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1 Introduction

We start by listing four key stylized facts about exchange rates. First, real exchange rates
are only weakly positively correlated with relative aggregate consumption growth [Koll-
mann, 1991, Backus and Smith, 1993]. The home currency tends to depreciate when the
home investors experience adverse macro-economic shocks and thus have high marginal
utility growth. Exchange rates are weakly pro-cyclical. Second, more generally, exchange
rates seem disconnected from the other macro variables that should determine them [Ob-
stfeld and Rogoff, 2000]. Third, as documented by Tryon [1979], Hansen and Hodrick
[1980] and Fama [1984], interest rate differences do not predict changes in exchange rates
with the right sign to enforce the uncovered interest rate parity (U.I.P.). Instead, currency
returns are predictable, but exchange rates themselves are not. In order to explain the neg-
ative slope coefficients, risk premia have to be extremely volatile [Fama, 1984]. Fourth,
other macro variables also fail to predict exchange rates, as shown by Meese and Rogoff
[1983]. It is hard to beat a random walk when predicting exchange rates.

In a large class of international real business cycle models, as long as investors can
trade home and foreign risk-free bonds frictionlessly, their Euler equations impose strong
restrictions on the relationship between exchange rates and marginal utilities. We first
show that these restrictions imply that it is not possible to simultaneously address all of
these facts. That is, these stylized facts are tied together in a model and are not disparate
phenomena. We then show that adding an Euler equation wedge, which can reflect home
currency bias or market segmentation, can address these facts. We derive a minimum
wedge, which we estimate at 38 basis points, that is necessary to address the facts. More
broadly, we outline a diagnostic test that a model must satisfy in order to be address the
four facts we have outlined.

Our starting point is the complete-market setting, in which real exchange rates have
to appreciate—conditionally and unconditionally—when the domestic marginal utility
growth is higher than the foreign marginal utility growth to enforce no arbitrage. When
domestic investors have a higher marginal willingness than foreign investors to pay for
consumption in some state tomorrow, i.e. to save into that state, then the state-contingent
interest rate is correspondingly lower at home, and the real exchange rate has to appreci-
ate in that state to keep arbitrageurs from borrowing domestically and investing abroad
in that state of the world. The exchange rate has to appreciate to keep the state prices at
home and abroad aligned state-by-state. When investors have power utility, this state-
contingent version of interest rate parity induces a perfectly negative correlation with
aggregate consumption growth.
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Restricting trade in securities markets does not alleviate the puzzle. Standard two-
country international real business cycle (IRBC) models feature four Euler equations that
must hold in equilibrium. These equations implicitly describe the risk-adjusted returns
home and foreign investors require for holding home and foreign risk-free bonds. More
concretely, let mt,t+1 and m∗

t,t+1 denote the home and foreign SDF in log, let rt and r∗t de-
note the home and foreign risk-free rates in log, and let st denote the log spot exchange
rate in units of foreign currency per dollar. When st increases, the home currency appre-
ciates. Then, the four bond Euler equations are given by:

1 = Et [exp(mt,t+1 + rt)] ,

1 = Et [exp(mt,t+1 − ∆st+1 + r∗t )] ,

1 = Et
[
exp(m∗

t,t+1 + r∗t )
]

,

1 = Et
[
exp(m∗

t,t+1 + ∆st+1 + rt)
]

.

The first two equations are the Euler equations for the home investor investing in domes-
tic and foreign currency risk-free bonds. The second set of two Euler equations pertains
to the foreign investor. In this paper, we start from these four Euler equations and show
that they impose strong restrictions on the exchange rate’s cyclicality, which is defined
as the covariance between the exchange rate movement ∆st+1 and the SDF differential
mt,t+1 − m∗

t,t+1. A positive covariance means that the home currency’s exchange rate
tends to appreciate when the home investors’ marginal utility growth rate is higher than
the foreign investors’.

First, we characterize the conditional exchange rate cyclicality. We obtain a stark re-
sult, building on the work by Lustig and Verdelhan [2019]. The conditional covariance is
still positive, which means that the exchange rate has to be conditionally counter-cyclical
to enforce these bond Euler equations. A more restrictive version of this conditional result
was derived by Lustig and Verdelhan [2019]. As long as investors can trade home and
foreign risk-free bonds frictionlessly, an average version of the complete markets state-
contingent interest rate parity prediction survives. The exchange rate has to appreciate in
bad states for the home investor to keep the state prices at home and abroad aligned and
enforce the bond Euler equations.

Second, we characterize the unconditional exchange rate cyclicality in order to link
our result directly to the Kollmann [1991] and Backus and Smith [1993] evidence.1 To
replicate unconditionally pro-cyclical exchange rates, the first stylized fact, we need very

1The unconditional cyclicality is equal to the mean of the conditional exchange rate cyclicality plus a
term that captures the extent to which exchange rates can be predicted by the expected SDF differential.

2



volatile forward premia or highly predictable exchange rates. The first condition is at
odds with the Tryon [1979], Hansen and Hodrick [1980], and Fama [1984] evidence on
the violation of U.I.P, the third stylized fact. The second condition is at odds with the
Meese and Rogoff [1983] evidence, the fourth stylized fact.

We thus end up with an impossibility result: when investors can trade domestic and
foreign currency bonds, we cannot generate procyclical exchange rates (stylized fact 1)
while matching the observed U.I.P. deviations (stylized fact 3) and the lack of exchange
rate predictability (stylized fact 4). Our results allow for arbitrary currency risk premia.
While U.I.P. deviations may help to generate an exchange rate disconnect, we show that
they are not sufficient. Our analytical results show that we also need a counterfactual
amount of exchange rate predictability to deliver pro-cyclical exchange rates.

We next turn to a resolution: we show analytically that cross-currency bond Euler
equation wedges on home investors in foreign bonds can simultaneously address all of
these facts. The wedge can be interpreted as investors acting as if they face large (per-
ceived or actual) transaction costs or inconvenience yields associated with buying bonds
denominated in a foreign currency. They can also be interpreted as high convenience
yields that home investors derive on their home bonds, which can arise for example due
to financial repression. These results clarify the role of frictions in equilibrium models
of exchange rates. The key ingredient needed to make progress on the disconnect and
Backus-Smith puzzles is not market incompleteness. Additionally, currency risk pre-
mium shocks that drive U.I.P. deviations do not resolve the puzzle. In the literature, both
risk premium shocks and cross-currency bond Euler equation wedges are often referred
to collectively as U.I.P. or financial shocks [see, e.g., Farhi and Werning, 2014, Itskhoki
and Mukhin, 2021]. We show that as long as all of the cross-currency bond Euler equa-
tions hold without wedges, the Backus-Smith puzzle reappears. Financial shocks that
only drive risk premium variations cannot overturn this result unless the Euler equations
are violated.

Quantitatively, when we calibrate the exchange rate predictability, volatility, the Fama
regression coefficient, and the SDF variance to match the data, the cross-currency bond
Euler equation wedges have to be at least 38 basis points in order to generate a negative
unconditional exchange rate cyclicality. In other words, the home investor needs to act
as if they face a 38 basis point transaction cost when buying foreign currency bonds, and
vice versa.

There is a wealth of evidence to support the notion that investors act as if they face
large transaction costs in buying foreign securities [Lewis, 1995]. Moreover, there is re-
cent empirical evidence to specifically support a home currency bias in bonds. Maggiori,
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Neiman, and Schreger [2020] report strong evidence of a home currency bias in interna-
tional mutual fund holdings of corporate bonds. The only exception is the dollar, the
international reserve currency. Investors will buy dollar-denominated bonds. Maggiori
et al. [2020] attribute this home currency bias to the costs of currency hedges and behav-
ioral bias.

Surprisingly, we find that only the mean of the cross-currency bond Euler equation
wedges matters. The covariance of these wedges with the SDFs does not matter for dis-
connect. The level of the wedges matters because addressing the four facts requires a
model to disconnect the relation between relative marginal utility growth (mt,t+1 −m∗

t,t+1)
and exchange rate changes ∆st+1. Without wedges, the U.I.P. conditions tie these objects
together. With an Euler equation wedge, it is possible to satisfy the U.I.P. conditions
while disconnecting the covariance between marginal utility growth and exchange rate
changes. We show that this is the key to a resolution of the puzzles.

Literature. Chari, Kehoe, and McGrattan [2002] analyze a complete-market model of
exchange rates with sticky prices and identify the Backus-Smith puzzle as the key failure
of their model. Corsetti, Dedola, and Leduc [2008], Pavlova and Rigobon [2012] con-
sider incomplete market models of exchange rates. In their model, domestic and foreign
investors only invest in a risk-free bond that pays off in a global numéraire, implicitly
dropping all 4 Euler equations. This implicitly introduces wedges in one of the four bond
Euler equations. They report progress on the Backus-Smith puzzle.

A different strand of the literature segments the markets and thus introduces wedges
into the bond Euler equations. Alvarez, Atkeson, and Kehoe [2002a, 2009a] consider
a Baumol-Tobin style model in which investors pay a cost to transact in currency and
bond markets. Relatedly, Jiang, Krishnamurthy, and Lustig [2018], Jiang, Krishnamurthy,
Lustig, and Sun [2021b] explore the dollar exchange rate implications of convenience
yields earned on dollar safe assets, another type of the Euler equation wedges. To the
extent that investors derive larger convenience yields from foreign bonds, these will ex-
acerbate the Backus-Smith puzzle.2

Finally, a third strand of the literature imputes a central role to financial intermedi-
aries, drawing on insights from the literature on intermediary asset pricing. Gabaix and
Maggiori [2015], Itskhoki and Mukhin [2021], Fukui, Nakamura, and Steinsson [2023] all
consider models in which most investors cannot directly access currency markets. In It-
skhoki and Mukhin [2021], domestic investors only invest in the domestic bond market.

2There is a growing literature on convenience yields in bond markets, starting with Krishnamurthy and
Vissing-Jorgensen [2012]
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Only the intermediaries can trade foreign currencies. Similarly, Gourinchas, Ray, and
Vayanos [2020], Greenwood, Hanson, Stein, and Sunderam [2020] study models with do-
mestic preferred-habitat investors and global arbitrageurs. This class of models remove
all Euler equations we consider and only keep one Euler equation that captures the global
arbitrageurs’ long-short portfolio decision. The approach of these intermediary-centered
models are complementary to ours. The approach implies an infinite transaction cost for
investing in the foreign currency as domestic investors are disallowed from investing in
foreign currency. This is clearly extreme. Our approach provides the minimum bounds
needed on investors’ Euler equation wedges needed to address exchange rate facts. One
can interpret these wedges as the direct cost of investing in foreign markets or the indi-
rect costs of doing so when investing via the intermediaries modeled in this strand of the
literature.

Other recent work by Hassan [2013], Dou and Verdelhan [2015], Chien, Lustig, and
Naknoi [2020], Jiang and Richmond [2023] takes a different tack by introducing hetero-
geneity in household trading technologies. Active households can freely trade bonds and
other state contingent claims, whereas the inactive households have no access to the asset
market. In this case, while the four Euler equations we consider in this paper hold for the
active households without any wedges, their marginal utilities have different cyclicality
than the country-level aggregate marginal utilities. As a result, the model disconnects
aggregate consumption from the SDF of the Euler equation to which the model applies.

Lustig and Verdelhan [2019] ask whether market incompleteness helps to resolve out-
standing currency puzzles. They focus only on the conditional Backus-Smith puzzle, not
the unconditional version, the focus of our paper. In closely related work, Chernov, Had-
dad, and Itskhoki [2023] develop a framework that maps the space of tradable assets to re-
strictions on the exchange rate moments. They conclude that the exchange rate moments
require the asset markets to be segmented or intermediated, and, in this environment, the
local financial markets are uninformative about the exchange rate. Consistent with this
result, our paper examines the Euler equations governing the cross-country positions in
risk-free bonds, and finds that wedges in these Euler equations are required to match the
exchange rate moments. However, we argue that this is precisely how financial markets
are informative about the exchange rate, as they discipline the properties of these Euler
equation wedges which we ultimately interpret as home bias or financial repression.

The paper is organized as follows. We start by discussing the benchmark complete-
market case in section 2. Next, section 3 discuss the conditional Backus-Smith puzzle in
the incomplete-market case. Section 4 analyzes the unconditional Backus-Smith puzzle
in the incomplete-market case. Finally, section 5 inserts bond Euler equation wedges. In
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this section, we characterize the restrictions these wedges need to satisfy in order to make
progress on the unconditional Backus-Smith puzzle. Lastly, the Appendix contains the
proof of the propositions.

2 Complete Markets and Exchange Rate Puzzles

In the case of complete markets, exchange rates act as shock absorbers for the shocks to
the pricing kernels: ∆st+1 = mt+1 − m∗

t+1. This expression for the log change in the real
exchange rate has puzzling implications.

Volatility puzzle. As was noted by Brandt, Cochrane, and Santa-Clara [2006b], the im-
plied volatility of the exchange rate will be too high if the market price of risk clears
the Hansen-Jagannathan bounds, unless the pricing kernels are highly correlated across
countries.

vart(∆st+1) = vart(m∗
t+1) + var(mt+1)

− 2ρt(mt+1, m∗
t+1)stdt(mt+1)stdt(m∗

t+1).

We would need a correlation of the pricing kernels ρt(mt+1, m∗
t+1) close to one. In the case

of the standard Breeden-Lucas SDF mt+1 = log δ − γ∆ct+1, this would imply close to per-
fectly correlated consumption growth across countries: ρt(∆ct+1, ∆c∗t+1). This prediction
is counterfactual [see Backus, Kehoe, and Kydland, 1992].

Counter-cyclicality/Backus-Smith puzzle. When markets are complete, the uncondi-
tional exchange rate cyclicality satisfies

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = var(∆st+1) > 0.

We obtain a very general result: in any complete-market models, the unconditional ex-
change rate cyclicality is always positive: a higher marginal utility growth in the home
country is associated with a home currency appreciation. The model can only generate
exchange rate disconnect by shrinking the variance of the exchange rate to zero. In the
Breeden-Lucas case, the implied changes in the log exchange rates are perfectly nega-
tively correlated with consumption growth differences ρt(∆ct+1 − ∆c∗t+1, ∆st+1) = −1,
which is strongly counterfactual [Kollmann, 1991, Backus and Smith, 1993].

These puzzles are partially governed by the specific nature of the pricing kernel. The
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Breeden-Lucas SDF assumes time-additive utility. Colacito and Croce [2011] impute a
preference for early resolution to uncertainty to the stand-in investor in an endowment
economy with long run risks [Bansal and Yaron, 2004a]. In this long run risks economy, it
is feasible to make progress on the volatility puzzle by choosing highly correlated persis-
tent components of consumption growth, while still matching the low correlation of con-
sumption growth observed in the data. In this long run risks economy, we can push the
correlation of the pricing kernels ρt(mt+1, m∗

t+1) to one by choosing perfectly correlated
long-run consumption growth ρt(xt+1, x∗t+1) = 1. However, in their benchmark calibra-
tion, this mechanism reduces the exchange rate cyclicality to zero, but does not overturn
the sign. Next, we examine the exchange rate cyclicality when we shut down some asset
markets. In closely related work, Verdelhan [2010] explores the habit model’s exchange
rate implications, and concludes that this model cannot entirely resolve the Backus-Smith
puzzle.

3 Conditional Exchange Rate Cyclicality and Incomplete

Markets

We start by assuming that investors can invest in risk-free bonds denominated in domes-
tic and foreign currency. Our analysis is silent on the rest of the market structure.

We assume that the return, exchange rate and pricing kernel innovations are jointly
normally distributed. Then, the four risk-free bond Euler equations imply:

0 = Et[mt,t+1] +
1
2

vart(mt,t+1) + rt,

0 = Et[mt,t+1] +
1
2

vart(mt,t+1)− Et[∆st+1] +
1
2

vart(∆st+1) + covt(mt,t+1,−∆st+1) + r∗t ,

0 = Et[m∗
t,t+1] +

1
2

vart(m∗
t,t+1) + r∗t ,

0 = Et[m∗
t,t+1] +

1
2

vart(m∗
t,t+1) + Et[∆st+1] +

1
2

vart(∆st+1) + covt(m∗
t,t+1, ∆st+1) + rt.

Reorganizing the terms, we can obtain two expressions that relate the expected excess
return of a strategy that goes long in foreign currency and borrows at the domestic risk-
free rate to the riskiness of the exchange rate

(r∗t − rt)− Et[∆st+1] +
1
2

vart(∆st+1) = −covt(mt,t+1,−∆st+1),

(rt − r∗t ) + Et[∆st+1] +
1
2

vart(∆st+1) = −covt(m∗
t,t+1, ∆st+1).
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The first expression takes the home investors’ perspective. If the foreign currency tends
to appreciate (i.e., higher −∆st+1) in the home investors’ high marginal utility states (i.e.,
higher mt,t+1), then, the foreign currency is a good hedge and the home investors demand
lower expected returns to hold it. As a result, the foreign currency has a lower expected
excess return leading to a lower (r∗t − rt)−Et[∆st+1] +

1
2 vart(∆st+1) on the left-hand side.

Similarly, the second expression takes the foreign investors’ perspective, and relates the
currency excess return to the covariance between the foreign investors’ SDF and the ex-
change rate movement.

Given the exchange rate variance vart(∆st+1) is positive, these expressions imply

Et[∆st+1] + rt − r∗t > covt(mt,t+1,−∆st+1),

−(Et[∆st+1] + rt − r∗t ) > covt(m∗
t,t+1, ∆st+1),

which leads to the following proposition.

Proposition 1. In the log-normal case, the conditional exchange rate cyclicality satisfies

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1) > 0. (1)

Lustig and Verdelhan [2019] derive a version of this result assuming incomplete mar-
ket wedges that are jointly log-normal with the SDF and the exchange. Our derivation
does not use incomplete market wedges.

In this paper, we define the exchange rate cyclicality as the covariance between the
exchange rate movement ∆st+1 and the SDF differential mt,t+1 − m∗

t,t+1. This propo-
sition shows that exchange rate innovations are counter-cyclical in a Gaussian model.
The home currency’s exchange rate tends to unexpectedly appreciate when the home in-
vestors’ marginal utility growth is unexpectedly higher than the foreign investors’.

While Lustig and Verdelhan [2019] find that market incompleteness helps with the
Brandt, Cochrane, and Santa-Clara [2006a] puzzle in reducing volatility, it cannot change
the sign of the conditional covariance. We have not assumed that markets are complete
to derive this result. In the case of complete markets, state-contingent interest rate par-
ity obtains mt,t+1 − m∗

t,t+1 = ∆st+1 and this covariance result is directly obtained. Our
proposition shows that this result is much more general, as long as investors can freely
trade home and foreign risk-free bonds. In other words, the risk-free bond Euler equa-
tions discipline the joint dynamics of the exchange rates and marginal utility growth to
imply counter-cyclical exchange rates.

Finally, the SDF and exchange rate dynamics might not be conditionally Gaussian, e.g.,
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as in [Rietz, 1988, Longstaff and Piazzesi, 2004, Barro, 2006, Farhi and Gabaix, 2016]. We
can extend our results to non-Gaussian settings, and we present the details in Appendix
A.5.

4 Unconditional Exchange Rate Cyclicality and Incomplete

Markets

In IRBC models that link the SDFs to aggregate consumption shocks, we are interested in
understanding how the exchange rate moves in response to relative consumption growth.
Backus and Smith [1993] summarize this relationship by regressing the exchange rate
movement on relative consumption growth, and find procyclical exchange rates. To re-
late our result to this Backus-Smith coefficient, we need to characterize the unconditional
exchange rate cyclicality. To do so, we use the law of total covariance:

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = E[covt(mt,t+1 − m∗

t,t+1, ∆st+1)] + cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]).

Our previous result shows the conditional exchange rate cyclicality covt(mt,t+1 −m∗
t,t+1, ∆st+1)

is always positive. To generate a negative unconditional cyclicality cov(mt,t+1 −m∗
t,t+1, ∆st+1),

we need a negative cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) that is greater in magnitude than

the average conditional cyclicality E[covt(mt,t+1 − m∗
t,t+1, ∆st+1)]. In other words, the ex-

change rate movement needs to be strongly predictable by the expected SDF differential
Et[mt,t+1 − m∗

t,t+1]. This connects the unconditional exchange rate cyclicality to exchange
rate predictability.

Recall the case of complete markets, ∆st+1 = mt,t+1 − m∗
t,t+1. The exchange rate has to

absorb all of the shocks to the pricing kernels in each state of the world. When markets
are complete, the unconditional exchange rate cyclicality satisfies

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = var(∆st+1) > 0.

In any complete-market models (which by definition allows home and foreign agents
to trade risk-free bonds), the unconditional exchange rate cyclicality is always positive: a
higher marginal utility growth in the home country is associated with a home currency
appreciation. The model can only generate exchange rate disconnect by shrinking the
variance of the exchange rate to zero.

Next, we consider a more general case of less than complete markets in which we shut
down some trade in non-bond asset markets. We begin by introducing some concepts.
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The Fama Regression Coefficient b We use ft to denote the log of the one-period for-
ward exchange rate in units of foreign currency per dollar. The log excess return on
buying foreign currency forward is

rxt+1 = ft − st+1 = −∆st+1 + ft − st,

where ft − st denotes the forward discount and ∆st+1 denotes the appreciation of the
home currency. When the Covered Interest Rate Parity holds, we further obtain ft − st =

r∗t − rt and, as a result, we can restate the log excess return on a long position in foreign
currency as rxt+1 = −∆st+1 + r∗t − rt.

Now, consider the standard Tryon [1979], Hansen and Hodrick [1980], Fama [1984]
time-series regression:

∆st+1 = a + b( ft − st) + εt+1.

In the data, the slope coefficient b tends to be negative: a higher-than-usual foreign in-
terest rate predicts further appreciation of the foreign currency. Following Fama [1984],
we use pt = Et[rxt+1] = ft − Et[st+1] to denote the currency risk premium and qt =

Et[∆st+1] to denote the expected exchange rate movement. The forward discount can be
decomposed as ft − st = pt + qt. When the Covered Interest Rate Parity holds, pt =

r∗t − rt − Et[∆st+1], and pt + qt = r∗t − rt.
As shown by Fama, the slope coefficient in this regression can be restated as:

cov( ft − st, Et[∆st+1])

var( ft − st)
=

cov(pt + qt, qt)

var(pt + qt)
=

cov(pt, qt) + var(qt)

var(pt + qt)

To get negative slope coefficient b, we need cov(pt,qt)
var(qt)

< −1. Two necessary conditions
have to be satisfied in order to obtain negative slope coefficients: corr(pt, qt) < 0 and
std(pt) > std(qt). Risk premia have to be more volatile than the expected change in the
spot rate. Backus, Foresi, and Telmer [2001] analyze sufficient conditions for these U.I.P.
violations in a large class of affine asset pricing models.

The Meese-Rogoff R2 The Meese and Rogoff [1983] puzzle states that exchange rates
are hard to forecast. Put differently, the R2 = var(Et[∆st+1])/var(∆st+1) in a forecasting
regression is low. In a recent survey of exchange rate predictability, Rossi [2013] concludes
that the Meese-Rogoff findings have not been conclusively overturned.3 There is some

3At higher frequencies ranging from one day to one month, order flow seems to predict changes in the
spot exchange rate [see Evans and Lyons, 2002, 2005]. This data is proprietary and may not be available
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limited evidence of exchange rate predictability but the evidence usually is specific to
certain countries, horizons and the predictability is not stable.

When the linear projection yields the best forecast, we can obtain this R2 from a pro-
jection of the exchange rate changes on its predictors. We will assume the linear predictor
yields the best forecast. Let R2 denote the fraction of the predictable variation in the ex-
change rate:

R2 =
var(Et[∆st+1])

var(∆st+1)
,

and let R2
Fama denote the R2 of the Fama regression:

R2
Fama =

var(b( ft − st))

var(∆st+1)
.

Our main result characterizes the unconditional exchange rate cyclicality. Without
loss of generality, we assume that the covariance between the home SDF’s conditional
variance and the exchange rate movement from the home perspective is higher than the
covariance between the foreign SDF’s conditional variance and the exchange rate move-
ment from the foreign perspective:

cov (vart(mt,t+1), Et[∆st+1]) ≥ cov
(
vart(m∗

t,t+1),−Et[∆st+1]
)

.

If this condition is not satisfied, we simply need to swap the labeling of the home and
foreign countries.

Proposition 2. Each of the following is a necessary condition for a negative unconditional ex-
change rate cyclicality, i.e., cov(mt,t+1 − m∗

t,t+1, ∆st+1) < 0:
(a)

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
+
√

R2

(
1
b

R2
Fama
R2 − 1

)
. (2)

If the Fama regression yields the best predictor of the exchange rate movement, then, we can
simplify this formula to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
+
√

R2
(

1
b
− 1
)
=

1√
R2

−
√

R2 + sign(b)
std( ft − st)

std(∆st+1)
. (3)

in real-time to all investors. Gourinchas and Rey [2007] report evidence that the net foreign asset position
predicts changes in the exchange rate out-of-sample.
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(b) √
std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ std(∆st+1)

std(Et[∆st+1])
=

1√
R2

.

Between these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
weaker condition.

Conditions (a) and (b) are necessary, but not sufficient conditions for a negative un-
conditional exchange rate cyclicality. The bounds tighten as the R2 decreases: as exchange
rates become less predictable, we need more variations in the conditional risk premia and
the conditional price of risk to generate a negative unconditional exchange rate cyclical-
ity. In the limit, as we approach the Meese and Rogoff [1983]’s benchmark random walk
case in which exchange rate movements are not predictable, 1/

√
R2 on the right-hand

side approaches infinity. The model simply cannot deliver pro-cyclical exchange rates.
As such, these bounds deliver an impossibility result: if we take Meese and Rogoff [1983]
random walk result regarding exchange rate predictability at face value, then we cannot
make progress on the Backus and Smith [1993] puzzle regarding exchange rate cyclicality.

On the other hand, while it is enticing to conclude that, holding R2 constant, a small
but negative Fama coefficient b can lower the right-hand side of Eq. (2) and make this
condition more likely to hold, we note that

√
R2 and b are closely related. When the b

shrinks towards zero, the R2 shrinks towards zero as well. In fact, Eq. (3) shows that,
holding R2 constant, a small but negative b means a high forward premium volatility
std( ft − st) relative to the exchange rate volatility std(∆st+1), which is also rejected by the
data.

Before we turn to more realistic cases, we make two more observations. First, in the
case of U.I.P., b = 1 and Eq. (3) becomes:

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
.

A natural case to consider under the U.I.P. is the case of constant market prices of risk.
Then, we get an impossibility result: 0 ≥ 1/

√
R2, so the unconditional exchange rate

cyclicality cannot be negative.
Second, in the case of a fully predictable exchange rate movement, the R2 tends to one
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and Eq. (3) becomes:

std (vart(mt,t+1))

std(∆st+1)
≥ 1

b
.

As long as the slope coefficient b is negative, then the bound is trivially satisfied, even
when the R2 is very high but not equal to 1.

4.1 Numerical Example

Let us plug in some empirical plausible values. In the data, the exchange rate movements
are only moderately predictable. Suppose the Fama regression yields the best predictor of
the exchange rate movement, R2 = 5% at the one-year horizon, the Fama regression coef-
ficient is b = −1, and the annualized exchange rate volatility is std(∆st+1) = 10%. Then,
Eq. (3) implies that the log SDF needs to have a very high variability in its conditional
variance:

std (vart(mt,t+1)) ≥ 0.4. (4)

For comparison, the unconditional standard deviation of the log SDF variance is only
0.067 in the long-run risk model in Bansal and Yaron [2004b], and 0.26 in the external habit
model in Campbell and Cochrane [1999], even though both models manage to generate
empirically plausible levels of the equity risk premium. Figure (1) plots the distributions
of the conditional SDF volatility in these two models, which are related to the maximum
Sharpe ratio in the economy according to the Hansen and Jagannathan [1991] bound.
In the long-run risk model, the conditional log SDF volatility is between 0.3 and 0.7, a
narrow range that gives rise to a small std (vart(mt,t+1)). In the external habit model, the
conditional log SDF volatility is more variable, at the expense of having some states in
which the SDF is not very volatile and the maximum Sharpe ratio is very small, and some
states in which the SDF is extremely volatile and the maximum Sharpe ratio is very high.

If we take either model as a quantitatively accurate representation of the SDF, then, Eq.
(4) implies that the model cannot generate a negative unconditional exchange rate cycli-
cality. In other words, the home and foreign investors’ Euler equations governing their
risk-free bond holdings impose important restrictions on the equilibrium exchange rate
dynamics, such that a negative unconditional exchange rate cyclicality requires a very
volatile SDF conditional variance that is not in line with standard asset pricing models.

We can also generalize the bound in Eq. (4) to a wider range of exchange rate pre-
dictability. In Figure (2), we vary the R2 from the Fama regression and report the bound
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FIGURE 1. DISTRIBUTIONS OF THE CONDITIONAL LOG SDF VOLATILITY IN DIFFERENT ASSET

PRICING MODELS

Notes: The figure plots the distributions of the conditional log SDF volatility in the long-run risk model
in Bansal and Yaron [2004b] and the external habit model in Campbell and Cochrane [1999]. We simulate
1,000,000 monthly periods in each model and report the histogram of the annualized log SDF volatility.
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FIGURE 2. LOWER BOUND ON THE VARIABILITY OF THE CONDITIONAL LOG SDF VARIANCE AS

A FUNCTION OF EXCHANGE RATE PREDICTABILITY

Notes: The figure plots the lower bound on std (vart(mt,t+1)) as a function of the Fama regression R2 as
implied by Eq. (3). We take b = −1 and std(∆st+1) = 10%.
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on the volatility of the conditional log SDF variance. As the exchange rate predictabil-
ity increases, the lower bound on the unconditional volatility of the conditional log SDF
variance declines. When R2 is 20% in the Fama regression, the lower bound becomes 0.13,
compared to 0.40 when R2 is 5%. In other words, as the exchange rate becomes more pre-
dictable, the Euler equations can rationalize a negative exchange rate cyclicality without
requiring a higher degree of variability in the conditional SDF variance.

Moreover, Proposition 2 offers a loose bound in the sense that we used the property
corr (vart(mt,t+1), Et[∆st+1]) ≤ 1 to derive the inequality, which makes the bounds in
this proposition necessary but not sufficient conditions. The bounds are only sufficient
conditions when corr (vart(mt,t+1), Et[∆st+1]) = 1. If, instead, the correlation is 1/2, Eq.
(4) in the numerical example becomes std (vart(mt,t+1)) ≥ 0.4/(1/2) = 0.8, which further
sharpens the result by doubling the lower bound on std (vart(mt,t+1)).

4.2 Role of the Horizon

We consider a Fama regression with horizon k periods:

∆st,t+k = ak + bk( f k
t − st) + εt+k.

Similarly, we use R2
Fama,k to denote the R2 of this regression, and we define

R2
k =

var(Et[∆st,t+k])

var(∆st,t+k)
.

There are opposing forces on the left-hand side of the bounds we derived. As we in-
crease the horizon, std (vart(mt,t+k)) increases faster than the

√
k, while std(Et[∆st,t+k])

converges to zero if a long-run version of PPP holds and the real exchange rate is station-
ary.4 On the other hands, as k → ∞, a long-run version of U.I.P kicks in and bk → 1.
In fact, long-run U.I.P. is implied by no arbitrage when real exchange rates are stationary
[Lustig, Stathopoulos, and Verdelhan, 2019].

Proposition 3. Each of the following is a necessary condition for a negative unconditional ex-
change rate cyclicality, i.e., cov(mt,t+k − m∗

t,t+k, ∆st,t+k) < 0:
(a)

std (vart(mt,t+k))

std(∆st,t+k)
≥ 1√

R2
k

+
√

R2
k

(
1
bk

R2
Fama,k

R2
k

− 1

)
.

4As noted by Rogoff [1996], the real exchange rate’s rate of convergence to its long-run mean is slow.
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If the Fama regression yields the best predictor of the exchange rate movement, then, we can
simplify this formula to

std (vart(mt,t+k))

std(∆st,t+k)
≥ 1√

R2
k

+
√

R2
k

(
1
bk

− 1
)
=

1√
R2

k

−
√

R2
k + sign(bk)

std( f k
t − st)

std(∆st,t+k)

(b) √
std(Et[rxt,t+k])

std(Et[∆st,t+k])
+

std (vart(mt,t+k))

std(Et[∆st,t+k])
≥ std(∆st,t+k)

std(Et[∆st,t+k])
=

1√
R2

k

.

Among these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
weaker condition.

5 Bond Euler Equation Wedges

Our result shows that IRBC models with the four bond Euler equations cannot simulta-
neously generate a negative Backus-Smith coefficient and replicate the Fama regression
coefficient and the Meese-Rogoff puzzle. As a result, we need to entertain models that
break these four Euler equations in one way or another.

First, Corsetti et al. [2008], Pavlova and Rigobon [2012] consider incomplete-market
settings in which only one type of bond is traded. When the bond is denominated in a
country’s numéraire, this set-up drops two of our four Euler equations. When the bond
is denominated in a basket of country-level numéraires, this set-up drops all of our four
Euler equations and supplement with two new ones.

Second, Alvarez, Atkeson, and Kehoe [2002b, 2009b] consider models in which agents
need to pay a cost to access the financial market, which is equivalent to adding addi-
tional wedges in the four Euler equations we consider in this paper. Relatedly, Jiang
et al. [2018], Jiang, Krishnamurthy, and Lustig [2020], Jiang et al. [2021b] introduce bond
convenience yields to the dollar safe assets, which introduce another type of the Euler
equation wedges. However, we show that one version of the convenience yield dynamics
which is supported by the data – convenience yields on dollar bonds – does not resolve
the exchange rate cyclicality puzzle.
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Third, Gabaix and Maggiori [2015], Itskhoki and Mukhin [2021], Fukui et al. [2023]
consider models in which domestic investors can only hold local bonds. They introduce a
financial intermediary who can trade currencies. This set-up effectively removes the two
cross-country Euler equations out of the four Euler equations we consider in this paper,
and replaces them with an additional Euler equation that captures the trade-off of the
international intermediary. Similarly, Gourinchas et al. [2020], Greenwood et al. [2020]
study models with preferred-habitat investors and global arbitrageurs, which remove all
Euler equations we consider and only keep one Euler equation that captures the global
arbitrageurs’ long-short portfolio decision.

We explain how these models implicitly insert cross-currency Euler equation wedges
that are consistent with a home currency bias in bonds to improve the model’s fit with
the data. There is a wealth of empirical evidence that investors act as if they face large
transaction costs, capital controls or other frictions when buying foreign securities [Lewis,
1995]. This is as typically referred to as the home bias puzzle. Alternatively, they may be
inserting domestic bond Euler equation wedges as well.

We start by analyzing the case in which we only allow cross-currency Euler equation
wedges in section 5.1 and present a quantification exercise in section 5.2. Next, in section
5.3, we generalize our results by also allowing for wedges in the domestic bond Euler
equations.

5.1 Cross-Currency Wedges and the Home Currency Bias

We start by allowing for wedges only in the Euler equations of investors buying foreign
currency risk-free bonds. These wedges for the domestic and foreign investor respectively
are denoted (ξt, ξ∗t ). Then, the four Euler equations can be expressed as follows:

1 = Et [exp(mt,t+1 + rt)] ,

exp(ξt) = Et [exp(mt,t+1 − ∆st+1 + r∗t )] ,

1 = Et
[
exp(m∗

t,t+1 + r∗t )
]

,

exp(ξ∗t ) = Et
[
exp(m∗

t,t+1 + ∆st+1 + rt)
]

.

These wedges are security-specific: they only apply to the bonds denominated in a cur-
rency different from the domestic currency. If the wedges are positive, investors effec-
tively apply a lower SDF to the foreign-currency bond payoffs and therefore require a
higher expected return. In this sense, positive wedges are akin to inconvenience yields de-
rived from holding bonds denominated in foreign currency. They effectively segment the
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home currency from the foreign currency bond markets.
This approach nests the models by Gabaix and Maggiori [2015], Itskhoki and Mukhin

[2021] because they remove the two cross-country Euler equations, as well as the models
by Alvarez et al. [2002b, 2009b] which consider settings in which agents need to pay a
cost to access securities and currency markets. This approach nests convenience yields
earned by foreign investors Jiang et al. [2018, 2021b] which would correspond to negative
Euler equation wedges. This also nests Corsetti et al. [2008], Pavlova and Rigobon [2012]
who consider incomplete-market settings in which only one type of bond denominated
in a global numéraire is traded.

Reorganizing the terms, we obtain two expressions that relate the expected excess
return of a strategy that goes long the foreign bond to the perceived risks from the home
and foreign perspectives as well as the wedges:

(r∗t − rt)− Et[∆st+1] +
1
2

vart(∆st+1) = −covt(mt,t+1,−∆st+1) + ξt,

(rt − r∗t ) + Et[∆st+1] +
1
2

vart(∆st+1) = −covt(m∗
t,t+1, ∆st+1) + ξ∗t .

(5)

Combining these expressions, we directly obtain the following characterization of the
conditional exchange rate cyclicality in the presence of Euler equation wedges.

Proposition 4. In the presence of Euler equation wedges, the conditional exchange rate cyclicality
is given by:

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1)− (ξ∗t + ξt).

The conditional correlation is given by:

corrt(mt,t+1 − m∗
t,t+1, ∆st+1) =

stdt(∆st,t+1)

stdt(mt,t+1 − m∗
t,t+1)

(
1 − (ξ∗t + ξt)

vart(∆st,t+1)

)
.

In order to obtain conditionally pro-cyclical exchange rates covt(mt,t+1 − m∗
t,t+1, ∆st+1) <

0, we need positive wedges that exceed the exchange rate variance:

ξ∗t + ξt > vart(∆st+1). (6)

In other words, there is no need to shrink the conditional exchange rate variance to zero
in order to generate an exchange rate disconnect between innovations to the SDF and
innovations to the exchange rate. Positive wedges can mitigate the conditional version of
the Backus-Smith puzzle. These wedges reduce the need for exchange rates to respond to
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shocks to the pricing kernel in order to enforce the bond Euler equation wedges.
Following our derivation of the unconditional exchange rate cyclicality, we can also

generalize Proposition 2 to the case in which we allow for cross-currency Euler equation
wedges.

Proposition 5. In the presence of only cross-border Euler equation wedges, each of the following
is a necessary condition for a negative unconditional exchange rate cyclicality, i.e., cov(mt,t+1 −
m∗

t,t+1, ∆st+1) < 0:
(a)

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 − E[ξ∗t + ξt]

var(∆st+1)

)
+
√

R2

(
1
b

R2
Fama
R2 − 1

)
.

If the Fama regression yields the best predictor of the exchange rate movement, then, we can sim-
plify the formula to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 − E[ξ∗t + ξt]

var(∆st+1)

)
+
√

R2
(

1
b
− 1
)

=
1√
R2

(
1 − E[ξ∗t + ξt]

var(∆st+1)

)
−
√

R2 + sign(b)
std( ft − st)

std(∆st+1)
.

(b) √
std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ 1

R2

(
1 − E[ξ∗t + ξt]

var(∆st+1)

)
.

Among these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
weaker condition.

In the presence of the cross-currency Euler equation wedges/home currency bias,
these conditions can now be satisfied even if the exchange rate is close to a random walk
with R2 = 0. If these wedges are large enough to flip the sign on the right-hand side, then,
we do not need to rely on a highly volatile market price of risk and/or large U.I.P. devia-
tions. This being the case, the necessary condition of a negative unconditional exchange
rate cyclicality can be satisfied if b ≤ 0, even with constant market prices of risk.

Importantly, the cross-currency wedges ξt and ξ∗t enter the bound on the exchange
rate cyclicality directly in their first moments, as opposed to their variances or covariances
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with other variables. In fact, the wedges can even be constant and still matter for exchange
rate cyclicality. This is because the wedges directly enter the investors’ Euler equations
(5), which requires endogenous adjustments in the covariances between the exchange
rate and the pricing kernels. In other words, these wedges are substitutes for covariance
between the pricing kernel and the exchange rate.

5.2 Numerical Example

Let us return to the numerical example we considered in Section 4.1. If we assume that the
Fama regression yields the best predictor, we can rearrange the condition in Proposition
5 to obtain

E[ξ∗t + ξt] ≥ var(∆st+1)

[
1 + R2

(
1
b
− 1
)]

−
√

R2std (vart(mt,t+1)) std(∆st+1),

which provides a lower bound on the sum of the home-bias wedges. If we assume
var(∆st+1) ≤ 0.12, R2 ≤ 0.05 and b = −1 from data, and std (vart(mt,t+1)) = 0.067
from the long-run risk model, then, we obtain

E[ξ∗t + ξt] ≥ 0.75%.

In other words, the average home bias E[ξ∗t + ξt]/2 that is necessary to generate a nega-
tive unconditional exchange rate cyclicality is about 38 basis points.

Moreover, given a negative Fama coefficient, i.e., b < 0, this bound becomes even
tighter if the exchange rate is less predictable. In the limit, R2 = 0 and the bound be-
comes E[ξ∗t + ξt] ≥ var(∆st+1) = 1%, which is in line with our characterization of the
conditional exchange rate cyclicality in Proposition 4 and Eq. (6) in particular. The bound
is also tighter if std (vart(mt,t+1)) is smaller, i.e., if the conditional log SDF variance has a
lower volatility.

We can also vary the value of std (vart(mt,t+1)) and plot the lower bound on the sum
of the home-bias wedges, E[ξ∗t + ξt]. Figure (3) plots this relationship. Consistent with
our results in Section 4.1, std (vart(mt,t+1)) needs to be about 0.40 in order to generate
a negative unconditional exchange rate cyclicality without the Euler equation wedges.
This value, as we showed above, is much higher than the moments from standard asset
pricing models such as the long-run risk model and the external habit model.
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5.3 Home Bond Wedges, Convenience Yields and Financial Repression

Next, we allow for wedges in the Euler equations of investors buying risk-free domes-
tic bonds. These home wedges for the domestic and foreign investor respectively are
denoted (ϕt, ϕ∗

t ). Then, the four Euler equations can be expressed as follows:

exp(ϕt) = Et [exp(mt,t+1 + rt)] ,

exp(ξt) = Et [exp(mt,t+1 − ∆st+1 + r∗t )] ,

exp(ϕ∗
t ) = Et

[
exp(m∗

t,t+1 + r∗t )
]

,

exp(ξ∗t ) = Et
[
exp(m∗

t,t+1 + ∆st+1 + rt)
]

.

Assuming log-normality, we obtain two expressions that relate the expected excess
return of a strategy that goes long the foreign bond to the perceived risks from the home
and foreign perspectives as well as the wedges:

(r∗t − rt)− Et[∆st+1] +
1
2

vart(∆st+1) = −covt(mt,t+1,−∆st+1) + ξt − ϕt,

(rt − r∗t ) + Et[∆st+1] +
1
2

vart(∆st+1) = −covt(m∗
t,t+1, ∆st+1) + ξ∗t − ϕ∗

t .

Combining these equations yields, we obtain the following characterization of the con-
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FIGURE 3. LOWER BOUND ON THE EULER EQUATION WEDGE AS A FUNCTION OF THE VARIABIL-
ITY OF THE CONDITIONAL LOG SDF VARIANCE

Notes: The figure plots the lower bound on E[ξ∗t + ξt] as a function of std (vart(mt,t+1)) as implied by
prop:unconditioalcyc-wedge1(b). We take b = −1, R2 = 5%, and std(∆st+1) = 10%.
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ditional exchange rate cyclicality:

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗

t ).

In order to obtain pro-cyclical exchange rates covt(mt,t+1 − m∗
t,t+1, ∆st+1) < 0, we need

vart(∆st+1) < (ξ∗t + ξt) − (ϕt + ϕ∗
t ). Clearly, in addition to positive cross-currency Eu-

ler equation wedges, negative domestic bond equation wedges will help to satisfy this
condition.

Next, we derive restrictions on the wedges that are needed to change the sign of the
unconditional exchange rate cyclicality.

Proposition 6. Let

ω = E[−(ξ∗t + ξt) + (ϕt + ϕ∗
t )]− cov (ϕ∗

t , qt) + cov (ϕt, qt)

denote the new adjustment term that arises from the wedges. In the presence of Euler equation
wedges, each of the following is a necessary condition for a negative unconditional exchange rate
cyclicality, i.e., cov(mt,t+1 − m∗

t,t+1, ∆st+1) < 0:
(a)

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
+
√

R2

(
1
b

R2
Fama
R2 − 1

)

If the Fama regression yields the best predictor of the exchange rate movement, then, we can sim-
plify the formula to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
+
√

R2
(

1
b
− 1
)

=
1√
R2

(
1 +

ω

var(∆st+1)

)
−
√

R2 + sign(b)
std( ft − st)

std(∆st+1)
.

(b) √
std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ 1

R2

(
1 +

ω

var(∆st+1)

)
.

Among these conditions,

• (a) ⇒ (b).

• If Fama regression yields the best predictor and b /∈ (0, 1), (b) ⇒ (a); otherwise (b) is a
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weaker condition.

As was the case of conditional covariance, this proposition shows that a sufficiently
negative ω, which can be obtained by assuming positive transaction costs, i.e., ξt + ξ∗t > 0,
is able to lower the right-hand side of the inequalities (a)–(b), and make it easier to attain
a negative unconditional exchange rate cyclicality. Alternatively, we need a sufficiently
negative Euler equation wedge for domestic bonds ϕt + ϕ∗

t < 0, which can be interpreted
either as a convenience yield from holdings of domestic bonds, or, alternatively, a symp-
tom of financial repression. Governments routinely adopt measures to allow themselves
to borrow at below-market rates. This is usually referred to as financial repression [see
Reinhart, Kirkegaard, and Sbrancia, 2011, Chari, Dovis, and Kehoe, 2020].

During the Great Financial Crisis, banks were induced by their national governments
to buy the sovereign debt of their countries [Acharya and Steffen, 2015, De Marco and
Macchiavelli, 2016, Ongena, Popov, and Van Horen, 2019]. Since the 2008 GFC, central
banks in advanced economies have increased the size of their balance sheets to purchase
government bonds, a new wave of financial repression [see Hall and Sargent, 2022, for
a comparison of the pandemic and two World Wars]. Financial repression come in other
forms, including macro-prudential regulation that favors government bonds, direct lend-
ing to the government by domestic pension funds and banks, moral suasion used to
increase domestic bank holdings of government bonds [see Acharya and Steffen, 2015,
De Marco and Macchiavelli, 2016, Ongena et al., 2019, for examples from Europe during
the GFC].5 Japan is a textbook example of financial repression. The Bank of Japan has
implemented a yield curve control policy.

It is worth noting that the U.S. Treasury’s convenience yield is commonly interpreted
as a negative ξ∗t wedge capturing foreigners’ willingness to accept lower returns on the
U.S. debt and a negative ϕt wedge capturing the U.S. investors’ willingness to accept
lower returns on the U.S. debt. We usually assume that the foreigners’ convenience yield
is higher, i.e., |ξ∗t | > |ϕt|, which makes the U.S. dollar stronger relative to its interest
rate level and risk premium [Jiang, Krishnamurthy, and Lustig, 2021a]. However, this
specification of the Euler equation wedges implies

−ξ∗t + ϕt > 0,

which would increase the unconditional exchange rate cyclicality, unless cov(ϕt, qt) =

cov(ϕt, Et[∆st+1]) is sufficiently negative which means that the convenience yield tends

5Chari et al. [2020] derive conditions under which forcing banks to hold government debt may be opti-
mal, because it acts as a commitment device.
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to increase (i.e., a more negative ϕt) when the dollar has an expected appreciation. As
such, while foreign investors’ bond convenience yield can generate dollar appreciation
during global recessions, a different type of the Euler equation wedge, which is closer to
home bias, is needed to generate a negative unconditional exchange rate cyclicality.

6 Conclusion

We derive a simple and general characterization of the bilateral exchange rate’s cyclical-
ity with respect to the differential between home and foreign SDFs. If investors can freely
trade the risk-free bonds in both countries, their optimality conditions impose strong re-
strictions on the relation between exchange rates and macro fundamentals that is difficult
to reconcile with the data. In order to break this relation, models need to impute a home
currency bias to bond market investors. Alternatively, these investors need to derive large
convenience yields from their holdings of domestic bonds. These results offer a model-
free diagnosis for the necessary conditions of explaining the exchange rate disconnect and
predictability.
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Appendix

A Proof

A.1 Proposition 1

Proof. Combining

Et[∆st+1] + rt − r∗t = covt(mt,t+1,−∆st+1) +
1
2

vart(∆st+1),

−(Et[∆st+1] + rt − r∗t ) = covt(m∗
t,t+1, ∆st+1) +

1
2

vart(∆st+1),

we directly obtain

covt(mt,t+1 − m∗
t,t+1, ∆st+1) = vart(∆st+1) > 0.

A.2 Proposition 2

Proof. Using the definition of pt and qt, we can restate the covariance as follows:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = cov(pt + qt, qt) +

1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt) .

Note cov(pt + qt, qt) = b × var(pt + qt) by the construction of the Fama regression.
Then,

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = b × var(pt + qt) +

1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt) .

A negative unconditional exchange rate cyclicality then implies

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = E[vart(∆st+1)] + b × var(pt + qt)

+
1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt) ≤ 0

Rearranging terms,

1
2

cov (vart(mt,t+1), qt) +
1
2

cov
(
vart(m∗

t,t+1),−qt
)
≥ E[vart(∆st+1)] + b × var(pt + qt)
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Without loss of generality,

cov (vart(mt,t+1), qt) ≥
1
2

cov (vart(mt,t+1), qt) +
1
2

cov
(
vart(m∗

t,t+1),−qt
)

≥ E[vart(∆st+1)] + b × var(pt + qt)

We note corr (vart(mt,t+1), qt) ≤ 1. Hence, a necessary (but not sufficient) condition is
given by:

std (vart(mt,t+1)) ≥
E[vart(∆st+1)] + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1)) ≥
var(∆st+1)− var(Et[∆st+1]) + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1)) + std(Et[∆st+1]) ≥
var(∆st+1) + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 ≥ var(∆st+1) + b × var( ft − st)

var(Et[∆st+1])

which implies

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 − b × var( ft − st)

var(Et[∆st+1])
≥ var(∆st+1)

var(Et[∆st+1])
=

1
R2 (7)

Now, notice that

b =
cov(∆st+1, ft − st)

var( ft − st)
=

std(∆st+1)

std( ft − st)
corr(∆st+1, ft − st).

We obtain

std (vart(mt,t+1))

std(∆st+1)
√

R2
+ 1 − b × var( ft − st)

var(∆st+1)R2 ≥ 1
R2

std (vart(mt,t+1))

std(∆st+1)
+
√

R2 − b × corr(∆st+1, ft − st)2

b2
√

R2
≥ 1√

R2

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
−
√

R2 +
R2

Fama

b
√

R2

When Fama Regression yields the best predictor, R2
Fama = R2, the formula is simplified

to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2
−
√

R2 +
1
b

√
R2,
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where

1
b

√
R2 =

1
b
|b|std( ft − st)

std(∆st+1)
= sign(b)

std( ft − st)

∆st+1
.

Hence, we arrive at condition (a).
Next, we show condition (b). By using the definition of covariance and imposing

symmetry:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = cov(pt + qt, qt)− cov (vart(mt,t+1), qt)

= var(qt) + cov(pt, qt)− cov (vart(mt,t+1), qt) .

Using the definition of the covariance, this covariance expression on the left-hand side
can be bounded below as follows:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) ≥ var(qt)− std(pt)std(qt)− std(qt)std (vart(mt,t+1)) .

This lower bound can be restated as:

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) ≥ var(qt)

(
1 − std(pt)

std(qt)
− std (vart(mt,t+1))

std(qt)

)
.

To get a negative unconditional Backus Smith coefficient, we need the following con-
dition:

cov(mt,t+1 − m∗
t,t+1, ∆st+1) = E[vart(∆st+1)] + cov(Et[mt,t+1 − m∗

t,t+1], Et[∆st+1]) ≤ 0.

This can be restated as follows:

−E[vart(∆st+1)] ≥ cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) ≥ var(qt)

(
1 − std(pt)

std(qt)
− std (vart(mt,t+1))

std(qt)

)
.

Rearranging terms, we obtain the following result:

std(pt)

std(qt)
+

std (vart(mt,t+1))

std(qt)
≥ 1 +

E[vart(∆st+1)]

var(qt)
.

Note that

1 +
E[vart(∆st+1)]

var(qt)
=

var(Et[∆st+1]) + E[vart(∆st+1)]

var(Et[∆st+1])
=

var(∆st+1)

var(Et[∆st+1])
.
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Hence, we obtain the necessary condition (b) by using the definition of the uncondi-
tional variance: √

std(pt)

std(qt)
+

std (vart(mt,t+1))

std(qt)
≥ std(∆st+1)

std(qt)
=

1√
R2

.

To compare conditions (a) and (b), note that condition (a) can be written as Eq. (7),
reproduced below,

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 − b × var( ft − st)

var(Et[∆st+1])
≥ 1

R2 ,

it suffices to compare the term std(Et[rxt+1])/std(Et[∆st+1]) = std(pt)/std(qt) in (b) with
1 − bvar( ft − st)/var(Et[∆st+1]) = 1 − bvar(pt + qt)/var(qt) in (a). Consider the general
case, when Fama regression does not necessarily yield the best predictor. Take conditional
expectation on both sides of the regression yields

qt = a + b(pt + qt) + xt

where xt = Et[εt+1] satisfies that

cov(xt, pt + qt) = cov(εt+1, pt + qt)− cov(εt+1 − xt, pt + qt) = 0

cov(xt, qt) = cov(xt, b(pt + qt)) + var(xt) = var(xt)

Hence, var(qt) = b2var(pt + qt) + var(xt), and

1 − b
var(pt + qt)

var(qt)
= 1 − 1

b

(
1 − var(xt)

var(qt)

)
=

(
1 − 1

b

)
+

1
b

var(xt)

var(qt)
.

On the other hand, pt = −a/b + (1/b − 1)qt − xt/b, which implies

std(pt)

std(qt)
=

1
std(qt)

√(
1
b
− 1
)2

var(qt) +
1
b2 var(xt)−

2
b

(
1
b
− 1
)

var(xt)

=

√(
1
b
− 1
)2

+

(
2
b
− 1

b2

)
var(xt)

var(qt)
.
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Note that(
1 − b

var(pt + qt)

var(qt)

)2

=

(
1
b
− 1
)2

+

(
2
b
− 2

b2

)
var(xt)

var(qt)
+

1
b2

(
var(xt)

var(qt)

)2

=

(
std(pt)

std(qt)

)2

− 1
b2

(
1 − var(xt)

var(qt)

)
var(xt)

var(qt)

which implies that, when var(xt) > 0, i.e., the Fama regression does not yield the best
predictor, condition (a) is always tighter.

When var(xt) = 0, i.e., Fama regression yields the best predictor, we obtain

(
1 − b

var(pt + qt)

var(qt)

)2

=

(
std(pt)

std(qt)

)2

,

and

1 − b
var(pt + qt)

var(qt)
=

(
1 − 1

b

)
.

When 1 − 1/b > 0, i.e., b < 0 or b > 1, condition (a) and (b) are equivalent. Otherwise,
1 − b var(pt+qt)

var(qt)
< 0 < std(pt)

std(qt)
, and condition (a) is tighter.

A.3 Proposition 3

The proof is identical to the proof of Proposition 2. Just replace the one-period objects
(e.g., mt,t+1) with the multi-period objects (e.g., mt,t+k).

A.4 Propositions 5 and 6

Proof. From

ϕt = Et[mt,t+1] +
1
2

vart(mt,t+1) + rt,

ξt = Et[mt,t+1] +
1
2

vart(mt,t+1)− Et[∆st+1] +
1
2

vart(∆st+1) + covt(mt,t+1,−∆st+1) + r∗t ,

ϕ∗
t = Et[m∗

t,t+1] +
1
2

vart(m∗
t,t+1) + r∗t ,

ξ∗t = Et[m∗
t,t+1] +

1
2

vart(m∗
t,t+1) + Et[∆st+1] +

1
2

vart(∆st+1) + covt(m∗
t,t+1, ∆st+1) + rt,
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we obtain

Et[mt,t+1 − m∗
t,t+1] =

1
2

vart(m∗
t,t+1) + r∗t − ϕ∗

t −
1
2

vart(mt,t+1)− rt + ϕt

Then

cov(Et[mt,t+1 − m∗
t,t+1], Et[∆st+1]) = cov(pt + qt, qt) +

1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt)

− cov (ϕ∗
t , qt) + cov (ϕt, qt)

= b × var(pt + qt) +
1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt)

− cov (ϕ∗
t , qt) + cov (ϕt, qt)

A negative unconditional exchange rate cyclicality then implies

cov(mt,t+1 − m∗
t,t+1, ∆st+1)

=E[vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗
t )] + b × var(pt + qt)

+
1
2

cov
(
vart(m∗

t,t+1), qt
)
− 1

2
cov (vart(mt,t+1), qt)− cov (ϕ∗

t , qt) + cov (ϕt, qt) ≤ 0

Rearranging terms,

1
2

cov (vart(mt,t+1), qt) +
1
2

cov
(
vart(m∗

t,t+1),−qt
)
− cov (ϕt, qt) + cov (ϕ∗

t , qt)

≥E[vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗
t )] + b × var(pt + qt)

By assumption,

cov (vart(mt,t+1), qt)− cov (ϕt, qt) + cov (ϕ∗
t , qt)

≥E[vart(∆st+1)− (ξ∗t + ξt) + (ϕt + ϕ∗
t )] + b × var(pt + qt)

Let ω = E[−(ξ∗t + ξt) + (ϕt + ϕ∗
t )]− cov (ϕ∗

t , qt) + cov (ϕt, qt) denote the new adjust-
ment term that arises from the wedges. Then, a necessary (but not sufficient) condition is
given by:

std (vart(mt,t+1)) ≥
E[vart(∆st+1)] + ω + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1)) ≥
var(∆st+1)− var(Et[∆st+1]) + ω + b × var( ft − st)

std(Et[∆st+1])
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std (vart(mt,t+1)) + std(Et[∆st+1]) ≥
var(∆st+1) + ω + b × var( ft − st)

std(Et[∆st+1])

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 ≥ var(∆st+1) + ω + b × var( ft − st)

var(Et[∆st+1])

which implies

std (vart(mt,t+1))

std(Et[∆st+1])
+ 1 − b × var( ft − st)

var(Et[∆st+1])
≥ var(∆st+1) + ω

var(Et[∆st+1])

=
1

R2

(
1 +

ω

var(∆st+1)

)
Recall that R2

Fama = b2var( ft − st)/var(∆st+1). Hence,

std (vart(mt,t+1))

std(∆st+1)
√

R2
+ 1 − b × var( ft − st)

var(∆st+1)
√

R2
≥ 1

R2

(
1 +

ω

var(∆st+1)

)
std (vart(mt,t+1))

std(∆st+1)
+
√

R2 −
R2

Fama
b

≥ 1√
R2

(
1 +

ω

var(∆st+1)

)
std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
−
√

R2 +
R2

Fama

b
√

R2

When Fama Regression yields the best predictor, R2
Fama = R2, the formula is simplified to

std (vart(mt,t+1))

std(∆st+1)
≥ 1√

R2

(
1 +

ω

var(∆st+1)

)
−
√

R2 +

√
R2

b

where

1
b

√
R2 =

1
b
|b|std( ft − st)

std(∆st+1)
= sign(b)

std( ft − st)

∆st+1
.

Hence, we arrive at condition (a).
Similarly, condition (b) can be derived as√

std(Et[rxt+1])

std(Et[∆st+1])
+

std (vart(mt,t+1))

std(Et[∆st+1])
≥ 1

R2

(
1 +

ω

var(∆st+1)

)
.

the relation between condition (a) and (b) depends only on the Fama regression but not
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the Euler equations, thus are identical to that in Proposition 2.

A.5 Non-Gaussian Case

We define conditional entropy as follows:

Lt(Xt+1) = (log Et[Xt+1]− Et[xt+1]) .

We can use µit to denote the i-th central conditional moment of log X. Then we can state:

log Et exp(sxt+1) =
∞

∑
j=1

sjκj,t/j! = kt(xt+1; s)

where κ1t = µ1t, κ2t = µ2t, κ3t = µ3t, κ4t = µ4t − 3µ2
2t. This implies that the conditional

entropy can be stated as the sum of the higher order cumulants:

Lt(Xt+1) =
∞

∑
j=2

κj,t/j! = kt(xt+1; 1)− κ1.

The log of the currency risk premium (in levels) earned by domestic investors can be
stated as:

(r∗t − rt)− Et[∆st+1] + Lt

[
St

St+1

]
= −Ct

(
Mt+1,

St

St+1

)
,

where co-entropy is defined as Ct(xt+1, yt+1) = Lt(xt+1yt+1)− Lt(xt+1)− Lt(yt+1) [Backus,
Boyarchenko, and Chernov, 2018]. If xt+1 and yt+1 are independent, then Ct(xt+1, yt+1) =

0. If we define the cumulant generating function,

log Et exp(s1xt+1 + s2yt+1) = kt(s1, s2)

then Ct(xt+1, yt+1) = kt(1, 1)− kt(1, 0)− kt(0, 1). A long position in foreign currency is
risky for the domestic investor when the foreign currency tends to depreciate (and the
home currency appreciates) in worse states for the domestic investor, i.e. when

Ct

(
Mt+1,

St

St+1

)
< 0

is more negative. Similarly, the log of the currency risk premium (in levels) earned by
domestic investors can be stated as the co-entropy of the domestic SDF with the domestic
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currency’s rate of appreciation:

(rt − r∗t ) + Et[∆st+1] + Lt

[
St+1

St

]
= −Ct(M∗

t+1,
St+1

St
).

Proposition 7. In the non-normal case, the conditional exchange rate cyclicality satisfies

−Ct(M∗
t+1,

St+1

St
)− Ct

(
Mt+1,

St

St+1

)
= Lt

[
St

St+1

]
+ Lt

[
St+1

St

]
> 0. (8)

In the normal case, we recover the covariance result in Proposition 1. When the domes-
tic currency appreciates in worse states for the domestic investor, we have Ct

(
Mt+1, St

St+1

)
<

0. Similarly, when the foreign currency appreciates in worse states for the foreign investor,
we have Ct(M∗

t+1, St+1
St

) < 0.
Because the right-hand side is positive, as entropy is non-negative, we know that ex-

change rates will have to be counter-cyclical for at least one of the countries, and possibly
both.

Proof. The U.S. Euler equations are given by

Et[exp(mt+1 + rt)] = 1

Et[exp(mt+1 + r∗t − ∆st+1)] = 1

where mt+1 = log Mt+1. By the definition of entropy and co-entropy, we recast the equa-
tions as follows

0 = log Et[exp(mt+1 + rt)]

= log Et[exp(mt+1)] + rt

= log Et[mt+1] + Lt(Mt+1) + rt

0 = log Et[exp(mt+1 + r∗t − ∆st+1)]

= log Et[exp(mt+1 − ∆st+1)] + r∗t

= Et[mt+1 − ∆st+1] + Lt(Mt+1
St

St+1
) + r∗t

= Et[mt+1 − ∆st+1] + r∗t + Ct(Mt+1,
St

St+1
) + Lt(Mt+1) + Lt(

St

St+1
)
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Subtract the first equation from the second to get

r∗t − rt + Et[∆st+1] + Lt(
St

St+1
) = −Ct(Mt+1,

St

St+1
).

Similarly, from the foreign Euler equations we obtain

rt − r∗t − Et[∆st+1] + Lt(
St+1

St
) = −Ct(M∗

t+1,
St+1

St
)

Add up the two equations to get the proposition. Note that entropy is always greater
than zero, which ensures the inequality in the proposition.
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