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1 Introduction

We consider the following four key facts about exchange rates. First, real exchange rates
are only weakly positively correlated with relative aggregate consumption growth [Koll-
mann, 1991, Backus and Smith, 1993]. The home currency tends to depreciate when the
home investors experience adverse macro-economic shocks and thus have high marginal
utility growth. In other words, exchange rates are weakly pro-cyclical. Second, exchange
rates seem disconnected from the other macro variables that should determine them [Ob-
stfeld and Rogoff, 2000]. Third, as documented by Tryon [1979], Hansen and Hodrick
[1980] and Fama [1984], interest rate differences do not predict changes in exchange rates
with the right sign to enforce the uncovered interest rate parity (U.LP.). Instead, currency
returns are predictable, but exchange rates themselves are not. In order to explain the neg-
ative slope coefficients, risk premia have to be extremely volatile [Fama, 1984]. Fourth,
other macro variables also fail to predict exchange rates, as shown by Meese and Rogoff
[1983]. It is hard to beat a random walk when predicting exchange rates, especially out of
sample and at frequencies lower than daily or weekly.

In a large class of international real business cycle models, bond investor Euler equa-
tions impose strong restrictions on the relationship between exchange rates and marginal
utilities as long as investors can trade home and foreign risk-free bonds frictionlessly. We
tirst show that it is not possible to simultaneously address all of these facts. That is, the
four facts are tied together through the bond investor Euler equqtions. More concretely,
let m; 11 and m:t 41 denote the home and foreign SDF in log, let 7+ and r; denote the home
and foreign risk-free rates in log, and let s; denote the log spot exchange rate in units of
foreign currency per dollar. When s; increases, the home currency appreciates. Then, the
four bond Euler equations are given by:
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The first two equations are the Euler equations for the home investor investing in domes-
tic and foreign currency risk-free bonds. The second set of two Euler equations pertains
to the foreign investor. In this paper, we start from these four Euler equations and show
that they impose strong restrictions on the exchange rate’s cyclicality, which is defined
as the covariance between the exchange rate movement As;;; and the SDF differential



Mppp1 — m;t 41- A positive covariance means that the home currency’s exchange rate
tends to appreciate when the home investors’ marginal utility growth rate is higher than
the foreign investors’.

Consider the implications of these equations for the conditional exchange rate cycli-
cality. Building on the work by Lustig and Verdelhan [2019], we obtain a stark result:
the conditional covariance is always positive, which means that the exchange rate has
to be conditionally counter-cyclical to enforce these bond Euler equations. In complete
markets, the reason for this is well understood. When domestic investors have a higher
marginal willingness than foreign investors to pay for consumption in some state tomor-
row, i.e. to save into that state, then the state-contingent interest rate is correspondingly
lower at home, and the real exchange rate has to appreciate in that state to keep arbi-
trageurs from borrowing domestically and investing abroad in that state of the world.
The exchange rate of the home currency has to appreciate to keep the state prices at
home and abroad aligned state-by-state. When investors have power utility, this state-
contingent version of interest rate parity induces a perfectly negative correlation with
aggregate consumption growth differential. We show, somewhat surprisingly, that the
result carries over to the incomplete market setting. As long as investors can trade home
and foreign risk-free bonds frictionlessly, an “average” version of the complete markets
state-contingent interest rate parity prediction survives.

Next, we consider the unconditional exchange rate cyclicality, which is the evidence
in Kollmann [1991] and Backus and Smith [1993]." We show that in order to generate un-
conditionally pro-cyclical exchange rates, stylized fact 1, we need very volatile forward
premia or highly predictable exchange rates. The first condition is at odds with the Tryon
[1979], Hansen and Hodrick [1980], and Fama [1984] evidence on the violation of U.L.P,
stylized fact 3. The second condition is at odds with the Meese and Rogoff [1983] evi-
dence, stylized fact 4.

We thus end up with an impossibility result: when investors can trade domestic and
foreign currency bonds, we cannot generate pro-cyclical exchange rates (stylized fact 1)
while matching the observed U.LP. deviations (stylized fact 3) and the lack of exchange
rate predictability (stylized fact 4).

Turning to a resolution, we show analytically that wedges in cross-currency bond Eu-
ler equations can simultaneously address all of these facts. The wedge can be interpreted
as investors acting as if they face large (perceived or actual) transaction costs or inconve-

nience yields associated with buying bonds denominated in a foreign currency. They can

IThe unconditional cyclicality is equal to the mean of the conditional exchange rate cyclicality plus a
term that captures the extent to which exchange rates can be predicted by the expected SDF differential.



also be interpreted as high convenience yields that home investors derive on their home
bonds, which can arise for example beause home bonds function as private liquidity or
due to financial repression. In models of frictional financial intermediation, the wedges
can also be interepreted as the shadow cost of participating via intermediaries in foreign
markets.

Surprisingly, the key to generate a pro-cyclical exchange rate is the cross-currency
bond Euler equation wedge’s level, as opposed to its covariance with the SDF. In fact,
a constant Euler equation wedge, which may be interpreted as a constant transaction
cost for international investments, is enough to address the exchange rate puzzles. This
is because the wedge’s level directly enters the Euler equations, so that a non-zero level
requires endogenous adjustments in the exchange rate cyclicality to satisfy all Euler equa-
tions.?

These results clarify the role of frictions in equilibrium models of exchange rates. The
key ingredient needed to make progress on the disconnect and Backus-Smith puzzles is
not market incompleteness. Likewise, currency risk premium shocks that drive U.LP.
deviations do not resolve the puzzle. In the literature, both risk premium shocks and
cross-currency bond Euler equation wedges are often referred to collectively as U.LP. or
tinancial shocks [see, e.g., Farhi and Werning, 2014, Itskhoki and Mukhin, 2021]. We show
that as long as all of the cross-currency bond Euler equations hold without wedges, the
Backus-Smith puzzle reappears. Financial shocks that only drive risk premium variations
cannot overturn this result unless the Euler equations are violated.

Quantitatively, when we calibrate the exchange rate predictability, volatility, the Fama
regression coefficient, and the SDF variance to match the data, the cross-currency bond
Euler equation wedges have to be at least 38 basis points in order to generate a negative
unconditional exchange rate cyclicality. Thus, our analysis shows that a quantitatively
small departure of 38 basis points from frictionless markets, either in transaction costs,
convenience yields, or intermediation frictions, can account for the facts, thereby ruling
in this plausible class of models as a resolution of the exchange rate puzzles.

Literature. Chari, Kehoe, and McGrattan [2002] analyze a complete-market model of
exchange rates with sticky prices and identify the Backus-Smith puzzle as the key failure
of their model. Corsetti, Dedola, and Leduc [2008], Pavlova and Rigobon [2012] con-

2The level of the wedges matters because addressing the four facts requires a model to disconnect the re-
lation between relative marginal utility growth (m; ;1 — m;, ;) and exchange rate changes As; 1. Without
wedges, the U.LP. conditions tie these objects together. With an Euler equation wedge, it is possible to sat-
isfy the U.L.P. conditions while disconnecting the covariance between marginal utility growth and exchange
rate changes.



sider incomplete market models of exchange rates. In their model, domestic and foreign
investors only invest in a risk-free bond that pays off in a global numéraire, implicitly
dropping all 4 Euler equations. This implicitly introduces wedges in one of the four bond
Euler equations. They report progress on the Backus-Smith puzzle.

A different strand of the literature segments the markets and thus introduces wedges
into the bond Euler equations. Alvarez, Atkeson, and Kehoe [2002a, 2009a] consider
a Baumol-Tobin style model in which investors pay a cost to transact in currency and
bond markets. Relatedly, Jiang, Krishnamurthy, and Lustig [2018], Jiang, Krishnamurthy,
Lustig, and Sun [2024] explore the dollar exchange rate implications of convenience yields
earned on dollar safe assets, another type of the Euler equation wedges.> Diamond and
Van Tassel [2021] shows that risk-free government bonds around the world carry conve-
nenience yields. There is a wealth of evidence to support the notion that investors act as
if they face large transaction costs in buying foreign securities [Lewis, 1995a]. Moreover,
there is recent empirical evidence to specifically support a home currency bias in bonds.
Maggiori, Neiman, and Schreger [2020] report strong evidence of a home currency bias in
international mutual fund holdings of corporate bonds. The only exception is the dollar,
the international reserve currency. Investors will buy dollar-denominated bonds. Mag-
giori et al. [2020] attribute this home currency bias to the costs of currency hedges and
behavioral bias.

Finally, a third strand of the literature imputes a central role to financial intermedi-
aries, drawing on insights from the literature on intermediary asset pricing. Gabaix and
Maggiori [2015], Itskhoki and Mukhin [2021], Fukui, Nakamura, and Steinsson [2023]
all consider models in which most investors cannot directly access currency markets. In
Itskhoki and Mukhin [2021], domestic investors only invest in the domestic bond mar-
ket. Only the intermediaries can trade foreign currencies. Similarly, Gourinchas, Ray,
and Vayanos [2020], Greenwood, Hanson, Stein, and Sunderam [2020] study models with
domestic preferred-habitat investors and global arbitrageurs. This class of models keep
only two of the Euler equations we consider and add a third Euler equation that captures
the global arbitrageurs’ long-short portfolio decision over a carry trade return. The ap-
proach of these intermediary-centered models are complementary to ours. The approach
implies an infinite transaction cost for investing in the foreign currency as domestic in-
vestors are disallowed from investing in foreign currency. This is clearly extreme. Our
approach provides the minimum bounds needed on investors” Euler equation wedges
needed to address exchange rate facts. One can interpret these wedges as the direct cost

3There is a growing literature on convenience yields in bond markets, starting with Krishnamurthy and
Vissing-Jorgensen [2012]



of investing in foreign markets or the indirect costs of doing so when investing via the
intermediaries modeled in this strand of the literature.

Other recent work by Hassan [2013], Dou and Verdelhan [2015], Chien, Lustig, and
Naknoi [2020], Jiang and Richmond [2023] takes a different tack by introducing hetero-
geneity in household trading technologies. Active households can freely trade bonds and
other state contingent claims, whereas the inactive households have no access to the asset
market. In this case, while the four Euler equations we consider in this paper hold for the
active households without any wedges, their marginal utilities have different cyclicality
than the country-level aggregate marginal utilities. As a result, the model disconnects
aggregate consumption from the SDF of the Euler equation to which the model applies.

Lustig and Verdelhan [2019] ask whether market incompleteness helps to resolve out-
standing currency puzzles. They focus only on the conditional Backus-Smith puzzle, not
the unconditional version, the focus of our paper. In closely related work, Chernov, Had-
dad, and Itskhoki [2023b] develop a framework that maps the space of tradable assets
to restrictions on the exchange rate moments. They conclude that the exchange rate mo-
ments require the asset markets to be segmented or intermediated, and, in this environ-
ment, the local financial markets are uninformative about the exchange rate. Consistent
with this result, our paper examines the Euler equations governing the cross-country po-
sitions in risk-free bonds, and finds that wedges in these Euler equations are required to
match the exchange rate moments. However, we argue that this is precisely how finan-
cial markets are informative about the exchange rate, as they discipline the properties
of these Euler equation wedges which we ultimately interpret as home bias or domestic
convenience yields.

There is a long literature on exchange rate predictability, or the lack thereof (stylized
fact 4). Order flow seems to predict daily or weekly exchange rates [Evans and Lyons,
2002b]. However, we are interested in exchange rate predictability at quarterly and an-
nual frequencies. At these longer horizons, the main take-away seems to be that forecast-
ing exchange rates out-of-sample is hard especially if the objective is to beat the random
walk if we use standard macro-economic variables as predictors [see, e.g. Rossi, 2013, for
a survey of the literature]. Recently, some economists have reported more success using
non-standard predictors such as a measure of the net foreign asset position [Gourinchas
and Rey, 2007], as well as CIP deviations [Jiang, Krishnamurthy, and Lustig, 2021] and
global risk measures (e.g., VIX) as proxies for global safe asset demand when forecasting
dollar exchange rates, especially since the GFC [Lilley, Maggiori, Neiman, and Schreger,
2022]. More recently, researchers have found some evidence that survey expectations can
predict exchange rates at longer horizons [Kremens, Martin, and Varela, 2023].



The paper is organized as follows. We start by discussing the benchmark complete-
market case in section 2. Next, section 3 discuss the conditional Backus-Smith puzzle in
the incomplete-market case. Section 4 analyzes the unconditional Backus-Smith puzzle
in the incomplete-market case. Finally, section 5 inserts bond Euler equation wedges, and
characterizes the restrictions these wedges need to satisfy in order to make progress on
the unconditional Backus-Smith puzzle. Lastly, the Appendix contains the proof of the

propositions.

2 Complete Markets and Exchange Rate Puzzles

In the case of complete markets, exchange rates act as shock absorbers for the shocks to

the pricing kernels:
Aspy1 = my g —mfy.
This expression for the log change in the real exchange rate has puzzling implications.

Volatility puzzle. As was noted by Brandt, Cochrane, and Santa-Clara [2006b], the im-
plied volatility of the exchange rate will be too high if the market price of risk clears
the Hansen-Jagannathan bounds, unless the pricing kernels are highly correlated across

countries.
vari(Asi1) = var(myq) + var(meqq)

— 20¢(myyq, miq)stdy(myyq)stdi(myiq).

We would need a correlation of the pricing kernels p; (11, m{, ;) close to one. In the case
of the standard Breeden-Lucas SDF m;;1 = log d — yAc;41, this would imply close to per-
fectly correlated consumption growth across countries: p(Acty 1, Acf, ;). This prediction
is counterfactual [see Backus, Kehoe, and Kydland, 1992].

Counter-cyclicality/Backus-Smith puzzle. When markets are complete, the uncondi-

tional exchange rate cyclicality satisfies
cov(my 11 — My yq, Aspy1) = var(Asgyq) > 0.

We obtain a very general result: in any complete-market models, the unconditional ex-

change rate cyclicality is always positive: a higher marginal utility growth in the home
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country is associated with a home currency appreciation. The model can only generate
exchange rate disconnect by shrinking the variance of the exchange rate to zero. In the
Breeden-Lucas case, the implied changes in the log exchange rates are perfectly nega-
tively correlated with consumption growth differences corr(Acy 1 — Acj, 1, Aspi1) = —1,
which is strongly counterfactual [Kollmann, 1991, Backus and Smith, 1993].

These puzzles are partially governed by the specific nature of the pricing kernel. The
Breeden-Lucas SDF assumes time-additive utility. Colacito and Croce [2011] impute a
preference for early resolution to uncertainty to the stand-in investor in an endowment
economy with long run risks [Bansal and Yaron, 2004a]. In this long run risks economy;,
it is feasible to make progress on the volatility puzzle by choosing highly correlated per-
sistent components of consumption growth, while still matching the low correlation of
consumption growth observed in the data. In this long run risks economy, we can push
the correlation of the pricing kernels corr(m;1,m}, ;) to one by choosing perfectly corre-
lated long-run consumption growth corr¢(x;11,x;,;) = 1. However, in their benchmark
calibration, this mechanism reduces the exchange rate cyclicality to zero, but does not
overturn the sign. Next, we examine the exchange rate cyclicality when we shut down
some asset markets. In closely related work, Verdelhan [2010] explores the habit model’s
exchange rate implications, and concludes that this model cannot entirely resolve the
Backus-Smith puzzle.

3 Conditional Exchange Rate Cyclicality and Incomplete
Markets

We start by assuming that investors can invest in risk-free bonds denominated in domes-
tic and foreign currency. Our analysis is silent on the rest of the market structure.

We assume that the return, exchange rate and pricing kernel innovations are jointly
normally distributed. Then, the four risk-free bond Euler equations imply:

0 = E¢[mp1] + %Uﬂrt(mt,t—i—l) + 11,

0 = E[mpi1] + %Uart(mt,ﬂrl) — E¢[Asp 1] + %Wrt(AStﬂ) + covy(my 1, —Asp1) + 717,

0 = Bl 3] + poana(miyen) +17,

0 = Bl ya] + poara(mfy) + BalAsei] + poary(Bsi) + oo (m s, Astn) + 11
Reorganizing the terms, we can obtain two expressions that relate the expected excess

7



return of a strategy that goes long in foreign currency and borrows at the domestic risk-
free rate to the riskiness of the exchange rate

1

(ri —re) —E¢[Aspq] + Evart(AstH) = —covg(my i1, —ASpi1),
1

(re — i) + E¢[Aspiq] + Evart(AstH) = —covy(mf; q, Ast11).

The first expression takes the home investors’ perspective. If the foreign currency tends
to appreciate (i.e., higher —As; ) in the home investors” high marginal utility states (i.e.,
higher m;;.1), then, the foreign currency is a good hedge and the home investors de-
mand a lower expected return to hold it, which leads to a lower (1} — r¢) — E¢[As1] +
Jvari(As;y1) on the left-hand side. Similarly, the second expression takes the foreign in-
vestors’ perspective, and relates the currency excess return to the covariance between the
foreign investors” SDF and the exchange rate movement.

Given the exchange rate variance var;(As;11) is positive, these expressions imply

Et[Asi 1] 411 —r{ > covs(mypi1, —Asi41),

—(E¢[Aspy1] + 11 —1F) > covp(myfy, 1, Asi1),

which leads to the following proposition.

Proposition 1. In the log-normal case, the conditional exchange rate cyclicality satisfies
covs(Mypq1 — My 1, ASp1) = vary(Asprq) > 0. (1)

Lustig and Verdelhan [2019] derive a more restrictive version of this result assuming
incomplete market wedges that are jointly log-normal with the SDF and the exchange
rate. Our derivation does not use incomplete market wedges.* It follows from simply
adding the two cross-currency Euler equations.

In this paper, we define the exchange rate cyclicality as the covariance between the
exchange rate movement As;,q and the SDF differential m;; 1 — m;, ;. This propo-

sition shows that exchange rate innovations are counter-cyclical in a Gaussian model.

“While Lustig and Verdelhan [2019] find that market incompleteness helps with the Brandt, Cochrane,
and Santa-Clara [2006a] puzzle in reducing volatility, it cannot change the sign of the conditional covari-
ance. We have not assumed that markets are complete to derive this result. In the case of complete markets,
state-contingent interest rate parity obtains m;.1 —mj; ; = As;q and this covariance result is directly
obtained. Our proposition shows that this result is much more general, as long as investors can freely trade
home and foreign risk-free bonds. In other words, the risk-free bond Euler equations discipline the joint
dynamics of the exchange rates and marginal utility growth to imply counter-cyclical exchange rates.



The home currency’s exchange rate tends to unexpectedly appreciate when the home in-
vestors’ marginal utility growth is unexpectedly higher than the foreign investors’.

Proposition 1 is a strong restriction, and it is striking that it arises from four simple
bond Euler equations. The pairs of bond Euler equations each define a carry trade return.
The expected carry trade return, if it is non-zero, has to be a compensation for covariance
risk with SDFs of both home and foreign households. It is this required compensation
that underlies the result: if the carry return is compensation for covariance risk, then the
covariance of the relative pricing kernels with the exchange rate change has to be positive.
We do not need to consider the Euler equations for any more traded assets to reach this
stark conclusion, as for example, are considered in Chernov, Haddad, and Itskhoki. The
Euler equations on investments in two short-term bonds are sufficiently informative to
yield this strong result.

The result also calls into question the approach of introducing “risk premium shocks”
that drive U.L.P. deviations into international finance models. In the literature, both risk
premium shocks and wedges that represent deviations from cross-currency bond Euler
equations are often referred to collectively as U.LP. or financial shocks [see, e.g., Farhi
and Werning, 2014, Itskhoki and Mukhin, 2021]. However, we see that accounting for
risk explicitly and tying risk premia to covarance with the SDF implies a strong restric-
tion such that the Backus-Smith puzzle reappears. Financial shocks that only drive risk
premium variations cannot overturn this result

Finally, the SDF and exchange rate dynamics might not be conditionally Gaussian, e.g.,
as in Rietz [1988], Longstaff and Piazzesi [2004], Barro [2006], Farhi and Gabaix [2016]. We
can extend our results to non-Gaussian settings and we present the details in Appendix
A5.

4 Unconditional Exchange Rate Cyclicality and Incomplete
Markets

In IRBC models that link the SDFs to aggregate consumption shocks, we are interested in
understanding how the exchange rate moves in response to relative consumption growth.
Backus and Smith [1993] summarize this relationship by regressing the exchange rate
movement on relative consumption growth, and find pro-cyclical exchange rates. To re-

late our result to this Backus-Smith coefficient, we need to characterize the unconditional



exchange rate cyclicality. To do so, we use the law of total covariance:

cov (M1 — My q, Aspi1) = Elcov(mypq —myy g, Aspa)] + cov(Ee[mypq — myy 4], Et[Asiia]).

Our previous result shows the conditional exchange rate cyclicality cov;(m; ;11 — m;k’t ny Asii1)
is always positive. To generate a negative unconditional cyclicality cov(my 1 —mj,, 1, Asii1),
we need a negative cov(IE¢[m; 1 — mjf; ], Et[As;11]) that is greater in magnitude than
the average conditional cyclicality E[cov;(m; 11 — M1 As;11)]. In other words, the ex-
change rate movement needs to be strongly predictable by the expected SDF differential
E¢[mys11 — mj,,4]. In this way, this equation connects the unconditional exchange rate
cyclicality to exchange rate predictability.

Recall the case of complete markets, As; 1 = my 41 — m;“’t +1- The exchange rate has to
absorb all of the shocks to the pricing kernels in each state of the world. When markets

are complete, the unconditional exchange rate cyclicality satisfies
cov(my 11 — My i1, Aspy1) = var(Asgy1) > 0.

In any complete-market models (which by definition allows home and foreign agents
to trade risk-free bonds), the unconditional exchange rate cyclicality is always positive: a
higher marginal utility growth in the home country is associated with a home currency
appreciation. The model can only generate exchange rate disconnect by shrinking the
variance of the exchange rate to zero.

Next, we consider a more general case of less than complete markets in which we shut

down some trade in non-bond asset markets. We begin by introducing some concepts.

The Fama Regression Coefficient b.  We use f; to denote the log of the one-period
forward exchange rate in units of foreign currency per dollar. The log excess return on

buying foreign currency forward is

X1 = ft — Se41 = —ASp1 + fr — s,

where f; — s; denotes the forward discount and As;;; denotes the appreciation of the
home currency. When the Covered Interest Rate Parity holds, we further obtain f; —s; =
r; — ry and, as a result, we can restate the log excess return on a long position in foreign
CUITency as rx;i1 = —Aspyq +1f — 1.

Now, consider the standard Tryon [1979], Hansen and Hodrick [1980], Fama [1984]

10



time-series regression:
Asiiq1 = a+b(fr —st) + €41

In the data, the slope coefficient b tends to be negative: a higher-than-usual foreign in-
terest rate predicts further appreciation of the foreign currency. Following Fama [1984],
we use p; = Ei[rx;11] = fi — E¢[st+1] to denote the currency risk premium and gq; =
E¢[As;11] to denote the expected exchange rate movement. The forward discount can be
decomposed as f; —s; = p: + q:. When the Covered Interest Rate Parity holds, p; =
r{ —ry — E¢[Asiq], and pr + g = 1} — 14

As shown by Fama, the slope coefficient in this regression can be restated as:

cov(fr — s, Be[Asi]) _ cov(pe +qi,q1) _ cov(py, qi) + var(qy)
var(fi —si) var(p: +qi) var(pe+q1)

To get negative slope coefficient b, we need cov(py, q¢)/var(q:) < —1. Two necessary
conditions have to be satisfied in order to obtain negative slope coefficients: corr(p;, ;) <
0 and std(p;) > std(q:). Risk premia have to be more volatile than the expected change
in the spot rate. Backus, Foresi, and Telmer [2001] analyze sufficient conditions for these
U.LP. violations in a large class of affine asset pricing models.

The Meese-Rogoff R?>. The Meese and Rogoff [1983] puzzle states that exchange rates
are hard to forecast. Put differently, the R> = var(IE;[As;y1])/var(As;11) in a forecasting
regression is low. In a recent survey of exchange rate predictability, Rossi [2013] concludes
that the Meese-Rogoff findings have not been conclusively overturned.” There is some
limited evidence of exchange rate predictability but the evidence usually is specific to
certain countries, horizons and the predictability is not stable.

When the linear projection yields the best forecast, we can obtain this R? from a pro-
jection of the exchange rate changes on its predictors. We will assume the linear predictor
yields the best forecast. Let R?> denote the fraction of the predictable variation in the ex-
change rate:

o _ var(E¢[Asi4])
var(Asii1)

5At higher frequencies ranging from one day to one month, order flow seems to predict changes in the
spot exchange rate [see Evans and Lyons, 2002a, 2005]. This data is proprietary and may not be available
in real-time to all investors. Gourinchas and Rey [2007] report evidence that the net foreign asset position
predicts changes in the exchange rate out-of-sample.
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and let R2

2 ., denote the R? of the Fama regression:

var (b(ft —st))

var(Asii1)

RFama -

Our main result characterizes the unconditional exchange rate cyclicality. Without
loss of generality, we assume that the covariance between the home SDF’s conditional
variance and the exchange rate movement from the home perspective is higher than the
covariance between the foreign SDF’s conditional variance and the exchange rate move-

ment from the foreign perspective:
cov (vary(my41), Be[Asi1]) > cov (vary(my,, 1), —E¢[Asi1]) .

If this condition is not satisfied, we simply need to swap the labeling of the home and

foreign countries.

Proposition 2. Each of the following is a necessary condition for a negative unconditional ex-
change rate cyclicality, i.e., cov(my ;1 — M1 As;iq) <O:

(a)

std (vart(mt,tﬂ)) Fama
std(Aspy1) \/—+\/_<b "R _1> @

If the Fama regression yields the best predictor of the exchange rate movement, then, we can
simplify this formula to

std (Uﬂi’t(mt,t+1)) 1 1 B 1 B ' Std(ft o St)
std(bsia) = VR VR? (g - 1> = 7% VR2 + szgn(b)—std(AstH) . )

(b)

\/std(]Et[rxtH])+std(vart(mt,t+1))> std(Asii1) _ 1
std(IE¢[As;11]) std(E¢[Asi1])  — std(E¢[Asi11]) /R2

Between these conditions,
* (a) = (D).

e If Fama regression yields the best predictor and b ¢ (0,1), (b) = (a); otherwise (b) is a
weaker condition.
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Conditions (a) and (b) are necessary, but not sufficient conditions for a negative un-
conditional exchange rate cyclicality. The bounds tighten as the R? decreases: as exchange
rates become less predictable, we need more variations in the conditional risk premia and
the conditional price of risk to generate a negative unconditional exchange rate cyclical-
ity. In the limit, as we approach the Meese and Rogoff [1983]’s benchmark random walk
case in which exchange rate movements are not predictable, 1/v/R2 on the right-hand
side approaches infinity. The model simply cannot deliver pro-cyclical exchange rates.
As such, these bounds deliver an impossibility result: if we take Meese and Rogoff [1983]
random walk result regarding exchange rate predictability at face value, then we cannot
make progress on the Backus and Smith [1993] puzzle regarding exchange rate cyclicality.

On the other hand, while it is enticing to conclude that, holding R? constant, a small
but negative Fama coefficient b can lower the right-hand side of Eq. (2) and make this
condition more likely to hold, we note that v'R? and b are closely related. When the b
shrinks towards zero, the R? shrinks towards zero as well. In fact, Eq. (3) shows that,
holding R? constant, a small but negative b means a high forward premium volatility
std(fr — s¢) relative to the exchange rate volatility std(As;, 1), which is also rejected by the
data.

Before we turn to more realistic cases, we make two more observations. First, in the
case of ULP, b = 1 and Eq. (3) becomes:

std (vary(mypiq)) 1

std(As;y1)  — VR2

A natural case to consider under the U.LP. is the case of constant market prices of risk.

Then, we get an impossibility result: 0 > 1/v'R?, so the unconditional exchange rate
cyclicality cannot be negative.
Second, in the case of a fully predictable exchange rate movement, the R? tends to one

and Eq. (3) becomes:

std (vari(mis41))

>
std(Asy1)

1
;-

As long as the slope coefficient b is negative, then the bound is trivially satisfied, even

when the R? is very high but not equal to 1.
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4.1 Calibrated Examples

Let us compute bounds using some empirically plausible values. In the data, the ex-
change rate movements are only moderately predictable. Suppose the Fama regression
yields the best predictor of the exchange rate movement, R> = 5% at the one-year hori-
zon, the Fama regression coefficient is b = —1, and the annualized exchange rate volatility
is std(Asy+1) = 10%. Then, Eq. (3) implies that the log SDF needs to have a very high

variability in its conditional variance:
std (vari(mspq1)) > 04. 4)

For comparison, the unconditional standard deviation of the log SDF variance is only
0.067 in the long-run risk model in Bansal and Yaron [2004b], and 0.26 in the external habit
model in Campbell and Cochrane [1999], even though both models manage to generate
empirically plausible levels of the equity risk premium. Figure (1) plots the distributions
of the conditional SDF volatility in these two models, which are related to the maximum
Sharpe ratio in the economy according to the Hansen and Jagannathan [1991] bound.
In the long-run risk model, the conditional log SDF volatility is between 0.3 and 0.7, a
narrow range that gives rise to a small std (var¢(m; ;1 1)). In the external habit model, the
conditional log SDF volatility is more variable, at the expense of having some states in
which the SDF is not very volatile and the maximum Sharpe ratio is very small, and some
states in which the SDF is extremely volatile and the maximum Sharpe ratio is very high.

If we take either model as a quantitatively accurate representation of the SDF, then, Eq.
(4) implies that the model cannot generate a negative unconditional exchange rate cycli-
cality. In other words, the home and foreign investors” Euler equations governing their
risk-free bond holdings impose important restrictions on the equilibrium exchange rate
dynamics, such that a negative unconditional exchange rate cyclicality requires a very
volatile SDF conditional variance that is not in line with standard asset pricing models.

Alternatively, suppose that the forward premium has no predictive power for the ex-

2

change rate movement, which implies R%,, .

= 0 and b = 0. Suppose some other predic-
tor generates an R? = 5% and the annualized exchange rate volatility is std(As; 1) = 10%.

Then, Eq. (2) implies

std (vary(mypyq)) > std(Aspiq) (\/% — \/RZ) =042,

which provides a similar bound as in the previous case.
We can also generalize the bound in Eq. (4) to a wider range of exchange rate pre-
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FIGURE 1. DISTRIBUTIONS OF THE CONDITIONAL LOG SDF VOLATILITY IN DIFFERENT ASSET
PRICING MODELS

Notes: The figure plots the distributions of the conditional log SDF volatility in the long-run risk model
in Bansal and Yaron [2004b] and the external habit model in Campbell and Cochrane [1999]. We simulate
1,000,000 monthly periods in each model and report the histogram of the annualized log SDF volatility.
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FIGURE 2. LOWER BOUND ON THE VARIABILITY OF THE CONDITIONAL LOG SDF VARIANCE AS
A FUNCTION OF EXCHANGE RATE PREDICTABILITY

Notes: The figure plots the lower bound on std (var(m;;,1)) as a function of the Fama regression R? as
implied by Eq. (3). We take b = —1 and std(As;1) = 10%.
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dictability. In Figure (2), we vary the R? from the Fama regression and report the bound
on the volatility of the conditional log SDF variance. As the exchange rate predictabil-
ity increases, the lower bound on the unconditional volatility of the conditional log SDF
variance declines. When R? is 20% in the Fama regression, the lower bound becomes 0.13,
compared to 0.40 when R? is 5%. In other words, as the exchange rate becomes more pre-
dictable, the Euler equations can rationalize a negative exchange rate cyclicality without
requiring a higher degree of variability in the conditional SDF variance.

Finally, Proposition 2 offers a loose bound in the sense that we used the property
corr (vary(my 1), E¢[Asi41]) < 1 to derive the inequality, which makes the bounds in
this proposition necessary but not sufficient conditions. The bounds are only sufficient
conditions when corr (vari(m;s11), Et[Ast11]) = 1. If, instead, the correlation is 0.5, Eq.
(4) in the numerical example becomes std (vary(my ;1)) > 0.4/(1/2) = 0.8, which further
sharpens the result by doubling the lower bound on std (var(m;;41)).

4.2 Role of the Horizon

We consider a Fama regression with horizon k periods:

Asppyp = ag + bk(ftk —5t) + €4k

Similarly, we use R2 & to denote the R? of this regression, and we define

Fama

var (IE; [Ast,t+k])

Rf =
C var(Bsy)

Proposition 3. Each of the following is a necessary condition for a negative unconditional ex-
change rate cyclicality, i.e., cov(m; . — Uy Asiiir) <O:

(a)

std (vary(my s x)) —l— \/\ Famak 1
Std(ASt,tJrk) / bk RZ
If the Fama regression yields the best predictor of the exchange rate movement, then, we can

simplify this formula to

std (vary(mysix)) Std(ft 5t)

1 1
> +\/R2(——1>— — \/R2 + sign(by)
std(Astr k) /R K\ b /R gn(bi) std(Asy i)
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(b)

std(By[rxyek]) | std (oari(myr)) o std(Bspeg) 1
std(E¢[Aspek]) — std(Ee[Asppyr]) — std(Ee[As;pik]) R

=N

Among these conditions,
* (a) = (b).

e If Fama regression yields the best predictor and b ¢ (0,1), (b) = (a); otherwise (b) is a

weaker condition.

As we increase the horizon, std (var;(m; ;)) increases faster than v/k, while std (IE¢[As; ; 4])
converges to zero if a long-run version of PPP holds and the real exchange rate is station-
ary.° On the other hands, as k — oo, a long-run version of U.LP kicks in and by — 1.
Lustig, Stathopoulos, and Verdelhan [2019] show that long-run U.LP. is implied by no ar-
bitrage when real exchange rates are stationary. Finally, there is evidence that exchange
rates are more predictable as k rises, indicating that R? rises. Thus, as the horizon in-
creases, the bound is easier to satisfy. We return to this observation in the next section on

wedges.

5 Bond Euler Equation Wedges

Proposition 1 shows that IRBC models with the four bond Euler equations cannot simul-
taneously generate a negative Backus-Smith coefficient and replicate the Fama regression
coefficient and the Meese-Rogoff puzzle. As a result, we need to entertain models that
break these four Euler equations in one way or another.

One approach to doing so is in Corsetti et al. [2008], Pavlova and Rigobon [2012].
These papers consider incomplete-market settings in which only one type of bond is
traded. When the bond is denominated in a given country’s numéraire, this set-up drops
two of the four Euler equations we consider. When the bond is denominated in a basket
of country-level numéraires, this set-up drops all of our four Euler equations and replaces
them with two new ones. Investors around the world clearly do trade bonds in different
currencies, so that we will not entertain this possibility as a resolution to the puzzle.

We instead outline three other approaches that can work: introducing convenience

yields on home bonds, introducing transaction costs when investing in foreign bonds,

6 As noted by Rogoff [1996], the real exchange rate’s rate of convergence to its long-run mean is slow.
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and introducing financial intermediary frictions. We study each of these cases next and
explain how they implicitly insert cross-currency Euler equation wedges into the model
we have considered.

5.1 Home Currency Bias, Convenience Yields and Financial Repression

We break the four Euler equations by considering the case where investors have an ex-
tra preference from purchasing the bonds in their own currency. We denote these home
wedges for the domestic and foreign investor respectively as (¢, ¢} ). Then, the four Euler
equations can be expressed as follows:

exp(¢r) = B¢ [exp(my i1 +11)],

1= [exp(myri1 — Aspy1 +11)], 5)
exp(¢;) = E¢ [exp(my, 4 +17)],

1= [exp(m;"tﬂ + Aspyq +11)] -

Assuming log-normality, we obtain two expressions that relate the expected currency
excess return to the perceived risks from the home and foreign perspectives as well as the

wedges:
. 1
(rf — 1) — Et[Aspq] + EWH(AStH) = —covy (M1, —ASe41) — Pr,
1
(re — 1) + Be[Aspiq] + §W”’t(A5t+1) = —covs(my s 1, A8141) — Pr -

Combining these equations yields the following characterization of the conditional
exchange rate cyclicality:

Proposition 4. In the presence of Euler equation wedges, the conditional exchange rate cyclicality
is given by:

covt(My 1 — My i1, Asp1) = vary(Aspr) + (¢ + @7 ),

and the conditional correlation is given by:

Stdt(ASH_l) (‘Pt + (P;k)
] (1 + ) .

*
corry (M1 — My q, Asp1) =
' stdy (M1 — My, vary(Asgi1)

In order to obtain a pro-cyclical exchange rate with cov;(m; 11 — m:‘,t Ry Asiy1) <0,
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we need

vart(AstH) < —((Pt + (P;k) (6)

In other words, there is no need to shrink the conditional exchange rate variance to zero
in order to generate an exchange rate disconnect from SDF innovations. Negative wedges
¢ and ¢* can mitigate the conditional version of the Backus-Smith puzzle. These wedges
reduce the need for the exchange rate to respond to SDF shocks in order to enforce the
bond Euler equations.

Importantly, the wedges enter the determination of the exchange rate cyclicality di-
rectly in their first moments, as opposed to their variances or covariances with other vari-
ables. In fact, the wedges can even be constant and still matter for exchange rate cycli-
cality. This is because the wedges directly enter the investors” Euler equations (9), which
require endogenous adjustments in the covariances between the exchange rate and the
SDFs. In other words, these wedges are substitutes for covariances between the exchange
rate and the SDFs.

The negative bond wedges ¢ and ¢* can be interpreted in a number of ways. First,
they can reflect a home bias by investors, which has been documented extensively in the
literature [see, e.g. Lewis, 1995b], and particularly a home currency bias in bond holdings
as documented by Maggiori et al. [2020].

Second, they can be a symptom of high convenience yields that home investors re-
ceive on their home bond holdings. Krishnamurthy and Vissing-Jorgensen [2012] present
such evidence for U.S. Treasury bonds, while Diamond and Van Tassel [2021] present evi-
dence for risk-free government bonds around the world. Note that the negative ¢ and ¢*
can capture home investors’ preference for home bonds, and not foreign investors’ pref-
erences for U.S. dollar bonds as argued for in Jiang et al. [2018]. We return to this latter
case below.

Third, the negative ¢ and ¢* can be seen as a symptom of financial repression. Gov-
ernments routinely adopt measures to allow themselves to borrow at below-market rates.
This is usually referred to as financial repression [see Reinhart, Kirkegaard, and Sbrancia,
2011, Chari, Dovis, and Kehoe, 2020]. During the Great Financial Crisis, banks were in-
duced by their national governments to buy the sovereign debt of their countries [Acharya
and Steffen, 2015, De Marco and Macchiavelli, 2016, Ongena, Popov, and Van Horen,
2019]. Since the 2008 GFC, central banks in advanced economies have increased the size
of their balance sheets to purchase government bonds, a new wave of financial repres-

sion [see Hall and Sargent, 2022, for a comparison of the pandemic and two World Wars].
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Financial repression come in other forms, including macro-prudential regulation that fa-
vors government bonds, direct lending to the government by domestic pension funds
and banks, moral suasion used to increase domestic bank holdings of government bonds
[see Acharya and Steffen, 2015, De Marco and Macchiavelli, 2016, Ongena et al., 2019, for
examples from Europe during the GFC].” Japan, and its yield curve control policy, is a

textbook example of financial repression.

5.2 Cross-Currency Wedges and Costs of Foreign Bond Investment

We next consider wedges only in the Euler equations of investors buying foreign cur-
rency risk-free bonds. These wedges for the home and foreign investors respectively are

denoted as ¢; and ¢;. Then, the four Euler equations can be expressed as follows:

I
s
¢
%
o
3

exp(&f

These wedges are security-specific: they only apply to the bonds denominated in a cur-
rency different from the domestic currency. If the wedges are positive, investors effec-
tively apply a higher discount rate to the foreign-currency bond payoffs and therefore
require a higher expected return.

Reorganizing the terms, we obtain two expressions that relate the expected currency
excess return to the perceived risks from the home and foreign perspectives as well as the

wedges:

. 1
(rf —r1) —Et[Asiq] + EWVt(AStH) = —covi(My 1, —Asi1) + G, .
7

1
(re — i) + E¢[Aspiq] + Evart(AstH) = —covt(m;",tH,AstH) + ¢

Combining these expressions, we directly obtain the following characterization of the

conditional exchange rate cyclicality in the presence of Euler equation wedges.

Proposition 5. In the presence of Euler equation wedges, the conditional exchange rate cyclicality

7Chari et al. [2020] derive conditions under which forcing banks to hold government debt may be opti-
mal, because it acts as a commitment device.

20



is given by:
cov (M1 — Miyyq, Aser) = vare(Bser1) — (& +8t),

and the conditional correlation is given by:

std;(Asyy1) (1_ (6f +8) )

*
corry(my 1 — my t+1/ASf+1) = A
’ stdy (M1 — My, )

vary(Asgi1)
In order to obtain conditionally pro-cyclical exchange rates with covy (1 ;41 —my, 1, Asy1) <
0, we need positive wedges that exceed the exchange rate variance:

vary(Ase1) < (Gf +8t). (8)

Consider an equilibrium in which agents hold a positive quantity of foreign bonds, as
is the case in the data, then the {s are effectively a tax on the return obtained by investors
on the foreign bond holdings. Thus, this case can reflect home currency bias as well as the
transaction cost models of Alvarez, Atkeson, and Kehoe [2002b, 2009b] in which agents
need to pay a cost to access foreign securities and currency markets.®

In Proposition 3, we showed that the k-horizon bound is easier to satisfy as k rises, in
part because there is stronger exchange rate predictability in the long run than in the short
run. The wedge counterpart of this result is that the wedges required for making long-
horizon bond investments are lower than the wedges required for making short-horizon
investments. When the wedges are interpreted in terms of transaction costs, this result
is plausible, as a long-horizon investor will effectively pay a smaller per-period cost for
cross-currency investments.

8 These cross-country wedges can also be interpreted as the product of subjective belief mistakes in the
joint dynamics of the foreign bond return and the exchange rate. In this case, while the Euler equations hold
without wedges under investors’ subjective expectations, their biased beliefs implimply Euler equation
wedges for cross-country bond holdings under the econometrician’s information set — for example, if
investors are systematically pessimistic about the foreign bond returns or they overestimate the risks, their
belief bias can lead to positive ¢; and ¢} in the Euler equations.
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5.3 Four Wedges and Foreign Demand for Dollar Bonds

Finally, we consider the case with all four wedges:

exp(¢r) = Er [exp(myei1 +11)],

exp(¢t) = Et [exp(my 1 — Aspr1 +77)], ©)
exp(¢;) = E¢ [exp(my, 1 +17)],

exp(¢r) = Ey [exp(m?,t—i—l + Asp1 + Vt)] .

Assuming log-normality, we obtain two expressions that relate the expected excess
return of a strategy that goes long the foreign bond to the perceived risks from the home
and foreign perspectives as well as the wedges:

1
(rf —re) — Et[Aspia] + Evm’t(AStH) = —cov(Mp 1, —BSt11) + &t — Pt

N 1
(re —17) + Et[Asppq] + EWVt(AStH) = —covt(my 1, Aspq1) + 8 — ;.

Combining these equations yields the following characterization of the conditional
exchange rate cyclicality.

Proposition 6. In the presence of Euler equation wedges, the conditional exchange rate cyclicality
is given by:

cov(My 1 — My i1, Aspy1) = vary(Asp1) — (8 + ) + (P + 7 ),

and the conditional correlation is given by:

*
corr(my i1 — Miyq,B8411) =

stdi(Asi11) (¢ +¢f) — (5 + 1)
) (1 + ) .

stdy (M1 — My, vary(Asgi1)
In order to obtain pro-cyclical exchange rates covy (m; ;11 — mj}, Ry Asiy1) < 0, we need
vary(Asp1) < (8¢ +8e) — (¢ + ¢F).

Next, we derive restrictions on the wedges that are needed to change the sign of the
unconditional exchange rate cyclicality.

Proposition 7. Let

w = E[—(& + &) + (¢ + ¢ )] — cov (¢f, qt) + cov (¢, qt)
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In the presence of Euler equation wedges, each of the following is a necessary condition for a
negative unconditional exchange rate cyclicality, i.e., cov(my 1 — mj, Ry Asii1) < O:

(a)

std (vari(mg ;1)) 1 w 1R?
, > /R2 | Z ‘Fama __
std(As;11) — V/R2 L+ var(Aspi1) VR b R2 1

If the Fama regression yields the best predictor of the exchange rate movement, then, we can sim-
plify the formula to

std (vary(ms41))
std(Asi11)

>

e ) R ()

w _ . Std(ft — St)
(1 * WV(AStH)) VR + sign(b) std(Asi1)

-3~

(b)

std(E¢[rxpyq])  std (varg(myspq)) 1 w
\/ Sd(Eids ) | stA(Ei[As]) - R (1+var(Ast+1)>'

Among these conditions,
e (1) = (b).

e If Fama regression yields the best predictor and b ¢ (0,1), (b) = (a); otherwise (b) is a
weaker condition.

In the presence of the Euler equation wedges, these conditions can now be satisfied
even if the exchange rate is close to a random walk with small R?. If w is negative enough
to flip the sign on the right-hand side, then, we do not need to rely on a highly volatile
market price of risk and/or large U.LP. deviations. This being the case, the necessary
condition of a negative unconditional exchange rate cyclicality can be satisfied if b < 0,
even with constant market prices of risk.

Jiang et al. [2021] present evidence that foreign investors obtain a higher convenience
yield on dollar bonds than U.S. investors. They show that this possibility helps to explain
why the dollar appreciates during global recessions.

This case is one where §; < 0 and {; < ¢, or —¢; + ¢; > 0. Note that this case makes
it harder to satisfy the restriction in Proposition 7. That is, with,

w =E[(=G¢ + 1) + (=Gt + 91 )] — cov (¢t q1) + cov (1, q1) ,

23



if (=} + ¢¢) > 0, the rest of the terms need to be sufficiently negative to offset this pos-
itive term. This can occur if {; > 0 and U.S. investors face transaction costs of investing
in foreign bonds, as well as if ¢; < 0 and foreign investors derive a convenience yield
on their own domestic currency holdings. As such, while foreign investors” bond con-
venience yield can generate the dollar appreciation during global recessions, a different
type of the Euler equation wedge, which is closer to home bias, is needed to generate a

negative unconditional exchange rate cyclicality.

5.4 Calibrated Examples

Let us return to the numerical example we considered in Section 4.1. If we assume that the
Fama regression yields the best predictor, we can rearrange the condition in Proposition
7 to obtain

—w > var(Asty1) {1 + R? (% - 1)} — V R?std (vari(mys11)) std(Asii1),

which provides a lower bound on the sum of the wedges. If we assume var(As;; 1) < 0.12,

R? < 0.05and b = —1 from data, and std (vari(m;;41)) = 0.067 from the long-run risk

model, then, we obtain
—w > 0.75%.

For example, if we attribute w all to the wedges ¢; and {; associated with the foreign
transaction costs, then, the average cost E[¢} + ¢;] /2 that is necessary to generate a nega-
tive unconditional exchange rate cyclicality is about 38 basis points.

Moreover, given a negative Fama coefficient, i.e,, b < 0, this bound becomes even
tighter if the exchange rate is less predictable. In the limit, R> = 0 and the bound becomes
—w > wvar(As;11) = 1%, which is in line with our characterization of the conditional
exchange rate cyclicality in Proposition 5 and Eq. (8) in particular. The bound is also
tighter if std (var¢(m; ;1)) is smaller, i.e., if the conditional log SDF variance has a lower
volatility.

We can also vary the value of std (vari(m;;11)) and plot the lower bound on the
wedge —w. Figure (3) plots this relationship. Consistent with our results in Section 4.1,
std (vary(my11)) needs to be about 0.40 in order to generate a negative unconditional
exchange rate cyclicality without the Euler equation wedges. This value, as we showed
above, is much higher than the moments from standard asset pricing models such as the

long-run risk model and the external habit model.
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FIGURE 3. LOWER BOUND ON THE EULER EQUATION WEDGE AS A FUNCTION OF THE VARIABIL-
ITY OF THE CONDITIONAL LOG SDF VARIANCE

Notes: The figure plots the lower bound on —w as a function of std (vars(m; 1)) as implied by Proposition
7. We take b = —1, R? = 5%, and std(As; ;1) = 10%.

Alternatively, if we assume that the forward premium has no predictive power for
the exchange rate movement with b = 0, while maintaining the other assumptions of
R? = 5%, std(As;y1) = 10%, and std (var¢(m;;11)) = 0.067, we obtain a slightly tighter
bound

—w Z 0.80%.

Finally, in more recent research, new variables have been shown to predict exchange
rate movements with corresponding increases in R2. See Stavrakeva and Tang [2020],
Chahrour, Cormun, De Leo, Guerrén-Quintana, and Valchev [2021], Dahlquist and Pénasse
[2022], Chernov, Dahlquist, and Lochstoer [2023a]. Consider Kremens and Martin [2019],
Kremens et al. [2023] who show that a combination of the quanto risk premium and inter-
est rate differential can capture 16% of the exchange rate variation at the two-year horizon.
If we assume that a similar explanatory power can be attained at the one-year horizon,

then, Proposition 7(a) gives,

1R2
—w > var(Asiq) |1+ R? (E% — 1)] — V' R2std(As;1)std (vari(my 1)) -
Using the same calibration targets var(As; 1) < 0.12, R%, < 0.05and b = —1, and
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std (vari(ms1)) = 0.067, we obtain a lower bound of —w at 0.52%. Compared to the
bound of 0.75% we obtained above, this example shows that greater exchange rate pre-
dictability lowers the magnitude of the wedges required to generate a pro-cyclical ex-
change rate.

5.5 Intermediation Models

Gabaix and Maggiori [2015], Itskhoki and Mukhin [2021] consider models in which the
bond markets are segmented between countries and financial intermediation is required
for cross-country investments. Since the households cannot directly trade the foreign
bond, their Euler equations for the foreign bonds do not hold. That is, this model is
consistent with our characterization by eliminating two of the four Euler equations we
consider. The intermediation models include a third set of agents (“arbitrageurs”) that
partly integrate markets and whose Euler equations price currency returns. In particular,
these models consider an agent that chooses a portfolio to maximize wealth w; 1, where
this wealth can be measured in either home or foreign currency without any substantive
change in results. The arbitrageur trades in both home and foreign bonds and prices the
carry trade return:

1
(rf —re) — E¢[Aspiq] + Evart(AstH) = —covt(wis1, —ASt11) + Xt (10)

The covariance term here is the risk premium required for bearing carry trade risk by the
intermediary, as in intermediary pricing models [He and Krishnamurthy, 2013]. The ad-
ditional wedge x; can reflect a Lagrange multiplier on a leverage constraint as in Gabaix
and Maggiori [2015]. The signs of both terms can depend on which currency the arbi-
trageur invests and which it borrows.

These models fall within the set of models that in our characterization can address
exchange rate disconnect. They do so by adding wedges in two of the Euler equations. To
understand the connection in further detail, we consider the Gabaix and Maggiori [2015]
model and map the key equations of that model to the wedges we have considered.

Specifically, we consider an extension of the Gabaix and Maggiori [2015] model in
which households receive non-tradable endowment shocks which drive variations in
their marginal utilities. The model can be presented in a two-period setting, with periods
t = 0 and 1. We leave the details in Appendix B.

In this model, the households can freely trade domestic risk-free bonds. So, the Euler
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equations for domestic bonds holds:

1 = Eolexp(my +19)],
1 = Eolexp(mj +rg)].

However, due to market segmentation, the households cannot directly trade foreign bonds.
The Euler equations for foreign bonds have endogenously determined cross-currency

wedges:

exp(&o) = B¢ [exp(my — Asy +19)],
exp (o) = Et [exp(m] + Asy +710)] .

These wedges can be interpreted as the reductions in the expected returns on foreign
bonds that would make the households indifferent between holding domestic and foreign
bonds. If we open the foreign bond markets but keep the risk-free rates as they are, the
households have incentives to either buy or short-sell the foreign bonds when the wedges
are zero.

The model has a date 1 non-traded endowment shock (which affects the SDF) and
an import demand shock which must be financed via international capital flows. Since
households cannot directly access international financial markets, the currency imbalance
is accommodated by an arbitrageur. Exchange rates and the expected return on the ex-
change rate adjust to satisfy the pricing condition for the arbitrageur. The details of the
model are in Appendix B.

Figure (4) present the equilibrium magnitude of the Euler equation wedges &g + &
and exchange rate cyclicality corr(m; — mj, As;) as we vary correlation between the non-
traded endowment shock (which affects the SDF) and the import demand shock (which
affects the currency imbalance that the arbitrageur needs to absorb). Our calibration
details are also presented in Appendix B. In the presence of market segmentation, the
wedges are always non-zero and lower 1 — (o + ¢j;) /var(As;) below 1. When an in-
crease in the home SDF becomes more correlated with the import demand shock which
increases the demand for foreign goods and depreciates the home currency, the exchange
rate becomes more pro-cyclical (i.e., more negative corr(m; — mj, Asy)) while the wedges
increase (i.e., more negative 1 — (o + ¢5) /var(Asy)).

This result supports the exchange rate cyclicality result in Proposition 5, reproduced
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FIGURE 4. EULER EQUATION WEDGE AND EXCHANGE RATE CYCLICALITY IN THE GABAIX AND
MAGGIORI [2015] MODEL

below:

*
corre(mpp1 — My q, A1) =

stdp(Asi1) (1_ (&F +¢t) )

stdr (M1 —my,, ) vary(Asiiq)

Even when the Euler equation wedges ¢; and ¢; are not directly measurable transac-
tion costs or convenience yields, but instead arise as the “shadow prices” in a segmented
market setting, their properties still help us characterize the exchange rate cyclicality. In
this sense, the wedge accounting provides a framework to understand the exchange rate
cyclicality in intermediation models.

5.6 Discussion of Other Specific Models

Lastly, we discuss other specific models that nest our Euler equations and clarify the
wedges they imply.

Bond Convenience Yields. The wedge equation wedges can also arise from bond con-
venience yields. For simplicity, we follow Jiang et al. [2024] and assume convenience
yields arise from a bond-in-utility set-up, which can be microfounded by more structural
models.

Specifically, the home households’ utility is derived over consumption and the market
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value of home bond holdings:

Eo | Y 6" (u(cr) +v(bmy)) |,
t=0
and their budget can be expressed as

Ve + by p_1exp(ri—1) +bei—1exp(ri_; —st) = ¢t + bt + bprexp(—st) + b1 exp(ri—1).

Similarly, the foreign households also derive utility from holding the home bond,
which leads to the following set of Euler equations:

' (bp )
1— W) E¢ [exp(mi1 +11)],
1 — IEt [eXp(mt+1 - Aet+1 + r;’k)] /
1= [exp(mjq +17)],
v’ (b} ;)
V=P _ g oty + e ).
u'(cf)

In this setting, due to the non-pecuniary utility derived from holding the home bond,
home and foreign households are willing to accept a lower return on the home bond,
which is determined by the marginal utility of bond holding scaled by the marginal utility

of consumption. The Euler equation wedges can be expressed as
v'(br,t) "
= 1 1 — 4 =
4)t Og ( u/(ct) 7 471' O/

* vl(b}k-l,t) o
Ct—10g<1—m>, ¢ =0.

This specification also has a simple interpretation: for example, when the foreign

households derive a higher marginal utility v'(b;,) from holding the home bond, they
accept a lower risk-adjusted return on the home bond, which is associated with a lower
wedge ;.

Financial Repression. We consider a very stylized setting in which agents find domes-

tic bonds more desirable due to regulatory reasons. This can be modeled as a shadow
value h(-) from holding the domestic bond, which similarly enter the households’ utility
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functions. This implies the following Euler equations:

W (by t)
1— ey = E¢ [exp(mir1 +14)],
1 =E; [exp(mey1 — Deppq +11)],
L= ey = B [explmia +1)]

1= IEt [exp(m,fH —+ Aetﬂ + Tt)} .

In this case, the Euler equation wedges can be expressed as
h (bp,t) W (bt,)

=1 1-— : F =1 1-— .
r=tos (1=t ) o= 1

C::O/ Ci’:O/

).

which implies that the regulatory constraints effectively lower the required return on the
domestic bond, which gives rise to home bias in bond holdings for both home and foreign
households.

Aslongas ¢; < 0and ¢; < 0, the w term in the unconditional exchange rate cyclicality

bound can be negative, which will make it easier to generate a pro-cyclical exchange rate.

Holding Cost. Moreover, if the agents face a holding cost or capital gain tax from hold-
ing the foreign bond, the Euler equations also imply wedges. For example, if the home
and foreign households both have positive positions on the cross-country bond holdings,
the Euler equations can be expressed as

~—~

where 7; and 7" are positive numbers denoting the reduction in returns from the cross-
country positions. These wedges can be motivated by the capital gain tax on the returns r;
and r; from foreign bond holdings, or by the management fee for international portfolios.
In this case,

(Pt:()/ <P;k:0/

30



Gi=1, &=

As long as the transaction costs {; and (; are positive, the w term in the unconditional
exchange rate cyclicality bound can be negative, which will make it easier to generate a
pro-cyclical exchange rate.

Having said this, if the households hold negative positions on the foreign bond, the
Euler equation wedges 7; and 7" will be negative in order to reflect the reductions in their
short positions.

6 Conclusion

We derive a simple and general characterization of the bilateral exchange rate’s cyclical-
ity with respect to the differential between home and foreign SDFs. If investors can freely
trade the risk-free bonds in both countries, their optimality conditions impose strong re-
strictions on the relation between exchange rates and macro fundamentals that is difficult
to reconcile with the data. In order to break this relation, models need to produce wedges
in the cross-currency Euler equations of investors.

We regard our results as ruling in a class of models involving home bias/transaction
costs, convenience yields, or intermediation frictions as resolutions to the exchange rate
puzzles. In particular, the wedge of 38 basis points in each direction is plausible and
in the range of frictions measured in the literature, as for example in the literature on
CIP deviations [Du, Tepper, and Verdelhan, 2018]. Alternatively, at a broader level, our
approach offers a model-free diagnosis for the necessary conditions needed to explain

exchange rate disconnect and predictability.
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Appendix

A Proof

A.1 Proposition 1

Proof. Combining

N 1
E¢[Ast1] +1e — 1§ = covg(mypi1, —Aspy1) + Evart(AstH),

1
—(]Et[ASH—l] + 1y — 1’?) = COUt(mZt+1, Ast—l—l) + EULIH(AS)}_H),
we directly obtain

covs(Mypq1 — My 1, Asp1) = vary(Asp1q) > 0.

A.2 Proposition 2

Proof. Using the definition of p; and g, we can restate the covariance as follows:

. 1 . 1
cov(IE[my 1 — my, 1], Et[Asiq]) = cov(ps + g1, q¢) + 5€00 (vary(my,,1),qt) — 5€00 (vary(mysi1),qt) -

Note cov(pt + qt,q¢) = b x var(p: + g¢) by the construction of the Fama regression.
Then,

1 1
cov(IBs[myi1 — mfy, 1], Be[Aspy1]) = b x var(pr + q1) + 5cov (vare(mf; 1), q:) — 5cov (vare(mg 1), q:) -
A negative unconditional exchange rate cyclicality then implies

cov(my i1 — mjy 1, As1) = E[vari(Asi1)] + b < var(ps + q;)

1 . 1
+ 5co0v (vare(my,q1),q:) — 5C00 (vare(mys41),qt) <0

Rearranging terms,

1 1
5C00 (vary(mys41),qt) + 5€00 (vart(my,, 1), —qt) > E[vari(Asi1)] + b x var(ps + q;)
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Without loss of generality,

1 1 .
cov (vari(mysi1),qe) > 5€00 (vari(mgs41),qt) + 5C00 (vary(my, 1), —qr)

> Elvar(Asiy1)] + b X var(pt + q¢)

We note corr (vars(mys11),4:) < 1. Hence, a necessary (but not sufficient) condition is
given by:

std (var(my,41)) > E[var;(Asiy1)] + b x var(fi — st)

std(IE¢[Ass11])
var(Asyyq) — var(E¢[Asi1]) + b x var(fi — s¢)
std (vary(m >
( t( t,t+1)) - Std(]Et[ASHl])
var(Asy11) + b x var(fy —st)
>
std (vart(mt,t+1)) + Std(]Et[ASH-l]) = Std(IEt[ASt_H])
std (vary(m; ;1)) var(Asyy1) + b X var(fr — st)
1>
std(E¢[Ass41]) var(E[As;y1])
which implies
std (vary(mys41)) var(fr — st) var(Asii1) 1
) g x > - (Al
StA(Ea[Asy 1)) var(Eidsia]) = var(Bildsy)) -~ k2 O

Now, notice that

b cov(Asiiq, ft —s¢)  std(Aspiq)

var(fr —s1) = St(f, - St)COT’T’(AStH/ft — 5¢).
We obtain
std (vary(mypiq)) 1 var(fi — st) 1
Std(ASH_l) vV R?2 vﬂr(ASH_l)Rz — R?
std (vary(mys11)) VR —b corr(Asii1, fr — st)? > 1
std(Asii1) b2v/R2 VR?

std (vary(my ;1)) 1 R2
, > . \/ﬁ + Fama
std(Asty1) VR2 bV/R2

When Fama Regression yields the best predictor, R%,, . = R?, the formula is simplified

to

std (vary(m41)) 1 ~ 1 =
, > _ 2 - 2
std(As;11) — /R2 R+ b R%
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where

|b|5td(ft — St)

1 . std(f,g—st)
b std(Asiq) = sign(b) '

Astiq

-

Hence, we arrive at condition (a).
Next, we show condition (b). By using the definition of covariance and imposing
symmetry:

cov(IBs[my 11— mfy, 1], Be[Asiy1]) = cov(ps + g1, q1) — cov (vari(myri1),q:)

= var(q:) + cov(pt, qe) — cov (var(Meei1),qGe) -

Using the definition of the covariance, this covariance expression on the left-hand side
can be bounded below as follows:

cov(Bs[my i1 —myiyq], Be[Asp1]) > var(qe) — std(pe)std(q:) — std(qr)std (vari(mysi1)) -

This lower bound can be restated as:

* std std (vary(m
cov(IBs[my 11 — miy,q], Be[Asty1]) > var(qe) (1 (pt) (vars( t,t+1))> .

B std(qy) B std(qy)

To get a negative unconditional Backus Smith coefficient, we need the following con-
dition:

cov(mypy1 — My q, A1) = Elvary(Aspi )] + cov(By[my 1 — myiy 4], Et[Asi1]) < 0.

This can be restated as follows:

—E[vari(Asiy1)] > cov(Bs[my 1 —miy ], Ee[Asiq]) > var(qe) (1 _std(py)  std (vart(mt,tﬂ))) |

std(q:) std(q:)

Rearranging terms, we obtain the following result:

std(pr) Std(vart(mt,t+1))>1 E[var;(Asiy1)]

+
std(qy) std(q¢) - var(qe)
Note that
14 Elvar:(Asii1)] _ var(IE¢[As;11]) + Elvari(As;11)] _var(Aspyq)
var(qy) var(E¢[As;11]) var(E¢[Asi11])
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Hence, we obtain the necessary condition (b) by using the definition of the uncondi-
tional variance:

\/std(pt) N std (vari(mi41)) < std(Aspy1) 1
std(q:) std(q))  — std(qr)  VRZ

To compare conditions (a) and (b), note that condition (a) can be written as Eq. (A.1),
reproduced below,

std (vari(ms41)) B var(fr — st)
std(E[As;41]) F1-bx var(E¢[Asi41]) =

1
ﬁ/
it suffices to compare the term std(E¢[rx;11]) /std(IE¢[Asi11]) = std(pe)/std(g:) in (b) with
1 —boar(fi — s¢) /var(Es[Asi1]) = 1 — boar(pe + q¢) /var(g;) in (a). Consider the general

case, when Fama regression does not necessarily yield the best predictor. Take conditional
expectation on both sides of the regression yields

qr = a+b(pr +qi) + x¢
where x; = [E;[e; 1] satisfies that

cov(xt, pr + q¢) = cov(ess1, pr + qi) — cov(ery1 — Xt, pr +q¢) =0
cov(xt, q¢) = cov(xy, b(pe + qi)) + var(xy) = var(x;)

Hence, var(q¢) = b?var(p; + q;) + var(x;), and

_qvar(prtq) 1 (0 var(x)
1=t var(qe) ! b(l Uﬂr(ﬁlt))

B 1 1 var(x;)
a (1 E) + boar(qs)’
On the other hand, py = —a/b+ (1/b — 1)g: — x;:/b, which implies

std(pr) 1 1 2 1 > /1
std(qe) — std(qy) \/(5 - 1> var(q:) + ﬁUﬂT(Xt) 3 (E — 1) var(x;)

) )

41



Note that
(oo ™) = o) G 8) G o ()
= (star) (1) st

which implies that, when var(x;) > 0, i.e., the Fama regression does not yield the best

predictor, condition (a) is always tighter.
When var(x;) = 0, i.e., Fama regression yields the best predictor, we obtain

(1) (e

_puar(petaq) ()1
1-b var(qy) _(1 b’

and

When1—-1/b > 0,ie, b < 0orb > 1, condition (a) and (b) are equivalent. Otherwise,

1-— bm;(lf—(t;:;m <0< Stdipti and condition (a) is tighter.

]

A.3 Proposition 3

The proof is identical to the proof of Proposition 2. Just replace the one-period objects

(e.g., my ;1) with the multi-period objects (e.g., m1; ;).

A.4 Propositions 7

Proof. From

1
¢t = E[mypiq] + Evﬂrt(mt,tﬂ) + 14,

1 1 .
Gt = E¢[my 1] + §Wrt(mt,t+1) — E;[As; 1] + EWW(AStH) + covy(my 1, —Aspqq) + 17,

1
¢ = Ei[mf;, ] + Evart(mi‘,m) + 77,

1 1
&= lEt[mz‘,tH] + ivart(m;‘,Hl) + E¢[Aspq] + Evan(AstH) + covy(my 1, Aspi1) + 1,
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we obtain
Etlmyrpr —miy ] = svari(myy ) + 11 — ¢ — Joard(myeea) —re+ ¢r
Then

ES 1 *
cov(Es[my 1 — mf;, 1], Be[Asi1]) = cov(ps + g1, qt) + 5cov (vare(mf; 1), q:) — 5cov (vari(meii1),qt)
— o (91, 41) + 00 (91, )
1 . 1
= b x var(p; + q¢) + 5€00 (vare(my, 1), q:) — 500 (vart(misi1),qt)

—cov (¢f, qt) + cov (¢r, g¢)

A negative unconditional exchange rate cyclicality then implies

cov(my 1 — m?,t+11A5t+1)
=E[var;(Asiy1) — (Gf +&t) + (¢ + ¢f)] + b < var(p: + q;)

1 1 X
+5c00 (vare(mfy 1), q:) — Hcov (vary(myp1),qe) — cov (§f, qe) + cov (¢r,4r) < 0

Rearranging terms,

1 1 .
5€00 (vary(mgii1),9t) + 5€00 (vart(mf,tﬂ), —qt) — cov (¢, q¢) + cov (¢f, )

>Efoart(Asi1) — (8 + &) + (9 + @) + b x var(ps + g1)
By assumption,

cov (vary(mysi1),qt) — cov (¢, q¢) + cov (¢f, qt)
>E[vari(Asiy1) — (& +Gt) + (¢ + ¢ )] + b x var(pr + qt)

Let w = E[—(&f + &¢) + (¢r + ¢ )] — cov (¢f, q¢) + cov (¢, q¢) denote the new adjust-
ment term that arises from the wedges. Then, a necessary (but not sufficient) condition is

given by:

Elvari(Asi11)] + w + b x var(fi — s¢)
Std(IEt[ASt+1])

var(Asiy1) — var(Ey[Asg4]) + w + b X var(fi — s¢)
std (var;(m >
(vari(mpiy1)) > std(E¢[As;11])

std (vary(mypq)) >
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var(Asi11) + w + b x var(fy — s¢)
Std(IEt[ASH_l])
var(Asp41) + w + b x var(fr — s¢)

std (vari(mp41)) + std(E¢[Asi]) >

std (vary(ms41))

+1>

std(E¢[As;41]) - var(E¢[Asi11])
which implies
std (vary(mypi1)) var(fy — st) var(Asip1) +w
+1-bx >
std(E[As;41]) var(E¢[As;11]) = var(E¢[As;iq])
I O
- R2 var(As; 1)
Recall that R2 = = b?var(f; —s;)/var(Asiy1). Hence,

std (varf(mt,tH)) L1-bx Uar(ft - St) > 1 (1 + L)
var(

std(Asp 1)V R? var(Aspi1)VRZ R2 Asti1)
std (vary(mys41)) — RZ 1 w
’ RZ _ ama ~, 1
std(Asii1) * b — VR2 var(Asii1)

std (vary(my41)) 1 ( w ) R%“
A1) 1+ — VR? 4 ~tama
std(Asiy1) — VR2 var(Asiy1) bvV/R2

2

2 . = R2, the formula is simplified to

When Fama Regression yields the best predictor, R

std (vary(mypi1)) 1 w V R?
1)) 1+— 2 ) VR4 YT
std(As;i1) — VR2 * var(Asii1) L

where

1 1 ’b’Std(ft — St) . Std(ft — St)
_VR2 =" 7AME T e
b R b std(Aspiq) sign () Asiiq

Hence, we arrive at condition (a).

Similarly, condition (b) can be derived as

std(E¢[rxpiq]) | std (varg(mpseq)) 1 w
\/ std(ErfAsia]) T std(Eidsin]) = B2 (1 + var(AstH)) '

the relation between condition (a) and (b) depends only on the Fama regression but not
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the Euler equations, thus are identical to that in Proposition 2. ]

A.5 Non-Gaussian Case

We define conditional entropy as follows:

Li(Xe1) = (log By [Xipa] — Ei[xpa]) -

We can use yj; to denote the i-th central conditional moment of log X. Then we can state:

(ee]

log E;exp(sxi41) = Zstjrf/j! = k¢(xp41;8)
j=1

where k1 = p1y, Kop = Mot K3p = M3t Kap = MHap — Sygt. This implies that the conditional
entropy can be stated as the sum of the higher order cumulants:

Li(Xe1) = Y xje/jt = ke(xp30;1) — 1.
=2

The log of the currency risk premium (in levels) earned by domestic investors can be

stated as:

. 5 S
(rf —rt) —Et[Aspq] + Ly {—t} = —C (Mt+1/ —t) ,
St+1 St+1
where co-entropy is defined as C¢ (X441, Yt+1) = Le(Xp41Ys+1) — Le(x¢41) — Le(ye41) [Backus,
Boyarchenko, and Chernov, 2018]. If x;,1 and y; 1 are independent, then C¢(x;41,Y41) =

0. If we define the cumulant generating function,

log E exp(s1xt41 + Sayir1) = ki(s1,82)

then C¢(x¢41,¥r+1) = ke(1,1) — ke(1,0) — k¢(0,1). A long position in foreign currency is
risky for the domestic investor when the foreign currency tends to depreciate (and the
home currency appreciates) in worse states for the domestic investor, i.e. when

St

C (Mtﬂ/ St+1> <0

is more negative. Similarly, the log of the currency risk premium (in levels) earned by
domestic investors can be stated as the co-entropy of the domestic SDF with the domestic
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currency’s rate of appreciation:

S .S
(rt_rt) +IEt[ASt+1] +Lt |: ;J:l:| _ —Ct(Mt+1’ tstl)

Proposition 8. In the non-normal case, the conditional exchange rate cyclicality satisfies

St41 St St St41
—Ce(Mi1q, g ) — Ci (Mt+1, =L + L |22 > 0. (A.2)
S St+1 St1 S

In the normal case, we recover the covariance result in Proposition 1. When the domes-
tic currency appreciates in worse states for the domestic investor, we have C; <Mt+1, %) <
0. Similarly, when the foreign currency appreciates in worse states for the foreign investor,

x  Sti1

we have C¢ (M}, , =5) < 0.

Because the right-hand side is positive, as entropy is non-negative, we know that ex-
change rates will have to be counter-cyclical for at least one of the countries, and possibly

both.

Proof. The U.S. Euler equations are given by

Etlexp(m1 + )] =1
Eilexp(mii1 +1f —Aspp1)] =1

where m;1 = log M;.1. By the definition of entropy and co-entropy, we recast the equa-

tions as follows

0 = log E¢[exp(m;y1 + 7t)]
= log E¢[exp(m;y1)] + 14
= log E¢[mi1] + Li(Mit1) + 11

0 = log E¢[exp(ms1 +1f — Aspi1)]
= log E¢[exp(my1 — Aspy1)] + 17

S x
= E¢[m1 — Aspy1] + Le(Mypp1o— S ) + 1
S St

= E¢[mpy1 — Asppq] +1f + Ce(Mpg1, ——) + Li(Mig1) + Li(o—

)

Si+1 Si+1
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Subtract the first equation from the second to get

« S S
ry — e+ E[Asi 1] + Lt(?il) = _Ct(Mt—i—LTj_l)-

Similarly, from the foreign Euler equations we obtain

re —1f — Ee[Aspq] + Lf(ts_tl) = —C(Mj 4, tStl)

Add up the two equations to get the proposition. Note that entropy is always greater
than zero, which ensures the inequality in the proposition.
O
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B Details of the Gabaix and Maggiori [2015] Model

We present details of the Gabaix and Maggiori [2015] model. Relative to their benchmark
two-period model, we introduce a stochastic x/Yy7 ratio instead of assuming that it is
a constant 1. We do this because in the benchmark model, the SDF is a constant in the

numéraire in which bond returns are denominated.

B.1 Environment

Time is discrete and there are two periods: t = 0 and 1. There are two countries, the US
(H) and the foreign country (F). Each country is populated by a unit mass of households,
and has a non-tradable good and a tradable good. For the convenience of exposition, we
use the word currency interchangeably with the numéraire of the economy. The dollar
value and the foreign currency value mean values expressed in units of the non-tradable
good in each country. To make the results comparable to those in Gabaix and Maggiori
[2015], we adopt their exchange rate convention: &; is defined as the quantity of the dollar
per unit of the foreign currency, which measures the strength of the foreign currency. We
use ¢; = log &; to denote the log exchange rate.

Households The US households derive utility from consumption in both periods:
6o log Co + BE[011og C1],

where C; is a consumption basket consisting of Cyr ; units of the local non-tradable good,
Ch + units of the US tradable good, and Cr; units of the foreign tradable good:

Cr = ((CNT.)M (Crp)™ (Crp)') /.

The preference parameters yx;, a4; and 1; are non-negative and stochastic. we define
0t = xt + ar + ;. we use the local non-tradable good as the numéraire in each country, so
that its price in local currency is py1,+ = 1 in both periods.

Non-tradable goods can only be traded domestically, whereas tradable goods can be
traded internationally without any friction. In each period, the US households receive an
endowment of Yy ¢ units of the local non-tradable good and Y ; units of the US tradable
good. The household owns the claim to this endowment and this claim cannot be sold.
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By the first-order conditions,

Xt
=A
CNTt t
a
_C};t = AMtPH
L
gtlt = AtPrs

For simplicity, we fix x; to be a constant between 0 and 1, and allow Cy7; = YnT,£ tO Vary,
which creates variations in A¢, which we treat as an exogenous variable.
The setup for the foreign households is similar. The foreign households’ utility is

* * * * 1/9*
03 log Cj + B"Eo[6} log Ci],  where Cf = ((Cir )M (CF,) (C )% )

The net export in dollar is

E [
NX; = &pyChyy — PriCrr = % - /\—t
t t

Domestic bond market The bond is denominated in the domestic non-tradable goods.
Households can freely trade the domestic bond. For the U.S. households, the Euler equa-
tion is

1=, UNT41

exp(ro) — ¢ |pexpln) |

/
uN T,t

For simplicity, we assume that the distribution of A; is such that E;[A;,1/A:] = 1, which
implies exp(rg) = 1/B. Similarly, we assume [E;[A} ; /A{] = 1, which implies exp(rj) =
1/B*.

The financial market is segmented. The US households can only trade the dollar bond,
and the foreign households can only trade the foreign bond. Let by o denote the quantity
of the dollar bond held by the US households in period 0, which is redeemed in period
1, and let r denote the log dollar risk-free rate. The US households” budget constraints in

the two periods are

YNT0 + PHO0YHO = CNT0 + PH0CH + Pr0oCF0 + bH 0,
YnT1+ PH1YH1 = CNT1 + PH1CH1 + PE1CE1 — exp(10)bH o-
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Financiers In period 0, risk-neutral financiers are born, who intermediate currency flows
subject to a financial friction. In period 1, all financiers unwind their portfolios. To sim-
plify the expression, we follow Gabaix and Maggiori [2015] and assume their profits or
losses are paid to the foreign households.

Each financier manages a financial intermediary that can hold bonds in both curren-
cies. In period 0, the financier has zero net worth, and its balance sheet consists of Qg
units of the dollar and —Qg/&p units of the foreign currency. When Qg > 0, the financier
takes a long position on the dollar bond, and when Qg < 0, it takes a short position. The

expected profit in dollar terms is

Vo = Eo[B(exp(ro) — exp(rg)&1/ &) Qol-

Although the financiers are risk-neutral, they have limited risk-bearing capacity due to
the agency friction considered by Gabaix and Maggiori [2015]. In period 0, each financier
can divert a portion of the funds under its management. If it chooses to do so, it unwinds
its portfolio and receives the portion it diverts, and its lenders receive the rest of the
funds. As the lenders rationally anticipate the financier’s incentive and diversion is a less
desirable outcome, they supply funding to the financier only when the financier has no
incentive to divert the fund, which leads to the following credit constraint:

V 0 QO QO

- > — — .

g() o 50 T 50 ’ (B 1)
~— N —

Intermediary Value in Foreign Currency  Portfolio Size Divertible Portion

where the divertible portion is increasing in the size of the balance sheet |Qp/&y| and in
the parameter I' > 0 proxying for the severity of the financial constraint.
Since the value function Vj is linear in the financier’s currency position Qg while the

constraint is convex, the constraint is always binding. Let

o = Eg[B(exp(ro) — exp(ry)E1/&o))

denote the expected excess return of the dollar against the foreign currency. Then, the
equilibrium portfolio allocation on the dollar bond is

Qo = P20 = LEo[B(exp(ro)én — explr)E)]

Intuitively, the portfolio position on the dollar bond Qy is increasing in the dollar bond’s

expected excess return pg, and decreasing in the severity of the financial friction as cap-
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tured by the parameter I'. A higher I' means the manager has a stronger incentive to divert
the funds, leading to less risk taking in equilibrium. In this way, the agency friction gives
rise to a well-defined currency position and rules out pricing inconsistency despite the

currency financiers being risk-neutral.

B.2 Equilibrium

In equilibrium

¢oo Lo
— 2 4 0y=0
A5 Ao Qo
¢i&1 nu
2= — — —Qoexp(rg) =0

To streamline the algebra and concentrate on the key economic content, we follow
Gabaix and Maggiori [2015] to impose the following simplifying assumption: = B* =
exp(ro) = exp(ry) =1,¢r =1,Af =1,and iy > 0 for t = 0,1. We also assume Ay = 1 and

1o = 1. Then, the equilibrium conditions simplify to

1

& — 1+T]EO[€O —-&]=0
51 — ll)\l_l — %]EO[EO — 81] =0

We have

(1+T)+Eo[1]
2+T

& = nuA]t —EoluA] ] +

& =

14+ (1+T)E[u]
24T

Denote the home and foreign SDFs as

The four Euler equations are

Eglexp(my +19)] =1
Eolexp(my +15)] =1
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Eg exp(m1 —i—T’S)—l =Ey |\ Lide! 0[ 1 ] 2T

g() (1+F)+]E0[11]
] - 24T
r &1 - (L) Bos
Eo |exp(m] +719)=| = Ey + ]
- & AT — o[y + LD Eol]
In the language of our wedge algebra,
(Pf - O/ (P;k == 0,
£ = log Ey | A Ayt —EoluA] ] + 1+(12+r%“30[‘ﬂ] o (1+r2):11§0[11]
+ = log kg 1 , { =logEg - =
Gyl A~ EoliA: ) + T

The exchange rate cyclicality is
covg(m] —my,e1 —eg) = covy(—log Ay, eq —ep)

If we mute the variability of 11, then, the foreign currency strength £; is decreasing in the
home households” marginal utility A1, which generates a pro-cyclical exchange rate. The
intuition is that the higher marginal utility in the home country is created by a shortage
of the non-tradable goods, which also lowers the demand for the imported foreign goods.
To equilibrate the trade balance, the foreign currency must depreciate, which is consistent
with the standard frictionless setting that leads to the Backus-Smith puzzle.

To overturn this result, we need to introduce a negative correlation between ; and
AL ! so that a higher marginal utility in the home country is associated with a higher home
demand for the foreign goods, which appreciates the foreign currency. The variation in
the correlation between 1 and A ! also affects the exchange rate wedges & and &. As
such, the levels of these wedges can be interpreted as covariances under this segmented

market model.

B.3 Numerical Example

To make this point more concretely, we consider a very stylized numerical example. We
setI' = 1, and (log A1,log () is drawn from a multivariate normal distribution. To em-
phasize the role played by 11, we assume that log A has a standard deviation of 0.1, and
log 11 has a standard deviation of 0.4. We set the mean so that Eg[A1] = 1 and Ey[;] = 1.
We vary the correlation between log A1 and log /1 from —1 to 1. We simulate this model

by drawing 1,000,000 random samples and compute the exchange rate moments.
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To return to our notation in the main text, we define s; = —e; as the home cur-
rency strength. Figure (B.1)(a) reports the exchange rate cyclicality, defined as corro(m; —
mj, Asy). Consistent with our theoretical argument, as we increase the correlation p be-
tween log A; and log (1, we introduce a negative correlation between ¢; and A; !, which
depreciates the foreign currency when the home marginal utility is high. The exchange
rate becomes pro-cyclical.

Consistent with this exchange rate behavior, the exchange rate wedge also adjusts as
we vary the correlation p. By Proposition 5, the conditional correlation is given by:

std;(Asi11) (1_ (&F +8) )

stdy(myp 1 — m:t+1) vart(Ast11)

*
corre(mpp1 —miy q, A1) =

Figure (B.1)(b) reports the wedge 1 — (¢ + Co) /vary(Asy), which is decreasing and even-
tually negative as we increase the correlation p. This result makes it clear that the ex-
change rate cyclicality in this segmented market model is consistent with our characteri-

zation based on the Euler equation wedges.

01r

o
3
T

0.1

=}

Corr(m —m*, As)

-0.2

L— (6 +€)/var(As)

)
2
T

-0.31

1 05 0 0.5 1 1 05 0 0.5 1
P P

(A) FEX CYCLICALITY corrg(my — mj, Asy) (B) WEDGE 1 — (&5 + o) /varg(Asy)

FIGURE B.1. THE EXCHANGE RATE CYCLICALITY AND WEDGE IN GABAIX-MAGGIORI MODEL
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