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Is the labor market for US researchers experiencing the best or worst of times? This paper 
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“I know we all want the U.S. to continue to be the world’s center for innovation.
But our position is at risk. There are many reasons for this but two stand
out. First, U.S. companies face a severe shortfall of scientists and engineers with
the expertise to develop the next generation of breakthroughs...”—Bill Gates,
Testimony to Congress, 2008.1

“I think in all good conscience, PhD programmes now know that they’re taking
on more people than have a high probability of getting research positions...we
just can’t keep on growing these PhD programmes without good outlets... I think
if you train a lot of people who don’t end up in research positions, the PhD, as
I’ve understood it and as we’ve always discussed it, is to train people in research,
so that’s how I think it should be assessed.”—Paula Stephan, Nature, 2019.2

1 Introduction

Is the labor market for researchers in the United States experiencing the best or worst of 
times? Many policymakers, institutions, and practitioners see the STEM labor market as 
experiencing the worst of times. They (rightly) note that there has been a large expansion 
in the share of Ph.D. recipients placed in increasingly long and poorly-compensated postdoc 
positions. At the same time, a growing number of Ph.D. recipients appear to be pushed by 
excess supply into a wide range of jobs that do not seem to utilize the specialized human 
capital they accumulated during graduate school (Cyranoski et al., 2011; Stephan, 2012b; 
Alberts et al., 2015; Gould, 2015). These trends are especially acute in fields such as Biology, 
where the fraction of Ph.D. recipients taking postdoc positions has increased particularly 
rapidly (Powell, 2015; Heggeness et al., 2017).

Others view the STEM labor market as experiencing the best of times. They emphasize 
(again, rightly) that Ph.D. recipients have low unemployment rates after receiving their 
degrees. For this camp, long postdocs do not indicate supply outstripping demand, but 
steep training requirements arising from the ever-growing complexity of science (Jones, 2009). 
Moreover, far from viewing the wide range of jobs in which STEM Ph.D. recipients place as 
evidence of oversupply, they view it as evidence of demand-pull for STEM knowledge across 
a myriad of economic sectors, with STEM being a new, multi-purpose training (Mathur 
et al., 2015; Meyers et al., 2016). This camp views these facts as support for, if anything, 
training more researchers.3

           1 https://news.microsoft.com/2008/03/12/bill-gates-testimony-before-the-committee-on-science-and-
technology-u-s-house-of-representatives/

2https://www.nature.com/articles/d41586-019-03439-x

     3They often also emphasize that innovation drives long-term economic growth (Romer, 1990)and that
increasing the number of researchers yields social benefits beyond the effects on the labor market for re-
searchers.
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Thus, though advocates of these polar positions point to a similar set of facts, they provide

starkly different interpretations. Intuitively, most of the debate has focused on quantities,

but economic logic implies that one cannot distinguish supply from demand solely from

equilibrium quantities. We apply this economic logic along with newly constructed data

to weigh the supply-push “worst of times” and the demand-pull “best of times” narratives.

We find that Ph.D. recipients are neither universally experiencing the best nor worst of

times. Rather, labor market conditions and outcomes vary markedly across fields. Indeed,

Ph.D. recipients from some fields have a reasonable chance of getting faculty positions at

universities or placing in industry jobs with relatively high earnings that use their specialized

human capital. In other fields, a high fraction of Ph.D. recipients takes postdoc positions

and/or enter industry jobs with relatively low earnings that appear further from their areas

of expertise.

We construct our data by first linking graduate students from UMETRICS to their Ph.D.

dissertations in ProQuest. This allows us to determine each Ph.D. recipient’s degree year and

field. We then link each Ph.D. recipient to their labor market outcomes using the universe of

W2 tax records from the Internal Revenue Service (IRS). This allows us to track post-degree

employment and earnings. Specifically, we track earnings during the first three years after a

Ph.D. recipient earns their degree as well as whether their initial placement is in one of three

mutually exclusive job types: faculty members at a university, postdocs at a university, or

industry.4

We begin by analyzing academic placements by computing the share of Ph.D. recipients

from each field who take jobs as university faculty. While recognizing that faculty positions

vary in quality, we take a large share of faculty placements as evidence of strong demand for

faculty in a field. In other words, a high fraction of faculty placements is one characteristic

of a field experiencing the best of times. We find large disparities across fields, suggesting

considerable variation in demand for faculty. On the high end, there appears to be strong

demand for faculty (relative to supply) in the Social Sciences, Medicine, and Comm/Info

Sciences, which place about 35.4%, 24.4%, and 24.3% of Ph.D. recipients in faculty posi-

tions (Figure 2). On the low end, there appears to be weak relative demand for faculty in

Chemistry, Geosciences, and Biology, which place about 2.5%, 7.7%, and 9.1% in faculty

positions.

We next turn to placements in postdoc positions at universities. In our data, fields

with a relatively high fraction of Ph.D. recipients taking postdoc positions include Biology

(58.2%), Eco/Envr Sciences (57.9%), and Geosciences (52.8%) (Figure 2). On the low end,

are Engineering (22.5%), Physics (37.8%), and Social Sciences (41.4%). Though low earnings

4Our “industry” category includes all placements in the private sector, government, and NGOs.
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levels in fields where postdocs are prevalent are consistent with low demand relative to

supply,5 they are also consistent with greater training requirements. However, the logic of

human capital theory implies that earnings growth should be higher in fields where postdocs

are prevalent if additional training is required. By contrast, we find that fields in which

postdocs are prevalent tend to have not only lower earnings levels but also lower earnings

growth. Specifically, a 10 percentage point increase in the share of Ph.D. recipients from a

field that place in postdoc positions is associated with a $3,660 reduction in year 3 earnings

(Figure 3a) and a 7.7 percentage point reduction in 3-year wage growth (Figure 3b). Thus,

it seems likely that fields where postdocs are prevalent are experiencing the worst of times.6

Of course, universities are not the only source of demand for Ph.D. recipients and it is

possible that weak demand from universities is offset by strong demand from industry (or

that strong demand from industry attracts people to PhD programs). Turning to industry

placements, we distinguish between the demand-pull “best of times” and the supply-push

“worst of times” views in two ways. First, we examine Ph.D. recipients’ earnings. If supply is

pushing researchers out of academia and into industry, we should observe weak labor market

outcomes, including relatively low earnings. By contrast, if demand is pulling researchers

into industry then we ought to see strong labor market outcomes, including relatively high

earnings. Second, we directly evaluate “match quality”, constructing a dissertation-industry

“relevance” measure by comparing a Ph.D. recipient’s dissertation text to the text of the

universe of patents from the United States Patent and Trademark Office (USPTO), linking

patents to assignee firms, and using tax data on the universe of U.S. business establishments

to aggregate the relevance measure to the industry level. This allows us to quantify, for

each Ph.D. recipient, the relevance (or “match quality”) of their specialized human capital

(as reflected in their dissertation) to each industry.7 Though for some fields (e.g. Social

Sciences), our patent-industry relevance measure may understate actual relevance, it is likely

that our measure is well-suited for most STEM fields we analyze, especially engineering and

biology. Moreover, we validate our dissertation-industry relevance measure by showing that it

predicts labor market outcomes for Ph.D. recipients. A one standard deviation increase in the

relevance score between a Ph.D. recipient’s dissertation and a 6-digit industry is associated

with a 0.012 (15.66% relative to baseline) percentage point increase in the probability that

5One source of excess supply could be bad information (see Levitt (2010) and Ganguli et al. (2020)).
6Independent of the share of people entering postdocs, there may be private return to people taking

postdocs, however, Kahn and Ginther (2017); Davis et al. (2022) find that returns (in the form of earnings)
to a postdoc are quite low.

7This analysis of job matches is informative for two reasons. First, if Ph.D. recipients are taking jobs
that do not require their specialized human capital, then it seems likely they could have obtained similar
positions with less and/or different investments. Second, there is evidence that research-trained individuals
view the ability to conduct research as a valuable job attribute (Roach and Sauermann, 2010; Stern, 2004).
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they place in that industry (Table 2) and 3.4% higher earnings (Table 3).

We find that, of Ph.D. recipients placing in industry, those coming from Mathematics,

Engineering, and Physics have the highest average initial earnings at $105k, $99k, and $82k.
In contrast, those coming from Biology, Eco/Envr Sciences, and Comm/Info Sciences have

the lowest average initial earnings at $58k, $59k, and $60k. With respect to match quality,

we find that Ph.D. recipients from Engineering, Physics, and Chemistry have the highest

average dissertation-industry relevance, while Agriculture, Comm/Info Sciences, and Social

Sciences have the lowest. Overall, the field-level relationship between earnings and relevance

is high (R2=0.74 to 0.77), and a 1 standard deviation increase in the relevance score is

associated with a $12,091 increase in earnings.

To summarize our results, we create a field-level composite ranking that assesses fields

based on the quality of their academic and industry placements, and provides a more holistic

understanding of which fields are, in a relative sense, experiencing the best and worst of times.

Topping the list of placement outcomes are Physics, Engineering, and Mathematics, which

appear to be experiencing the best of times. In contrast, our ranking suggests that Biology,

Eco/Envr Sciences, and Agriculture appear to be experiencing the worst of times. Of course,

the “best” and “worst” of times are relative rankings across fields of Ph.D. recipients and

do not capture the fact that across fields Ph.D. recipients experience stronger labor market

outcomes than most workers with less formal schooling. Moreover, we do not view this

ranking as the final word on labor markets for Ph.D. recipients, and encourage other work

to construct alternative metrics that offer additional perspective. However, using data on

actual job placements – along with earnings and a new measure of match quality – is an

informative leap toward determining which fields are experiencing relatively strong demand

for the specialized human capital of their Ph.D. recipients.

2 Data

We combine a variety of detailed administrative data to conduct our analysis. We start

with graduate students from the UMETRICS data and link them to their dissertations in

ProQuest, allowing us to identify field, degree year, and dissertation titles and abstracts. We

then link these Ph.D. recipients to their post-degree labor market outcomes using tax data

(W2 records and the Business Register). Finally, we use USPTO patent data, along with a

patent-firm bridge, to construct a new dissertation-industry “relevance” score. This section

summarizes our data and methods. Additional details are provided in Appendix B.
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UMETRICS Graduate Students UMETRICS is administrative data from universities.

We use data on grant transactions at 24 major research universities (64 campuses), which

collectively account for more than one-third of federally funded academic R&D.8 Crucially,

the data include information on the job titles of individuals receiving payments from these

grants, allowing us to identify graduate students (Ikudo et al., 2019). These graduate stu-

dents comprise our core sample, and we link them to a variety of additional information to

determine their field and degree year, measure the relevance of their specialized human cap-

ital to different industries, and track their labor market outcomes (including job placements

and earnings).

Dissertations, Fields, and Specialized Human Capital We link each UMETRICS

graduate student to their dissertation in Proquest. As indicated, this allows us to determine

the degree year as well as the field of each Ph.D. recipient, which is crucial because much

of our analysis takes place at the field level. As discussed below, this match also enables

us to use the text of each Ph.D. recipient’s dissertation and compute its similarity to all

patents in the USPTO. Linking these patents to assignee firms, allows us to measure the

relevance of a Ph.D. recipient’s specialized human capital (as reflected in their dissertation)

to different industries, which sheds light on how well-matched each individual is to the firm

or industry in which they are actually employed after receiving their Ph.D. We can only

link patents granted between 2000 and 2015 to assignee firms (see below), so we restrict our

sample to dissertations with a degree year between 2004-2015. This allows us to measure,

for each dissertation, the similarity to patents issued in the four years before the dissertation

year and the dissertation year. We impose this restriction to measure the relevance of a

dissertation to an industry’s recent patent portfolio while avoiding patents that are issued

after a Ph.D. recipient may have been hired.9

Labor Market Outcomes To track labor market outcomes for the UMETRICS Ph.D.

recipients, we use a Protected Identification Key (PIK) to link them to a variety of confi-

dential data at the U.S. Census Bureau.10 First, we link them to the universe of W2 tax

8We use the 2018 Q4 release of UMETRICS. For additional work using UMETRICS, see Chang et al.
(2019), Ikudo et al. (2019), Buffington et al. (2016), Lane et al. (2013), Lane et al. (2015), Weinberg et al.
(2014), Zolas et al. (2015), and Ross et al. (2022).

9One might prefer to use the application date to the award date for patents, but Census’s bridge from
patents to assignees is based on award dates (2000-2015), meaning that an analysis based on application
dates would generate a sample with uncertain properties.

10Using identifying information such as name and birth date, the Census Bureau assigns individuals a
PIK which is a unique, internal, person-level identifier. This is done through the Person Validation System
(PVS), which is a probabilistic match. Once an individual is assigned to a PIK, we can link them to a variety
of confidential Census data.
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records (2005-2018), from which we identify the firms (EINs) at which they were employed

as well as their earnings.11 Next, we use the EINs to link each firm to the Business Register

(BR), the universe of business establishments in the United States (DeSalvo et al., 2016).

This allows us to determine the industry of the firm that employs each Ph.D. recipient in

our sample.12

We use the information on the firm’s industry as well as a list of EINs from the Inte-

grated Postsecondary Education Data System (IPEDS) to identify universities and determine

whether a Ph.D. recipient’s initial post-degree job placement is in academia or industry.13

Within the subset of Ph.D. recipients that place in academia, we use earnings information

to impute whether the job was a faculty or postdoc position.14 Thus, each Ph.D. recipient’s

initial placement is in one of three mutually exclusive job types: faculty members at a uni-

versity, postdocs at a university, or industry (which includes the private sector, government,

and NGOs). In addition to placements, we also track earnings during the first three years

after a Ph.D. recipient earns their degree, subsetting our sample to Ph.D. recipients with

positive earnings and non-missing industries in all years 1-3 following their degree year.

Patents and Dissertation-Industry Relevance As noted, a goal is to measure how

closely related a Ph.D. recipient’s dissertation is to the patenting portfolio of a firm or an

industry. To do this, we identify the 1,000 USPTO patents that are most closely related to

each dissertation on the basis of a similarity score computed using dissertation and patent

text. We then use a patent-firm bridge from Census (Goldschlag and Perlman, 2017) to

link patents to assignee firms and their accompanying industry codes, which allows us to

aggregate our similarity score to the industry level and to measure the “relevance” of each

dissertation to every industry. We detail the construction of this similarity measure in Section

3.

Final Sample Our final sample of individuals is a set of UMETRICS graduate students

who 1) are assigned exactly one PIK, and thus can be linked to employment outcomes at

11Though, for convenience, we use the term “firm” throughout the paper, W2 records technically link
individuals to a federal tax identification number (EIN) of their employer. Since a single firm can have
multiple EINs, firms and EINs are not synonymous (see Figure 2 of (DeSalvo et al., 2016)). However, this
distinction is not critical for our purposes because we only use the EIN as an intermediate variable through
which we identify the industry in which a Ph.D. recipient works.

12See Appendix Section B.3 for details on how we assign EINs to industries using the Business Register
(BR).

13IPEDS is maintained by the National Center for Education Statistics (NCES).
14We use the Survey of Doctoral Recipients (SDR) to determine average postdoc salaries by field. We

then classify a job placement as a faculty position if it is at least 1 standard deviation above the mean and
classify it as a postdoc otherwise. We note that this approach to identifying postdocs implies low initial
earnings and high earnings growth for postdocs.
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Census; 2) link 1-to-1 to a ProQuest dissertation, and thus their specialized human capital

can be observed and compared to the patenting portfolio of firms and industries; and 3)

have a dissertation that is relevant to at least 1 patent.15 This gives us a final sample of

12,450 Ph.D. recipients. We focus on 11 STEM fields in our analysis because they receive the

most federal funding and are thus the largest. Moreover, our dissertation-industry relevance

measure is based on innovation intensity reflected in US patents, which is a useful measure

given the relevance of patenting in STEM fields.

Summary Statistics Table 1 shows key summary statistics for this sample – both dis-

sertation characteristics and employment outcomes – for each of the three initial placement

sectors. Nearly half (5,800 or 46.6%) of Ph.D. recipients initially place in industry positions.

Another 40.2% (5,000) initially place in postdoc positions and the remaining 13.3% (1,650)

initially place in faculty positions.

In terms of the PhD recipient characteristics, those who initially place in faculty positions

tend to be older when they receive their degree (Age at degree) and tend to belong to earlier

cohorts (Degree year) than those who place in postdoc and industry positions, which implies

that the share of people placing as faculty declines over time. The dissertations of Ph.D.

recipients who place in industry are relevant to more patents and have higher cosine similarity

scores (see Section 3) than the dissertations of those who place in academia. Thus, Ph.D.

recipients who place in industry appear to have specialized human capital that is closer to

the patenting frontier. However, these differences in dissertation-patent measures, across

placement types, are not statistically significant.

In terms of employment outcomes, Ph.D. recipients who place in industry have the highest

starting earnings at $83,540 followed by those who place in faculty positions at $80,780.
Though the means are similar, the standard deviation is about twice as high for those who

place in industry positions. Postdocs earn by far the least, starting at $36,130, although that

is in part by construction. Three years after receiving their degree, Ph.D. recipients who

initially placed in industry experience rapid earnings growth of 26.0% to $105,300. Those

who initially placed in faculty positions experience much more modest growth of 3.8% to

$83,810. By year three, the standard deviation of earnings for those in industry is nearly

4 times that of those in faculty positions. Though average earnings growth for those who

initially placed as postdocs is strong at 40.4%, their low starting earnings imply that, three

years later, the $50,720 they earn is still considerably less than those who initially placed in

faculty or industry positions.

15If the similarity score for a dissertation-patent link is zero, the link is discarded and the dissertation will
be linked to fewer than 1,000 patents. In the extreme, if all the patents have a zero similarity score to the
dissertation, the dissertation will not be linked to any patents. See data appendix B.4 for additional details.
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3 Measuring Dissertation-Industry Relevance

This section describes the construction of our new dissertation-industry “relevance” score,

which we use to directly assess the match quality between a Ph.D. recipient and their in-

dustry of employment. We use the raw text of doctoral dissertations (title and abstract)

in ProQuest to represent a Ph.D. recipient’s specialized human capital. We use USPTO

patents to represent the frontier of knowledge (innovation) valued and used by industries.

We then use natural-language processing (See Kelly et al. (2021), Koffi (2021), and Biasi

and Ma (2022) for other applications in economics) to measure the textual similarity be-

tween each dissertation and every patent. We then use the patent-firm bridge to link each

patent to its assignee firm and accompanying industry, which enables us to aggregate the

dissertation-patent scores to the dissertation-industry level. The rest of this section details

the construction of our new relevance measure and validates it by demonstrating its ability

to predict real labor market outcomes such as placement and earnings.

3.1 Dissertation-Patent Similarity

Term Frequency-Inverse Document Frequency Vectors To measure the similarity of

patents to dissertations, we employ methods from natural language processing. Specifically,

we use term frequency-inverse document frequency (TF-IDF), which identifies the frequency

of a word in a document relative to its occurrence in an entire corpus. We then use co-

sine similarity measures to make comparisons across corpora (i.e., compare dissertations to

patents). We start by computing the term frequency (TF) for each term t and document

d (a set of terms) from corpus D (i.e., a set of documents).16 The TF measures how often

term t occurs in document d (relative to all terms in the document):

TF (t, d) =
c(t ∈ d)

c(d)

where c(t ∈ d) is the number of times term t appears in document d and c(d) is the total

number of terms in d.

Next, we use document frequency to measure how many documents in a corpus D contain

the term t. We use inverse document frequency (IDF) to reweight these terms according to

the frequency with which they occur in the entire corpus, which reflects their informativeness.

Specifically, for a given term t, the IDF for corpus D is:

16In our case, documents are either dissertations or patents and the corpora are the set of all ProQuest
dissertations or the set of all USPTO patents.
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IDF (t,D) = log

( |D|∑
d∈D �[c(t ∈ d) > 0]

)

where |D| is the total number of documents in the corpus D and the denominator is the

number of documents in D where the term t appears at least once. Intuitively, a document’s

use of a term that is widely used throughout the corpus is less informative than (and is thus

down-weighted relative to) its use of a term that rarely appears in the corpus.17

Finally, for each term t and document d from corpus D, we take the product of TF (t, d)

and IDF (t,D) to compute the term frequency-inverse document frequency:

TFIDF (t, d,D) = TF (t, d)× IDF (t,D)

This measure reflects how important a term t is to document d in corpus D. The TF-IDF

increases as document d uses the term t more often as a fraction of the total number of terms

used. If the document does not use a term at all, then TF (t, d) and thus TFIDF (t, d,D)

are zero. Thus, the TF-IDF for term t in a document is higher for a term used intensively

in that document and/or for using a term that is not used by many other documents in the

corpus to which the document belongs.

Textual Similarities Between Dissertations and Patents Using the TF-IDF mea-

sures, we compute cosine similarity, a basic measure of linguistic proximity between doc-

uments, to construct a similarity score between dissertations and patents. Let A be the

corpus of dissertations and B be the corpus of patents. Let a ∈ A and b ∈ B be a specific

dissertation and patent (respectively) to be compared. Let t1, ..., tn represent the n terms

that appear in either a or b. We define the vectors Va and Vb, which stack the TF-IDF

measures for dissertation a and patent b, as

Va = [TFIDF (t1, a, A), TFIDF (t2, a, A), ..., TFIDF (tn, a, A)]

Vb = [TFIDF (t1, b, B), TFIDF (t2, b, B), ..., TFIDF (tn, b, B)]

The elements of these vectors are indexed by the n terms that appear in either the dissertation

or patent, so both vectors have length n. This conformability allows us to compute the cosine

17For example, the words “method”, “system” and “process” are typically used to describe a patented
invention but less often used in a dissertation. Thus, these words will be receive less weight (i.e. a smaller
IDF) in the USPTO patent corpus than the ProQuest dissertation corpus.
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similarity between dissertation a and patent b, which is defined as:

S(a, b) =
Va

‖Va‖ · Vb

‖Vb‖

where ‖Va‖ and ‖Vb‖ are the Euclidean norms of Va and Vb. The measure ranges from 0 (no

terms in common) to 1 (exactly the same terms), with higher values corresponding to higher

degrees of similarity between the two documents.

Dissertation and Patent Data The data used to construct the cosine similarity scores

are the universe of patent data from 2000 to 2015 (USPTO PatentsView) and all Pro-

Quest doctoral dissertations from 2004 to 2015. For each ProQuest dissertation abstract, we

compute its cosine similarity to each patent and retain the 1,000 patents with the highest

similarity scores (though some dissertations match to fewer than 1,000 patents with positive

cosine similarity scores). We drop patents with a zero cosine similarity.

Table A1 shows three examples of dissertation-patent pairs and the corresponding (qual-

itative) TF-IDF cosine similarity scores. We have chosen high, middle, and low cosine

similarity score pairs for comparison purposes. The TF-IDF cosine similarity score is high

between a dissertation on wireless communication and a patent on wireless communication.

The similarity score is relatively high between a dissertation on one treatment of rat spinal

cord injury and a patent on another treatment for nervous system injury. In contrast, the

similarity score is low between the dissertation on wireless communication and the patent

on the treatment of the nervous system.

3.2 Aggregating to the Industry-Level

Our goal is to create a full set of measures for how similar each Ph.D. recipient’s dissertation

is to the patenting portfolio of every industry for all pairwise combinations of dissertations

and industries (i.e., dyads). To do so, we aggregate our dissertation-patent cosine scores

to dissertation-industry scores, a process that we describe here and which is illustrated in

Figure 1.

After attaching each graduate student to their dissertation and identifying the 1000 most

relevant patents to each dissertation (see above), we subset to patents in the five years up to

and including the dissertation year and connect each patent to its assignee firm. This creates

a data set with unique observations at the dissertation-patent-firm level. We then collapse

over the patents assigned to each firm to obtain the average cosine similarity score for each

dissertation-firm pair. Thus, each dissertation-firm pair inherits a similarity score based on

the average of several dissertation-patent similarity scores. We next use the Business Register
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to assign a dominant industry (NAICS code) to each firm and collapse over the firm in each

industry to obtain the average similarity score for each dissertation-industry. In the end, we

have dyadic data with a score measuring the relevance of each Ph.D. recipient’s dissertation

to each industry. Note that the dyadic match is zero for a graduate student-industry pair if

none of the 1000 patents that are most relevant to the graduate student’s dissertation are

assigned to that industry.

We compute these dissertation-industry similarity scores at the 2-digit, 4-digit, and 6-

digit levels of industry aggregation. Higher levels of NAICS codes correspond to more de-

tailed industry classifications, so as we move from 2- to 6-digit codes, we are able to observe

the similarity between a Ph.D. recipient’s dissertation and the patent portfolio of increasingly

detailed industries.

3.3 Validating the Relevance Measure

This section uses our dissertation-industry dyad data to validate our new dissertation-

industry relevance measure by examining the extent to which it predicts placements and

earnings, two key labor market outcomes. At the outset, we caution against a causal in-

terpretation of these estimates. With respect to placements, Ph.D. recipients likely write

dissertations to competitively position themselves for their desired jobs. With respect to

earnings, it is plausible that Ph.D. recipients who obtain jobs to which they are well-matched

have unobserved characteristics associated with higher earnings. Yet our goal is to validate

our measures rather than to estimate the causal effects of industry relevance.

We first examine whether the relevance measure predicts the specific industry (NAICS

code) in which a Ph.D. recipient actually places. To do this, we focus on people who

place in industry (i.e., non-academic placements) and regress an indicator for whether an

individual places in a specific industry on the dissertation-industry relevance measure. Table

2 shows estimates for initial job placements (upper panel A) and placements three years after

graduation (lower panel B). Each column is a different specification. All regressions include

industry (NAICS) and individual fixed effects. Column 2 adds controls for the number of

patents linked to each individual and column 3 adds degree year fixed effects and field fixed

effects. Column 4 includes all controls. As noted, we construct our dissertation-industry

similarity scores at the 2-digit, 4-digit, and 6-digit levels of industry aggregation, so we

run regressions at each of these aggregation levels. Thus, each cell in Table 2 contains the

coefficient on the relevance measure from a separate regression.

The probability that a Ph.D. recipient places in an industry is strongly increasing in the

relevance of that industry to the graduate student’s dissertation, both initially and three
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years after receiving their degree. For initial placements, a one standard deviation increase

in the relevance score is associated with an increase of 0.384, 0.072, and 0.035 percentage

points in the probabilities of placing in a given 2-, 4-, and 6-digit industry. These increases

are 9.11%, 24.69%, and 45.92% of the mean probability of placement.18 For placements

three years after graduation, a one standard deviation increase is associated with increases

of 0.411, 0.078, and 0.031 for 2-, 4-, and 6-digit industries, which are 9.87%, 26.90%, and

41.28% of the means.

Controlling for the number of patents linked to a dissertation attenuates the estimates,

especially as industries become more detailed, which is not surprising because it is effectively

another measure of industry relevance. The estimates are also attenuated when we control

for degree year and field. Nevertheless, even when all controls are included, we still see

a strong relationship between industry relevance and placement. For initial placements, a

one standard deviation increase in relevance is associated with an increase of 0.175, 0.027,

and 0.012 percentage points in the probabilities of placing in a given 2-, 4-, and 6-digit

industry, which are 4.20%, 9.41%, and 15.97% relative to the unconditional means. For

placements three years after graduation, the associated increases are 0.216, 0.047, and 0.017

percentage points, which are 5.19%, 16.12%, and 22.12% of the means. The relationship

between dissertation-industry relevance and placement tends to be stronger for placements

three years after graduation than for initial placements. This implies that more relevant

placements are more durable and/or that people move toward more relevant industries from

those that are less relevant.

Next, we examine the relationship between the relevance score (for initial job placement)

and the earnings of Ph.D. recipients. To do this, we select the industry in which the Ph.D.

recipient initially places, which reduces our dyadic data structure to a single observation for

each Ph.D. recipient and the industry in which they place. Then we regress log earnings

on the industry relevance score for the Ph.D. recipient’s initial job placement. Table 3

shows these estimates for initial earnings (upper panel A) and earnings three years after

graduation (lower panel B). As with placements, each column is a different specification,

all of which include industry (NAICS) fixed effects, degree year fixed effects, and field fixed

effects. Column 2 adds controls for the number of patents linked to each individual and

18The regression coefficients for initial earnings in Column 1 of Table 2 are 0.0280, 0.0089, and 0.0069
for 2-, 4-, and 6-digit industries. The standard deviations of the relevance scores at these industry aggrega-
tion levels (unconditional on placement) are 0.1371, 0.0804, and 0.0500 (Column 3 of Table A2), so a one
standard deviation increase in the relevance scores are associated with increases in placement probabilities
of 0.0280*0.1371= 0.0038, 0.0089*0.0804=0.000716, and 0.0069*0.0500=0.000345. The unconditional prob-
abilities of randomly placing in a given 2-, 4-, and 6-digit industry (Column 1 of Table A2) are 1/24=0.0417,
1/345=0.0029, and 1/1,331=0.0007513, so relative to the means, the increases in placement probabilities are
0.0038/0.0417=0.0911, 0.000716/0.0029=0.2469, and 0.000345/0.0007513=0.4592.
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column 3 adds demographic controls, including gender, race, ethnicity, place of birth, and

age at degree. We run regressions at the 2-, 4-, and 6-digit levels of industry aggregation.

A higher relevance score between a Ph.D. recipient’s dissertation and the industry of

their initial job is strongly related to earnings, both initially and three years after receiving

their degree. Indeed, a one standard deviation increase in the relevance score is associated

with 3.37%, 2.05%, and 2.04% higher initial earnings at the 2-, 4-, and 6-digit levels of

industry aggregation.19 Three years after graduation, a one standard deviation increase in

the relevance score is associated with 4.57%, 2.74%, and 2.87% higher earnings.

Controlling for the number of patents linked to each dissertation tends to increase the

estimates and controlling for demographic characteristics tends to attenuate the estimates.

When all covariates are included, a one standard deviation increase in the relevance score

at the 2-, 4-, and 6-digit levels of industry aggregation is associated with earnings increases

of 3.39%, 3.32%, and 3.41% initially and increases of 4.78%, 4.36%, and 5.00% three years

after graduation.

In sum, we view the strong relationship between our dissertation-industry relevance score

and real economic outcomes – both placements and earnings – as promising validation of the

measure. In the following sections, we use this measure to help assess the quality of industry

job placements for Ph.D. recipients from different fields.

4 Analysis of STEM Career Outcomes

This section analyzes the placements of Ph.D. recipients from different fields to determine

which are experiencing (in a relative sense) the best and worst of times. We start with

faculty placements, from which we infer the demand for faculty in each field. We then move

to postdoc placements, evaluating whether fields with a high fraction of postdocs experience

relatively stronger wage growth (evidence of the need for extra training) or are simply facing

weak demand for their specialized human capital. We then turn to industry placements,

evaluating their quality using earnings and our new relevance score, which turn out to be

closely related. After analyzing all three job types, we create a composite index ranking

fields in terms of job placement quality. This index allows us to simply but more holistically

summarize which fields are, in a relative sense, experiencing the best and worst of times.

19For initial earnings, the regression coefficients are 0.270, 0.151, and 0.149 for 2-, 4-, and 6-digit industries
(Column 1 of Panel A in Table 3). The standard deviations of the relevance scores at these industry aggrega-
tion levels (conditional on placement) are 0.1249, 0.1355, and 0.1372 (Column 5 of Table A2), so one standard
deviation increase in the relevance scores is associated with increases in earnings of 0.270*0.1249=0.033723,
0.151*0.1355=0.02046, and 0.149*0.1372=0.02044. The calculations are similar for earnings three years after
degree receipt, using coefficients in column 3 of Panel A in Table 3.
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4.1 Faculty Placements

We start by analyzing the share of Ph.D. recipients in each field who take jobs as faculty,

as postdocs, and in industry. Figure 2 shows placement shares in the three position types,

sorted by the share of faculty placements.20

A large share of faculty placements is an indicator of strong demand from universities for

researchers in a field.

We see that the share of placements in each sector varies considerably across fields.

Overall, there appears to be relatively strong demand for faculty in the Social Sciences

(35.4%), Medicine (24.4%), and Comm/Info Sciences (24.3%). In contrast, demand for

faculty is weak, relative to supply, in Chemistry (2.5%), Geosciences (7.7%), Biology (9.1%),

and Engineering (10.2%). The remaining fields – Eco/Envr Sciences (14.1%), Mathematics

(14.5%), Agriculture (15.7%), and Physics (16.1%) – are intermediate cases.

It is notable that the two largest fields – Biology and Engineering – are both at the

lower end in terms of faculty placements. However, as we will see, these two fields are

quite different in terms of postdoc and industry placements. These differences highlight the

usefulness of our approach for simultaneously analyzing all three placement types and the

value of a composite job placement ranking, which we construct in Section 4.4, to describe

the overall, domestic labor market facing U.S. Ph.D. recipients in each field.

4.2 Postdoc Placements

We next turn to postdoc placements. Figure 2 shows that there is considerable variation,

across fields, in the share of Ph.D. recipients taking postdoc positions. On the high end are

Biology (58.2%), Eco/Envr Sciences (57.9%), and Geosciences (52.8%). On the low end are

Engineering (22.5%), Physics (37.8%), and Social Sciences (41.4%). The remaining fields

are Medicine (42%), Chemistry (45.3%), Agriculture (46.1%), Mathematics (47.3%), and

Comm/Info Sciences (50.1%).

Unlike faculty placements, it is less clear ex-ante what a high fraction of postdoc place-

ments means in terms of the relative supply and demand in a field. In other words, it is

unclear whether a high fraction of postdoc placements in a field reflects the best or worst

of times in that field. On the one hand, a high fraction of postdocs might indicate weak

demand relative to supply. On the other hand, there may be strong demand in a field, but

the content in the field may be so complex that it cannot be fully acquired during graduate

20The largest fields in our sample are Engineering (n=4,100) and Biology (n=2,800), which comprise
35.5% and 24.2% of the total. These are also the two largest fields in the Survey of Earned Doctor-
ates, where 25% and 20% of all Ph.D. recipients are from Engineering and Biology. See Table A here:
https://ncses.nsf.gov/surveys/earned-doctorates/2021
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school and so further training as a postdoc is required. For instance, it may be that the

complexity of biological processes means that postgraduate training is more important in

Biology and Medicine than in other fields.

Human capital theory helps adjudicate whether a high fraction of postdoc placements

reflects a need for additional human capital investments in a field or whether a high share

of postdocs is more likely to indicate relatively weak demand. If postdocs are prevalent in

Biology or other fields because additional human capital investment is particularly important

in those fields, then earnings should grow relatively rapidly for people entering postdocs in

those fields and be high later on. In contrast, if postdocs are prevalent in a field because

the supply in a field is large relative to demand, earnings should continue to be low even as

careers progress.21

Figure 3a shows that, for those whose initial placement is in a postdoc, earnings are

lower in the third year after graduation in fields where the postdoc share among non-faculty

placements is higher (the markers are sized according to the size of each field).22 The

relationship is remarkably strong with an R2 of 0.83. To account for differences in initial

earnings across fields, Figure 3b shows the relationship between earnings growth and the

share of initial placements in postdocs. While postdocs exhibit strong earnings growth in

all fields (in part due to how we identify them), as with the wage level, wage growth is also

lower in fields with more postdoc placements. Again the relationship is quite strong, with

an R2 of 0.698 Notably, the two largest fields – Engineering and Biology – are extreme cases.

Engineering has one of the smallest fractions of Ph.D. recipients taking postdoc positions

and has the highest earnings/earnings growth among postdocs. Biology has one of the

largest fractions of Ph.D. recipients taking postdoc positions and also has among the lowest

earnings/earnings growth. More generally, fitted lines through the scatterplots suggest that

a 10 percentage point increase in the share of graduates taking postdocs in a field among

non-faculty placements is associated with year three earnings that are lower by $3,66023 and
wage growth that is lower by 7.7 percentage points.

21Note that our goal is not to estimate the private return to postdocs – one would expect that individuals
who take postdocs obtain human capital, including knowledge, connections, and qualifications, that increase
their subsequent earnings (although existing evidence is surprisingly weak (Kahn and Ginther, 2017; Davis
et al., 2022)). Rather, our goal is to estimate wage growth for the average person taking a postdoc in each
field and compare average wage growth in fields where postdocs are prevalent to those where they are less
common, to estimate the importance of supply and demand versus the importance of acquiring additional
human capital beyond Ph.D. training.

22In some fields such as Biology, Ph.D. recipients often take multiple back-to-back postdoc positions that
cumulatively last longer than three years. Ideally, we would track longer-term earnings growth, but our
earnings data only extend through 2018. At the same time, postdocs are intended to be of modest duration
and long postdocs may themselves be indicative of weak demand.

23This is a 7.2% reduction relative to the $50,720 mean year 3 earnings for those who initially placed in
postdoc positions.
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Since both earnings (three years post-degree) and earnings growth are lower in fields

with a higher fraction of postdocs, it seems likely that at least part of the reason for a large

share of postdoc placements in some fields is high relative supply and not greater training

requirements. Thus, overall, we interpret a large fraction of postdoc placements as evidence

of weak demand (relative to supply) in a field and a high share of postdoc placements as an

indicator that a field is experiencing the worst of times.

4.3 Industry Placements

Figure 2 shows widely varying shares, across fields, of Ph.D. recipients who take positions

in industry. At the high end, 67% of Ph.D. recipients in Engineering place in industry jobs

followed by Chemistry (52%) and Physics (46%). At 23%, the Social Sciences have the lowest

share of industry placements, which suggests that the specialized human capital possessed by

social scientists may be less relevant to industry. Comm/Info Sciences (25%) and Eco/Envr

Sciences (28%) have the next lowest shares of Ph.D. recipients taking industry jobs.

In Section 4.1, we assumed that a high share of faculty placements represents strong

(relative) demand for faculty in a field. In Section 4.2, we drew on insights from human

capital theory to suggest that a high share of postdoc placements in a field likely indicates a

weak relative demand for that field’s specialized human capital. It is not immediately clear

whether a high share of industry placements indicates a high relative demand in industry for

the specialized human capital in a field or a high supply relative to other sources of demand.

This is, of course, a fundamental insight from supply and demand analysis - that supply

and demand shifts cannot be distinguished using equilibrium quantities without additional

information. Traditionally, economists have turned to price data to distinguish supply from

demand, and we do look at earnings data. In addition, we try to measure the quality of

industry jobs using our new dissertation-industry relevance score (Section 3).

Table 4 shows, by field, the starting wage, 3-year wage, and dissertation-industry rele-

vance score for Ph.D. recipients that place in industry. Those in Mathematics, Engineering,

and Physics have the highest average starting earnings at $105,400, $98,520, and $81,800.
At the low end are Ph.D. recipients in Biology, Eco/Envr Sciences, and Comm/Info Sci-

ences, with average starting earnings of $58,170, $59,200, and $60,240. Thus, engineers (the
highest-paid field) start out earning 81.1% more than biologists (the lowest-paid field).

Three years after receiving their degree, Ph.D. recipients in Mathematics, Engineering,

and Physics remain the highest paid, with average earnings of $146,700, $124,100, and

$101,100. Those in Biology and Eco/Envr Sciences remain at the bottom, averaging $78,040
and $66,480, respectively. However, Agriculture – with average year-3 earnings of $73,630 –
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has displaced Comm/Info Sciences near the bottom of the earnings distribution. Unsurpris-

ingly, the relationship between initial and 3-year earnings is very strong, with a correlation of

0.747. Taken together, these results suggest that mathematicians, engineers, and physical sci-

entists may be drawn into industry by demand, while biologists and ecological/environmental

scientists may be pushed into industry by supply.

Of course, earnings are only one job attribute valued by Ph.D. recipients. There is

also evidence that they value jobs in which they make use of their specialized human capital

(Roach and Sauermann, 2010; Stern, 2004). Our new dissertation-industry relevance measure

allows us to directly assess how closely matched a Ph.D. recipient’s specialized human capital

(measured from their dissertation) is to the patenting portfolio of the industry in which they

are employed.

Column 3 of Table 4 shows that Ph.D. recipients in Engineering, Physics, Chemistry, and

Mathematics have the highest average relevance scores at 0.2813, 0.2272, 0.2111, and 0.2099.

Thus, most of the fields at the top of the industry earnings distribution are also the fields

where people are most closely matched to their industry. At the bottom of the relevance score

distribution are Ph.D. recipients in Agriculture, Social Sciences, and Comm/Info Sciences,

which have average scores of 0.1540, 0.1663, and 0.1671. These fields are also lower in the

industry earnings distribution.

Figure 4 plots the relationship between initial and year 3 earnings measures and the

dissertation-industry relevance score, confirming the patterns in Table 3. The top earning

fields – Engineering, Mathematics, and Physics are among the top four fields (along with

Chemistry) in terms of the relevance score. The lowest earning fields – Eco/Envr Sciences

and Biology – are clustered at the lower end of the relevance score range. The regression line

in Figure 4 indicates that a 1 standard deviation increase in the relevance score is associated

with a $12,092 increase in initial earnings for those who place in industry, which is a 14.5%

increase from the mean of $83,540. The relationships are quite strong with an R2 of .77 and

.74 for initial and year 3 earnings respectively.

Overall, earnings and our dissertation-industry relevance score paint a consistent picture.

They both indicate that in terms of the quality of industry placements, Engineering, Mathe-

matics, and Physics are experiencing the best of times while Biology, Eco/Envr Sciences, and

Agriculture are experiencing the worst of times. While patenting may not capture relevance

equally for all fields (e.g., the social sciences), the strong relationship between relevance and

earnings suggests that our relevance measure reasonably reflects the value of Ph.D. recipients

to industry.

Though the measures used to evaluate the quality of industry job placements – earnings

and the relevance score – are consistent with each other, they may fail to capture certain job
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attributes valued by Ph.D. recipients. Indeed, it is possible that Ph.D. recipients who place

in high-paying jobs with low relevance scores are nevertheless doing work that depends on

their specialized human capital. For instance, physicists are known to get jobs on Wall Street

using their mathematics and programming knowledge. To probe whether our earnings and

relevance score measures are failing to capture important job attributes, we examine in Table

5 the specific narrow (6-digit) industries into which Ph.D. recipients place. We categorize

these placements by match quality and pay level: (1) well-matched high-paid industries, (2)

well-matched low-paid industries, (3) poorly-matched high-paid industries, and (4) poorly-

matched low-paid industries.24

Ph.D. recipients who place in highly paid industries, whether well-matched or not, seem

likely to be using their specialized human capital. Four of the top five industries for both

categories are Research and Development in the Physical, Engineering, and Life Sciences

(except Biotechnology); Custom Computer Programming Services; Engineering Services; and

Internet Publishing and Broadcasting and Web Search Portals. By contrast, Ph.D. recipients

that place in low-pay and poorly matched industries seem less likely to be relying heavily

on their specialized human capital. Indeed, the top three narrow industries – Temporary

Help Services, Facilities Support Services, and Employee Leasing Services – are not clearly

connected to the specialized human capital Ph.D. recipients spent years accumulating in

graduate school. The fourth-ranked narrow industry – Elementary and Secondary Schools

– likely has a high social return and may draw on the specialized human capital of Ph.D.

recipients, but it is likely these jobs could have been obtained with much less human capital

investment. The number of Ph.D. recipients that place in well-matched, but low-paid narrow

industries is quite low, suggesting again that earnings and the relevance score are related.

Overall, our analysis of specific narrow industries does not suggest that our earnings and

relevance score measures are missing important job characteristics valued by Ph.D. recipients.

4.4 Composite Ranking

This section combines our results on faculty placements (Section 4.1), postdoc placements

(4.2), and industry placements (Section 4.3) into a simple, transparent composite ranking

that summarizes which fields are experiencing the best and worst of times. We first create

three separate rankings of the 11 fields based on: 1) the share of Ph.D. recipients that

24First, we split the subset of Ph.D. recipients who place in industry into two groups based on whether
they are above or below the mean dissertation-industry relevance score for their field. Second, we classify
all industries into two categories – high-paid and low-paid – based on the mean W2 wage of all employees
in the U.S. with a bachelor’s degree and above (i.e., not only the Ph.D. recipients in our sample) in that
industry. Education levels are drawn from Census’s Individual Characteristics File (ICF) and earnings are
drawn from W2 records.
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place in faculty positions, 2) the share of Ph.D. recipients that place in postdocs (reverse

coded) conditional on not placing in a faculty position, 3) the average initial earnings of

Ph.D. recipients that place in industry positions, and 4) the average dissertation-industry

relevance score for Ph.D. recipients that place in industry. The first measure captures the

quantity of faculty placements. The second captures the probability of being in a postdoc,

which enters negatively given our estimates that postdocs are associated with high supply

relative to demand rather than exceptionally large training needs. The last two measures

capture the quality of industry placements. These individual rankings are displayed in the

first three columns of Table 6.

We then take weighted averages of the four individual rankings to create a set of composite

rankings to capture the overall quality of job placements for the Ph.D. recipients in each field.

First, we equally weight each individual ranking (assigning a weight of .25 to each). Second,

because we have 2 measures of the quality of industry placements, to avoid over-weighting

outcomes for those who place in industry, we give weight of 1/3 to faculty placements, 1/3 to

postdoc placements, and weights of 1/6 to each of the industry placement variables. Lastly,

we rank the sectors in accordance to the share of people entering each sector in the entire

population, giving half of the industry weight to each of the two industry variables (i.e.,

so that the total weight they receive equals the share of people placing in industry. These

composite rankings are displayed in Table 6.

Overall, the composite rankings are consistent with our separate analyses. In particular,

Ph.D. recipients in Physics, Engineering, and Mathematics are experiencing “the best of

times”, while those in Biology, Eco/Envr Sciences, and Agriculture are experiencing “the

worst of times”.

Notably, there appear to be multiple paths a field can take to enjoy high-quality overall

job placements. Some fields – such as Physics – benefit from both a relatively high fraction

of faculty placements as well as relatively high earnings and relevance scores, suggesting

strong demand from both universities and industry. Alternatively, fields like Engineering

place a relatively low share of Ph.D. recipients in faculty positions (suggesting relatively

weak demand from universities), but have strong demand from industry as suggested by

the relatively high industry earnings and relevance scores, providing a strong overall labor

market for those in Engineering. Thus, for some fields, demand from industry can make up

for a shortfall in the university of demand (alternatively, demand from industry may drive

enrollments).

As noted, our composite rankings have several limitations. First, they are relative rank-

ings across fields of Ph.D. recipients. They do not capture the fact that, across all fields,

these individuals experience much stronger labor market outcomes than typical workers with
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less formal schooling. Second, all rankings that summarize a variety of information into a

single score will inevitably lack some nuance. Alternative data on Ph.D. placements and

alternative metrics measuring job characteristics may provide additional insights. Lastly,

the weights we have applied are largely arbitrary. In the end, we do not view these rank-

ings as the final word on cross-field labor markets for Ph.D. recipients. However, actual

job placements, earnings, and relevance scores are critical measures of job quality that co-

move in intuitive ways and provide an informative path toward understanding which fields

are experiencing relatively strong demand for the specialized human capital of their Ph.D.

recipients.

5 Conclusion

Returning to our initial question – is it the best or worst of times for highly-trained re-

searchers? Our analysis suggests that this question is fundamentally the wrong question to

ask. As the beginning of Dickens’ novel suggests, it is simultaneously a good time for some

fields and a bad time for others. Indeed the two largest fields – Engineering and Biology –

illustrate these poles. While only about 10% of graduates in either of these fields go into

faculty positions straight out of graduate programs, far more biologists (58%) take postdoc

positions while far more engineers go into industry (67%). While the large share of biologists

taking postdocs may indicate a need for further training given the complexity of biological

phenomena (and the same might be argued for other fields where postdocs are prevalent),

our results suggest that an imbalance between supply and demand is more likely to be at

play – if human capital accumulation were the driving factor one would expect to see rapid

earnings growth in Biology and other fields where postdocs are common. By contrast, we

show that year-3 earnings and earnings growth are both low in fields where postdocs are

common. Moreover, a novel measure of the relevance to industry of the Ph.D. recipient’s

specialized knowledge indicates that it is in the fields where knowledge is least relevant to

industry that postdocs are most common.

While it is beyond the scope of our analysis, it is perhaps useful to ask why Ph.D. recip-

ients in some fields might be experiencing the worst of times. We conjecture that perverse

incentives built in the research system (Teitelbaum, 2008; Stephan, 2012a) combined with a

lack of information about long-term career prospects is likely a factor (Levitt, 2010; Ganguli

et al., 2020) that may have been exacerbated by the expansion of biomedical Ph.D. programs

during the doubling of the NIH budget (Zerhouni, 2006; Blume-Kohout and Clack, 2013).

Indeed, informed observers are arguing for and promoting efforts to increase transparency

in the life sciences (and also in the humanities) in part because of the perceived lack of
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opportunities (Blank et al., 2017; Benderly, 2018).25

While we have pointed to fields where labor markets for STEM doctorates are weaker

than others, it is important to bear in mind that, regardless of field, labor market outcomes

for STEM doctorates are considerably stronger than most workers. Our estimates should

be viewed as helping to fine-tune supply and demand rather than suggesting that STEM

research education does not have private and, presumably, even higher social value.

25See https://cgsnet.org/resources/for-current-prospective-graduate-students/ and https:

//nglscoalition.org/.
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Table 1: PIK/Dissertation Summary Statistics by Initial Placement

Initial Placement

Faculty Post-Doc Industry

Mean SD Mean SD Mean SD

PhD Recipient Characteristics
Degree year 2010 3.15 2011 3.06 2011 3.093
Age at degree 33.26 6.369 30.88 4.658 29.87 4.059
Number of patents matched 188.9 61.93 191.2 55.57 202.1 61.19
Mean cosine similarity 0.214 0.112 0.192 0.108 0.234 0.119
Median cosine similarity 0.201 0.112 0.180 0.107 0.221 0.119
Max cosine similarity 0.400 0.152 0.374 0.158 0.421 0.157

Employment Outcomes
Year 1 earnings 80,780 25,810 36,130 14,410 83,540 52,140
Year 3 earnings 83,810 32,640 50,720 28,670 105,300 129,500
ln(Year 1 earnings) 11.26 0.282 10.32 0.839 11.12 0.790
ln(Year 3 earnings) 11.25 0.482 10.62 0.839 11.32 0.787

Observations (rounded) 1,650 5,000 5,800

Notes – This table displays the means and standard deviations of PhD recipient character-
istics and employment outcomes for our analysis sample of Ph.D. recipients. Postdocs are
identified as those whose first-year earnings were less than one standard deviation above the
mean earnings in their field (in a given degree year). Year 3 earnings by sector is the mean
earnings of Ph.D. recipients three years after receiving their degree based on the sector of
their initial placement.
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Table 2: Industry Relevance and Placement Outcomes

(1) (2) (3) (4)

Panel A: Placement in Year 1

2-Digit NAICS
Relevance Score .0280*** .0245*** .0142*** .0128***

(.0024) (.0036) (.0023) (.0036)
4-Digit NAICS
Relevance Score .0089*** .0024** .0061*** .0034***

(.0005) (.0009) (.0005) (.0009)
6-Digit NAICS
Relevance Score .0069*** .0004 .0046*** .0024***

(.0003) (.0006) (.0003) (.0006)

Panel B: Placement in Year 3

2-Digit NAICS
Relevance Score .0300*** .0271*** .0167*** .0158***

(.0024) (.0037) (.0023) (.0038)
4-Digit NAICS
Relevance Score .0097*** .0046*** .0070*** .0058***

(.0005) (.0009) (.0005) (.0009)
6-Digit NAICS
Relevance Score .0062*** .0013* .0048*** .0033***

(.0003) (.0006) (.0003) (.0006)

Industry FE X X X X
Individual FE X X X X
# of Patents X X
Degree year FE X X
Field FE X X

Obs. 2-Digit NAICS 139,200 139,200 139,200 139,200
Obs. 4-Digit NAICS 2,001,000 2,001,000 2,001,000 2,001,000
Obs. 6-Digit NAICS 7,719,800 7,719,800 7,719,800 7,719,800

Notes – Each cell reports the coefficient from a regression of an indicator variable for placement in an industry
on the relevance of the dissertation to that industry. The unit of observation is a person-industry dyad and
every person has an observation for each industry (i.e., the dyadic structure is “balanced”). The placement
outcome equals 1 if the Ph.D. recipient placed in the industry and equals 0 otherwise. The sample is limited
to people who place in industry, so each Ph.D. recipient places in one, and only one, industry. The relevance
score is the average cosine similarity between the text of the recipient’s dissertation and the text of patents
assigned to the firms in that industry. The upper panel reports results for the placement in the first year
after degree receipt and the lower panel reports results for the placement in the 3rd year after degree receipt.
There are a total of 12,450 Ph.D. recipients/dissertations, 24 2-digit industry codes, 345 4-digit industry
codes, and 1331 6-digit industry codes.
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Table 3: Industry Relevance and Earnings

(1) (2) (3)

Panel A: Earnings in Year 1

2-Digit NAICS
Relevance Score .270*** .307*** .272***

(.060) (.066) (.065)
4-Digit NAICS
Relevance Score .151* .269*** .245**

(.063) (.076) (.075)
6-Digit NAICS
Relevance Score .149* .265** .249**

(.066) (.082) (.081)

Panel B: Earnings in Year 3

2-Digit NAICS
Relevance Score .366*** .420*** .383***

(.061) (.067) (.065)
4-Digit NAICS
Relevance Score .202** .335*** .322***

(.065) (.078) (.078)
6-Digit NAICS
Relevance Score .209** .375*** .365***

(.071) (.090) (.089)

Industry FE X X X
Degree year FE X X X
Field FE X X X
# of Patents X X
Demographic Covariates X
Obs. 5,800 5,800 5,800

Notes – Each cell reports the coefficient from a regression of log earnings on the dissertation-industry relevance
score. The unit of observation is a person. The relevance score is the average cosine similarity between the
text of the Ph.D recipient’s dissertation and the text of patents assigned to the firms in the industry in which
they initially placed. Earnings in year 3 is the earnings of Ph.D. recipients three years after receiving their
degree (related to their year-1 placement). The sample is restricted to people whose initial placement is in
industry.
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Table 4: Industry Earnings and Relevance

Field Year 1 Earnings Year 3 Earnings Relevance

Agriculture 62,920 73,630 0.154
Biology 58,170 78,040 0.1819
Chemistry 74,530 89,630 0.2111
Comm/Info Sciences 60,240 82,770 0.1671
Eco/Envr Sciences 59,200 66,480 0.1721
Engineering 98,520 124,100 0.2813
Geosciences 79,470 88,880 0.1826
Medicine 61,440 78,050 0.1752
Mathematics 105,400 146,700 0.2099
Physics 81,800 101,100 0.2272
Social Sciences 73,090 82,840 0.1663

Observations 5,800 5,800 5,800

Notes: Columns 1 and 2 show the earnings, by field, one year and three years since degree
for those who initially placed in industry. Column 3 shows the mean relevance scores by
field. The relevance score is the average cosine similarity between the text of the recipient’s
dissertation and the text of patents assigned to the firms (in the industry in which they
placed).
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Figure 2: Share of Initial Placements in Each Sector
Notes – Fields are sorted by the share of faculty placements. The numbers in parentheses
show the (rounded) numbers of observations.
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Figure 3: Postdoc Placement Rate and Earnings
Notes – The figures plot earnings in year 3 (Panel (a)) and earnings growth between years
1 and 3 (Panel (b)) for people who place in postdocs initially by field plotted against the
share of placements in postdocs among non-faculty placements. The dashed lines are the
fitted lines from regressions weighted by field size. Standard errors and significance levels
are shown in parentheses. *** p<0.001.
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Figure 4: Industry relevance is strongly related to earnings
Notes – The figures plot earnings in years 1 and 3 for PhDs who place in industry against the
relevance of PhD recipients in each field to industry. The relevance score is the average cosine
similarity between the text of the recipient’s dissertation and the text of patents assigned to
the firms in that industry. The dashed lines are the fitted lines from regressions weighted by
field size. Standard errors and significance levels are shown in parentheses. *** p<0.001.
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A Additional Tables and Figures

Table A1: Sample Dissertations, Patents, and Similarities

Proquest US Patent Similarity
ProQuest #AAI1432716. Multiuser
TDMA channel estimation. Wireless
communication systems require effi-
cient utilization of the limited avail-
able spectrum. There are various
methods in which division of spec-
trum between users have been done
till date, including frequency divi-
sion. . .

U.S. Patent No. 7110378. Channel aware
optimal space-time signaling for wireless
communication over wideband multipath
channels. A method and system is de-
scribed for more optimally managing the
usage of a wideband space-time multipath
channel. The wideband space-time mul-
tipath channel is decomposed into a plu-
rality of orthogonal sub-channels. . .

high

ProQuest #AAI3319598. Therapeu-
tic potential of radial glial RG3.6
cells in rat spinal cord injury. Spinal
cord injury (SCI) triggers a cascade
of pathophysiological changes that
lead to secondary tissue damage af-
ter the mechanical insult. Early af-
ter SCI, cells are disrupted and ex-
citotoxic amino acids (e.g. gluta-
mate) are released. Inflammatory cy-
tokines and chemokines are quickly
induced. . .

U.S. Patent No. 9717804. Regenerating
functional neurons for treatment of dis-
ease and injury in the nervous system.
Methods for producing new neurons in
the brain in vivo are provided according
to aspects of the present invention which
include introducing NeuroD1 into a glial
cell, particularly into a reactive astrocyte
or NG2 cell. . .

medium

ProQuest #AAI1432716. Multiuser
TDMA channel estimation. Wireless
communication systems require effi-
cient utilization of the limited avail-
able spectrum. There are various
methods in which division of spec-
trum between users have been done
till date, including frequency divi-
sion. . .

U.S. Patent No. 9717804. Regenerating
functional neurons for treatment of dis-
ease and injury in the nervous system.
Methods for producing new neurons in
the brain in vivo are provided according
to aspects of the present invention which
include introducing NeuroD1 into a glial
cell, particularly into a reactive astrocyte
or NG2 cell. . .

low

Notes–This table shows similarity scores for two pairs of sample Proquest dissertation text
and USPTO patent text.
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Table A2: Dyad Summary Statistics: Relevance of Dissertations to All Industries and to
those in which PhD Recipients Place

Unconditional on Placement Conditional on Placement

(1) (2) (3) (4) (5)
NAICS count Mean Cosine SD Mean Cosine SD

2-Digit NAICS 24 0.1237 0.1371 0.1986 0.1249
4-Digit NAICS 345 0.0258 0.0804 0.1670 0.1355
6-Digit NAICS 1,331 0.0093 0.0500 0.1537 0.1372

Notes – Column 1 presents the number of 2-, 4-, and 6-digit NAICS codes in which at least
one Ph.D. recipient placed. Columns (2) and (3) report the mean and standard deviation
of the mean cosine similarity score for each dissertation and each industry (unconditional
on whether the person placed in that industry). Columns (4) and (5) report the means and
standard deviations of the mean cosine similarity score for the industry in which the person
placed. Across all three levels of NAICS codes, the mean cosine similarity scores is higher
for the industry in which the person places than across all industries (i.e., unconditional on
placement), implying that the dissertation-industry relevance is related to the industry in
which PhD recipients place.
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B Data Appendix

This section details each of our data sources and the links between them. We begin with
graduate students in the UMETRICS data, whom we link to their Proquest dissertations.
We focus on this group because we have, in the form of their dissertation, rich information
about their degree year, field of study, and the specialized human capital at the end of
their graduate training. We then link these Ph.D. recipients to their labor market outcomes
using tax data (W2 records, the Business Register), allowing us to track their post-degree
employment and earnings. In particular, we are able to determine whether they place in one
of three mutually exclusive job types: faculty, postdoc, or industry. Finally, we use patent
data from the U.S. Patent and Trademark Office (USPTO), along with a confidential patent-
firm bridge at the U.S. Census Bureau, to construct a new dissertation-industry “relevance”
score. This score allows us to directly measure how similar a Ph.D. recipient’s specialized
human capital is to the patenting portfolio of firms and industries, and sheds light on how
well-matched each individual is to the industry in which they are actually employed after
receiving their Ph.D.

B.1 UMETRICS Graduate Students

UMETRICS is an administrative dataset housed at the Institute for Research on Innovation
and Science (IRIS) at the University of Michigan. It provides information on all grant
transactions at 24 major research universities (64 campuses), which collectively account for
more than one-third of federally funded academic R&D.26 The data capture transactions
from university grants to individuals providing labor (e.g. faculty, post-docs, students) and
vendors providing goods and services (e.g. lab space, IT services, microscopes, lab animals).
The UMETRICS data also include information on the job titles of individuals receiving
payments from grants, which allows us to flag graduate students (Ikudo et al., 2019), the
focus of this paper.

Using personally identifiable information (PII) from UMETRICS, such as name and
(partial) birth date, Census staff probabilistically link UMETRICS employees to a Protected
Identification Key (PIK), which is an internal person-level identifier at Census (Wagner et al.,
2014). Once an individual is assigned to a PIK, we can link them to a variety of confidential
data at Census (in our case, we link them to demographic and tax information – see below).
We restrict our sample to UMETRICS employees who receive a single PIK.

B.2 Dissertations, Fields, and Specialized Human Capital

A crosswalk between the ProQuest’s Dissertation and Theses Database and UMETRICS
employees is available from IRIS. We use this crosswalk to link each UMETRICS graduate
student to their dissertation, and thus further restrict our sample to graduate students
who both receive a single PIK (see previous section) and who are linked to their ProQuest
dissertations. Unfortunately, some PIKs link to multiple dissertations and some dissertations

26We use the 2018 Q4 release of UMETRICS data. For additional work using UMETRICS, see Chang
et al. (2019), Ikudo et al. (2019), Buffington et al. (2016), Lane et al. (2013), Lane et al. (2015), Weinberg
et al. (2014), Zolas et al. (2015).
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are attributed to multiple PIKs. To simplify the analysis, we only keep the PIKs that match,
1-to-1, to a ProQuest dissertation. By confining our analysis to these 1-to-1 links, people,
PIKs, and dissertations can be thought of interchangeably.

By restricting to graduate students who are assigned a PIK and a dissertation, we can
measure the textual similarity between their dissertation and all patents in the USPTO
and their match to the industry in which they place. Linking these patents to assignee
firms, allows us to measure the relevance of a Ph.D. recipient’s specialized human capital
(as reflected by their dissertation) to different industries. This will shed light on how well-
matched each individual is to the firm or industry in which they are actually employed after
receiving their Ph.D. ProQuest also provides information on each Ph.D. recipient’s degree
year and field of study, which is crucial since much of our analysis takes place at the field
level. We restrict our analysis to dissertations in a STEM field.

Since we can only link patents granted between 2000 and 2015 to their assignee firms (see
Section B.4), we restrict our sample to dissertations with a degree year between 2004-2015.
This is because we only use dissertation-linked patents granted during the four years prior to
a dissertation year and the dissertation year itself, which ensures we are measuring similarity
around the dissertation date (not after or long before) and ensures patent portfolios are not
pulled toward dissertation topics after hiring Ph.D. recipients.

B.3 Labor Market Outcomes

As discussed, to track the labor market outcomes of the UMETRICS Ph.D. recipients, we
use the Protected Identification Key (PIK) to link them to a variety of confidential data
at the U.S. Census Bureau. First, we link them to the universe of W2 tax records for the
years 2005-2018 (the years that were available at Census at the time of analysis), from which
we identify the firms using the Employer Identification Numbers (EINs) at which they were
employed as well as their earnings.27 Next, we use the EINs to link each firm to the Business
Register (BR), the universe of business establishments in the United States (DeSalvo et al.,
2016). This allows us to determine the industry of the firms (technically, EINs) that employ
each Ph.D. recipient in our sample.28

We use the information on firm industry (NAICS 611300 - “Colleges, Universities, and
Professional Schools”) as well as a list of EINs from the Integrated Postsecondary Education

27We use each PIK’s dominant (i.e., highest paying) job. Using the dominant job means that each PIK
is linked to one, and only one, EIN for a given year. When multiple jobs are tied for the highest earnings,
we ensure that each PIK is paired with a single EIN (each year) by randomly breaking ties. Focusing on the
dominant job simplifies the analysis and the disclosure of results.

28To do this, we assign a single dominant NAICS code to each firm (technically, EIN) in the W2 tax
records using information from the County Business Patterns Business Register (CBPBR). The CBPBR
contains establishment-year level data, and each establishment (in each year) has a NAICS code along with
information on payroll and employment. Crucially, each establishment also has an accompanying EIN, which
enables us to link industry, payroll, and employment information to the W2 EINs. Focusing on a two-year
window around the W2 year, we assign to each W2 EIN the NAICS code with the largest payroll. If two
or more NAICS codes have the same payroll, ties are broken using employment. If two or more NAICS
codes have the same payroll and employment, ties are broken using establishment counts. If two or more
NAICS codes have the same payroll, employment, and establishments, remaining ties are broken randomly.
We focus on a two-year window (for a total of 5 years) to reduce the noise of yearly links.

41



Data System (IPEDS), which is maintained by the National Center for Education Statistics
(NCSES), to identify universities and determine whether a Ph.D. recipient’s initial post-
degree job placement is in academia or industry. Note that IPEDS provides EIN information
on nearly all U.S. universities, not just UMETRICS universities. This is important because,
while a Ph.D. recipient may place at their UMETRICS university, they are more likely to
place at a different, non-UMETRICS academic institution.

Within the subset of Ph.D. recipients that place in academia, we use earnings information
to impute whether the job was a faculty or postdoc position. Specifically, we identify a
position as being a postdoc if the Ph.D. recipient has W2 earnings below a cutoff specific to
each degree year and field. To estimate the earnings cutoff, we use the Survey of Doctoral
Recipients (SDR) to compute the mean and standard deviation of the earnings of postdocs
in each degree year and field. We then classify a job placement as a faculty position if it is
at least 1 standard deviation above the mean earnings of postdocs in that field and classify
it as a postdoc position otherwise.

Thus, each Ph.D. recipient’s initial placement is in one of three mutually exclusive job
types: faculty members at a university, postdocs at a university, or industry (which includes
the private sector, government, and NGOs). In addition to placements, we also track earnings
during the first three years after a Ph.D. recipient earns their degree, subsetting our sample
to Ph.D. recipients with positive earnings and non-missing industries in all years 1-3 following
their degree year.

B.4 Patents and Dissertation-Industry Relevance

As noted, we want to measure how closely related a Ph.D. recipient’s dissertation is to
the patenting portfolio of each industry. We create this dissertation-industry dyadic data
structure in a series of steps.

Initial Placement First, we link UMETRICS graduate students to their dissertations and
use W2 records to determine the firms at which they work (along with their earnings) after
they receive their degree (see Sections B.2 and B.3).

Relevance of Dissertations to Patents Second, we identify, for each Ph.D. recipient’s
dissertation abstract, the 1,000 most closely related patents in terms of text similarity (using
methods described in Section 3 of the main text). If the cosine similarity for a dissertation
patent link is zero, the link is discarded and if fewer than 1,000 patents have a positive cosine
similarity to a dissertation, the dissertation will be linked to fewer than 1,000 patents. In
the extreme, if no patents have a nonzero similarity score, the dissertation will not be linked
to any patents and that graduate student is excluded from the analysis. Since the Census
patent-firm bridge is for years 2000 to 2015 (see next section), patents granted outside this
range cannot be assigned to a FIRMID. Thus, we subset to patents granted between 2000
and 2015. As noted in Section B.2, we also subset to patents granted 0-4 years before the
paired dissertation’s degree year. This restriction ensures we are measuring similarity around
the dissertation date (not way before or after) and ensures patent portfolios are not pulled
toward dissertation topics after hiring Ph.D. recipients.
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Relevance of Dissertations to Firms We wish to use the links and similarity scores for
dissertations and patents to construct a measure of how closely related each dissertation is
to assignee firms and the industries in which these firms operate. Our third step uses a confi-
dential patent-firm bridge derived from the Business Dynamics Statistics of Patenting Firms
(BDSPF) at Census (Goldschlag and Perlman, 2017) to link patents granted in the years
2000-2015 to assignee firms and then aggregate the similarity score for a given dissertation-
patent pair to a similarity score for dissertation-firm pairs. To simplify the analysis, we limit
the patent-firm links to those where the patent is assigned to one and only one firm. By
linking the dissertation-patent pairs (and their accompanying cosine similarity scores) to the
patents’ assignee firm, we can create a data set with unique observations at the dissertation-
patent-firm level. We then collapse over the patents to obtain the average cosine similarity
score for each dissertation-firm pair. Thus, each dissertation-firm pair inherits a similarity
score that is comprised of a combination of several dissertation-patent similarity scores.

Relevance of Dissertations to Industries In our final step, we create dyadic data with
dissertation-industry pairs. These data allow us to study how closely a Ph.D. recipient’s
specialized human capital matches the patenting portfolio of each industry, defined by the
North American Industry Classification System (NAICS). We obtain NAICS codes for every
U.S. business establishment from the Business Register (BR), which we use to assign a
“dominant” NAICS code to each assignee firm on the basis of payroll, employment, and
establishment counts. This process is similar to how we assign NAICS codes to each W2
EIN. However, instead of using the EIN as the firm identifier, we use an internal Census
identifier called FIRMID, which allows us to link firms to the patent-firm bridge (which
uses FIRMID as the firm identifier – see footnote 28).29 Once a dominant NAICS code is
linked to each firm (assignee firms with missing dominant NAICS codes are dropped), we
collapse over firms to obtain a cosine similarity score for each dissertation-industry pair.
Thus, each dissertation-industry pair inherits a similarity score from dissertation-firm pairs
which inherited their scores from dissertation-patent pairs. At the end of this step, we have
a dyadic data structure where each Ph.D. recipient is linked to every NAICS code and each
pair has a similarity score as well. We can aggregate to any level of NAICS. In the paper,
we aggregate to the 2-, 4-, and 6-digit levels.

B.5 Sample Restriction Summary

This section provides a summary of the sample restrictions imposed to arrive at our final sam-
ple. We begin with the dissertation-patent links, which we use to generate a cosine similarity
score between each dissertation and each patent. The observations are uniquely defined by
a dissertation-patent pair, and each dissertation is linked to at most 1,000 patents. We then
make the following restrictions, which can be separated into dissertation/PIK side restric-
tions and patent side restrictions. Combined, these restrictions result in a final (rounded)
sample of 12,450 Ph.D. recipients.

29We drop from our sample patents that are linked to firms that cannot be assigned to a NAICS code.
We use this information to measure the research and development portfolios of firms.
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PIK-Dissertation Restrictions

1. Subset dissertations to those that can be linked, 1-to-1, with a PIK.

2. Subset dissertations to those with a degree year between 2004-2015. (The Census
patent-firm bridge is for years 2000 to 2015 and we only use dissertation-linked patents
issued 0-4 years prior to when a dissertation is completed.)

3. Subset dissertations to those in a STEM field.

4. Subset PIKs to those with positive earnings in all years 1-3 following their degree year.

5. Subset PIKs to those who place at EINs with non-missing industries in all 1-3 years
following their degree year.

Patent Restrictions

1. Subset to patents granted between 2000 and 2015. As indicated, the Census patent-
firm bridge is for years 2000 to 2015, and so patents granted outside this range cannot
be assigned to a FIRMID.

2. Subset to patents granted 0-4 years before the paired dissertation’s degree year. En-
sures we are measuring similarity around the dissertation date (not after or long be-
fore) and ensures patent portfolios are not pulled toward dissertation topics after hiring
Ph.D. recipients

3. Subset to patents that have a single assignee firm.

4. Subset to patents to those whose assignee firm as a non-missing NAICS code.
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