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1 Introduction

Identifying the sources of welfare gains and losses is critical to assess the impact of shocks and
the desirability of policy interventions. This is a challenging task, however, especially in realistic
economies where different individuals have different preferences, consumption baskets, and factor
supply patterns, and where production technologies may rely on multiple factors and a complex
network of intermediate inputs.

In light of these complexities, this paper introduces a decomposition of welfare assessments
that applies to general economies with heterogeneous individuals and disaggregated production
technologies. We refer to this approach as welfare accounting in contrast to traditional growth
accounting, which seeks to trace the sources of output growth, not welfare. Welfare accounting is
useful i) to identify and quantify the ultimate origins of welfare gains and losses induced by changes
in allocations, technologies, or factor endowments and ii) to characterize efficiency conditions.

We consider a static environment in which heterogeneous individuals consume different goods
and supply different factors, and goods can be produced using other goods and factors. Our
results allow for elastic and fixed factors and make no assumptions about the homotheticity of
utility and production functions. Critically and in contrast to existing work, the welfare accounting
decomposition is exclusively based on preferences and technologies, and does not rely on assumptions
about the (optimizing) behavior of agents, firm objectives, individual budget constraints, prices, or
the notion of equilibrium.

The welfare accounting decomposition applies to welfare assessments under general social
welfare functions (SWF). We initially leverage the results of Dávila and Schaab (2022) to separate
welfare assessments into an aggregate efficiency and a redistribution component.1 A central property
of this decomposition is that aggregate efficiency does not depend on the choice of SWF—only
redistribution does. For that reason, we study aggregate efficiency in Sections 3 through 5, and
redistribution in Section 6.

Aggregate efficiency consists of individual efficiency and production efficiency. Individual
efficiency captures efficiency welfare gains and losses due to the reallocation of consumption and
factor supply among individuals. Theorem 1a decomposes individual efficiency into two components.
First, cross-sectional consumption efficiency measures welfare gains associated with reallocating
consumption of a good from individuals who value it less to individuals who value it more, for a
given level of aggregate consumption of the good. Second, cross-sectional factor supply efficiency
measures welfare gains from reallocating the supply of a factor from individuals for whom supplying
it is more costly to individuals for whom supplying it is less costly, for a given level of aggregate
supply of the factor.

Production efficiency captures efficiency welfare gains and losses associated with the economy’s

1 While that paper takes the mapping between allocations and policies or shocks as given and focuses on how
different planners trade off different normative considerations, this paper exploits resource constraints and production
technologies to identify the ultimate origins of welfare gains and losses.
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production side. It comprises allocative efficiency gains due to adjusting intermediate inputs
and factors as well as technical efficiency gains from primitive changes in technologies and factor
endowments. Theorem 1b decomposes production efficiency into six components. First, cross-
sectional intermediate input efficiency measures the welfare gains from reallocating intermediate
inputs from less to more socially desirable uses, for a given level of aggregate intermediate use.
Second, aggregate intermediate input efficiency measures the welfare gains from adjusting the share
of output that is consumed instead of used in production, for a given level of output. Third,
cross-sectional factor efficiency measures the welfare gains from reallocating factors from less to
more socially desirable uses, for a given level of aggregate factor use. Fourth, aggregate factor
efficiency measures the welfare gains from adjusting the supply of factors. Finally, the technology
growth and factor endowment growth components measure the direct welfare gains from primitive
changes in technologies or factor endowments.

A central contribution of the welfare accounting decomposition is to identify the precise welfare-
relevant statistics that translate physical changes in allocations, technologies, and endowments
into welfare changes. These statistics are i) marginal rates of substitution (MRS), which measure
the value of increases in individual consumption or factor supply; ii) aggregate marginal rates of
substitution (AMRS), which measure the social value of changes in aggregate consumption or factor
supply; iii) marginal welfare products (MWP ), which measure the value of increasing the use of an
input or factor in production; iv) aggregate marginal welfare products (AMWP ), which measure
the social value of changes in aggregate intermediate use or factor use; and v) marginal social
values of output (MSV ), which measure the social value of having an additional unit of a particular
good. When combined with changes in allocations or primitives, these statistics are sufficient to
compute the welfare impact of any perturbation. The MSV of output is a central object for welfare
accounting because it is the sole determinant of the efficiency gains from pure technological change,
and it governs marginal welfare products, which in turn determine each component of production
efficiency.

In Section 4, we leverage the welfare accounting decomposition to characterize efficiency
conditions, generalizing the classic efficiency conditions in Lange (1942), Samuelson (1947), and
Mas-Colell et al. (1995). This is, to our knowledge, the first general characterization of efficiency
conditions for disaggregated production economies with heterogeneous individuals.

Theorems 2a and 2b summarize the necessary conditions for individual and production efficiency.
Individual efficiency requires the equalization of marginal rates of substitution for all individuals who
consume a good or supply a factor, allowing individuals who do not consume a good (or supply a
factor) to have lower (higher) marginal rates of substitution. Cross-sectional intermediate input and
factor efficiency require the equalization of MWP across all uses of an input or a factor, allowing
for potentially lower MWP when a good or factor is not used to produce another. Aggregate
intermediate input efficiency requires the equalization of AMWP with AMRS for all mixed goods.
For pure final goods, the AMRS must be higher than the highest MWP of using the good in
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production. For pure intermediate goods, the AMWP must be higher than the highest individual
MRS when consuming it. Finally, aggregate factor efficiency requires the equalization of AMWP

with AMRS for all factors in positive elastic supply.
A central message of this paper is that properly accounting for the non-negativity constraints

that define feasible allocations is critical to characterize efficiency conditions and trace the origins
of welfare gains and losses. This is particularly important when production is disaggregated—since
disaggregated production networks are sparse—and when individuals are heterogeneous and consume
different (disjoint) consumption bundles. In particular, we show that the classic efficiency conditions
apply to interior links between mixed goods and/or elastic factors, but fail to hold otherwise, in
particular when pure intermediate goods are involved. In general, we show that MWP and MRS

are the appropriate objects to characterize efficiency conditions, rather than MRS and MRT

(marginal rates of transformation), as in the classic approach.
After identifying the conditions that define allocative efficiency, Theorem 2c characterizes the

MSV of output—which determines the technology growth component of the welfare accounting
decomposition—at an efficient allocation. Since efficiency ensures that the value of a good must be
the same whether it is consumed or used as an input, we show that MSV exactly corresponds to
AMRS for final goods, to AMWP for intermediate goods, and to both for mixed goods.

Our results until Section 5 require no assumptions about the (optimizing) behavior of agents,
individual budget constraints, prices, or notions of equilibrium. It is nonetheless valuable to specialize
the welfare accounting decomposition to competitive economies, which we do in Section 5, since
prices are directly informative about the welfare-relevant statistics. Starting from our baseline
environment, we assume that individuals maximize utility and technologies are operated by firms
that minimize costs. To allow for distortions, we saturate all choice margins with wedges.

Theorem 3a characterizes the MSV of output in competitive economies with wedges: It equals
the competitive price augmented by an aggregate output wedge term that captures average distortions
in consumption and intermediate input use. Intuitively, the presence of aggregate consumption and
intermediate input wedges implies that there are goods that are over- or under-produced. Hence, the
MSV of output for goods that ultimately increase the output of under-produced (over-produced)
goods is higher (lower) than the price. Theorem 3a provides a converse result to Hulten’s theorem
that has been missing from the existing literature: The condition that ensures that prices equal the
MSV of a good is that aggregate output wedges are zero.

We provide a new general Hulten’s theorem, which applies to frictionless competitive economies
with heterogeneous individuals, elastic and fixed factors, arbitrary preferences and technologies,
and arbitrary social welfare functions. Its generality allows us to systematically discuss the many
qualifications associated with this result. In particular, we show that Hulten’s theorem applies to
frictionless competitive economies, not to efficient economies, as typically formulated. Moreover, we
show that Hulten’s theorem is fundamentally a result about aggregate efficiency, not about final
output or welfare.
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Theorem 3b specializes the allocative efficiency components of the welfare accounting decom-
position to competitive economies with wedges. A central takeaway from this analysis is that
equalization of marginal revenue products is not sufficient for cross-sectional intermediate input or
factor efficiency: Efficiency requires the equalization of marginal welfare products across uses of an
intermediate input or a factor, while competition—when intermediate input or factor use wedges
are zero—only enforces the equalization of marginal revenue products across uses.

Our analysis up to Section 5 focuses on aggregate efficiency. However, perturbations with
identical efficiency implications may have different distributional implications. Theorem 4a in Section
6 decomposes redistribution gains or losses into four components: Cross-sectional consumption and
factor supply redistribution capture redistribution gains due to the reallocation of consumption and
factor supply shares, for given aggregate levels of consumption and factor supply. And aggregate
consumption and factor supply redistribution capture redistribution gains due to changes in aggregate
consumption and factor supply, for given shares. Critically, the choice of SWF will directly impact
the welfare gains from redistribution and its components.

Before concluding, we explicitly discuss the relation between welfare accounting, as developed
in this paper, and the well-established approach of growth accounting. Growth accounting measures
the contribution of different inputs to final output, indirectly computing technological growth as a
residual. Instead, welfare accounting attributes aggregate welfare gains to different sources. We also
show how to use the welfare accounting decomposition to conduct growth accounting.

Finally, we conclude with a quantitative application that illustrates the welfare accounting
decomposition in a disaggregated model of the macroeconomy along the lines of La’O and Tahbaz-
Salehi (2022). We compute the optimal monetary policy response to a technology shock in a static,
multi-sector heterogeneous-agent New Keynesian model with an input-output production network.
We contrast the aggregate efficiency welfare gains from stabilization policy with its impact on
redistribution and decompose the former into its allocative efficiency components.

Related literature. Our results are most closely related to the classic studies of efficiency—see
Lange (1942), Samuelson (1947) or, for a modern treatment, Section 16.E of Mas-Colell et al. (1995).
This body of work proves the welfare theorems by first characterizing conditions for efficiency in a
planned economy and then showing that allocations in frictionless competitive economies satisfy
these conditions.2 While the classic approach to efficiency assumes that all goods are final or mixed,
our general results show that allowing for pure intermediate goods substantially changes the nature
of efficiency conditions.3 Moreover, while Lange (1942) characterizes efficiency conditions, neither
that paper nor subsequent literature presents welfare decompositions of the form introduced in
Theorems 1a and 1b.

2 While the classic proofs of the first welfare theorem provide useful insights into the relation between competition
and efficiency, they are not the most general—see instead Arrow (1951) and Debreu (1951). Our approach is subject
to the same advantages and disadvantages as the classic approach—see Geanakoplos (1989) for a discussion.

3 By emphasizing the critical role played by pure intermediate goods, our results connect to the recent work on
global value chains—see Antràs and Chor (2022) for a recent survey.
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The welfare accounting decomposition introduced in this paper is also related to the vast
literature on growth accounting that follows Solow (1957) and includes Hall (1990), Basu and
Fernald (2002), and Baqaee and Farhi (2020), among many others. At times and to different
degrees, this body of work draws connections between output growth and welfare gains—see for
instance Basu and Fernald (2002), Basu et al. (2022), or Baqaee and Burstein (2022a). A common
challenge for this literature is to aggregate among heterogeneous individuals. By using the approach
introduced in Dávila and Schaab (2022), we are able to make aggregate welfare assessments and
to separate efficiency from redistribution considerations without relying on prices. This in turn
allows us to characterize the welfare accounting decomposition exclusively in terms of preferences
and technologies, making no assumptions about the (optimizing) behavior or budget constraints of
agents, prices, or notions of equilibrium. This contrasts our results from Baqaee and Farhi (2020),
whose decomposition is based on markups and prices and assumes cost minimization, as well as
Baqaee and Burstein (2022b), whose welfare results also rely on prices. More broadly our paper
continues an agenda that seeks to understand the origins of welfare gains in general economies.

Our results build on the literature on multi-sector production networks.4 A central result
of this literature is Hulten’s theorem (Hulten, 1978), which characterizes the aggregate impact
of technological change. Instead of directly imposing a competitive structure, we provide a first-
principles characterization of the MSV of output—which in turn determines the aggregate impact of
technology—based on preferences and technologies. Liu (2019) presents a statistic that summarizes
the social value of subsidizing inputs and factors. While related, our characterization of MSV

differs because it i) makes no assumptions about optimizing behavior, budget constraints, or prices,
and ii) considers a perturbation in the level of output rather than price subsidies. By specializing
the MSV of output to competitive environments, we are then able to provide the most general
Hulten-style result to date. We show that Hulten’s theorem is fundamentally a result about aggregate
efficiency—not about final output or welfare—that applies to frictionless competitive economies—not
efficient economies. Bigio and La’O (2020) show that Hulten’s theorem is valid for production
efficiency, rather than output, in an environment with a single individual and elastic factor supply.

Finally, our results also relate to the work that defines measures of changes in living standards,
potentially refining popular notions like GDP. See Nordhaus and Tobin (1973) for an earlier account
of these ideas and Fleurbaey (2009), Jones and Klenow (2016), and Basu et al. (2022) for modern
treatments. The welfare accounting decomposition can be used to show that GDP changes only
correspond to welfare changes in very specific scenarios. In general, welfare assessments must also
account for individual efficiency, factor supply costs, and redistribution. We hope that the welfare
accounting decomposition spurs future measurement efforts.

4 This literature includes, among many others, Gabaix (2011), Jones (2011), Acemoglu et al. (2012), Bigio and
La’O (2020), Liu (2019), Baqaee and Farhi (2018, 2020), Acemoglu and Azar (2020), and Kopytov et al. (2022). See
Carvalho and Tahbaz-Salehi (2019) and Baqaee and Rubbo (2022) for recent surveys.
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2 Environment and Social Welfare

We first introduce preferences, technologies, and resource constraints, and then define feasible
allocations and perturbations. We conclude this section by describing our approach to welfare
aggregation, which separates efficiency from redistribution considerations.

2.1 Preferences, Technologies, and Resource Constraints

We consider a static economy populated by a finite number I ≥ 1 of individuals, indexed by
i ∈ I = {1, . . . , I}.5 There are J ≥ 1 goods, indexed by j ∈ J = {1, . . . , J} and F ≥ 0 factors,
indexed by f ∈ F = {1, . . . , F}. While goods are produced using goods and factors as inputs,
factors are either directly supplied by individuals or appear as an endowment.

An individual i derives utility from consuming goods and (dis)utility from supplying factors,
according to the utility function

(Preferences) Vi = ui

({
cij
}

j
,
{
nif,s

}
f

)
, (1)

where cij denotes the final consumption of good j by individual i and nif,s denotes the amount of
factor f supplied by individual i (the superscript s stands for factor supply).

Goods are produced using technologies that take goods and factors as inputs. The production
function for good j, denoted by Gj(·) ≥ 0, is given by

(Technologies) yj = Gj
({
xjk
}

k
,
{
nif,d

}
f

; θ
)
, (2)

where yj denotes the output of good j, xjk denotes the amount of good k used in the production of
good j, and njf,d denotes the amount of factor f used in the production of good j (the superscript
d stands for factor demand). We use the index k ∈ J to refer to goods used as intermediates. For
clarity, we typically use K to denote the number of intermediate inputs, although K = J . We
parametrize production functions by θ to consider perturbations to technology, as described below.

The resource constraint for good j is

(Resource Constraints: Goods) yj =
∑

i

cij +
∑

k

xkj , (3)

where cj =
∑

i c
ij represents the amount of good j that is consumed (aggregate consumption), while

xj =
∑

k x
kj represents the amount of good j used in production (aggregate intermediate use).

5 In this paper, we exclusively consider static economies with a finite number of individuals, goods and factors. In
ongoing work, we extend the approach of this paper to dynamic stochastic economies with incomplete markets, which
opens a new set of nontrivial considerations. All our results straightforwardly generalize to the case with a continuum
of individuals, goods, and factors; see Section 8 for an illustration.
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Equation (3) can also be written as yj = cj + xj . The resource constraint for factor f is

(Resource Constraints: Factors)
∑

i

nif,s +
∑

i

n̄if,s(θ) =
∑

j

njf,d, (4)

where n̄if,s(θ) represents i’s endowment of factor f . We denote by n̄f (θ) =
∑

i n̄
if,s(θ) the aggregate

endowment of factor f , and by nf,s =
∑

i n
if,s and nf,d =

∑
j n

jf,d its aggregate (elastic) supply
and factor use. Equation (4) can also be written as nf,s + n̄f (θ) = nf,d. We parametrize n̄if,s(θ) by
θ to consider perturbations to factor endowments.

2.2 Feasible Allocations and Perturbations

Definition 1 describes a feasible allocation. Binding non-negativity constraints play a central role in
our analysis.

Definition 1 (Feasible allocation). An allocation {cij , nif,s, xjk, njf,d, yj} is feasible if equations
(2) through (4) hold and the non-negativity constraints cij ≥ 0, nif,s ≥ 0, xjk ≥ 0, njf,d ≥ 0, and
yj ≥ 0 are satisfied.

We assume that preferences and technologies are differentiable and that all variables are smooth
functions of a perturbation parameter θ ∈ [0, 1], so derivatives such as dcij

dθ , dxjk

dθ , or dnif,d

dθ are
well-defined.6

Feasible perturbations dθ have a dual interpretation. First, a perturbation may capture
exogenous changes in technologies or endowments, but also changes in policies (e.g., taxes, subsidies,
transfers, etc.) or any other primitive of a fully specified model (e.g., trade costs, markups, bargaining
power, etc.). Under this interpretation, the mapping between allocations and θ emerges endogenously
and accounts for equilibrium effects. Second, a perturbation may alternatively capture changes in
feasible allocations directly chosen by a planner. This second interpretation is useful to characterize
efficiency conditions, as we explain in Section 4.

In contrast to most prior work on disaggregated production economies, our environment features
heterogeneous individuals, allows for elastic factor supplies, and imposes no assumption on the
homotheticity of utility and production functions. Until Section 5, we also make no assumptions
about the (optimizing) behavior of agents, firm objectives, individual budget constraints, prices, or
the notion of equilibrium.

2.3 Social Welfare: Aggregate Efficiency and Redistribution

We use conventional social welfare functions (SWF) to make aggregate welfare assessments and
leverage the welfare decomposition introduced in Dávila and Schaab (2022) to separate efficiency

6 To simplify the exposition, we assume throughout that i) consumption is (weakly) desirable but supplying factors
is not, i.e., ∂ui

∂cij ≥ 0 and ∂ui

∂nif,s ≤ 0; ii) the marginal products of using intermediates and factors are (weakly) positive,
i.e., ∂Gj

∂xjk ≥ 0 and ∂Gj

∂njf,d ≥ 0; and iii) the no-free-lunch property holds, i.e., Gj(·) = 0 if xjk = 0, ∀k, and njf,d = 0,
∀f . Many of our results, including the welfare accounting decomposition, do not require such restrictions.
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from redistribution considerations. Formally, social welfare for a welfarist planner with SWF W(·)
is given by

(Social Welfare Function) W = W
(
V1, . . . , Vi, . . . , VI

)
, (5)

where individual utilities Vi are defined in (1). A welfare assessment can thus be expressed as

dW

dθ
=
∑

i

∂W
∂Vi

dVi

dθ
=
∑

i

αiλi
dVi
dθ

λi
, (6)

where αi = ∂W/∂Vi denotes the social marginal welfare gain of increasing individual i’s utility,
which we assume to be strictly positive, and λi is an individual normalizing factor that allows us to
express individual welfare gains or losses in units of a common welfare numeraire.7 In particular,
since the units of λi are dim(λi) = utils of individual i

units of numeraire , individual welfare gains or losses dVi
dθ /λ

i are
measured in units of the common welfare numeraire, with dim

(dVi
dθ /λ

i
)

= units of numeraire
units of θ , ∀i. The

only restriction when choosing the welfare numeraire is that λi must be strictly positive for all
individuals, so λi > 0.8

Lemma 1 derives Dávila and Schaab (2022)’s aggregate additive decomposition of welfare
assessments for a normalized welfarist planner in our environment.

Lemma 1 (Welfare Decomposition: Aggregate Efficiency vs. Redistribution). The aggregate welfare
assessment of a perturbation for a normalized welfarist planner, dW λ

dθ , can be decomposed into an
aggregate efficiency component, ΞAE, and a redistribution component, ΞRD, as

dW λ

dθ
=

dW
dθ∑
i

αiλi

I

=
∑

i

ωi
dVi
dθ

λi
=
∑

i

dVi
dθ

λi︸ ︷︷ ︸
=ΞAE

+CovΣ
i

[
ωi,

dVi
dθ

λi

]
︸ ︷︷ ︸

=ΞRD

, (7)

where ωi = αiλi∑
i

αiλi/I
and where CovΣ

i [·, ·] = I · Covi[·, ·] denotes a cross-sectional covariance-sum
among all individuals.

The aggregate efficiency component ΞAE corresponds to the (unweighted) sum of individual gains
or losses expressed in units of the common welfare numeraire. It can thus be interpreted as an
aggregate willingness-to-pay for the perturbation, which corresponds to a Kaldor-Hicks interpretation

7 As in Boadway and Bruce (1984), Kaplow (2011), or Saez and Stantcheva (2016), we refer to the use of
SWFs—typically traced back to Bergson (1938) and Samuelson (1947)—as the welfarist approach. The framework
in Dávila and Schaab (2022) encompasses welfare objectives more general than the welfarist approach, and it is
straightforward to extend our results to those. As explained there, this may be helpful to make global welfare
assessments based on equivalent or compensating variations in additive or multiplicative form.

8 While we derive our results for a general normalizing factor λi, the marginal value of wealth expressed in nominal
units (e.g., dollars) is the most natural normalization. In that case, λi is measured in utils of individual i

dollars and dVi
dθ
/λi is

measured in dollars
units of θ

. In particular applications, it may be useful to consider alternative welfare numeraires. For
instance, one may choose the marginal utility of consuming a particular good or supplying a particular factor; e.g., if
good 1 is chosen as welfare numeraire, then λi = ∂ui

∂ci1 , ∀i.
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of efficiency. The redistribution component ΞRD corresponds to the cross-sectional covariance-sum
of normalized individual weights ωi with changes in individual utilities expressed in units of the
common numeraire. The individual weights ωi—which average to one, so

∑
i ω

i/I = 1—capture the
social marginal valuation of welfare changes for individual i in units of the common numeraire.

The decomposition of Lemma 1 satisfies several properties relevant for our subsequent analysis—
see Dávila and Schaab (2022). Three are worth highlighting. First, the efficiency component ΞAE of
the welfare assessment of any perturbation is invariant to the choice of SWF. Therefore, discrepancies
in the welfare assessments of welfarist planners are exclusively due to redistribution considerations.
This property motivates the structure of our analysis, first studying efficiency in Sections 3 through
5, and then revisiting redistribution in Section 6. Second, given a choice of welfare numeraire, the
aggregate efficiency component ΞAE is also invariant to increasing transformations of individual
utilities. Finally, the redistribution component ΞRD is zero when there is a single individual, so
I = 1, or when the planner can costlessly implement lump-sum transfers across individuals, which
is again consistent with a Kaldor-Hicks interpretation. Together, these properties support the
view that ΞAE captures the aggregate welfare impact of a perturbation, while ΞRD captures how a
particular SWF trades off the differential impact of the perturbation across individuals.

3 Accounting for the Origins of Efficiency Gains and Losses

This section develops the central welfare accounting result for efficiency: a decomposition that
accounts for the origins of efficiency welfare gains and losses. In particular, the aggregate efficiency
component of a welfare assessment, ΞAE , can be decomposed into an individual efficiency component,
ΞAE, I , and a production efficiency component, ΞAE, P , as

ΞAE = ΞAE, I + ΞAE, P , (8)

where both components can be further decomposed, as illustrated in Figure 1 and explained in
detail in the remainder of this paper. We study individual efficiency in Section 3.1 and production
efficiency in Section 3.2. We explore broader insights from the welfare accounting decomposition in
Section 3.3 and illustrate each of its components with examples in Section 3.4.

3.1 Individual Efficiency

3.1.1 Allocation Shares: Consumption and Factor Supply

To study individual efficiency, we first introduce consumption and factor supply allocations shares.
Working with shares, instead of directly with levels, allows us to distinguish welfare gains and losses
due to reallocation from those due to changes in aggregates.

Formally, we define the (individual) consumption share of good j for individual i, χij
c , and the
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factor supply share of factor f for individual i, χif,s
n , as

χij
c =



cij

cj if cj > 0
dcij

dθ
dcj

dθ

if cj = 0 and dcj

dθ > 0

0 if cj = 0 and dcj

dθ = 0

and χif,s
n =



nif,s

nf,s if nf,s > 0
dnif,s

dθ
dnf,s

dθ

if nf,s = 0 and dnf,s

dθ > 0

0 if nf,s = 0 and dnf,s

dθ = 0.

(9)

Consumption shares χij
c represent either the share of aggregate consumption cj consumed by

individual i, when cj > 0, or the share of the change in aggregate consumption dcj

dθ consumed by
individual i, when cj = 0 and dcj/dθ > 0. Factor supply shares χif,s

n are defined analogously. The
definitions of shares in equation (9) ensure that changes in individual consumption and factor supply
can be expressed as

dcij

dθ
= dχij

c

dθ
cj + χij

c

dcj

dθ
and dnif,s

dθ
= dχif,s

n

dθ
nf,s + χif,s

n

dnf,s

dθ
, (10)

even when cj = 0 or nf,s = 0.

3.1.2 Individual Efficiency Decomposition

Individual efficiency captures efficiency welfare gains and losses associated with the reallocation of
consumption and factor supply among individuals.

Theorem 1a (Individual Efficiency). The individual efficiency component of aggregate efficiency,
ΞAE, I , can be decomposed into i) cross-sectional consumption efficiency and ii) cross-sectional factor
supply efficiency, as

ΞAE, I =
∑

j

CovΣ
i

[
MRSij

c ,
dχij

c

dθ

]
cj

︸ ︷︷ ︸
Cross-Sectional

Consumption Efficiency

−
∑

f

CovΣ
i

[
MRSif

n ,
dχif,s

n

dθ

]
nf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Efficiency

,

where (individual) marginal rates of substitution for individual i between good j and the numeraire,
MRSij

c , and between factor f and the numeraire, MRSif
n , are given by

MRSij
c =

∂ui
∂cij

λi
and MRSif

n = −
∂ui

∂nif,s

λi
, (11)

and where CovΣ
i [·, ·] = I · Covi[·, ·] denotes a cross-sectional covariance-sum among all individuals.

Cross-sectional consumption efficiency measures the welfare gains associated with reallocating
consumption of good j from individuals who value it less (with a lower MRSij

c ) to individuals who
value it more (with a higher MRSij

c ), for a given level of aggregate consumption cj .9 Analogously,

9 The marginal rate of substitution MRSij
c measures the value of a marginal increase in consumption of good j

for individual i in units of the numeraire. Analogously, MRSif
n measures the cost of a marginal increase in the supply

of factor f for individual i in units of the numeraire.
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cross-sectional factor supply efficiency measures the welfare gains associated with reallocating the
supply of factor f from individuals for whom increasing factor supply is more costly (with a higher
MRSif

n ) to individuals for whom increasing factor supply is less costly (with a lower MRSif
n ), for a

given aggregate (elastic) supply of factor f , nf,s.
Individual efficiency satisfies several desirable properties of practical relevance.

Corollary 2 (Properties of Individual Efficiency Decomposition).

(a) (Single Individual) In economies with a single individual (I = 1), individual efficiency is zero.

(b) (Zero Factor Supply) In economies in which factors are not elastically supplied, so nf,s = 0
for all factors, cross-sectional factor supply efficiency is zero.

(c) (Equalized MRSij
c or MRSif

n ) If marginal rates of substitution for good j (factor f) are
identical across individuals for all goods (factors) with cj > 0 (nf,s > 0), then cross-sectional
consumption (factor supply) efficiency is zero.

Since individual efficiency welfare gains arise by reallocating consumption and factor supply across
individuals, individual efficiency must be zero in single individual economies.10 Relatedly, in
economies in which individuals do not derive (dis)utility from factor supply, cross-sectional factor
supply efficiency is zero. Lastly, only when individuals value consuming the same good or supplying
the same factor differently is there scope to find welfare gains from reallocating either.

3.2 Production Efficiency

3.2.1 Allocation Shares: Intermediate Input and Factor Use

To study production efficiency, we first introduce allocation shares for intermediate input and factor
use. Once again, working with shares allows us to distinguish welfare gains and losses due to
reallocation from those due to changes in aggregates.

Formally, we define the intermediate share of good k, ϕk
x, and the intermediate use share of

good k used to produce good j, χjk
x , as

ϕk
x =



xk

yk if yk > 0
dxk

dθ
dyk

dθ

if yk = 0 and dyk

dθ > 0

0 if yk = 0 and dyk

dθ = 0

and χjk
x =


xjk

xk if xk > 0
dxjk

dxk if xk = 0 and dxk

dθ > 0

0 if xk = 0 and dxk

dθ = 0.

(12)

The intermediate share of good k, ϕk
x, represents either the share of output yk devoted to production,

when yk > 0, or the share of the change in output dyk

dθ devoted to production, when yk = 0 and
dyk

dθ > 0. When ϕk
x > 0, its complement defines the aggregate consumption share ϕk

c = 1 − ϕk
x. The

10 Individual efficiency and redistribution are completely different notions, even though both require individual
heterogeneity. In particular, the choice of SWF does not affect individual efficiency but it directly impacts redistribution.
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intermediate use share of good k, χjk
x , represents either the share of good k’s aggregate intermediate

use devoted to the production of good j, when xk > 0, or its counterpart in changes when xk = 0
and dxk

dθ > 0.11

Finally, we also define the intermediate-output share of good k by ξjk = χjk
x ϕ

k
x, which cor-

responds to xjk

yk when yk > 0 or to its counterpart in changes when yk = 0 and dyk

dθ > 0. These
definitions of shares ensure that changes in intermediate use can be expressed as

dxjk

dθ
= dξjk

dθ
yk + ξjk dy

k

dθ
, where dξjk

dθ
= dχjk

x

dθ
ϕk

x + χjk
x

dϕk
x

dθ
, (13)

even when yk = 0 and xk = 0. Expression (13) initially decomposes level changes in the use xjk of
good k in the production of good j into two terms. First, changes in the intermediate-output share
dξjk

dθ change xjk in proportion to the level of output yk. Second, changes in the level of output dyk

dθ

change xjk in proportion to the intermediate-output share ξjk. In turn, changes in the intermediate-
output share dξjk

dθ can occur either due to reallocation of good k across different intermediate uses—a
change in the intermediate use share χjk

x —or due to reallocation from consumption to production—a
change in the intermediate share ϕk

x.
At last, we define the factor use share of factor f used to produce good j, χjf,d

n , as

χjf,d
n =



njf,d

nf,d if nf,d > 0
dnjf,d

dθ
dnf,d

dθ

if nf,d = 0 and dnf,d

dθ > 0

0 if nf,d = 0 and dnf,d

dθ = 0.

(14)

The factor use share χjf,d
n represents the share of factor f ’s aggregate use nf,d devoted to the

production of good j, or its counterpart in changes when nf,d = 0 and dnf,d

dθ > 0.12 In this case,
equation (14) ensures that changes in factor use can be expressed as

dnjf,d

dθ
= dχjf

n

dθ
nf,d + χjf,d

n

dnf,d

dθ
. (15)

even when njf,d = 0. Equation (15) decomposes level changes in the use njf,d of factor f in the
production of good j into a change in the factor use share, dχjf

n
dθ , and a change in the aggregate

factor use, dnf,d

dθ .

11 Depending on ϕk
x, good k can be i) pure final, when ϕk

x = 0; ii) pure intermediate, when ϕk
x = 1; or iii) mixed,

when ϕk
x ∈ (0, 1). Equivalently, good k can be i) final when ϕk

x ∈ [0, 1) or ii) intermediate, when ϕk
x ∈ (0, 1], with

mixed goods being simultaneously final and intermediate. These categorizations are only meaningful when yk > 0 or
dyk

dθ
> 0. Depending on χjk

x , an intermediate input k is i) specialized, when χjk
x = 1 for some j; or diversified, when

χjk
x ∈ (0, 1) for some j.

12 A factor f is i) specialized, when χjf,d
n = 1 for some j; or diversified, when χjf,d

n ∈ (0, 1) for some j.
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3.2.2 Network Propagation: Output Inverse Matrix

To study production efficiency it is necessary to understand how perturbations propagate through
the production network. Lemma 3 introduces the output inverse matrix Ψy, which characterizes
the ultimate change in output induced by a unit impulse in output levels.13

Lemma 3 (Output Inverse Matrix). Changes in output can be expressed in terms of changes in
intermediate-output shares dξjk

dθ , changes in factor use dnjf,d

dθ , and changes in technology ∂Gj

∂θ , as

dyj

dθ
=
∑

k

∂Gj

∂xjk
ξjk dy

k

dθ︸ ︷︷ ︸
Propagation

+
∑

k

∂Gj

∂xjk

dξjk

dθ
yk +

∑
f

∂Gj

∂njf,d

dnjf,d

dθ
+ ∂Gj

∂θ︸ ︷︷ ︸
Impulse

. (16)

Equivalently, in matrix form,

dy

dθ
= Ψy︸︷︷︸

Propagation

(
Gx

dξ

dθ
y + Gn

dnd

dθ
+ Gθ

)
︸ ︷︷ ︸

Impulse

where Ψy = (IJ − Gxξ)−1

︸ ︷︷ ︸
Output Inverse

, (17)

where dy
dθ denotes the J × 1 vector of dyj

dθ , and Ψy = (IJ − Gxξ)−1 defines the J × J output inverse
matrix. The remaining matrices are defined in Appendix A.

Lemma 3 characterizes how much output is ultimately produced in response to changes in
intermediate-output shares, factor use, and technology, accounting for network propagation. Con-
sider the three “impulse” terms of equation (16), which represent the first-round impact of the
perturbation on the level of output. First, a perturbation that changes intermediate-output shares
by dξjk

dθ raises at impact the amount of good k used as input for good j in proportion to yk, which in
turn increases output at impact by ∂Gj

∂xjk . Similarly, a perturbation that changes the use of factor f
in the production of good k by dnkf,d

dθ increases output at impact by ∂Gj

∂njf,d . A change in technology
simply increases output at impact by ∂Gj

∂θ .
Such first-round changes in the level of output in turn induce further changes in the level of

intermediate inputs, which in turn induce further changes in output. These knock-on effects through
the output network are captured by the output inverse matrix Ψy. Under regularity conditions,
which we assume hold at all times, Ψy admits the series representation

Ψy = (IJ − Gxξ)−1 = IJ + Gxξ + (Gxξ)2 + (Gxξ)3 + . . . . (18)

The first term in the expansion, IJ , represents the first round of output changes we just described. As
13 In Appendix C.2, we introduce two related propagation matrices: the intermediate inverse matrix Ψx, which

characterizes network propagation for changes in the level of intermediates; and the proportional output inverse matrix
Ψ̃y = ŷ−1Ψyŷ, where ŷ = diag(y), which characterizes network propagation for proportional changes in output. To
simplify the exposition, we exclusively use the output inverse matrix in the body of the paper, but all three matrices
are useful to understand network propagation, as explained in the Appendix.
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output adjusts, the level of intermediate inputs xjk changes in proportion to the intermediate-output
share ξjk, or ξ in matrix form. In turn, changes in the level of intermediate inputs translate into
a second round of changes in output in proportion to the marginal products of each input ∂Gj

∂xjk ,
or Gx in matrix form. This explains the second term Gxξ in (18), which generates knock-on
effects in proportion to (Gxξ)2 and so on. We refer to the conclusion of this fixed point of network
propagation as the ultimate output change induced by the original perturbation.

3.2.3 Welfare-Relevant Statistics

In this section, we introduce the three sets of welfare-relevant statistics that determine production
efficiency. These objects represent the welfare impact of specific perturbations in the levels of
consumption, factor supply, output, intermediate use, or factor use. First, we introduce aggregate
marginal rates of substitution (AMRS).

Definition 2 (Aggregate Marginal Rate of Substitution). We define the aggregate marginal rate of
substitution (AMRS) between good j and the numeraire and between factor f and the numeraire as

AMRSj
c =

∑
i

χij
c MRSij

c and AMRSf
n =

∑
i

χif,s
n MRSif,s

n , (19)

where consumption and factor supply shares χij
c and χif,s

n are defined in (9) and individual marginal
rates of substitution MRSij

c and MRSif,s
n are defined in (11). We denote the 1 × J and 1 × F

vectors of AMRSj
c and AMRSf

n by AMRSc and AMRSn.

Aggregate marginal rates of substitution for goods and factors are cross-sectional weighted averages
of individual marginal rates of substitution. For goods with cj > 0 or dcj

dθ > 0, AMRSj
c corresponds

to the welfare gain associated with increasing aggregate consumption of good j by a unit, making
individuals consume in proportion to their consumption shares. For factors with nf,s > 0 or dnf,s

dθ > 0,
AMRSf

n corresponds to the welfare cost associated with increasing the aggregate supply of factor f
by a unit, making individuals supply the factor in proportion to their factor supply shares.14

Second, we introduce the marginal social value of output (MSV).

Definition 3 (Marginal Social Value of Output). We define the marginal social value of output of
good j, MSV j

y , as the jth element of the 1 × J vector MSVy, given by

MSVy = AMRScϕcΨy, (20)

where AMRSc is defined in (19), ϕc is the J × J diagonal matrix of aggregate consumption shares
defined in Appendix A, and Ψy is the J × J output inverse matrix defined in (17).

14 When cj = dcj

dθ
= 0 or nf,s = dnf,s

dθ
= 0, the definition of shares in (9) implies that AMRSj

c = 0 and AMRSf
n = 0,

so these AMRS cannot correspond to the welfare gain or loss associated with changing aggregate consumption or
factor supply. This is purely a notational convention to simplify the exposition: we will show that the production
efficiency decomposition does not depend on the values of AMRSj

c and AMRSf
n in those cases.
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The marginal social value of output corresponds to the welfare gain associated with having an
additional unit of a good in the economy. As just described in Section 3.2.2, a unit impulse in output
levels generates an ultimate increase in output given by the output inverse matrix Ψy. However, a
fraction of output is used in the production of other goods, so only the aggregate consumption share
ϕc is consumed by individuals. And the AMRSc captures the marginal welfare gain associated
with increasing aggregate consumption, so the marginal social value of output is the product of
these three objects. The definition of MSV highlights that the social value of a good emanates
from the consumption—potentially of other goods—it ultimately generates.

Third, we introduce marginal welfare products (MWP).

Definition 4 (Marginal Welfare Product). We define the marginal welfare products (MWP) of
input k and of factor f for technology j as

MWP jk
x = MSV j

y

∂Gj

∂xjk
and MWP jf

n = MSV j
y

∂Gj

∂njf,d
, (21)

where the marginal social value of output of good j, MSV j
y , is defined in (20).

Marginal welfare products correspond to the welfare gain associated with increasing the use of an
input or factor in the production of a good. Marginal increases in xjk or njf,d increase output at
impact by their physical marginal products, ∂Gj

∂xjk and ∂Gj

∂njf . As just described, the social value of
a unit impulse in output is summarized by the marginal social value of output, MSV j

y . Hence,
marginal welfare products of inputs and factors are given by the product of physical marginal
products and the marginal social value of output of the good produced.

Finally, we introduce aggregate marginal welfare products (AMWP).

Definition 5 (Aggregate Marginal Welfare Product). We define the aggregate marginal welfare
product (AMWP) of good j and factor f as

AMWP k
x =

∑
j

χjk
x MWP jk

x and AMWP f
n =

∑
j

χjf,d
n MWP jf

n , (22)

where intermediate input use and factor use shares χjk
x and χjf,d

n are defined in (13) and (14) and
marginal welfare products in (21).

The aggregate marginal welfare product of an input or factor is a cross-sectional weighted average
of marginal welfare products. For inputs with xk > 0 or dxk

dθ > 0, it corresponds to the welfare gain
associated with increasing the aggregate intermediate use of good k in proportion to the intermediate
use shares. For factors with nf,d > 0 or dnf,d

dθ > 0, it corresponds to the welfare gain associated with
increasing the factor use of factor f in proportion to the factor use shares.15

15 When xk = dxjk

dθ
= 0 or nf,d = dnf,d

dθ
= 0, AMWP’s as defined here do not correspond to the welfare gain or loss

associated with changing aggregate intermediate or factor use. This is inconsequential, since the welfare accounting
decomposition does not depend on the values of AMWP k

x and AMWP f
n in those cases.
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At last, note that the marginal social value of output can be expressed in terms of aggregate
marginal rates of substitution and aggregate marginal welfare products as

MSV j
y = ϕj

cAMRSj
c + ϕj

xAMWP j
x . (23)

This equation, which provides an alternative definition for MSV j
y , shows that the value of a unit

of output corresponds to the value of consuming its aggregate consumption share ϕj
c and using its

aggregate intermediate use share ϕj
x in production. This definition is recursive since AMWP j

x is a
function of the marginal social value of output for all goods.

3.2.4 Production Efficiency Decomposition

Production efficiency captures efficiency welfare gains associated with the economy’s production
side. It comprises i) allocative efficiency gains due to adjusting inputs and factors and ii) technical
efficiency gains from primitive changes in technologies and factor endowments.16

Theorem 1b (Production Efficiency). Production efficiency ΞAE, P can be decomposed into i) cross-
sectional intermediate input efficiency, ii) aggregate intermediate input efficiency, iii) cross-sectional
factor efficiency, iv) aggregate factor efficiency, v) technology growth, and vi) factor endowment
growth, as

ΞAE, P =

Intermediate Input Efficiency︷ ︸︸ ︷∑
k

CovΣ
j

[
MWP jk

x ,
dχjk

x

dθ

]
xk

︸ ︷︷ ︸
Cross-Sectional

Intermediate Input Efficiency

+
∑

k

(
AMWP k

x −AMRSk
c

) dϕk
x

dθ
yk

︸ ︷︷ ︸
Aggregate

Intermediate Input Efficiency

+

Factor Efficiency︷ ︸︸ ︷∑
f

CovΣ
j

[
MWP jf

n ,
dχjf,d

n

dθ

]
nf,d

︸ ︷︷ ︸
Cross-Sectional

Factor Efficiency

+
∑

f

(
AMWP f

n −AMRSf
n

) dnf,s

dθ︸ ︷︷ ︸
Aggregate

Factor Efficiency

+
∑

j

MSV j
y

∂Gj

∂θ︸ ︷︷ ︸
Technology

Growth

+
∑

f

AMWP f
n

dn̄f,s

dθ︸ ︷︷ ︸
Factor Endowment

Growth

,

16 Production efficiency gains ultimately correspond to higher aggregate consumption and lower aggregate factor
supply. In fact, ΞAE, P is given by

ΞAE, P =
∑

j

AMRSj
c
dcj

dθ
−
∑

f

AMRSf
n
dnf,s

dθ
.

This formulation shows that production efficiency can be interpreted as higher aggregate consumption/value added
after appropriately netting the cost of supplying factors—see Nordhaus and Tobin (1973) for the importance of
subtracting the cost of supplying factors to connect aggregate consumption/value added/GDP and welfare. In that
sense, part of the contribution of Theorem 1b is to express changes in aggregate consumption net of factor supply
costs in terms of changes in the allocation of intermediates, factors, technologies, and factor endowments.
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where marginal welfare products, MWP jk
x and MWP jf

n , aggregate marginal rates of substitution,
AMRSk

c and AMRSf
n, aggregate marginal welfare products, AMWP k

x and AMWP f
n , and the

marginal social value of output, MSV j
y , are defined in Section 3.2.3.

First, cross-sectional intermediate input efficiency measures welfare gains from reallocating intermedi-
ate inputs from low to high marginal welfare product uses, for a given level of aggregate intermediate
use. Hence, for good k it corresponds to the covariance across uses between MWP jk

x and the change
in the intermediate use shares, dχjk

x
dθ , in proportion to the good’s aggregate intermediate use, xk.

Second, aggregate intermediate input efficiency measures the welfare gains from adjusting the
share of output devoted to final consumption relative to production, for a given level of output.
Hence, for good k it corresponds to the difference between AMWP k

x and AMRSk
c , which captures

the net welfare impact of reducing consumption of good k and using it in production, multiplied by
the change in the intermediate use share, dϕk

x
dθ , in proportion to the output of the good, yk.

Third, cross-sectional factor efficiency measures the welfare gains from reallocating factors
from low to high marginal welfare product uses, for a given level of aggregate factor use. Hence, for
factor f it corresponds to the covariance across uses between MWP jf

n and the change in the factor
use shares, dχjf,d

n
dθ , in proportion to the aggregate use of the factor, nf,d.

Fourth, aggregate factor efficiency measures the welfare gains from adjusting the (elastic) supply
of factors. Hence, for factor f it corresponds to the difference between AMWP f

n and AMRSf
n ,

which captures the net welfare impact of supplying an additional unit of factor f and putting it to
use, multiplied by the change in factor supply, dnf,s

dθ .17

The final two components of the production efficiency decomposition measure welfare gains
due to primitive changes in technology and factor endowments. The technology growth component
measures the welfare gains from having more output (at no cost) for given allocation shares and
factor supplies. Hence, for good j it corresponds to the output change induced by the change in
technology, ∂Gj

∂θ , valued at its marginal social value MSV j
y . Finally, the factor endowment growth

component measures the welfare gains from having more factors (at no cost) for given allocation
shares, elastic factor supplies, and technologies. Hence, for factor f it corresponds to the change
in the supply of factor f , dn̄f,s

dθ , valued at the welfare gain associated with increasing factor use,
AMWP f

n .
Corollary 4 shows that production efficiency satisfies several desirable properties. These

properties are helpful to quickly analyze particular economies, as we do in Section 3.4.

Corollary 4 (Properties of Production Efficiency Decomposition).

(a) (Single Good Economies) In economies with a single good (J = 1), cross-sectional intermediate
input efficiency and cross-sectional factor efficiency are zero.

17 In general, aggregate factor efficiency must be expressed in terms aggregate factor supply and not factor use. If
the endowment of an elastically supplied factor is zero or does not change in a given perturbation, then dnf,s

dθ
= dnf,d

dθ
.
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(b) (No Intermediate Input Economies) In economies with no intermediate goods (xjk = ξjk = 0),
cross-sectional and aggregate intermediate input efficiency are zero.

(c) (Fixed Factor Supply Economies) In economies in which all factors are in fixed supply
(dnf,s

dθ = 0), aggregate factor efficiency is zero.

(d) (Specialized Intermediate/Factor Economies) In economies in which all intermediate inputs
(factors) are specialized with χjk

x = 1 (χjf
n = 1) for some j, cross-sectional intermediate input

(factor use) efficiency is zero.

(e) (Equalized MWP jk
x or MWP jf

n ) If marginal welfare products for good k (factor f) are identical
across uses for all goods (factors) with xk > 0 (nf,d > 0), then cross-sectional intermediate
(factor) efficiency is zero.

Since both cross-sectional intermediate input and factor efficiency rely on reallocating intermediate
inputs and factors towards different uses in production, it is necessary to have at least two goods that
can be produced. Relatedly, economies with no intermediate inputs cannot feature cross-sectional
or aggregate intermediate input efficiency gains, since dχjk

x
dθ = 0 and dϕk

x
dθ = 0, while economies with

factors in fixed supply, cannot feature aggregate factor efficiency gains, since dnf,s

dθ = 0. Finally,
cross-sectional intermediate input (factor) use efficiency must be zero when i) intermediate inputs
(factors) are specialized, since there is no scope for reallocating intermediate input (factor) shares
towards alternative uses, or ii) the social value of using a good (factor) is identical across uses, since
there is no scope to find welfare gains from reallocating goods (factors).

3.3 Insights from Welfare Accounting Decomposition

We present several of the insights that emerge from the welfare accounting decomposition in a series
of remarks.

Remark 1 (Technological and preference origins of welfare gains and losses). Theorem 1 traces
the origins of efficiency gains and losses under any perturbation to the reallocation of resources
and to primitive changes in technology and endowments. Its main contribution is to characterize
the welfare-relevant social valuations for each of these changes. In fact, Theorem 1 identifies a
small set of summary statistics—MRS, MWP , AMRS, AMWP , and MSV—that are sufficient
to translate physical changes in allocations, technologies, and endowments into welfare gains and
losses. This decomposition is written purely in terms of preferences and technologies, and makes no
reference to prices, individual budget constraints, or notions of equilibrium.

Remark 2 (Social Value of Technology). Theorem 1b identifies the efficiency gains from pure
technological change with the marginal social value of output, MSV j

y , without making assumptions
about the (optimizing) behavior or budget constraints of individuals, prices, or equilibrium notions.
In fact, since MSV j

y can be computed at the original allocation, Theorem 1b characterizes the
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efficiency gains from technology growth without the need to specify, compute, or measure a
perturbation.18 The technology growth component of the welfare accounting decomposition is
always positive since MSV j

y > 0. However, a technological improvement may decrease aggregate
efficiency overall if its impact on allocative efficiency is sufficiently negative, which can only happen
in inefficient allocations (see Section 4).

Remark 3 (Allocative vs. Technical Efficiency; Efficiency vs. Misallocation). We refer to the
welfare gains due to individual efficiency and the first four components of production efficiency
as allocative efficiency gains, because these involve changes in allocations (allocation shares and
factor supplies). We could have alternatively used the term misallocation. That is, a perturbation
that increases, say, cross-sectional or aggregate factor efficiency can be described as reducing cross-
sectional or aggregate factor misallocation. In fact, the factor efficiency components are the marginal
counterpart of the notions of misallocation in Hsieh and Klenow (2009). Since the welfare gains
associated with technology and factor endowment growth do not involve changes in allocations but
instead capture the pure effect of changes in primitives, we refer to these as technical efficiency
gains.

Remark 4 (Allocation Shares, Efficiency Conditions and Planning Problem). By design, the
allocative efficiency components of the welfare accounting decomposition—with the exception of
aggregate factor efficiency—are written in terms of changes in allocation shares. Working with
shares allow us to separate changes due to reallocation (holding consumption, factor supply, output,
intermediate input use, or factor use fixed) from changes in aggregates (aggregate factor supply,
technology, or endowment growth).19 Moreover, each allocative efficiency component maps directly
into a particular optimality condition for the planning problem for this economy—as shown in
Appendix C.1. This occurs because at an efficient allocation, reallocating resources cannot generate
efficiency gains. We characterize these efficiency conditions next in Section 4.

Remark 5 (Informational Requirements). What are the informational requirements to implement
the welfare accounting decomposition, either by computing it in a structural model or by empirically
measuring its components? To compute individual efficiency, it is sufficient to know i) aggregate
consumption and factor supply, ii) changes in individual consumption and factor supply shares, and
iii) individual marginal rates of substitution. Conditional on these objects, the economy’s production
structure does not independently determine individual efficiency. To compute production efficiency,
it is sufficient to know i) total output, intermediate use, and factor use; ii) changes in intermediate
use, and factor use shares, and changes in aggregate factor supply, technology, and endowment
growth; iii) marginal welfare products; iv) aggregate marginal welfare products and marginal rates of

18 By contrast, computing the welfare gains from individual, intermediate input, and factor efficiency requires
knowledge of changes in allocations, which must be measured empirically or computed within a model.

19 This separation is not possible working with levels, since perturbations that change the level of output necessarily
change consumption and/or intermediate input use levels, via (3), while perturbations that change the level of factor
supply necessarily change factor use levels, via (4).
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Figure 2. Minimal Welfare Accounting Economy

Note. Figure 2 illustrates the minimal economy in which all components of the welfare accounting decomposition can
take non-zero values. We summarize special cases of this economy in Table 1 and study them in Appendix D.

substution; and v) the marginal social value of output. Conditional on these objects, the distribution
of consumption and factor supply does not independently determine production efficiency. In Section
5, we show how prices can be used to infer these objects.

3.4 Examples: Minimal Welfare Accounting Economy

We conclude this section by applying Theorems 1a and 1b to simple economies. This is helpful to
illustrate the economic forces that underlie each of the components of the decomposition. Figure 2
summarizes the minimal welfare economy, which is the simplest economy in which each component
of the welfare accounting decomposition can take non-zero values. In Appendix D, we present seven
special cases of this economy in which particular components of the welfare accounting decomposition
are non-zero. Table 1 summarizes these special cases.

4 Efficiency

In this section, we leverage the welfare accounting decomposition to characterize and study efficient
allocations. This is, to our knowledge, the first general characterization of efficiency conditions for
disaggregated production economies with heterogeneous individuals.

4.1 Efficiency Conditions

We adopt the conventional definition of (Pareto) efficiency: an allocation is efficient when there is
no perturbation that makes every individual (weakly) better off. Equivalently, given Theorems 1a
and 1b, an allocation is efficient if there is no feasible perturbation for which any of the allocative
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Individual Efficiency Production Efficiency
Cross-Sectional
Consumption

Efficiency

Cross-Sectional
Factor Supply

Efficiency

Cross-Sectional
Intermediate

Input Efficiency

Aggregate
Intermediate

Input Efficiency

Cross-Sectional
Factor

Efficiency

Aggregate
Factor

Efficiency

Vertical × × × × × ×
Robinson Crusoe × × × × × ✓

Horizontal × × × × ✓ ×
Roundabout × × × ✓ × ×
Diversified

Intermediate × × ✓ ✓ × ×

Multiple Factor
Suppliers × ✓ × × × ✓

Edgeworth Box ✓ × × × × ×

Table 1. Summary of Minimal Welfare Accounting Special Cases

Note. Table 1 illustrates the components of the welfare accounting decomposition that can be non-zero in special cases
of the minimal welfare accounting economy introduced in Figure 2. All economies are formally defined in Appendix D.

efficiency components are positive. Theorems 2a and 2b respectively provide the necessary conditions
for individual and production efficiency.20

Theorem 2a (Efficiency Conditions: Individual Efficiency). An efficient allocation must satisfy the
following individual efficiency conditions:

(a) (Cross-sectional consumption efficiency) For goods with cj > 0, it must be that

MRSij
c =

= AMRSj
c ∀i s.t. χij

c > 0

≤ AMRSj
c ∀i s.t. χij

c = 0.
(24)

(b) (Cross-sectional factor supply efficiency) For factors with nf,s > 0, it must be that

MRSif
n =

= AMRSf
n ∀i s.t. χif,s

n > 0

≥ AMRSf
n ∀i s.t. χif,s

n = 0.
(25)

Efficiency requires the equalization of MRSij
c across all consumers of good j, with MRSij

c potentially
lower for individuals for whom cij = 0. Otherwise, it is feasible and welfare-improving to reallocate
consumption from low to high MRSij

c individuals, for given aggregate consumption cj . At the
corner where individual i does not consume good j, it is not feasible to reallocate consumption away
from individual i, even though marginal rates of substitution are not equalized. Similarly, efficiency
requires the equalization of MRSif

n across all suppliers of factor f , with MRSif
n potentially lower

for individuals for whom nif,s = 0. Otherwise, it is feasible and welfare-improving to reallocate

20 To simplify the exposition, we assume in the body of the paper that yj > 0 and nf,d > 0. We allow efficient
allocations to feature yj = 0 and nf,d = 0 in the Appendix.
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factor supply from high to low MRSif
n individuals, for given aggregate factor supply nf,s. At the

corner where individual i does not supply factor f , it is not feasible to reallocate factor supply away
from individual i, even though marginal rates of substitution are not equalized.

While the individual efficiency conditions in Theorem 2a are arguably standard (see e.g. Mas-
Colell et al., 1995), the production efficiency conditions that we characterize in Theorem 2b are
novel.

Theorem 2b (Efficiency Conditions: Production Efficiency). An efficient allocation must satisfy
the following production efficiency conditions:

(a) (Cross-sectional intermediate input efficiency) For goods with xk > 0, it must be that

MWP jk
x =

= AMWP k
x ∀j s.t. χjk

x > 0

≤ AMWP k
x ∀j s.t. χjk

x = 0.
(26)

(b) (Aggregate intermediate input efficiency) For goods with yk > 0, it must be that

max
j

{MWP jk
x } ≤ AMRSk

c ∀k s.t. ϕk
x = 0.

AMWP k
x = AMRSk

c ∀k s.t. ϕk
x ∈ (0, 1)

AMWP k
x ≥ max

i
{MRSik

c } ∀k s.t. ϕk
x = 1.

(27)

(c) (Cross-sectional factor efficiency) For factors with nf,d > 0, it must be that

MWP jf
n =

= AMWP f
n ∀j s.t. χjf

n > 0

≤ AMWP f
n ∀j s.t. χjf

n = 0.
(28)

(d) (Aggregate factor efficiency) For factors with nf,d > 0, it must be that

AMWP f
n = AMRSf

n ∀f s.t. nf,s > 0

AMWP f
n ≤ min

i
{MRSif

n } ∀f s.t. nf,s = 0.
(29)

While the formal statement of the conditions for production efficiency is somewhat involved, the
underlying economics are simple. First, cross-sectional intermediate input efficiency requires the
equalization of MWP jk

x across all uses of good k in production. Otherwise, it is feasible and welfare-
improving to reallocate intermediate inputs from low to high MWP jk

x uses, for given aggregate
intermediate input use xk. When good k is not used to produce good j, MWP jk

x must be weakly
lower.
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Second, aggregate intermediate input efficiency for mixed goods with ϕk
x ∈ (0, 1) requires the

equalization of the marginal rate of substitution from consuming good k with its marginal welfare
product as an input. For pure final goods with ϕk

x = 0, the marginal rate of substitution from
consuming good k must be higher than its highest marginal welfare product if used as an input.
For pure intermediate goods with ϕk

x = 1, the marginal welfare product of good k must be higher
than its highest marginal rate of substitution if consumed. If these conditions are not satisfied, it is
feasible and welfare-improving to reallocate good k from final consumption to intermediate input
use, or vice versa, for a given level of output yk.

A similar logic applies to factors. Third, cross-sectional factor efficiency requires the equalization
of MWP jf

n across all uses of factor f , with MWP jf
n potentially lower when factor f is not used to

produce good j. Otherwise, it is feasible and welfare-improving to reallocate factors from low to
high MWP jf

n uses, for a given level of fixed aggregate factor use nf,d.
Finally, aggregate factor efficiency requires the equalization of the marginal welfare product of

elastic factor f with its marginal rate of substitution, which captures the utility cost of supplying
the factor. When factor f is not elastically supplied, its marginal welfare product must be weakly
lower than the lowest marginal rate of substitution, which captures the cheapest cost of supplying
the factor.

Theorems 2a and 2b highlight that carefully incorporating non-negativity constraints is critical
to characterize the conditions for allocative efficiency in disaggregated economies. These issues
become more relevant at finer levels of disaggregation, since heterogeneous individuals typically do
not consume most goods and production networks with heterogenous producers become increasingly
sparse. We elaborate on these issues in subsections 4.3 and 4.4.

4.2 Technology Growth under Efficiency

The marginal social value of output is a central object for welfare accounting. It is a key determinant
of marginal welfare products and thus governs each component of production efficiency. It is
furthermore the single determinant of the technology growth component of the welfare accounting
decomposition. Theorem 2c characterizes the marginal social value of output at efficient allocations.21

Theorem 2c (MSV under Efficiency). At an allocation that satisfies aggregate intermediate input
efficiency, the marginal social value of output for good j is given by

MSV j
y =

AMRSj
c if ϕj

c > 0

AMWP j
x if ϕj

x > 0.
(30)

At an allocation that additionally satisfies cross-sectional consumption and cross-sectional interme-

21 Characterizing the endowment growth component under efficiency is straightforward. When nf,d > 0, efficiency
requires that AMWP f

n = MWP jf
n , ∀j with χjf,d

n > 0.
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diate input efficiency, the marginal social value of output for good j is given by

MSV j
y =

MRSij
c ∀i s.t. χij

c > 0 if ϕj
c > 0

MWP kj
x ∀k s.t. χkj

x > 0 if ϕj
x > 0.

(31)

The marginal social value of output for a good derives from its consumption value when the good is
final and from its production value when the good is used as an input. Aggregate intermediate input
efficiency guarantees that these are equalized for mixed goods, i.e., AMRSj

c = AMWP j
x for j mixed.

When j is a final good with ϕj
c > 0, therefore, its marginal social value equals its consumption

value AMRSj
c . When j is an intermediate good with ϕj

x > 0, its marginal social value equals its
production value AMWP j

x . And when good j is mixed with ϕj
c > 0 and ϕj

x > 0, consumption and
production value must be equalized, so MSV j

y = AMRSj
c = AMWP j

x .
Conversely, the marginal social value of a pure final (pure intermediate) good is not equal to

its production (consumption) value. As long as aggregate intermediate input efficiency is satisfied,
MSV j

y > AMRSj
c when j is a pure intermediate with ϕj

x = 1 and MSV j
y > AMWP j

x when j is a
pure final good with ϕj

c = 1.
Cross-sectional consumption efficiency furthermore guarantees that MRSij

c = AMRSj
c are

equalized across all individuals i that consume good j (χij
c > 0). The MSV of a final good must

therefore coincide with the valuation of each individual. Similarly, cross-sectional intermediate input
efficiency guarantees that MWP kj

x = AMWP j
x are equalized for good j across all its intermediate

uses k (χkj
x > 0). The MSV of goods used as intermediate inputs must then coincide with the

marginal welfare product of each use. More broadly, efficiency requires that the value of using a
good must be equalized across all uses and coincide with the MSV of the good.

4.3 Interior Economies: Revisiting Lange (1942) and Mas-Collel et al. (1995)

The classic approach to characterizing efficiency conditions is typically traced back to Lange (1942)—
see also Samuelson (1947)—and is summarized in a modern treatment in Section 16.E of Mas-Colell
et al. (1995). One contribution of our paper is to generalize these classic conditions to general
environments with disaggregated production.

Definition 6 (Classic Efficiency Conditions). The classic (production) efficiency conditions for an
intermediate link jk and a factor link jf hold if

MRSij
c

∂Gj

∂xjk
= MRSik

c and MRSij
c

∂Gj

∂njf,d
= MRSif

n . (32)

Critically, the classic approach exclusively studies interior production economies, in which every
good is mixed and used in the production of every other good, i.e., χjk

x ∈ (0, 1) and ϕk
x ∈ (0, 1).22

22 The classic approach typically allows for consumption or factor supply to be zero for some (but not all) individuals.
For that reason, our contribution is to study non-interior economies in the production sense. Mas-Colell et al. (1995)
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In that case, the classic efficiency conditions in equation (32) imply i) equalized marginal rates of
substitution across individuals, ii) equalized marginal rates of transformation (MRT ) across goods,
and iii) the equalization of MRS with MRT .23 In Corollary 5, we show that the classic efficiency
conditions emerge as a special case of Theorems 2a and 2b in interior economies. We then show in
subsection 4.4 that the classic efficiency conditions are typically invalid in disaggregated production
economies that are not interior.

Corollary 5 (Revisiting Lange 1942 and Mas-Colell et al. 1995). In interior economies, the efficiency
conditions of Theorems 2a and 2b collapse to those in Section 16.E of Mas-Colell et al. (1995).

By construction, all (production) non-negativity constraints are slack in interior economies. Since
χjk

x ∈ (0, 1) and ϕk
x ∈ (0, 1), it follows directly from Theorems 2a and 2b (conditions (26) and (27))

that MWP jk
x = MRSik

c , ∀i, j for every good k. Similarly for factors, conditions (28) and (29) imply
that MRSif

n = MWP jf
x , ∀i, j for every factor f . Both sets of conditions imply that the classic

efficiency conditions in equation (32) are satisfied for all links.

4.4 Non-Interior Economies

What then distinguishes the conditions for production efficiency in economies that are not interior,
and why do the classic conditions not apply to these environments?

Consider increasing xjk, the use of good k in the production of good j. Assuming this is a
feasible perturbation, efficiency requires that its social cost—the marginal social value of good k—is
equalized with its social benefit—the marginal social value of good j multiplied by the marginal
product ∂Gj

∂xjk . The classic efficiency conditions (32) use marginal rates of substitution to measure
the social benefit (32 LHS) and cost (32 RHS). This is appropriate for interior efficient economies
where all goods are mixed, since MSV = MRS for final goods as we showed above. When j or
k is a pure intermediate, however, marginal rates of substitution no longer represent the good’s
marginal social value, even at an efficient allocation (Theorem 2c). Since pure intermediates are not

justify their restriction to interior production economies as follows:
“(...) every commodity is both an input and an output of the production process. Because this is
unrealistic, we emphasize that no more than expositional ease is involved here. Recall that for expositional
ease we are not imposing any boundary constraints on the vectors of inputs/outputs.”

Our results show that exclusively considering interior economies is insufficient to properly understand efficiency
conditions in disaggregated economies.

23 Recall that we define marginal rates of substitution in units of the numeraire in this paper, i.e., MRSij
c = ∂ui

∂cij /λ
i.

If condition (32) holds, then MRSik
c /MRSij

c = ∂Gj

∂xjk must be equal across individuals since marginal products do not
depend on i. This implies that two individuals’ valuation of good k, expressed in units of good j, is equalized. Since
(32) applies for all j and k, it also implies the equalization of MRS in units of the welfare numeraire. To derive the
equalization of MRT , notice that (32) can be rewritten as

MRSij
c
∂Gj

∂xjk
= MRSij′

c
∂Gj′

∂xj′k
=⇒ MRSij

c /MRSij′
c = ∂Gj′

∂xj′k
/
∂Gj

∂xjk
≡ MRT jj′,k

where the RHS defines the marginal rate of transformation (MRT ). Condition (32) therefore implies both MRS =
MRT (after a change of units) and the equalization of MRT across uses since the LHS does not depend on k. A
similar argument applies to factor use.
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consumed, efficiency requires their MRS to be lower than their MSV . The marginal social value of
a pure intermediate instead derives from the consumption value it eventually generates downstream
as it is used in the production of other goods throughout the network.

There is a second, more mechanical reason why the classic efficiency conditions do not extend
to non-interior economies. If good k is not used in the production of good j, the associated efficiency
condition is determined by the inequality in (26): efficiency at the jk link then requires that MWP jk

x

be lower than the marginal social value of good k.
We summarize the implications of Theorems 2a and 2b for non-interior economies in two

corollaries. Corollary 6 concludes that the classic efficiency conditions still hold at the level of an
intermediate input link, as long as that link itself is interior.

Corollary 6 (Classic Efficiency Conditions Hold for Interior Links). The classic efficiency conditions
hold for the jk and jf links when

(a) a mixed good k is used to produce a mixed (or a pure final) good j
(b) an elastically supplied factor f is used to produce a mixed (or a pure final) good j.

Intuitively, the classic efficiency conditions (32) extend to all interior links jk and jf because the
MSV of mixed goods coincides with their MRS, even when there are non-interior links elsewhere
in the network. Corollary 7 characterizes the scenarios in which the classic conditions fail to hold.

Corollary 7 (Scenarios in which Classic Efficiency Conditions Do Not Hold). The classic efficiency
conditions generically24 fail to hold for links jk and jf that feature pure intermediate goods, i.e.,

(a) a mixed good k is used to produce a pure intermediate good j
(b) a pure intermediate good k is used to produce any good j
(c) a factor f is used to produce a pure intermediate good j.

Trivially, the classic conditions also fail to hold for links jk and jf when good k and factor f are
not used in the production of good j.

The first and third items of Corollary 7 highlight that the classic efficiency conditions may fail at
links in which the efficiency conditions take the form of an equality, as long as an intermediate good
is produced. This observation implies that properly characterizing production efficiency is more
subtle than simply considering a set of inequalities, as in the case of individual efficiency.

We illustrate Corollary 7 in two simple examples—see also Figure 3.

Example 1 (Pure Intermediates). Example 1 features a single individual (I = 1), three goods
(J = 3), and a single factor in fixed supply (F = 1). The individual’s preferences are V 1 = u1(c11, c13),
which implies that MRS12 = 0. Technologies for each of the goods are y1 = G1(x12), y2 = G2(x23),
and y3 = G3(n31,d), which already imposes that many marginal products are zero, e.g., ∂G1

∂x13 = 0.
24 The qualifier “generically” captures that it is always possible to find production structures for which these results

hold.
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Figure 3. Scenarios in which Classic Efficiency Conditions Do Not Hold

Note. Figure 3 illustrates Corollary 7 in two simple scenarios. The left panel shows a mixed good (good 3) used to
produce a pure intermediate (good 2), as well as a a pure intermediate (good 2) used to produce a final good (good 1).
The right panel shows a factor used to produce both a pure intermediate (good 3) and a final good (good 1).

The welfare accounting decomposition for this economy only features aggregate intermediate
input efficiency: individual efficiency is zero since I = 1, cross-sectional intermediate input and
factor efficiency are zero since all inputs and factors are specialized, and aggregate factor efficiency
is zero since the single factor is in fixed supply.25 Plugging into Theorem 1b,

ΞAE = ΞAE, P =
∑

k

(
AMWP k

x −AMRSk
c

)dϕk
x

dθ
yk =

(
MRS11

c

∂G1

∂x12
∂G2

∂x23︸ ︷︷ ︸
AMW P 3

x

−MRS13
c︸ ︷︷ ︸

AMRS3
c

)
dϕ3

x

dθ
y3.

For the mixed good 3 with ϕ3
x ∈ (0, 1), aggregate intermediate input efficiency requires that

AMWP 3
x = AMRS3

c , or equivalently MRS11
c

∂G1

∂x12
∂G2

∂x23 = MRS13
c . The classic efficiency condition

would instead require MRS12
c

∂G2

∂x23 = MRS13
c , which is invalid since good 2 is a pure intermediate

and MRS11
c

∂G1

∂x12 > MRS12
c = 0. At the efficient allocation, the classic condition would lead one to

conclude good 3’s intermediate use is inefficiently high. This illustrates Corollary 7a.
This example also illustrates Corollary 7b since it features a pure intermediate (good 2) that

is used in the production of another good. Since ϕ2
x = 1, aggregate intermediate input efficiency

requires that MRS11
c

∂G1

∂x12 > MRS12 = 0, i.e., the consumption value of good 2 must be lower than
its production value. The classic efficiency condition MRS11

c
∂G1

∂x12 = MRS12
c would lead one to

conclude that, at the efficient allocation, MSV 2
y = AMWP 2

x = AMRS2
c , which is incorrect.

Example 2 (Factor Used to Produce Pure Intermediate). Example 2 features one individual (I = 1),
three goods (J = 3), and one factor in fixed supply (F = 1). Preferences are V 1 = u1(c11, c12) and
technologies for each of the goods are y1 = G1(n11,d), y2 = G2(x23), and y3 = G3(n31,d).

The welfare accounting decomposition for this economy only features cross-sectional factor
25 Formally, we assume here that the efficient production structure is as in Figure 3a. The full set of efficiency

conditions also features inequalities to ensure that, for example, it is not efficient to consume good 2 or use it in the
production of good 3.
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efficiency: individual efficiency is zero since I = 1, cross-sectional intermediate input efficiency is
zero since all inputs are specialized, aggregate factor efficiency is zero since the single factor is
in fixed supply, and aggregate intermediate input efficiency is zero since ϕ1

c = ϕ2
x = ϕ3

x = 1 by
construction. Therefore,

ΞAE = ΞAE, P = CovΣ
j

[
MWP j1

n ,
dχj1,d

n

dθ

]
n1,d =

(
MSV 1

y

∂G1

∂n11,d

dχ11,d
n

dθ
+MSV 3

y

∂G3

∂n31,d

dχ31,d
n

dθ

)
n1,d

where MSV 1
y = MRS11

c and MSV 3
y = MRS12

c
∂G2

∂x23 . Since labor is in fixed supply but used in
the production of two goods, a feasible perturbation is dχ11,d

n
dθ = −dχ31,d

n
dθ . Cross-sectional factor

efficiency therefore requires that MRS11
c

∂G1

∂n11,d = MRS12
c

∂G2

∂x23
∂G3

∂n31,d . The classic efficiency condition
would instead associate the marginal social value of pure intermediate good 3 with its MRS and
require MRS11

c
∂G1

∂n11,d = MRS13
c

∂G3

∂n31,d . Since MRS12
c

∂G2

∂x23 > MRS13
c = 0 at the efficient allocation,

the classic condition would lead one to conclude the use of labor in the production of good 3 is
inefficiently high, illustrating Corollary 7c.

We conclude the study of non-interior economies with a remark that highlights the importance of
characterizing efficiency conditions in terms of MWP and MRS instead of MRS and MRT .

Remark 6 (MWP ⋛MRS generalizes MRS ⋛MRT ). One central takeaway from this section is
that MWP and MRS are the appropriate objects to characterize efficiency conditions, rather than
MRS and MRT , as in the classic approach. For instance, when good k is mixed or factor f is in
elastic supply, efficiency requires that

MWP jk
x = MRSik

c and MWP jf
n = MRSif

n , (33)

for all i such that χij
c > 0 and for all j such that χjk

x > 0, but the classic efficiency conditions in
(32) would not be valid if j is a pure intermediate. More generally, the correct inequalities that
characterize production efficiency (see Theorem 1b) can be written in terms of MWP and MRS,
but not MRS and MRT . This insight is useful to understand the distinction between marginal
revenue products and marginal welfare products in Section 5.3.

4.5 Planning Problem

We have emphasized that the welfare accounting decomposition can be leveraged to derive efficiency
conditions directly. An equivalent alternative approach is to set up the planning problem.

Definition 7 (Planning Problem). The planning problem—formally stated in Appendix C.1–
maximizes the SWF in (5), with preferences Vi defined in (1), subject to technologies and resource
constraints, defined in (2), (3) and (4), as well as non-negativity constraints. We denote the Lagrange
multipliers on the goods and factor resource constraints by ζj

y and ζf
n , respectively.
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There are three reasons why studying the planning problem is useful. First, it provides an equivalent
characterization of the efficiency conditions in Theorems 2b and 2a. As we show in the Appendix,
the restriction to feasible perturbations that underlie our characterization of efficiency conditions is
implied by the Kuhn-Tucker multipliers on the constraints of the planning problem. Second, and more
importantly for this paper, the planning problem provides a justification for the welfare accounting
decomposition. As we show in the Appendix, each of the components of the decomposition can be
interpreted as a particular perturbation of the planning problem. Finally, the planning problem
provides an interpretation of the technology growth and factor endowment growth components of the
welfare accounting decomposition in terms of the Lagrange multipliers ζj

y and ζf
n , since ζj

y = MSV j
y

when yj ̸= 0 and ζf
n = AMWP f

n when nf,d ̸= 0. In fact, one could interpret the contribution of this
section as fully characterizing the Lagrange multipliers of the planning problem.

Remark 7 (Socialist Calculation Debate). The results in this section directly speak to the socialist
calculation debate, which discusses the feasibility of central planning—see e.g. Lange (1936), Lerner
(1944), or Hayek (1945). Our results illustrate how computing efficiency conditions in production
economies is significantly harder than efficiently allocating goods across individuals, especially in
economies that feature pure intermediates. In particular, Theorem 3a below shows that computing
MSV j

y for pure intermediates requires knowledge of the entire production network—to compute the
output inverse—while computing MSV j

y for mixed or pure final goods only requires knowledge of
aggregate individual valuations via marginal rates of substitution.

5 Welfare Accounting in Competitive Economies

Our results so far have made no assumptions about the (optimizing) behavior of agents, individual
budget constraints, prices, or notions of equilibrium. In this section, we specialize the welfare
accounting decomposition to competitive economies with and without wedges. This provides new
insights by shedding light on the relation between efficiency and competition and by relating prices
to the welfare-relevant statistics we have identified in this paper.

5.1 Competitive Equilibrium with Wedges

Starting from the physical environment described in Section 2, we now assume that individuals
maximize utility and technologies are operated with the objective of minimizing costs and maximizing
profits. To allow for distortions, we saturate all choices with wedges, which we take as primitives.

Individual i faces a budget constraint of the form

∑
j

pj
(
1 + τ ij

c

)
cij =

∑
f

wf
(
1 + τ if,s

n

)(
nif,s + n̄if,s

)
+
∑

j

νijπj + T ij , (34)

where pj denotes the price of good j, wf denotes factor f ’s compensation per unit supplied, νijπj

denotes the profit associated with the operation of technology j received by individual i, and T ij is

30



a lump-sum transfer that rebates wedges back to individuals. Individual i faces individual-specific
consumption and factor supply wedges τ ij

c and τ if,s
n .

Firms operate technologies to minimize costs, which defines the cost functions

Cj
(
yj ;
{
wf
}

f
,
{
pk
}

k

)
= min

njf,d, xjk

∑
f

wf
(
1 + τ jf,d

n

)
njf,d +

∑
k

pk
(
1 + τ jk

x

)
xjk, (35)

subject to equation (2), facing technology-specific factor wedges τ if,d
n and technology-specific

intermediate input wedges τ jk
x . We assume that the supply of good j can be expressed as the

solution to a profit maximization problem given by

πj = max
yj

pj
(
1 + τ j

y

)
yj − Cj

(
yj ;
{
wf
}

f
,
{
pk
}

k

)
, (36)

where τ j
y denotes a markup wedge for technology j.

Definition 8 (Competitive Equilibrium with Wedges). A competitive equilibrium with wedges
comprises a feasible allocation {cij , nif,s, xjk, njf,d, yj} and prices {pj , wf } that satisfy resource
constraints (3) and (4), such that individuals optimize,

MRSij
c ≤ pj

(
1 + τ ij

c

)
, ∀i,∀j and MRSif

n ≥ wf
(
1 + τ if,s

n

)
, ∀i, ∀f,

where the equations hold with equality when cij > 0 and nif,s > 0, respectively, and firms minimize
costs and maximize profits,

pj ∂G
j

∂xjk
≤ pk 1 + τ jk

x

1 + τ j
y

, ∀j,∀k and pj ∂Gj

∂njf,d
≤ wf 1 + τ jf,d

n

1 + τ j
y

, ∀j,∀f,

where the equations hold with equality when xjk > 0 and njf,d > 0, respectively.26

In a competitive equilibrium, individuals equalize marginal rates of substitution with prices or wages
cum wedges, while firms equalize marginal revenue products with marginal costs cum wedges.27 We
can compactly represent the optimality conditions in matrix form as

MRSc ≤ p (1c + τc)
MRSn ≥ w (1ns + τns)

and pGx ≤ p (1x + τx)
pGn ≤ w (1nd + τnd) ,

(37)

where all matrices are defined in Appendix A. The matrices τx and τx include markup wedges τ j
y in

addition to intermediate input use wedges τ jk
x and factor use wedges τ jf,d

n . We refer to economies
with no wedges (τ ij

c = τ if,s
n = τ jk

x = τ jf,d
n = τ j

y = 0) as frictionless competitive economies. In these

26 In this section, we implicitly choose the nominal numeraire (i.e. the unit in which prices, wages, and profits are
defined) to be the welfare numeraire. This is without loss of generality since we can always renormalize MRS.

27 In parallel to the definition of marginal welfare products, we define marginal revenue products as MRP jk
x = pj ∂Gj

∂xjk

and MRP jf
n = pj ∂Gj

∂njf,d . In matrix form, MRPx = pGx and MRPn = pGn.
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economies, the First Welfare Theorem holds, so any competitive equilibrium allocation is efficient.28

Prices and wages (cum wedges) are helpful to recover the welfare-relevant statistics in competi-
tive economies. Conditions (37) link prices to marginal rates of substitution and marginal products,
an insight that we exploit repeatedly in this section.

5.2 Marginal Social Value of Output in Competitive Economies

5.2.1 Competitive Economies with Wedges

Characterizing the marginal social value of output in competitive economies with wedges is critical
because it directly determines the efficiency gains from technology growth as well as marginal welfare
products, which in turn govern all production efficiency components.

Theorem 3a (Marginal Social Value of Output). In competitive economies with wedges, the marginal
social value of output, defined via a 1 × J matrix MSVy, is given by

MSVy = p + pτ̄yΨy where τ̄y = ϕxτ̄x + ϕcτ̄c, (38)

where p denotes the 1 × J vector of prices, τ̄x and τ̄c denote J × J diagonal matrices of aggregate
intermediate input and consumption wedges, with elements given by τ̄ j

x =
∑

k χ
kj
x τ

kj
x and τ̄ j

c =∑
i χ

ij
c τ

ij
c , ϕx and ϕc are J × J diagonal matrices of aggregate intermediate use and consumption

shares, τ̄y defines the aggregate output wedge, and Ψy is the output inverse matrix defined in (17).29

Equation (38) shows that the marginal social value of output equals the vector of prices augmented
by a term that captures the average of the aggregate wedges in consumption and intermediate input
use. Aggregate consumption and intermediate input use wedges are weighted averages of individual
consumption wedges, τ̄ j

c =
∑

i χ
ij
c τ

ij
c , and intermediate input use wedges, τ̄ j

x =
∑

k χ
kj
x τ

kj
x . The

aggregate output wedge is in turn a weighted average of the two.
In order to understand why MSVy takes this form in competitive economies, it is useful

to start from its definition, MSVy = AMRScϕcΨy, and proceed gradually. First, using the
optimality conditions for individual consumption, MSVy can be written as

MSVy = pϕcΨy + (AMRSc − p)︸ ︷︷ ︸
pτ̄c

ϕcΨy. (39)

Intuitively, a unit impulse in output ultimately increases aggregate consumption by ϕcΨy, for given
allocation shares and factor supplies. The social value of this change in aggregate consumption can
be split into its market value and the deviation between the the true social value, given by AMRSc,
and the market value. This difference is precisely determined the aggregate consumption wedge, τ̄c.

28 While the general proofs of the First Welfare Theorem by Arrow (1951) and Debreu (1951) apply to the economy
considered here, our resusts provide an alternative constructive proof. Under standard convexity assumptions, a
Second Welfare Theorem also holds.

29 In sum form, we can express an element of MSVy as MSV k
y = pk +

∑
j
pj τ̄ j

yψ
jk
y , where τ̄ j

y = ϕj
cτ̄

j
c + ϕj

xτ̄
j
x.
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Next, the market value of the change in aggregate consumption, can be expressed as

pϕcΨy = p + (pGxχx − p)︸ ︷︷ ︸
pτ̄x

ϕxΨy. (40)

Intuitively, the ultimate change in aggregate consumption induced by a unit impulse in output,
ϕcΨy, can be expressed as the ultimate change in output net of aggregate intermediate use.30 Hence,
the ultimate market value of a unit impulse in output corresponds to the sum of the market value of
the impulse, given by p, and the market value of the knock-on effects net of aggregate intermediate
use, given by pGxχx − p. This difference is precisely determined by the aggregate intermediate
input wedge, τ̄x.

Combining (39) and (40), we can reformulate (38) as

MSVy = p + (pGxχx − p)︸ ︷︷ ︸
=pτ̄x

ϕxΨy + (AMRSc − p)︸ ︷︷ ︸
=pτ̄c

ϕcΨy.

This expression illustrates that aggregate consumption (intermediate input use) of good j is too
low when τ̄ j

c > 0 (τ̄ j
x > 0), and output of good j is too low when τ̄ j

y = ϕj
cτ̄

j
c + ϕj

xτ̄
j
x > 0. Hence, the

marginal social value of output for goods that ultimately increase the output of goods with positive
aggregate output wedges is higher than the price.

Given Theorem 3a, the technology growth component of the welfare accounting decomposition
is simply given by

MSVyGθ =
∑

j

MSV j
y

∂Gj

∂θ
=
∑

j

(
pj +

∑
k

pkτ̄k
y ψ

kj
y

)
∂Gj

∂θ
.

The following remarks discuss insights that emerge from Theorem 3a for competitive economies
with wedges. We then revisit its implications for frictionless competitive economies in Section 5.2.2.

Remark 8 (Condition for MSVy = p). It is well understood that prices capture the social value
of technology growth in frictionless competitive economies—see Corollary 8 below. Theorem 3a
implies a converse result that has been missing from the existing literature: The condition that
ensures MSVy = p is that aggregate output wedges are zero, that is,

τ̄y = ϕcτ̄c + ϕxτ̄x = 0. (41)

While frictionless competition guarantees that (41) is satisfied, this condition may also hold otherwise,
possibly at inefficient allocations. For instance, prices will capture the marginal social value of
output as long as aggregate output wedges are zero, even when intermediate input and consumption
wedges are non-zero (τx ̸= 0 and τc ̸= 0) and the competitive equilibrium is inefficient.31

30 Formally, (40) uses the following physical identity, which follows from (18):

ϕcΨy = Ψy − ϕxΨy = IJ + GxξΨy − ϕxΨy = IJ + (Gxχx − IJ ) ϕxΨy,

where the ultimate change in output, Ψy, is decomposed into the unit impulse, IJ , and knock-on effects, GxξΨy.
31 Aggregate output wedges can be zero when aggregate consumption and intermediate use wedges cancel out,
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Remark 9 (Invariance of MSVy to Factor Wedges). Theorem 3a also implies that the marginal
social value of output does not depend directly on factor supply or factor use wedges. This result
underscores the asymmetry between consumption and intermediate input distortions on the one
hand and factor supply and use distortions on the other. Because MSVy enters in the definition of
marginal welfare products, all production efficiency components are non-zero when τ̄y ≠ 0, but only
factor efficiency components directly depend on factor wedges, as we show in Theorem 3b below.

Remark 10 (MSVy and Network Propagation). Theorem 3a has two important implications for
network propagation. First, when τ̄y = 0, the marginal social value of output can be read exclusively
off prices and does not require knowledge of the entire production network. This observation is
made at times in frictionless competitive economies—see Corollary 8—which Theorem 3a shows
applies more generally. Second, when τ̄y ̸= 0, the output inverse matrix Ψy contains the necessary
information on network propagation to determine MSVy. While it is possible to characterize Ψy

in terms of prices, allocations, and intermediate input wedges—as we do in Appendix C.2—this is
only relevant insofar as it captures ultimate changes in output.32

Remark 11 (Relation to Cost-Based Domar Weights). A central result of Baqaee and Farhi (2020)
is that cost-based Domar weights summarize the impact of pure technological change on final output
in an environment with a single individual, factors in fixed supply, and markup wedges. Their result
is a special case of Theorem 3a. Formally, under the assumptions in that paper,

1∑
j p

jcj︸ ︷︷ ︸
Normalization

MSVyGθ︸ ︷︷ ︸
Technology Growth

Component

= 1∑
j p

jcj
p ĉ︸ ︷︷ ︸

Final Expenditure
Shares

Ψ̃y,︸︷︷︸
Cost-Based

Leontief Inverse

(42)

where ĉ = diag(c) and Ψ̃y is the proportional output inverse, which in turn maps to the intermediate
input block of the cost-based Leontief inverse defined in Baqaee and Farhi (2020)—see Appendix
C.2. Relative to equation (42), Theorem 3a illustrates how competitive forces guarantee that
MSV j

y = pj when τ̄y = 0. Crucially, away from the assumptions in Baqaee and Farhi (2020),
Theorem 3a highlights that cost-based Domar weights cease to capture the efficiency gains from
pure technological change, for instance in the presence of aggregate consumption wedges.

5.2.2 Frictionless Competitive Economies: Hulten’s Theorem Revisited

Theorem 3a allows us to revisit the impact of technology changes in the frictionless competitive case.
This is the widely studied Hulten’s theorem (Hulten, 1978), a result that has played a prominent

or when both are zero. In turn, aggregate consumption and intermediate use wedges can be zero when its elements
cancel out, or when all its constituents are zero. For cancelations to occur, it must be that some wedges are positive
and other negative.

32 Interestingly, only intermediate input wedges directly enter Ψy, which echoes existing insights highlighting the
outsized role that intermediate input distortions play in production—see e.g. Ciccone (2002) or Jones (2011).
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role in the literatures on the macroeconomic impact of microeconomic shocks and growth accounting
(Gabaix, 2011; Acemoglu et al., 2012; Baqaee and Farhi, 2020; Bigio and La’O, 2020).33

Corollary 8 (Hulten’s Theorem Revisited). In frictionless competitive economies, the aggregate
efficiency impact of a proportional Hicks-neutral technology change j is

1∑
j p

jcj
ΞAE = pjyj∑

j p
jcj︸ ︷︷ ︸

Sales Share

, (43)

where pjyj∑
j

pjcj is the Domar weight or sales share of good j in
∑

j p
jcj.

Corollary 8 provides, to our knowledge, the most general Hulten-style result to date, which applies to
frictionless competitive economies with heterogeneous individuals, elastic factor supplies, arbitrary
preferences and technologies, and arbitrary social welfare functions. Its generality allows us to
systematically discuss the many qualifications associated with this result in the following remarks.

Remark 12 (Welfare vs. Aggregate Efficiency vs. Production Efficiency vs. Output). Hulten’s
theorem is typically formulated in terms of final output (often via TFP). This is in contrast to
Corollary 8, which highlights that Hulten’s theorem is at its core a result about aggregate efficiency
(via production efficiency) and neither about final output nor welfare. Why is this the case? In
economies with a single individual (I = 1) and in which supplying factors causes no disutility
( ∂ui

∂nif,s = 0), changes in final output, production efficiency, aggregate efficiency, and welfare coincide,
which has justified the use of Hulten’s theorem as a result about final output. In economies with a
single individual, redistribution and individual efficiency are zero, so aggregate efficiency and welfare
coincide and are exclusively determined by production efficiency. And when supplying factors
causes no disutility, there is no need to subtract the social cost of supplying factors to transform
final output changes into welfare changes, so production efficiency exclusively captures changes in
final output (i.e. aggregate consumption).34 Corollary 8 highlights that, in frictionless competitive
economies, sales shares capture the impact of technology on aggregate efficiency, not final output or
overall welfare.35

33 Hulten’s theorem is typically stated—see Baqaee and Farhi (2019)—as:
“For efficient economies and under minimal assumptions, the impact on aggregate TFP of a microeconomic
TFP shock is equal to the shocked producer’s sales as a share of GDP (Domar weight)”

34 It is common to state that Hulten’s theorem does not apply to economies with elastic factor supplies. For
instance, Baqaee and Farhi (2018) state that

“Hulten’s theorem fails when factors supplies are elastic”.
While this is true when Hulten’s theorem is formulated in terms of final output, Corollary 8 highlights that Hulten’s
theorem does apply to economies with elastic factors when formulated in terms of aggregate efficiency. Bigio and La’O
(2020) already show that Hulten’s theorem is valid for aggregate efficiency in an environment with a single individual
and elastic labor supply; see also Basu and Fernald (2002).

35 Away from frictionless competition, Hulten’s Theorem applies to production efficiency (i.e. sales shares capture
the production efficiency impact of a proportional Hicks-neutral technology change) if i) all production wedges and
aggregate consumption wedges are zero and ii) aggregate output wedges are zero at an allocation that satisfies
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Remark 13 (Efficient vs. Frictionless Competitive vs. Efficient Interior Economies). Hulten’s
theorem is typically stated as applying to efficient economies, which is incorrect. Corollary 8 shows
instead that Hulten’s theorem applies to frictionless competitive economies, which is a subset of
efficient economies.36 Why is this the case? When an allocation is efficient, all allocative efficiency
components are necessarily zero, which guarantees that aggregate efficiency is exclusively due to
technology growth and factor endowment growth. However, efficiency is not enough to guarantee that
MSVy = p: this only occurs when τ̄y = 0, which is the case in frictionless competitive economies.
There are efficient allocations in which τ̄y ̸= 0 and Hulten’s theorem does not hold. Intuitively, it
is possible to have efficient non-interior allocations in which marginal welfare products and input
prices are misaligned. Hence, while Hulten’s theorem does apply to efficient interior allocations,
it can fail in efficient non-interior allocations. This result further underscores the importance of
carefully dealing with non-interior allocations when studying disaggregated economies.

Example 3 (Failure of Hulten’s Theorem in an Efficient Equilibrium). We consider the same
environment as in Example 1, and focus on a technology change for good 2, so ∂G2

∂θ ̸= 0. For
simplicity, we set all wedges to zero, with the exception of τ12

x ≠ 0. The competitive equilibrium of
this economy is efficient, with the relevant efficiency condition here being MRS11

c
∂G1

∂x12 > 0. In this
case, competition ensures that p1 ∂G1

∂x12 = p2(1 + τ12
x ). But note that

MSV 2
y = MRS11

c

∂G1

∂x12 = p1 ∂G
1

∂x12 = p2(1 + τ12
x ) ̸= p2,

so prices do not capture the marginal social value of output and Hulten’s theorem fails in this
efficient economy. This example illustrates that τ̄2

y = τ̄2
x = τ12

x = 0 is the condition that ensures
MSV 2

y = p2, not efficiency.37

Remark 14 (Normalizations behind Domar Weights). Comparing Theorem 3a and Corollary 8
highlights why Hulten’s theorem is typically stated in terms of Domar weights. First, considering
proportional Hicks-neutral technology shocks implies that ∂Gj

∂θ = yj , which ensures that the
numerator of the Domar weight in (43) is pjyj . Second, Hulten’s theorem is typically stated using
nominal GDP as numeraire, which ensures that the denominator of the Domar weight in (43) is∑

j p
jcj . These are arbitrary normalization; in fact, normalizing by the aggregate value of output∑

j p
jyj would define alternative weights that add up to one.

production efficiency. Away from frictionless competition, Hulten’s theorem applies to production efficiency (i.e. sales
shares capture the production efficiency impact of a proportional Hicks-neutral technology change) if i) all production
wedges and aggregate consumption wedges are zero and ii) aggregate output wedges are zero at an allocation that
satisfies production efficiency.

36 This logic applies regardless of whether Hulten’s theorem is expressed in terms of aggregate efficiency or
final output. The fact that frictionless competition is a more stringent condition than efficiency is well understood
(Edgeworth, 1881; Debreu and Scarf, 1963). One reason that explains why the existing literature has been imprecise
about the scope of Hulten’s theorem is that prior to the results in Section 4 there had been no characterization of
efficiency conditions for general disaggregated production economies with heterogeneous individuals.

37 Baqaee and Farhi (2020) already provide an example of an efficient economy in which Hulten’s theorem fails.
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5.3 Allocative Efficiency in Competitive Economies

In this subsection, we specialize the allocative efficiency components of the welfare accounting
decomposition to competitive economies with wedges.

Theorem 3b (Production Efficiency in Competitive Economies). In competitive economies with
wedges, in the absence of technology and factor endowment growth, production efficiency is given by

ΞAE, P =
∑

k

CovΣ
j

[
τ jk

x ,
dχjk

x

dθ

]
pkxk +

∑
k

CovΣ
j

[(
MSV j

y − pj
) ∂Gj

∂xjk
,
dχjk

x

dθ

]
xk

︸ ︷︷ ︸
Cross-Sectional Intermediate Input Efficiency

+
∑

k

pk
(
τ̄k

x − τ̄k
c

)
+
∑

j

(
MSV j

y − pj
) ∂Gj

∂xjk
χjk

x

 dϕk
x

dθ
yk

︸ ︷︷ ︸
Aggregate Intermediate Input Efficiency

+
∑

f

CovΣ
j

[
τ jf

nd ,
dχjf,d

n

dθ

]
wfnf,d +

∑
f

CovΣ
j

[(
MSV j

y − pj
) ∂Gj

∂njf,d
,
dχjf,d

n

dθ

]
nf,d

︸ ︷︷ ︸
Cross-Sectional Factor Efficiency

+
∑

f

wf
(
τ̄ f

ns − τ̄ f
nd

)
+
∑

j

(
MSV j

y − pj
) ∂Gj

∂njf,d
χjf,d

n

 dnf,s

dθ︸ ︷︷ ︸
Aggregate Factor Efficiency

.

Theorem 3b follows from imposing the equilibrium conditions in (37) into the production efficiency
decomposition in Theorem 2b. In line with Remark 13, Theorem 3b further underscores the
asymmetry between aggregate output wedges, which directly impact all production efficiency
components (via the terms that contain MSV j − pj , since MSVy − p = pτ̄yΨy) and other wedges.
Hence, any changes in inputs or factors that increase the output of goods with high aggregate
output wedges have a separate impact on the aggregate efficiency components. Since these effects
are identical across all components, we focus on describing the remaining terms.

First, cross-sectional intermediate input efficiency directly depends on the dispersion in interme-
diate input use wedges. Intuitively, reallocating intermediate inputs towards uses with higher wedges
is valuable since the competitive equilibrium features too litle of those input uses. Second, aggregate
intermediate input efficiency directly depends on the difference between aggregate intermediate
input and consumption wedges. Intuitively, if τ̄k

x > (<) τ̄k
c , the aggregate intermediate use of good

k is inefficiently high relative to its consumption use. Third, cross-sectional factor efficiency directly
depends on the dispersion in factor use wedges. Intuitively, reallocating factors towards uses with
higher wedges is valuable since the competitive equilibrium features too litle of those factor uses.
Finally, aggregate factor efficiency directly depends on the difference between aggregate factor
supply and factor use wedges. Intuitively, if τ̄ f

ns > (<) τ̄ f
nd , the aggregate supply of factor f is

inefficiently low (high) relative to its use. In the Appendix, we characterize the factor endowment
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growth component.

Remark 15 (Equalization of Marginal Revenue Products Does Not Ensure Cross-Sectional Factor
Efficiency). In frictionless competitive economies, marginal revenue products are equalized across all
uses and the cross-sectional factor efficiency component is zero. However, equalization of marginal
revenue products is not sufficient to ensure that the cross-sectional factor efficiency component is
zero in competitive economies with wedges, even when factor use wedges are zero. A similar logic
applies to cross-sectional input efficiency. Why is this the case? As explained in Section 4, efficiency
requires the equalization of marginal welfare products across uses of a factor, while competition
when factor use wedges are zero ensures the equalization of marginal revenue products across uses.
If MSV j

y ̸= pj for some goods that use a particular factor, the marginal welfare products of that
factor won’t be equalized across uses, allowing for cross-sectional factor efficiency to be non-zero.
We illustrate this possibility in Example 4.

Example 4 (Marginal Welfare Product vs. Marginal Revenue Product). We consider the same
environment as in Example 2. All wedges are zero except τ23

x ̸= 0. In this case, competition
ensures that MRS11

c = p1 and MRS12
c = p2, as well as p1 ∂G1

∂n11,d = w1 and p3 ∂G3

∂n31,d = w1. The only
equilibrium condition with a wedge is p2 ∂G2

∂x23 =
(
1 + τ23

x

)
p3. Consequently, competition implies that

marginal revenue products are equalized across uses, so MRP 11
n = MRP 31

n . Therefore,

p1 ∂G1

∂n11,d
= p3 ∂G3

∂n31,d
=⇒ p1 ∂G1

∂n11,d
= 1

1 + τ23
x

p2 ∂G
2

∂x23
∂G3

∂n31,d
.

However, this condition is inconsistent with cross-sectional factor efficiency,

p1 ∂G1

∂n11,d
= p2 ∂G

2

∂x23
∂G3

∂n31,d
,

which requires the equalization of marginal welfare products. This discrepancy is due to the fact
that marginal social value of good 3 does not equal its price, since τ̄3

y = τ23
x > 0.

Theorem 3c (Individual Efficiency in Competitive Economies). In competitive economies with
wedges, individual efficiency is given by

ΞAE, I =
∑

j

Covi

[
τ ij

c ,
dχij

c

dθ

]
pjcj

︸ ︷︷ ︸
Cross-Sectional

Consumption Efficiency

−
∑

f

Covi

[
τ if,s

n ,
dχif,s

n

dθ

]
wfnf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Efficiency

. (44)

Equation (44) highlights that cross-sectional dispersion in consumption and factor supply wedges
is necessary for individual efficiency to be non-zero. Intuitively, reallocating consumption towards
individuals with higher consumption wedges is valuable since these individuals consume too little
in equilibrium. Similarly, reallocating factor supply towards individuals with lower factor supply
wedges is valuable since these individuals’ factor supply is too high in equilibrium. Finally, note that
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intermediate input wedges, factor use wedges, or the aggregate levels of consumption and factor
supply wedges do not determine individual efficiency directly.

6 Redistribution

Our analysis has so far focused on aggregate efficiency, which is invariant to the choice of a SWF, as
explained in Section 2.3. However, two different perturbations with identical efficiency implications
may have completely different distributional implications, as we explain next. Theorem 4a presents
a decomposition of the redistribution component of the welfare accounting decomposition using
the definitions of allocation shares for consumption and factor supply. Figure 5 illustrates this
decomposition and is the counterpart to Figure 1.

Theorem 4a (General Redistribution Decomposition). The redistribution component of the welfare
accounting decomposition, ΞRD, can be decomposed into

ΞRD =

Cross-Sectional
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSij

c

dχij
c

dθ

]
cj +

Aggregate
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSij

c χ
ij
c

] dcj

dθ

−
∑

f

CovΣ
i

[
ωi,MRSif

n

dχif,s
n

dθ

]
nf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Redistribution

−
∑

f

CovΣ
i

[
ωi,MRSif

n χ
if,s
n

] dnf,s

dθ︸ ︷︷ ︸
Aggregate

Factor Supply Redistribution

.

The cross-sectional terms capture redistribution gains or losses due to the reallocation of consumption
and factor supply, for given cj and nf,s. In particular, cross-sectional consumption redistribution is
positive for good j when individuals with high normalized individual weight ωi—those relatively
favored by the planner—see their consumption shares increase; MRSij

c captures potentially different
marginal consumption values.38 The aggregate terms capture redistribution gains due to changes
in aggregates, for given allocation shares. In particular, aggregate consumption redistribution is
positive for good j when aggregate consumption increases and individuals with high ωi consume a
relatively larger share of the good. The logic is parallel for factor supply redistribution.

The cross-sectional terms parallel cross-sectional individual efficiency since they are driven
by changes in consumption or factor supply shares given aggregates, while the aggregate terms
parallel production efficiency since they are driven by changes in aggregates consumption and factor
supply. While it is possible to further decompose the aggregate terms, this is not particularly useful.

38 In economies that satisfy cross-sectional individual efficiency, Theorem 4a simplifies to∑
j

AMRSj
c (CovΣ

i [ω̃i,
dχij

c

dθ
]cj + CovΣ

i [ω̃i, χij
c ]dc

j

dθ
) +
∑

f

AMRSf
n(CovΣ

i [ω̃i,
dχif,s

n

dθ
]nf,s + CovΣ

i [ω̃i, χif,s
n ]dn

f,s

dθ
)

39



Instead, in Theorem 4b in Appendix C.3 we provide an alternative decomposition in competitive
economies with wedges based on distributive pecuniary effects and individual distortions.

7 Welfare Accounting vs. Growth Accounting

Before concluding, we would like to discuss the relation between welfare accounting, as developed in
this paper, and the well-established approach of growth accounting. Growth accounting measures the
contribution of different inputs to final output (i.e. aggregate consumption), indirectly computing
technological growth as a residual. Instead, welfare accounting attributes aggregate welfare gains to
different sources, which brings it closer to the “beyond GDP” literature (Fleurbaey, 2009; Jones
and Klenow, 2016).

Heuristically, the welfare accounting decomposition can be expressed as

Welfare = Individual Efficiency + Final Output − Factor Supply Cost︸ ︷︷ ︸
Production Efficiency

+Redistribution,

where the goal is to compute welfare changes by computing or measuring all right-hand side
elements. Instead, growth accounting abstracts from individual efficiency, factor supply costs, and
redistribution, and exploits a relation of the form

Final Output = Intermediate Inputs + Factors + Technology, (45)

where the goal is to measure both final output (left-hand side) and the intermediate input and
factor components (part of the right-hand side) to back out the technology component. These are
distinct exercises which are nonetheless related. For instance, when I = 1, individual efficiency and
redistribution are zero, and when factors are not supplied by individuals, the welfare cost of factor
supply is also zero. In that case, welfare and final output are identical.

Moreover, when directly measuring the components of the welfare accounting decomposition,
growth accounting can be used to measure technology growth. Through the lens of the welfare
accounting decomposition, the adequate counterpart of the growth accounting relation in (45),
solving for the technology growth component, is

MSVyGθ︸ ︷︷ ︸
Technology

= AMRSc
dc

dθ︸ ︷︷ ︸
Final Output

− (AMW Px − AMRSc)
dϕx

dθ
y︸ ︷︷ ︸

Intermediate Input Use

− MW Pn
dnd

dθ︸ ︷︷ ︸
Factor Use

, (46)

where AMRSc
dc
dθ becomes the welfare-relevant change in final output, which is a welfare-analog

of GDP. Equation (46) is stated exclusively in terms of preferences and technologies. Additional
assumptions about market structure would make it possible to conduct a growth accounting exercise
by measuring all right-hand side components of (46), a task we leave for future work.
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8 Application: Monetary Policy

In this section, we apply the welfare accounting decomposition to trace the welfare gains from
optimal monetary stabilization policy. To that end, we develop a static, multi-sector heterogeneous-
agent New Keynesian model with an input-output production network—a static “HANK-IO” model
(Schaab and Tan, 2023). Our model builds on La’O and Tahbaz-Salehi (2022) and Rubbo (2023)
but allows for household heterogeneity in addition to sectoral heterogeneity. The purpose of this
application is to illustrate how to apply the welfare accounting decomposition to a disaggregated
model of the macroeconomy.

Model. There are I (types of) households indexed by i. Each has mass µi, with
∑

i µ
i = 1. There

are N production sectors indexed by j. Each comprises a continuum of firms indexed by ℓ ∈ [0, 1].
Each firm produces a distinct good, indexed by jℓ.

The preferences of household i are given by

Vi = 1
1 − γ

(ci)1−γ − 1
1 + φ

(ni)1+φ , where (47)

ci =
(∑

j

(Γij
c )

1
ηc (cij)

ηc−1
ηc

) ηc
ηc−1

and cij =
(∫ 1

0
(cijℓ)

ϵj −1
ϵj dℓ

) ϵj

ϵj −1
,

where ci denotes a final consumption aggregator, cij denotes a sectoral consumption aggregator,
and cijℓ is household i’s consumption of good jℓ. Each household is endowed with a unique labor
factor and ni denotes hours of work. The household budget constraint is given by

∑
j

∫ 1
0 p

jℓcijℓdℓ =
W ini + T i, where pjℓ is the price of good jℓ, W i is the wage paid to factor i, and T i is a lump-sum
transfer that accounts for profits. Household optimization implies (ni)φ(ci)γ = W i/P i.

Firm ℓ in sector j produces according to the nested CES production function

yjℓ = Aj

(
(1 − ϑj)

1
η (njℓ)

η−1
η + (ϑj)

1
η (xjℓ)

η−1
η

) η
η−1

, where njℓ =
(∑

i

(Γji
w)

1
ηw (njℓi)

ηw−1
ηw

) ηw
ηw−1

, (48)

xjℓ =
(∑

k

(Γjk
x )

1
ηx (xjℓk)

ηx−1
ηx

) ηx
ηx−1

and xjℓk =
(∫ 1

0
(xjℓkℓ′)

ϵk−1
ϵk dℓ′

) ϵk

ϵk−1
.

We denote by Aj a sector-specific, Hicks-neutral technology shifter, ϑj governs sector j’s intermediate
input share, and η is the elasticity of substitution between labor and inputs. Firm ℓ in sector j uses
a bundle of labor njℓ that is itself a CES aggregate of its use of labor factors i, njℓi. It also uses a
bundle of intermediate inputs xjℓ, which is a CES aggregate of sectoral bundles xjℓk, where xjℓkℓ′

denotes firm jℓ’s use of good kℓ′ in production.
Firms are monopolistically competitive. They choose labor and inputs to minimize costs, and

prices to maximize profits. Each firm ℓ is small and takes as given aggregate and sectoral variables.
Profits are Πjℓ = (1 − τ j)pjℓyjℓ −

∑
k

∫ 1
0 p

kℓ′
xjℓkℓ′

dℓ′ −
∑

iW
injℓi = (1 − τ j)pjℓyjℓ −mcjyjℓ, where
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τ j is a revenue tax. Marginal cost mcj is uniform across firms in each sector as we show in Appendix
E.1. If prices are flexible, firms set prices as a markup over marginal cost, pjℓ = pj = ϵj

ϵj−1
1

1−τ jmc
j .

To introduce nominal rigidities, we assume that only a fraction δj ∈ [0, 1] of firms in sector j can
reset their prices in response to a shock. Otherwise, prices remain fixed at some initial level p̄j ,
which we specify in the Appendix. The sectoral price distribution is thus given by

pjℓ =


ϵj

ϵj−1
1

1−τ jmc
j for ℓ ∈ [0, δj ]

p̄j for ℓ ∈ (δj , 1].
(49)

We model monetary policy by assuming that aggregate nominal expenditures are constrained
by a cash-in-advance constraint of the form

∑
j

∫ 1
0 p

jℓyjℓdℓ ≤ M , where M is the monetary policy
instrument. Finally, the markets for goods and labor factors have to clear, requiring

yjℓ =
∑

i

µic
ijℓ +

∑
k

∫ 1

0
xkℓ′jℓdℓ′ and µini =

∑
j

∫ 1

0
njℓidℓ. (50)

We formally define competitive equilibrium in Appendix E.2.

Calibration. We calibrate a model with N = 66 sectors and I = 10 household types, corresponding
to deciles of the income distribution, as in Schaab and Tan (2023). We use data from the Consumer
Expenditure Survey to calibrate Γij

c so the model matches consumption expenditure shares. Similarly,
we use data from the American Community Survey and the BEA’s I-O and GDP tables to calibrate
ϑj , Γjk

x and Γji
w so the model matches sectoral input-output data and payroll shares. We calibrate ϵj

to match sectoral markup data from Baqaee and Farhi (2020) and δj to match Pasten et al. (2017)’s
data on sectoral price rigidities. We allow revenue taxes τ j to offset initial markups and study the
case with τ j = 0 in Appendix E.4. Finally, we assume an equal-weighted utilitarian SWF. Appendix
E.3 presents a detailed discussion of our calibration.

Results. We study monetary policy in response to a 2% technology shock that is uniform across
sectors. When households and sectors are symmetric, Divine Coincidence holds and there exists
an optimal monetary policy M∗ that closes output and inflation gaps. Through the lens of the
welfare accounting decomposition, Divine Coincidence implies that each allocative efficiency term of
Theorems 1a and 1b is zero. We discuss this case in Appendix E.4.

When households and sectors are heterogeneous, Divine Coincidence fails. Figure 4 plots the
welfare accounting decomposition, treating M as the perturbation parameter (θ).

Panel (4a) decomposes welfare gains (yellow) into gains from aggregate efficiency (blue) and
redistribution (green). The blue line intersects 0 at around MAE = 0.974, which is the policy
that maximizes aggregate efficiency. Redistribution is negative at this point, indicating that the
redistribution motive of the utilitarian SWF calls for a more contractionary policy (lower M).
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(a) Welfare Gains (b) Aggregate Efficiency Gain

Figure 4. Optimal Monetary Policy

Panel (4b) decomposes aggregate efficiency into its four allocative efficiency components: cross-
sectional and aggregate factor and intermediate input efficiency. Several additional insights emerge.
First, factor and input efficiency are both quantitatively important determinants of the production
efficiency gains from monetary policy. Second, at MAE = 0.974, aggregate (light blue) and cross-
sectional (green) input efficiency are negative. These two motives call for more contractionary policy.
Third, aggregate (yellow) and cross-sectional (red) factor efficiency are positive at MAE = 0.974,
calling for more expansionary policy. The policy that maximizes efficiency trades off and balances
these considerations. Lastly, Appendix E.4 illustrates the role of revenue taxes. When they are
not available to offset initial markup distortions, aggregate input and factor efficiency become
quantitatively more important and call for expansionary policy.

9 Conclusion

This paper introduces a welfare accounting framework that applies to general economies with
heterogeneous agents and disaggregated production technologies. The welfare accounting decompo-
sition is useful to identify and quantify the ultimate origins of welfare gains and losses induced by
changes in allocations or primitive changes in technologies or factor endowments. It is also useful to
characterize efficiency conditions, which allows us to provide the first general characterization of
efficiency conditions for disaggregated production economies. Our results underscore the importance
of properly accounting for non-negativity constraints in feasible allocations, especially in the context
of sparse production networks and diverse consumption patterns among individuals. By specializing
our results to competitive economies, we show that prices and wedges can be used to recover the
welfare-relevant statistics required to implement the welfare accounting decomposition. We illustrate
the use of the welfare accounting decomposition across a range of minimal examples and in a rich
application to monetary stabilization policy.
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Online Appendix
A Matrix Definitions

This section defines all matrices used in the body of the paper and in this Appendix. To simplify
the exposition, we represent all matrices for the I = 2, J = 3, F = 2 case, although we define matrix
dimensions for the general case.

Allocations. We collect output and aggregate consumption of all goods, yj and cj , in J × 1
vectors y and c and J × J diagonal matrices ŷ and ĉ, as follows:

y =

 y1

y2

y3


J×1

, c =

 c1

c2

c3


J×1

, ŷ =

 y1 0 0
0 y2 0
0 0 y3


J×J

, ĉ =

 c1 0 0
0 c2 0
0 0 c3


J×J

.

We also define J × J diagonal matrices of aggregate consumption and intermediate shares, ϕc and
ϕx, as follows:

ϕc =

 ϕ1
c 0 0

0 ϕ2
c 0

0 0 ϕ3
c


J×J

, ϕx =

 ϕ1
x 0 0

0 ϕ2
x 0

0 0 ϕ3
x


J×J

.

We collect intermediate-output shares ξjk = xjk

yk in the JK × J matrix ξ, and intermediate uses in a
JK × 1 vector x and in a JK × J matrix x̌, as follows:

ξ =



ξ11 0 0
ξ21 0 0
ξ31 0 0
0 ξ12 0
0 ξ22 0
0 ξ32 0
0 0 ξ13

0 0 ξ23

0 0 ξ33


JK×J

, x =



x11

x21

x31

x12

x22

x32

x13

x23

x33


JK×1

, x̌ =



x11 0 0
x21 0 0
x31 0 0
0 x12 0
0 x22 0
0 x32 0
0 0 x13

0 0 x23

0 0 x33


JK×J

.

We define the J × 1 vector of aggregate intermediate use as x̄ = 1xx, and in the form of a J × J

diagonal matrix as ˆ̄x = 1xx̌. Note that ϕcy = c and ϕxy = x̄. We collect factor demands in a
JK × 1 vector nd, and aggregate factor demand, aggregate factor supply, and factor endowments in
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F × 1 vectors, nf,d, nf,s, and n̄f,s, as follows:

nd =



n11,d

n21,d

n31,d

n12,d

n22,d

n32,d


JF ×1

, nf,d =
(
n1,d

n2,d

)
F ×1

, nf,s =
(
n1,s

n2,s

)
F ×1

, n̄f,s =
(
n̄1,s

n̄2,s

)
F ×1

.

Marginal products/technology change. We collect marginal products of intermediates in a
J × JK matrix Gx, marginal products of factors in a J × JF matrix Gn, and technology changes
in a J × 1 vector Gθ, as follows:

Gx =


∂G1

∂x11 0 0 ∂G1

∂x12 0 0 ∂G1

∂x13 0 0
0 ∂G2

∂x21 0 0 ∂G2

∂x22 0 0 ∂G2

∂x23 0
0 0 ∂G3

∂x31 0 0 ∂G3

∂x32 0 0 ∂G3

∂x33


J×JK

Gn =


∂G1

∂n11,d 0 0 ∂G1

∂n12,d 0 0
0 ∂G2

∂n21,d 0 0 ∂G2

∂n22,d 0
0 0 ∂G3

∂n31,d 0 0 ∂G3

∂n32,d


J×JF

, Gθ =


∂G1

∂θ
∂G2

∂θ
∂G3

∂θ


J×1

.

Marginal rates of substitution. We collect marginal rates of substitution in 1 × IJ and 1 × IF

vectors MRSc and MRSn, as follows:

MRSc =
(
MRS11

c MRS21
c MRS12

c MRS22
c MRS13

c MRS23
c

)
1×IJ

MRSn =
(
MRS11

n MRS21
n MRS12

n MRS22
n

)
1×IF

.

Matrices of zero and ones. We define several matrices with zeros and ones. First, we denote
identity matrices of dimension J , JK, and F by IJ , IJK , and IF , respectively. We denote a 1 × J

vector of ones by ιJ . We define a J × JK matrix 1x, a F × JF matrix 1nd , a J × IJ matrix 1c,
and F × IF matrix 1ns as

1x =

 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


J×JK

, 1nd =
(

1 1 1 0 0 0
0 0 0 1 1 1

)
F ×JF

1c =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


J×IJ

, 1ns =
(

1 1 0 0
0 0 1 1

)
F ×IF
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We also define a J × JK matrix Ix as

Ix =

 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


J×JK

.

Finally, we use Ic and Ins to respectively denote J × J and F × F indicator matrices, as follows:

Ic =

 1
[
c1 > 0

]
0 0

0 1
[
c2 > 0

]
0

0 0 1
[
c3 > 0

]


J×J

, Ins =
(

1
[
n1,s > 0

]
0

0 1
[
n2,s > 0

] ) .
Allocation shares. We collect allocations shares for intermediate uses in a JK × J matrix χx,
for factor demands in a JF × F matrix χnd , for aggregate consumption in a IJ × J matrix χc, and
for factor supplies in a IF × F matrix χns , as follows:

χx =



χ11
x 0 0
χ21

x 0 0
χ31

x 0 0
0 χ12

x 0
0 χ22

x 0
0 χ32

x 0
0 0 χ13

x

0 0 χ23
x

0 0 χ33
x


JK×J

, χnd =



χ11,d
n 0
χ21,d

n 0
χ31,d

n 0
0 χ12,d

n

0 χ22,d
n

0 χ32,d
n


JF ×F

, χc =



χ11
c 0 0
χ21

c 0 0
0 χ12

c 0
0 χ22

c 0
0 0 χ13

c

0 0 χ23
c


IJ×J

χns =


χ11,s

n 0
χ21,s

n 0
0 χ12,s

n

0 χ22,s
n


IF ×F

.

Given allocation shares, aggregate marginal rates of substitution can be written as AMRSc =
MRScχc and AMRSn = MRSnχns , and aggregate marginal welfare products as AMW Px =
MW Pxχx and AMW Pn = MW Pnχnd .

Marginal social value of output. The marginal social value of output is given by a 1 ×J vector
MSVy, as follows:

MSVy =
(
MSV 1

y MSV 2
y MSV 3

y

)
1×J
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Output inverse matrix. We define the elements of the output inverse Ψy as follows:

Ψy =

 ψ11
y ψ12

y ψ13
y

ψ21
y ψ22

y ψ23
y

ψ31
y ψ32

y ψ33
y


J×J

.

Competitive economies. In competitive economies, we define a 1 × J vector of prices p, a J × J

matrix of prices p̂, and 1 × F vector of wages w as

p =
(
p1 p2 p3

)
1×J

, p̂ =

 p1 0 0
0 p2 0
0 0 p3


J×J

, w =
(
w1 w2

)
1×F

We also define a JK×JK matrix of prices as p̌ = p̂ ⊗ IJ . Finally, we also define a J ×JK vector of
intermediate use wedges, a F × JF vector of factor demand wedges, a J × IJ vector of consumption
wedges, an a F × IF vector of factor supply wedges, as follows:

τx =


τ11

x −τ1
y

1+τ1
y

τ21
x −τ2

y

1+τ2
y

τ31
x −τ3

y

1+τ3
y

0 0 0 0 0 0

0 0 0 τ12
x −τ1

y

1+τ1
y

τ22
x −τ2

y

1+τ2
y

τ32
x −τ3

y

1+τ3
y

0 0 0

0 0 0 0 0 0 τ13
x −τ1

y

1+τ1
y

τ23
x −τ2

y

1+τ2
y

τ33
x −τ3

y

1+τ3
y


J×JK

,

τnd =


τ11,d

n −τ1
y

1+τ1
y

τ12,d
n −τ1

y

1+τ1
y

0 0 0 0

0 0 τ21,d
n −τ2

y

1+τ2
y

τ22,d
n −τ2

y

1+τ2
y

0 0

0 0 0 0 τ31,d
n −τ3

y

1+τ3
y

τ32,d
n −τ3

y

1+τ3
y


F ×JF

τc =

 τ11
c τ21

c 0 0 0 0
0 0 τ12

c τ22
c 0 0

0 0 0 0 τ13
c τ23

c


J×IJ

, τns =
(
τ11,s

n τ21,s
n 0 0

0 0 τ12,s
n τ22,s

n

)
F ×IF

B Proofs and Derivations

Proof of Lemma 1. (Welfare Decomposition: Aggregate Efficiency vs. Redistribution)

Proof. For any welfarist planner with Social Welfare Function W (V1, . . . , VI), we can express dW
dθ as

dW

dθ
=
∑

i

∂W
∂Vi

dVi

dθ
=
∑

i

αiλi
dVi
dθ

λi
,

where αi = ∂W
∂Vi

and where λi is an individual normalizing factor with units dim(λi) = utils of individual i
units of numeraire

that allows us to express individual welfare assessments into a common unit/numeraire. We can
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therefore write

dW λ

dθ
=

dW
dθ∑
i

αiλi

I

=
∑

i

ωi
dVi
dθ

λi
=
∑

i ω
i

I︸ ︷︷ ︸
=1

∑
i

dVi
dθ

λi
+ ICovi

[
ωi,

dVi
dθ

λi

]
=
∑

i

dVi
dθ

λi︸ ︷︷ ︸
=ΞAE

+CovΣ
i

[
ωi,

dVi
dθ

λi

]
︸ ︷︷ ︸

=ΞRD

,

where ωi = αiλi∑
i

αiλi

I

, which implies that
∑

i
ωi

I = 1. ■

Proof of Theorem 1a. (Individual Efficiency)

Proof. Given the definition of Vi in equation (1), we can express
dVi
dθ
λi

as

dVi
dθ

λi
=
∑

j

∂ui
∂cij

λi

dcij

dθ
+
∑

f

∂ui

∂nif,s

λi

dnif,s

dθ
=
∑

j

MRSij
c

dcij

dθ
−
∑

f

MRSif
n

dnif,s

dθ
.

Hence, from Lemma 1, it follows that

ΞAE =
∑

i

dVi
dθ

λi
=
∑

j

∑
i

MRSij
c

dcij

dθ
−
∑

f

∑
i

MRSif
n

dnif,s

dθ
.

Given our definitions of χij
c and χif,s

n , we can write

∑
i

MRSij
c

dcij

dθ
= CovΣ

i

[
MRSij

c ,
dχij

c

dθ

]
cj +AMRSj

c

dcj

dθ
,

where AMRSj
c is defined in (19). Similarly, we can write

∑
i

MRSif,s
n

dnif,s

dθ
= CovΣ

i

[
MRSif,s

n ,
dχif,s

n

dθ

]
nf,s +AMRSf

n

dnf,s

dθ
,

where AMRSf
n is also defined in (19). Hence, cross-sectional individual efficiency, ΞAE, I , can be

expressed as

ΞAE, I = CovΣ
i

[
MRSij

c ,
dχij

c

dθ

]
cj

︸ ︷︷ ︸
Cross-Sectional

Consumption Efficiency

−CovΣ
i

[
MRSif,s

n ,
dχif,s

n

dθ

]
nf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Efficiency

,

while production efficiency corresponds to

ΞAE, P =
∑

j

AMRSj
c

dcj

dθ
−
∑

f

AMRSf
n

dnf,s

dθ
.

■
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Proof of Corollary 2. (Properties of Individual Efficiency Decomposition)

Proof. a) When I = 1, CovΣ
i

[
MRSij

c ,
dcij

dθ

]
= CovΣ

i

[
MRSif,s

n , dnif,s

dθ

]
= 0 for all j and f . b)

When nf,s = 0, CovΣ
i

[
MRSif,s

n , dχif,s
n

dθ

]
nf,s = 0 for all f . c) When MRSij

c is identical for all i,

CovΣ
i

[
MRSij

c ,
dcij

dθ

]
= 0. When MRSif

n is identical for all f , CovΣ
i

[
MRSif

n ,
dnif,s

dθ

]
= 0. ■

Proof of Lemma 3. (Output Inverse Matrix)

Proof. Given (13) and (16) we can write dyj

dθ and dxjk

dθ in matrix form, as

dy

dθ
= Gx

dx

dθ
+ Gn

dnd

dθ
+ Gθ and dx

dθ
= dξ

dθ
y + ξ

dy

dθ
. (51)

Combining both expressions, we find that

dy

dθ
= Gx

(
dξ

dθ
y + ξ

dy

dθ

)
+ Gn

dnd

dθ
+ Gθ = (IJ − Gxξ)−1

(
Gx

dξ

dθ
y + Gn

dnd

dθ
+ Gθ

)
,

where Ψy = (IJ − Gxξ)−1, which exactly corresponds to equation (17) in the text. ■

Proof of Theorem 1b. (Production Efficiency)

Proof. Note that we can express ΞAE, P in matrix form as

ΞAE, P = AMRSc
dc

dθ
− AMRSn

dnf,s

dθ
.

Using the resource constraints for goods and the production function we can express changes in
aggregate consumption as

dc

dθ
= dy

dθ
− 1x

dx

dθ
= dy

dθ
− 1x

(
ξ
dy

dθ
+ dξ

dθ
y

)
= ϕc

dy

dθ
− 1x

dξ

dθ
y

= ϕcΨy

(
Gx

dξ

dθ
y + Gn

dnd

dθ
+ Gθ

)
− 1x

dξ

dθ
y = (ϕcΨyGx − 1x) dξ

dθ
y + ϕcΨyGn

dnd

dθ
+ ϕcΨyGθ,

where we use the fact that ϕx = 1xξ and ϕc = IJ − ϕx Hence, combining the above expression
with the expression for ΞAE, P , and using the resource constraint for factors, which implies that
dnf,s

dθ = 1n
dnd

dθ − dn̄f,s

dθ , we find that

ΞAE, P = (MW Px − AMRSc1x) dξ

dθ
y + (MW Pn − AMRSn1n) dnd

dθ
+

MSVyGθ + AMRSn
dn̄f,s

dθ
,

where we define MW Px = MSVyGx, MW Pn = MSVyGn, and MSVy = AMRScϕcΨy.
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For intermediate input efficiency,

(MW Px − AMRSc1x) dξ

dθ
y = (MW Px − AMRSc1x)

(
dχx

dθ
ϕx + χx

dϕx

dθ

)
y

= MW Px
dχx

dθ
x̌︸ ︷︷ ︸

Cross-Sectional
Intermediate Input Efficiency

+ (AMW Px − AMRSc)
dϕx

dθ
y︸ ︷︷ ︸

Aggregate
Intermediate Input Efficiency

where we use the fact that 1x
dχx

dθ = 0J×J and 1xχx = IJ .
For factor input efficiency,

(MW Pn − AMRSn1n) dnd

dθ

+AMRSn
dn̄f,s

dθ
= (MW Pn − AMRSn1n)

(
dχnd

dθ
nf,d + χnd

dnf,d

dθ

)
+ AMRSn

dn̄f,s

dθ

= MW Pn
dχnd

dθ
nf,d︸ ︷︷ ︸

Cross-Sectional
Factor Efficiency

+ (AMW Pn − AMRSn) dnf,s

dθ︸ ︷︷ ︸
Aggregate

Factor Efficiency

+ AMW Pn
dn̄f,s

dθ︸ ︷︷ ︸
Factor Endowment

Growth

.

where we use the fact that 1n
dχ

nd

dθ = 0F ×F and 1nχnd = IF . So in matrix form

ΞAE, P = MW Px
dχx

dθ
x̌︸ ︷︷ ︸

Cross-Sectional
Intermediate Input Efficiency

+ (AMW Px − AMRSc)
dϕx

dθ
y︸ ︷︷ ︸

Aggregate
Intermediate Input Efficiency

+ MW Pn
dχnd

dθ
nf,d︸ ︷︷ ︸

Cross-Sectional
Factor Efficiency

+ (AMW Pn − AMRSn) dnf,s

dθ︸ ︷︷ ︸
Aggregate

Factor Efficiency

+ MSVyGθ︸ ︷︷ ︸
Technology

Growth

+ AMW Pn
dn̄f,s

dθ︸ ︷︷ ︸
Factor Endowment

Growth

,

which exactly corresponds to the same equation as in the text when expressed in sum form. ■

Proof of Corollary 4. (Properties of Production Efficiency Decomposition)

Proof. a) When J = 1, CovΣ
j [·, ·] = 0.b) In this case, xk = dϕk

x
dθ = 0, ∀k. c) In this case, dnf,s

dθ = 0, ∀s.
d) In this case, dχjk

x
dθ = 0, ∀j, k, or dχjf,d

n
dθ = 0, ∀j, f . e) When marginal welfare products are equalized

for intermediates: CovΣ
j

[
MWP jk

x , dχjk
x

dθ

]
= 0; for factors: CovΣ

j

[
MWP jf

n , dχjf,d
n
dθ

]
= 0. ■

Proof of Theorem 2a. (Efficiency Conditions: Individual Efficiency)

Proof. If MRSij
c is different across any two individuals with χij

c > 0 for good j with cj > 0, then
there exists a perturbation of consumption shares in which cross-sectional consumption efficiency is
positive. If MRSij

c is less than AMRSj
c when χij

c = 0, then there is no feasible perturbation that
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reduces the share of consumption for individual i. The exact same logic applies to cross-sectional
factor supply efficiency. ■

Proof of Theorem 2b. (Efficiency Conditions: Production Efficiency)

Proof. If MWP jk
x is different across any two intermediate uses of good k two individuals with χjk

x > 0,
then there exists a perturbation of intermediate use shares in which cross-sectional intermediate
input efficiency is positive. The same logic applies to cross-sectional factor use efficiency.

When ϕk
x ∈ (0, 1), then there exists a perturbation of ϕk

x such that aggregate intermediate input
efficiency is positive unless AMWP k

x = AMRSk
c . If ϕk

x = 0, it must be that AMWP k
x ≤ AMRSk

c for
the best possible combination of intermediate use shares, which is the one that allocates good k to its
highest marginal welfare product intermediate use. If ϕk

x = 1, it must be that AMWP k
x ≥ AMRSk

c

for the possible combinations of consumption shares, which is the one that allocates the consumption
of good j to the individual with the highest MRSik

c .
When nf,s > 0 (and nf,d > 0), then there exists a perturbation of nf,s such that aggregate

factor supply efficiency is positive unless AMWP f
n = AMRSf

n . If nf,s = 0, it must be that
AMWP f

n ≤ AMRSf
n for the best possible combination of factor supply shares, which is the one that

allocates the consumption of good j to the individual with the lowest MRSif
n . If nf,s = nf,d = 0,

then it must be that the most costly way of supplying a factor is higher than the highest marginal
welfare product of doing so, formally: maxj

{
MWP jf

n

}
≤ mini

{
MRSif

n

}
.39 ■

Proof of Theorem 2c. (Technology Growth under Efficiency)

Proof. In matrix form, it follows from Equation (23) that

MSVy = AMRScϕc + MSVyGxξ = AMRScϕc + AMW Pxϕx,

where ξ = χxϕx and AMW Px = MSVyGxχx. Therefore, equation (30) follows immediately when
aggregate intermediate input efficiency holds. Equation (31) follows directly from the cross-sectional
efficiency conditions. ■

Proof of Corollary 5. (Revisiting Lange 1942 and Mas-Colell, Whinston and Green
1995)

Proof. Follows from derivations in footnote 23. ■

Proof of Corollary 6. (Classic Efficiency Conditions Hold for Interior Links)

Proof. At an interior link, Theorems 2b and 2c immediately imply that both equations in (32) hold.
The result follows then from the same logic as in Corollary 5. ■

39 When nf,d = 0, the value of a marginal unit of endowment of factor f is simply maxj{MWP jf
n }
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Proof of Corollary 7. (Scenarios in which Classic Efficiency Conditions Do Not Hold)

Proof. i) If good j is a pure intermediate, then MSV j
y ̸= AMRSj

c , which implies that the classic
efficiency conditions cannot hold, since efficiency requires that MSV j

y
∂Gj

∂xjk = MRSij
c . ii) If good k

is a pure intermediate, then last condition of equation 27 already implies that the classic efficiency
conditions cannot hold. iii) As in i), MSV j

y ̸= AMRSj
c , which implies that the classic efficiency

conditions cannot hold, since efficiency requires that MSV j
y

∂Gj

∂njf,d = MRSif
n . ■

Proof of Theorem 3a. (Marginal Social Value of Output)

Proof. In a competitive equilibrium with wedges, we can express AMRSc = MRScχc as
AMRSc = p (Ic + τ̄c), where Ic is J × J diagonal matrix in which the j’th element is 1 when
cj > 0 and 0 if cj = 0, and where we define a J × J matrix of aggregate consumption wedges as
τ̄c = τcχc. It is also the case that pGxχx = p (Ix + τxχx) = p (Ix + τ̄x), where Ix is J×J diagonal
matrix in which the j’th element is 1 when xj > 0 and 0 if xj = 0, and where we define a J × J

matrix of aggregate intermediate use wedges as τ̄x = τxχx.
Hence, marginal social value of output satisfies

MSVy = AMRScϕcΨy = p (Ic + τ̄c) ϕcΨy = pϕcΨy + pτ̄cϕcΨy = p + p (τ̄xϕx + τ̄cϕc) Ψy,

where we use the fact that Icϕc = IJϕc and that

pϕcΨy = p ((Gx − 1x) ξΨy + IJ) = (pGx − p1x) χxϕxΨy + p

= (pGxχx − p) ϕxΨy + p = (p (Ix + τ̄x) − p) ϕxΨy + p = pτ̄xϕxΨy + p.

■

Proof of Corollary 4. (Welfare Hulten’s Theorem)

Proof. Since frictionless competitive economies are efficient, ΞAE simply equals technology growth.
When τ̄c = τ̄x = 0, it follows from Theorem 3a that MSV j

y = pj . Hence, ΞAE = pj ∂Gj

∂θ = pjyj ,
where we use the fact that ∂Gj

∂θ = yj for proportional Hicks-neutral technology changes. Simply
dividing by

∑
j p

jcj yields equation (38) in the text. ■

Proof of Theorem 3b. (Production Efficiency in Competitive Economies)

Proof. It follows from the optimality conditions for production and the definition of ΞAE, P . ■

Proof of Theorem 3c. (Individual Efficiency in Competitive Economies)

Proof. It follows from the individual optimality conditions for consumption and factor supply and
the definition of ΞAE, I . ■
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Proof of Theorem 4a. (General Redistribution Decomposition)

Proof. It follows from the definition of allocation shares and the definition of ΞRD. ■

C Additional Results

C.1 Planning Problem

The Lagrangian of the planning problem can be expressed as

L = W(V1, . . . , Vi, . . . , VI)

−
∑

j

ζj
y

(∑
i

cij +
∑

k

xkj −Gj
({
xjk
}

k
,
{
njf,d

}
f

))
−
∑

f

ζf
n

∑
j

njf,d −
∑

i

nif,s −
∑

i

n̄if,s


+
∑

i

∑
j

κij
c c

ij +
∑

i

∑
f

κif,s
n nif,s +

∑
j

∑
k

κjk
x x

jk +
∑

j

∑
f

κjf,d
n njf,d,

where Vi is defined in (1). Hence, the first-order conditions can be derived from a perturbation of
the form

dL =
∑

j

∑
i

(
αi ∂ui

∂cij
− ζj

y + κij
c

)
dcij +

∑
i

∑
f

(
αi ∂ui

∂nif,s
+ ζf

n + κif,s
n

)
dnif,s

+
∑

j

∑
k

(
ζj

y

∂Gj

∂xjk
− ζk

y + κjk
x

)
dxjk +

∑
j

∑
f

(
ζj

y

∂Gj

∂njf,d
− ζf

n + κjf,d
n

)
dnjf,d,

where we take good j′ as numeraire, which allows us to substitute αi for αi ∂ui

∂cij′ = ζj′
y ⇒ αi = 1/

∂ui

∂cij′

ζj′
y

,

and where we define MWP jk
x = ζj

y
∂Gj

∂xjk and MWP jf
n = ζj

y
∂Gj

∂njf,d . Formally, the Kuhn-Tucker
conditions are

i) κij
c c

ij = 0 ⇒
(
ζj

y −MRSij
c

)
cij = 0, with generically one of the the two terms > 0

ii) κif,s
n nif,s = 0 ⇒

(
ζf

n +MRSij
n

)
nif,s = 0, with generically one of the the two terms > 0

iii) κjk
x x

jk = 0 ⇒
(
ζk

y −MWP jk
x

)
xjk = 0, with generically one of the the two terms > 0

iv) κif,d
n nif,d = 0 ⇒

(
ζf

n −MWP jf
n

)
nif,d = 0, with generically one of the the two terms > 0

By adding up the consumption optimality conditions for all individuals for good j:

∑
i

(
ζj

y −MRSij
c

)
cij = 0 ⇒

∑
i

MRSij
c c

ij − ζj
y

∑
i

cij ⇒
∑

i

MRSij
c c

ij = ζj
yc

j .
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If cj > 0 (as long as one agent is consuming the good, so good j is final):

ζj
y =

∑
i

MRSij
c

cij∑
i c

ij
=
∑

i

χij
c MRSij

c = AMRSk
c .

If cj = 0, we must have ζj
y > MRSij

c , for all i, which means that ζj
y > maxi

{
MRSij

c

}
. By adding

up the intermediate good optimality conditions for all uses j of good k:

∑
j

(
MWP jk

x − ζk
y

)
xjk = 0 ⇒

∑
j

MWP jk
x xjk − ζk

y

∑
j

xjk ⇒
∑

j

MWP jk
x xjk = ζk

yx
k.

If xk > 0 (as long as one good j uses good k as input, so good k is intermediate):

ζk
y =

∑
j

MWP jk
x

xjk∑
j x

jk
=
∑

j

χjk
x MWP jk

x = AMWP k
x .

If xk = 0, we must have ζk
y > MWP jk

x , for all j, which means that ζk
y > maxj

{
MWP jk

x

}
.

Combining consumption and intermediate good optimality:

∑
i

MRSij
c c

ik +
∑

j

MWP jk
x xjk = ζk

y y
k,

so if yk > 0, it must be that ζk
y = AMRSk

c ϕ
k
c +

∑
j ζ

j
y

∂Gj

∂xjk ξ
jk, which can be written in matrix form

as ζy = AMRScϕcΨy, where Ψy = (IJ − Gxξ)−1.
Similarly, for factors, if nf,s > 0 (as long as one agent is supplying factor f):

ζf
n =

∑
i

nif,s

nf,s
MRSij

n =
∑

i

χif,s
n MRSij

n = AMRSf
n

If nf,s = 0, we must have ζf
n < MRSij

n , for all i, which means that ζf
n < maxi

{
MRSij

n

}
. If njf,d > 0

(as long as factor f is used to produce a good j):

ζf
n =

∑
j

MWP jf
n

njf,d

nf,d
=
∑

j

MWP jf
n χjf,d

n = AMWP jf
n

If njf,d = 0, we must have ζf
n >

∑
j MWP jf

n χjf,d
n , for all j, which means that ζf

n > maxj

{
MWP jf

n

}
.

If nf,s > 0 and nf,d > 0: AMWP f
n = AMRSf

n . If nf,s = 0, it must be that ζf
n < MRSif

n , or
ζf

n < mini

{
MRSif

n

}
. If nf,d = 0, it must be that MWP jf

n < ζf
n , or maxj

{
MWP jf

n

}
< ζf

n . Hence,

for nf,s = 0 = nf,d, we must have that maxj

{
MWP jf

n

}
< mini

{
MRSif

n

}
. Finally, for yj = 0 to

be optimal, it must be that cj = xkj = 0 on the use side and xjk = njf,d = 0 on the input side. This
condition can be written as
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max
{

max
i

{
∂ui

∂cij

}
,max

k

{
ζk

y

∂Gk

∂xkj

}}
< ζj

y < min

min
f


(
∂Gj

∂njf,d

)−1

ζf
n

 ,min
k


(
∂Gj

∂xjk

)−1

ζk
y


 .

C.2 Alternative Propagation Matrices

Intermediate inverse matrix Following similar steps as in the Proof of Lemma 3, we can express
changes in intermediate input use as follows. Using both equations in (51), we can instead solve for
dx
dθ as follows

dx

dθ
= dξ

dθ
y + ξ

(
Gx

dx

dθ
+ Gn

dnd

dθ
+ Gθ

)
,

so we can define a JK × JK propagation matrix in the space of intermediate links Ψx:

dx

dθ
= Ψx︸︷︷︸

Propagation

(
dξ

dθ
y + ξ

(
Gn

dnd

dθ
+ Gθ

))
︸ ︷︷ ︸

Impulse

, where Ψx = (IJK − ξGx)−1 . (52)

Propagation in the space of output and the space of intermediate links is connected. In particular,
Woodbury’s identity implies that Ψx = IJK + ξΨyGx, and it is also the case that Ψxξ = ξΨy,
connecting propagation in the space of goods and the space of intermediate links. Leveraging (52),
it is possible to solve for changes in consumption as

dc

dθ
= dy

dθ
− 1x

dx

dθ
= Gx

dx

dθ
+ Gn

dnd

dθ
+ Gθ − 1x

dx

dθ

= (Gx − 1x) Ψx
dξ

dθ
y + ((Gx − 1x) Ψxξ + IJ) Gn

dnd

dθ
+ ((Gx − 1x) Ψxξ + IJ) Gθ.

Proportional output inverse matrix While the intermediate output inverse is expressed in
levels, at times, it may be useful to work with proportional propagation matrix. Starting from the
definition of dy

dθ , it follows that

ŷ−1dy

dθ
= Ψ̃y

(
ŷ−1Gx

dξ

dθ
y + ŷ−1Gn

dnd

dθ
+ ŷ−1Gθ

)
,

where Ψ̃y = ŷ−1Ψyŷ. In the competitive case, it is possible to express MSVy as MSVy =

p + p
(
ĉτ̄x + ˆ̄xτ̄c

)
Ψ̃yŷ−1 where an element of Ψ̃y is given by ψ̃jk = pk

(
1+τ jk

x

)
xjk

pj(1+τ j
y)yj

, where τ̄c = τcχc

and τ̄x = τxχx. Formally, Ψy = ŷ (p̂ŷ − (Ix + τ̃x) p̌x̌) −1p̂ and Ψ̃y = (p̂ŷ − (Ix + τ̃x) p̌x̌)−1 p̂ŷ,
where τ̃x is a J × JK matrix analogouse to τ̄x, but with the same ordering as Ix.

57



Welfare
Assessment

dWλ

dθ

Aggregate
Efficiency

ΞAE

Redistribution

ΞRD

I > 1

Consumption Factor Supply

Cross-Sectional
Consumption
Redistribution

∑

j

CovΣi

[
ω̃i,MRSijc

dχijc

dθ

]
cj

Aggregate
Consumption
Redistribution

∑

j

CovΣi
[
ω̃i,MRSijc χ

ij
c

] dcj
dθ

Cross-Sectional
Factor Supply
Redistribution

∑

f

CovΣi

[
ω̃i,MRSifn

dχif,sn

dθ

]
nf,s

Aggregate
Factor Supply
Redistribution

∑

f

CovΣi
[
ω̃i,MRSifn χ

if,s
n

] dnf,s
dθ

Invariant
to SWF

Sensitive
to SWF

Figure 5. Welfare Accounting Decomposition: Redistribution

C.3 Alternative Redistribution Decomposition

Theorem 4b (Redistribution Decomposition in Competitive Economies). In competitive economies
with wedges, the redistribution component of the welfare accounting decomposition, ΞRD, can be
decomposed into distributive pecuniary and distortionary redistribution components, given by

ΞRD =

Distributive Pecuniary Redistribution︷ ︸︸ ︷
Covi

ωi,−
∑

j

dpj

dθ
cij +

∑
f

dwf

dθ

(
nif,s + n̄if,s

)
+
∑

j

νij dπ
j

dθ



+ Covi

ωi,
∑

j

pjτ ij
c

dcij

dθ
−
∑

f

wfτ if,s
n

(
dnif,s

dθ
+ dn̄if,s

dθ

)
︸ ︷︷ ︸

Distortionary Redistribution

.

The distributive pecuniary redistribution component captures the differential impact of changes
in prices and profits on individual welfare—these are the distributive pecuniary effects present in
any competitive economy. Intuitively, if a perturbation reduces the prices of goods consumed or
increases the income earned by individuals with high ωi, the distributive pecuniary redistribution
component will be positive. Importantly, in the absence of technology or endowment growth, the
sum across individuals of distributive pecuniary effects is zero (see e.g. Dávila and Korinek, 2018).

The distortionary redistribution component captures the differential impact on individual
welfare of changes in the allocation of goods and factors that are distorted by individual wedges. This
component is positive if a perturbation reallocates consumption (factor supply) towards individuals
with higher consumption (lower factor supply) wedges. When τ ij

c > 0, for instance, individual i
consumes too little of good j. An increase in cij when individual i is relatively favored by the
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planner contributes positively to the distortionary redistribution component. In contrast to the
distributive effects, the sum across individuals of distortionary redistribution effects will typically
not be zero.

D Minimal Welfare Accounting Economy: Special Cases

D.1 Minimal Welfare Accounting Economy

The minimal welfare accounting economy features two individuals, two goods, and single factor in
elastic supply: I = 2, J = 2, F = 1. Individual preferences take the form V1 = u1

(
c11, c12, n11,s

)
and V2 = u2

(
c21, c22, n21,s

)
and technologies are given byy1 = G1

(
x11, x12, n11,d; θ

)
and y2 =

G2
(
x21, x22, n21,d; θ

)
. Finally, resource constraints are simply given by y1 = c11 + c21 + x11 + x21

and y2 = c12 + c22 +x12 +x32 and n11,s +n21,s + n̄11,s + n̄21,s = n11,d +n21,d. In this economy, all of
the components of aggregate efficiency can be non-zero, as we illustrate in a series of special cases.40

D.2 Vertical Economy

This minimal vertical economy is a special case of the minimal welfare accounting economy. In this
economy, there is a single individual who consumes a final good produced using an intermediate
good, which is in turn produced by a single factor in fixed supply, so I = 1, J = 2, and F = 1.
This is the simplest economy that illustrates the role played by pure intermediate goods. In
this economy, individual preferences are given by V1 = u1

(
c11), technologies by y1 = G1 (x12; θ

)
and y2 = G2

(
n21,d; θ

)
, and resource constraints by y1 = c11, y2 = x12 , and n̄1,s = n21,d. By

construction, all allocative efficiency components of the welfare accounting decomposition are zero,
so this economy exclusively features technology growth and factor endowment growth.

Aggregate and production efficiency are given by

ΞAE = ΞAE, P = MSV 1
y

G1

∂θ
+MSV 2

y

G2

∂θ
+MSV 1

y

∂G1

∂n11,d

dn̄1,s

dθ
,

where MSV 1
y = MRS11

c and MSV 2
y = MRS11

c
∂G1

∂x12 . In this economy, an efficient allocation must
satisfy MRS11

c > 0 and MRS11
c

∂G1

∂x12 > 0.

D.3 Robinson Crusoe Economy

One-producer one-consumer economies (i.e., Robinson Crusoe economies) are the simplest to study
production—see Section 15.C of Mas-Colell et al. (1995). In these economies, a single individual
consumes a single good and elastically supplies a single factor of production. A single production
technology uses the supplied factor to produce the good, so I = 1, J = 1, and F = 1. Formally,

40 At times, it is necessary to have J = 3 goods to represent some phenomena in production networks. For instance,
three goods are necessary to have a pure intermediate good being used to produce another pure intermediate good.
This is a relevant case in which classic efficiency conditions do not apply, as illustrated in examples 1 and 2.
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Figure 6. Minimal Welfare Accounting Economy: Special Cases
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preferences, technology, and resource constraints are respectively given by V1 = u1
(
c11, n11,s

)
,

y1 = G1
(
n11,d; θ

)
, y1 = c11, and n11,s = n11,d. This economy exclusively features aggregate factor

efficiency and technology growth.
The production efficiency decomposition takes the form

ΞAE, P =

MSV 1
y

∂G1

∂n11,d︸ ︷︷ ︸
AMW P 1

n

−MRS11
n︸ ︷︷ ︸

AMRS1
n

 dn1,s

dθ
+MSV 1

y

∂G1

∂θ
,

where the marginal social value of output of good 1 is given by MSV 1
y = MRS11

c . In this economy,
an efficient allocation must satisfy MSV 1

y
∂G1

∂n11,d = MRS11
n .

D.4 Horizontal Economy

This minimal horizontal economy is the simplest to illustrate the role played by the possibility of
reallocating factors across different uses. This economy generalizes to many well-known frameworks,
including Heckscher-Ohlin, Armington (1969), and Hsieh and Klenow (2009). In this economy, a
single individual consumes two different goods that can be produced using the same factor, which
we assume to be in fixed supply, so I = 1, J = 2, and F = 1. Formally, preferences, technology, and
resource constraints are given by V1 = u1

(
c11, c12), y1 = G1

(
n11,d; θ

)
, y2 = G2

(
n21,d; θ

)
, y1 = c11,

y2 = c12, and n̄1,s = n11,d + n21,d. This economy exclusively features cross-sectional factor efficiency,
technology growth, and factor endowment growth

The production efficiency decomposition takes the form

ΞAE, P = CovΣ
j

MSV j
y

∂Gj

∂nj1,d︸ ︷︷ ︸
MW P j1

n

,
dχj1,d

n

dθ

n1,d +MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+AMWP 1

n

dn̄1,s

dθ

where AMWP 1
n = χ11,d

n MSV 1
y

∂G1

∂n11,d +χ21,d
n MSV 2

y
∂G2

∂n21,d , and where MSV 1
y = MRS11

c and MSV 2
y =

MRS12
c . In this economy, an efficient allocation must satisfy MSV 1

y
∂G1

∂n11,d = MSV 2
y

∂G2

∂n21,d .

D.5 Minimal Roundabout Economy

Roundabout economies have been used to illustrate the impact of intermediate goods on production—
see e.g., Jones (2011). The minimal roundabout economy is the simplest economy in which aggregate
intermediate input efficiency can exist. In this economy a single individual consumes a single mixed
good, which is at the same time final and intermediate to itself, so I = 1, J = 1, and F = 1. Formally,
preferences, technology, and resource constraints are given by V1 = u1

(
c11), y1 = G1

(
x11, n11,d; θ

)
,

y1 = c11 + x11, and n̄1,s = n11,d. This economy only features aggregate intermediate input efficiency,
technology growth, and factor endowment growth.
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The production efficiency decomposition takes the following form

ΞAE, P =

MSV 1
y

∂G1

∂x11︸ ︷︷ ︸
AMW P 1

x

−MRS11
c︸ ︷︷ ︸

AMRS1
c

 dϕ1
x

dθ
y1 +MSV 1

y

∂G1

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

where AMWP 1
n = MSV 1

y
∂G1

∂n11,d , and MSV 1
y = MRS11

c

1−ξ11 ∂G1
∂x11

. In this economy, an efficient allocation

must satisfy MSV 1
y = MSV 1

y
∂G1

∂x11 = MRS11
c .

D.6 Diversified Intermediate

This minimal diversified intermediate economy is the simplest economy in which cross-sectional
intermediate input efficiency can exist. In this economy, a single individual consumes a final
good, which is exclusively produced by a pure intermediate that can be also used for roundabout
production. This pure intermediate is produced using a single factor in fixed supply, so I = 1, J = 2,
and F = 1. Formally, preferences, technology, and resource constraints are given by V1 = u1

(
c11),

y1 = G1 (x12; θ
)
, y2 = G2

(
x22, n21,d; θ

)
, y1 = c11, y2 = c12 + x12 + x22, and n̄1,s = n21,d. This

economy features cross-sectional intermediate input efficiency, aggregate intermediate input efficiency,
technology growth, and factor endowment growth.

The production efficiency decomposition takes the form

ΞAE, P =CovΣ
j

MSV j ∂G
j

∂xj2︸ ︷︷ ︸
MW P j2

x

,
dχj2

n

dθ

x2 +
(
χ12

x MSV 1
y

∂G1

∂x12 + χ22
x MSV 2

y

∂G2

∂x22

)
︸ ︷︷ ︸

AMW P 2
x

dϕ2
x

dθ
y2

+MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+
(
MSV 2

y

∂G2

∂n21,d

)
︸ ︷︷ ︸

AMW P 1
n

dn̄1,s

dθ
,

where MSV 1
y = MRS11

c and MSV 2
y = MRS11

c

∂G1
∂x12 ξ12

1−ξ22 ∂G2
∂x22

D.7 Two Factor Supplier Economy

This minimal two factor supplier economy (we could also call it Robinson Crusoe and Friday economy)
is the simplest economy in which cross-sectional factor supply efficiency can exist. In this economy,
we assume that two individuals have identical linear preferences for consumption of a single produced
good, which we use as numeraire. This eliminates potential gains from cross-sectional consumption
efficiency, since MRS11

c = MRS21
c = 1. We also assume that there is a single production technology

that uses a single factor that can be supplied either of the two individuals, with in principle different
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disutility, so I = 2, J = 1, and F = 1. Formally, preferences, technology, and resource constraints
are given by V1 = c11 + u1

(
n11,s

)
, V2 = c21 + u2

(
n21,s

)
y1 = G1

(
n11,d; θ

)
y1 = c11 + c21, and

n11,s + n21,s = n31,d. This economy features cross-sectional factor supply efficiency, aggregate factor
efficiency, and technology growth.

The individual efficiency decomposition takes the form

ΞAE, I = −CovΣ
i

[
MRSi1

n ,
dχi1,s

n

dθ

]
n1,s.

The production efficiency decomposition takes the form

ΞAE, P =

MSV 1
y

∂G1

∂n11,d︸ ︷︷ ︸
AMW P 1

n

−
(
χ11,s

n MRS11
n + χ21,s

n MRS21
n

)
︸ ︷︷ ︸

AMRS1
n

 dn1,s

dθ
+MSV 1

y

∂G1

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

where AMWP 1
n = MSV 1

y
∂G1

∂n11,d where the marginal social value of output for good 1 is

MSV 1
y = χ11

c MRS11
c + χ21

c MRS21
c = 1.

D.8 Edgeworth Box Economy

Pure exchange economies (i.e., Edgeworth Box economies) are the simplest to study most phenomena
in general equilibrium and welfare economics. In this economy, two individuals consume two different
goods, which appear as endowments. To formalize endowments, we assume that there is a single
factor in fixed supply and that factor uses are predetermined, so I = 2, J = 2, and F = 1. Formally,
preferences, technologies, and resource constraints are respectively given by V1 = u1

(
c11, c12),

V2 = u2
(
c21, c22), y1 = G1

(
n11,d; θ

)
, y2 = G2

(
n21,d; θ

)
, y1 = c11 + c21, y2 = c12 + c22, and

n̄1,s = n11,d + n12,d. This economy features cross-sectional consumption efficiency, technology
growth, and factor endowment growth, where the last two should be interpreted as changes in
endowments.

The individual efficiency component takes the form

ΞAE, I = CovΣ
i

[
MRSi1

c ,
dχi1

c

dθ

]
c1 + CovΣ

i

[
MRSi2

c ,
dχi2

c

dθ

]
c2.

The production efficiency component takes the form

ΞAE, P = MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+AMWP 1

n

dn̄1,s

dθ
+AMWP 2

n

dn̄2,s

dθ
.
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where the marginal social value of output is

MSVy =
(
χ11

c MRS11
c + χ21

c MRS21
c χ12

c MRS12
c + χ22

c MRS22
c

)
.

E Appendix for Monetary Policy Application

This Appendix presents additional model details in E.1, competitive equilibrium in E.2, a self-
contained quantitative calibration in E.3, and additional numerical results in E.4.

E.1 Additional Model Details

Households. Household preferences (47) give rise to the usual CES demand functions

cij = Γij
c

(
pj

P i

)−ηc

ci and cijℓ =
(
pjℓ

pj

)−ϵj

cij .

Under homothetic CES consumption preferences, each household i faces an ideal price index

P i =
[∑

j

Γij
c (pj)1−ηc

] 1
1−ηc

.

Production. The production function (48) features three nests of CES aggregates. Taking as
given prices and wages, firms choose inputs to minimize cost

Cjℓ = min
{xjℓkℓ′ }kℓ′ , {njℓi}i

∑
k

∫ 1

0
pkℓ′

xjℓkℓ′
dℓ′ +

∑
i

W injℓi,

subject to the CES production structure in (48). This problem gives rise to labor demand

njℓ = (Aj)η−1(1 − ϑj)
(
W jℓ

mcj

)−η

yjℓ and njℓi = Γji
w

(
W i

W jℓ

)−ηw

njℓ

and intermediate input demand

xjℓ = (Aj)η−1ϑj
(
pjℓ

x

mcj

)−η

yjℓ , xjℓk = Γjk
x

(
pk

pjℓ
x

)−ηx

xjℓ and xjℓkℓ′ =
(
pkℓ′

pk

)−ϵk

xjℓk.

Nominal marginal cost is given by

mcj = 1
Aj

[
(1 − ϑj)(W j)1−η + ϑj(pj

x)1−η
] 1

1−η

,
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which is symmetric across firms ℓ in sector j. Marginal cost is not affected by the revenue tax, which
is the only wedge in this application. Finally, the cost indices are given by

W j =
[∑

k

Γji
w(W i)1−ηw

] 1
1−ηw

and pj
x =

[∑
k

Γjk
x (pk)1−ηx

] 1
1−ηx

.

Since production functions are homogeneous of degree one, total cost is given by Cjℓ = mcjyjℓ.

Sectoral aggregation. Firms set prices according to (49). Aggregating to the sectoral level, the
price of sector j’s good is

pj =
(∫ 1

0
(pjℓ)1−ϵj

dℓ

) 1
1−ϵj

=
[ ∫ δj

0

(
ϵj

ϵj − 1
1

1 − τ j
mcj

)1−ϵj

dℓ+
∫ 1

δj
(p̄j)1−ϵjdℓ

] 1
1−ϵj

=
[
δj
(

ϵj

ϵj − 1
1

1 − τ j
mcj

)1−ϵj

+ (1 − δj)(p̄j)1−ϵj
] 1

1−ϵj

= ϵj

ϵj − 1
1

1 − τ j

[
δj(mcj)1−ϵj + (1 − δj)(m̄cj)1−ϵj

] 1
1−ϵj

,

where the very first equality follows since

pjcij =
∫ 1

0
pjℓcijℓdℓ =

∫ 1

0
pjℓ
(
pjℓ

pj

)−ϵj

cijdℓ =⇒ pj =
(∫ 1

0
(pjℓ)1−ϵj

dℓ

) 1
1−ϵj

.

Aggregating the goods market clearing condition, we have

pjyj ≡
∫ 1

0
pjℓyjℓdℓ =

∑
i

µi
∫ 1

0
pjℓcijℓdℓ+

∑
k

∫ 1

0

∫ 1

0
pjℓxkℓ′jℓdℓ′dℓ,

where
∫ 1

0 p
jℓyjℓdℓ denotes total nominal expenditures on sectoral good j. This also implies a

resource constraint at the sectoral level, given by yj =
∑

i µ
icij +

∑
k

∫ 1
0 x

kℓjdℓ. All this relies on
our assumption that all agents buying in sector j share the same homothetic demand aggregators
over varieties ℓ. In particular, it implies that we also have

yjℓ =
(
pjℓ

pj

)−ϵj

yj and yj =
(∫ 1

0
(yjℓ)

ϵj −1
ϵj dℓ

) ϵj

ϵj −1
.

Fiscal rebates. In the absence of fiscal policy, the rebate T i that household i receives simply
corresponds to total corporate profits plus the proceeds from the revenue tax. That is,

∑
i

µiT i =
∑

j

∫ 1

0
Πjℓdℓ+

∑
j

∫ 1

0
τ jpjℓyjℓdℓ =

∑
j

∫ 1

0
(pjℓ −mcj)yjℓdℓ
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Assuming a uniform rebate, we simply have T i =
∑

j

∫ 1
0 (pj −mcj)yjℓdℓ.

E.2 Equilibrium

Definition 9 (Competitive Equilibrium). Taking as given an initial price distribution {p̄jℓ}jℓ, a
realization of technology shocks {Aj}j, revenue taxes {τ j}j, and monetary policy M , a competitive
equilibrium comprises an allocation {cijℓ, ni, xiℓkℓ′

, yjℓ}i,jℓ,kℓ′ and prices {pjℓ,W i}i,jℓ such that (i)
households optimize consumption and labor supply, (ii) firms ℓ ∈ [0, δj) in sector j reset their prices
optimally, and (iii) markets for goods and factors clear

yjℓ =
∑

i

µicijℓ +
∑

k

∫ 1

0
xkℓ′jℓdℓ′ and µini =

∑
j

∫ 1

0
njℓidℓ.

Notice that each sector features two representative firms ex post since all firms are symmetric ex
ante and those firms that reset prices all choose the same reset price. At the sector level, there is
consequently a representative price-adjusting firm and a representative fixed-price firm.

Computing competitive equilibrium requires an initial price distribution {p̄jℓ}jℓ. We assume
that initial prices are given by

p̄jℓ = p̄j = ϵj

ϵj − 1
1

1 − τ j
m̄cj = ϵj

ϵj − 1
1

1 − τ j
mcj

(
1,
{
p̄kℓ′}

kℓ′
,
{
W̄ i
}

i

)
.

That is, p̄j corresponds to the price firms in sector j would set if all technologies remain at their
default level Aj = Āj . This initialization is heuristically consistent with the zero-inflation steady
state of a dynamic New Keynesian model. In the absence of technology shocks, therefore, no firm
faces an incentive to adjust prices. If Aj ̸= Āj , a fraction δj of firms in each sector reset their price.

Numeraire. We take as our numeraire total nominal expenditures in the absence of shocks, i.e.,
M̄ =

∑
j p

jyj = 1. Therefore, M̄ = 1 provides a benchmark stance for monetary policy. In the
absence of technology shocks, setting M = M̄ = 1 implies production efficiency and therefore
aggregate efficiency since all firms are symmetric.

Macro block. To compute this model, it is particularly convenient to characterize a macro block
by aggregating to the sectoral level. To that end, we aggregate several key equilibrium conditions.
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The aggregate labor market clearing condition (aggregated to the level of household type) is

µini =
∑

j

∫ 1

0
njℓidℓ =

∑
j

∫ 1

0
Γji

w

(
W i

W j

)−ηw

njℓdℓ

=
∑

j

Γji
w

(
W i

W j

)−ηw

(Aj)η−1(1 − ϑj)
(
W j

mcj

)−η ∫ 1

0
yjℓdℓ

=
∑

j

Γji
w

(
W i

W j

)−ηw

(Aj)η−1(1 − ϑj)
(
W j

mcj

)−η

Djyj

where

Dj =
∫ 1

0

(
pjℓ

pj

)−ϵj

dℓ

is a measure of sectoral price dispersion.
Aggregating the goods market clearing condition yields

yjℓ =
∑

i

µicijℓ +
(
pjℓ

pj

)−ϵj ∑
k

Γkj
x

(
pj

pk
x

)−ηx ∫ 1

0
(Ak)η−1ϑk

(
pk

x

mck

)−η

ykℓ′
dℓ′.

And plugging in for CES demand functions implies

yj =
∑

i

µicij +
∑

k

Γkj
x

(
pj

pk
x

)−ηx

(Ak)η−1ϑk
(
pk

x

mck

)−η

ykDk,

yielding sectoral goods market clearing conditions written as a fixed point in yj .
Finally, the budget constraint can be written as

P ici = W ini +
∑

j

(pj −Djmcj)yj .

Computationally, it is now easiest to solve the macro block as a separate system of equations.
Firm-level allocations can then be obtained from CES demand functions.

E.3 Calibration

Our calibration broadly follows Schaab and Tan (2023) and is summarized in Table 2. It is based
on 66 production sectors and 10 household types, which we associate with deciles of the household
income distribution.

For household preferences, we set the coefficient of relative risk aversion to γ = 2 and the
inverse Frisch elasticity to φ = 2. We use an elasticity of substitution of ηc = 1, so the consumption
aggregator is Cobb-Douglas, and we calibrate the consumption weights Γij

c to match consumption
expenditure shares across household types in the CEX.
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Parameters Value / Target Source
Household preferences

γ Relative risk aversion 2 Standard
φ Inverse Frisch elasticity 2 Standard
ηc Elasticity of substitution across goods 1 Cobb-Douglas
Γij

c CES consumption weights Consumption expenditure shares CEX
Production and nominal rigidities

η Elasticity of substitution across inputs and labor 1 Cobb-Douglas
ϑj CES input bundle weight Sectoral input share BEA
ηx Elasticity of substitution across inputs 1 Cobb-Douglas
ηw Elasticity of substitution across factors 1 Cobb-Douglas
Γij

x CES input use weights Input-output network BEA I-O
Γij

w CES factor use weights Payroll shares ACS
ϵj Elasticities of substitution across varieties Sectoral markups Baqaee and Farhi (2020)
δj Sectoral price adjustment probabilities Price adjustment frequencies Pasten et al. (2017)

Table 2. List of Calibrated Parameters

On the production side, we set the elasticity of substitution between the labor and intermediate
input bundles to η = 1. Therefore, ϑj and 1 − ϑj correspond respectively to the input and labor
shares in production, which we obtain from the BEA GDP-by-Industry data. We compute the input
share ϑj as input expenditures relative to gross output, averaged between 1997 and 2015, and treat
the labor share as its complement. We set the elasticities of substitution across intermediate inputs
and factors to ηx = ηw = 1. We calibrate Γij

x and Γij
w to match data on input-output linkages and

payroll shares. For the former, we use data from the BEA Input Output “Use” Table to compute
input shares as a sector j’s expenditures on goods from sector k as a share of j’s total expenditures
on inputs, averaged between 1997 and 2015. We obtain payroll shares from a linked ACS-IO dataset
as type i’s earnings from sector j as a share of total earnings, averaged between 1997 and 2015.

We use data from Baqaee and Farhi (2020) on sectoral markups to calibrate the elasticity of
substitution across sectoral varieties ϵj . Sectoral markups are computed as µj = ϵj

ϵj−1 .
Finally, we use data from Pasten et al. (2017) on price adjustment frequencies to calibrate

δj . They estimate monthly price adjustment frequencies using the data underlying the Bureau of
Labor Statistics’ Producer Price Index for 754 industries from 2005 to 2011. First, we link these
estimates to the 66 sectors in our data. Second, we obtain quarterly adjustment probabilities as
1 − (1 − monthly adjustment frequency

100 )3. Finally, we bin these estimates into quintiles. This allows us to
solve our model assuming that each of the 66 sectors consists of 5 firms.

E.4 Additional Results

In this subsection, we present additional numerical results that are referenced in the main text.

Divine coincidence. Consider an alternative calibration where households and sectors are
symmetric, so there exist a representative household and a representative sector. Our model then
collapses to the standard, one-sector New Keynesian model, albeit with roundabout production.
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(a) Welfare Gains (b) Aggregate Efficiency Gain

Figure 7. Optimal Monetary Policy under Divine Coincidence

Divine Coincidence holds in this model. That is, the optimal monetary policy response to an
aggregate technology shock closes both output and inflation gaps.

Figure 7 illustrates this benchmark from the perspective of our welfare accounting decomposition.
In that context, Divine Coincidence implies that each allocative efficiency component is 0, indicating
that optimal policy can attain an efficient allocation. Moreover, since households are symmetric,
there is no scope for redistribution gains, so welfare and aggregate efficiency coincide.

Importance of markup distortions. Figure 4 in the main text corresponds to a calibration of
the model that assumes revenue taxes are available to eliminate initial markups. We reproduce our
main experiment in Figure 8 below, assuming that revenue taxes are not available.

(a) Welfare Gains (b) Aggregate Efficiency Gain

Figure 8. Optimal Monetary Policy with Markup Distortions

It is well known from the New Keynesian literature that monopolistic competition implies
inefficiently low steady state employment. In that context, optimal monetary policy under discretion,
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which is heuristically comparable to the static optimization problem we consider, seeks to raise
employment via expansionary monetary policy. We revisit this result from the perspective of our
welfare accounting decomposition. Figure 8 demonstrates that, in the presence of initial markup
distortions, aggregate factor and input use efficiency considerations push optimal monetary policy
towards a more expansionary stance. In the one-sector New Keynesian model (without roundabout
production), aggregate factor efficiency corresponds to the standard labor wedge. In this multi-sector
variant, aggregate factor and input use efficiency formally capture that aggregate employment and
aggregate activity are inefficiently low.

Cross-sectional factor and input use efficiency, on the other hand, push monetary policy
towards a relatively more contractionary stance. Optimal policy therefore trades off the gains from
stimulating aggregate activity in the presence of markup distortions against the cost of creating
misallocation in the form of price dispersion, captured by cross-sectional factor and input use
efficiency.
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