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1 Introduction

We develop a numerical method to approximate equilibrium dynamics of a large class of discrete-time

heterogeneous agent (HA) models that feature aggregate and idiosyncratic shocks, and occasionally

binding borrowing constraints. Our method is based on approximation techniques that scale aggregate

shocks and consider Taylor expansions of equilibrium conditions with respect to that scaling parameter.

Our method can be used to quickly compute equilibrium effects of higher-moment shocks, welfare effects

of risk and macroeconomic stabilization policies, general equilibrium portfolio problems, and transition

dynamics to a new steady state in environments with rich heterogeneity.

Our approach intentionally focuses on maintaining the computational speed, flexibility, and ease-of-

use of traditional perturbational techniques commonly employed to solve and estimate representative

agent dynamic stochastic general equilibrium models, such as those implemented with the DYNARE

software package.1 We use recursive representations of equilibria and approximate equilibrium dynamics

around the steady state of the model in which aggregate shocks are switched off. We show that it

is possible to analytically derive expressions for all objects that are used to construct equilibrium

approximations. These expressions are represented by a small-dimensional linear system of equations

regardless of the dimensionality of the state in the recursive equilibrium representation (which is usually

infinite-dimensional in HA economies). In our implementation, the construction of these linear systems

requires just two inputs: (i) the standard outputs from commonly used routines for calculating the

steady state (i.e., the invariant distribution) of HA economies without aggregate shocks, and (ii) the

functional forms defining equilibrium conditions. In addition to preserving the spirit and convenience

of DYNARE-like algorithms, our method is faster than existing state-of-the-art techniques to obtain

the first-order approximations of HA economies, and extends easily to higher orders.

Our approximation approach is based on two insights: (i) that traditional perturbational techniques

can be reformulated as solving a small-dimensional linear system that characterize values of certain

directional derivatives; and (ii) that this reformulation is particularly useful for HA economies, which

have a high-dimensional state and feature kinks in policy functions, for example, due to the presence

of occasionally binding borrowing constraints. We describe each of these insights in turn.

Policy functions in the recursive representation depend on exogenous (idiosyncratic and aggregate)

shocks and endogenous (typically, multi-dimensional) state variables. Traditional application of per-

turbational techniques (e.g., Schmitt-Grohé and Uribe (2004)) requires finding derivatives of policy

functions with respect to all its arguments, evaluated at the steady state. These derivatives solve non-

linear matrix equations whose size and complexity scales with the dimension of the state. Using these

derivatives, one can construct equilibrium responses of desired order of approximation to aggregate

1See Judd (1998) and Schmitt-Grohé and Uribe (2004) for an introduction to such methods.
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shocks.

Our first contribution is to demonstrate a reformulation of the perturbational approach. Specifically,

we illustrate that aggregate equilibrium responses can be characterized using directional derivatives—

values of policy function derivatives evaluated in suitably chosen directions. This reformulation offers

several advantages. Firstly, the directional derivative of any policy function remains scalar, ensuring its

dimension is one regardless of the state variable’s dimensionality. This is particularly salient in HA con-

texts, where the endogenous state’s dimensionality is vast, yet key equilibrium objects are summarized

by a limited set of variables. Secondly, the directional derivatives we employ have intuitive economic

interpretations. For instance, the first-order approximation is derived from a sequence of directions that

align with the state’s equilibrium path following a one-time, unanticipated aggregate disruption (com-

monly known as an “MIT shock”). Second-order approximations use directional derivatives reflecting

the state’s trajectory due to compounded MIT shocks over different periods and a direction capturing

precautionary motives due to the presence of risk. Lastly, all directional derivatives solve linear equa-

tions with coefficients that can be deduced analytically. Even in representative agent (RA) scenarios,

our method presents benefits. For example, it circumvents the need to tackle nonlinear equations or

incorporate further refinements – such as selecting the stable root of matrix quadratic equations or

resorting to pruning – which traditional perturbational techniques require to rule out approximations

with explosive paths.

Applying perturbational techniques to HA settings introduces distinct challenges. Firstly, the pres-

ence of idiosyncratic risk and incomplete markets means that equilibrium dynamics typically hinge

on an infinite-dimensional distributional state. Our formulation readily adjusts to this and we show

that both individual and aggregate responses can be expressed using only a small set of directional

derivatives that are constructed using convenient linear operators. Secondly, traditional perturbational

methods rely on the assumption that policy functions are sufficiently differentiable at the steady state.

This assumption is violated in many staple HA models due to the presence of occasionally binding

borrowing constraints, which induce kinks in policy functions. These kinks are endogenous in the sense

that they themselves depend on the state of the economy. We show that such kinks can be explicitly

incorporated into analysis using generalized functions.2 Leveraging these generalized functions allows

us to characterize the effects of kinks in policy functions and mass points in the invariant distribution

on equilibrium responses to aggregate shocks.

To apply our approach in HA economies, we first derive the exact expressions for the linear opera-

2The generalized functions, (e.g, functions that include delta-function components) are also commonly known as
distributions. Mathematically, these functions are not related to distributions in the sense of probability theory. Thus, we
reserve the word “distribution” for the latter (e.g., the invariant distribution of asset holdings in HA economies) and refer
to the former as “generalized functions”. The reader can consult Kanwal (1998) for a good introduction to generalized
functions.
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tors that characterize the theoretical values of the required directional derivatives and then propose a

discretization scheme to implement them numerically. This sequence ensures that as the approximation

grid shrinks in size, our numerical solutions consistently converge to the true solution. Notably, such

convergence would not be guaranteed if we followed the traditional technique of first discretizing the

transition probability kernel that characterizes the steady state invariant distribution and then apply-

ing perturbational techniques. In particular, we show that the most popular method to discretize the

transitional probability kernel – the so-called histogram method – cannot be used to study equilibrium

approximations beyond the first order as it fails to correctly capture non-linearities in the laws of motion

in the aggregate distribution of HA economies.

In Sections 2–4, we focus on the most canonical formulation of the approximation problem – the

economy starts near its steady state, aggregate shocks are homoskedastic, and all equilibrium variables

are uniquely determined in the deterministic economy. We first develop our analytical techniques in

RA settings (Section 2), and then extend them to the HA settings (Section 3). In Section 4, we discuss

how outputs from off-the-shelf algorithms used to compute the steady state of the deterministic model

can be used to construct objects needed for first- and second-order approximations to aggregate shocks.

In Section 5, we consider three extensions that do not fit into our baseline framework: models with

transition dynamics to a steady state, models with stochastic volatility, and portfolio problems.

Models with transition dynamics emerge when initial conditions are different from their long-run

values. Such problems arise naturally when one studies the effects of permanent shocks or policy

changes. We show that the same linear operators that we derived to approximate around the non-

stochastic steady state also characterize the equilibrium path from a given initial condition to the

long-run ergodic distribution.

Models featuring stochastic volatility are prevalent in many settings that explore the implications

of changes in uncertainty and risk premia. The conventional approach to incorporating time-varying

risk can be cumbersome even in simple settings. The reason is that when employing standard per-

turbational techniques, both the level and volatility of innovations to aggregate shocks are perturbed,

meaning that the effects of volatility shocks only manifest at the third order. We proceed differently:

by perturbing only the level of the shock, we can describe the impact of uncertainty shocks using just

second-order expansions. Furthermore, our specification of uncertainty shocks combined with the di-

rectional derivatives approach retains tractability even in rich HA settings. In fact, we characterize

equilibrium responses to uncertainty with the same linear operators we previously constructed for the

first and second-order approximations in a homoskedastic economy. This suggests that approximating

models with stochastic volatility is as time-efficient as doing so in the homoskedastic settings.

In the last extension of Section 5, we turn attention to portfolio problems. Macroeconomic en-
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vironments with portfolio problems–models in which agents can invest in assets with different risk

characteristics–are commonplace. This encompasses settings where agents can both borrow and lend

among themselves and also invest in risky capital. However, these models pose challenges for per-

turbational methods. In a deterministic economy, all assets are risk-free, making portfolio allocations

indeterminate. Moreover, while portfolio choices hinge on the model’s second-order properties, like risk

premiums or covariances of equilibrium variables, even the model’s first-order dynamics are influenced

by these choices.

The HA literature predominantly follows two paths. The first essentially sidesteps the household

portfolio problem, positing a mutual fund that manages a unified portfolio for all households. The

second, meanwhile, disregards the risk attributes of assets and assumes that portfolio allocations are

determined entirely by other forces, such as differences in transaction costs of trading various assets.3

We augment this literature by developing a general approach that incorporates risk considerations. Our

method simultaneously solves for the optimal portfolios of all agents, second-order risk premium of these

assets, and equilibrium approximation for aggregate responses that depend on those portfolios.

In Section 6, we place our method in the context of the large literature that approximates HA

models with aggregate shocks. In Section 7, we use a calibrated economy in the spirit of Krusell and

Smith (1998) to compare the precision and speed of our method to existing techniques and then study

several applications that demonstrate usefulness of our method. Proofs for all the main statements are

in relegated to an online appendix.

2 Perturbational approximations with directional derivatives

In this section, we show that standard perturbational techniques to approximate equilibria in dynamic

stochastic macroeconomic models can be reformulated, to any order of approximation, as a problem of

finding sequences of directional derivatives that solve linear systems of equations. It will be helpful to

present our key ideas first in the simplest, representative agent (RA) settings as most of the insights

carry over directly to richer HA models.4

Consider the problem of finding solution to a one sector neoclassical growth model, in which agents

have preferences 1
1−γE0

∑∞
t=0 C

1−γ
t , technology is Cobb-Douglas exp (Θt)K

α
t , productivity Θt follows

an AR(1) process

Θt = ρΘΘt−1 + Et, (1)

where Et is a mean-zero random variable drawn independently across time from a distribution with

bounded support, |ρΘ| < 1, initial capital stock K−1 is given and δ denotes depreciation rate. The

3See Gornemann et al. (2021) and several papers that follow them for the mutual fund trick and the large literature
on two-asset HANK pioneered by Kaplan et al. (2018) for asset-specific transaction costs.

4We thank Ben Moll for the suggestion to use the RA model to explain the key insights of our method.
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optimal allocations in this economy can be characterized by three equations as follows

C−γt − βEtλt+1 = 0, (2a)

λt −
(
1 + α exp (Θt)K

α−1
t

)
C−γt = 0, (2b)

Ct +Kt −ΘtK
α
t−1 − (1− δ)Kt−1 = 0. (2c)

Let Xt = [Kt, Ct, λt]
T

be the vector of endogenous variables. We are interested in finding approx-

imations to stochastic sequence {Xt (Et)}t,Et that solves equation (2) given stochastic process (1) and

the initial condition K−1.

We can express the system of equations (2) more generally. Let Yt := [Θt,PXt−1, Xt,EtXt+1]
T

and

write equation (2) as

G (Yt) = 0, (3)

where mapping G is explicitly defined by (2) and P is a selection matrix for the pre-determined en-

dogenous variables.5 Vast majority of DSGE models can be represented in this form, with vector

Yt consisting of exogenous variables, pre-determined endogenous variables PXt−1, current period en-

dogenous variables Xt and their expectations EtXt+1. Relatively to the canonical formulation of such

problems given in Schmitt-Grohé and Uribe (2004), we introduced an auxiliary variable λt to ensure

that expectations are linear in Xt+1. This can be done without loss of generality and simplifies analysis.

The perturbational approach approximates the solution to this problem as follows. First, it perturbs

the stochastic process (1) by scaling exogenous shocks E by scalar σ ≥ 0:

Θt = ρΘΘt−1 + σEt. (4)

We refer to the economy with σ = 0 as the deterministic economy. Second, the problem is written

recursively. In our example, the state variable is Z = [Θ,K]. Using bars to denote policy functions, the

recursive formulation of this problem can be written as

G
(
Y (Z;σ)

)
= 0 for all Z, σ (5)

where

Y (Z;σ) =
[
Θ,K,X (Z;σ) ,EEX

(
ρΘΘ + σE ,K (Z;σ) ;σ

)]T
. (6)

5Throughout, we assume that G depends only on the subset of Yt for which this dependence is no-trivial. For example,
equation (2) defines a mapping G : R6 → R3, where G is a function of scalars Θt, Kt−1, Etλt+1 and a three dimensional
vector Xt. For our exposition, we keep convention that Θt and Kt are uni-dimensional variables but extension to multi-
dimensional case is straightforward (see the appendix).
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Finally, one finds the steady state Z∗ of the deterministic economy (Z∗ = [0,K∗] in our example) and

takes various orders of Taylor expansions of (5) with respect to σ, evaluated at σ = 0, to approximate

the stochastic economy.

To simplify notation, we drop explicit references to σ and Z when σ = 0 and Z = Z∗, that is X(Z)

and X denote X(Z; 0) and X(Z∗; 0), respectively. Let Z(Z) denote the Law of Motion (LoM) of the

state in the deterministic economy, which in our example takes the form Z(Z) =
[
ρΘΘ,K (Z)

]
. Finally,

we use notation Xσ, Xσσ to denote first two derivatives of X(Z∗, σ) with respect to σ evaluated at

σ = 0. We refer to these terms as precautionary motives.

A standard implementation of perturbational methods (e.g., Schmitt-Grohé and Uribe (2004) or

DYNARE) differentiates (5) to find derivatives of policy functions XZ =
[
∂
∂ΘX,

∂
∂KX

]T
and their

higher-order generalizations and uses those derivatives to construct equilibrium responses to any se-

quence of shocks Et given initial conditions K−1 = K∗. Finding XZ requires solving a matrix quadratic

equation and picking its stable root.6 This is easy to do when the dimensionality of Z is small, as it is

the case in most RA-DSGE models, but becomes problematic as dimensions of Z grow. The difficulties

arise both because it becomes hard to solve such equations and costly to store their solutions.

We present an alternative implementation of the perturbation approach. While being mathemat-

ically equivalent to the standard implementation, it does not require solving non-linear equations or

storing any matrices that depend on dimensionality of Z. Instead, it collapses the problem of find-

ing the stochastic solution of any order of approximation to solving linear systems of equations where

dimensionality does not depend on dimZ. This makes it particularly well-suited for models in which

state Z is a large and complicated object, as it is often the case in HA environments.

The pertubational approach implicitly requires that solution is sufficiently stable and policy functions

are sufficiently differentiable. We state it here for completeness.7

Assumption 1. Let Zt := Z(Z(....Z︸ ︷︷ ︸
t times

(Z0))).

(a) X (Z;σ) is sufficiently differentiable at (Z∗, 0);

(b) limt→∞ Zt(Z0) = Z∗ for all Z0 in a neighborhood of Z∗.

We start by reviewing some basic properties of derivatives. XZ is the Jacobian of X(Z) evaluated

at Z = Z∗, which is a dimX × dimZ matrix that consists of partial derivatives of all policy functions

with respect to each variable in Z. For now, let XZ · Ẑ be a usual product of matrix XZ and a vector

6See Uhlig (2001) and Fernández-Villaverde et al. (2016) handbook chapter to see how to solve the neoclassical growth
model using standard pertubational methods.

7By “sufficiently differentiable” we mean that policy functions are differentiable at least n times when we consider nth

order of approximation. A number of authors (e.g., Blanchard and Kahn (1980) or Jin and Judd (2002)) study sufficient
conditions on the primitives of macroeconomic model that ensure that Assumption 1 holds. For our purposes, we simply
take this assumption as given.
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Ẑ of dimZ. Note that we have a relationship

XZ · Ẑ = lim
α→0

1

α

[
X
(
Z∗ + αẐ; 0

)
−X (Z∗; 0)

]
, (7)

so XZ · Ẑ can also be interpreted as a directional derivative, i.e., a measure of how policy functions

change if the state Z is perturbed from Z∗ in direction Ẑ. Mathematically, XZ is also the first-order

Fréchet derivative of X with respect to Z. Fréchet derivatives are helpful because they allow us to

generalize (7) to cases when Z is of arbitrary dimensionality. Similarly, ZZ is the Fréchet derivative of

Z(Z) evaluated at Z∗. In our example it takes the form

ZZ =

[
ρΘ 0
∂
∂ΘK

∂
∂KK

]
.

We are interested in finding approximations to Xt(Et) for any Et = (E0, ..., Et). Observe that Xt(Et)
can be constructed from policy functions as follows

Xt(Et) = X
(
Zt
(
Et;σ

)
;σ
)∣∣
σ=1

, (8)

where Zt(Et, σ) is defined recursively as Z0 = [σE0,K∗] and

Zt
(
Et;σ

)
=
[
ρΘΘt−1

(
Et−1;σ

)
+ σEt,K

(
Zt−1

(
Et−1;σ

)
;σ
)]
. (9)

Take the first-order Taylor expansion of (8) with respect to σ and evaluate this expression at σ = 0 to

obtain the following characterization of the first-order equilibrium approximation.

Lemma 1. Xσ = 0 and to the first-order approximation, Xt satisfies

Xt

(
Et
)

=X +

t∑
s=0

X̂t−sEs +O
(
‖E‖2

)
,

where X̂t := XZ · Ẑt and {Ẑt}t satisfies recursion Ẑ0 = [1, 0]
T

and Ẑt := ZZ · Ẑt−1.

Note that σ appears twice in policy functions: it appears as a part of arguments in Z as it scales

innovations E , and as a standalone argument. This latter dependence is zero to the first order (Xσ = 0)

and so first-order approximations depend only on the first-order responses of policy functions XZ to

changes in state Ẑt.
8 Examining the recursion that defines {Ẑt}t we can see that Ẑt captures the

period-t response of state Z to a one time shock to Θ in period 0. Thus, directional derivatives {X̂t}t
have a natural economic interpretation as the impulse response to an “MIT shock”, i.e., to a one-time,

unanticipated unit shock to Θ. Lemma 1 is also related to the insight of Boppart et al. (2018) that the

first-order approximations can be recovered from impulse responses to MIT shocks.

8While the fact that precautionary motives are zero to the first order is well-known (see, e.g., Schmitt-Grohé and Uribe
(2004)) it may be helpful to remind the intuition behind this result. The argument σ in X (Z;σ) captures how the level
of risk affects economic decisions. The first-order approximation linearizes economy, and so economic agents behave as if
they are risk-neutral and hence risk is irrelevant for them, manifesting in Xσ = 0. This also illustrates that to capture
effects of uncertainty on equilibrium variables, one needs to use at least second-order approximations.
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To find {X̂t}t we differentiate (5) with respect to σ and use the observation that in deterministic

economy

lim
α→0

1

α

[
X
(
Z
(
Z∗ + αẐt

))
−X

(
Z (Z∗)

)]
= XZ · ZZ · Ẑt = X̂t+1.

To state our result succinctly, use Kt = PXt,
9 and let GY be the Jacobian of G evaluated at Y = Y ∗.

Proposition 1.
{
X̂t

}
t

is the solution to a linear system

GY Ŷt = 0 for all t, (10)

where Ŷt =
[
ρtΘ,PX̂t−1, X̂t, X̂t+1

]T
, PX̂−1 = 0, and limt→∞ X̂t = 0.

Condition (10) is a linear system of equations that determines {X̂t}t. To construct it numerically,

we only need to find matrix GY . This is easy to do. The functional form of mapping G is known

(see equation (2)) and any automatic differentiation package can obtain the explicit functional form for

the gradient of G for arbitrary Y . This equation is then evaluated at Y = Y ∗ to compute GY . Since

no numerical differentiation is involved, one obtains the exact value of GY using this procedure. The

same observation will carry to higher orders, when numerical differentiation becomes less precise and

numerically less stable.

Equation (10) is an infinite system of linear equations. Our stability assumption 1b implies a

boundary condition limt→∞ X̂t = 0, so the solution can be approximated by truncating this system at

some period T , imposing a terminal condition X̂t = 0 for t > T and inverting resulting (T + 1)×dimX

matrix to solve for {X̂t}Tt=0.10 We want to make a couple of observations about this approach. Nowhere

in the proofs we relied on the fact that K is uni-dimensional and the same result applies to economies

in which endogenous state variable has arbitrary number of dimensions. We also side-stepped the

need to solve a matrix quadratic equation or choose its stable root, which would be required under

standard implementation of perturbational techniques. These advantages are particularly salient when

dimensionality of Z is large, as will get clear in the next section.

Our directional derivative approach extends to arbitrary orders of approximation. We focus on the

second order in this paper. Let XZZ be the second-order Fréchet derivative of X and XZZ · (Ẑ ′, Ẑ ′′)
be its value in directions Ẑ ′, Ẑ ′′.11 It would be helpful to remember that the second-order directional

9In particular, in our example of the neoclassical growth model, P = [1, 0, 0].
10Given the simple way in which {Ŷt}Tt=0 depends on {X̂t}Tt=0, this inversion is particular easy to do.
11To build intuition for these objects, consider our neoclassical growth model example. We have K : R2 → R, and so

KZZ is a 2× 2 matrix of cross-partial derivatives of K with respect to Θ and K. Directional derivative KZZ · (Ẑ′, Ẑ′′) is

a scalar computed as (Ẑ′′)TKZZ Ẑ
′. It captures the second order interaction effect of changes Ẑ′ and Ẑ′′ on capital K.

Vector X consists of three policy functions, so X : R2 → R3, XZZ is a collection of three 2× 2 matrices of cross-partial
derivatives and XZZ · (Ẑ′, Ẑ′′) is a 3 × 1 vector that captures the interaction effect of Ẑ′ and Ẑ′′ on each of the three
policy functions.
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derivative of compounded functions satisfies the following relationship

lim
α′′→0

lim
α′→0

1

α′′
1

α′

[
X
(
Z
(
Z∗ + α′Ẑ ′ + α′′Ẑ ′′

))
−X

(
Z (Z∗)

)]
(11)

=XZ · ZZ · (Ẑ ′, Ẑ ′′) +XZZ · (ZZ · Ẑ ′, ZZ · Ẑ ′′).

Using this observation, we take the second-order Taylor expansion of (8) and obtain the second-order

analogue of Lemma 1:

Lemma 2. To the second-order approximation, Xt satisfies

Xt

(
Et
)

= ...+
1

2

(
t∑

s=0

t∑
m=0

X̂t−s,t−mEsEm + X̂σσ,t

)
+O

(
‖E‖3

)
, (12)

where ... are the first-order terms and
{
X̂t,k

}
t,k

and
{
X̂σσ,t

}
t

are defined by

X̂t,k := XZ · Ẑt,k +XZZ ·
(
Ẑt, Ẑk

)
for Ẑt,k = ZZ · Ẑt−1,k−1 + ZZZ ·

(
Ẑt−1, Ẑk−1

)
, (13)

Xσσ,t := XZ · Ẑσσ,t +Xσσ for Ẑσσ,t = ZZ · Ẑσσ,t−1 +
[
0,PXσσ

]T
. (14)

with Ẑ0,k = Ẑt,0 = Ẑσσ,0 = 0.

This lemma shows that the second-order equilibrium approximation involves two types of terms:

terms like X̂t,k that capture the interaction effects on current period endogenous variables from shocks

that occurred t and k period ago, and terms like X̂σσ,t that capture precautionary motives. Inspection

of equation (13) reveals that both Ẑt,k and X̂t,k have the same mathematical structure as our example

in equation (11). Equation (14) is simpler since precautionary motives are zero to the first-order, so

that the first-order interaction terms drop out.

To find {X̂t,k}t,k and {X̂σσ,t}t , we proceed the same way as we did in the first-order approximations

and differentiate (5) twice with respect to σ. Let GY Y be the Hessian of G evaluated at Y = Y ∗. A

helpful observation to build intuition for the next proposition is that

∂2

∂σ2
EEX (σE ,K∗;σ)

∣∣∣∣
σ=0

= EE
[
XZZ ·

(
[E , 0]

T
, [E , 0]

T
)]

+Xσσ = X̂0,0var (E) +Xσσ.

Proposition 2. (a). For any k, sequence
{
X̂t,t+k

}
t

satisfies

GY Ŷt,t+k + Ĝt,t+k = 0 for all t, (15)

where Ĝt,t+k = GY Y ·
(
Ŷt, Ŷt+k

)
, Ŷt,t+k = [0,PX̂t−1,t+k−1, X̂t,t+k, X̂t+1,t+k+1]T, PX̂−1,k−1 = 0, and

limt→∞ X̂t,t+k = 0.

(b). Sequence
{
X̂σσ,t

}
t

satisfies

GY Ŷσσ,t = 0 for all t, (16)

where Ŷσσ,t =
[
0,PX̂σσ,t−1, X̂σσ,t, X̂σσ,t+1 + X̂0,0var (E)

]T
, PX̂σσ,−1 = 0 and limt→∞ X̂σσ,t−X̂σσ,t−1 =

0.
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Similar to Proposition 1, Proposition 2 collapses the problem of finding second-order approximation

to solving systems of linear equations. To solve {X̂t,t+k}t for any given k we use (15). It has mathemat-

ical structure similar to (10) except it requires contracting Ĝt,t+k. To construct it, we first find GY Y by

automatically differentiating (2) twice and evaluating it at steady state Y = Y ∗, and then using the so-

lution {Ŷt}t obtained in Proposition 1 to compute {Ĝt,t+k}t. In the same manner as the first order, the

stability assumption 1b can be used to show the boundary condition limt→∞ X̂t,t+k = 0. The systems

of equations (15) are therefore solved using truncation and a terminal condition X̂t,t+k = 0 for t > T .

These systems of equations can be easily parallelized and solved simultaneously for all k. Once we have

X̂0,0, we can solve solve (16) for {X̂σσ,t}t. The only difference is that this system of equations has

the boundary condition limt→∞ X̂σσ,t − X̂σσ,t−1 = 0 which we implement with the terminal condition

X̂σσ,t = X̂σσ,T for t > T, since precautionary motives do not need to die off as t→∞.

As with the first-order approximations, our implementation of perturbational techniques avoid com-

mon complications that arise under standard techniques. We do not need to compute and store matrices

of second-order partial derivatives such as XZZ or to implement additional “pruning” techniques to

find stable solutions.12

Lemma 2 can be used to find the approximation to the ergodic mean of endogenous variables in the

stochastic economy. Taking expectation of equation (12) and then the limit as t → ∞ finds the long

run average level of X to be

E [X] = X +
∞∑
s=0

X̂s,svar(E) + lim
t→∞

X̂σσ,t +O
(
‖E‖3

)
. (17)

If aggregate welfare is included in X then equation (17) can be used to compute ergodic welfare. The

observation that the difference E [X] −X is of the second order implies that the approximation error

would not improve if one were to approximate the equilibrium dynamics around the ergodic mean of

K rather than deterministic steady-state K∗.

3 Approximations of HA economies

The directional derivative approach is particularly convenient to approximate HA models with aggregate

shocks. In those models, state Z depends on the distribution of individual characteristics, such as asset

holdings, and usually is infinite dimensional. On the other hand, one is typically interested in finding

a small number of endogenous variables, such as aggregate prices and quantities or some moments

summarizing heterogeneity. This makes the object of interest X small dimensional. The techniques

12It is well-known that standard perturbational methods produce unstable sample paths at higher orders. Kim et al.
(2008) propose to apply a “pruning”procedure to the obtained solution to address that issue. Lombardo and Uhlig (2018)
use series expansion methods of Holmes (2012) and Lombardo (2010) to provide a systematic theory of pruning. Our
second-order solution coincides with the one described in Lombardo and Uhlig (2018).
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that we developed in the previous section allow us to compute the responses of X quickly for arbitrary

Z. To make our discussion concrete, we start by describing how we would approach solving a canonical

HA economy, the one considered by Krusell and Smith (1998).

3.1 Prototypical Krusell and Smith economy

The economy is populated by a continuum of households that face idiosyncratic risk and firms. Each

household supplies inelastically one unit of labor that is subject to idiosyncratic efficiency shocks θi,t.

Households receive wage Wt and save capital ki,t that earns gross return Rt, that equals rental rate net

of depreciation δ. Household i chooses stochastic sequences {ci,t, ki,t}t to maximize life-time expected

utility E0

∑∞
t=0 β

tU(ci,t) subject to the budget constraints ci,t + ki,t ≤ Rtki,t−1 +Wt exp(θi,t) and the

borrowing constraints ki,t ≥ 0 for all t ≥ 0. Initial ki,−1 and θi,0 are given and the distribution of

{ki,−1, θi,0}i over i is denoted by Ω0. Efficiency θi,t follows an exogenous stationary stochastic process

normalized so that
∫

exp(θi,t)di = 1.

Households rent capital and supply efficiency-adjusted labor to firms each period. Firms are com-

petitive and produce output using Cobb-Douglas technology with aggregate productivity exp(Θt) and

a capital share of α. Wages Wt and rental rates Rt are determined by the market clearing conditions

so that supply of labor and capital by consumers is equal to the demand for those factors by firms.

The equilibrium in this economy can be represented by three set of conditions: the optimality

conditions of households that face idiosyncratic risk, the optimality conditions of firms, and the market

clearing conditions. It is helpful to keep conditions characterizing behavior of economic agents that

face idiosyncratic risk (i.e., households) separate from the other conditions. Let ζi,t be the Lagrange

multiplier on the borrowing constraint of household i in period t. We can write the optimality conditions

of households as

RtUc(ci,t)− λi,t = 0, Uc(ci,t) + ζi,t − βEtλi,t+1 = 0 for all i, t, (18)

and

ci,t + ki,t −Rtki,t−1 −Wt exp(θi,t) = 0, ki,tζi,t = 0 for all i, t. (19)

Here, equations (18) are households’ Euler equations and equations (19) are budget constraints and

the complementary slackness conditions on borrowing constraints. Besides equations (18) and (19), we

have non-negativity constraints ki,t ≥ 0, ζi,t ≥ 0 for all i, t.

Letting At represent capital supplied by the households in date t, the optimality conditions of firms

and market clearing conditions are

Wt − (1− α) exp (Θt)K
α
t = 0, Kt −At−1 = 0 for all t, (20)

11



Rt + δ − (1− α) exp (Θt)K
α−1
t = 0, At −

∫
ki,tdi = 0 for all t. (21)

Given initial conditions {ki,−1, θi,0}i and Θ0, equations (18), (19), (20) and (21), and non-negativity

constraints characterize equilibrium dynamics of this economy.

3.2 General representation of HA economies

Motivated by this example, we now present a general representation of equilibrium conditions of a broad

class of HA economies. Let θ and Θ be vectors of idiosyncratic and aggregate shocks. Let x be the vector

of endogenous variables chosen by the agents subject to idiosyncratic shocks and X be the vector of all

other endogenous variables. We refer to x and X as idiosyncratic and aggregate endogenous variables.

Let ai,t−1 ∈ xi,t−1 and At−1 ∈ Xt−1 be vectors of individual and aggregate endogenous variables chosen

at t− 1 that enter into time t equilibrium conditions. We will write them explicitly as

a = px, A = PX,

where p and P are selection matrices that return a and A from vectors x and X. In what follows, we

will use A and PX interchangeably. Let Yt := [Θt,PXt−1, Xt,EtXt+1]T.

The optimality conditions of agents subject to idiosyncratic risk are represented as

F (ai,t−1, θi,t, xi,t,Ei,txi,t+1, Yt) = 0 for all i, t (22)

with initial conditions (ai,−1, θi,0). Let Ω0 the the (cumulative) distribution of (ai,−1, θi,0). The remain-

ing equilibrium conditions, which include optimality conditions of agents not subject to idiosyncratic

shocks, market clearing conditions, budget constraints for the government, etc, are represented as

G

(
Yt,

∫
xidi

)
= 0 for all t (23)

with some initial Θ0 and A−1.

It is easy to see how our example of the Krusell and Smith economy fits into this representation.

In that example, we have xi,t = [ki,t, ci,t, λi,t, ζi,t]
T, ai,t = ki,t, At =

∫
ai,tdi, Xt = [At,Kt,Wt, Rt]

T,

Yt = [Θt, At−1, Xt,EtXt+1]. With these definitions, mapping F captures optimality conditions (18) and

(19), while mapping G captures conditions (20) and (21).

In order to streamline our exposition, for now we assume that θi,t, Θt and ai,t are scalars; we discuss

the case when they are finite vectors in the supplementary material Section B. We assume that θi,t

follows AR(1) processes

θi,t = ρθθi,t−1 + εi,t, (24)

and Θt is given by (1). Here, εi,t is a mean zero random variable drawn independently across time and

agents with a probability distribution that has a density µ and |ρθ| < 1.
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An equilibrium consists of stochastic processes {Xt (Et)}t,Et and {xi,t (Et, εti)}i,t,Et,εt that satisfy

(22)–(24) and auxiliary non-negativity constraints given initial conditions Z0 = [Θ0, A−1,Ω0]. Our

main focus is on characterizing the equilibrium stochastic process {Xt}t, which is relevant for most

macroeconomic applications. As a by-product, we also describe a procedure to recover the stochastic

processes {xi,t}i,t.
We proceed as in Section 2 and perturb the aggregate shock process as in (4). In a recursive formu-

lation, the aggregate state of the system (22) and (23) consists of Θt, At−1 and the joint distribution

Ωt over {(ai,t−1, θi,t)}i. We use Ωt 〈a, θ〉 to denote the measure of agents with θi,t ≤ θ and ai,t−1 ≤ a.

Let Zt = [Θt, At−1,Ωt]
T be the aggregate state. The recursive representation of equilibrium conditions

in the perturbed economy is given by

F
(
a, θ, x (a, θ, Z;σ) ,Eε,E [x|a, θ, Z;σ] , Y (Z;σ)

)
= 0 for all (a, θ, Z, σ) , (25)

G

(
Y (Z;σ) ,

∫
x (·, ·, Z;σ) dΩ

)
= 0 for all Z, σ, (26)

as well as the LoM for the aggregate distribution Ω (Z;σ) defined as

Ω (Z;σ) 〈a′, θ′〉 =

∫ ∫
ι (a(a, θ, Z;σ) ≤ a′) ι(ρθθ + ε ≤ θ′)µ (ε) dεdΩ 〈a, θ〉 for all Z, σ, (27)

where Y (Z;σ) =
[
Θ, A,X (Z;σ) ,EE

[
X|Z;σ

]]T
and Eε,E and EE to denote conditional expectation of

future policies with respect to (ε, E) and E , respectively:

Eε,E [x|a, θ, Z;σ] =

∫
x
(
a(a, θ, Z;σ), ρθθ + ε, ρΘΘ + σE ,PX (Z;σ) ,Ω (Z;σ)

)
µ (ε) dεdPr (E) ,

EE
[
X|Z;σ

]
=

∫
X
(
ρΘΘ + σE ,PX (Z;σ) ,Ω (Z;σ)

)
dPr (E) .

This recursive system is initialized by the initial condition Z0.13

We proceed as in Section 2 and approximate equilibrium responses around the steady state of the

deterministic economy.14 We denote this steady state by Z∗ = [0, A∗,Ω∗]T. Let Λ(a′, θ′, a, θ) be the

transition kernel from (a, θ) to (a′, θ′) in the steady state. As in Section 2, we drop explicit dependence

of policy functions on σ and Z when σ = 0 and Z = Z∗. Thus, for example, x (a, θ) will be understood

as x (a, θ, Z∗; 0). Z (Z) := [ρΘΘ, A(Z),Ω(Z)]T is the LoM for the aggregate state in the deterministic

economy. As before, XZ , XZZ , ZZ , xZ(a, θ), etc, denotes Fréchet derivatives of policy functions

of various orders. In HA settings, these are infinite dimensional linear operators rather than finite

13We do not explicitly add the non-negativity constraints in our state-space formulation. As we show formally in the
appendix, those constraints are not used in our perturbations. The reason for why they are not needed is the following.
We start with a steady state economy that already satisfies those inequalities and then perturb it. All strict inequalities
in the steady state remain strict in the perturbed economy and thus do not affect our analysis. The inequalities that hold
as equalities are already incorporated explicitly in F mapping as complementary slackness conditions, and our approach
automatically calculates how perturbations affect them.

14As in Section 2, we refer to the economy with σ = 0 as deterministic economy. Note that agents are still subject to
idiosyncratic shocks in this economy. Ω∗ is the invariant distribution in such economy.
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dimensional matrices that we used in Section 2, but their analytical properties used in the proofs are

largely unaffected by this distinction.

Our approach to approximating the HA economy will be parallel to the way we the approximated

RA economy in Section 2. We assume that aggregate policy functions X are sufficiently smooth and

stable, in the sense of Assumption 1, and use various orders of Taylor expansions of (25)–(27) to find

first- and second-order approximations. At the same time, many HA economies have features that are

not present in the standard applications of perturbational techniques, namely kinks in policy functions

x arising, for example, due to the occasional binding constraints. To allow for such kinks, we impose

weaker conditions on x.

Assumption 2.

(a) x (a, θ, Z;σ) is continuous and piecewise sufficiently differentiable at (Z∗, 0) for all (a, θ). The

points of non-differentiability of x (·, θ, Z;σ) are described by a finite number of sufficiently differentiable

functions {κj(θ, Z;σ)}j;
(b) The marginal distribution

∫
Ω∗dθ has a finite number of mass-points {a∗n}n, i.e., Ω∗ has compact

support and has density ω̊∗(a, θ) +
∑
n ξ
∗
n(θ)δ(a − a∗n), where ω̊∗(a, θ) and ξ∗n(θ) are continuous and δ

is a Dirac delta function.

Condition (a) allows policy functions to have a finite number of kinks, with jth kink of x(·, θ, Z;σ)

occurring at a = κj(θ, Z;σ). Note that the kinks are endogenous in the sense that they depend on

the aggregate state Z. Condition (b) permits the marginal of the invariant distribution Ω∗ to have a

finite number of mass points. A direct implication of conditions (a) and (b) is that the set of points for

which x is not differentiable at (Z∗, 0) is of Ω∗-measure zero. This also implies that the integral
∫
xdΩ

is differentiable at (Z∗, 0).

As an illustration, consider our example of the Krusell and Smith economy. In that economy,

policy function k(k, θ) is continuous, strictly increasing for θ ≥ θ
∨

(k) and equal to zero for θ ≤ θ
∨

(k),

where θ
∨

(k) is the level of θ at which the borrowing constraint starts to bind. Since the distribution of

idiosyncratic shocks has a density µ, the marginal of Ω∗ can have at most one mass point, at k = 0. Thus,

its density takes the form ω̊∗(k, θ) + ξ∗(θ)δ(k), where ξ∗ (θ) is the density of agents with productivity

θ at k = 0. Function κ (θ) is the inverse of θ
∨

(k).

For the rest of the paper, we assume that policy function x (·, θ) has at most one kink, at some

κ(θ). This done merely to simplify the exposition. The extension of our formulas to accommodate

finite number of kinks is immediate.

We use xa(a, θ) and xaa(a, θ) to represent derivatives of policy functions with respect to a. Since

policy functions may have kinks, these derivatives are not defined in the classical sense at those

kinks. To handle this, we treat all derivatives of individual policy functions as generalized or dis-
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tributional derivatives and represent them as generalized functions.15 Since generalized functions are

infinitely differentiable (in the distributional derivative sense), they allow us to present a uniform treat-

ment of approximations at any order. When we want to distinguish between generalized and clas-

sical functions, we use symbol˚to denote the latter. To see the relationship between the two, let

x∆ (θ) = lima↓κ(θ) x(a, θ) − lima↑κ(θ) x(a, θ) and let x∆
a (θ) be defined analogously for xa (·, θ). Ob-

viously, x∆ (θ) = 0 by continuity of x (·, θ) but x∆
a (θ) 6= 0 due to kinks. The relationship between

generalized and classical derivatives is given by

xa(a, θ) = x̊a(a, θ) + δ (a− κ(θ))x∆ (θ)︸ ︷︷ ︸
=0

,

xaa(a, θ) = x̊aa(a, θ) + δ (a− κ(θ))x∆
a (θ) .

These relationships imply that integrals of xa and x̊a always agree, but integrals of xaa differ from x̊aa

by terms involving jumps at the kinks, e.g.,∫
xaadΩ∗ =

∫
x̊aadΩ∗ +

∫
x∆
a (θ)ω∗ (κ(θ), θ) dθ,

where ω∗ (a, θ) := ω̊∗(a, θ) +
∑
n ξ
∗
n(θ)δ(a − a∗n). Note that ω∗ is a generalized function as well and

notations such as
∫
xdΩ∗ and

∫
xω∗dθda are equivalent under this convention.

Derivatives of individual policy functions such as xZ (a, θ) · Ẑ or xZZ (a, θ) · (Ẑ ′, Ẑ ′′) and cross-

partials xaZ (a, θ) · Ẑ also will be understood to be represented by generalized functions. We show in

the appendix that they satisfy xZ (a, θ) · Ẑ = x̊Z (a, θ) · Ẑ and

xaZ (a, θ) · Ẑ = x̊aZ (a, θ) · Ẑ + δ(a− κ(θ))x∆
Z (θ) · Ẑ, (28)

xZZ (a, θ) ·
(
Ẑ ′, Ẑ ′′

)
= x̊ZZ (a, θ) ·

(
Ẑ ′, Ẑ ′′

)
+ δ(a− κ(θ))x∆

a (θ)
(
κZ(θ) · Ẑ ′

)(
κZ(θ) · Ẑ ′′

)
.

Term κZ(θ) · Ẑ in the second equation represents how the kink moves when the aggregate state is

changed in direction Ẑ.

3.3 First-order approximations

We start with the first-order approximations. For the HA economy, the statement (and the proof) of

Lemma 1 remains unchanged as long as we augment the LoM for Zt (Et;σ) in equation (9) to include

Ω
(
Zt−1

(
Et−1;σ

)
;σ
)

and understand Ẑ0 = [1, 0]
T

to mean the infinite-dimensional vector that consists

of 1 in the first element (corresponding to the exogenous part of the state space) and 0 for all other

elements. To characterize {X̂t}t we differentiate (26) and evaluate it in direction Ẑt =
[
ρtΘ,PX̂t−1, Ω̂t

]T
15A generalized function is a linear functional over some space of functions. For instance, δ is a generalized function

defined by the operation δ[φ] =
∫
φ(x)δ(x)dx = φ(0) for some function φ. There is a large mathematical literature on

generalized functions (also referred to as distributions) and distributional derivatives, see Kanwal (1998) for an introduction
to this subject.
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to obtain

GY Ŷt + Gx

(∫
xdΩ

)
Z

· Ẑt = 0, (29)

where Ŷt is as defined in Proposition 1. Here, Gx is the derivative of G with respect to its second

argument,
∫
xdΩ, evaluated at the steady state, and

(∫
xdΩ

)
Z
· Ẑt is the directional derivative of

∫
xdΩ

in direction Ẑt. Using the definition of directional derivatives and continuity of policy functions at the

kinks, it is easy to show that (∫
xdΩ

)
Z

· Ẑt =

∫
x̂tdΩ∗ +

∫
xdΩ̂t, (30)

where x̂t (a, θ) = xZ (a, θ) · Ẑt are directional derivatives of individual policy functions.

Equation (30) shows that the first-order change in the aggregation
∫
xdΩ consists of two components:

the effect of the shock on individual policy functions,
∫
x̂tdΩ∗, and the effect of the shock on the

aggregate distribution,
∫
xdΩ̂t. In order to characterize these components, we use two intermediate

results. First, we show that there is a tight relationship between responses of individual and aggregate

endogenous variables to aggregate shocks. We obtain it by applying the implicit function theorem to

mapping F defined in equation (25) and evaluating those expressions at the deterministic steady-state.

Lemma 3. For any t,

x̂t (a, θ) =

∞∑
s=0

xs (a, θ) Ŷt+s, (31)

where matrices xs (a, θ) are given by

x0 (a, θ) =− (Fx (a, θ) + Fxe (a, θ)Eε [xa|a, θ] p)
−1 FY (a, θ) , (32)

xs+1 (a, θ) =− (Fx (a, θ) + Fxe (a, θ)Eε [xa|a, θ] p)
−1 Fxe (a, θ)Eε [xs|a, θ] (33)

away from the kinks and xs (κ(θ), θ) = 0 at the kinks, and Fx (a, θ), Fxe (a, θ), FY (a, θ) are derivatives

of F with respect to x, Ex and Y , all evaluated at the steady state values of x (a, θ).

Equation (31) shows that the change in individual policy functions x̂t is equal to the future changes

in aggregates {Ŷt+s}s weighted with matrices {xs}s. Matrix xs has a natural economic interpretation. It

captures how much individuals change their policy functions today if they expect aggregates to change

s periods in the future, ∂xt/∂Yt+s. The most important part of Lemma 3 is that it provides explicit

formulas for {xs}s. We show in Section 4.1 that, similarly to finding GY in Section 2, matrices Fx,

Fxe , FY are easy to obtain by automatically differentiating mapping F and evaluating it at the steady

state. Thus, the right hand side of (32) is known from zeroth-order terms, and therefore, x0 can be

constructed using linear algebra operations. This allows the construction of {xs}s>0 sequentially using

(33).
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The second intermediate result describes the Law of Motion for Ω̂t, that helps simplifying the second

term on the right hand side of (30). It is helpful to define three operators,M, L(a), and I(a) that return,

for any generalized function y, the following objects:

(M · y) 〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)ω∗ (a, θ) y (a, θ) dadθ,(

L(a) · y
)
〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)aa (a, θ) y (a, θ) dadθ,

I(a) · y :=

∫
xa(θ, a)y (θ, a) dadθ.

Operators M and L(a) take a function y, multiply it by ω∗ and aa respectively, and integrate that

product over Λ(a′, θ′, ·, ·) for various values of (a′, θ′). Operator I(a) is an integral of the product xay.

To explain the economic forces captured by these operators, we start with the following lemma, which

we obtain by explicitly taking derivatives of the LoM, Ω, defined in equation (27).

Lemma 4HA. For any t, d
dθ Ω̂t satisfies a recursion with d

dθ Ω̂0 = 0 and

d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −M · ât, (34)

Equation (34) describes how the aggregate distribution Ωt is affected by aggregate shocks. On

impact of the shock in period 0, the distribution is pre-determined and thus d
dθ Ω̂0 = 0. Individuals

change their choices in period 0. In particular, individual (a, θ) changes her savings behavior by â0 (a, θ).

OperatorM aggregates these individual-level changes by weighting them with the invariant density ω∗

and returns the change in the distribution in period 1, d
dθ Ω̂1 = −M · â0. Thus, M captures the first-

order effect of changes in individual policy functions on the aggregate distribution next period. For all

t > 0, the distribution Ωt is affected by two forces. One is mechanical: if the distribution Ωt−1 changed

in the previous period, Ωt would also change even if individual policy functions did not change. This

mechanical effect is captured by the operator L(a). The aggregate distribution in period t + 1 is also

affected by the response of individuals in period t, and this behavioral effect is captured by M · ât.
To make recursion (34) operational, note that

∫
xdΩ̂t = −I(a) · ddθ Ω̂t using integration by parts.

This leads to the following corollary that characterizes the derivative of the aggregation equation (30).

Corollary 1. For any t, (∫
xdΩ

)
Z

· Ẑt =
∞∑
s=0

Jt,sŶs

where {Jt,s}t,s satisfies a recursion with J0,s =
∫

xsdΩ∗ and

Jt,s = Jt−1,s−1 + I(a) ·
(
L(a)

)t−1

· M · pxs, (35)

with the convention xk = 0 for k < 0.
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This corollary shows that relevant directional derivatives of
∫
xdΩ can be expressed purely in terms

of {Ŷt}t weighted with matrices {Jt,s}t,s that is described by a linear recursive system of equations (35).

Combine Corollary 1 and equation (29) to obtain the HA analogue of our Proposition 1.

Proposition 1HA. {X̂t}t satisfies

GY Ŷt + Gx

∞∑
s=0

Jt,sŶs = 0 for all t, (36)

where Ŷt is as defined in Proposition 1, PX̂−1 = 0, and limt→∞ X̂t = 0.

Relative to the economy considered in Section 2, heterogeneity adds an addition term, captured by

the infinite sum in (36). In order to compute it, we need to compute {xt}t using (32) and (33), construct

operators M, L(a), and I(a), and then compute {Jt,s}t,s using (35). As we show in Section 4, all these

steps can be done very easily using the output of the standard off-the-shelf algorithms that compute

steady states of the HA economies without aggregate shocks. Once this step is completed, one can find

{X̂t}t in the same way we did it in Section 2.

After {X̂t}t is constructed, other objects can be easily recovered. In particularly, {x̂t}t can be

computed using (31). Similarly, one can show (see Appendix B.2 for the proof) that continuity of

policy functions implies the effect of aggregate shocks on the policy function that describes kinks, κ, is

given equation

κ̂t(θ) = κ̂Z · Ẑt = − â
∆
t (θ)

a∆
a (θ)

. (37)

Using aa and ât, one can construct a∆
a and â∆

t and use this expression to compute κ̂t. While {κ̂t}t
do not affect aggregate variables to the first order, they will play a role in characterizing second-order

approximations.

3.4 Second-order approximations

We now extend our analysis of the HA to the second order. As with the first order, the statement of

Lemma 2 is unaffected by heterogeneity as long as we include Ωσσ in the last term on the right hand

side of (14). Thus, similar to the first order, the directional derivatives that characterize second-order

approximations remain unchanged. We proceed as in that section by differentiating G and constructing

directional derivatives defined in that lemma. One obtains the following expressions

GY Ŷt,t+k + Ĝt,t+k + Gx

((∫
xdΩ

)
Z

· Ẑt,t+k +

(∫
xdΩ

)
ZZ

·
(
Ẑt, Ẑt+k

))
︸ ︷︷ ︸

:= ̂(
∫
xdΩ)

t,t+k

= 0, (38)

and

GY Ŷσσ,t + Gx

((∫
xdΩ

)
σσ

+

(∫
xdΩ

)
Z

· Ẑσσ,t
)

︸ ︷︷ ︸
:= ̂(

∫
xdΩ)

σσ,t

= 0, (39)
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where Ŷt,t+k and Ŷσσ,t are as defined in Lemma 2.16

As with the first order, heterogeneity only adds one more term on the right hand sides of (38) and

(39). Explicit calculations of these derivatives yields

̂(∫
xdΩ

)
t,t+k

=

∫
x̂t,t+kdΩ∗ +

∫
xdΩ̂t,t+k +

∫
x̂t,t+kdΩ̂t +

∫
x̂tdΩ̂t+k, (40)

̂(∫
xdΩ

)
σσ,t

=

∫
x̂σσ,tdΩ∗ +

∫
xdΩ̂σσ,t. (41)

While equality (40) might seem obvious at first sight, showing it requires some care because of the kinks

in policy functions. It can be written in this simple form because x̂t,t+k is a generalized derivative that

we characterized in equation (28).

We want to simplify integrals that appear in on the right hand side of equations (40) and (41). As in

our first-order analysis, we first differentiate F twice to characterize the relationship between individual

and aggregate variables to the second order.

Lemma 5. (a). For any t, k

x̂t,t+k (a, θ) =
∞∑
s=0

xs (a, θ) Ŷt+s,t+k+s + xt,t+k (a, θ) , (42)

where xt,t+k (a, θ) = x̊t,t+k (a, θ) + x∆
a (θ)κ̂t(θ)κ̂t+k(θ)δ(a− κ(θ)) with x̊t,t+k solving a recursion

x̊t,t+k (a, θ) = (Fx (a, θ) + Fxe (a, θ)Eε [xa|a, θ] p)
−1

(Ft,t+k (a, θ) + Fxe (a, θ)Eε [̊xt+1,t+k+1|a, θ]) , (43)

and Ft,t+k (a, θ) combines known first-order interaction terms given explicitly in Appendix B.9.

(b). For any t

x̂σσ,t (a, θ) =
∞∑
s=0

xs (a, θ) Ŷσσ,t+s + xσσ (a, θ) , (44)

where xσσ (a, θ) = 0 at the kinks a = κ(θ) and for all other (a, θ) solves,

0 = Fx (a, θ) xσσ (a, θ) + Fxe (a, θ) (Eε [x̂0,0|a, θ] var (E) + Eε [xσσ|a, θ] + Eε [xa|a, θ] pxσσ (a, θ)) . (45)

Equation (44) shows that the relationship between x̂σσ,t and Ŷσσ,t is almost the same as between

x̂t and Ŷt with an exception of an additional term xσσ which captures how agents react to risk holding

aggregates fixed. Equation (42), which shows the relationship between x̂t,t+k and Ŷt,t+k, is more

involved. The second-order change in individual policy functions x̂t,t+k consists of two terms: the

first-order response to the second-order changes in the aggregates, captured by the infinite sum, and

16 Ĝt,t+k in (38) is defined analogously to Ĝt,t+k in equation (15), adjusting for the fact that G is now a function of

two arguments, Y and
∫
xdΩ. In particular, let Y =

[
Y,
∫
xdΩ

]T
and Ŷt =

[
Ŷt,
(∫
xdΩ

)
Z
· Ẑt
]T

. Then G is a (multi-

dimensional) function of Y, G(Y), GYY is its Hessian evaluated at the steady state Y, and Ĝt,t+k = GYY · (Ŷt, Ŷt+k).
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second-order responses to the first-order interactions of shocks, captured by xt,t+k. Importantly, this

lemma also provides an explicit formula for {xt,t+k}t,k exclusively in terms of objects from the first-order

solution. The generalized function xt,t+k consists of two parts: the classical derivative x̊ that has form

very similar to equation (33) in Lemma 3 and kink adjustments captured by the delta function.

The next step is to simplify the integrals that appear in (40) and (41) by differentiating LoM (27)

twice. In Section 3.3 we showed that operatorsM, L(a), and I(a) were central to describing the LoM of

Ω̂t. Modifications of the same three operators characterize the second-order approximation of the LoM.

Let L(a)
Z,t be the derivatives of L(a) with respect to Z evaluated in direction Ẑt. Mathematically, it takes

the same form as L(a) except the function aa in its definition is replaced with âaZ,t := aaZ · Ẑt Similarly,

we use notations L(aa), L(a,a), etc to denote modifications of these operators where aa is replaced with

aaa and aaaa respectively. Analogous convention applies to I(a). Finally, we use notation y′ � y′′ for

two generalized functions y′, y′′ to denote their point-wise product.

Lemma 6. (a). For all t, k

d

dθ
Ω̂t+1,t+k+1 = L(a) · d

dθ
Ω̂t,t+k −M · ât,t+k +

d

da
ct,t+k − bt,t+k, (46)

where bt,t+k and ct,t+k satisfy

bt,t+k = −L(a)
Z,t ·

d

dθ
Ω̂t+k − L(a)

Z,t+k ·
d

dθ
Ω̂t,

ct,t+k =M · (ât � ât+k)− L(a) ·
(
d

dθ
Ω̂t � ât+k

)
− L(a) ·

(
d

dθ
Ω̂t+k � ât

)
.

(b). d
dθ Ω̂σσ,t satisfies recursion (34) with ât = px̂t being replaced with âσσ,t = px̂σσ,t.

This lemma shows that the LoM for Ω̂t+1,t+k+1 consists of two types of terms. The first type

of term, captured by M · ât,t+k and L(a) · ddθ Ω̂t,t+k, represent the first-order response of the LoM Ω

to the second-order changes in policy functions and the previous distribution. These have the same

mathematical structure observed in Lemma 4HA. The second types of term represent the second-order

response of Ω to the first-order changes, and are captured by ct,t+k, bt,t+k. The LoM for Ω̂σσ,t is the

same as for Ω̂t due to absence of first-order precautionary motives.

Lemmas 5 and 6 allow us to characterize the second-order derivative of the aggregation equations.

Corollary 2. (a). For all t, k

̂(∫
xdΩ

)
t,t+k

=
∞∑
s=0

Jt,sŶt+s,t+k+s + Ht,t+k,

where {Ht,t+k}t,k is characterized by the following linear recursive system

Ht,t+k =

∫
xt,t+kdΩ∗ + I(a) · Bt,t+k + I(aa) · Ct,t+k − I(a)

Z,t+k ·
d

dθ
Ω̂t − I(a)

Z,t ·
d

dθ
Ω̂t+k,
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and recursions for Ct,s and Bt,s with initial conditions C0,k = B0,k = 0 and

Ct+1,t+k+1 =M · (ât � ât+k)− L(a) ·
(
d

dθ
Ω̂t � ât+k

)
− L(a) ·

(
d

dθ
Ω̂t+k � ât

)
+ L(a,a) · Ct,t+k,

Bt+1,t+k+1 =M · pxt,t+k − L(a)
Z,t ·

d

dθ
Ω̂t+k − L(a)

Z,t+k ·
d

dθ
Ω̂t + L(a) · Bt,t+k + L(aa) · Ct,t+k.

(b). For all t,
̂(∫
xdΩ

)
σσ,t

=
∞∑
s=0

Jt,sŶσσ,s + Hσσ,t

where {Hσσ,t}t satisfies recursion Hσσ,0 =
∫

xσσdΩ∗ and Hσσ,t = Hσσ,t−1 + I(a) ·
(
L(a)

)t−1 · M · pxσσ.

Using this result, we obtain the analogue for Proposition 2 for HA economies

Proposition 2HA. For any k, {X̂t,t+k}t satisfies

GY ŶZZ,t,t+k + Ĝt,t+k + Gx

∞∑
s=0

Jt,sŶs,s+k + GxHt,t+k = 0 for all t, (47)

with {Ŷt,t+k}t defined in Proposition 2, {Ht,t+k}t given in Corollary 2, PX̂−1,k−1 = 0, and limt→∞ X̂t,t+k =

0.

{X̂σσ,t}t satisfies

GY Ŷσσ,t + Gx

∞∑
s=0

Jt,sŶσσ,s + GxHσσ,t = 0 for all t, (48)

with {Ŷσσ,t}t defined in Proposition 2, {Hσσ,t}t given in Corollary 2, PX̂σσ,−1 = 0 and limt→∞ X̂σσ,t−
X̂σσ,t−1 = 0.

It is instructive to compare Proposition 2HA with both Proposition 2 and Proposition 1HA. The

only new terms that heterogeneity adds are {Ht,s}t,s in equation (47) and {Hσσ,t}t in equation (48).

Those terms have linear recursive mathematical structure similar to that of {Jt,s}t,s, which can be

exploited to construct them quickly and efficiently. We discuss this in more details in the next section.

4 Numerical implementation

In this section, we show how to implement the formulas that we derived in the previous sections using

the output of off-the-shelf methods to compute the steady state of HA economies without aggregate

shocks. We use the endogenous gridpoint method of Carroll (2006) to find individual policy functions

and store them using quadratic splines. Let NX , NY and Nx be dimensions of vectors X, Y and x (a, θ).

We use arrows to indicate numerical analogues of theoretical objects. Thus, −→x denotes the numerical

analogue of x.

We start with the description of the splines used to approximate the steady state policy functions.

A standard implementation discretizes the space of (a, θ) as a “coarse” set of knot points on which
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individual optimization problem are solved and then uses a “fine” grid with many more grid points to

approximate the distributions and aggregates. We use j = 1, ..., Nsp to denote elements of the coarse

grid and i = 1, ..., NΩ to denote elements of the fine grid, with (a, θ)[j] and (a, θ)[i] denoting the value

of the individual state corresponding to the jth and ith coarse and fine grid points.

Individual policy functions are stored as a vector of coefficients on a set of common basis functions.

Let
{
φj (·, ·)

}Nsp
j=1

be a collection of basis functions or splines, where each φj is differentiable and maps

from (a, θ) into R. The function x (a, θ) is represented using a Nx×Nsp matrix x# of spline coefficients,

and two matrices Φ and Φ̃ of dimensions Nsp × NΩ and Nsp × Nsp, where Φ[j′, i] = φj
′
((a, θ)[i]) and

Φ̃[j′, j] = φj
′
((a, θ)[j]). The values of the policy functions on the fine grid are recovered as −→x = x#Φ,

so that the ith column of matrix x#Φ, that we denote by (x#Φ)[i], corresponds to x((a, θ)[i]).

The algorithm also returns the sparse NΩ×NΩ transition probability matrix
−→
Λ on the fine grid and

the invariant distribution
−→
dΩ∗ as the NΩ dimensional vector that satisfies

−→
dΩ∗ =

−→
Λ
−→
dΩ∗. Idiosyncratic

shocks are discretized as {εk}Kk=1 that occur with probabilities {µk}Kk=1. Kinks in policy functions are

stored as a subset of coarse grid points ℵ, where j ∈ ℵ denotes the point (θ, a)[j]is just below the kink

while (θ, a)[j+1] is just above the kink.

We now describe how one can construct linear systems of equations described in Propositions 1HA

and 2HA using these objects. We first start with an observation that splines make it very easy to compute

various derivatives and expectations of individual policy functions that show up in several of our expres-

sions. Let Φa be an Nsp ×NΩ matrix with elements Φa[j′, i] = φj
′

a ((a, θ)[i]), where φj
′

a is the derivative

of j′-th spline with respect to a. Then −→x a = x#Φa recovers derivatives xa on the fine grid. Similarly,

by defining Nsp×Nsp matrices Φ̃e and Φ̃ea with coefficients Φ̃e [j′, j] =
∑K
k=1 µkφ

j′(a (a, θ)[j] , ρθ[j] +εk)

and Φ̃ea [j′, j] =
∑K
k=1 µkφ

j′

a

(
a
(

(a, θ)[j]

)
, ρθ[j] + εk

)
, we can recover E [x|a, θ] and E [xa|a, θ] on the

coarse grid as x#Φ̃e and x#Φ̃ea. The same observation applies to constructing expectations of second

derivatives, such as E [xaa|a, θ]. An important observation here is that since kinked policy functions

are approximated with smooth splines, no separate adjustments for the δ function that appears in the

definition of xaa is needed. For example, we can recover E [xaa|a, θ] on a coarse grid as x#Φ̃eaa, where

Φ̃eaa is defined as the second-order analogue of Φ̃ea.17

For our approximations, we pre-compute all basis matrices and store them as sparse matrices. Pre-

computing basis matrices allows us to reduce all necessary calculations to matrix algebra without any

further nonlinear function calls.

17Alternatively, these can be recovered by differentiating the F mapping with respect to a, finding spline coefficients

x#
a and computing E [xaa|a, θ] as x#

a Φ̃a. In the online supplementary material we discuss trade-off between different ways
of computing these derivatives.
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4.1 Numerical implementation of the first-order approximation

To solve the linear system (36), we need to construct Gx, GY and {Jt,s}t,s. The first two terms, Gx,

GY are constructed by automatically differentiating the algebraic expression for G and evaluating that

expression at the steady state. In order to construct {Jt,s}t,s, we need two sets of objects: operators

I(a), L(a) and M, and functions {xt}t.
Numerical analogues of the three operators are constructed directly from their definitions as

−→I (a) [:, i] =

−→x a[i],
−→L (a)[i′, i] =

−→
Λ [i′, i]−→a a[i] and

−→M[i′, i] =
−→
Λ [i′, i]

−→
dΩ∗[i]. Matrices

−→L (a) and
−→M are large (of dimen-

sion NΩ×NΩ) but sparse. To construct {xt}t we use equations (32) and (33). We start by automatically

differentiating F and calculating values of those derivatives in steady state on the same space of grid

points used to compute individual policy functions. This produces arrays
−→
F x,
−→
F xe ,

−→
F Y . For example,

−→
F x is an Nx × Nx × Nsp array and

−→
F x[j] is a Nx × Nx matrix corresponding to Fx

(
(a, θ)[j]

)
. Using

these arrays and equation (32), we construct the Nx ×NY ×Nsp array −→x 0 with coefficients

−→x 0[j] = −
(−→

F x[j] +
−→
F xe [j]

(
px#Φ̃ea

)
[j]
)−1−→

F Y [j],

which is the numerical analogue of x0 on the coarse grid. To convert it to the fine grid, one recovers the

spline coefficients x#
0 = −→x 0Φ̃−1 and then obtains the the fine grid analogue x#

0 Φ. The rest of {−→x s}s>0

are constructed recursively from (33) using

−→x s+1[j] = −
(−→

F x[j] + Fxe [j]
(

px#Φ̃ea

)
[j]
)−1−→

F xe [j]
(

x#
s Φ̃e

)
[j]

with spline coefficients recovered as x#
s = −→x sΦ̃

−1. Once these {−→x s}s are constructed, we compute

{Jt,s}t,s using recursion

Jt,s = Jt−1,s−1 +
−→I (a)

(−→L (a)
)t−1−→M

(
px#
s Φ
)

with initial conditions J0,s = x#
s Φ
−→
dΩ∗ and Jt,0 = 0. This procedure recovers all objects necessary to

invert (36) and obtain the first order solution {X̂t}Tt=0.

Once {X̂t}Tt=0 is computed, it is also straightforward to compute the responses of individual policies

and the distribution of aggregate shocks. Using equation (31), x̂#
t can be computed using

∑T−t
s=0 x#

s Ŷt+s

so that (x̂#
t Φ̃)[j] and (x̂#

t Φ)[i] correspond to x̂t
(
(a, θ)[j]

)
and x̂t

(
(a, θ)[i]

)
on the coarse and fine grids,

respectively. Similarly, the numerical analogue of { ddθ Ω̂t}t is a sequence of NΩ dimensional vectors

{
−−→
d
dθΩ}t that is constructed recursively by

−−→
d
dθΩ0 = 0 and

−−→
d
dθΩt =

−→L (a)
−−→
d
dθΩt−1 −

−→M
(

px̂#
t Φ
)

. Finally,

once x̂#
t is known, it is possible to construct κ̂t for all j ∈ ℵ as

κ̂t(θ[j]) = −
(
px∆

a (θ[j])
)−1

px̂∆
t (θ[j]),

with x∆
a (θ[j]) = (x#

a Φ̃)[j + 1]− (x#
a Φ̃)[j] and x̂∆

t (θ[j]) = (x̂#
t Φ̃)[j + 1]− (x̂#

t Φ̃)[j].
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4.2 Numerical implementation of the second-order approximation

Numerical implementation of the second order proceeds by direct analogy with the first order. For

example, to obtain Ĝt,k that appears in equation (47) we differentiate G twice and evaluate it at

the steady state to get hessian GYY and then construct Ĝt,k using its definition given in footnote 16.

Operators L(a)
Z,t, L(aa), etc are constructed just like their first-order analogues. For example, L(a)

Z,t is

represented by the NΩ ×NΩ array
−→
L

(a)

Z,t with i element given by
−→
Λ [i′, i](px̂#

t Φa)[i].

To construct {−→x t,t+k}t we start with equation (43). Using backward induction and terminal condi-

tion −→x T+1,T+k+1 = 0, one can construct the spline coefficients for the classical component {̊x#
t,t+k}Tt=1

in the same way we constructed {x#
t }Tt=1 for the first-order approximations. To adjust for the δ function

part, rewrite the expression in Lemma 5 as

xt.k(z, θ) = x̊t+1,k+1 +
d

da

ι (a ≥ κ(θ))x∆(θ)κ̂t(θ)κ̂k(θ)︸ ︷︷ ︸
≡xδt,k(a,θ)

 .

The function xδt,k(z, θ) is a step function that we can approximate with a spline with coefficients xδ#t,k .

We then recover −→x t,k as x̊#
t,kΦ + xδ,#t,k Φa.

These objects allow us to construct {Ht,t+k}t using recursions in Corollary 2(a) and solve for

{X̂t,t+k}t using equation (47). From this solution, we obtain X̂0,0 and x̂0,0 that are needed to find

{X̂σσ,t}Tt=1. The terms xσσ still needs to be found in order to solve the system of equations in Propo-

sition 2HA. We use the linear system (45) to find x#
σσ by evaluating (45) at each element of the coarse

grid.

−→
F x[j]x#

σσΦ̃[j] +
−→
F xe [j]

(
x̂#

0,0Φ̃e[j] + xδ,#0,0 Φ̃ea[j]
)
var (E) +

−→
F xe [j]x

#
σσΦ̃e[j] +

−→
F xe [j]x

#Φ̃ea[j]
(
px#
σσ

)
Φ̃[j] = 0.

This equation is linear in x#
σσ and can be solved with a single linear operation. We then compute

−→x σσ = x#
σσΦ, construct {Hσσ,t}Tt=1 using recursion in Corollary 2(b), and solve for {X̂σσ,t}Tt=1 using

equation (47).

This procedure solves first- and second-order approximations of the stochastic economy. It only

requires the user to supply an approximation of the steady state of deterministic economy and functional

forms for G and F , the rest is computed automatically from those objects. With the exception of pre-

computing basis matrices , all steps involve only linear algebra, which allows one to construct solutions

to such economies quickly. We discuss the computational speed of our method in Section 7.

5 Extensions

We now discuss how our approach can be extended to three classes of problems that do not fit our

description in Section 3: models with transition dynamics from some initial distribution to its long
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run steady state, models with stochastic volatility, and portfolio problems. The first class of problems

emerges when one considers permanent shocks or policy changes that induce a transition to a new steady

state, the second class of problems occurs frequently in studies of asset prices. Both of these extensions

require minimal modifications of the procedure that we described in Section 3. The last extension is

more substantial. Portfolio problems – models in which agents can invest in more than one asset with

different risk characteristics – are commonplace. For example, the Krusell and Smith economy in which

agents can borrow and lend from each other in addition to investing in risky capital falls into this

category. Yet, solving such problems with standard perturbational techniques represents a substantial

challenge. In such economies, the first-order approximation of equilibrium responses depend on the

investment portfolios chosen by agents, yet the choice of the optimal portfolio depends on the second-

order properties of the model such as risk premium. This breaks the convenient structure of recursive

techniques under which one can find the nth order of approximation from only knowing previous n− 1

orders. Faced with this problem, much of quantitative HA macro literature simply ignores risk in

characterizing agents’ portfolio problems. We build on the ideas of Devereux and Sutherland (2011)

and develop an approximation approach that allows one to handle portfolio problems in general HA

settings.

5.1 Transition dynamics

The same techniques that we developed to characterize transition dynamics of the HA economy following

an aggregate shock can be applied to study transition dynamics from any initial conditions to steady

state. To illustrate that, consider economy as in Section 3 but suppose that the initial condition is given

by (0, A−1,Ω0), where (A−1,Ω0) does not necessarily coincide with (A∗,Ω∗). Let ÂTD0 = A−1 − A∗,
Ω̂TD0 = Ω0 − Ω∗ and ẐTD0 =

[
0, ÂTD0 , Ω̂TD0

]T
. The following result extends Lemma 1 and Proposition

1HA to handle transition dynamics:

Proposition 1TD. To the first-order approximation, Xt satisfies

E0Xt =X + X̂TD
t +O

(∥∥∥E , ẐTD0

∥∥∥2
)
.

Sequence {X̂TD
t }t satisfies

GY Ŷ
TD
t + Gx

∞∑
s=0

Jt,sŶ
TD
s + GxJTDt = 0, (49)

where Ŷ TDt =
[
0,PX̂TD

t−1, X̂
TD
t , X̂TD

t+1

]T
, PX̂TD

−1 = Â0, and JTDt = I(a) ·
(
L(a)

)t−1 ·
(
− d
dθ Ω̂TD0

)
.

Proposition 1TD shows that to compute transition dynamics to the first order, one only needs to

construct {JTDt }t using the same operators I(a) and L(a) that are used to construct {Jt,s}t,s. These

matrices capture the direct effect of the initial distribution Ω̂0 on the transition dynamics of aggregate

variables.
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5.2 Stochastic volatility

Many applications that study financial markets or effects of government policies require the volatility

of exogenous aggregate variables to be time-varying. A standard way to approximate such models is to

consider third-order expansions (see, e.g., discussion in Fernández-Villaverde et al. (2011)). While it is

possible to use a third-order extension of our techniques to model stochastic volatility, in this section

we show a much simpler second-order approximation.

Suppose that stochastic process for Θt is given by (1) but Et is not homoskedastic but rather follows

the process

Et =
√

1 + Υt−1EΘ,t, (50)

Υt = ρΥΥt−1 + EΥ,t, (51)

where |ρΥ| < 1 and EΘ,t and EΥ,t are mean-zero i.i.d. variables with support of EΥ,t bounded so that

Υt always remains greater than −1. The conditional volatility of aggregate innovations is stochastic

and satisfies vart−1(Et) = (1 + Υt−1)var(EΘ,t). This model collapses to that of Section 3 when Υt is a

degenerate stochastic process, Υt ≡ 0.

The state in the recursive representation now consists of a tuple (Υ,Θ, A,Ω). One way to approxi-

mate this economy is to scale both shocks EΘ,t and EΥ,t with σ and approximate the equilibrium around

the deterministic point (0, 0, A∗,Ω∗). In order to capture time-varying volatility, this approach would

indeed require using third-order approximations. Instead, a much faster and simpler method is to pro-

ceed as in Section 3 and scale only the combined shock Et with σ, just as we did in equation (4). Since

shocks EΥ,t and EΘ,t are not scaled with σ, Υt still satisfies (51) in the zeroth-order economy. Thus,

our approximations are around (Υ, 0, A∗,Ω∗) where Υ is stochastic.18

The convenience of this alternative perturbation can be seen from the next lemma that generalizes

Lemma 2 to settings with stochastic volatility. Let Et = (Et, EtΥ).

Lemma 2SV . To the second-order approximation, Xt satisfies

Xt

(
Et
)

= X +
t∑

s=0

X̂t−sEs +
1

2

(
t∑

s=0

t∑
m=0

X̂t−s,t−mEsEm + X̂σσ,t

)
(52)

+
1

2

t∑
s=0

X̂SV
σσ,t−sEΥ,s +O

(
‖E‖3

)
,

where sequences {X̂t}t, {X̂t,k}t,k, {X̂σσ,t}t are the same ones as in Propositions 1HA and 2HA, and

{X̂SV
σσ,t}t is another sequence of directional derivatives.

18Our approach of scaling only the level of the innovation to TFP turns out to be similar to the approximation in
Benigno et al. (2013) who study effects of time-varying variances in the context of a representative agent neoclassical
growth model.
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The expressions in the first line of equation (52) is identical to the characterization in models

without volatility shocks. Thus, to approximate models with stochastic volatility one only needs to

compute an additional sequence of directions {X̂SV
σσ,t}t that capture how volatility shocks affect aggregate

variables. Note that loadings on innovation to the volatility of aggregate shocks to the second order,∑t
s=0 X̂

SV
σσ,t−sEΥ,s, appear identically to the loading on innovations to the level of aggregate shocks to

the first order,
∑t
s=0 X̂t−sEs, and has the same interpretation that we gave to the latter term following

Lemma 1. The proof of the lemma shows that the simplicity of equation (52) is driven by two forces: our

perturbation keeps EΥ,t non-degenerate in the steady state implies that second-order approximations

already capture effects of volatility shocks; and functional form of (50) implies that those approximations

are linear in {EΥ,t}t.
The next proposition combines and extends results from Lemma 5 and Proposition 2HA to charac-

terize {X̂SV
σσ,t}t.

Proposition 2SV . Let xSVσσ be defined by

Fx (a, θ) xSVσσ (a, θ) + Fxe (a, θ)
(
Eε [x̂0,0|a, θ] var (E) + ρΥE

[
xSVσσ |a, θ

]
+ Eε [xa|a, θ] pxSVσσ (a, θ)

)
= 0,

(53)

with xSVσσ (a, θ) = 0 at the kinks a = κ(θ). Sequence {X̂SV
σσ,t}t satisfies

GY Ŷ
SV
σσ,t + Gx

∞∑
s=0

Jt,sŶ
SV
σσ,s + GxHSVσσ,t = 0 for all t, (54)

where Ŷ SVσσ,t =
[
0,PX̂SV

σσ,t−1, X̂
SV
σσ,t, X̂

SV
σσ,t+1 + ρtΥX̂0,0var (E)

]T
, X̂SV

σσ,−1 = 0, and limt→∞ X̂SV
σσ,t = 0.

{HSVσσ,t}t is defined recursively as HSVσσ,0 =
∫

xSVσσ dΩ∗, HSVσσ,t = ρΥHSVσσ,t−1 + I(a) ·
(
L(a)

)t−1 · M · pxSVσσ .

Proposition 2SV shows that one can find loadings {X̂SV
σσ,t}t on the volatility shocks in the same way

as we found precautionary motives {X̂σσ,t}t in Section 3. First, one needs to find effects of volatility

shocks on precautionary motives of individuals, captured by xSVσσ . This function is characterized by

equation (53), which has almost identical structure to equation (45) that described xσσ. Second, one

constructs {HSVσσ,t}t by direct analogy with {Hσσ,t}t in Corollary 2. Finally, one solves (54) to find

{X̂SV
σσ,t}t in the same way we solve (48) to find {X̂σσ,t}t. Close parallels between solving for {X̂SV

σσ,t}t
and {X̂σσ,t}t imply that it takes trivial amount of time to add stochastic volatility shocks.

5.3 Portfolio problems

To explain challenges that emerges from studying portfolio problems and our approach to overcome

them, we start with the simplest version of such problem: the Krusell-Smith economy from Section 3.1

except suppose that households can also trade a one-period risk-free bond that is available in the zero

net supply. Let Rft−1 be the interest rate on this bond between periods t−1 and t, and Rxt = Rt−Rft−1
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be the excess return to capital. We use ai,t to denote the total wealth of agent i in period t and ki,t

as the holdings in capital. Bond holdings are given by ai,t − ki,t. Assuming for concreteness that the

borrowing constraint is on total asset holdings, the agents’ optimization problem can be written as

the choice of stochastic sequences {ci,t, ai,t, ki,t}t to maximize their utility subject to the borrowing

constraint ai,t ≥ 0 and the budget constraint

ci,t + ai,t −Wt exp(θi,t)−Rft−1ai,t−1 −Rxt ki,t−1 = 0. (55)

Agents’ optimality conditions are represented by stochastic sequences {ai,t, ci,t, ki,t, ζi,t, λi,t}i,t that

satisfy (55) and

Rft−1Uc(ci,t)− λi,t = 0, Uc(ci,t) + ζi,t − βEtλi,t+1 = 0, ai,tζi,t = 0, (56)

Et−1 [λi,tR
x
t ] = 0. (57)

Market clearing conditions for aggregate variables
{
At, R

f
t ,Kt,Wt, Rt

}
t

remain (20) and (21) with the

additional constraint that capital markets clear

Kt −
∫
ki,t−1di = 0. (58)

This is equivalent to imposing that the bond market clears:
∫

(ai,t − ki,t)di = 0, and equation (57) is

the classical asset pricing equation that determines optimal portfolio allocations with λi,t representing

household i’s stochastic discount factor.

One can immediately see from these equations that portfolio problems present a challenge to per-

turbational techniques. In the deterministic economy, Rxt = 0 for all t. Therefore, while aggregate

investments in capital and bonds as well as total assets ai,t are pinned down for all i, the allocation of

those assets into capital and bonds, ki,t and ai,t − ki,t, is not determined for individual agents. At the

same time, in the stochastic economy even the first-order approximation requires knowing the allocation

of agents wealth into individual securities. As such, the individual state is now a triple (a, θ, k), and

the distribution Ω is over (a, θ, k) with the aggregate state remaining Z = [Θ, A,Ω]T .

We will keep k separate from x since k is undermined in the deterministic economy and thus the

focus of our analysis. Otherwise the variables in x remain the same as in Section 3. Similarly, X

contains one additional variable, Rft , which is also predetermined. Thus, the recursive representation

consists of policy functions x (a, θ, k, Z;σ), k (a, θ, k, Z;σ), X (Z;σ). Vector Y (Z;σ) is as defined in

Section 2. The deterministic steady remains the same as in Section 3, with the caveat that k(a, θ, k)

is undetermined in the deterministic economy, and thus, the joint distribution Ω∗(a, θ, k) is also not

pinned down. However, the marginal distribution Ω∗(a, θ) =
∫

Ω∗(a, θ, k)dk is pinned down. Finding

k(a, θ, k) in the limit as σ → 0 will be the key step.
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Several elements of x and X will play an important role in our analysis. Let s be the selection matrix

that picks out individual’s stochastic discount factor out of vector x, λ = sx. Let R be the matrix that

computes excess returns, R
x

= RY ,19 and K be the selection matrix that selects the aggregate supply of

risky assets, K = KX. A general class of HA economies with portfolio problems can be represented by

equation (26) for mapping G, equation (27) for Ω (adjusted for the fact the distribution is defined over

(a, θ, k) rather than (a, θ)) as well as the following three equations summarizing individual optimality

conditions,

F
(
a, θ,R

x
(Z;σ) k, x (a, θ, k, Z;σ) ,Eε,Ex, Y (Z;σ)

)
= 0 for all (a, θ, k, Z, σ) , (59)

Eε,E
[
λR

x
]

= 0 for all (a, θ, k, Z, σ) , (60)∫
kdΩ = K (Z;σ) for all Z, σ. (61)

Equation (59) extends equation (22) to include the additional idiosyncratic state, with the restriction

that the individual decisions depend on their portfolio choice solely through market value of their

portfolio, R
x

(Z;σ) k. Equations (60) and (61) represent the first order conditions and market clearing

of the portfolio choice k(a, θ, k;σ).

Despite the addition of the portfolio choice, the statement of Lemma 1 remains unchanged. Thus, in

order to find first-order approximation we need to solve for the vector of directional derivatives {X̂t}t.
Let R̂x0 = RŶ0 be realized excess returns on assets. As in Section 2, R

x

σσ is the second derivative of

policy function of excess returns with respect to σ. We refer to R
x

σσ as risk premium.

We proceed by first determining how individual choices x̂t depend on the portfolio choice, whose

analysis is very similar to that of Section 3. In particular, the portfolio problem analogue of Lemma 3

becomes

Lemma 3PP . x̂0 satisfies

x̂0 (a, θ, k) =
∞∑
s=0

xs (a, θ) Ŷs + r (a, θ) R̂x0k. (62)

where

r (a, θ) = − (Fx(a, θ) + Fxe(a, θ)Eε [xa|a, θ] p)
−1 Fk(a, θ),

and Fk is the derivative of F with respect to Rxk evaluated at the steady state. x̂t (a, θ, k) is independent

of k and satisfies (31) for all t > 0. R̂xt := RŶt = 0 for all t > 0.

The intuition for Lemma 3PP is straightforward. R̂x0k is the realized return on the risky portfolio

and r captures how this return affects individual policy functions at the time of the shock, x̂0. There

19For example, in the Krusell-Smith economy R would encode that Rxt = Rt −Rft−1.
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are no analogues of this term in the expressions for x̂t for t 6= 0 since expected excess returns in the

future are zero to the first order, R̂xt = 0 for all t > 0.

The next step in finding aggregate responses is to characterize agents’ portfolio choices, which were

undetermined in the deterministic economy.

Lemma 7. Agents’ portfolios k satisfy

k(a, θ, k) = vσσ(a, θ)
R
x

σσ(
R̂x0

)2

var (E)
+
∞∑
s=0

vs(a, θ)
Ŷs

R̂x0
, (63)

where

vσσ(a, θ) = −Eε [sx|a, θ]
Eε [sr|a, θ] , vs(a, θ) = −Eε [sxs|a, θ]

Eε [sr|a, θ] ,

Equation (63) derives expressions for the optimal portfolios for all agents in the limit as σ → 0.

These portfolios depend on asset’s risk premium R
x

σσ relative to a measure of volatility of its return(
R̂x0

)2

var (E), and on the relative exposures of aggregates and excess returns to shocks, Ŷs/R̂
x
0 .20 These

aggregate statistics, that characterize equilibrium properties of asset returns, are then weighted with

individual weights vσσ and {vs}s. These weights reflect individual attitudes towards risk and insurance

that these assets offer, constraints that individuals face, etc. Importantly, individual weights can be

computed directly from the steady state of deterministic economy much in the same way we computed

{xs}s in Lemma 3. Thus, one can think of equation (63) as providing an explicit expression for k(a, θ, k)

in terms of yet unknown {Ŷt}t and risk premium R
x

σσ.

Lemmas 3PP and 7 contain a couple of features that make analysis of the portfolio problem particu-

larly tractable. Firstly, Lemma 3PP implies that the portfolio choice only affects the agent’s choices in

the initial period, x̂0, and depends linearly on k. This implies that it is not necessary to know the full

stationary distribution Ω∗(a, θ, k), a single sufficient statistic will suffice: k∗(a, θ) :=
∫
kω∗(a, θ, k)dk,

which is the density weighted conditional mean of the capital holdings.21 Secondly, k(a, θ, k) is inde-

pendent of k, which makes that sufficient statistic particularly easy to compute

k∗(a, θ) =

∫
Λ(a′, θ′, a, θ)k(a, θ)dΩ∗ = k∗σσ(a′, θ′)

R
x

σσ(
R̂x0

)2

var (E)
+
∑
s

k∗s(a′, θ′)
Ŷs

R̂x0

20Equation (63) is a special, two-asset case of a general formula for portfolio choice over multiple assets that can be
written as

k(a, θ )ᵀ =

[
vσσ(a, θ )R

x
σσ +

∞∑
s=0

vs(a, θ )cov
(
Ŷs, R̂

x
0

)−1
]
cov

(
R̂x0 , R̂

x
0

)−1

and that is familiar from the portfolio theory (see, e.g., Viceira (2001)). See Appendix D.3 for details.
21To understand why this is relevant, consider the term

∫
x̂0dΩ∗. Lemma 3PP implies that x̂0 is linear in k and, hence,∫

x̂0dΩ∗ =
∑
s

∫
xsdΩ∗Ŷs +

∫
rk∗dadθR̂x0 .
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where k∗σσ :=M·vσσ and k∗s :=M·vs. Combining the definition k∗(a, θ) with equation (61), that gives

asset supply, we obtain the equilibrium relationship between an asset’s risk premium and the first-order

behavior of aggregate variables:

R
x

σσ(
R̂x0

)2

var (E)
=

K

Vσσ
−
∞∑
s=0

Vs
Vσσ

Ŷs

R̂x0
, (64)

where Vσσ =
∫
k∗σσ(a, θ)dadθ, Vs =

∫
k∗σσ(a, θ)dadθ.

We can use these insights to adjust Proposition 2HA to account for the r (a, θ) R̂x0k in Lemma 3PP .

To state our main result succinctly, define operators {Nt}t that return

N0 · y =

∫
r(a, θ)y(a, θ)dadθ,

Nt · y = I(a) ·
(
L(a)

)t−1

· MPP · y,

where I(a) and L(a) are the same operators we constructed for Lemma 4HA and MPP is defined by(
MPP · y

)
〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)pr(a, θ)y (a, θ) dadθ,

This allows us to provide the following characterization of the first-order approximation

Proposition 1PP . {X̂t}t are the solution to (64) and

GY Ŷt + Gx

∞∑
s=0

(
Jt,s + JPPt,s

)
Ŷs = 0 for all t (65)

where {Ŷt}t as defined in Proposition 1, RŶt = 0 for t ≥ 1, and JPPt,s := Nt·k∗s+
Nt·k∗σσ
Vσσ

(
−Vs + 1s=0KR

)
.

Relative to the economy posed in Section 3, the portfolio problem modifies the matrix Jt,s by JPPt,s

with JPPt,s being constructed via simple linear operators. The terms in JPPt,s capture how changing the

response of aggregates, X̂s, alters the portfolio decision and feeds back into individual choices. Once

JPPt,s is known, we can solve for X̂s in the same manner as Section 3, and construct the risk premium

from (64).22

6 Comparison to literature

Our approach builds on the perturbational techniques in the spirit of Judd (1998) and Schmitt-Grohé

and Uribe (2004) originally developed to study dynamic representative agent models. The key difficulty

22With multiple shocks (65) becomes a non-linear equation, but remains linear in X̂t conditional on R̂x0 . This presents

a simple procedure for finding the first order equilibrium: guess the value of R̂x0 and hold it fixed, solve this linear system

of equations for {X̂t}t , check whether this solution has RŶ0 that is consistent with our guess for R̂x0 , and update this
guess if necessary.

It is also possible to impose an additional short-selling constraint ki,t ≥ 0 by guessing a function ιPP (a, θ) which is 0 if
the agents are on that constraint and 1 otherwise. Conditional on ιPP , k∗ can be constructed from k∗s =M· (ιPP � vs)

and k∗σσ =M ·
(
ιPP � vσσ

)
and then {X̂t}t can be solved from Proposition 1PP . The implied portfolio choices k(a, θ)

can be used verify if the guess of ιPP is correct and update this guess as necessary.
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in extending them to HA environments lies in the fact that derivatives of policy functions with respect

to the aggregate state (captured by XZ , XZZ , etc in our notation) are intractably large objects. The

seminal paper by Reiter (2009) takes a step to overcome this hurdle by discretizing the state space and

the transition probability kernel (using the so-called “histogram method”, see also Young (2010)). To

obtain first-order approximations, this method requires solving large quadratic matrix equations and it

has proved to be too slow and imprecise in many standard HA environments.23

One strand of literature, originally proposed by Boppart et al. (2018) and then significantly developed

by an important paper by Auclert et al. (2021), abandons the state-space representation used in Reiter

(2009) and subsequent literature building on his ideas, and works with the sequence-space formulation

of the problem. The key observation for that approach is that the first-order impulse responses of the

stochastic economy can be fully constructed from deterministic responses to MIT shocks, and that these

responses can be recovered numerically fairly easily from the sequence problem. Auclert et al. (2021)

show that this can be done very fast as those impulse responses solve a linear system of equations which

coefficients can be constructed using linear recursive equations.

Our approach combines insights from both strands of the literature and also introduces new ideas,

such as using directional derivatives and generalized functions to characterize equilibrium approxima-

tions analytically. This allows us to improve on the computational speed of Auclert et al. (2021) method,

and to have our approach scalable to second- and higher-orders of approximation, which is one of the

key features of classical perturbational techniques a-la Judd (1998) and Schmitt-Grohé and Uribe (2004)

but not of Reiter (2009) and papers building on it.

One distinction of our approach is that we start with the theoretical distribution and its LoM

and derive exact analytical expressions for approximations of various orders; numerical values of those

expressions are then computed using appropriate discretization. This contrast with papers following

the Reiter (2009) tradition that start with an approximate (i.e., already discretized) distribution and

a transition probability matrix before further approximating with respect to aggregate shocks. There

is no guarantee that this latter approach would correctly recover aggregate responses beyond the first

order. In particular, we show in Appendix C that the second-order approximation of the transition

probability obtained under histogram method generically misses some of the second-order order terms

and does not converge to the correct second-order expressions even as the grid size shrinks to zero.

23The key issues are both the time taken to compute and space needed to store those derivatives. This is most clear
from Reiter’s implementation of the Krusell and Smith model that is solved by discretizing the θ process and using a
histogram to store the distribution Ω. If we were to follow the standard convention of using between 1000-5000 points
per θ for the histogram, and use 10 points for the shocks, the size of the histogram NΩ ∼ 104. This means that ΩZ ∼ 108

and ΩZZ ∼ 1016 entries. Assuming that 4 bytes (float) are required to store an entry, this would mean that one needs
450 megabytes of RAM to store the first derivative and 4 terabyte of RAM to store the second-order derivative, which is
clearly outside the scope of the current computing architectures. The general argument also applies to variants of Reiter
(2009) such as Bayer et al. (2022); Ahn et al. (2018); Childers (2018); Winberry (2018); Gornemann et al. (2021); Reiter
(2023) who use a variety of model reduction techniques to reduce the dimension of histogram and the resulting tradeoff
between speed and precision depends on the details of the method and the application studied.
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The intuition for this results is that the histogram method locally linearizes the LoM for the aggregate

distribution, which misses terms capturing second-order responses of the LoM to the first-order changes

in policy functions.24

Our description of approximations as a sequence of values of derivatives such as {X̂t}t, {X̂t,s}t,s, etc

is related to the literature the uses sequence-space formulation of the problem. One can show that to the

first order, our approach is equivalent to that of Auclert et al. (2021) in the sense that as the grid size of

their approximations goes to zero, the linear system of equations they use to describe approximations

converges to our system (36). Despite this equivalence, using state-space representation has advantages

even to the first order, as it allows us to derive analytically and then construct recursively coefficients

xs = ∂x0/∂Xt in Lemma 3. In contrast, the sequence-space approach finds {∂x0/∂Xt}t using numerical

differentiation of the (truncated) infinite system of equations (22). This process is both slower and less

stable numerically. State space representation also significantly simplifies and speeds up computation

of first-order transition dynamics, as in Section 5.1.25

The bigger advantage of using state-space representation over the sequence space approaches in the

spirit of Boppart et al. (2018) and Auclert et al. (2021) is that it does not restrict us to only the first-order

approximations and applies higher orders as well as to the models with portfolio choices. For instance,

by explicitly specifying directions that characterize the effects of persistent risk {Ẑσσ,t}t, our approach

can incorporate risk and go beyond MIT shocks. This is imperative for questions such as finding first-

order impulse responses in models with portfolio choice, understanding effect of risk or welfare costs of

aggregate shocks, and studying trade-offs involved in designing macroeconomic stabilization policies.

Our paper is also related to the approximation method developed in Bhandari et al. (2021). Like

us, those authors use perturbational methods to derive analytically various orders of approximations of

equilibrium in HA economy, and then find those expressions numerically. Their approximation scales

both aggregate and idiosyncratic shocks and it is not applicable to models in which policy functions

have kinks, for example due to the occasionally binding borrowing constraints. Our approach instead

approximates only with respect to aggregate shocks. This improves the approximation precision, since

our approach remains global with respect to idiosyncratic shocks, and allows study of economies in

which policy functions have kinks. It also makes analytical characterization of approximation terms

significantly more challenging. Deriving those analytical expressions to build the approximations when

policy functions are not differentiable is one of the key contributions of this paper.

24Most papers following Reiter (2009) (with a few exceptions such as Gornemann et al. (2021) and Reiter (2023)) utilize
only first-order approximations in their analysis, and therefore their conclusions remain unaffected by this observation.

25It should be noted that very careful attention has to be paid to those numeric derivatives in order to ensure that they
are accurate, (See appendix C.1 of Auclert et al. for details) and the speed is often limited by efficiency of the global
transition code. These numerical issues would be amplified with a second-order approximation as calculating second
derivatives are more prone to numerical error. By giving explicit expressions for these second derivatives in terms of
derivatives of F and G we sidestep these issues.
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Our approach, like all perturbational methods, is local as it seeks to find equilibrium dynamics

when aggregate shocks are small and the economy is near its steady state. Our goal is to preserve key

advantages of these methods – computational speed, simplicity, and flexibility – in HA settings. There

exists a complementary strand of literature that aims to develop global methods. Such methods can be

used to find equilibria without requiring them to be nearby any specific economy but they tend to be

slower, harder to use, and often need to be tailored to the specific economic environment.26

The class of economies that we consider in this paper is discrete-time infinite horizon HA models

with distributional states. There is a parallel literature that studies continuous-time versions of these

economies. See, for instance, Kaplan et al. (2018), Achdou et al. (2020), Ahn et al. (2018) in the context

of consumption-savings models; Alvarez and Lippi (2022) in the context of price-setting models; and

Bigio et al. (2023) for an application to public debt maturity. In related work, Bilal (2023) and Alvarez

et al. (2023) use mean field game techniques to construct approximations with aggregate shocks in these

class of models. Their work shares with us the use of linear operators over infinite-dimensional spaces

to analytically characterize the exact derivatives. We view their approaches as complementary since the

mathematics underlying the approximations is quite different and the relative advantages of discrete vs

continuous time vary by application. Those papers do not consider economies in which policy functions

have kinks that are functions of endogenous states, or settings with heteroskedastic shocks or portfolio

problems.

7 Numerical results

In this section, we apply our algorithm to calibrated versions of the Krusell and Smith (1998) model.

First, we use the calibrated model to report diagnostics such as speed and accuracy and compare them

to alternative methods. Second, we use extensions of the Krusell and Smith model to study several

applications that illustrate the usefulness of our methods over and above what can be achieved with

existing approaches.

7.1 Baseline model

Our baseline model extends the Krusell and Smith framework of Section 3 to include capital adjustment

costs. This allows the model to generate adequately volatile returns to holding risky capital that is useful

for some of our applications. To enable convenient aggregation, we introduce a competitive mutual funds

sector whose shares are owned and traded by households in the baseline.27 The household’s budget

26Krusell and Smith (1998) solve their economy using a global method that proved difficult to extend to general HA
settings. Some recent work extends global solution methods to more complex environments using machine learning
techniques. See Maliar et al. (2021), Kahou et al. (2021), Childers et al. (2022), and Han et al. (2021) for details.

27We later study an extension in which households directly hold capital and bonds.
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constraint is modified to

ci,t + ki,t = Wt exp {θi,t}+Rtki,t−1,

where ki,t ≥ 0 now is the date t wealth of the household. The mutual fund gathers rental income from

the corporate sector, owns and invests in physical capital subject to a convex adjustment of the form

φ(It,Kt) =
φ

2

(
It
Kt
− δ
)2

Kt, Kt+1 = (1− δ)Kt + It.

In the online supplementary materials Section B.3, we show that the competitive equilibrium is given

by the equations (19) and (20) as before and a modified version of (21),

Rt =
(1− α) exp (Θt)K

α
t − It − φ

2

(
It
Kt
− δ
)2

Kt +QtKt+1

Qt−1Kt
, Qt = 1 + φ

(
It
Kt
− δ
)
,

∫
ki,tdi = QtKt+1.

(66)

Calibration To calibrate our model, we set the period length to one quarter. The parameter α is

set to 0.36 to target the capital share of income. We use an isoelastic period utility U (c) = c1−γ

1−γ and

set the risk aversion parameter γ to equal 5. The adjustment cost parameter φ is calibrated to match

a 3% standard deviation of un-leveraged quarterly returns to equity. For the parameters governing

the aggregate and idiosyncratic labor productivity in (1) and (24), we choose values used by Auclert

et al. (2021). The calibrated parameters are summarized in Table 2 in Appendix E.1. We solve the

non-stochastic steady state policy functions using an endogenous grid method after discretizing the

productivity with Nε = 7 and asset grid Nz = 120. We use NΩ = 1000 × 7 points to store the

distribution.

Accuracy We test the accuracy of ours and alternative methods by studying the response to a one-

time, one standard deviation positive shock to TFP which can be solved non-linearly and compared

to the approximations X̂t under alternative perturbational methods. In the right panel of Figure 1,

we plot the % error in the capital stock. For comparison purposes we show errors using our approach

described in Section 3.3 and the Sequence Space Jacobian approach of Auclert et al. (2021). As

would be anticipated by Figure 1, both approaches have roughly the same error to first order, with the

maximal error being on the order of 0.04% of the capital stock. At higher orders, our approach has

errors which remain very small over time.

Speed We now use the baseline calibration to simulate policy functions and compare the time taken

under our method to alternatives. To compute the first- and second-order terms, we implement the

steps detailed in Section 4.1 and 4.2. In Table 1, we report total time taken to compute those terms and

break up the time by each step stage of the algorithm. The timings for the first-order approximation
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Figure 1: APPROXIMATION ERRORS

5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

Time (quarters)

ap
p
ro
x
.
er
ro
r
(%

)

FO
ABRS
SO

Notes: The figure plots K̂t−K̃t
K̃t

for Et = (1, 0, 0, . . . , 0) where the path for K̂t is obtained using perturbational

approaches and the path for K̃t is obtained using nonlinear methods. The solid blue line “FO” is the first-

order approximation from Section 3.3. The dotted red line “ABRS” is the first-order approximation using the

sequence-space method of Auclert et al. (2021). The solid black line “SO” is the second-order approximation

from Section 3.4.

are reported in the first two columns of the table and the timings for steps to compute the second-order

are reported rest of the columns.

Table 1: COMPUTATIONAL SPEED: FIRST AND SECOND ORDER

First Order Second Order

Step Time Step Time (ZZ) Time(σσ)

Additional First-Order Terms 0.63s
Lemma 3 Terms 0.11s Lemma 5 Terms 1.28s 0.25s
Lemma 4HA Terms 0.02s Lemma 6 Terms 0.27s
Corollary 1 Terms 0.21s Corollary 2 Terms 0.18s 0.00s
Proposition 1HA Terms 0.10s Proposition 2HA Terms 0.20s 0.03s

Total 0.44s 2.57s 0.28s

ABRS 0.51s

Notes: The table summarizes the time taken to compute the first and second-order terms using Section 3.3

and 3.4. The last row in the bottom “ABRS” refers to the time taken to approximate our calibrated model

using using the sequence-space method of Auclert et al. (2021) keeping the same size for the grids and length

of trucation horizon. All numbers are reported using a 20 core M1 ultra mac studio.

All told, once the steady state has been computed, our algorithm takes 0.44 seconds to solve for the{
X̂t

}
t

terms with roughly half the time spent computing the {Jt,s}t,s terms. As Lemma 1 highlights,{
X̂t

}
t

are all that is needed to simulate the path of aggregates and to compute ergodic moments
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from the first-order approximation. The other first-order terms {x̂t}t and
{

Ω̂t

}
t
, are required for the

second-order approximation and take an additional 0.6 seconds to compute. We compare this to our

own implementation of the Sequence Space Jacobian of Auclert et al. (2021) which takes approximately

0.51 seconds to compute the equivalent on the
{
X̂t

}
t
.28 As mentioned in Section 6, the small difference

arises because we use expressions (32)–(33) to compute the exact derivatives while Auclert et al. (2021)

relies on numerical differentiation.

The addition time to compute the second-order approximation is broken out in the last two columns

of Table 1. As highlighted in Section 3.4 there are two additional types of terms in the second-order

approximation: the curvature terms
{
X̂t,k

}
t,k
, and precautionary terms

{
X̂σσ,t

}
t
. As they follow

the same mathematical structure, we break out the computational time separately for both types.

The curvature terms take 2.57 seconds to compute29 while the risk adjustment terms take about 0.3

seconds. The vast majority of the computational time for the curvature terms is spent on Lemma 5

and Proposition 2HA which is a result of a large number of quadratic forms required to compute the

{xt,k(z, θ)}t,k and {GΘ,t,k}t,k terms. All combined, computing the second-order approximation requires

an additional 3 seconds relative to the first-order approximation.

7.2 Applications

In this section we study four applications that highlight the usefulness our method for heterogeneous

agent models. As a reference, we also compare results to a version of the model without heterogeneity

(RA) that is calibrated to hit the same aggregate moments as the baseline with heterogeneity.

7.2.1 Simulations

Our first application uses simulations to asses the magnitude and sources of nonlinearities in the Krusell

and Smith model under the baseline calibration. To do that, we use Lemma 2 to construct the second-

order approximation for a given path of Et and inspect various terms. In Figure 2, we plot simulations

for one-time impulse at date t = 0, that is, Et = (1, 0, 0, . . . , 0). The plots show that second-order path

with heterogeneity is quite different from the first-order path as well as the RA counterpart emphasizing

the importance of heterogeneity and nonlinear effects.30

28Auclert et al. report that it takes about 0.1s to construct IRFs in the Krusell and Smith economy. Our implementation
of their algorithm reported in Table 1 takes longer because we use a different baseline calibration that has capital
adjustment costs, more points on the size of the asset grid, and a longer truncation horizon that is better suited for
our applications. When we reset the parameters and tolerance to Auclert et al. choices, our method takes 0.1s and our
implementation of their algorithm takes 0.121s to compute the first-order code.

29Here we report only the time required to compute that X̄ZZ,t,t terms. We do this for two reasons. Firstly, for
most ergodic moments only the X̄ZZ,t,t are required. Secondly, computing the addition X̄ZZ,t,t+i terms are trivially
parallelizable for each i so, with enough processors, computing all the X̄ZZ,t,k terms would not require any additional
time.

30The plots shows that the first-order approximation under our method and the approximation of Auclert et al. (2021)
overlap. This overlap is reassuring that issues related to numerical derivatives and choice of asset grid are not quantitatively
large.
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Figure 2: SIMULATED PATHS: Kt
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Notes: The figure plots the simulated path for aggregate capitalKt

(
Et
)

for a sequence of shocks Et = (1, 0, 0, . . .).

The solid blue line “FO” is the first-order approximation from Section 3.3. The dotted red line “ABRS” is the

first-order approximation using the sequence-space method of Auclert et al. (2021). The solid black line “SO”

is the second-order approximation from Section 3.4. The solid green “RA” line plots the simulation using

representative agent counterpart targeted to the same set of aggregate moments.

From Lemma 2, these differences between the first- and second-order can come either due to K̂0,0

terms or
{
K̂σσ,t

}
t

terms. The K̂0,0 term captures nonlinearities in capital demand due to curvature

embedded in choice of technologies–production and investment. In our calibration this term turns out

to be small which is consistent with the intuition that aggregate policy functions are approximately

linear in the neoclassical growth models. The
{
K̂σσ,t

}
t

terms aggregates precautionary behavior in

capital supply by households. The strength of the precautionary motives is determined by household’s

risk aversion, volatility of aggregate shocks, and mass of households near the borrowing constraint. This

precautionary motive accounts for virtually all of the difference between the FO and SO lines in Figure

2.

So far we studied responses to a one-time transitory shock after which aggregate variables converge

back to their values in the non-stochatic steady state. Often of-interest are experiments involving

permanent changes in technology or regulatory parameters. With a permanent change, the endogenous

state Zt converges to a new steady-state. The extension of our method in Section 5.1 can handle

such thought experiments. To illustrate this, consider a one-time-forever increase in aggregate TFP. In

Appendix E.2, we show how to apply the formulas from Lemma 1TD to simulate the path for aggregate

capital. We see a gradual transition of aggregate capital towards a higher level and a rightwards

movement of the the distribution of wealth.
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7.2.2 Welfare from stabilization policies

Second-order approximations can be used to evaluate welfare effects of alternative stabilization policies,

for instance, fiscal or monetary rules that describe how taxes or interest rates vary over business cycles.

Here, we extend the baseline Krusell and Smith model to include a fiscal rule in form of a time varying

labor tax

τt = τΘΘt,

where τΘ is a scalar stabilization parameter. After-tax labor income is (1−τt)Wt exp(θi,t) and tevenues

from this tax are returned lump-sum Tt to the households.

The magnitude of τΘ controls the transfer of resources across productive and unproductive house-

holds in response to aggregate shocks. For a given τΘ, define ergodic utilitarian welfare as EW (Θ, A,Ω; τΘ) =

E
(∫
v (a, θ,Θ, A,Ω; τΘ) dΩ

)
where v is the value of an individual who starts with idiosyncratic states

(a, θ) when the aggregate state is (Θ, A,Ω) under policy indexed by τΘ. To measure the welfare changes

from a tax reform τΘ > 0 in interpretable units, we compute a scalar ∆ (τΘ) which is the the com-

mon per-period percentage change in households’ consumption relative to the allocation under the

laissez-faire policy τΘ = 0 so that the ergodic welfare equals post-reform value EW (Θ, A,Ω; τΘ). For

preferences used in the baseline, this welfare-equivalent consumption change is given by ∆ (τΘ) =[
EW(Θ,A,Ω;τΘ)

EW(Θ,A,Ω;τΘ=0)

] 1
1−γ − 1.

We follow steps from Section 3.4 and equation (17) to approximate EW (Θ, A,Ω; τΘ) across different

choices of τΘ. By extending x and X to include v andW, respectively, and adding the Bellman equation

that solves the value function v to the mapping F and the definition of welfare W to the mapping G,

our framework computes welfare automatically. As mentioned before, it takes only a few seconds to

calculate ∆ (τΘ) for a given τΘ.

In Figure 3, we plot ∆ (τΘ) as a function of the tax parameter τΘ. We see that the welfare gain is zero

in the representative agent economy (Ricardian equivlance) and also to the first-order of approximation

in the HA economy (certainty equivlance). At the second-order HA (black line), we see a meaningful

welfare tradeoff across different values of τΘ. Making the tax policy more countercyclical initially raises

welfare with a distinct maximum (denoted by τ∗Θ) achieved at τΘ = −.84 which amounts to raising

taxes by 0.84 percentage points for every percentage point decrease in TFP.

This application also serves as a valuable tool for illustrating the shortcomings associated with

employing the histogram technique. In Section 6, we emphasized the consequences of naively extending

the histogram approach, which overlook specific second-order terms. These second-order terms become

particularly crucial when calculating welfare derived from stabilization policy, which is inherently a

second-order object. We find that the optimal cyclicality parameter using the histogram method to

compute the welfare equals −1.04 which is substantially different from what we found with our method.
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Figure 3: WELFARE FROM STABILIZATION POLICY
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Notes: The figure plots the ∆ (τΘ), which is the welfare-equivalent consumption change relative to laissez-faire

policy, τΘ = 0. The solid black line “SO” uses the second-order approximation from Section 3.4. The solid blue

line “FO” uses the first-order approximation from Section 3.3 and the dashed green “RA” line plots the welfare

gain using the representative agent counterpart targeted to the same set of aggregate moments.

It turns out that both, the magnitude of welfare corresponding to a particular τΘ and the gradient of

welfare in relation to τΘ are inaccurate when utilizing the histogram approach.

7.2.3 Stochastic Volatility

We next use techniques from Section 5.2 to study aggregate and distributional consequences of changes

in macroeconomic risk. To do that, we first extend the baseline model to include equations (50)–(51) as

the new process for aggregate shocks. This introduces two new parameters ρΥ and σ2
Υ = var(Eγ,t). We

use the fluctuations in CBOE Volatility Index (VIX) as a proxy for Υt and estimate the two parameters

using quarterly data on VIX for the sample period 1990-2023. See Appendix E.3 for more details of

the estimation.

Consider a path for the innovations to aggregate uncertainty ẼtΥ. Analogous to the previous section,

we measure the effect of ẼtΥ on aggregate welfare using ∆t

(
ẼtΥ
)

=

[
EEtWt(ẼtΥ,Et)

E
(Et,EtΥ)

Wt(EtΥ,Et)

] 1
1−γ

− 1, which

is the date t onwards welfare-equivalent change in household consumption. Since we have TFP shocks

in the background, we integrate over the paths of Et.
In our sample, the VIX (see Figure 7 in the appendix) is fairly stable but features large spikes

(about 5X increases) in 2008 after the Lehman collapse and in 2020 after the Covid pandemic. We are

interested in studying the welfare effects—aggregate and distributional—of such spikes in uncertainty.

To do that, we simulate a path for ∆t

(
ẼtΥ
)

for the sequence ẼtΥ =
(
ẼΥ,0, 0, 0, 0, . . .

)
where ẼΥ,0 is

chosen to match a 5X increase in the standard deviation of TFP and then the process Υt mean reverts

with the estimated persistence ρΥ. In left panel of Figure 4, we observe that the shock leads to a
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Figure 4: WELFARE EFFECTS OF UNCERTAINTY
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Notes: The figure plots the aggregate and distributional welfare effects of an aggregate uncertainty corresponding

to a one-time 5X increase in standard deviation of TFP. The left panel plots ∆t

(
ẼtΥ
)

, which is the aggregate

welfare-equivalent consumption change after the spike in uncertainty. The right panel plots individual-level

welfare-equivalent consumption change for households with asset-level a,
∫

∆0

(
a, θ; EtΥ

)
dΩ(θ|a) to avoid the

spike in uncertainty at t = 0. Individual assets (on the x-axis) are normalized by per-capita GDP.

decrease in aggregate welfare on impact by 0.53%. The effects are substantially amplified relative to

the representative agent counterpart.

In addition to the impact on aggregate variables, our method allows us to investigate the effect of the

shock on individual welfare. For each (a, θ), we compute ∆0

(
a, θ; ẼtΥ

)
=

[
EEtv0(a,θ;Et,ẼtΥ)

E
(Et,EtΥ)

v0(a,θ;Et,EtΥ)

] 1
1−γ

−1,

which is per-period consumption change for a household with states (a, θ) at date t = 0 to avoid the

spike in uncertainty. In right panel of Figure 4, we plot the welfare losses averaged across productivities

for each level of assets/per capita GDP. The average welfare loss amounts to approximately half a

percentage point of per-period consumption, and these losses range from 0.94% to 0.20% across the

asset distribution. The most significant welfare losses are experienced by asset-poor agents who are

closer to the borrowing constraints.

7.2.4 Portfolio choice

Finally, we illustrate the extension of our algorithm in Section 5.3 to capture portfolio choice. Extend

the baseline Krusell and Smith model allowing agents to trade risk-free debt, b, which has a zero net

supply, in addition to claims on risky capital whose market value we denote by k. Total wealth is

a = k + b. We impose a constraint that prevents households from short-selling capital.

The key computational step here is to construct
{

JPPt,s
}
t,s

and then apply Proposition 1PP to
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compute the first-order responses to aggregates. This takes 0.78s more than than the time reported to

compute the first-order responses without the portfolio choice. The first-order responses are then used

to construct the zeroth-order portfolios using Lemma 7.

We now explore the predictions of the baseline Krusell and Smith model for the cross-sectional

distribution of portfolios as well as the role of portfolios in shaping aggregate responses. In the left

panel of Figure 5, we depict the distribution of household portfolios by assets normalized by per capita

GDP. The model qualitatively aligns with the observed pattern (see Yogo and Wachter (2011) who use

data from the Survey of Consumer Finances) wherein poorer households hold more bonds and wealthier

households hold more stocks. Households closest to the borrowing constraint are most exposed to

aggregate shocks, and they optimally reduce their exposure by adjusting their portfolios towards risk-

free bonds.

Optimal portfolios matter even for a first-order approximation of aggregates. To see this, we simulate

Kt (Et) for the sequence Et = (1, 0, 0, . . .) and report the first-order approximation with optimal portfolio

and compare it to the response if we force households to hold the same portfolios. In the right panel of

Figure 5, we see that the responses with optimal portfolio are larger.

Figure 5: PORTFOLIOS
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Notes: The left panel plots the cross distribution of portfolios by value of assets (normalized by per capita

GDP). The right panel plots the first-order path of aggregate capital Kt

(
Et
)

when households optimally chose

the portfolio (black line) as in Section 5.3, the response of capital when households are forced to hold the same

portfolio (blue line), and the response of capital under the representative agent economy (green line).

8 Conclusion

In this paper, we propose a novel perturbation technique to approximate a wide variety of stochastic

heterogeneous-agent (HA) models. Our methods goes beyond the MIT shock approach prevalent in
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existing literature by employing higher-order approximations. Utilizing a directional derivative for-

mulation, we demonstrate that all-order approximations can be represented using analytically derived

coefficients that are straightforward to implement numerically. Our approach broadens the range of

research questions that can be addressed within these model classes. We showcase the practicality of

our method by applying it to examine welfare implications of stabilization policies, portfolio choice, and

time-varying uncertainty in a calibrated economy.
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Online Appendix

A Section 2 Proofs

A.1 Proof of Lemma 1

Taking a first-order derivative of (9) and (8) around the σ = 0 steady state yields Z0,σ(E0) = Ẑ0E0
and, for t ≥ 0,

Zt+1,σ

(
Et+1

)
= ZZ · Zt,σ

(
Et−1

)
+ Ẑ0Et + Zσ (67)

Xt,σ

(
Et
)

= XZ · Zt,σ
(
Et
)

+Xσ, (68)

with Ẑ0 and ZZ being defined in the main text and Zσ :=
[
0,Kσ

]
. Our first step is to show that Xσ

and Zσ are both 0 which we codify in the following claim

Claim 1. The first derivatives with respect to σ, Xσ is 0.

Proof. Differentiating the G mapping w.r.t. σ yields GY Y σ = 0, whereY =
[
0, 0, Xσ, Xσ +XZZσ

]
and

Zσ = [0,PXσ]. This system of equations is homogeneous of degree 1 in
(
Xσ

)
and, therefore, is solved

by setting all terms to zero.

Next we show the following claim relating Zt,σ (Et) to the directions Ẑt

Claim 2. For all t, Zt,σ (Et) =
∑t
s=0 Ẑt−sEs.

Proof. We proceed via induction as Z0,σ(E0) = Ẑ0E0 implies it holds for t = 0. Assuming it holds for
t− 1 we have

Zt,σ
(
Et
)

= ZZ ·
(
t−1∑
s=0

Ẑt−1−sEs
)

+ Ẑ0E0 =

(
t−1∑
s=0

Ẑt−sEs
)

+ Ẑ0E0 =

t∑
s=0

Ẑt−sEs,

where in the second equality we used Ẑk+1 ≡ ZZ · Ẑk.

Finally, substituting for Zt,σ (Et) in (8) completes the proof as XZ · Ẑt−s = X̂t−s.

A.2 Proof of Proposition 1

Begin by differentiating (5) in direction Ẑt to findGY Y Z · Ẑt = 0. To obtain Y Z · Ẑ we differentiate

Y (Z;σ), equation (6), in direction Ẑ =
[
Θ̂, K̂

]
to get Y Z · Ẑt =

[
Θ̂, K̂,XZ · Ẑ,XZ · ZZ · Ẑ

]
. Using

Ẑt =
[
ρtΘ, K̂t−1

]
=
[
ρtΘ,PX̂t−1

]
31 we have Ŷt = Y Z · Ẑt =

[
ρtΘ,PX̂t−1, X̂t, X̂t+1

]
.

Finally, differentiating Zt defined in Assumption 1 implies that Zt,Z · Ẑ0 = Ẑt. Therefore, the

first derivative of Assumption 1(b) implies limt→∞ Ẑt = 0, which in turn implies that limt→∞ X̂t =
limt→∞XZ · Ẑt = 0.

31For t > 0 we have K̂t = PXZ · Ẑt−1 = PX̂t−1 while for t = 0 we have K̂0 = 0 by definition and impose the restriction

PX̂−1 := 0
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A.3 Proof of Lemma 2

We proceed by taking a second-order derivatives of (9) and (8) w.r.t. σ to find Z0,σσ

(
E0
)

= 0 and 32

Zt+1,σσ

(
Et+1

)
= ZZ · Zt,σσ

(
Et
)

+ ZZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+ Zσσ (69)

Xt,σσ

(
Et
)

= XZ · Zt,σσ
(
Et
)

+XZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+Xσσ (70)

where ZZZ is defined in the main text and Zσσ =
[
0,PXσσ

]T
. We begin by showing the following

claim relating Zt,σσ (Et) to the directions Ẑt,k and Ẑσσ,t.

Claim 3. For all t

Zt,σσ
(
Et
)

= Ẑσσ,t +
t∑

s=0

t∑
m=0

Ẑt−s,t−mEsEm (71)

Proof. We proceed by induction. As Ẑσσ,0 = Ẑ0,0 = 0 we conclude that equation (8) holds for t = 0
since Z0,σσ

(
E0
)

= 0. Assuming (71) holds for t− 1 we have

Zt,σσ
(
Et
)

= ZZ ·
(
Ẑσσ,t−1 +

t−1∑
s=0

t−1∑
m=0

Ẑt−1−s,t−1−mEsEm
)

+ ZZZ ·
(
t−1∑
s=0

Ẑt−1−sEs,
t−1∑
m=0

Ẑt−1−mEm
)

+ Zσσ

= ZZ · Ẑσσ,t−1 + Zσσ +
t−1∑
s=0

t−1∑
m=0

(
ZZ · Ẑt−1−s,t−1−m + ZZZ ·

(
Ẑt−1−s, Ẑt−1−m

))
EsEm

= Ẑσσ,t +
t∑

s=0

t∑
m=0

Ẑt−s,t−mEsEm

where in the second equality we used the fact that ZZZ is a bi-linear mapping and in the third equality
we use the recursive definitions of Ẑσσ,t and Ẑt,k, and Ẑ0,0 = 0.

Finally we plug in for Zt,σσ (Et) and Zt,σ (Et) in equation (70) to find

Xt,σσ

(
Et
)

= XZ ·
(
Ẑσσ,t +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm
)

+XZZ ·
(

t∑
s=0

Ẑt−sEs,
t∑

m=0

Ẑt−mEm
)

+Xσσ

= XZ · Ẑσσ,t +Xσσ +
t∑

s=0

t∑
m=0

(
XZ · Ẑt−s,t−m +XZZ ·

(
Ẑt−s, Ẑt−m

))
EsEm

= X̂σσ,t +
t∑

s=0

t∑
m=0

X̂ZZ,t−s,t−mEsEm

which completes the proof.

A.4 Proof of Proposition 2

Begin by differentiating equation (5) twice in directions Ẑt and Ẑt+k and add to it the derivative of (5)

in direction Ẑt,t+k to find GY Ŷt,t+k+GY Y ·
(
Y Z · Ẑt, Y Z · Ẑt+k

)
= 0, where Ŷt,t+k := Y ZZ ·

(
Ẑt, Ẑt+k

)
+

32There are also XσZ and ZσZ terms but they are 0 following the same logic as Xσ and Zσ being 0 in the proof of
Lemma 1.
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Y Z · Ẑt,t+k. Differentiating Y twice in direction Ẑt and Ẑt+k implies

Y ZZ ·
(
Ẑt, Ẑt+k

)
=
[
0, 0, XZZ ·

(
Ẑt, Ẑt+k

)
, XZZ ·

(
Ẑt+1, Ẑt+1+k

)
+XZ · ZZ ·

(
Ẑt, Ẑt+k

)]T
.

If we add to it Y Z · Ẑt,t+k =
[
0,PX̂t−1,t−1+k, XZ · Ẑt,t+k, XZ · ZZ · Ẑt,t+k

]T
we find

Ŷt,t+k =
[
0,PX̂t−1,t−1+k, X̂t,t+k, X̂t+1,t+1+k

]
as desired. The same limiting arguments as Proposition 1 imply limt→0 X̂t,t+k = 0.

Next differentiating equation (5) twice with respect to σ and add to it the derivative of (5) in
direction Ẑσσ,t to findGY Ŷσσ,t = 0 where Ŷσσ,t := Y σσ +Y Z · Ẑσσ,t. Differentiating Y twice with respect
to σ yields

Y σσ =
[
0, 0, Xσσ, Xσσ +XZ · Zσσ + EE

[
XZZ ·

(
Ẑ0E , Ẑ0E

)]]T
.

Add to it

Y Z · Ẑσσ,t =
[
0,PX̂σσ,t−1, XZ · Ẑσσ,t, XZ · ZZ · Ẑσσ,t

]T
to find Ŷσσ,t =

[
0,PX̂σσ,t−1, X̂σσ,t, X̂σσ,t+1 + X̂0,0var(E)

]
. Finally, as Ẑσσ,t−Ẑσσ,t−1 = ZZ ·

(
Ẑσσ,t − Ẑσσ,t−1

)
with Ẑσσ,0− Ẑσσ,−1 := Zσσ, we can conclude that Assumption 1(b) implies that limt→∞ Ẑσσ,t− Ẑσσ,t−1

and thus limt→∞ X̂σσ,t − X̂σσ,t−1 = 0.

B Section 3 Proofs

B.1 Non-Negativity Constraints

We are interested in modeling the behavior of agents facing occasionally binding constraints. These con-
straints necessarily result in optimality conditions that must represented by both equality and inequality
constraints. We will show here that for our approximation the inequality constraints are redundant.

We’ll focus on the problem of one occasionally binding constraint, which extends automatically to
multiple occasionally binding constraints. Without loss of generality, any occasionally binding constraint
can be written as ki,t ≥ 0 by suitably defining the variable ki,t. Letting ξi,t be the multiplier on that
constraint, the full set of optimality conditions can be written as the complimentary slackness condition
ζi,tki,t = 0 along with the non-negativity constraints ki,t ≥ 0 and ζi,t ≥ 0. In our recursive formulation,
these can be expressed as

ζ(a, θ, Z;σ)k(a, θ, Z;σ) = 0 and k(a, θ, Z;σ) ≥ 0 and ζ(a, θ, Z;σ) ≥ 0. (72)

These constraints in (72) are all satisfied in the deterministic steady state so that both k(a, θ) ≥ 0 and
ζ(a, θ) ≥ 0 for all a, θ. Moreover, the points of non-differentiability κ(θ) are defined as the only points
for which both k(a, θ) = ζ(a, θ) = 0.

For any (a, θ) not on a kink, we can differentiate (72) in direction Ẑ. Differentiating the equality
constraint always implies

ζ(a, θ)kZ(a, θ) · Ẑ + ζZ(a, θ) · Ẑk(a, θ) = 0. (73)

As (a, θ) is not on a kink there are two possibilities: either k(a, θ) > 0 or ζ(a, θ) > 0. Well assume
k(a, θ) > 0 as the other case is symmetric. This implies that ζ(a, θ) = 0, and thus (73) simplifies to
ζZ(a, θ) · Ẑ = 0.

Turning now to the inequality constraints, the constraint k(a, θ, Z;σ) ≥ 0 implies that, locally, any
value of kZ(a, θ) ·Ẑ is valid since k(a, θ) > 0 implies that k(a, θ, Z;σ) > 0 for some neighborhood around
(Z∗, 0). However, as ζ(a, θ) = 0, the third inequality constraint requires that ζZ(a, θ)·Ẑ = 0 as otherwise
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ζ(a, θ, Z;σ) ≥ 0 would be violated by moving in an appropriate direction Ẑ . As ζZ(a, θ) · Ẑ = 0 is
already guaranteed by the complimentary slackness condition, this implies that the additional inequality
constraints are redundant.

B.2 Derivatives of Kinks and Generalized Functions

Assumption 2(a) states that the policy rules (a, θ, Z;σ) are smooth everywhere except for the locations
κj(θ, Z;σ). For the remainder of the appendix, we will assume a single kink but the results generalize
directly for multiple kinks. All the additional terms induced by kinks are replaced by sums.

As the classical derivatives, e.g. x̊aa(a, θ), are not defined at those kinks, and for the purposes of
integration, we represent them as generalized functions. We will find it convenient to use the notation
x∆(θ) ≡ lima↓κj(θ) x(a, θ) − lima↑κj(θ) x(a, θ) to represent the size of the discontinuity at the kink.
Fore conciseness, we’ll define the upper and lower limits w.r.t. a as x+(a, θ) = limh↓0 x(a + h, θ)
and x−(a, θ) = limh↑0 x(a + h, θ) respectively. Continuity of the policy rules implies that x∆(θ) =
x+(κ(θ), θ)− x−(κ(θ), θ) = 0, but the derivatives themselves are allowed to to be discontinuous at the
kink: x∆

a (θ) 6= 0.
Before formally studying the distributional derivatives, it is necessary to understand how the kinks

themselves respond to the shocks. Continuity of the policy rules allows us to get the following relation-
ship the derivative of the kink, κZ(θ) · Ẑ, and the size of the discontinuity of the derivative of the policy
rules at that kink, x∆

Z (θ) · Ẑ.
Claim 4. For all t, the derivatives of the kinks satisfy x∆

a (θ)κ∨Z(θ) · Ẑ = −x∆
Z (θ) · Ẑ, and, in particular,

κ∨Z(θ) · Ẑ = −a∆
a (θ)−1a∆

Z (θ) · Ẑ.

Proof. Continuity implies that x+(κ(θ, Z), θ, Z) = x−(κ(θ, Z) +h, θ, Z). Differentiating with respect to
Z in direction Ẑt at σ = 0 yields

x+
a (κ(θ), θ)κZ(θ) · Ẑ + x+

Z (κ(θ), θ) · Ẑ = x−a (κ(θ), θ)κZ(θ) · Ẑ + x−Z (κ(θ), θ) · Ẑ,

which implies thatx∆
a (θ)κZ(θ) · Ẑ = −x∆

Z (θ) · Ẑ. Applying p to both sides and dividing by a∆
a (θ)

completes the proof.

The distributional derivates themselves are defined by how the operate as linear functionals over
a space of smooth test functions, ϕ, with compact support. We use these definitions to establish the
following relationships

Claim 5. For all t, k distributional derivatives of x̃ satisfy

xZ(a, θ) · Ẑ = x̊Z(a, θ) · Ẑ
xa(a, θ) = x̊a(a, θ)

xaa(a, θ) = x̊aa(a, θ) + x∆
a (θ)δ(a− κ(θ))

xaZ(a, θ) · Ẑ = x̊aZ(a, θ) · Ẑ + x∆
Z (θ) · Ẑδ(a− κ(θ))

xZZ(a, θ) ·
(
Ẑ ′, Ẑ ′′

)
= x̊ZZ(a, θ) ·

(
Ẑ ′, Ẑ ′′

)
+ x∆

a (θ)κZ(θ) · Ẑ ′κZ(θ) · Ẑ ′′δ(a− κ(θ))

Proof. The distribution derivative xa(a, θ) is defined by33

∫∫
xa(a, θ)ϕ(a, θ)dadθ = −

∫∫
x(a, θ)ϕa(a, θ)dadθ = −

∫ ∫ κ(θ)

−∞
x(a, θ)ϕa(a, θ)dadθ +

∫ ∫ ∞
κ(θ)

x(a, θ)ϕa(a, θ)dadθ

33To concisely represent these integrals we use the convention that a∨,0(θ) = −∞ and a∨,N
∨+1(θ) =∞

4



for any test function ϕ. On each of these intervals the functions are smooth so we can apply integration
by parts to get∫∫

xa(a, θ)ϕ(a, θ)dadθ =

∫∫
x̊a(a, θ)ϕ(a, θ)dadθ +

∫
x∆(θ)ϕ(κ(θ), θ)dθ =

∫∫
x̊a(a, θ)φ(a, θ)dadθ

where the last equality used continuity. This implies xa(a, θ) = x̊a(a, θ).
Next we turn to xaa(a, θ), which is defined by∫∫

xaa(a, θ)ϕ(a, θ)dadθ = −
∫∫

xa(a, θ)ϕa(a, θ)dadθ = −
∫∫

x̊a(a, θ)ϕa(a, θ)dadθ

Splitting up the integral over a we have∫∫
xaa(a, θ)ϕ(a, θ)dadθ = −

∫ ∫ κ(θ)

−∞
x̊a(a, θ)ϕa(a, θ)dadθ −

∫ ∫ ∞
κ(θ)

x̊a(a, θ)ϕa(a, θ)dadθ

=

∫∫
x̊aa(a, θ)ϕ(a, θ)dadθ +

∫
x∆
a (θ)ϕ(κ(θ), θ)dθ,

which implies xaa(a, θ) = x̊aa(a, θ) + x∆
a (θ)δ(a− κ(θ)).

Next we define the distributional derivative xZ(a, θ) · Ẑ by∫
xZ(a, θ) · Ẑϕ(a, θ)dadθ =

(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
Z

· Ẑ.

As ∫∫
x(a, θ, Z)ϕ(a, θ)dadθ =

∫ ∫ κ(θ,Z)

−∞
x(a, θ, Z)ϕ(a, θ)dadθ +

∫ ∫ ∞
κ(θ,Z)

x(a, θ, Z)ϕ(a, θ)dadθ

when we take the derivative we get(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
Z

· Ẑ =

∫∫
x̊Z(a, θ) · Ẑϕ(a, θ)dadθ −

∫
x∆(θ)κZ(θ) · Ẑϕ(κ(θ), θ)dθ

which implies that xZ(a, θ) · Ẑ = x̊Z(a, θ) as x∆(θ) = 0.
The distributional derivative xaZ(a, θ) · Ẑ is defined by∫∫

xaZ(a, θ) · Ẑϕ(a, θ)dadθ = −
∫∫

xZ(a, θ) · Ẑϕa(a, θ)dadθ

for any test function ϕ. As xZ(a, θ) · Ẑ = x̊Z(a, θ) · Ẑ we have

−
∫∫

xZ(a, θ) · Ẑϕa(a, θ)dadθ = −
∫ ∫ κ(θ)

−∞
x̊Z(a, θ) · Ẑϕa(a, θ)dadθ +

∫ ∫ ∞
κ(θ)

x̊Z(a, θ) · Ẑϕa(a, θ)dadθ

=

∫∫
x̊aZ(a, θ) · Ẑϕ(a, θ)dadθ +

∫
x∆
Z (θ) · Ẑϕ(κ(θ), θ)dθ,

which implies xaZ(a, θ) · Ẑ = x̊aZ(a, θ) · Ẑ + x∆
Z (θ) · Ẑδ(a− κ(θ)).

Finally the distributional derivative, xZZ,(a, θ) ·
(
Ẑ ′, Ẑ ′′

)
, is defined by∫

xZZ,t,k(a, θ) ·
(
Ẑ ′, Ẑ ′′

)
ϕ(a, θ)dadθ =

(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
ZZ

·
(
Ẑ ′, Ẑ ′′

)

5



As(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
ZZ

·
(
Ẑ ′, Ẑ ′′

)
=

(∫ ∫ κ(θ,Z)

−∞
x̊Z(a, θ, Z) · Ẑ ′ϕ(a, θ)dadθ

)
Z

· Ẑ ′′

+

(∫ ∫ ∞
κ(θ,Z)

x̊Z(a, θ, Z) · Ẑ ′ϕ(a, θ)dadθ

)
Z

· Ẑ ′′

=

∫∫
x̊ZZ(a, θ) ·

(
Ẑ ′, Ẑ ′′

)
ϕ(a, θ)dadθ −

∫
x∆
Z (θ) · Ẑ ′κZ(θ) · Ẑ ′′ϕ (κ(θ), θ) dθ

which implies xZZ(a, θ) ·
(
Ẑ ′, Ẑ ′′

)
= x̊ZZ(a, θ) ·

(
Ẑ ′, Ẑ ′′

)
+ x∆

a (θ)κZ(θ) · Ẑ ′κZ(θ) · Ẑ ′′δ(a − κ(θ)) as

x∆
Z (θ) · Ẑ ′ = −x∆

a (θ)κZ(θ) · Ẑ ′ from Claim 4.

The distributional derivatives in Claim 5 provide a succinct way to summarize how changes in the
location of the kink affect derivatives of integrals over individual policies. To keep the the analysis in
this appendix as accessible as possible we’ll derive all our main results without explicitly the generalized
derivatives of x. Instead, we will explicitly track the limits of integration and only summarize our results
at the end using these δ-functions. As the distributional and classical derivatives align to first order we
will use xZ · Ẑ and xZ · Ẑ interchangeably. We will only explicitly emphasize the classical derivative at
second order.

Finally, we want to highlight an important feature of these additional terms that arise from kinked
policy functions. Namely, they can always be determined from lower order derivatives. We see this in
all of the generalized second derivatives, who’s δ-function components depend only on first derivatives.
This implies that all of the δ function components in the second order derivates can be determined
before the classical second order derivatives, are found.

B.3 Derivations of Equation (30)

For the direction Ẑt = [ρtΘ,PX̂t−1, Ω̂t]
ᵀ, determining

(∫
xdΩ

)
Z
· Ẑt is equivalent to differentiating∫

x
(
a, θ, Z∗ + αẐt

)
d
(

Ω∗ + αΩ̂t

)
which gives(∫

xdΩ

)
Z

· Ẑt =

(∫
xdΩ∗

)
Z

· Ẑt +

∫
xdΩ̂t =

∫
x̂tdΩ∗ +

∫
xdΩ̂t.

B.4 Proof of Lemma 3

We begin by differentiating the F mapping, equation (25), in direction Ẑt at a point not on the kinks.
Doing so yields

Fx(a, θ)xZ(a, θ) · Ẑt + FY (a, θ)Y Z · Ẑt + Fxe(a, θ) (Eε [x|a, θ, Z])Z · Ẑt = 0

where Eε [x|a, θ, Z] =
∫
x
(
a(a, θ, Z), ρθθ + ε, Z(Z)

)
µ(ε)dε. Applying the derivative yields

(Eε [x|a, θ, Z])Z · Ẑt = Eε [xa|a, θ] pxZ(a, θ) · Ẑt + Eε
[
xZ · ZZ · Ẑt|a, θ

]
Replacing xZ · Ẑt = x̂t, Y Z · Ẑt = Ŷt and Ẑt+1 = ZZ · Ẑt we get the difference equation

Fx(a, θ)x̂t(a, θ) + FY (a, θ)Ŷt + Fxe(a, θ) (Eε [xa|a, θ] px̂t(a, θ) + Eε [x̂t+1|a, θ]) = 0. (74)
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Our claim is that x̂t =
∑∞
s=0 xsŶt+s solves this equation where xs are defined via (32) and (33). To see

this, note that

Fxe(a, θ)Eε [x̂t+1|a, θ] =
∞∑
s=0

Fxe(a, θ)Eε [xs|a, θ] Ŷt+1+s

= − (Fx(a, θ) + Fxe(a, θ)Eε [xa|a, θ] P)
∞∑
s=1

xs(a, θ)Ŷt+s

where the second line comes from applying equation (33). Combined with equation (32) we have

FY (a, θ) + Fxe(a, θ)Eε [x̂t+1|a, θ] = − (Fx(a, θ) + Fxe(a, θ)Eε [xa|a, θ] P) x̂t(a, θ)

which guarantees (74) and completes the proof.

B.5 Proof of Lemma 4HA

Differentiating the LoM, equation 27, in direction Ẑt is equivalent to differentiating

Ω(Z∗ + αẐt)〈a′, θ′〉 =

∫ ∫
ι
(
ā(a, θ, Z∗ + αẐt) ≤ a′

)
ι (ρθθ + ε ≤ θ′)µ(ε)dεd

(
Ω∗ + αΩ̂t

)
〈a, θ〉

with respect to α. This yields

ΩZ · Ẑt〈a′, θ′〉 = −
∫∫

δ (a(a, θ)− a′) ι (ρθθ + ε ≤ θ′)µ(ε)dεât(a, θ)dΩ∗〈a, θ〉

+

∫∫
ι (ā(a, θ) ≤ a′) ι (ρθθ + ε ≤ θ′)µ(ε)dεdΩ̂t〈a, θ〉,

where ât = px̂t. Applying d
dθ′

to both sides yields

d

dθ′
Ω̂t+1〈a′, θ′〉 = −

∫ Λ(a
′
,θ
′
,a,θ)︷ ︸︸ ︷

δ (a(a, θ)− a′)µ(θ
′ − ρθθ) ât(a, θ)dΩ∗〈a, θ〉+

∫
ι (ā(a, θ) ≤ a′)µ(θ

′ − ρθθ)dΩ̂t〈a, θ〉

= − (M · aZ,t) 〈a′, θ′〉+

∫ Λ(a
′
,θ
′
,a,θ)︷ ︸︸ ︷

δ (a(a, θ)− a′)µ(θ
′ − ρθθ) āa(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

= − (M · ât) 〈a′, θ′〉+

(
L(a) · d

dθ
Ω̂t

)
〈a′, θ′〉

Where the second equality is achieved via integration by parts. To conclude, we will show that like ω∗,
d
dθ Ω̂t is also a generalized function of the form

d

dθ
Ω̂t〈a, θ〉 = ω̊t(a, θ) + ξ̂n,tδ(a− a∗n). (75)

We show this via induction

Claim 6. If y is a piecewise smooth with kinks at κ(θ) thenM· y is a generalized function with a finite
number of mass points a∗n.

Proof. From our definition of M

(M · y) 〈a′, θ′〉 =

∫∫
Λ(a′, θ′, a, θ)y(a, θ)ω∗(a, θ)dadθ.
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As y(a, θ) is only discontinuous at κ(θ) and {(κ(θ), θ)} is measure 0 under ω∗ guarantees that this
integral is well-defined. Compare to ω∗ which satisfies ω∗(a′, θ′) =

∫∫
Λ(a′, θ′, a, θ)y(a, θ)ω∗(a, θ)dadθ.

As y(a, θ) is bounded over the support of ω∗ we conclude that M · y is absolutely continuous with
respect to ω∗ and thus will only have a finite number of mass points at a∗n .

This claim implies thatM· ât is a generalized function with a finite number of mass-points at a∗n. As
Ω̂0 = 0 we conclude that d

dθ Ω̂1 = −M· â0 is a generalized function with a finite number of mass-points

at a∗n. Our next claim allows us to extend this to all d
dθ Ω̂t via induction. For the remainder of the proof

we will use that d
dθ Ω̂t has the form in (75)

Claim 7. If d
dθ Ω̂ is a generalized function with a finite number of mass-points at a∗n, then L(a) · ddθ Ω̂ is

a generalized function with a finite number of mass-points at a∗n.

Proof. Repeat the steps of the Claim 6 replacing y with aa and ω̊∗(a, θ) +
∑
n ξ
∗
n(θ)δ(a − a∗n) with

d
dθ Ω̂.

B.6 Proof of Corollary 1

We start with our first claim

Claim 8. d
dθ Ω̂t is given by d

dθ Ω̂t = −∑s=0 At,sŶs where At,s is defined recursively by A0,s = 0 and

At+1,s = L(a) · At,s −M · pxs−t.

Proof. We proceed by induction. It’s trivially true from t = 0 as A0,s = 0 and d
dθ Ω̂0. We then proceed

by induction by substituting for ât

d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −

∞∑
j=0

(M · pxj) Ŷt+j = L(a) ·
(
−
∞∑
s=0

At,sŶs

)
−
∞∑
s=0

(M · pxs−t) Ŷs

=
∞∑
s=0

−
(
L(a) · At,s +M · pxs−t

)
Ŷs ≡

∞∑
s=0

At+1,sŶs

where the second equality is achieved by letting s = t+ j and WLOG setting xk = 0 for k < 0.

Applying integration by parts we have
∫
xdΩ̂t = −

∫∫
xa

d
dθ Ω̂tdadθ := −I(a) · ddθ Ω̂t. From the proof

of Lemma 4HA we know that d
dθ Ω̂t is a density with mass points at a finite number of points a∗n, which

implies that the set of points where xa is not defined is measure zero under d
dθ Ω̂tdadθ so I(a) · ddθ Ω̂t

is well defined. and therefore
∫
xdΩ̂t =

∑∞
s=0

(
I(a) · At,s

)
Ŷs. We conclude by substituting for x̂t and∫

xdΩ̂t in equation (30) to yield(∫
xdΩ

)
Z

· Ẑt =
∞∑
j=0

∫
xjdΩ∗Ŷt+s +

∞∑
s=0

(
I(a) · At,s

)
Ŷs =

∞∑
s=0

(∫
xs−tdΩ∗ + I(a) · At,s

)
︸ ︷︷ ︸

Jt,s

Ŷs

as desired.
Finally, the recursive representation of At,s implies At,s =

∑t
k=1

(
L(a)

)t−k · M · pxs−k+1 and thus

At,s − At−1,s−1 =
(
L(a)

)t−1 · M · pxs. This implies that Jt,s satisfies the desired recursion as Jt,s −
Jt−1,s−1 = I(a) · (At,s − At−1,s−1) = I(a) ·

(
L(a)

)t−1 · M · pxs.

B.7 Proof Of Proposition 1HA

This is a direct result of combining Corollary 1 with equation (29).
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B.8 Derivation of Equation (40)

Finding
(∫
xdΩ

)
ZZ
·
(
Ẑt, Ẑt+k

)
requires differentiating

∫ ∫ κ(θ,Z)

−∞
xZ(a, θ, Z) · ẐtdΩ〈a, θ〉+

∫ ∫ ∞
κ(θ,Z)

xZ(a, θ, Z) · ẐtdΩ〈a, θ〉

+

∫ ∫ κ(θ,Z)

−∞
x(a, θ, Z)dΩ̂t〈a, θ〉+

∫ ∫ ∞
κ(θ,Z)

x(a, θ, Z)dΩ̂t〈a, θ〉

in direction Ẑt+k. As xZ is differentiable in each of these terms we obtain(∫
xdΩ

)
ZZ

·
(
Ẑt, Ẑt+k

)
=

∫
x̊ZZ ·

(
Ẑt, Ẑt+k

)
dΩ∗ +

∫
xZ · ẐtdΩ̂t+k +

∫
xZ · Ẑt+kdΩ̂t

−
∫ (

x∆
Z (θ) · Ẑt

)
κZ(θ) · Ẑt+kω∗(κ(θ), θ)dθ

=

∫
xZZ ·

(
Ẑt, Ẑt+k

)
dΩ∗ +

∫
xZ · ẐtdΩ̂t+k +

∫
xZ · Ẑt+kdΩ̂t

where the second line is achieved by noting x∆
Z (θ) · Ẑt = −x∆

a (θ)κZ(θ) · Ẑt+k using the formula for the

generalized derivative xZZ ·
(
Ẑt, Ẑt+k

)
is defined as the generalized derivative in Claim 5. Adding to

it
(∫
xdΩ

)
Z
· Ẑt,t+k =

∫
xZ · Ẑt,t+kdΩ∗ +

∫
xdΩ̂t,t+k yields (40).

For brevity, in the remainder of the proofs we will omit the limiting arguments with κ(θ, Z) and
instead directly use the generalized derivatives.

B.9 Proof of Lemma 5

(a) To determine x̂t,t+k(a, θ) at points away from the kinks we start with the derivative of the F

mapping in the direction Ẑt,t+k and then add to it the second derivative of the F mapping in

directions Ẑt and Ẑt+k. Doing so yields

0 = Fx(a, θ)x̂t,k(a, θ) + FY (a, θ)Ŷt,t+k + Fxe(a, θ)
(

(Eε [x|a, θ, Z])ZZ ·
(
Ẑt, Ẑt+k

)
+ (Eε [x|a, θ, Z])Z · Ẑt,t+k

)
+ ....

where ... represent interactions of first order terms and are given in Ft,t+k below. The terms

(Eε [x|a, θ, Z])ZZ ·
(
Ẑt, Ẑt+k

)
and (Eε [x|a, θ, Z])Z ·Ẑt,t+k are obtained by differentiating Eε [x|a, θ, Z] =∫

x
(
a(a, θ, Z), θ′, Z(Z)

)
µ(θ′ − ρθθ)dθ′ twice in directions Ẑt and Ẑk and in the derivative of di-

rection Ẑt,t+k, respectively. This implies their sum is

Eε [xaa|a, θ] ât(a, θ)ât+k(a, θ)+E [x̂aZ,t+k+1|a, θ] ât(a, θ)+E [x̂aZ,t+1|a, θ] ât+k(a, θ)+Eε [x̂t,t+k|a, θ] .

Therefore, for points (a, θ) not on the kinks the classical derivative, ˚̂xt,t+k := x̊ZZ · (Ẑt, Ẑt+k) +

xZ · Ẑt,t+k satisfies

Fx(a, θ)̊x̂t,t+k(a, θ) + FY (a, θ)Ŷt,t+k + Fxe(a, θ)Eε
[
˚̂xt+1,t+k+1|a, θ

]
+ Ft,k(a, θ) = 0 (76)
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with

Ft,t+k(a, θ) = Fxe(a, θ)

(
Eε [xaa|a, θ] ât(a, θ)ât+k(a, θ) + Eε [x̂aZ,t+k+1|a, θ] ât(a, θ)

+ Eε [x̂aZ,t+1|a, θ] ât+k(a, θ) + Eε
[
x̂δt,t+k|a, θ

])
+ Fxx(a, θ) · (x̂t(a, θ), x̂t+k(a, θ)) + FxY (a, θ) ·

(
x̂t(a, θ), Ŷt+k

)
+ Fxxe(a, θ) ·

(
x̂t(a, θ), x̂

e
t+k(a, θ)

)
+ FY x(a, θ) ·

(
Ŷt, x̂t+k(a, θ)

)
+ FY Y (a, θ) ·

(
Ŷt, Ŷt+k

)
+ FY xe(a, θ) ·

(
Ŷt, x̂

e
t+k(a, θ)

)
+ Fxex(a, θ) · (x̂et (a, θ), xZ,k(a, θ)) + FxeY (a, θ) ·

(
x̂et (a, θ), Ŷt+k

)
+ Fxexe(a, θ) ·

(
x̂et (a, θ), x̂

e
t+k(a, θ)

)
where x̂δt,t+k(a, θ) := x̂t,t+k−˚̂xt,t+k = x∆

a (θ)κ̂t(θ)κ̂t+k(θ)δ(a−κ(θ)) and x̂et (a, θ) := Eε [xa|a, θ] px̂t(a, θ)+
Eε [x̂t+1|a, θ] . All of these objects easily constructed from first order terms.

Finally, if we subtract off (43) from (76) we find

Fx(a, θ)̊x̂t,t+k(a, θ)− x̊t,t+k(a, θ)+ FY (a, θ)Y ZZ,t,k+ Fxe(a, θ)Eε
[
˚̂xt+1,t+1+k − x̊t+1,t+1+k|a, θ

]
= 0

which, following the same steps as the proof of Lemma 3, implies

˚̂xt,t+k − x̊t,t+k =
∞∑
s=0

xsŶt+s,t+k+s

and completes the proof.

(b) Assume knowledge of xZZ,0,0(a, θ). To find x̂σσ,t(a, θ), for any (a, θ) not on a kink, differentiate

the F mapping twice with respect to σ and add to it the derivative of F in direction Ẑσσ,t

0 = Fx(a, θ)x̂σσ,t(a, θ) + FY (a, θ)Ŷσσ,t + Fxe(a, θ)
(
(Eε,E [x|a, θ])σσ + (Eε,E [x|a, θ])Z ·

)̂
where Eε,E [x|a, θ] =

∫∫
x
(
a(a, θ, Z;σ), θ′, Z(σE , Z;σ)

)
µ (θ′ − ρθθ) dθ′dPr (E) and Z(σE , Z;σ) =[

σE ,PX(Z;σ),Ω(Z;σ)
]T
. Taking the second derivative of this object with respect to σ and adding

to it the derivative in direction Ẑt yields34

(Eε,E x̃)σσ,t = Eε [x̂0,0|a, θ] var(E) + Eε [x̂σσ,t+1|a, θ] + Eε [xa|a, θ] Px̂σσ,t(a, θ)

with x̂0,0 representing the distributional derivative in Section B.2. Let xσσ(a, θ) be the function
that solves the following linear functional equation

0 = Fx(a, θ)xσσ(a, θ) + Fxe(a, θ) (Eε [xZZ,0,0|a, θ] var(E) + Eε [xσσ|a, θ] + Eε [xa|a, θ] xσσ(a, θ)) .

Subtracting these two equations we see that dx̂σσ,t := x̂σσ,t − xσσ satisfies

0 = Fx(a, θ)dx̂σσ,t(a, θ) + FY (a, θ)Xσσ,t + Fx′(a, θ) (E [dx̂σσ,t+1|a, θ] + E [xa|a, θ] pdx̂σσ,t(a, θ)) .

This is identical to system of equations solved by x̂t which allows us to conclude that dx̂σσ,t =∑∞
s=0 xs(a, θ)Xσσ,t+s which implies (44).

34While, x̂ZZ,0,0 is a generalized function, x̂σσ,t can just be replaced with a classical derivative. Since, xσ is uniformly
zero, the same steps that show distributional derivatives are equal to the classical derivatives to first order can be used
to show xσσ = x̊σσ .
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B.10 Proof of Lemma 6

(a) Start by differentiating the LoM in direction Ẑt,t+k. The same arguments as the first order gives

d

dθ
ΩZ · Ẑt,t+k = L(a) · d

dθ
Ω̂t,t+k −M ·

(
aZ · Ẑt,t+k

)
.

To get d
dθ Ω̂t+1,t+1+k we add to it the derivative direction Ẑt+k of

d

dθ
ΩZ(Z) · Ẑt〈a′, θ′〉 =

∫ ∫
Λ(a′, θ′, a, θ, Z)aa(a, θ, Z)

d

dθ
Ω̂t〈a, θ〉dadθ

−
∫ ∫

Λ(a′, θ′, a, θ, Z)aZ(a, θ, Z) · ẐtdΩ〈a, θ〉

where Λ(a′, θ′, a, θ, Z) ≡ δ(a(a, θ, Z)− a′)µ(θ′ − ρθθ). As

ΛZ(a′, θ′, a, θ) · Ẑt+k = δ′(a(a, θ)− a′)µ(θ′ − ρθθ)aZ(a, θ) · Ẑt+k

= − d

da′
δ(a(a, θ)− a′)µ(θ′ − ρθθ)ât+k(a, θ) = − d

da′
Λ(a′, θ′, a, θ)ât+k(a, θ)

we have

d

dθ
Ω̂t+1,t+k+1〈a′, θ′〉 =

∫∫
Λ(a′, θ′, a, θ)aa(a, θ)

d

dθ
Ω̂t,t+k〈a, θ〉dadθ −

∫∫
Λ(a′, θ′, a, θ)ât,t+k(a, θ)dΩ∗

+

∫∫
Λ
(
a′, θ′, a, θ

)
âaZ,t+k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ −

d

da′

∫∫
Λ
(
a′, θ′, a, θ

)
aa(a, θ)ât+k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

−
∫∫

Λ(a′, θ′, a, θ)ât(a, θ)dΩ̂t+k +
d

da′

∫∫
Λ
(
a′, θ′, a, θ

)
ât+k(a, θ)ât(a, θ)dΩ∗

Finally, integration by parts implies∫∫
Λ(a′, θ′, a, θ)aZ,t(a, θ)dΩ̂t+k = −

∫∫
Λ(a′, θ′, a, θ)âaZ,t+k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

+
d

da′

∫∫
Λ (a′, θ′, a, θ) aa(a, θ)ât(a, θ)

d

dθ
Ω̂t+k〈a, θ〉dadθ

All combined, using distributional derivatives to absorb the derivatives of the kinks, we have

d

dθ
Ω̂t+1,t+k+1〈a′, θ′〉 =

∫∫
Λ(a′, θ′, a, θ)aa(a, θ)

d

dθ
Ω̂t,t+k〈a, θ〉dadθ −

∫∫
Λ(a′, θ′, a, θ)ât,t+k(a, θ)dΩ∗

+

∫∫
Λ
(
a′, θ′, a, θ

)
âaZ,t+k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ −

d

da′

∫∫
Λ
(
a′, θ′, a, θ

)
aa(a, θ)âZ,t+k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

−
∫∫

Λ(a′, θ′, a, θ)âaZ,t(a, θ)
d

dθ
Ω̂t+k〈a, θ〉dadθ +

d

da′

∫∫
Λ
(
a′, θ′, a, θ

)
aa(a, θ)ât(a, θ)

d

dθ
Ω̂t+k〈a, θ〉dadθ

+
d

da′

∫∫
Λ
(
a′, θ′, a, θ

)
ât+k(a, θ)ât(a, θ)dΩ∗

which can be written more concisely as (46).

(b) Start by differentiating the LoM in direction Ẑσσ,t. The same arguments as the first order gives
d
dθΩZ · Ẑσσ,t = L(a) · Ω̂σσ,t−M·

(
aZ · Ẑσσ,t

)
. Next we take second derivative of (27) with respect

to σ. As all the first derivatives w.r.t σ are zero we can follow the same steps as the first order
to obtain d

dθΩσσ = −M · aσσ. As d
dθ Ω̂σσ,t+1 = d

dθΩZ · Ẑσσ,t + d
dθΩσσ, adding these two equations

together completes the proof.

B.11 Proof of Corollary 2

(a) We begin with the following claim regarding d
da and L(a)
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Claim 9. Suppose that y is a generalized function with a finite number of mass points at {a∗n}
then: L(a) · dday = −L(aa) · y + d

daL(a,a) · y.

Proof. We have(
L(a) · d

da
y

)
(a
′
, θ
′
) =

∫ ∫
Λ(a

′
, θ
′
, a, θ)aa(a, θ)

d

da
y(a, θ)dadθ

= −
∫

Λ(a
′
, θ
′
, a, θ)aaa(a, θ)y(a, θ)dadθ −

∫
Λa(a

′
, θ
′
, a, θ)aa(a, θ)y(a, θ)dadθ

= −
∫

Λ(a
′
, θ
′
, a, θ)aaa(a, θ)y(a, θ)dadθ︸ ︷︷ ︸

:=(L(aa)·y)(a′ ,θ′ )

+
d

da′

∫
Λ(a

′
, θ
′
, a, θ)aa(a, θ)aa(a, θ)y(a, θ)dadθ︸ ︷︷ ︸

:=(L(a,a)·y)(a′ ,θ′ )

where the second equality uses integration by parts and the third equality uses Λa(a
′
, θ
′
, a, θ) =

− d
da′Λ(a

′
, θ
′
, a, θ)aa(a, θ). That y is a generalized function with a finite number of mass points

at {a∗n} guarantees that these integrals are well defined using the same arguments as the first
order.

Claim 9 allows us to prove the following claim on Ω̂t,t+k

Claim 10. d
dθ Ω̂t,k is given by d

dθ Ω̂t,t+k = −∑∞s=0 At,sŶs,k+s − Bt,t+k + d
daCt,t+k where At,s is as

defined in Claim 8, and Bt,k and Ct,k are defined in Corollary 2.

Proof. The case when t = 0 is trivial as Ω̂0,k = 0 and A0,s = B0,k = C0,k. We then proceed by
induction using the LoM

d

dθ
Ω̂t+1,k+1 = L(a) ·

(
−
∞∑
s=0

At,sŶs,k+s − Bt,t+k +
d

da
Ct,t+k

)
−
∞∑
s=0

as−tŶs,t+s − bt,t+k +
d

da
ct,t+k

= −
∞∑
s=0

(
L(a) · At,s + as−t

)
Ŷs,k+s −

(
L(a) · Bt,t+k + bt,t+k

)
− L(aa) · Ct,t+k +

d

da
L(a,a) · Ct,t+k +

d

da
ct,k

= −
∑
s=0

At+1,sŶs,k+s − Bt+1,t+k+1 +
d

da
Ct+1,t+k+1

as desired.

Next, by applying integration by parts we have

∫
xdΩ̂t,t+k = −

∫∫
xa

(
−
∑
s=0

At,sŶs,k+s − Bt,t+k +
d

da
Ct,t+k

)
dadθ

=
∞∑
s=0

(
I(a) · At,s

)
Ŷs,k+s + I(a) · Bt,t+k −

∫∫
xa(a, θ)

d

da
Ct,t+k(a, θ)dadθ

=
∞∑
s=0

(
I(a) · At,s

)
Ŷs,k+s + I · Bt,t+k +

∫
xaaCt,t+kdadθ︸ ︷︷ ︸
:=I(aa)·Ct,t+k

We can use the same arguments as the first order to guarantee that both Bt,t+k and Ct,t+k are
generalized functions with a finite number of mass points at {a∗n} , which guarantees the integrals
are well defined.
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Finally, tuning to equation 40, we note that∫
x̂kdΩ̂t =

∫∫
x̂k(a, θ)dΩ̂t〈a, θ〉 = −

∫∫
x̂aZ,k

d

dθ
Ω̂tdadθ︸ ︷︷ ︸

:=I(a)
Z,k· ddθ Ω̂t

and similarly for
∫
xZ,tdΩ̂k. Substituting all of these results into equation 40 yields the result of

corollary 2.

(b) We begin with the following Claim

Claim 11. d
dθ Ω̂σσ,t is given by d

dθ Ω̂σσ,t = −∑s=0 At,sŶσσ,s − Bσσ,t, where At,s is as defined in

Corollary 1 and Bσσ,0 = 0 and Bσσ,t+1 = L(a) · Bσσ,t +M · pxσσ.

Proof. It’s trivially true for t = 0 as A0,s = 0,Bσσ,0 = 0, and d
dθ Ω̂σσ,0 = 0. We then proceed by

induction using the LoM

d

dθ
Ω̂σσ,t+1 = L(a) ·

(
−
∑
s=0

At,sŶσσ,s − Bσσ,t

)
−M ·

( ∞∑
s=0

pxt−sŶσσ,s + pxσσ

)

= −
∞∑
s=0

(
L(a) · At,s +M · pxt−s

)
−
(
L(a) · Bσσ,t +M · pxσσ

)
which completes the proof.

Integration by parts then implies that∫
xdΩ̂σσ,t = −

∫
xa

d

dθ
Ω̂σσ,tdadθ =

∞∑
s=0

(
I(a) · At,s

)
Ŷσσ,s + I(a) · Bσσ,t

where the same arguments as in the first-order guarantee that d
dθ Ω̂σσ,t is a generalized function

with mass-points only at {a∗n} and thus the operation I(a) · ddθ Ω̂σσ,t is well defined. This implies
that

̂(∫
xdΩ

)
σσ,t

=

∫
xσσ,tdΩ∗ +

∫
xdΩ̂σσ,t

=
∞∑
s=0

(∫
xs−tdΩ∗ + I(a) · At,s

)
︸ ︷︷ ︸

Jt,s

Ŷσσ,s +

∫
xσσdΩ∗ + I(a) · Bσσ,t︸ ︷︷ ︸

:=Hσσ,t

the LoM for Bσσ,t in Claim 11 implies that Hσσ,t satisfies the recursion Hσσ,0 =
∫

xσσdΩ∗ and

Hσσ,t+1 = Hσσ,t + I(a) ·
(
L(a)

)t−1 · M · pxσσ, which completes the proof.

B.12 Proof of Proposition 2HA

The Proposition is a direct result of Corollary 2.
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C Comparison to Approximating the Distribution with A His-
togram

All the terms in this section will implicitly index everything by h: the space between points along each
dimension a and θ. We let a[i] be the gridpoints along the a dimension and θ[j] be the grid points along
the asset dimension. To construct the histogram approach we define projection function Pi,j(a, θ) as
the probability of assigning point a, θ to gridpoint (a, θ)[i,j]. Following Young (2010) we project to the

closest neighbors: Pi,j (a, θ) = Pi(a)Qj(θ), where Pi(a) =


a−a[i]

h a ∈ [a[i], a[i+1]]
a[i]−a
h a ∈ [a[i−1], a[i]]

0 otherwise

and similarly for

Qj(θ).
We assume full knowledge of x̃(a, θ, Z) and focus purely on the approximation with respect to the his-

togram. The approximation to the steady state transition density is Λ(i′, j′, a, θ) =
∫
Pi′,j′ (a(a, θ), ρθθ + ε) dµ(ε).

This constructs a steady state transition matrix Λ(i′, j′, i, j) = Λ(i′, j′, a[i], θ[j]). We let ω∗[i,j] be the ap-
proximation to the steady state density. We assume that all of these objects are well approximated as
h→ 0 so for any smooth test function φ(a, θ),

∫
φdΩ∗ = limh→0

∑
i,j φ

(
a[i], θ[j]

)
ω∗[i,j] and∫

φ(a′, θ′)Λ(a′, θ′, a, θ)da′dθ′ = lim
h→0

∑
i′,j′

φ
(
a[i′], θ[j′]

)
Λ(i′, j′, a, θ).

Given a(a, θ, Z), the approximated LoM for the distribution is

a[i′,j′](Z) =
∑
i,j

∫
Pi′,j′

(
a(a[i], θ[j], Z), ρθθ + ε

)
dµ(ε)ω[i,j]

Differentiating with respect to Z in direction Ẑ yields

ω̂t+1,[i′,j′] =
∑
i,j

Λ (i′, j′, i, j) ω̂t,[i,j] +
∑
i,j

∫
Pi′,j′a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)ât

(
a[i], θ[j]

)
ω∗[i,j]

Which we can write succinctly as ω̂t+1 = Λω̂t +Mh−→a t, where −→a t is ât evaluated at the grid-points.
With this we prove the following two claims

Claim 12. In the limit as h→ 0, limh→0

∑
i′,j′ x

(
a[i′], θ[j′]

) (
Mh−→a t

)
[i′,j′]

= I(a) · M · ât.

Proof. Note that∑
i′,j′

x
(
a[i′], θ[j′]

) (
Mh−→a t

)
[i′,j′]

=
∑
i,j

∫ ∑
i′,j′

x(a[i′], θ[j′])Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)ât

(
a[i], θ[j]

)
ω∗[i,j]

This simplifies as∑
i′,j′

x(a[i′], θ[j′])Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
= xa(a(a[i], θ[j]), ρθθ + ε) +O (h)

=
∑
i′,j′

xa(a[i′], θ[j′])Pi
′,j′
(
a(a[i], θ[j]), ρθθ + ε

)
+O (h)

and thus
∑
i′,j′ x

(
a[i′], θ[j′]

) (
Mh−→a t

)
[i′,j′]

=
∑
i′,j′

∑
i,j xa(a[i′], θ[j′])Λ (i′, j′, i, j) ât

(
a[i], θ[j]

)
ω∗[i,j]. Tak-

ing limit as h→ 0 completes the result.

Claim 13. In the limit as h→ 0, limh→0

∑
i′,j′ x

(
a[i′], θ[j′]

) (
ΛMh−→a t

)
[i′,j′]

= I(a) · L(a) · M · ât.
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Proof. For this we’re going to use that for any smooth function φ(a)∑
i′′,i′

φ(a[i′′])Pi
′′
(a(a[i′], θ))Pi

′

a (a) =
1

h

∑
i′′

φ(a[i′′])
(
Pi′′(a(a[̂i] + h, θ))− Pi′′(a(a[̂i], θ))

)
= φa(a(a, θ))aa(a, θ) +O(h)

We therefore have that∑
i′,j′

x
(
a[i′], θ[j′]

) (
ΛMh−→a t

)
[i′,j′]

=
∑

i′′,j′′,i′,j′

x(a[i′′], θ[j′′])Λ(i′′, j′′, i′, j′)
∑
i,j

∫
Pi
′,j′
a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)ât

(
a[i], θ[j]

)
ω[i,j]

We can then exploit the fact that Λ(i′′, j′′, i′, j′) =
∫
Qj′′

(
ρθθ[j′] + ε

)
dµ(ε)Pi′′

(
a(a[i′], θ[j′])

)
to get∑

i′,j′

x
(
a[i′], θ[j′]

) (
ΛMh−→a t

)
[i′,j′]

=
∑

i′′,j′′,i′,j′

xa(a[i′′], θ[j′′])Λ(i′′, j′′, i′, j′)aa(a[i′], θ[j′])Λ(i′′, j′′, i′, j′)ât
(
a[i], θ[j]

)
ω[i,j]+O(h)

which in the limit as h→ 0 gives I(a) · L(a) · M · ât.

This same argument extends to show that limh→0

∑
i′,j′ x

(
a[i′], θ[j′]

) (
Λ
tMh−→a t

)
[i′,j′]

= I(a) ·(
L(a)

)t · M · ât for arbitrary t.

C.1 Second Order

Taking a second derivative of the LoM when t = k = 0 we have, after exploiting that Pi,jaa = 0,

ω̂ZZ,1,1,[i′,j′] =
∑
i,j

∫
Pi′,j′a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZZ,0,0

(
a[i], θ[j]

)
ω[i,j],

which implies limh→0

∑
i′,j′ x(a[i′], θ[j′])ω̂ZZ,1,1,[i′,j′] = I(a) · M · â0,0. As

∫
xdΩ̂1,1 = I(a) · M · â0,0 +

I(aa) · C1,1, we conclude the histogram method misses the C1,1 term.

D Proofs of Section 5

In this section we present the proofs for the extensions presented in Section 5. As needed we will use
distributional derivatives in place of the classical derivatives,

D.1 Proofs for Section 5.1

D.1.1 Proof of Proposition 1TD

Let ẐTD0 =
[
0, ÂTD0 , Ω̂TD0

]
and define the directions ẐTDt =

[
0, ÂTDt , Ω̂TDt

]
recursively via ẐTDt =

ZZ · ẐTDt−1. Define X̂TD
t as XZ · ẐTDt . We start with the following claim

Claim 14. To the first-order approximation, Xt satisfies E0Xt = X + X̂TD
t +O

(∥∥∥E , Ẑ0

∥∥∥2
)
.

Proof. The path of aggregates, Xt(Et; Θ−1, A−1,Ω0, σ), depends on the history of aggregate shocks, Et,
and the initial state Θ−1, A−1,Ω0. It can be constructed from the recursive representation X̃(Z;σ)

and Ω̃(Z;σ) by defining Zt(Et; Θ−1, A−1,Ω0, σ) = [Θt (Et;σ) ,Ωt (Et; Θ−1, A−1,Ω0, σ)]
T

recursively as
follows: let Z0(E0; Θ−1, A−1,Ω0, σ) = [ρΘΘ−1 + σE0, A−1,Ω0]T and for t ≥ 1

Zt
(
Et; Θ−1, A−1,Ω0, σ

)
=
[
ρΘΘt−1

(
Et−1;σ

)
+ σEt, Ω̃

(
Zt−1

(
Et−1; Θ−1, A−1,Ω0, σ

)
;σ
)]
, (77)
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The path of aggregates can then be defined asXt(Et; Θ−1, A−1,Ω0, σ) = X̃ (Zt (Et; Θ−1, A−1,Ω0, σ) ;σ) .
Defining Zt,σ (Et) and Xt,σ (Et) as the derivatives of Zt (Et;A−1,Ω0, σ) and Xt(Et;A−1,Ω0, σ) w.r.t

σ evaluated at σ = 0,Θ−1 = 0, A−1 = A∗, Ω0 = Ω∗. The same steps as in the proof of Lemma
(1) show that Xt,σ (Et) =

∑t
s=0 X̂t−sEs. Next, taking the derivative of Zt (Et; Θ−1, A−1,Ω0, σ) and

Xt(Et; Θ−1, A−1,Ω0, σ) w.r.t. Θ−1, A−1,Ω0 in the direction ẐTD0 , we have Z0,Z

(
E0
)
· ẐTD0 = ẐTD0 and

for t ≥ 0

Zt+1,Z

(
Et+1

)
· ẐTD0 = ZZ · Zt,Ω

(
Et
)
· ẐTD0 (78)

Xt,Z

(
Et
)
· ẐTD0 = XZ · Zt,σ

(
Et
)
· ẐTD0 (79)

which implies that Zt,Z (Et) · ẐTD0 = ẐTDt and thusXt,Z (Et) · ẐTD0 = X̂TD
t . All put together we have

Xt(Et; 0, A−1,Ω0) =
∑t
s=0 X̂t−sEs + X̂TD

t + O
(
‖E , ÂTD0 , Ω̂TD0 ‖2

)
. Taking expectations completes the

proof.

Following the same steps as the poofs of Lemma 3, and Lemma 4HA it is possible to show that
d
dθ Ω̂TDt+1 = L(a)· ddθ Ω̂TDt −M·âTDt , where âTDt = px̂TDt and x̂TDt (a, θ) := xZ(a, θ)·ẐTDt =

∑∞
s=0 xs(a, θ)Ŷ

TD
t+s .

Rolling forward the LoM allows us to prove the following claim

Claim 15. d
dθ Ω̂TDt is given by d

dθ Ω̂TDt = −∑s=0 At,sŶ
TD
s − ATDt , where At,s is as defined in Corollary

1 where ATDt satisfies ATDt+1 = L(a) · ATDt and ATD0 = − d
dθ Ω̂TD0 .

Proof. The statement is true for t = 0 as A0,s = 0 and ATD0 = − d
dθ Ω̂TD0 . We then proceed by induction

d

dθ
Ω̂TDt+1 = L(a) ·

(
−
∞∑
s=0

At,sŶ
TD
s − ATDt

)
−
∞∑
s=0

M · pxs−tŶ
TD
s

= −
∞∑
s=0

(
L(a) · At,s +M · as−t

)
Ŷ TDs − L(a) · ATDt ≡ −

∞∑
s=0

At+1,sŶ
TD
s − ATDt+1,

where we follow the convention xk = 0 for k < 0.

Finally,(∫
xdΩ

)
Z

· ẐTDt = −
∫
xa

d

dθ
Ω̂TDt dadθ +

∞∑
s=0

∫
xs(a, θ)dΩ∗Ŷ TDt+s

=
∑
s

(∫
xs−t(a, θ)dΩ∗ + I(a) · At,s

)
Ŷ TDs + I(a) · ATDt =

∑
s

Jt,sŶ
TD
s + JTDt .

D.2 Proofs for Section 5.2

We will prove Lemma 2SV and Proposition 2SV in tandem with each other as they need to be shown
jointly. Our use of stochastic volatility contains one major departure from section 3: the approximations
are around (Υ, 0, A∗,Ω∗) where Υ is stochastic. As Υ only affects the level of risk, only the second
derivatives w.r.t. σ will depend on Υ and thus we will represent them as Ωσσ (Υ) , Zσσ(Υ), Xσσ(Υ) and
xσσ(a, θ,Υ).

Define the stochastic set of directions ẐΥ
σσ,t(EtΥ) recursively as follows: ẐΥ

σσ,0

(
E0

Υ

)
= 0 and35

ẐΥ
σσ,t (EtΥ) = ZZẐ

Υ
σσ,t−1(Et−1

Υ ) +Zσσ(Υt−1). Similarly, define X̂Υ
σσ,t (EtΥ) = XZ · ẐΥ

σσ,t (EtΥ) +Xσσ (Υt) .
Our first result generalizes Lemma 2 to allow for stochastic volatility

35There are also XσZ and ZσZ terms but they are 0 following the same logic as Xσ and Zσ being 0 in the proof of
Lemma 1
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Lemma 2SV alt. To the second-order approximation, Xt satisfies

Xt

(
Et
)

= X +
t∑

s=0

X̂t−sEs +
1

2

(
t∑

s=0

t∑
m=0

X̂t−s,t−mEsEm
)

(80)

+
1

2
X̂Υ
σσ,t

(
EtΥ
)

+O
(
‖E‖3

)
,

where sequences {X̂t}t, {X̂t,k}t,k are the same ones as in Propositions 1HA and 2HA.

Proof. We proceed in the same manner as the proof of Lemma 2. Second-order derivatives of (9) and
(8) w.r.t. σ to find Z0,σσ

(
E0
)

= 0 and

Zt+1,σσ

(
Et+1

)
= ZZ · Zt,σσ

(
Et
)

+ ZZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+ Zσσ(Υt) (81)

Xt,σσ

(
Et
)

= XZ · Zt,σσ
(
Et
)

+XZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+Xσσ(Υt) (82)

where ZZZ is defined in the main text and Zσσ :=
[
0,PXσσ (Υt) ,Ωσσ(Υt)

]T
.

Next we show the following claim relating Zt,σσ
(
Et
)

and our directions ẐΥ
σσ,t(EtΥ)

Claim 16. For all t

Zt,σσ
(
Et
)

= ẐΥ
σσ,t(EtΥ) +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm (83)

Proof. We proceed by induction. As Ẑσσ,0 = Ẑ0,0 = 0 we conclude that equation (8) holds for t = 0
since Z0,σσ

(
E0
)

= 0. Assuming (83) holds for t− 1 we have

Zt,σσ
(
Et
)

= ZZ ·
(
ẐΥ
σσ,t−1(Et−1

Υ ) +

t−1∑
s=0

t−1∑
m=0

Ẑt−1−s,t−1−mEsEm
)

+ ZZZ ·
(
t−1∑
s=0

Ẑt−1−sEs,
t−1∑
m=0

Ẑt−1−mEm
)

+ Zσσ(Υt−1)

= ẐΥ
σσ,t(EtΥ) +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm,

where in the second equality we used the fact that ZZZ is a bi-linear mapping and in the third equality
we use the recursive definitions of ẐΥ

σσ,t and Ẑt,k, and Ẑ0,0 = 0.

Finally we plug in for Zt,σσ
(
Et
)

and Zt,σ
(
Et
)

in equation (82) to find

Xt,σσ

(
Et
)

= XZ ·
(
ẐΥ
σσ,t(EtΥ) +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm
)

+XZZ ·
(

t∑
s=0

Ẑt−sEs,
t∑

m=0

Ẑt−mEm
)

= X̂Υ
σσ,t(EtΥ) +

t∑
s=0

t∑
m=0

XZZ,t−s,t−mEsEm.

This Lemma uses slightly different directional derivatives than Lemma 2SV . The remainder of this
proof will show that X̂Υ

σσ,t(EtΥ) can be constructed via the sequence of directional derivatives X̂SV
σσ,k

defined in Proposition 2SV : X̂Υ
σσ,t(EtΥ) = X̂σσ,t +

∑t
s=0 X̂

SV
σσ,t−sEΥ,s, which will complete the proof

of Lemma 2SV . We show this linear relationship by first understanding the derivatives x̂Υ
σσ,t(a, θ, EtΥ)

defined by x̂Υ
σσ,t(a, θ, EtΥ) := xZ (a, θ) · ẐΥ

σσ,t (EtΥ) + xσσ (a, θ,Υt) . We can then show the following
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relationship between x̂Υ
σσ,t(a, θ, EtΥ) and EEΥ

[
Ŷ Υ
σσ,t+s|EtΥ

]
where

Ŷ Υ
σσ,t

(
EtΥ
)

=
[
0,PX̂Υ

t−1(Et−1
Υ ), X̂Υ

t (EtΥ),EEΥ
[
X̂Υ
σσ,t+1|EtΥ

]
+ X̂ZZ,0,0 (1 + Υt) var(EΘ)

]T
.

Claim 17. Let xSVσσ be as defined in Proposition 2SV and xσσ be as defined in 5 then for any t

x̂Υ
σσ,t(a, θ, EtΥ) =

∞∑
s=0

xs(a, θ)EEΥ
[
Ŷ Υ
σσ,t+s|EtΥ

]
+ xσσ(a, θ) + Υtx

SV
σσ (a, θ).

Proof. To find x̂Υ
σσ,t(a, θ, EtΥ) differentiate the F mapping twice with respect to σ (evaluated at (Υ, 0, A∗,Ω∗))

and add to it the derivative of F in direction ẐΥ
σσ,t (EtΥ) to get

0 = Fx(a, θ)x̂Υ
σσ,t(a, θ, EtΥ) + FY (a, θ)Ŷ Υ

σσ,t(EtΥ)

+ Fxe(a, θ)
(
Eε [xZZ,0,0|a, θ] (1 + Υt) var(E) + Eε,EΥ

[
xσσ,t+1|a, θ, EtΥ

]
+ Eε [xa|a, θ] Pxσσ,t(a, θ, EtΥ)

)
.

Define dx̂Υ
σσ,t(a, θ, EtΥ) = x̂Υ

σσ,t(a, θ, EtΥ)− xσσ(a, θ)−Υtx
SV (a, θ), then dx̂Υ

σσ,t(a, θ, EtΥ) solves

0 = Fx(a, θ)dx̂Υ
σσ,t(a, θ, EtΥ)+FY (a, θ)Ŷ Υ

σσ,t(EtΥ)+Fxe(a, θ)
(
E
[
dx̂Υ

σσ,t+1|a, θ, EtΥ
]

+ E [xa|a, θ] Pdx̂Υ
σσ,t(a, θ, EtΥ)

)
.

This linear system of equations is identical to the one solved by x̂t which allows us to conclude that

dx̂Υ
σσ,t(a, θ, EtΥ) =

∑∞
s=0 xs(a, θ)EEΥ

[
Ŷ Υ
σσ,t+s|EtΥ

]
, which completes the proof.

Next we’ll characterize the LoM of motion for Ω̂σσ,t (EtΥ) := ΩZ · ẐΥ
σσ,t−1

(
Et−1

Υ

)
+ Ωσσ (Υt−1) .

Differentiating the LoM twice with respect to σ and adding to it the derivative of the LoM in direction
Ẑσσ,t (EtΥ), after applying integration by parts, yields d

dθ Ω̂Υ
σσ,t+1

(
Et+1

Υ

)
= L(a) · ddθ Ω̂Υ

σσ,t (EtΥ) − M ·
âΥ
σσ,t(a, θ, EtΥ). Substituting for âΥ

σσ,t(a, θ, EtΥ) using Claim 17 immediately obtains the LoM

d

dθ
Ω̂Υ
σσ,t+1

(
Et+1

Υ

)
= L(a) · d

dθ
Ω̂Υ
σσ,t

(
EtΥ
)
−
∞∑
s=0

M · pxsE
[
Ŷ Υ
σσ,t+s|EtΥ

]
+M · pxσσ + ΥtM · pxSVσσ .

We then are able to prove the following Claim about d
dθ Ω̂Υ

σσ,t (EtΥ)

Claim 18. d
dθ Ω̂Υ

σσ,t (EtΥ) satisfies EEΥ
[
d
dθ Ω̂Υ

σσ,t

]
= −∑∞s=0 At,sEEΥ

[
Ŷ Υ
σσ,s

]
− Bσσ,t, and for k ≥ 0

∆EEΥ
[
d

dθ
Ω̂Υ
σσ,τ+k|EτΥ

]
= −

∞∑
k=0

Ak,s∆EEΥ
[
Ŷ Υ
σσ,τ+s|EτΥ

]
− BSVσσ,kEΥ,τ

where ∆EEΥ [Y |EτΥ] := EEΥ [Y |EτΥ]− EEΥ
[
Y |Eτ−1

Υ

]
, Bσσ,t is as defined in Claim 11 and BSVσσ,k is defined

by BSVσσ,k+1 = L(a) · BSVσσ,k + ρkΥM · pxSVσσ with BSVσσ,0 = 0.

Proof. We proceed by induction. The first equation is trivially true for t = 0 as A0,s = 0,Bσσ,0 = 0 and
d
dθ Ω̂Υ

0 = 0. We then proceed by induction (exploiting EEΥ [Υt] = 0)

EEΥ
[
d

dθ
Ω̂Υ
σσ,t+1

]
= L(a) · EEΥ

[
d

dθ
Ω̂Υ
σσ,t

]
−
∞∑
j=0

M · pxjEEΥ
[
Ŷ Υ
σσ,t+j

]
−M · pxσσ

=
∞∑
s=0

−
(
L(a) · At,s +M · pxs−t

)
︸ ︷︷ ︸

At+1,s

EEΥ
[
Ŷ Υ
σσ,s

]
−
(
L(a) · Bσσ,t +M · pxσσ

)
︸ ︷︷ ︸

Bσσ,t+1

.
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For the second equation, note that it holds for k = 0 as ∆E
[
d
dθ Ω̂σσ,τ |EτΥ

]
= 0 (as d

dθ Ω̂σσ,τ is measurable

w.r..t Eτ−1
Υ ) and A0,s = 0,BSVσσ,0 = 0. Taking expectations of then implies

∆EEΥ
[
d

dθ
Ω̂Υ
σσ,τ+k+1|EτΥ

]
= L(a) ·

(
−
∞∑
s=0

Ak,s∆EEΥ
[
Ŷ Υ
σσ,τ+s|EτΥ

]
− BSVσσ,kEΥ,τ

)
−
∞∑
s=0

M · pxs−k∆E
[
Ŷ Υ
σσ,τ+s|EτΥ

]
− ρkΥM · pxSVσσEΥ,τ

=
∞∑
s=0

−
(
L(a) · Ak,s +M · pxs−k

)
︸ ︷︷ ︸

At+1,s

∆EEΥ
[
Ŷ Υ
σσ,τ+s|EτΥ

]
−
(
L(a) · BSVσσ,k + ρkΥM · pxSVσσ

)
︸ ︷︷ ︸

BSVσσ,k+1

EΥ,τ ,

which completes the proof

Differentiating the G mapping twice with respect to σ and adding to it the derivative in direction
ẐΥ
σσ,t (EtΥ) yields, after applying integration by parts,

Gx

∫
x̂Υ
σσ,t

(
EtΥ
)
dΩ∗ − Gx

∫
xa

d

dθ
Ω̂Υ
σσ,t

(
EtΥ
)
dadθ + GY Ŷ

Υ
σσ,t

(
EtΥ
)

= 0. (84)

Taking expectations of both sides and substituting for EEΥ
[
x̂Υ
σσ,t

]
and EEΥ

[
d
dθ Ω̂σσ,t

]
using Claims 17

and 18 we have Gx
∑∞
s=0 Jt,sEEΥ

[
Ŷ Υ
σσ,s

]
+ GxHσσ,t + GY EEΥ

[
Ŷ Υ
σσ,t

]
= 0, which implies that E

[
X̂Υ
σσ,s

]
solves the same system of equations as the X̂σσ,t terms in Proposition 2HA.

If we instead take expectations of 19 conditional on EτΥ and subtract off the expectation conditional
on Et−1

Υ we find, for t = τ + k,

Gx
∑
j=0

Jk,j∆EEΥ
[
Ŷσσ,τ+j |EτΥ

]
+ HSVσσ,kEΥ,τ + GY ∆EEΥ

[
Ŷσσ,τ+k|EτΥ

]
= 0

where HSVσσ,k = I(a) · BSVσσ,k + ρkΥ
∫

xΥdΩ∗. As this is is a linear equation that only depends on τ

through EΥ,τ , this implies ∆EEΥ
[
X̂σσ,τ+k|EτΥ

]
= X̂SV

σσ,kEΥ,τ where X̂SV
σσ,k solves (54). Our knowledge

of EEΥ
[
X̂Υ
σσ,t

]
and ∆EEΥ

[
X̂Υ
σσ,τ+k|EτΥ

]
immediately implies X̂Υ

σσ,t (EtΥ) = X̂σσ,t +
∑t
s=0 X̂

SV
σσ,t−sEΥ,s.

Finally, note that BSVσσ,k =
∑k−1
j=0 ρ

k−j+1
Υ

(
L(a)

)j ·M · pxSVσσ, which implies that BSVσσ,k+1 = ρΥBSVk +(
L(a)

)k ·M · pxSVσσ and that HSVσσ,k therefore satisfies the recursion in Proposition 2HA.

D.3 Proofs for Section 5.3

For this section we will allow E to be multivariate. This implies that all the directional derivatives X̂t

and x̂t(a, θ) should be interpreted as matrices. We let ΣE represent the covariance matrix of E .

D.3.1 Proof of Lemma 3PP

We begin by differentiation equation (60) in direction Ẑt. This implies that SEε [x̂t+1|a, θ] RY+Eε [Sx|a, θ] RŶt+1 =
0. In the steady state RY = 0, which implies that this equation can only hold if RŶt = 0 when t ≥ 1,
however this places no restrictions on R̂x0 := RŶ0.

Next we differentiate equation (59) in direction Ẑt. Doing so yields

Fx(a, θ)x̂t(a, θ, k) + FY (a, θ)Ŷt + Fxe(a, θ) (Eε [xa|a, θ] px̂t(a, θ, k) + Eε [x̂t+1|a, θ]) + Fk(a, θ)kᵀR̂xt = 0.
(85)
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For t ≥ 1, R̂xt = 0 implies that this is equivalent to (74) and is solved by x̂t(a, θ, k) =
∑∞
s=0 xs(a, θ)Y Z,t+s.

For t = 0, substitute for x̂1(a, θ) in (85) and solve for x̂0(a, θ, k) to obtain (62).

D.3.2 Proof of Lemma 7

To determine k(a, θ, k) we differentiate (60) twice with respect to σ to get Eε [Sx|a, θ]Rxσσ+Eε
[
(Sx̂0) EEᵀ

(
R̂x0

)ᵀ
|a, θ

]
=

0. As E is independent of θ we conclude that this is equivalent to (after substituting for x̂0)

Eε [Sx|a, θ]Rxσσ +
∞∑
s=0

Eε [Sxs|a, θ] ŶsΣE
(
R̂x0

)ᵀ
+ Eε [Sr|a, θ] k(a, θ, k)ᵀR̂x0ΣE

(
R̂x0

)ᵀ
= 0.

Define S
(
R̂x0

)
:=
(
R̂x0ΣE

(
R̂x0

)ᵀ)
and exploit the knowledge that E [Sr|a, θ] is a real number to solve

for

k(a, θ, k)ᵀ = vσσ(a, θ)R
x

σσS
(
R̂x0

)−1

+
∑
s

vs(a, θ)ŶsΣE
(
R̂x0

)ᵀ
S
(
R̂x0

)−1

.

D.3.3 Proof of Proposition 7

Differentiating the G mapping in direction Ẑt to get GY Ŷt+Gx
(∫
xdΩ

)
Z
·Ẑt = 0, where

(∫
xdΩ

)
Z
·Ẑt =∫

x̂tdΩ∗ +
∫
xdΩ̂t. As x(a, θ, k) = x(a, θ) is independent of k, it suffices to know the deviation of the

marginal distribution Ω̂t(a, θ) = limk→∞ Ω̂(a, θ, k). For the rest of this proof by using Ω̂t to represent
this marginal distribution.

Following same steps as in the proof of Lemma 4HA implies that for t ≥ 1 d
dθ Ω̂t+1 = L(a)· ddθ Ω̂t−M·ât,

where L(a) and M are as defined in the main text, and

d

dθ
Ω̂1〈a′, θ′〉 = −

∫∫∫
Λ(a′, θ′, a, θ)â0(a, θ, k)ω∗(a, θ, k)dkdadθ.

Substituting for â0 using Lemma 3PP we find d
dθ Ω̂1 = −∑sM· pxsŶs −MPP · (k∗)ᵀ R̂x0 , where MPP

and k∗ are as defined in the main text. As k(a, θ) is independent of k it is straightforward to show that

k∗(a′, θ′) =

∫∫
Λ(a′, θ′, a, θ)k(a, θ)ω∗(a, θ)dadθ =

(
M · k

)
(a′, θ′).

= (M · vσσ) (a′, θ′)︸ ︷︷ ︸
k∗σσ(a′,θ′)

R
x

σσS
(
R̂x0

)−1

+
∑
s

(M · vs) (a′, θ′)︸ ︷︷ ︸
k∗s (a′,θ′)

ŶsΣE
(
R̂x0

)ᵀ
S
(
R̂x0

)−1

.

We use this to show the following claim

Claim 19. d
dθ Ω̂t is given by d

dθ Ω̂t = −∑∞s=0 At,sŶs −
(
L(a)

)t−1 · MPP · (k∗)ᵀ R̂x0 .

Proof. Time t = 1 holds trivially as d
dθ Ω̂t and A1,s =M · pxs. For t > 1, we proceed by induction as

d

dθ
Ω̂t+1 = L(a) ·

(
−
∞∑
s=0

At,sŶs −
(
L(a)

)t−1

· MPP · (k∗)ᵀ R̂x0
)
−
∞∑
s=0

M · pxs−tŶs

= −
∞∑
s=0

(
L(a) · At,s +M · pxs−t

)
Ŷs −

(
L(a)

)t
· MPP · (k∗)ᵀ R̂x0

which completes the proof.
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Finally, as
∫
x̂tdΩ∗ =

∑
s=0

∫
xs−tdΩ∗Ŷs +

∫
r(a, θ) (k∗)ᵀ dadθR̂x0 , we can conclude that(∫

xdΩ

)
Z

· Ẑt =
∞∑
s=0

Jt,sŶs +Nt · (k∗)ᵀ R̂x0

where Nt is as defined in the main text. To complete the proof we note that in the σ = 0 limit (61)
simplifies to

R
x

σσS
(
R̂x0

)−1

=
K

ᵀ

Vσσ
−
∑
s

VsŶsΣE
(
R̂x0

)ᵀ
S
(
R̂x0

)−1

where Vσσ =
∫
k∗σσdadθ and Vs =

∫
k∗sdadθ. Thus,(∫

xdΩ

)
Z

· Ẑt =
∞∑
s=0

Jt,sŶs +
∞∑
s=0

JPP,1t,s ŶsΣE
(
R̂x0

)ᵀ
S
(
R̂x0

)−1

R̂x0 + JPP,2t Ŷ0

where JPPt,s = Nt · k∗s −Nt · k∗σσ Vs
Vσσ

and JPP,2t = Nt · k∗σσ K
ᵀ

Vσσ
R, which implies

GY Ŷt + Gx

( ∞∑
s=0

Jt,sŶs +

∞∑
s=0

JPP,1t,s ŶsΣE
(
R̂x0

)ᵀ
S
(
R̂x0

)−1

R̂x0 + JPP,2t Ŷ0

)
= 0.

In the special case where Θ is 1 dimensional we have ΣE
(
R̂x0

)ᵀ
S
(
R̂x0

)−1

R̂x0 = 1 and thus GY Ŷt +

Gx
∑∞
s=0

(
Jt,s + JPPt,s

)
Ŷs = 0, where JPPt,s = JPP,1t,s + 1s=0JPP,2t , which completes the proof.

E Details for Section 7

E.1 Calibration

The baseline parameter values are given in the following table.

Table 2: CALIBRATION OF THE KRUSELL-SMITH ECONOMY

Parameter Description Value

α Capital share 0.36
β Discount factor 0.983
γ Risk aversion [2, 7]
δ Depreciation rate of capital 1.77%
φ Adjustment cost of capital [32, 125]
ρε Idiosyncratic mean reversion 0.966
σε/
√

1− ρ2
ε Cross-sectional std of log earnings 0.503

ρΘ Aggregate mean reversion 0.80
σΘ Std of Aggregate TFP shocks 0.014
Nε Points in Markov chain for ε 7
Nz Grid points for the policy rule x̄i(z) 60
Iz Grid points for the distribution ω̄i 1000
T Time horizon (in quarters) for IRF 400
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E.2 Transitions across steady-states

In this section, we show how to apply our method to compute deterministic transitions across two
steady states. We modify the aggregate TFP process to have a parameter Θ that controls the mean
and consider a one-time permanent change of 5% to Θ. In the economy with high TFP, the distribution
of savings shifts to the right to accommodate the higher demand of the capital which is now more
productive.

To apply the insights from Section 5.1, we need to compute Ω̂0=Ω∗−Ω0. We set the asset distribution
in the non-stochastic economy with high TFP to be Ω∗ and asset distribution in the non-stochastic
economy with low TFP to be Ω0. This allows us to construct the new term in Lemma 1TD, I(a) ·(
L(a)

)t−1 · ddθ Ω̂0 which takes negligible amount of time given that we have precomputed operators I(a)

and L(a). We truncate T when the difference between X
(
Ω∗; Θ = 1

)
+ XZ,0 and X

(
Ω∗; Θ = .95

)
is

below a threshold.
In Figure 6, we plot the first-order expansions of the mean path of aggregate capital and the

distribution of capital between the two steady states. We see capital slowly approaching a higher level
and the distribution of wealth shifts rightwards.
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Figure 6: Transition path for capital and the distribution of savings after a 5% permanent increase in agg. TFP

E.3 More Details for Stochastic Volatility

In our baseline with a scalar aggregate shocks, the changes in volatility of all aggregate variables are
proportional to 1 + Υt. To calibrate the stochastic process for Υt,we use the observed fluctuations in
the CBOE Volatility Index (or the VIX). The VIX measures market expectation of near term standard
deviation of stock returns conveyed by stock index option prices. The data is quarterly and the sample
extends from 1990Q1 to 2023Q2. In Figure 7, we plot the VIX series.
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Figure 7: AGGREGATE UNCERTAINTY

1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020 2023

20
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V
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Notes: The figure plots the quarterly series of CBOE VIX for the sample period 1990Q1 to 2023Q2.

We use the approximation that 1+Υt ≈ exp {Υt} and use exp {Υt} =

[
V IXt
(V IX)

]2

to estimate (ρΥ, σΥ)

by estimating the following specificiation using ordinary least squares.

lnV IXt = c+ ρΥ lnV IXt−1 +
(σΥ

2

)
εt (86)

and the residual εt is assumed to be mean zero and serially uncorrelated. The following table summarizes
the results.

Table 3: ESTIMATING Υt

Parameter Value Standard Error
c 0.60 0.16
ρΥ 0.80 0.05
σ2

Υ 0.16 0.019

Notes: The table reports the OLS estimates of ρΥand σ2
Υ using specification (86).
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Online Supplementary Material

A Additional Numerical Details for Section 4

There are multiple approaches to approximating derivatives with respect to the individual state, e.g.
xa(a, θ) and xaa(a, θ). The first way is direct: use the derivatives of basis functions to evaluate deriva-
tives of x, e.g.−→x a = x#Φa and −→x aa = x#Φaa. The alternative is to compute the derivatives directly.
To see how this is done we can differentiate the F mapping with respect to a to obtain

Fa(a, θ) + Fx(a, θ)xa(a, θ) + FxeEε [xa, a, θ] pxa(a, θ) = 0.

We can apply this formula to compute the values of xa at the coarse grid-points

−→x a[j] = −
(−→

F x[j] +
−→
F xe [j]

(
px#Φ̃ea

)
[j]
)−1−→

F a[j]

and then recover the spline coefficients x#
a = −→x aΦ̃−1. The derivatives can alternatively be computed

as −→x a = x#
a Φ and −→x aa = x#

a Φa. In our experiments we found that all of these choices resulted in very
similar aggregate responses. Using x#Φa or x#

a Φ resulted in nearly identical aggregate responses, so
we opted to use x#Φa for simplicity. Relative to the global solution, x#

a Φa produced slightly smaller

errors than x#Φaa so we use x#
a Φa and x#

a Φ̃ea when computing xaa(a, θ) and Eε [xaa|a, θ] respectively.

B Multivariate Extension

Here we extend our analysis to allow for a, θ, and Θ to be multidimensional. For the remainder of this
section, we will let aj represent the jth element of a and θj represent the jth element of θ. Almost all
of the results extend directly with the caveat that the derivatives with respect to a, such as xa(a, θ),
should now be viewed as matrices as opposed to vectors. In addition, the directions Ẑt should be viewed
as vectors with Ẑjt being the directions associated with the shocks Θj ,and Ω̂jt represents the associated
change in the distribution.

B.1 First-order Approximation

Lemma 3 remains unchanged. The first difference comes with Lemma 4HA. The operators L(a), M,
and I(a) remain essentially the same

(M · y) 〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)y (a, θ) dΩ∗ (a, θ) ,(

L(a) · y
)
〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)aa(a, θ)y (a, θ) dadθ

I(a) · y :=

∫
xa(a, θ)y(a, θ)dadθ,

with the understanding that now y is vector valued, while aa and xa are matrices. For notational
simplicity we let d

dθ represent ∂nθ
∂θ1∂θ2···∂θnθ and d

da represent ∂na

∂a1∂a2···∂ana . For any vector valued function

y define ∇ay =
∑
j

∂
∂aj yj . With this definition we can generalize (4HA) as follows

Lemma 4(FO MV). For any t, d
da

d
dθ Ω̂t = ∇a · ω̂t where ω̂t satisfies a recursion

ω̂t+1 = L(a) · ω̂t −M · ât (87)

with ω̂0 = 0.
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Proof. We proceed by induction. It trivially holds for t = 0 as Ω̂0 = 0. Assuming true for t we can
differentiate the LoM in direction Ẑt to get

Ω̂t+1〈a′, θ′〉 =

∫∫ na∏
i=1

ι
(
ai(a, θ) ≤ a′i

) nθ∏
k=1

ι
(

(ρθθ + ε)
k ≤ θ′k

)
µ(ε)dεdΩ̂t

−
na∑
j=1

∫∫
δ
(
aj(a, θ)− a′j

)∏
i6=j

ι
(
ai(a, θ) ≤ a′i

) nθ∏
k=1

ι
(

(ρθθ + ε)
k ≤ θ′k

)
µ(ε)dεât(a, θ)dΩ∗.

Applying d
da

d
dθ to both sides yields

d

da

d

dθ
Ω̂t+1〈a′, θ′〉 =

∫∫ na∏
i=1

δ
(
ai(a, θ)− a′i

) nθ∏
k=1

δ
(

(ρθθ + ε)
k − θ′k

)
µ(ε)dεdΩ̂t

−
na∑
j=1

∂

∂a′j

∫∫ na∏
i=1

δ
(
ai(a, θ)− a′i

) nθ∏
k=1

δ
(

(ρθθ + ε)
k − θ′k

)
µ(ε)dεâjt (a, θ) dΩ∗

=

∫
Λ(a′, θ′, a, θ)dΩ̂t −

na∑
j=1

∂

∂a′j

∫
Λ(a′, θ′, a, θ)âjt (a, θ) dΩ∗

where in the second line we used the equality definition

Λ(a′, θ′, a, θ) =

∫ na∏
k=1

δ
(
ak(a, θ)− a′k

) nθ∏
l=1

δ
(

(ρθθ + ε)
l − θ′l

)
µ(ε)dε =

na∏
k=1

δ
(
ak(a, θ)− a′k

)
µ (θ′ − ρθθ)

If we apply ∂
∂aj to both sides we find

∂

∂aj
Λ(a′, θ′, a, θ) =

∑
i

δ′
(
ai(a, θ)− a′i

)∏
k 6=i

δ
(
ak(a, θ)− a′k

)
µ (θ′ − ρθθ) aiaj (a, θ)

= −
∑
i

∂

∂a′i
δ
(
ai(a, θ)− a′i

)∏
k 6=i

δ
(
ak(a, θ)− a′k

)
µ (θ′ − ρθθ) aiaj (a, θ)

= −
∑
i

∂

∂a′i
Λ(a′, θ′, a, θ)aiaj (a, θ).

Next, we have ∫
Λ(a′, θ′, a, θ)dΩ̂t =

∫∫
Λ(a′, θ′, a, θ)

d

da

d

dθ
Ω̂t(a, θ)dadθ

=
∑
j

∫∫
Λ(a′, θ′, a, θ)

∂

∂aj
ω̂jt (a, θ)dadθ

= −
∑
j

∫∫
∂

∂aj
(
Λ(a′, θ′, a, θ)

)
ω̂jt (a, θ)dadθ

=
∑
i

∂

∂a′i

∫∫ ∑
j

Λ(a′, θ′, a, θ)aiaj (a, θ)ω̂
j
t (a, θ)dadθ.

All combined this implies that

d

da

d

dθ
Ω̂t+1 = ∇aL(a) · ω̂t −∇aM · ât = ∇aω̂t+1

2



which completes the proof.

It should be noted that when the dimensionality of a is 1 Lemma 4(FO MV) is equivalent to Lemma
4HA as it states that d

da
d
dθ Ω̂t = d

da ω̂t and thus d
dθ Ω̂t = ω̂t which satisfies the same recursive system as

in Lemma 4HA. As the recursive system is identical, Corollary 1 remains unchanged since∫
xdΩ̂t =

∑
j

∫
x
∂

∂aj
ω̂jtdadθ = −

∑
j

∫
xaj ω̂

j
tdadθ = −I(a) · ω̂t.

Finally, we have that Proposition 1HA holds identically for the multivariate case with the understanding
that all the derivatives with respect to Z are vector valued.

B.2 Second-Order Approximation

As with the first-order approximation, many of the Lemmas extend directly with the caveat that all
derivatives with respect to a and Ẑk are vector valued. For example, Lemma 5 is identical in the
multivariate case.

We can extend the definitions of L(aa), L(a,a), LZ,t,I(aa), and I(a)
Z,t to the multivariate case

L(aa) · y 〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)aaa(a, θ) · y(a, θ)dadθ

L(a,a) · y 〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)aa(a, θ)y(a, θ)aa(a, θ)T dadθ

LZ,t · y 〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)aaZ,t(a, θ)y (a, θ) dadθ

I(aa) · y =

∫
xaa(a, θ) · y(a, θ)dadθ

I(a)
Z,t · y =

∫
x̂Za,t(a, θ)y(a, θ)dadθ

with xaa(a, θ) · y(a, θ) :=
∑
i,j xaiaj (a, θ)yij(a, θ) for matrix valued y. For a matrix valued function we

define ∇a · y as the vector

(∇a · y)
j

(a, θ) =
∑
i

∂

∂ai
yij(a, θ),

which implies

∇2
a · y ≡ ∇a · ∇a · y =

∑
i,j

∂

∂ai
∂

∂aj
yij

then we have the following extension of Lemma 6

Lemma 4(SO MV). (a). For all t, k let ω̂t,t+k satisfy the recursion ω̂0,k = 0,

ω̂t,t+k = L(a) · ω̂t,t+k −M · ât,t+k +∇a · ct,t+k − bt,t+k, (88)

where bt,t+k and ct,t+k satisfy

bt,t+k = −L(a)
Z,t ·

d

dθ
Ω̂t+k − L(a)

Z,t+k ·
d

dθ
Ω̂t,

ct,t+k =M ·
(
ât � âᵀt+k

)
− L(a) ·

(
d

dθ
Ω̂t � âᵀt+k

)
− L(a) ·

(
d

dθ
Ω̂t+k � âᵀt

)ᵀ

then d
da

d
dθ Ω̂t,t+k = ∇a · ω̂t,t+k.
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(b). ω̂σσ,t satisfies recursion (87) with ât = px̂t being replaced with âσσ,t = px̂σσ,t then d
da

d
dθ Ω̂σσ,t.

Proof. (a) Next we take the second derivative of the LoM in direction Ẑt and Ẑk and adding to it the

derivative of the LoM in direction Ẑt,k yields, after applying d
da

d
dθ to both sides

d

da′
d

dθ′
Ω̂t+1,t+k+1〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)

d

da

d

dθ
Ω̂t,t+k〈a, θ〉dadθ −

∑
i

∂

∂a′i

∫
Λ(a′, θ′, a, θ)âit,t+k(a, θ)dΩ∗

+
∑
i,j

∂

∂a′i
∂

∂a′j

∫
Λ(a′, θ′, a, θ)âit(a, θ)â

j
t+k(a, θ)dΩ∗

−
∑
j

∂

∂a′j

∫
Λ(a′, θ′, a, θ)âjk(a, θ)

d

da

d

dθ
Ω̂t〈a, θ〉dadθ

−
∑
j

∂

∂a′j

∫
Λ(a′, θ′, a, θ)âjt(a, θ)

d

da

d

dθ
Ω̂k〈a, θ〉dadθ

Written in vectorized form this is equivalent to

d

da′
d

dθ′
Ω̂t+1,t+k+1〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)∇a · ω̂t,t+k(a, θ)dadθ −∇a ·

∫
Λ(a′, θ′, a, θ)ât,t+k(a, θ)dΩ∗

+∇2
a ·
∫

Λ(a′, θ′, a, θ)ât(a, θ)ât+k(a, θ)ᵀdΩ∗ −∇a ·
∫

Λ(a′, θ′, a, θ)ât+k(a, θ)∇a · ω̂t(a, θ)dadθ

−∇a ·
∫

Λ(a′, θ′, a, θ)ât(a, θ)∇a · ω̂t+k(a, θ)dadθ.

Next, we note that for vector valued generalized functions w and y,∫
Λ(a′, θ′, a, θ)w(a, θ)∇a · y(a, θ)dθda =

∑
j

∫
Λ(a′, θ′, a, θ)w(a, θ)

∂

∂aj
yj(a, θ)dadθ

= −
∑
j

∫
Λ(a′, θ′, a, θ)

∂

∂aj
w(a, θ)yj(a, θ)dadθ

−
∑
j

∫
∂

∂aj
(
Λ(a′, θ′, a, θ)

)
w(a, θ)yj(a, θ)dadθ

= −
∫

Λ(a′, θ′, a, θ)wa(a, θ)y(a, θ)dadθ

+
∑
i,j

∂

∂a′i

∫
Λ(a′, θ′, a, θ)aiaj (a, θ)w(a, θ)yj(a, θ)dadθ

= −
∫

Λ(a′, θ′, a, θ)wa(a, θ)y(a, θ)dadθ

+∇a ·
∫

Λ(a′, θ′, a, θ)aa(a, θ)y(a, θ)w(a, θ)ᵀdadθ.

Applying this relationship implies

d

da′
d

dθ′
Ω̂t+1,t+k+1〈a′, θ′〉 = ∇a ·

∫
Λ(a′, θ′, a, θ)aa(a, θ)ω̂t,t+kdadθ −∇a ·

∫
Λ(a′, θ′, a, θ)ât,t+k(a, θ)dΩ∗

+∇2
a ·
∫

Λ(a′, θ′, a, θ)ât(a, θ)ât+k(a, θ)ᵀdΩ∗ +∇a ·
∫

Λ(a′, θ′, a, θ)âZa,k(a, θ)ω̂t(a, θ)dadθ

−∇2
a ·
∫

Λ(a′, θ′, a, θ)aa(a, θ)ω̂t(a, θ)ât+k(a, θ)ᵀdadθ +∇a ·
∫

Λ(a′, θ′, a, θ)âZa,t(a, θ)ω̂k(a, θ)dadθ

−∇2
a ·
(∫

Λ(a′, θ′, a, θ)aa(a, θ)ω̂k(a, θ)ât(a, θ)
ᵀdadθ

)T
which implies that d

da′
d
dθ′ Ω̂t+1,k+1 = ∇a · ω̂t+1,k+1 where ω̂t,k satisfies (87).

(b) We proceed by induction which holds trivially for t = 0. Differentiating the LoM twice with
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respect to σ, adding the derivative in direction Ẑσσ,t, and then applying d
da

d
dθ to both sides yields

d

da

d

dθ
Ω̂σσ,t+1〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)

d

da

d

dθ
Ω̂σσ,t〈a, θ〉dadθ −∇a ·

∫
Λ(a′, θ′, a, θ)âσσ,t(a, θ)dΩ∗.

Using the same steps as the proof of Lemma 4(FO MV) we have∫
Λ(a′, θ′, a, θ)∇a · ω̂σσ,t(a, θ)dadθ = ∇a ·

∫
Λ(a′, θ′, a, θ)aa(a, θ)ω̂σσ,t(a, θ)dadθ.

which implies
d

da′
d

dθ′
Ω̂σσ,t+1 = ∇a ·

(
L(a) · ω̂t −M · âσσ,t

)
= ∇a · ω̂σσ,t+1

Next we extend Corollary 2 to the multidimensional case as follows. .

Corollary 2MV . (a). For all t, k(∫
xdΩ

)
ZZ

· Ẑt,t+k +

(∫
xdΩ

)
ZZ

·
(
Ẑt, Ẑt+k

)
=

∞∑
s=0

Jt,sŶt+s,t+k+s + Ht,t+k,

where {Ht,t+k}t,k is characterized by the following linear recursive system

Ht,t+k =

∫
xt,t+kdΩ∗ + I(a) · Bt,t+k + I(aa) · Ct,t+k − I(a)

Z,t+k · ω̂t − I
(a)
Z,t · ω̂t+k,

Ct+1,t+k+1 =M ·
(
ât � âᵀt+k

)
− L(a) ·

(
d

dθ
Ω̂t � âᵀt+k

)
− L(a) ·

(
d

dθ
Ω̂t+k � âᵀt

)ᵀ

+ L(a,a) · Ct,t+k,

Bt+1,t+k+1 =M · pxt,t+k − L(a)
Z,t · ω̂t+k − L

(a)
Z,t+k · ω̂t + L(a) · Bt,t+k + L(aa) · Ct,t+k.

(b). For all t, ∫
xσσdΩ∗ +

(∫
xdΩ

)
Z

· Ẑσσ,t =
∞∑
s=0

Jt,sŶσσ,s + Hσσ,t

where {Hσσ,t}t satisfies recursion Hσσ,0 =
∫

xσσdΩ∗ and Hσσ,t = Hσσ,t−1 + I(a) ·
(
L(a)

)t−1 · M · pxσσ.

Proof. (a) Start by noting(∫
xdΩ

)
ZZ

· Ẑt,t+k +

(∫
xdΩ

)
ZZ

·
(
Ẑt, Ẑt+k

)
=

∫
x̂t,kdΩ∗+

∫
x̂tdΩ̂t+k +

∫
x̂t+kdΩ̂t +

∫
xdΩ̂t,t+k

5



We start with
∫
xdΩ̂t,t+k. For any matrix valued generalized function c

L · ∇a · c(a′, θ′) =
∑
i,j

∫
Λ(a′, θ′, a, θ)aaj (a, θ)

∂

∂ai
cij(a, θ)dadθ

= −
∑
i,j

∫
Λ(a′, θ′, a, θ)aaiaj (a, θ)cij(a, θ)dadθ

−
∑
i,j

∫
∂

∂ai
(
Λ(a′, θ′, a, θ)

)
aaj (a, θ)cij(a, θ)dadθ

= −L(aa) · c(a′, θ′) +
∑
i,j,k

∂

∂a′k

∫
Λ(a′, θ′, a, θ)akaiaaj (a, θ)cij(a, θ)dadθ

= −L(aa) · c(a′, θ′) +∇a · L(a,a) · c(a′, θ′).

We can then proceed by induction. For t = 0 we have

ω̂0,k = −
∞∑
s=0

A0,sY ZZ,s,k−t+s − B0,k−t +∇a · C0,k−t

since all terms are 0. If it holds for t then

ω̂t+1,t+k+1 = L(a) · ω̂t,t+k −
∞∑
s=0

M · pxsŶt+s,t+k+s − bt,t+k +∇a · ct,t+k

= L(a) ·
(
−
∞∑
s=0

At,sŶs,k+s − Bt,t+k +∇a · Ct,t+k
)
−
∞∑
s=0

M · pxs−tŶs,k+s

− bt,t+k +∇a · ct,t+k

= −
∞∑
s=0

(
L(a) · At,s + as−t

)
Ŷs,k+s −

(
L(a) · Bt,t+k + bt,t+k

)
+ L(a) · ∇a · Ct,t+k +∇a · ct,t+k

= −
∞∑
s=0

At+1,sŶs,k+s −
(
L(a) · Bt,t+k + L(aa) · Ct,t+k + bt,t+k

)
+∇a ·

(
L(a,a) · Ct,t+k + ct,t+k

)
= −

∞∑
s=0

At+1,sŶs,k+s − Bt+1,t+k+1 +∇a · Ct+1,t+k+1.

Finally, we have that∫
xdΩ̂t,t+k =

∫
x∇a · ω̂t,t+kdadθ

= −
∫
xaω̂t,t+kdadθ

= −
∫
xa

(
−
∞∑
s=0

At,sŶs,k+s − Bt,t+k +∇a · Ct,t+k
)
dadθ

=
∞∑
s=0

(
I(a) · At,s

)
Ŷs,k+s + I(a) · Bt,t+k +

∫
xaa · Ct,t+kdadθ

=
∞∑
s=0

(
I(a) · At,s

)
Ŷs,k+s + I(a) · Bt,t+k + I(aa) · Ct,t+k
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as desired. Next∫
x̂tdΩ̂t+k =

∫
x̂t(a, θ)∇a · ω̂t+k(a, θ)dadθ = −

∫
x̂Za,t(a, θ)ω̂t+k(a, θ)dadθ = I(a)

Z,t · ω̂t+k

and similarly for
∫
x̂t+kdΩ̂t. Finally∫

x̂t,t+kdΩ∗ =
∞∑
s=0

∫
xt−sdΩ∗Ŷs,k+s +

∫
xt,t+kdΩ∗.

Adding the terms of
(∫
xdΩ

)
ZZ
· Ẑt,t+k +

(∫
xdΩ

)
ZZ
·
(
Ẑt, Ẑt+k

)
together completes the proof.

(b)Begin with ∫
xσσdΩ∗ +

(∫
xdΩ

)
Z

· Ẑσσ,t =

∫
x̂σσ,tdΩ∗ +

∫
xdΩ̂σσ,t

Starting with
∫
xdΩ̂σσ,t, as ω̂σσ,0 = 0 we can roll forward

ω̂σσ,t+1 = L(a) · ω̂σσ,t −
∞∑
s=0

M · pxs−tŶσσ,s −M · pxσσ

to obtain

ω̂σσ,t = −
∞∑
s=0

At,sŶσσ,s − Bσσ,t

where Bσσ,0 = 0 and Bσσ,t+1 = L(a) · Bσσ,t +M · pxσσ. Using integration by parts implies∫
x̄dΩ̂σσ,t =

∫
x∇a · ω̂σσ,tdadθ = −

∫
xaω̂σσ,tdadθ = −I(a) · ω̂σσ,t.

Adding to it ∫
x̂σσ,tdΩ∗ =

∞∑
s=0

∫
xt−sdΩ∗Ŷσσ,s +

∫
xσσdΩ∗

we have Hσσ,t =
∫

xσσdΩ∗ + I(a) · Bσσ,t. This is the same formula as Corollary 2 so Hσσ,t satisfies the

recursion Hσσ,t = Hσσ,t−1 + I(a) ·
(
L(a)

)t−1 · M · pxσσ.

Combining all of these insights implies that Proposition 2HA remains unchanged in the multivariate
extension.

B.3 Krusell and Smith with adjustment costs

Household problem Households hold shares in a mutual fund and date t holdings of i are denoted
by ai,t. Let Dt and Pt be the time t dividend and the price per share of the mutual fund. The household
problem is given by

max
ci,t,ii,t,ki,t

E
∑
t

βtU (ci,t)

subject to
ci,t + Ptai,t = Wt exp {θi,t}+ (Dt + Pt) ai,t−1

ai,t ≥ 0
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The Euler equation of the household is given by

1 = Et
(

βUc (ci,t+1)

Uc (ci,t) + ζi,t

)(
Dt+1 + Pt+1

Pt

)
(89)

where λi,t, ζi,t ≥ 0 are the Lagrange multiplier on the sequential budget and borrowing constraint
respectively.

Stochastic Discount Factors Define a process {mi,t} with mi,0 = 1 and
mi,t+1

mi,t
≡ βUc(ci,t+1)

Uc(ci,t)+ζi,t
. For

any positive process {oi,t} define Mt with M0 = 1 and Mt+1

Mt
=
∫
oi,t

mi,t+1

mi,t
di. Then aggregating (89) we

get that the value of the mutual fund satisfies

Pt = Et
∑
j

Mt+j

Mt
Dt+j .

Firms Problem Firms rent captal and hire workers on a spot market to produce using a Cobb
Douglas production function. Let Kt be the capital used in the production at date t, their optimality
gives us

Rkt = exp (Θt)K
α−1
t

Wt = (1− α) exp (Θt)K
α
t ,

Mutual Fund Problem The mutual fund owns physical capital, makes investments subject to
quadratic adjustment costs, rents out the capital to the corporate sector, and maximizes present value
of dividends. For a given {Mt}, the problem of the mutual fund is

max
Kt,Dt

E0

∑
t

MtDt

Dt = RktKt − It −
φ

2

(
It
Kt
− δ
)2

Kt

Kt+1 = (1− δ)Kt + It

Let Qt be the multiplier on the capital accumulation equation. The optimality of the mutual fund with
respect to It

Qt = 1 + φ

(
It
Kt
− δ
)

and with respect to Kt is

Et
Mt+1

Mt


Rkt+1 + φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1
− φ

2

(
It+1

Kt+1
− δ
)2

+ (1− δ)Qt+1

Qt

 = 1. (90)

Its easy to check that

Rkt+1 + φ
(
It+1

Kt+1
− δ
)
It+1

Kt+1
− φ

2

(
It+1

Kt+1
− δ
)2

+ (1− δ)Qt+1

Qt
=
Dt+1 +Qt+1Kt+2

QtKt+1
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and thus iterating on (90) we get

QtKt+1 = Pt = Et
∑
j

Mt+j

Mt
Dt+j .

Equilibrium The equilibrium is given by

ci,t + ki,t = Wt exp {θi,t}+Rtki,t−1 (91a)

λi,t = EtβUc (ci,t)Rt (91b)

Uc (ci,t) + ζi,t = Etλi,t+1 (91c)

ki,tζi,t = 0 (91d)

Wt − (1− α) exp (Θt)K
α
t = 0, (91e)

Rt =
(1− α) exp (Θt)K

α
t + φ

(
It
Kt
− δ
)
It
Kt
− φ

2

(
It
Kt
− δ
)2

+ (1− δ)Qt
Qt−1

(91f)

Kt+1 = (1− δ)Kt + It (91g)

Qt = 1 + φ

(
It

Kt−1
− δ
)
, (91h)∫

ki,tdi = QtKt+1. (91i)

To map the problem to Section 3.2 notation, use the following definitions

At−1 = [Qt−1,Kt]
ᵀ

Xt = [Qt,Kt,Wt, Rt, It]
ᵀ

ai,t−1 = [θi,t−1, ki,t−1]
ᵀ

xi,t = [ki,t, ci,t, λi,t, ζi,t]
ᵀ
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