutions or by directly surveying providers.25

The resulting measures of adoption and investment can then be used for empirical work

and quantitative analyses. For example, researchers can trace the share of expenditure in

automation technology in costs over time and across firms and industries. Long time series

would allow researchers to estimate the total displacement and productivity gains from

this technology, starting at its insertion and tracing its impact as firms adopt it for the

first time. This is important for distinguishing investments at the extensive margin early

on (firms adopting the new technology and re-organizing their production process) from

subsequent investments at the intensive margin (firms upgrading the initial machinery and

software later in time, adding to its productivity effect).

An alternative approach involves using operations data. These data provide establishment-

level information, breaking the production of goods into tasks and describing how each is

completed (workers and tools involved, machinery if automated, power sources, time re-

quirements, and so on). This provides all the information needed to measure task shares

and identify automation advances. Examples include the BLS “Hand and Machine Labor

Study” from the mid-1890s (analyzed in Atack et al., 2019), and hand-collected data for es-

tablishments producing cars and semiconductors (in Ales et al., 2023). These data are rare

and available only for some sectors and products. However, firms are increasingly collecting

operations data, which could make this approach feasible at scale in coming years.

25This is the approach followed by the International Federation of Robotics (IFR). The IFR surveys the
main world suppliers of industrial robots (a handful of firms) and creates statistics on robot installations
by year, country, and industry from their sales-by-customer data. One reason why this approach is feasible
is that technology suppliers are highly concentrated.
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Going beyond reduced-form estimates One fruitful strategy is to combine proxies

for automation with accounting data to estimate the direct task displacement {d lnΓd
ng}

and cost-saving gains {πng} associated with the adoption of robots and other automation

technologies. As explained in the theory section, these estimates provide sufficient statistics

for the capabilities and productivity of automation technologies.

These approaches can use firm data, as in Humlum (2020), or industry data, as in

Acemoglu and Restrepo (2022) to infer the change in task shares and cost-saving gains

brought by the introduction of automation technologies from firm or industry-level impacts.

Humlum (2020) assumes that firms operate a CES production function that combines

workers in different occupations and allows the adoption of industrial robotics to shift CES

weights and increase TFP.26 His approach infers the shifts in weights across occupations—

corresponding to {d lnΓd
ng} in the model—and the productivity gains brought by industrial

robots from the behavior of sales and wage shares in adopting Danish firms. These esti-

mates can then be used to compute the impact of observed robot adoption and conduct

counterfactuals.

As a second example of how firm data can be used more effectively, consider the 20%

sales expansion and 10% labor share reduction found for European firms adopting industrial

robotics. Assume that industrial robots substitute for non-college workers, that these

workers represent 70% of firm wages, that labor accounts for 25% of gross costs, and that

firms face a demand elasticity of 10. These estimates then imply that robot adoption

reduces the task share of non-college workers in adopting firms by d lnΓd
ng = 16.8% (to

match the labor share decline in 5) and costs at automated tasks by πng = 70% (to match

the sales expansion in 10). These estimates can be plugged in equations (7), (8), and (9)

to compute aggregate effects and conduct counterfactuals.

Acemoglu and Restrepo (2022) propose a method for estimating the direct task dis-

placement experienced by groups of US workers. Their method infers the direct task

displacement experienced by group g in industry n, d lnΓd
ng, from the percent decline in

the industry labor share explained by automation proxies. This is computed as the pre-

dicted value from the cross-industry regression described above, explaining the labor share

decline in an industry as a function of its use of dedicated machinery, specialized software

services, and industrial robots. This is then apportioned across groups in proportion to

their revealed comparative advantage in routine jobs in that industry.

26This is a specification of (4) where groups are defined by occupations, and the propagation matrix is
the identity. One challenge when interpreting groups as occupations is that workers change occupations
over time. Humlum (2020) addresses this by modeling occupational choice as in Traiberman (2019).
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Their measure implies that workers at the bottom and middle of the wage distribution

lost 20–30% of their tasks since 1980 to automation, while workers with a post-college

degree experienced almost zero displacement. Their paper also develops a methodology for

estimating the propagation matrix, which allows them to compute the effects of automation

on the US wage structure using equations (7), (8), and (9). They find that 50% of the

changes in the US wage structure between educational and demographic groups since 1980

can be explained by the uneven incidence of the displacement effects from automation.

Future work could build on these approaches by estimating or measuring the direct

task displacement and productivity gains associated with different automation technologies,

improving the modeling of the endogenous reassignment of tasks and the estimation of the

propagation matrix, extending these methods to account for larger shocks, or proposing

flexible parameterizations of the task model suitable for a full structural analysis.

Artificial Intelligence

An important area for future work is to explore the extent to which insights from existing

studies can inform predictions about the influence of Artificial Intelligence (AI) on labor

markets and the workforce. One fundamental question that remains unanswered is whether

it is appropriate to model narrow AI systems as automation technologies that could per-

fectly replace human labor in specific tasks. Alternatively, it could be argued that narrow

AI systems are not tools for automating tasks but are instead augmenting the abilities of

human workers who use them, widening the supply of skills in the economy.

Although research in this field is still nascent, emerging patterns offer some grounds

for informed conjecture. For instance, recent studies indicate that Large Language Models

(LLMs) may be capable of substituting human labor in writing tasks, lending credence to

the notion that AI may automate a wider array of tasks in the short term (see Noy and

Zhang, 2023). However, differently from recent waves of automation, the types of tasks

that AI (and in particular LLMs) can perform are more evenly distributed across workers

in many occupations of different skill levels (see Webb, 2020; Eloundou et al., 2023). If

anything, high-pay workers appear more exposed to any potential displacement effects.

According to the task model, the impact of AI-driven automation may not result in the

same negative distributional consequences observed in previous automation waves. This

conclusion is of course contingent on the specific tasks that AI will ultimately be able to

automate as these systems gain more advanced capabilities and applications.
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A Labor Supply

This section microfounds the labor supply curve in the main text.

Assume there is a mass mg of g households with utility

Ug = cg −
1

1 + 1/ε
⋅ n

1+1/ε
g ,

where ng are total hours worked and cg is consumption per household. With these prefer-

ences, households’ labor supply satisfies wg = n
1/ε
g . This implies ℓg =mg ⋅wε

g.

B Equilibrium Representation

This section shows that the equilibrium can be represented as the solution to the system

of equations (1), (2), and (3). It also derives equation (4).

This result requires tasks to be assigned to a unique factor (except for zero-measure

indifference sets). As in Acemoglu and Restrepo (2022), the following assumption ensures

this is the case, and I impose this assumption in the rest of the appendix:

Assumption A1 (Strict comparative advantage) For all positive measure tasks sets

S ⊆ T , ψgx/(ψkx ⋅ qx) and ψgx/ψjx are not constant in S for j ≠ g.

Equation (1) follows from equating the marginal cost of producing the final good, cf(p),

to its price, which I normalized to 1.

For equation (2), let’s consider the price index for product n. This is given by

pn = (∫
x∈Tn

p1−λx ⋅ dx)

1
1−λ

.

Tasks in Tnk(w) are produced with capital and have a price

px = 1/(ψkx ⋅ qx) if x ∈ Tnk(w).

A1



Tasks in Tng(w) are produced by g workers and have a price

px = wg/ψgx if x ∈ Tng(w).

Plugging these task prices in the price index for pn yields (2).

For equation (3), let’s consider the demand for labor coming from tasks x in Tng(w),

denoted by ℓgx. For each of these tasks, firms demand task x until

px = pn ⋅ (
yn
yx
)
− 1

λ

.(A12)

For x ∈ Tng(w), px = wg/ψgx and yx = ψgx ⋅ ℓgx. Plugging in (A12) and solving for ℓgx yields:

ℓgx = yn ⋅ p
λ
n ⋅ ψ

λ−1
gx ⋅w

−λ
g .(A13)

This can also be written as

ℓgx = y ⋅ s
n
y(p) ⋅ p

λ−1
n ⋅ ψλ−1

gx ⋅w
−λ
g ,

where sny(p) = pn ⋅ yn/y = ∂ ln c
f(p)/∂ lnpn (from Shephard’s lemma). Integrating this

equation across tasks and products, labor market clearing becomes

y ⋅ ∑
n

sny(p) ⋅ p
λ−1
n ⋅ Γng(w) ⋅w

−λ
g =mg ⋅w

ε
g.

Solving for wg gives (3).

Acemoglu and Restrepo (2022) and Acemoglu and Restrepo (2023) provide conditions

for the existence and uniqueness of a solution {y,w, p} to this system of equations, as well

as conditions under which the economy produces positive and finite output.

Finally, to derive Equation (4), integrate (A13) for tasks in Tng(w). This yields

ℓng = yn ⋅ p
λ
n ⋅ Γng(w) ⋅w

−λ
g ⇒ sgn = Γng(w)

1
λ ⋅ (

yn
ℓng
)

1
λ
−1

,

where sgn = wg ⋅ ℓng/(pn ⋅ yn) denotes the share of group g wages in product n costs. The

same steps but now applied to tasks in Tnk(w) imply

kn = yn ⋅ p
λ
n ⋅ Γnk(w) ⇒ skn = Γnk(w)

1
λ ⋅ (

yn
kn
)

1
λ
−1
,
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where skn = kn/(pn ⋅ yn) denotes the share of capital in product n costs.

Using the fact that ∑g s
g
n + skn = 1 (from constant returns to scale) yields

∑
g

Γng(w)
1
λ ⋅ (

yn
ℓng
)

1
λ
−1

+ Γnk(w)
1
λ ⋅ (

yn
kn
)

1
λ
−1
= 1.

Using this equation to solve for yn gives the formula in (4).

C Automation and an Approximation Result

This section provides a lemma that will be used extensively to derive the effects of automa-

tion. The lemma shows that, to a first-order approximation, one can decompose the impact

of automation on task shares into the direct task displacement effects from automation and

the endogenous reassignment of tasks.

Lemma A1 (First-order expansion of task shares) Consider an automation shock

that automates tasks Ang across products and groups. Suppose that

i. the shock generates direct task displacements {d lnΓd
ng} across groups and products,

with d lnΓd
ng < ϵ for some ϵ > 0.

ii. automated tasks Ang are in the interior of Tng;

iii. the cost of producing these tasks with labor exceeds the cost of producing them with

the newly developed capital, with the differences in cost exceeding δ for some δ > 0.

For small ϵ, the total effect of this shock on task shares can be approximated as

d lnΓng = −d lnΓ
d
ng +

∂ lnΓng(w)

∂ lnw
⋅ d lnw +O(ϵ2),

where d lnw denotes the equilibrium impact of the shock on wages.

Proof. Let w′ = w + dw be the new equilibrium wages. Condition (i) implies that dw is

O(ϵ). Conditions (ii) and (iii) imply that, for small ϵ, all tasks in Ang will be automated at

the new equilibrium wages w′ and that these tasks will also be in the interior of Tng(w′).

These conditions then imply that the set of tasks performed by workers from group g
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goes from Tng(w) to Tng(w′) − Ang, and the total change in Γng is

d lnΓng =
∫Tng(w′)ψ

λ−1
gx ⋅ dx − ∫Tng(w)ψ

λ−1
gx ⋅ dx

∫Tng(w)ψ
λ−1
gx ⋅ dx

−
∫Ang

ψλ−1
gx ⋅ dx

∫Tng(w)ψ
λ−1
gx ⋅ dx

.

By definition, the second term in this equation is d lnΓd
ng. For the first term, perform

a (log-linear) first-order Taylor expansion with respect to w (Assumption A1 implies task

shares are differentiable functions of wages), which implies

∫Tng(w′)ψ
λ−1
gx ⋅ dx − ∫Tng(w)ψ

λ−1
gx ⋅ dx

∫Tng(w)ψ
λ−1
gx ⋅ dx

=
∂ lnΓng(w)

d lnw
⋅ d lnw +O(ϵ2),

establishing the lemma

D Derivations for the General Equilibrium Effects of Automation

This section derives the GE effects of automation. These derivations provide first-order

approximations to these effects valid when the fraction of automated tasks (measured by

d lnΓd
ng) are small and the conditions of Lemma A1 are met. This section derives expressions

for the changes in product prices due to automation in equation (9), then turns to the dual

version of Solow’s residual in equation (8) and the expression for product n change in TFP,

and concludes by deriving the equation for labor demand in equation (7).

Product n prices: Product n prices are given by (2). Using Lemma A1, express the GE

effect of automation on product n prices as

d lnpn = ∑
g

sgn ⋅ d lnwg +
1

1 − λ
⋅ ∑

g

sgn ⋅
∂ lnΓng

∂ lnw
⋅ d lnw +

1

1 − λ
⋅ [skn ⋅ d lnΓ

d
nk −∑

g

sgn ⋅ d lnΓ
d
ng] .

The first term captures the contribution of changes in input prices to costs, which

depends on the share of wages in costs.

The second term captures the endogenous reallocation of tasks across skill groups in

response to wage changes. This term adds up to zero since firms are indifferent between

producing marginal tasks with g or j—an implication of the envelope theorem.

The third term captures the contribution of shifts in task shares due to automation. In
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this term

d lnΓd
nk = ∑

g

∫Ang
[ψkx ⋅ q′x]

λ−1 ⋅ dx

∫Tnk(w)[ψkx ⋅ q′x]
λ−1 ⋅ dx

gives the expansion of capital’s task share due to automation.

Rewrite d lnΓd
nk in terms of the sufficient statistics πng and d lnΓd

ng as

d lnΓd
nk = ∑

g

sgn
skn
⋅ d lnΓd

ng ⋅ [1 − (1 − λ) ⋅ πng] ⋅ dx,

with πng computed as an employment-weighted average of πx over tasks in Ang:27

πng = ∫
Ang

ψλ−1
gx

∫Ang
ψg(x̃)λ−1 ⋅ dx̃

⋅ π(x) ⋅ dx.

Using this expression for d lnΓkn, express the change in prices as

d lnpn = ∑
g

sgn ⋅ d lnwg −∑
g

sgn ⋅ d lnΓ
d
ng ⋅ πng,(A14)

which is equivalent to the expression in equation (9) in the text.

Changes in TFP: With constant returns to scale, changes in product n TFP satisfy28

d ln tfpn = ∑
g

sgn ⋅ d lnwg − d lnpn.

27The derivation follows from these algebraic manipulations:

d lnΓd
nk =∑

g

Γng(w) ⋅w1−λ
g

Γkn(w)
⋅ ∫Ang

ψλ−1
gx ⋅ dx

∫Tng(w) ψ
λ−1
gx ⋅ dx

⋅ ∫Ang
[ψkx ⋅ q′x]λ−1 ⋅ dx

∫Ang
ψλ−1
gx ⋅ dx

wλ−1
g

=∑
g

sgn
skn
⋅ d lnΓd

ng ⋅
∫Ang

[ψkx ⋅ q′x]λ−1 ⋅ dx

∫Ang
ψλ−1
gx ⋅ dx

⋅wλ−1
g

=∑
g

sgn
skn
⋅ d lnΓd

ng ⋅ ∫Ang

ψλ−1
gx

∫Ang
ψλ−1
gx̃ ⋅ dx̃

⋅ [wg ⋅ ψkx ⋅ q′x
ψgx

]
λ−1
⋅ dx

=∑
g

sgn
skn
⋅ d lnΓd

ng ⋅ ∫Ang

ψλ−1
gx

∫Ang
ψλ−1
gx̃ ⋅ dx̃

⋅ [1 − (1 − λ) ⋅ πx] ⋅ dx

=∑
g

sgn
skn
⋅ d lnΓd

ng ⋅ [1 − (1 − λ) ⋅ πng] ⋅ dx,

28To see this, write pn ⋅ yn = ∑g ℓng ⋅ wg + kn. Totally differentiating both sides and rearranging yields

d ln tfpn = d ln yn −∑g s
g
n ⋅ d ln ℓng − skn ⋅ d lnkn = ∑g s

g
n ⋅ d lnwng − d lnpn.
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Substituting for d lnpn using (A14) gives the formula for product n TFP in the text.

To derive equation (8), differentiate the price-index condition in equation (1):

0 = ∑
n

sny ⋅ d lnpn.

Substituting for d lnpn using (A14) yields

∑
n

sny ⋅ ∑
g

sgn ⋅ d lnwg = ∑
n

sny ⋅ ∑
g

sgn ⋅ d lnΓ
d
ng ⋅ πng,

which is equivalent to (8), since ∑n s
n
y ⋅ ∑g s

g
n = s

g
y.

Changes in wages and employment: Apply Lemma A1 to equation (3) to obtain

d lnwg =
1

λ + ε
⋅ d ln y +

1

λ + ε
⋅ ∑

n

ωn
g ⋅ d ln ζn −

1

λ + ε
⋅ ∑

n

ωn
g ⋅ d lnΓ

d
ng +

1

λ + ε
⋅ JΓ ⋅ d lnw.

This expression can be rewritten as

d lnwg =
1

λ + ε
⋅ d ln y +

1

λ + ε
⋅ ∑

n

(ωn
g − s

n
y) ⋅ d ln ζn −

1

λ + ε
⋅ ∑

n

ωn
g ⋅ d lnΓ

d
ng +

1

λ + ε
⋅ JΓ ⋅ d lnw.

by observing that

∑
n

sny ⋅ d ln ζn = (λ − 1) ⋅∑
n

sny ⋅ d lnpn +∑
n

sny ⋅ d ln s
n
y = 0.

The solution to this fixed point problem gives (7). Using d ln ℓg = ε ⋅ d lnwg yields

d ln ℓg = ε ⋅Θg ⋅ stackj( d ln y

´¹¹¹¹¹¸¹¹¹¹¹¹¶
productivity effect

+ ∑
n

(ωn
j − s

n
y) ⋅ d ln ζn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
change in product mix

− ∑
n

ωn
j ⋅ d lnΓ

d
nj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
displacement effects

).(A15)

GE effects on the aggregate labor share: The text describes a formula for the GE

effects of automation on the aggregate labor share. This subsection derives this formula.

First, define d ln tfp = ∑n s
n
y ⋅ d ln tfpn as the aggregate TFP increase. Equation (8)

implies that the percent increase in wages equals d lnw = d ln tfp
sℓy

, where sℓy is the aggregate

labor share. The isoelastic labor supply implies a percent increase in labor income of

d ln(∑
g

wg ⋅ ℓg) = (1 + ε) ⋅
d ln tfp

sℓy
.
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Let’s compare this to the increase in output, d ln y. Let RSg = ∑j θgj denote the row

sums of the propagation matrix, and let Θ̄ = ∑g s
g
y ⋅Θg. Solving for d ln y from (7) and (8):

d ln y =
1

∑g s
g
y ⋅RSg

⋅ [d ln tfp − Θ̄ ⋅ stackj (∑
n

(ωn
j − s

n
y) ⋅ d ln ζn) + Θ̄ ⋅ stackj (∑

n

ωn
j ⋅ d lnΓ

d
nj)] .

Subtracting the change in output from the change in labor income, conclude that

d ln sℓy =(1 + ε −
sℓy

∑g s
g
y ⋅RSg

) ⋅
d ln tfp

sℓy

+
1

∑g s
g
y ⋅RSg

⋅ [Θ̄ ⋅ stackj (∑
n

(ωn
j − s

n
y) ⋅ d ln ζn) − Θ̄ ⋅ stackj (∑

n

ωn
j ⋅ d lnΓ

d
nj)]

The first line captures the GE effects on the aggregate labor share due to higher overall

wages (as in Grossman and Oberfield, 2021).29 The second line captures the contribution

of reallocation across firms (as in Oberfield and Raval, 2020) or industries (as in Acemoglu

and Restrepo, 2022) with different factor intensities. The last term is negative and captures

the direct contribution of automation via extensive-margin changes in the task allocation.

E Derivations for the Direct Effects of Automation

This section derives the direct effects of automation. I first explain the connection between

my definition of direct effects and cross-sectional estimates.

Cross-sectional estimates and direct effects: In general, the demand for product n

depends on y and the entire vector of product prices p. In my discussion, I assume

yn = dn(pn, pidx, y),

where pidx is a common vector of moments of the price distribution. For example, if f is

a CES, yn = y ⋅ (pn/pidx)−εd , where pidx is the usual CES price index of all product prices.

If f is a nested CES production function, one has a similar representation but now pidx is

the vector of price indices for all nests.

29The term 1/RSg − ε ≥ λ provides a measure of how substitutable group g is for capital at the aggregate
level. The (harmonic) mean 1/(∑g ω

g
n ⋅ RSg) − ε ≥ λ plays the same role as the aggregate elasticity of

substitution in Grossman and Oberfield (2021): when it exceeds 1, shocks that increase mean real wages
lower the labor share via this channel; when it is below 1, shocks that increase mean real wages raise the
labor share via this channel.
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Consider an outcome Yn for firm or product n. In equilibrium, this outcome is a function

of output y, price statistics pidx, factor prices w, and product n task shares Γn(w). Write

Yn = Gn(y, pidx,w,Γn(w)) to indicate this dependency. In this representation, task shares

summarize the technology for product n. Note that pn is itself a function of wages and task

shares Γn(w), given in (2), and so it is not needed as an argument in Gn.

Consider the exogenous arrival of an automation shock that changes task shares by

d lnΓd
n, output by d ln y, price statistics by d lnpidx, and wages by d lnw. Using Lemma A1,

write the impact of this shock on firm outcomes as

d lnYn =
∂ lnGn

∂ ln y
⋅ d ln y +

∂ lnGn

∂ lnpidx
⋅ d lnpidx + [

∂ lnGn

∂ lnw
+
∂ lnGn

∂ lnΓn

⋅
∂ lnΓn

∂ lnw
] ⋅ d lnw

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
GE effects

(A16)

+
∂ lnGn

∂ lnΓn

⋅ d lnΓd
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
direct effects, δ lnYn

.

The first line captures GE effects on product n due to expansions in the scale of the

economy, changes in price indices affecting the demand for n, and changes in factor prices.

The last term captures the direct effects of automation, defined as the change in product n

outcomes holding y, pidx,w constant. This gives the effect of automation working through

changes in product n technology holding all aggregates and GE interactions fixed.

Well-identified empirical estimates compare units that satisfy the parallel trends as-

sumption. This requires ∂Gn

∂y , ∂ lnGn

∂ lnpidx
, and ∂ lnGn

∂ lnw +
∂Gn

∂Γn
⋅ ∂Γn

∂w to be equal across units. Other-

wise, concurrent changes in wages, output, or the broader competitive environment would

affect units differentially, violating parallel trends.

As a result, the GE effects in the first line of (A16) are absorbed by the constant term

in these studies, and cross-sectional estimates identify the direct effects of automation.

This observation motivates my definition of direct effects and my focus on these partial

derivatives in the theory section.

Direct effects on product n prices: the GE effects on product n prices are given in

(A14). From this equation, the direct effects of automation on prices are

δ lnpn = −s
ℓ
n ⋅ ∑

g

ωg
n ⋅ πng ⋅ d lnΓ

d
ng.(A17)

Note that this can also be written as δ lnpn = −d ln tfpn.
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Direct effects on product n labor share: the labor share in product n is

sℓn =
∑g w

1−λ
g ⋅ Γng(w)

p1−λn

.

The direct effects of automation are then given by

δ ln sℓn = −∑
g

ωg
n ⋅ d lnΓ

d
ng − (1 − λ) ⋅ δ lnpn.

Replacing the formula for δ lnpn from equation (A17) gives equation (5) in the main text.

The text also describes the impact of automation on sales per worker, pn ⋅ yn/ℓn. This

can be written as

sales per workern =
1

sℓn
⋅ w̄n,

where w̄n denotes the average wage paid in product n. This decomposition implies

δ ln sales per workern = −δ ln s
ℓ
n + δ ln w̄n,

which shows that automation can increase sales per worker via reductions in the labor share

or by shifting the composition of the workforce towards higher-pay workers.

Direct effects on product n sales and employment: Recall that the demand for

product n satisfies yn = dn(pn, pidx, y). The direct effect of automation on the quantity of

good n sold is therefore

δ ln yn = −εn ⋅ δ lnpn = εn ⋅ d ln tfpn,

where εn = −∂ lndn(pn, pidx, y)/∂ lnpn is the demand elasticity faced by firms producing

n holding aggregate price indices and output constant. For example, if f were a CES

production function, εn would equal the elasticity of substitution.

From this, the direct effect of automation on good n sales can be computed as

δ(lnpn ⋅ yn) = (1 − εn) ⋅ δ lnpn = (εn − 1) ⋅ d ln tfpn.
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For employment, integrate equation (A13) for tasks in Tng(w) to get

ℓng = yn ⋅ p
λ
n ⋅ Γng(w) ⋅w

−λ
g .

Partially differentiating both sides holding aggregates constant yields

δ ln ℓng = δ ln yn + λ ⋅ δ lnpn − d lnΓ
d
ng.

Substituting δ ln yn = εn ⋅ d ln tfpn and δ lnpn = −d ln tfpn gives equation (11) in the text.

Direct effects on product n occupational structure: Denote by Ton the set of tasks

in product n that are part of occupation o, Tong(w) the subset of these assigned to g, and

Aong the subset of these that are automated. Finally, let Γong(w) = ∫Tong(w)ψ
λ−1
gx ⋅ dx and

d lnΓd
ong = ∫Aong

ψλ−1
gx ⋅ dx/ ∫Tong(w)ψ

λ−1
gx ⋅ dx.

Using this notation, wage payments to group g in product n in occupation o can be

computed by integrating equation (A13) for tasks in Tong(w):

wg ⋅ ℓong = yn ⋅ p
λ
n ⋅ Γong(w) ⋅w

1−λ
g .

Total wage payments for occupation o in product n are then equal to

∑
g

wg ⋅ ℓong = yn ⋅ p
λ
n ⋅ ∑

g

Γong(w) ⋅w
1−λ
g .

Partially differentiating both sides holding aggregates constant yields

δ ln(∑
g

wg ⋅ ℓong) = −∑
g

ωg
ond lnΓ

d
ong.

Equation (6) follows from δ ln ωo
n

ωo′
n
= δ ln (∑g wg ⋅ ℓong) − δ ln (∑g wg ⋅ ℓo′ng).

F The Elasticity of Substitution Between Capital and Labor

The text provides a formula for the elasticity of substitution between capital and labor

in product n. This elasticity is defined as the percent increase in capital-to-labor inputs
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following a common increase in wages of d lnwg = d lnw, or

σn =
d lnkn/d ln ℓn

d lnw
.

This corresponds to the elasticity one would identify by exploiting differences in wages

faced by firms, as in (Oberfield and Raval, 2020). This definition can be rewritten in terms

of the response of the labor share in product n in response to a common increase in wages:

σn = 1 −
1

1 − sℓn
⋅
d ln sℓn
d lnw

.

To compute this elasticity, use the fact that the labor share in product n is

sℓn = p
λ−1
n ⋅ ∑

g

Γng(w) ⋅w
1−λ
g .

The change in sℓn from a common increase in wages d lnw is

d ln sℓn
d lnw

= (λ − 1) ⋅ sℓn + (1 − λ) +∑
g

ωg
n ⋅ ∑

j

∂ lnΓng(w)

∂ lnwj

.

Plugging this expression in the definition of σn yields the formula in the text.
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