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1 Introduction

There has been a massive expansion of central bank reserves in the last 15 years. In the US, reserves
amounted to less than $50 billion in 2008Q1, but reached $2.8 trillion in 2015 and exceeded $3
trillion in 2021 (Figure 1). These reserves were created in the aftermath of the 2008–2009 financial
crisis and the 2020 Covid-19 pandemic, when the Federal Reserve conducted trillions of dollars
worth of Quantitative Easing (QE). In QE, the Federal Reserve buys assets such as Treasuries,
which are primarily held outside of the banking sector.1 The Federal Reserve then pays with
reserves, which are an interest-bearing asset that can only be held within the banking system. QE
therefore results in a net injection of liquid assets to bank balance sheets. While a large literature
has studied the effect of QE’s asset purchases, less is known about how QE’s injection of reserves
impacted the functioning of the banking system. We document the unintended consequence that
reserves crowd out bank lending to the real economy, i.e., the “reserve supply channel”.

In principle, an increase in the supply of central bank reserves could either increase or decrease
bank lending, motivating the need for empirical analysis. If holding illiquid assets like mortgages
and loans funded by runnable deposits raises the risk of a bank run, increasing the supply of liquid
reserves could reduce the risk of runs and increase banks’ ability to lend. Conversely, regulatory
constraints like the leverage ratio can make it costly for banks to expand their asset holdings so
that a bank which holds more reserves will want to reduce its lending.

Figure 1: Supply of Central Bank Reserves and Bank Asset Illiquidity

This figure plots the total reserves of US depository institutions and their ratio of illiquid to total
assets from 1990 to 2021. Illiquid assets include all assets except for cash, reserves, Fed funds,
repos, Treasury securities and agency securities. Data is from FRED.
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1In 2008Q1, only 1.1% of Treasuries outstanding were held by US banks.
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Aggregate time series evidence suggests that QE’s injection of reserves crowded out bank
lending. As reserves increased from $0.02 trillion in 2006Q1 to $3.88 trillion in 2021Q1, the
proportion of illiquid assets such as loans on bank balance sheets declined from 83% to 63% (see
Figure 1). However, QE was implemented to stimulate the economy during recessions. Thus, the
observed substitution away from illiquid assets could simply reflect a low demand for bank loans
rather than being the direct result of QE itself.

Instead of directly using time series data, we estimate a structural model with plausibly ex-
ogenous instruments to quantify the impact of QE’s reserve injection. On the demand side, banks
compete in imperfectly competitive markets to provide deposits, loans, and mortgages. The supply
side of our model is novel since it features flexible interactions between a bank’s costs of borrow-
ing, lending, and holding securities. In particular, our specification allows a bank’s cost of lending
to depend on the quantity of reserves it holds. Thus, our framework is ideally suited to estimating
how the banking system’s overall cost and capacity of providing loans changes when it is forced
to hold additional reserves.

With our estimated model, we show that each dollar of reserves injected during QE from
2007 to 2018 crowded out 8.1 cents of bank lending, so the reserve supply channel suggests a
counterproductive reduction in the supply of bank loans. We note that this crowding out exists
in addition to the effects of asset purchases that have been identified in the literature. Hence, the
reserve supply channel is important in understanding the true effectiveness of QE.

To estimate the demand side of our model, we need to observe how the quantities demanded
from a bank vary when it exogenously changes its interest rates. We apply an instrument from the
reduced-form literature based on banks’ reallocation of funds in their internal capital markets after
a natural disaster. As Cortés and Strahan (2017) show, loan demand in a region increases after
it is hit by a disaster. Banks reallocate funds away from non-disaster regions to provide funds to
the disaster region, and this creates an exogenous shock to the interest rates the bank chooses in
non-disaster regions. This reallocation provides precisely the exogenous interest rate shock needed
to estimate a bank’s loan, mortgage, and deposit demand curves, assuming that natural disasters
do not impact the demand for borrowing and lending far away from the regions where they occur.

Our estimates show that the demand for bank loans is more interest-rate sensitive than the
demand for deposits and mortgages. If all banks in a market raise their corporate loan interest
rates by 10 basis points in 2007, the quantity of corporate loans demanded falls by 10.9%. In
comparison, a 10 basis point increase in interest rates would raise deposit demand by 0.6% and
would lower mortgage demand by 3.2%. If banks change their deposit, loan, and mortgage interest
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rates by similar amounts, their loan quantities will respond by a larger amount than their mortgage
or deposit quantities. This explains why we find that corporate loan quantities respond most to a
larger reserve supply.

Next, we estimate the supply side of our model. We need to know how a bank’s costs depend on
the quantities of loans, mortgages, deposits, and liquid securities on its balance sheet. Estimating
this cost function is challenging because a bank can simultaneously adjust several components
of its balance sheet in response to a demand shock. We solve this problem by first running a
series of reduced-form regressions of a bank’s marginal costs and balance sheet quantities on two
distinct exogenous demand shocks. In addition to the disaster instrument mentioned above, we
use a Bartik-style instrument for deposit demand using cross-sectional variation in deposit growth
across regions of the country.2 We separately estimate banks’ cost of holding liquid securities
using daily changes in reserves held in the Treasury General Account (TGA). Finally, we choose
the remaining cost function parameters to match our reduced-form regressions.

Our estimates imply that increasing a bank’s reserve holdings crowds out lending and crowds
in deposit issuance. In other words, reserves and bank lending are substitutes rather than comple-
ments for banks. One reason could be that bank balance sheet space is costly due to regulation.
Acharya and Rajan (2021) argue that reserves may amplify liquidity strains during stress episodes,
which may also render lending more costly. Quantitatively, a $100 million increase in reserves
held by a bank branch increases its marginal cost of providing mortgages and loans by 39 bps. At
the same time, the marginal cost of deposits decreases by 70 bps.

Finally, we run a counterfactual simulation using our estimated model to quantify how in-
creases in reserve supply affects lending and deposit-taking by the banking system. We first shock
the reserve supply, allow each bank to trade reserves and adjust its deposit, loan, and mortgage
rates, and then determine its quantities of loans, mortgages, and deposits using the demand sys-
tem. We find that reserve injections affect the interest rates on loans, mortgages, and deposits to a
similar extent. However, a larger reserve supply predominantly crowds out bank lending to firms,
while the effect on mortgage and deposit quantities is more muted. We estimate that the reserve
injections due to QE from 2008 to 2017 crowded out 8.1 cents of bank lending per dollar of re-
serves injected, reducing total lending by $141 billion per year. Further, we find that the spread
between the interest paid on reserves and risk-free rates available to non-bank investors generated
by the model matches the magnitude and dynamics of a proxy for this spread in the data. Taken
together, our findings imply that requiring banks to hold the trillions in reserves created by QE

2In appendix D, we show that for a firm that sells goods in multiple markets, demand shocks in one market can be
used to estimate both the demand curves the firm faces in other markets as well as the firm’s marginal cost curve.
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causes a counterproductive reduction in bank lending.

Relation to Literature

Our structural model belongs to a growing recent literature on structural estimation in banking.
Wang, Whited, Wu, and Xiao (2020) use a structural model of banking to study conventional mon-
etary policy transmission, while our structural model estimates the effect of reserve injections from
unconventional monetary policy on the banking system. Several other papers estimate models of
imperfect competition in banking similar to ours (Egan, Hortaçsu, and Matvos, 2017; Xiao, 2020;
Buchak, Matvos, Piskorski, and Seru, 2018; Albertazzi, Burlon, Jankauskas, and Pavanini, 2022),
while others estimate models of networks and matching (Akkus, Cookson, and Hortacsu, 2016;
Schwert, 2018; Craig and Ma, 2018). Our application of demand systems in banking complements
work that applies demand systems in other financial markets (Koijen and Yogo, 2019, 2020; Koi-
jen, Richmond, and Yogo, 2020; Bretscher, Schmid, Sen, and Sharma, 2020; Jiang, Richmond, and
Zhang, 2020). In particular, Koijen, Koulischer, Nguyen, and Yogo (2021) quantify the effect of
asset purchases from QE using a demand system, whereas our focus is on the reserves injected by
QE.

This paper also contributes to the empirical literature on how QE impacts the banking system.
Existing work in this literature has mostly focused on the effect of asset purchases. For example,
Rodnyansky and Darmouni (2017) and Chakraborty, Goldstein, and MacKinlay (2020), focus on
the mortgage-backed securities purchased in QE and show that banks with more mortgage-backed
securities increase their mortgage lending by more relative to those that hold fewer mortgage-
backed securities. Another set of papers study the effect of asset purchases on flattening the
long-term yield curve (Gagnon, Raskin, Remache, and Sack, 2010; Krishnamurthy and Vissing-
Jorgensen, 2011).

The effect of reserves supplied by QE has been the focused of a much smaller literature.
Theoretical work by Acharya and Rajan (2021) argue for the unintended consequence that reserve
injections exacerbate liquidity shortages during financial crises. Christensen and Krogstrup (2019)
find empirically that long-term government yields are directly impacted by the supply of reserves
in QE. Kandrac, Kokas, and Kontonikas (2021) show that banks whose reserve holdings are more
sensitive to aggregate reserve supply lend more than other banks after QE. Kandrac and Schlusche
(2021) show that in a change to deposit insurance fees that raises the cost of non-deposit borrowing,
treated banks decrease their lending and reserve holding relative to other banks. Unlike previous
work comparing reserve holding and lending across banks, our paper is the first to quantify the
aggregate effect of central bank reserve injection on the US banking system. We do so with a
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counterfactual simulation in our estimated structural model, ensuring that our results arise only
from a change in the aggregate reserve supply like in QE. The “reserve supply channel” we identify
points to an important unintended consequence of central bank reserves in crowding out bank
lending from bank balance sheets that complements the transmission channels from asset purchases
in the literature. Elenev, Landvoigt, Shultz, and Van Nieuwerburgh (2021) and Acharya and Rajan
(2021) also find evidence consistent with our reserve supply channel.

Our work also relates to a recent literature demonstrating the role of imperfect competition
in deposit markets (Drechsler, Savov, and Schnabl, 2017; Li, Ma, and Zhao, 2019) and mortgage
markets (Scharfstein and Sunderam, 2016) in the transmission of conventional monetary policy.
Our work shows that demand elasticity is an important determinant of the reserve supply channel,
since highly price-elastic corporate loan demand is impacted much more by reserve supply than
deposit and mortgage demand.

Finally, our results relate to the core idea in banking theory that it is optimal for banks to
simultaneously provide deposits and loans (Diamond and Rajan, 2000; Kashyap et al., 2002; Han-
son et al., 2015; Diamond, 2019). Our estimate of a bank’s costs function quantifies the gains from
deposits and loans coming from the same institution rather than from separate ones.

2 A Model of Bank Balance Sheets

This section introduces the theoretical framework that guides our structural analysis. The goal
of the model is to quantify how the banking system responds to policy interventions, such as an
increase in reserve supply caused by QE. This response depends on two key model components: the
demand that banks face and the balance sheet costs that banks incur in supplying loans, mortgages,
and deposits. We first provide a graphical illustration of our model in Subsection 2.1. Then,
in Subsection 2.2, we formally set up the model and derive the banking sector’s response to an
increase in reserve supply.

2.1 A Graphical Illustration

We first present a simplified, visual depiction of our model using a single bank as an illustration.
In the model, banks provide loans, mortgages, and deposits in imperfectly competitive markets.
Each bank faces a demand curve that determines quantities given the interest rate they choose
in each market. In Figure 2, the loan demand for a given bank, i.e., the green line, pins down
the loan quantity QL based on the loan rate RL it chooses. Like any firm facing a downward-
sloping demand curve, banks choose their interest rate so that the marginal cost equals the marginal
revenue. In Figure 2, the bank chooses the loan rate RL at which its marginal cost of supplying
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loans, i.e., the red line, equals the marginal revenue from loans lending, i.e., the blue line.

Banks’ holdings of liquid reserves may impact their marginal cost of lending. Having more
liquid assets may prevent fire-sales of illiquid assets and help comply with liquidity regulations.
For example, Afonso, Giannone, La Spada, and Williams (2022b) show that banks’ demand for
reserves has increased over the last decade. However, a larger supply of reserves also uses up
balance sheet space and may add to the cost of meeting capital requirements when bank equity
is costly. For example, Afonso, Cipriani, and La Spada (2022a) show that when reserves were
added back to the consideration of leverage ratios after the Covid-19 crisis, banks attempted to
reduce their funding size to reduce balance sheet costs. We will formally set up and estimate a
cost function, but for now, suppose that the increase in reserve supply shifts the marginal cost of
lending as illustrated in Figure 2, then the bank would raise its loan rate to RL′ , at which the new
marginal cost meets the marginal revenue. In the new equilibrium, the quantity of loans supplied
by the bank would drop to Q′

L, as implied by the loan demand curve at the new loan rate, RL′ .
Hence, the increase in loan rate and the drop in loan volume as a result of reserve injection would
be RL′ −RL and QL −Q′

L, respectively.

Our empirical approach to quantify the banking system’s response to an increase in reserves is
similar to the framework in Figure 2. We first estimate the loan demand curve, which determines
the marginal revenue. In the full model, banks compete with each other so we extend the loan
demand curve for a single bank to a demand system that captures how banks’ chosen loan rates
affect their own and each other’s quantities. Next, we estimate a bank’s cost of lending as a function
of its balance sheet composition, i.e., its volume of loans, mortgages, securities, and deposits.
Then, we can infer how an increase in reserve supply shifts the bank’s marginal cost curve to
trace out the equilibrium change in loan rates and volumes. The same estimation is performed for
deposits and mortgages.

2.2 Model

We consider a set of banks indexed by m that operate in a set of markets indexed by n at each time
t. Banks invest in loans, L, mortgages, M , and liquid securities, S, backed by deposits, D. Each
bank m chooses market-specific rates RD,nmt, RM,nmt, and RL,nmt for its deposits, mortgages, and
loans, respectively. Taking the vector of rates chosen by their competitor banks as given, banks
choose their own rates to maximize their profits. In terms of loans, for example, bank m takes
the rates of its competitor banks −m, RL,n(−m)t, as given. The quantity of funds it lends is given
by the residual demand curve QL,nmt(RL,nmt, RL,n(−m)t). Similarly, its residual demand curves
for mortgages and deposits are QM,nmt(RM,nmt, RM,n(−m)t) and QD,nmt(RD,nmt, RD,n(−m)t). For
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Figure 2: This figure illustrates the effect of an increase in reserves on the loan market. An increase in
reserve supply shifts the bank’s marginal cost curve for lending. This results in a new intersection with the
marginal revenue curve, yielding a new interest rate, RL

′
. The new loan quantity, Q′

L, is then pinned down
by the demand curve.

simplicity, we suppress the arguments of the residual demand functions, writing QL,nmt, QM,nmt,
and QD,nmt going forward. Liquid securities, QS,mt, trade in a competitive market at an interest
rate RS,t. Loans, mortgages, deposits, and securities have cash flows that are discounted at rates
RL,m
t , RM,m

t , RD,m
t , and RS,m

t reflecting their respective riskiness.

Banks face a cost C(Θmt) of providing loans, deposits, and mortgages that depends on all of
the items Θmt on its balance sheet. Θmt is a vector of bankm’s balance sheet components, QD,nmt,
QM,nmt, QL,nmt, and QS,mt. In general, this cost function quantifies the various ways that a bank’s
decisions for one part of its balance sheet can impact its costs for another. For example, having
more liquid securities on balance sheets may reduce the cost of selling illiquid loans or mortgages
in the event of large deposit withdrawals in a bank run (Diamond and Dybvig, 1983). In addition,
bank regulations such as the Supplementary Leverage Ratio (which constrains a bank’s leverage)
and the Liquidity Coverage Ratio (which constrains the mismatch between a bank’s holding of
illiquid assets and issuance of liquid deposits) impose costs that depend on multiple balance sheet
components. We show in Section 4 how the bank’s overall cost depends on the composition of its
balance sheet.

In this setting, bank m chooses its rates RD,nmt, RM,nmt, and RL,nmt and security quantities
QS,mt at time t to maximize the expected present value of its profits at t+1 in all markets n, which
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are given by

max
(RD,nmt,RM,nmt,RL,nmt,QS,mt)

∑
n

QL,nmt(RL,nmt −RL,m
t ) +

∑
n

QM,nmt(RM,nmt −RL,m
t )

+QS,mt(RS,t −RS,m
t )−

∑
n

QD,nmt(RD,nmt −RD,m
t )− C(Θmt). (1)

In words, bank m’s profits are the sum of its revenue from loans, mortgages, and securities, less
the nominal cost of deposit funding and the balance sheet costs C(Θmt). The first order conditions
of bank profits with respect to the choice variables, RD,nmt, RM,nmt, RL,nmt, and QS,mt, are

Marginal Revenue︷ ︸︸ ︷
∂

∂RD,nmt

[QD,nmt(R
D,m
t −RD,nmt)] =

Marginal Cost︷ ︸︸ ︷
∂C(Θmt)

∂QD,nmt

∂QD,nmt

∂RD,nmt

, (2)

∂

∂RM,nmt

[QM,nmt(RM,nmt −RM,m
t )] =

∂C(Θmt)

∂QM,nmt

∂QM,nmt

∂RM,nmt

, (3)

∂

∂RL,nmt

[QL,nmt(RL,nmt −RL,m
t )] =

∂C(Θmt)

∂QL,nmt

∂QL,nmt

∂RL,nmt

, (4)

RS,t −RS,m
t =

∂C(Θmt)

∂QS,mt

. (5)

The left-hand side of equations (2) to (4) is the marginal revenue from changing each of the bank’s
interest rates (the blue curve in Figure 2). This is because the bank’s “revenue” from loans, for
example, can be seen as the quantity QL,nmt of loans times its interest rate spread RL,nmt − RL,m

t

above the loan discount rate RL,m
t . On the right-hand side of equations (2) to (5), we have the

marginal costs from changing each of the bank’s interest rates. Liquid securities are traded in a
competitive market, so the first order condition for securities holdings QS,mt in equations (5) sets
priceRS,t−RS,m

t equal to marginal cost of holding these securities ∂C(Θmt)
∂QS,mt

. Based on equation (5),

we refer to ∂C(Θmt)
∂QS,mt

as the “reserve spread”—the difference between risk-free rates RS,t available
only to banks and risk-free rates RS,m

t available to non-bank investors as well.

When the supply of liquid securities increases, as in the increase in reserve supply from QE,
banks respond by optimally changing their interest rates in all markets as well as their securities
holdings. The interest rates they choose still satisfy the first order conditions in equations (2)
to (5), which allows us to solve for the equilibrium quantities of loans, mortgages, and deposits.
Specifically, the comparative statics with respect to a change in bank m’s liquid security holdings
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QS,mt are

∂
(
RD,m
t −RD,nmt − QD,nmt

∂QD,nmt/∂RD,nmt

)
∂QD,nmt

∂QD,nmt

∂QS,mt

=
∂2C(Θmt)

∂QD,nmt∂Θmt

· ∂Θmt

∂QS,mt

, (6)

∂
(
RM,m
t −RM,nmt − QM,nmt

∂QM,nmt/∂RM,nmt

)
∂QM,nmt

∂QM,nmt

∂QS,mt

= − ∂2C(Θmt)

∂QM,nmt∂Θmt

· ∂Θmt

∂QS,mt

, (7)

∂
(
RL,m
t −RL,nmt − QL,nmt

∂QL,nmt/∂RL,nmt

)
∂QL,nmt

∂QL,nmt

∂QS,mt

= − ∂2C(Θmt)

∂QL,nmt∂Θmt

· ∂Θmt

∂QS,mt

, (8)

∂QS,mt

∂QS,mt

= 1, (9)

where ∂QD,nmt

∂QS,mt
,∂QM,nmt

∂QS,mt
, ∂QD,nmt

∂QS,mt
are the responses of each individual bank branch quantity to the re-

serve increase, and Θmt is the vector of balance sheet quantities (QD,nmt, QM,nmt, QL,nmt, QS,mt).
Please see Appendix A.1 for detailed derivations.

To determine the equilibrium response of the banking system to a change in the supply of
liquid securities, we need empirical estimates of the components of equations (6) to (8). The left-
hand side is determined by the bank’s loan, mortgages, and deposit demand curves. In Section
3, we estimate this term with an industrial organization style demand system by observing how
each bank’s quantities respond to shocks to the interest rates they and other banks choose.3 On the
right-hand side is an expression reflecting how a bank’s marginal cost of borrowing or lending in
a market changes with the composition of its entire balance sheet. We therefore need to estimate
how a bank’s marginal costs of lending and borrowing depend on the different components its
balance sheet. In Section 4, we develop and apply a novel econometric approach to estimate this
cost function. Taken together, our estimates of the demand for a bank’s services and its cost of
providing them allow us to infer the aggregate effect of an increased supply of reserves caused by
QE—the policy we intend to analyze.

3 Demand Systems

This section estimates the demand systems for deposits, mortgages, and loans. Section 3.1 in-
troduces a modified version of a logit demand system that can be estimated without observing
an outside good. Section 3.2 details the data and instruments we use for estimating our demand
systems. The estimation results are reported in Section 3.3.

3This section considers a single bank in isolation, while our full model allows for competition between banks. Thus,
we need to estimate a demand system across all banks rather than just a demand curve faced by an individual bank.
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3.1 Estimation Strategy

Our first step is to estimate the demand curves that individual banks face in deposit, loan, and
mortgage markets. Depositors can either invest in deposits at banks m > 0 that have branches in
the market or an unobserved outside option m = 0. This outside option reflects the availability of
investment options other than deposits that are not in our data such as money market fund shares.
An observed quantity QD,nmt of deposits is invested in bank m’s branches in market n in time t. In
the standard approach to demand estimation, it is necessary to observe the quantity invested in the
outside option. For our deposit and mortgage markets, we present a small modification of a logit
demand system that can be consistently estimated only using linear regressions without observing
the outside option quantity. For loans, we apply the standard logit demand system and assume that
the quantity QL,nm0 invested in the loan market outside option is observed.

Preferences of borrowers and depositors for observed goods are like those in a standard logit
demand system (Berry, 1994; McFadden, 1974). Depositor j investing in bank m in market n has
the following utility:4

uD,jnmt = αDRD,nmt +XD,nmtβD + δD,nmt + εD,jnmt. (10)

The first term is the interest rate RD,nmt paid on deposits times the depositor’s preference for
receiving interest, αD. We expect the price disutility parameter for deposits, αD, to be positive
because depositors should prefer a higher deposit rate, all else equal. In contrast, we expect the
corresponding price disutility parameter for mortgage and loan borrowers to be negative because
they prefer a lower funding cost. Depositors’ utility is also affected by the desirability of bank m’s
deposits, which depends on a vector of observed characteristics, XD,nmt, preferences for observed
characteristics, βD, and unobserved characteristics, δD,nmt. Finally, the error term, εD,jnmt, is
assumed to be i.i.d. across depositors j and to follow a type one extreme value distribution. In
addition, the outside good m = 0 provides utility

uD,jn0t = δD,jn0t + εD,jn0t, (11)

where εD,jn0t is also type one extreme value and independent of all other random variables. The
additional variable δD,jn0t is i.i.d. across depositors j and has a measure given by the density
f(δD,jn0t) = FD,nt exp(βD,oδD,jn0t), where FD,nt is a constant that determines the size of each
market. The coefficient βD,o determines how the total quantity of deposits in a market changes
when the utility uD,nmt of all banks’ deposits m increases. For loans, where we observe an outside
4The demand curves for mortgages and loans are defined similarly. We use the subscript M for mortgages and L for
loans to describe these demand systems.
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option quantity, we follow the standard practice in a logit demand model and normalize δL,jn0t = 0

in all loan markets.

Conditional on a value of δD,jn0t, the probability PD,nmt|δD,jn0t
of agent j choosing to invest in

the branch of bank m in market n at time t satisfies

PD,nmt|δD,jn0t
=

exp(αDRD,nmt +XD,nmtβD + δD,nmt)

exp(δD,jn0t) +
∑

m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
(12)

according to equation (10) in McFadden (1974). In appendix A.2.1 we show that integrating
PD,nmt|δD,jn0t

over the distribution of δD,jn0t gives the following expression for the quantityQD,nmt

chosen from bank m in market n at time t

logQD,nmt = log(UD,nt) + αDRD,nmt +XD,nmtβD + δD,nmt. (13)

Here, log(UD,nt) is a market-time specific term that is the same across banks m given in appendix
equation (A10) . The demand curve between the quantity QD,nmt provided by bank m in market n
at time t and its interest rate RD,nmt is given by

∂ logQD,nmt

∂RD,nmt

=
∂ log(UD,nt)

∂RD,nmt

+ αD. (14)

To identify this demand curve, we first use the linear expression in equation 13 to estimate αD,
controlling for the impact of log(UD,nt) with market-time fixed effects. Because the unobserved
quality δD,nmt of a bank’s deposit may be correlated with its interest rate (e.g. a bank may pay a
low rate if its ATM network is particularly desirable), we use a two-stage least squares approach
with an instrument zD,nmt.

3.1.1 Aggregate Demand Elasticity

Having identified the price disutility parameter, αD, we now present a tractable method to estimate
the other term ∂ log(UD,nt)

∂RD,nmt
in the bank’s demand curve. Because UD,nt varies at the market-time

level and not across banks, we estimate it based on how market-level quantities are impacted by
market-level shocks.

First, we define

ψD,nt = log(
∑
m

exp(αDRD,nmt +XD,nmtβD + δD,nmt)) (15)

to represent the desirability of a “composite good” provided by all banks operating in the market.
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We derive in equation (A18) of appendix A.2.1 the following log-linear expression for the quantity
QD,nt of deposits in market n at time t

log(QD,nt) = βD,oψD,nt + log

[
FD,nt

∫ ∞

−∞

exp(βD,ou)

1 + exp(u)
du

]
. (16)

From this equation, we can estimate how logQD,nt changes with the value of ψD,nt to learn the
value of βD,o. The parameter βD,o quantifies the sensitivity of total deposit quantities to changes in
the overall desirability of deposits.

After estimating the demand parameters (αD, βD) in equation (13), we can observe all terms in
equation (15) that defines ψD,nt except the market-time specific mean of δD,nmt (which is conflated
with log(UD,nt) in the fixed effect in equation (15)). We therefore decompose ψD,nt into an unob-
servable component ψuD,nt =

1
Nnt

∑
m δD,nmt and an observable component ψoD,nt = ψD,nt−ψuD,nt.

Equation (A25) in Appendix A.2.3 provides an explicit expression for ψoD,nt in terms of observable
data.

We use an instrumental variable approach to estimate parameter βD,o. We need an instrumental
variable zD,nt that impacts ψoD,nt and is uncorrelated with the unobserved component, logFD,nt +

βD,oψ
u
D,nt. With such an instrument, we estimate βD,o using two-stage least squares with time fixed

effects added. After estimating βD,o, we have all necessary parameter estimates that determine
quantities as shown by equation A11 in Appendix A.2.3.

3.2 Instruments and Data

Estimating our demand systems requires information on deposits, mortgages, loans, and bank
characteristics. In addition, we construct an instrumental variable from property damage data.
We first introduce the data we use and then explain how our instrument is constructed. Summary
statistics for the demand-side variables are reported in Table 1.

Deposits. Branch-level deposit volumes are obtained from the FDIC, which covers the uni-
verse of US bank branches at an annual frequency from June 2001 to June 2017. We exclude
branches that consolidate deposits in another location, do not accept deposits, or are owned by for-
eign banks. We define each county-year as a deposit market and sum branch-level deposits at the
bank-county-year level. Our sample is from 2001 to 2017. Table 1 reports the summary statistics.

Branch-level deposit rates are obtained from RateWatch, which collects weekly branch-level
deposit rates by product. Data coverage varies by product, especially in the earlier years. To
maximize the sample size, we focus on the most commonly available savings account type, which
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Table 1: Summary Statistics (Market-Bank-Year Level)

This table reports summary statistics of bank deposits, mortgages, and loans at the market-bank-year level.
Rates are reported in basis points and volumes are in millions. For a given variable, #Obs refers to the total
number of observations. The sample period is from 2001 to 2017.

# Obs Mean 25th Pct. 50th Pct. 75th Pct. Std. Dev.
Log Deposit Market Share 74007 −2.67 −3.45 −2.33 −1.50 1.69
Deposit Volume 74007 188.47 23.05 47.82 103.16 2287.78
Deposit Rate 45894 58.04 10.00 20.00 80.00 77.98
Log Mortgage Market Share 38957 −4.12 −5.32 −3.73 −2.56 2.08
Mortgage Volume 38957 23.67 1.23 3.79 11.62 209.53
Mortgage Rate 11735 457.62 332.50 450.55 570.00 126.41
Log Loan Market Share 25943 −5.06 −6.62 −4.95 −3.45 2.09
Loan Volume 25989 977.24 40.25 132.00 553.78 3218.81
Loan Spread 25943 183.52 101.38 171.43 250.00 120.46

is the 10K money market account. We compute the average rate at the bank-county-year level
from June 2001 to June 2017 (if there is more than one branch), which we match with the total
bank-county-year level deposit volume from the FDIC.

The branch-level identifier in RateWatch (accountnumber) is matched to the branch-level iden-
tifier in the FDIC data (uninumbr) using the mapping file developed by Bord (2017).5

Mortgages. We use data on mortgage originations made available under the Home Mortgage
Disclosure Act (HMDA). The data available to us is at the annual frequency and includes informa-
tion on the lender, loan size, location of the property, loan type, and loan purpose. Any depository
institution with a home office or branch in a Central Business Statistical Area (CBSA) is required
to report data under HMDA if it has made or refinanced a home purchase loan and has assets above
$30 million. As explained by Cortés and Strahan (2017), the bulk of residential mortgage lending
activity is likely to be reported under this criterion.6 We define each county-year as a mortgage
market and sum mortgage loan volumes at the bank-county-year level. Our sample is from 2001
to 2017.

County-level mortgage rates are obtained from RateWatch, which collects weekly branch-level
mortgages rates by product. Data coverage varies by product, especially in the earlier years. To
maximize the sample size, we focus on the most commonly available mortgage loan product, which
is the 15-year fixed rate mortgage. We compute the average mortgage rate at the bank-county-year

5Special thanks to Vitaly Bord for sharing the mapping file with us.
6Any non-depository institution with at least 10% of its loan portfolio composed of home purchase loans must also
report HMDA data if its asset size is above $ million. These institutions are not included in our sample given our
focus on deposit-taking commercial banks.
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level from 2001 to 2017 to match with the reporting of the mortgage volume data from HMDA.

We first merge bank-level identifiers in HMDA to the FDIC bank-level identifiers using the
mapping file developed by Bob Avery.7 Then, the branch-level identifier in the FDIC data (un-
inumbr) is merged with the branch-level identifier in RateWatch (accountnumber) using the map-
ping file developed by Bord (2017).

Loans. We use data on syndicated loans from the Thomson Reuters Dealscan database. We
select all loans originated by US banks and sum loan volumes at the bank-state-year level, where
the location of the borrower is given in Dealscan. We define loan markets at the state-year level
instead of the county-year level because firm borrowers tend to be less geographically confined
than individual depositors. Similarly, we compute average loan spreads and total loan quantities at
the bank-state-year level. Our sample is from 2001 to 2017.

We build on the mapping file used in Chakraborty et al. (2018) to hand-match lenders in
Dealscan to Call Report bank identifiers (RSSD).8

Bank Characteristics. We use the Call Reports to obtain bank-level characteristics as control
variables. Specifically, we calculate the ratio of insured deposits as insured deposits over total
liabilities and the ratio of loan loss provision as loan loss provisions over total loans. We average
4 quarterly observations to obtain bank-year level data from 2001 to 2017.

Property losses from natural disasters. We use the Spatial Hazard Events and Losses
Database for the United States (SHELDUS) to obtain data on property losses from natural dis-
asters. This dataset records the location, time, and damage brought about by natural disasters in
the US. We include all reported disasters in the database and calculate the total property losses for
each county-year from 2001 to 2017 for our instrument.

Instruments. We first explain our instrument, zD,nmt, for estimating our demand systems. We
face the endogeneity problem that banks’ choices of interest rates for deposits, mortgages, and
loans may be correlated with unobservables that affect demand for the bank’s products. With an
instrument that impacts interest rates but that is uncorrelated with unobservable demand shifters,
we can estimate the price disutility parameter of our demand systems, exploiting the linearity
of equation (13). Following Cortés and Strahan (2017), we construct the instrument based on
property losses from natural disasters and banks’ branch networks. As Cortés and Strahan (2017)
show, natural disasters increase the demand for loans in the area where they occur, which means

7The version we used is available here https://sites.google.com/site/neilbhutta/data.
8Special thanks to Indraneel Chakraborty, Itay Goldstein, and Andrew MacKinlay for sharing the mapping file with
us.
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that banks present in the area reallocate funds from their branches elsewhere through their internal
capital markets. Hence, property losses to bank m’s branches in regions n′ constitute a supply
shock to bankm’s branches in county n, which allows us to trace out the demand curves. Appendix
D formalizes this argument.

Formally, our natural disaster instrument zD,nmt measures for bank m’s branches in county n
and year t the property losses from natural disasters accrued to the bank’s branches in all other
counties n′:

zD,nmt =
1

Nmt

log

(∑
n′ ̸=n

damagen′t ·
NB
n′mt∑

m′ NB
n′m′t

)
,

whereNmt is the number of counties in which bankm has branches, and damagen′t is the property
loss in county n′. Following Cortés and Strahan (2017), we scale damagen′t by the fraction of
branches belonging to bank m in county n′ and take logs after summing the scaled damage losses.
The former adjustment captures the portion of the demand shock in county n′ absorbed by branches
of bank m, while the latter ensures that the largest shocks (e.g. Hurricane Katrina) do not drive the
overall result. The instrument for mortgages follows that of deposits. For commercial loans, we
use the same instrument constructed at the bank-state-year level instead of the bank-county-year
level, where the state is determined by the location of the borrower’s headquarters.

One concern for our identification could be that the effect of disasters spills over to affect
local demand in unaffected counties. To this end, notice that our exclusion restriction does not
require the absence of spillover effects altogether. It only requires that any potential influence of
natural disasters on unobserved deposit characteristics in unaffected areas is not correlated with
banks’ branch networks. We include the log property damage to each county in all specifications
to help account for any direct effects of disaster losses on demand. Another concern could be that
loan losses from the disaster itself directly influence interest rates. To this end, we also include
banks’ loan loss provision as control variable in all specifications. Finally, for the deposit demand
system, we control for the lagged ratio of insured deposits and limit the sample to observations
with above-median natural disaster exposure because of the stickiness of deposit volumes.9

Next, to estimate the sensitivity of total deposit quantities to changes in the overall desirability

9The stock of deposit volumes is extremely sticky so it is difficult to differentiate the response in deposit volumes to
small disaster shocks from small fluctuations in deposit volumes that occur at the same time. This results in noisy
estimates if observations with small disaster exposures are used. The underlying assumption is that bank branches
exposed to above-median disasters are representative of the full sample in terms of their deposit demand elasticity.
We note that the same issue applies much less to mortgage and loan markets because the data for the issuance of
mortgages and of loans are much more persistent than the stock of deposits.
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of deposits as in equation (A18), we average our market-bank-time level instrument, zD,mnt, at the
market-year level to construct

zD,nt =
1

Nnt

∑
m

zD,nmt.

This instrument captures how exposed a region is to indirect rate changes coming through internal
capital markets. The identifying assumption is that the indirect shocks through banks’ internal
capital markets are uncorrelated with the log-size of each market, logFD,nt, and with the average
unobservable quality, ψuD,nt. The corresponding instrument for mortgages is constructed in the
same way.

3.3 Estimation Results

Table 2 reports the first-stage and second-stage results for estimating the price disutility parameter
α for deposits, mortgages, and loans.

The price disutility parameters reported in the first row of panel (b) of Table 2 are positive for
deposits and negative for mortgages and loans. Intuitively, deposit rates are paid by the bank so
that raising deposit rate increases a bank’s market share. In contrast, mortgage, and loan rates are
paid by borrowers, so a bank can improve its market share by offering lower mortgage and loan
rates. Quantitatively, the coefficients imply that when a bank raises its deposit rate in one county
by 10 basis points, its share of total deposits will increase by 15.1%. When the same bank lowers
its mortgage and loan rates in one market by 10 basis points, its mortgage and loan shares increase
by 53.4% and 31.0%, respectively. The price disutility of deposits is smaller in magnitude than
that for mortgages and loans, consistent with depositors being less attentive to interest rates than
firm and mortgage borrowers.

Regarding the outside option, we estimate the sensitivity of market-level quantities QP,nt to
the market-level desirability parameter ψoP,nt as in equation (A18) for deposits and mortgages.
We include the average age, average income, the share of residents with a college degree, log
population, growth of house prices, and log local property damage due to natural disasters.

Panel (b) in Table 3 reports the sensitivity of market-level quantities QP,nt to the market-level
desirability parameter ψoP,nt to be 0.04 for deposits and 0.06 for mortgages. Hence, as we show in
equation (A33), the increase in deposit quantity when all banks in a county raise their deposit rates
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Table 2: Demand System Estimates

This table reports the two-stage least squares results for estimating price disutility of deposit, mortgage, and
loan demand systems:

RD,nmt = aD,nt + γDzD,nmt +XD,nmtγD + eD,nmt,

logQD,nmt = χnt + αDRD,nmt +XD,nmtβD + εD,nmt.

These regressions are run at the market-bank-year level. Loan loss provision is the ratio of loan loss provi-
sion over total loans, lag insured deposit ratio is the ratio of insured deposits over total liabilities lagged by
1 year, and log property damage is the direct property loss from natural disasters at the county level. For
the deposit, mortgage and loan rates, 0.01 means 1%. The sample period is from 2001 to 2017. We report
standard errors clustered by bank in the parentheses. *, **, and *** denote significance at the 10%, 5%, and
1% level, respectively.

Panel (a): First Stage Panel Regression

(1) (2) (3)

Deposit Rate Mortgage Rate Loan Rate

IV 1.69∗∗∗ 12.17∗∗∗ 3.19∗∗∗

(0.26) (2.90) (0.57)
Loan Loss Provision 0.01∗∗∗ −0.02 0.01∗

(0.00) (0.01) (0.01)
Lag Insured Deposit Ratio 0.00∗∗∗

(0.00)
Log Property Damage −0.00∗∗∗ −0.00∗∗

(0.00) (0.00)

R2 0.87 0.91 0.29
Adj. R2 0.80 0.85 0.27
Num. of Obs. 105551 75470 23393
Market-Year F.E. Y Y Y

Panel (b): 2SLS Panel Regression

(1) (2) (3)

Deposit Market Share Mortgage Market Share Loan Market Share

Rate (with IV) 151.32∗∗∗ −533.93∗∗∗ −310.13∗∗∗

(49.07) (167.24) (89.13)
Loan Loss Provision −1.41 −14.53 5.03

(1.26) (9.98) (3.22)
Lag Insured Deposit Ratio −1.97∗∗∗

(0.18)
Log Property Damage 1.26∗∗∗ 0.81∗∗∗

(0.02) (0.07)

Num. of Obs. 105551 75470 23393
Market-Year F.E. Y Y Y
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Table 3: Outside Option Estimates (Deposits and Mortgages)

This table reports two-stage least squares results for estimating the sensitivity of market-level quantities to
the aggregate observed desirability parameter ψont:

ψoD,nt = ρD,t + θDzD,nt + χD,ntθD + εoD,nt,

logQD,nt = αD,t + βD,oψ
o
D,nt + χD,ntρD + ηD,nt.

The regression is run at the market-year level. We include market-year level controls, including average
age and income of the population, fraction of residents college degree, log population, annual house price
growth, and log property loss due to natural disaster. For the deposit and mortgage rates, 0.01 means 1%.
The sample period is 2001–2017. We report standard errors clustered by county in the parentheses. *, **,
and *** denote significance at the 10%, 5%, and 1% level, respectively.

Panel (a): First Stage

(1) (2)

Deposit ψoD,nt Mortgage ψoM,nt

IV 0.03∗∗∗ −1.03∗∗∗

(0.01) (0.21)

R2 0.98 0.89
Adj. R2 0.98 0.89
Within Adj. R2 0.98 0.69
Num. of Obs. 21628 22447
Controls Y Y
Year F.E. Y Y

Panel (b): 2SLS

(1) (2)

Deposit Quantity Mortgage Quantity

ψo (with IV) 0.04 0.06∗

(0.19) (0.03)

Num. of Obs. 21628 22447
Controls Y Y
Year F.E. Y Y

by 10 basis points is given by

∂ logQD,nt

∂RD,nt

=
∂ logQD,nt

∂ψoD,nt

∂ψoD,nt
∂RD,nt

= 0.04× 15.1% = 0.6%.

Similarly, when all banks in a county lower their mortgage rates by 10 basis points, the mortgage
quantity increases by 0.06× 53.4% = 3.2%. While our estimate of βD,0 is statistically imprecise,
we show in our counterfactual analysis that increasing the estimate by a standard deviation of .19
has a modest impact on how much reserve injections crowd out lending.

For loans, our estimate of the quantity of firms choosing the outside option uses the fact that
we can observe both firms that do and do not borrow. We count the number of firms in the Dealscan
database that did not borrow in a given year and state and the divide the number by four, which
reflects the average loan maturity. We then multiply this number of firms times the average size of
a loan in its market. The average loan size is linearly projected from the existing loans in that year
with state fixed effect to account for state-level heterogeneity in the size of loans. The underlying
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assumption is that potential borrowers would have on average obtained a loan of the same size as
the existing ones in the market that year.

We report the outside option size for firms at the state-year level in the Online Appendix Table
OA1. In 2007, for example, the outside option size is equivalent to a βo of 0.35. This means that
when all banks in a state lower their loan rates by 10 basis points, the loan quantity increases by
0.35× 31.0% = 10.9%. Notice that the demand elasticity of loans is higher than that of mortgages
because although their price disutility parameters are of similar magnitudes, the outside option
of loans responds much more to changes in observed desirability than in the case of mortgages.
One reason could be that borrowers in the syndicated loan market have more flexibility to borrow
from other sources such as the bond market. Although our focus is on bank lending to firms,
our framework could be extended to account for a potential substitution from loans to bonds with
public firm-level data on bond financing. Deposits have a low sensitivity along both dimensions,
which leads to a highly inelastic deposit demand curve.

Because our result that the reserves created by QE crowd out loans relies on our estimate of
the elasticity of loan demand, we present an alternative estimation approach in Online Appendix
B. This approach to estimating firms’ demand for loans exploits the fact that firms tend to borrow
persistently from the same bank multiple times, even though they have the option of borrowing
from a new bank. Because of this persistence, we can identify firms’ elasticity of credit demand
by observing how much they decrease their total borrowing when there is a negative credit supply
shock to a bank from which they have already borrowed. We find similar results to our benchmark
estimates, as we discuss in Online Appendix B.

4 Cost Function

This section specifies and estimates the bank’s cost function for producing deposits, mortgages,
and loans. Quantifying the cost function is challenging because banks choose all their balance
sheet components simultaneously. We propose a specification of how banks’ costs depend on their
balance sheet components that can be feasibly estimated using multiple instrumental variables. In
our novel estimation method, we first perform a reduced form analysis of how banks’ marginal
costs and balance sheet quantities respond to exogenous shocks. Next, we estimate the bank’s
cost function by choosing its parameters to replicate these reduced form results. This estimated
cost function tells us how a bank’s marginal costs are impacted when the supply of reserves in the
banking system changes.

We first set up the cost function in Section 4.1 and then explain how we estimate it in Section
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4.2. Section 4.3 describes the data and instruments we use and Section 4.4 reports our estimation
results.

4.1 Cost Function Specification

Let Q⃗ = (QD,mt, QL∗,mt, QS,mt)
′ denote the vector of bank m’s total deposit, lending, and security

quantities at time t.10 Here, QL∗,mt = QL,mt +QM,mt is the sum of a bank’s per-branch corporate
loan and mortgage holdings. We specify the bank’s cost function with the quadratic expression

C(Θmt) = Q⃗′HQ⃗+
∑
n∗

QL∗,n∗mtε
L∗

n∗mt +
∑
n

QD,nmtε
D
nmt +QS,mtε

S
mt. (17)

Here, n∗ is a variable that indexes all lending markets, either mortgage or corporate loan, allowing
for more compact notation. H is a symmetric matrix that is the Hessian of our cost function

H =

 HDD HDL∗ HDS

HDL∗ HL∗L∗ HL∗S

HDS HL∗S HSS

 . (18)

The cost function depends linearly on each bank-market-level quantity and quadratically on the
bank-level quantities. This quadratic specification yields the following linear expressions for a
bank’s cost of changing its deposit, lending, and security quantities

∂C(Θmt)

∂QD,nmt

= HDDQD,mt +HDL∗QL∗,mt +HDSQS,mt + εDnmt, (19)

∂C(Θmt)

∂QL∗,n∗mt
= HDL∗QD,mt +HL∗L∗QL∗,mt +HL∗SQS,mt + εL

∗

n∗mt, (20)

∂C(Θmt)

∂QS,mt

= HDSQD,mt +HL∗SQL∗,mt +HSSQS,mt + εSmt. (21)

Our specification allows for flexible interactions between a bank’s costs of borrowing, lending,
and holding securities. In particular, a bank’s holding of securities affects its marginal cost of
lending and deposit-taking. An injection of reserves can therefore cause banks to adjust their
loan and deposit quantities. The magnitudes of HL∗S and HDS play a particularly crucial role for
determining the impact of reserve injections. As shown in equations (6) to (8), the response of
our model to external shocks such as an increase in reserve supply depends only on the second
derivatives of the bank’s cost function reflected in the matrix H .
10We normalize these variables by divided by the number of branches where a bank has deposits. This normalization

increases the power of our estimates by reducing the weight on a few very large banks.
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Our key simplifying assumption is that mortgages and corporate loan quantities can be aggre-
gated into a single term QL∗,mt = QM,mt + QL,mt that appears in the bank’s cost function. This
follows the simple model of Bernanke and Blinder (1988) that summarizes a bank’s balance sheet
by the 3 main categories of liquid securities, illiquid loans, and deposit liabilities. Within this
framework, we are able to capture the key feature of banks that they provide deposits and loans
together. A negative cross partial ∂C2(Θmt)

∂QD,mt∂QL∗,mt
= HDL∗ would explain why it is optimal for banks

to jointly provide deposits and loans rather than for each to be provided by a separate firm, which
is a key stylized fact about banks. Pragmatically, this reduction of the bank’s balance sheet to 3
quantities rather than 4 also makes our model simple enough to estimate using 3 distinct sources
of exogenous variations as we explain below.

4.2 Estimation Strategy

To estimate the bank’s cost function Hessian H , we first infer each bank’s marginal costs of pro-
viding deposits, mortgages, and loans using our estimated demand systems. We use the first-order
conditions for a bank’s profit-maximizing choices of interest rates, equations (2) to (4). We provide
an explicit expression for the bank’s marginal costs in equations (A34) -(A36) in appendix A.3.
Finally, we can use equation (5) to infer a bank’s marginal cost of holding securities directly from
observed interest rates because the securities market is competitive.

We then observe how a bank’s marginal costs and balance sheet quantities respond to an in-
strument zimt. Such an instrument is necessary because a bank’s chosen quantities are likely to be
correlated with the cost shocks ε that it faces. For example, a bank will likely choose to provide
more deposits if it becomes cheaper for the bank to do so. Looking at the covariance between a
bank’s marginal cost changes and quantity changes will therefore reflect how a bank responds to
cost shocks and not allow us to identify the Hessian H . Instead, if we see how marginal costs and
quantities respond to an instrument zimt that is uncorrelated with unobserved cost shocks, we can
use this information to consistently estimate H .

We regress all of the bank’s observed marginal costs and bank-level quantities on this instru-
ment. For A ∈ {D,L∗, S} let MCA

mt be bank m’s marginal cost of adding additional units of A to
its balance sheet. The impact of our instrument on the bank’s marginal cost is given by the linear
regression

MCA
mt = θi,At + κi,Azimt + uAmt. (22)

We include the fixed effect θi,At to capture time-series variation in banks’ costs that is not directly
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caused by decisions they make. The impact of the instrument on quantities is given by

QA,mt = αi,At + γi,Azimt + εAmt. (23)

Our identifying assumption is that zimt is uncorrelated with uAmt and εAmt. From these regressions,
we obtain estimates γi,D, γi,L∗, and γi,S of how deposit, loan, and security quantities respond to
a one unit increase in the instrument. We obtain similar estimates κi,D and κi,L∗ of how a bank’s
deposit and loan marginal costs respond to the instrument. We must have that κi,S = 0 because all
banks have the same marginal cost of holding reserves in a perfectly competitive reserve market.

Given these regressions, our instrument zimt imposes the following equations that the cost
function Hessian H must satisfy

0 = HSDγ
i,D +HSL∗γi,L∗ +HSSγ

i,S (24)

κi,L∗ = HL∗Dγ
i,D +HL∗L∗γi,L∗ +HL∗Sγ

i,S (25)

κi,D = HDDγ
i,D +HDL∗γi,L

∗
+HDSγ

i,S. (26)

A one unit increase in the instrument zimt causes a γi,D increase in deposits, γi,L∗ increase in loans,
and a γi,S increase in security quantities. These changes in the bank’s balance sheet quantities
cause a change κi,L∗ in the marginal cost of loans, κi,D change in the marginal cost of deposits, and
0 change in the marginal cost of holding securities. As a result, we have three linear equations that
provide information about what the cost function Hessian H must be. In Section 4.3, we present
two distinct instruments zimt (i = 1, 2) that yields six equations. In addition, we also present a
separate high-frequency identification approach to estimating the coefficient HSS .

Once we have HSS estimated, we use equation (24) for both instruments to solve for the two
unknowns HSD and HSL∗ with two equations. Note that the Hessian’s symmetry solves a crucial
identification challenge for analyzing the reserve supply channel of QE. We are able to identify
HSD and HSL∗ from equation (24) because we can infer how the marginal cost of holding reserves
responds to changes in deposit and loan quantities. The Hessian’s symmetry allows us to conclude
that HSD and HSL∗ also are respectively equal to the impact of a change in the quantity of reserves
on deposit and loan marginal costs. As a result, we are able to learn about the impact of QE’s
injection of reserves on deposit and loan markets without exogenous variation in reserve supply.

To estimate the remaining parameters HL∗L∗ , HL∗D, HDD, we first we solve equation (25)
from our two instruments for the parameters HL∗L∗ , HL∗D with two equations and two unknowns.
Finally, from equation (26), we have two equations show how the two instruments impact the
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marginal cost of deposit holdings. There is only one unknown HDD and two equations corre-
sponding to the two instruments so we solve for HDD by minimizing the sum of the squared errors
in these two equations.11

4.3 Data and Instruments

Marginal Costs As explained in section 4.2, we infer the marginal costs for mortgages, deposits,
and loans using our demand system estimates in section 3.3. We then average these estimated
marginal costs to the bank-year level.

Deposits, Loans, Mortgages, and Securities We obtain bank-level quantities from Call Re-
ports, which allows us to keep track of the volume of deposits, loans, mortgages, and securities
that are actually retained on bank balance sheets. We measure mortgages with the Call Reports’
residential loan variable, and commercial loans make up the remainder of loans from Call Reports.
We further include bank-level securities from Call Reports, which is the sum of cash, reserves,
Fed funds, repos, Treasury securities, and agency securities. Finally, we normalize all bank-level
volume variables by the number of branches where each bank has deposits. This normalization
prevents our estimates from being driven by a few banks with a very large amount deposits and
loans.

Instruments We use two instrumental variables, z1mt, z
2
mt to identify the cost function param-

eters. These shocks need to be at the bank-level and must be independent of banks’ cost shocks in
the cross-section. In addition, we separately use exogenous daily variation in the total supply of
reserves to identify the parameter HSS .

Our first instrument is simply the natural disaster losses that a bank’s branches are directly
exposed to. Unlike in the instrument for demand systems, we are no longer in need of a branch-
level supply shock. Rather, disaster losses to an area increase the need to rebuild and repair local
infrastructure and housing, which directly comprise a bank-level demand shock for bank lending.
These disaster losses are also plausibly unrelated to shocks to banks’ marginal costs in the cross-
section. Hence, we construct the instrument by adding up the disaster losses that each bank is
exposed to through its branches. Specifically, for bank m at time t, we have

z1mt =
1

Nmt

log

(∑
n

damagent ·
NB
nmt∑

n′ NB
n′mt

)
,

11This lack of an exact solution is because both the impact of deposit quantities on loan costs and the impact of loan
quantities on deposit costs tell us about HDL∗ . Our use of two instruments therefore results in an overidentifying
restriction for this parameter. Our choice to make HDD the parameter that does not exactly solve an equation is
because deposit demand is the least elastic, so the value of HDD matters the least for our counterfactual of interest.
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where
∑

n damagent ·
NB

nmt∑
n′ NB_n′mt

is the sum of disaster losses accrued to branches of bank m in
county n, and Nmt is the number of counties in which bank m has branches. We mathematically
show in appendix D that for a firm that sells a good in several markets, a demand shock in one
market can be used to estimate the firm’s marginal cost curve.

Our second instrument is a Bartik deposit instrument. Following Bartik (1991), we con-
struct our instrument based on the average growth rates of deposits in markets where banks have
branches. Intuitively, we make use of the fact that counties experience different rates of deposit
growth and that banks operate branches in different counties to construct our Bartik deposit instru-
ment. The identifying assumption is that the deposit growth rates in different counties that a bank
is exposed to arise from county-level economic conditions rather than shocks to the bank’s cost of
supplying deposits, mortgages, and loans. Specifically, for bank m in year t, we have

z2mt =
1

Nmt

(∑
n

QD,nt −QD,nt−1

QD,nt−1

)
,

where QD,nt−QD,nt−1

QD,nt−1
is the deposit market growth rate in county n and Nmt is the number of coun-

ties in which the bank has branches.

While the Bartik instrument should primarily serve as a shock to deposit demand, and the nat-
ural disaster instrument primarily as a shock to loan demand, we do not require either to affect
deposit or loan demand alone. The exclusion restriction holds even if the instruments affect the de-
mand more than one bank balance sheet component as long. We only assume that each instrument
is uncorrelated with the ε marginal cost shocks. The only additional requirement for identifying
our parameters is that the two instruments are not perfectly collinear, which we show is satisfied in
the data.

Finally, we use daily shocks to the Treasury General Account (TGA) to estimate the effect of
reserve supply shocks on the marginal cost of securities. The TGA contains cash balances that
the U.S. Treasury holds at the Federal Reserve. Since reserves are held either through the TGA
or the banking system, a positive shock to the TGA balance corresponds to an equivalent negative
shock to the reserves available for the banking system for a given total reserve supply. As also
noted by Correa et al. (2020) and Bräuning (2017), these daily changes in the TGA balance are
a result of the Treasury’s day-to-day business operations that are arguably unrelated to QE and
market conditions. Following Bräuning (2017), we include indicator variables for the start and
end days of each month and quarter because these periods coincide with both Treasury payment
days, which would affect the TGA balance, and changes in banks’ regulatory reporting days, which
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would affect banks’ marginal costs. We further control for changes in the volume of the Reverse
Repo (RRP) Facility, ∆RRPt , which is effectively the uptake of reserves by money market funds,
as well as the weekly change in total reserves ∆TSYw.12 We use these variables to predict changes
in the spread between the interest rate on excess reserves (IOER) and the federal funds rate (FFR),
ReserveSpreadt. This spread measures how much higher of a yield is available to banks that can
hold reserves than to other non-bank investors. Specifically, we estimate

∆ReserveSpreadt = α + β∆TGAt + γ∆RRPt + θ∆TSYw + Fixed Effects + ϵt, (27)

where Fixed Effects include indicator variables that equal to one the first and last days of each
month and quarter. The coefficient β tells us how a shock to the total reserve supply impacts the
IOER-FFR spread.

4.4 Estimation Results

Table 4 reports the coefficients from regressing marginal costs and bank-level quantities on each
of the two instruments, i.e., (κi,D, κi,L∗

, γi,D, γi,L
∗
, γi,S). Since these parameters are instrument-

specific, we report the parameter values corresponding to the bank-level natural disaster shock in
Panel (a) and the parameter values corresponding to the bank-level Bartik deposit shock in Panel
(b). We report additional summary statistics about the marginal costs using in estimation in web
appendix E.

According to Panel (a), banks with branches in areas with larger natural disaster losses increase
the volume of deposits, loans, and securities on their balance sheets. At the same time, mortgage
and loans become more costly to provide while deposits become less costly to provide for these
banks. Taken together, we infer that the increase in volumes is consistent with an increase in loan
and mortgage demand following natural disasters. From Panel (b), banks experiencing a positive
Bartik deposit shock also increase their deposits, loans, and securities. Deposit costs become less
negative, implying that deposits become more costly to provide. At the same time, the costs of
lending to firms and issuing mortgage loans declines as deposits become more abundant. Hence,
the increase in balance sheet size in this case is aligned with a positive deposit demand shock, as
expected from the Bartik deposit instrument.

Table 5 reports the results from the TGA regression. We obtain a point estimate of −7.88,
which implies that a 1 trillion dollar increase in the TGA balance is associated with a 7.88 bps
movement in the reserve spread. If these reserves were injected and the reserve market allowed
to clear holding other quantities fixed, they would be allocated proportionately across the bank

12Total reserves are only available the weekly level.
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Table 4: Cost Function Regression Estimates

This table reports the sensitivity of bank-level costs and quantities to losses from natural disasters and a
Bartik deposit shock as in equations (22) and (23). Sheldus Instrument refers to property losses due to
natural disasters as explained in Section 4.3. Bartik Deposit Instrument refers to a Bartik-style instrument
of deposit growth as explained in Section 4.3. Rates are in basis points and quantities are in millions. The
sample period is from 2001 to 2017. We report standard errors clustered by bank in the parentheses. *, **,
and *** denote significance at the 10%, 5%, and 1% level, respectively.

Panel (a): Results using Natural Disaster Instrument

Deposit Cost Mtg/Loan Cost Deposit Vol Mtg/Loan Vol Security Vol

(1) (2) (3) (4) (5)

Sheldus Instrument −3.17∗∗∗ 2.46∗∗∗ 28.31∗∗∗ 26.37∗∗∗ 18.97∗∗

(0.33) (0.92) (8.11) (6.25) (8.12)
Loan Loss Provision −6.04∗ 1.91 6.98 527.36∗∗∗ 1.51

(3.34) (1.34) (7.79) (202.27) (2.40)

R2 0.58 0.82 0.00 0.01 0.00
Adj. R2 0.58 0.82 0.00 0.01 0.00
Num. of Obs. 53651 12733 118942 119236 118923

Panel (b): Results using Bartik Deposit Shock

Deposit Cost Mtg/Loan Cost Deposit Vol Mtg/Loan Vol Security Vol

(1) (2) (3) (4) (5)

Bartik Instrument 31.31∗∗∗ −24.60∗ 1048.26∗∗ 474.34∗∗∗ 1084.52∗∗

(8.13) (14.85) (417.94) (136.09) (508.92)
Loan Loss Provision −4.76 −7.81∗∗ 7.19 153.96 −48.37

(3.35) (3.47) (48.79) (93.89) (48.10)

R2 0.43 0.82 0.00 0.01 0.00
Adj. R2 0.43 0.82 0.00 0.00 0.00
Num. of Obs. 50091 12093 62352 62458 62346

branches in our sample. If we allocate these reserve assets equally to the 65,569 bank branches that
exist in 2007 (the year before our counterfactual exercise), we get 0.51 bps change in the reserve
spread per 1 million dollar increase in each branch’s security holdings. This implies HSS = 0.51.

Based on these coefficient estimates, we solve for the cost function’s Hessian H and present
the results in Table 6. First, notice that all diagonal terms are positive, which means that increased
quantities of deposits, loans, or securities respectively increase the marginal cost of providing ad-
ditional deposits, loans, or securities. Regarding the off-diagonal terms, the marginal costs of loans
and securities decrease when deposit quantities increase. In other words, there are cost synergies
between banks’ deposit-taking and lending that support the joint provision of deposits and loans
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Table 5: TGA Regression Estimates

This table reports the results from the TGA regression (27). Rates are in basis points and quantities are in
trillions. The sample period is from 2001 to 2017. *, **, and *** denote significance at the 10%, 5%, and
1% level, respectively.

Change in TGA Balance −7.88∗∗∗

(1.82)
Change in RRP 0.03∗∗∗

(0.00)
Change in Fed Sum 0.00

(0.00)

R2 0.46
Adj. R2 0.46
Num. of Obs. 1770

by the same institution. However, the marginal cost of lending is increasing in securities holdings.
This implies that injecting additional reserves that banks must hold makes it not cheaper but more
costly to provide corporate loans and mortgages. This increase in the marginal cost of lending is a
crucial reason why we find that reserve injections crowd out lending in our counterfactual.

The coefficients imply that a $100 million increase in reserves for each bank branch would
increase the marginal cost for mortgages and corporate loans by 100× 0.39 =39 bps. At the same
time, the marginal cost of deposits decreases by 100 × 0.70 = 70 bps. To put these numbers
in context, if $1 trillion in reserves were injected and equally distributed across bank branches
in 2007, each bank branch would receive $15.25 million in reserves, which would increase the
marginal costs of mortgages and corporate loans by 5.9 bps. Of course, this change in marginal
costs does not describe the equilibrium impact of a reserve injection, since banks can adjust their
deposit and loan quantities in response. The equilibrium effect of a reserve injection therefore
depends on both the supply and demand sides of our model. To quantify the equilibrium impact
of reserve injections in the banking system, we present a counterfactual analysis using both our
estimated cost function and demand systems in the next section.
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Table 6: Implied Hessian

This table reports the implied Hessian matrixH based on the cost function estimates. Please refer to Section
4 for a detailed description of the estimation. The Hessian matrix reports the impact of an extra $1 million
dollars per branch of a balance sheet quantity on the number of basis points by which a bank’s marginal cost
changes.

∂C
∂QD

∂C
∂QL∗

∂C
∂QS

QD 1.06 -0.66 -0.70
QL∗ -0.66 0.53 0.39
QS -0.70 0.39 0.51

5 Counterfactual Exercise

We use our estimated model to compute the effect of an increase in the supply of central bank
reserves, as was caused by the Federal Reserve’s QE Programs. These reserves are safe, liquid
assets that must only be held by banks, so this increased supply forces banks to hold a larger
portfolio of safe assets. While QE is an exchange between Treasuries and reserves, commercial
banks only hold a very small proportion of Treasuries on bank balance sheets. Thus, the reserve
injection comprises a net increase in banks’ liquid asset holdings in our counterfactual.

The impact of this increased reserve supply has two main effects. First, an increase in reserve
holdings changes banks’ marginal cost of providing deposits, mortgages, and loans. This change
in marginal cost is quantified by our estimated cost function in equation (17). Second, because of
these cost changes, banks change the interest rates they choose to for deposits, loans, and mort-
gages. Given our estimated demand systems, we can compute how the equilibrium quantities of
deposits, loans, and mortgages respond to these changes in the rates that banks choose. As a result,
our model tells us how an increase in the supply of central bank reserves passes through to changes
in both interest rates and quantities of deposits, mortgages, and loans provided by the banking
system.

We note that our results focus on the effect of reserve injection on the banking system, which
is an integral part of QE. Our results complement other transmission channels of QE that have been
analyzed in the literature.13 These transmission channels primarily depend on the effect of asset
purchases, while our work is novel in that we zoom in on the effect of reserves that the central
bank uses to finance asset purchases.

13For example, Gagnon et al. (2010); Krishnamurthy and Vissing-Jorgensen (2011); Christensen and Krogstrup (2019);
Rodnyansky and Darmouni (2017); Chakraborty et al. (2020), as discussed in our literature review.
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5.1 Computational Strategy

To compute our counterfactual, we need to determine each bank’s holdings of reserves as well as
the quantity and interest rate each bank charges for loans, deposits, and mortgages in each market
after an injection in reserves. Formally, we need to compute an equilibrium set of interest rates and
quantities that solve the bank’s first order conditions in equations (2)-(5) with an increased supply
of reserves. This is an over 38,000-dimensional problem, since we need to solve for interest rates
for mortgages, deposits, and loans at every branch of every bank. Nevertheless, we can reduce the
dimensionality considerably, and the model is tractable to solve. We define a function in equation
(OA37) of the Appendix that maps the set of bank-level deposit, mortgage, and loan quantities to
itself whose fixed point yields the equilibrium of our model.

We posit an increase R in the interest paid on securities above the yield earned in the data. We
then compute the quantity of reserves the central bank must add to the financial system to attain
this interest rate increase. Let Qi

D,mt, Q
i
M,mt, Q

i
L,mt, and Qi

S,mt, where i stands for initial, be the
bank level quantities of deposits, mortgages, loans, and securities observed in the data. First, we
start with a hypothesized vector of bank-level quantities QD,mt, QM,mt, QL,mt. Second, for each
bank, we compute a security quantity QS,mt so that the bank’s marginal cost of holding securi-
ties is consistent with the rise R in the yield on securities. Third, given the vector of bank-level
quantities QD,mt, QM,mt, QL,mt, QS,mt, we use our estimated cost function to compute a bank’s
marginal cost of holding deposits, mortgages, loans, and securities. Fourth, we compute the op-
timal interest rates banks choose that are jointly consistent with all of their marginal costs. Fifth,
given the rates chosen in each market, we compute the bank-market-level quantities demanded by
depositors/borrowers. Finally, we sum up the bank-market level quantities from the previous step
and compute the difference from the hypothesized bank-level quantities QD,mt, QM,mt, QL,mt. The
market is in equilibrium when this difference is 0. Please refer to Appendix F for further details.

5.2 Counterfactual Results: The Reserve Supply Channel of QE

We conduct a year-by-year counterfactual with the amount of reserves supplied by QE in each year
from 2008 to 2017. On average, this amounted to a reserve supply increase of $1.74 trillion per
year. We note that the number of banks present in each year varies, as shown in Online Appendix
G. This variation arises mostly due to the improving sample coverage of the mortgage volume
data from HMDA. These changes in data coverage should not affect our results if the banks in our
sample are representative of those in the true population.

The average changes in interest rates and quantities that resulted are shown in Table 7. From
the table, we observe that the interest rate paid on reserves increases by an average of 11.5 bps.
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Table 7: Counterfactual Results: QE

This table reports the results of our counterfactual analysis that injects the actual amount of reserves
QE supplied for each year from 2008 to 2017. We compute the effects on rates and quantities, and
report the average across years.

Average Change in Rates (in Basis Points) Average Change in Quantities (in Trn Dollars)
Deposits Mortgages Loans Securities Deposits Mortgages Loans Securities

15.71 8.59 8.20 11.51 0.0750 -0.0078 -0.1339 1.7440

The increase in reserve yields are passed through to the interest rates on deposits, mortgages, and
loans by 15.7 bps, 8.6 bps, and 8.2 bps, respectively. In terms of quantities, bank loans extended to
firms respond the most with an average decline of $133.9 billion. Mortgage and deposit volumes
respond by less with an average annual drop of $7.8 billion and an annual increase of $75.0 billion,
respectively. These results imply each dollar of reserves crowds out 8.125 cents of total lending
and crowds in 4.3 cents of deposits.14

We next zoom in on lending to firms, where the impact of the reserve injection is largest.
In Figure 4 we show the volume of reserves that were in the banking system each year and our
estimated impact on bank loan quantities. The volume of reserves injected from QE increased
from 2008 to 2014 and remained at elevated levels until 2017. The reduction in firm loans extended
follows a very similar trend, reaching a maximum annual volume of $215.5 billion in 2017. Figure
3 compares what banks’ syndicated loan issuance would have been without the injection of reserves
to what it was in the data. In the data, historically low issuance levels in the 2008 crisis were
followed by a rapid recovery to all-time highs. This increase in lending would have been even
greater without the injection of reserves, where lending quantities would have been 14.1% higher
in 2015, 12.3% higher in 2016, and 13.2% higher in 2017.

The model-implied reserve spread is quite similar to the observed spread between IOER and
the FFR in the data. The IOER is a risk-free yield available only to banks, which is strictly above
the FFR at which other market participants can lend overnight to banks. We plot both time series
in Figure 5. Adding the same volume of reserves as were injected through QE leads to an 11.5 bps
average increase in the model-implied reserve spread from 2008 to 2017. This is extremely close to
the average spread between the IOER and the FFR during the same period, 11.9 bps.15 Changes in

14In a sensitivity analysis, we re-ran our counterfactual adding one standard deviation, 0.19, to the coefficient βD,0

that determines how aggregate deposit quantities respond to deposit rates. With this change, the total quantity of
lending crowded out falls modestly to $104 billion from $141.7 billion. This modest change is despite a large change
in deposit quantities, which increase by $312.6 billion. Hence, our result that reserve injections crowd out lending
remains robust.

15We calculate the IOER-FFR as the median spread in December of each year because of year-end volatility in the
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Figure 3: Observed and Counterfactual Lending Quantities
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Figure 4: Reserve Supply and Reduction in Corporate Loan Issuance

our reserve spread also appear to move in tandem with changes in the IOER-FFR spread over time,
with a correlation between the two series of 0.50. The close mapping between the model and data
here is not mechanical or assumed in our estimation. Our model is identified from the response
of banks to plausibly exogenous shocks, without using any data directly from the implementation
of QE. The results suggest that the positive IOER-FFR spread observed after 2008 may not have
occurred without QE.

In summary, our main finding is that reserves crowd out bank lending to firms and that mort-

federal funds market. We omit 2008 since bank credit risk could have impacted the FFR that year.
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Figure 5: IOER-Fed Funds Spread and Model-Implied Reserve Spread

gage and deposit quantities respond by less. A larger reserve supply reduces lending because
holding reserves raises the cost of providing loans, as our cost function estimates in Table 6 show.
While loan, mortgage, and deposit rates increase by similar amounts, lending to firms is crowded
out the most because the aggregate elasticity of loan demand is higher than of mortgage or deposit
demand, as discussed in Section 3.3. On net, central bank reserves take up balance sheet space
to crowd out bank lending capacity to the real economy. Therefore, our findings suggest that the
increase in reserve supply following QE may bring about a counterproductive effect on the banking
system.

Consistent with reserves taking up bank balance sheet space, we show in an additional coun-
terfactual that reserve holdings and lending increase more at banks with less constrained balance
sheets. This result echoes Kandrac and Schlusche (2021), who find that both reserve holdings and
lending increased more at banks that were exempt from an increase in FDIC deposit insurance fees
for non-deposit funded assets compared to non-exempt banks. In Online Appendix H, we simulate
a similar counterfactual and find similar results. This is because the increased cost of non-deposit
financing makes it more expensive both for reserves and loans to be on a bank’s balance sheet,
pushing both quantities in the same direction. Our main counterfactual considers a different sce-
nario, where we exogenously inject reserves in the banking system keeping the form of banks’
cost function fixed, which is why we find that a larger reserve supply contracts rather than expands
aggregate bank lending.
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6 Conclusion

There has been a large expansion in the amount of central bank reserves outstanding following
multiple rounds of QE. This paper develops and estimates a structural model of the U.S. banking
system to analyze the effect of an increase in central bank reserve supply on bank lending and
deposit taking. Our framework has two key factors that determine the impact of reserve injections
on the banking system. The first one is the demand elasticity banks face in their respective deposit
and loan markets. The second one is how banks’ cost of capital depends on their balance sheet
composition, where the effect of reserve holdings on the cost of capital is of particular importance.

One main challenge in estimating our model is that reserve supply increases are endogenous.
In particular, reserve supply increased due to QE, which was implemented in response to the 2008
financial crisis and the Covid-19 pandemic. To avoid confounding by the direct effect of these
crises, we estimate our structural model using cross-sectional variation unrelated to QE.

In our estimated model, the increase in reserve supply from 2008 to 2017 reduces firm loans
extended by an average of $133.9 billion, which amounts to 8.1 cents in bank lending crowded
out per dollar of reserves injected. The impact on mortgage lending and deposit taking is more
attenuated. Our model-generated reserve spread closely follows the observed IOER-FFR spread
in the data. Importantly, the reduction in bank lending to firms following reserve increases may
counteract the stimulative impacts of QE’s asset purchases. This counterproductive effect of the
reserve supply channel we document is important to consider when thinking about the design of
unconventional monetary policy and bank regulation going forward.
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Appendix

A Additional Proofs and Derivations

A.1 Derivation of Equations (6)-(8) in Section 2

Taking the derivatives on the left-hand side of equations (2) to (4) yields

∂QD,nmt

∂RD,nmt

(RD,m
t −RD,nmt)−QD,nmt =

∂C(Θmt)

∂QD,nmt

∂QD,nmt

∂RD,nmt

, (A1)

∂QM,nmt

∂RM,nmt

(RM,nmt −RM,m
t ) +QM,nmt =

∂C(Θmt)

∂QM,nmt

∂QM,nmt

∂RM,nmt

, (A2)

∂QL,nmt

∂RL,nmt

(RL,nmt −RL,m
t ) +QL,nmt =

∂C(Θmt)

∂QL,nmt

∂QL,nmt

∂RL,nmt

, (A3)

RS,t −RS,m
t =

∂C(Θmt)

∂QS,mt

. (A4)

Dividing equations (A1)-(A3) respectively by ∂QD,nmt

∂RD,nmt
, ∂QM,nmt

∂RM,nmt
, and ∂QL,nmt

∂RL,nmt
yields

RD,m
t −RD,nmt −

QD,nmt

∂QD,nmt/∂RD,nmt

=
∂C(Θmt)

∂QD,nmt

, (A5)

RM,nmt −RM,m
t +

QM,nmt

∂QM,nmt/∂RM,nmt

=
∂C(Θmt)

∂QM,nmt

, (A6)

RL,nmt −RL,m
t +

QL,nmt

∂QL,nmt/∂RL,nmt

=
∂C(Θmt)

∂QL,nmt

, (A7)

RS,t −RS,m
t =

∂C(Θmt)

∂QS,mt

. (A8)

If we take the left-hand side of equations (A5) - (A7) as a function respectively of the quantities
QD,nmt, QM,nmt and QL,nmt, we can implicitly differentiate this system of equations to see how
the bank responds to an exogenous increase in its security holdings QS,mt. If we differentiate this
system with respect to QS,mt, we obtain equations (6)- (8) in the main text.
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A.2 Detailed Derivations for Section 3

A.2.1 Characterization of Demand System

Equation (12) gives the probability PD,nmt|δD,jn0t
that agent j chooses bank m conditional on its

realized value of δD,jn0t. Integrating PD,nmt|δD,jn0t
over the measure µ(δD,jn0t) yields the quantity

chosen from bank m

FD,nt

∫ ∞

−∞

exp(αDRD,nmt +XD,nmtβD + δD,nmt) exp(βD,oδD,jn0t)

exp(δD,jn0t) +
∑

m′>0 exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
dδD,jn0t. (A9)

If we define

UD,nt = FD,nt

∫ ∞

−∞

exp(βD,oδD,jn0t)

exp(δD,jn0t) +
∑

m′>0 exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
dδD,jn0t

(A10)
then the quantity QD,nmt chosen from bank m in market n at time t is

QD,nmt = UD,nt exp(αDRD,nmt +XD,nmtβD + δD,nmt). (A11)

Taking the log of equation (A11) yields equation (13) that we use to estimate αD and βD.16

A.2.2 Estimating the Aggregate Elasticity of Demand

Next, we characterize the aggregate elasticity of deposit demand relative to the outside option.
This is necessary because unlike in a standard logit demand system, we do not observe the quantity
chosen of the outside good. If we sum equation (A9) over all banks m in a market, we get that the
total deposit quantity QD,nt equals

QD,nt =

∫ ∞

−∞

FD,nt exp(βD,oδD,jn0t)
∑

m>0 exp(αDRD,nmt +XD,nmtβD + δD,nmt)

exp(δD,jn0t) +
∑

m′>0 exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
dδD,jn0t.(A13)

16Note that for our loan market following a standard logit demand system, we have δL,jn0t = 0 for all j and the outside
good quantity QL,n0t is observed. If there is a total funding need FL,nt (which is observable since we see QL,n0t)
for loans in market n at time t, we get the related expression for the quantity chosen from bank k

QL,nmt = FL,nt
exp(αLRL,nmt +XL,nmtβL + δL,nmt)

1 +
∑

m′>0 exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t)
. (A12)

This also yields a log-linear expression of the form in equation A11 that allows us to estimate αL and βL by two
stage least squares. We can then solve for each market for the values of δL,nmt that uniquely rationalize our quantity
data QL,nmt.
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If we define

ψD,nt = log(
∑
m

exp(αDRD,nmt +XD,nmtβD + δD,nmt)) (A14)

to represent the desirability of a “composite good” provided by all banks operating in the market,
the total quantity of deposits equals

QD,nt = FD,nt

∫ ∞

−∞

exp(βD,oδD,jn0t) exp(ψD,nt)

exp(δD,jn0t) + exp(ψD,nt)
dδD,jn0t. (A15)

After the change of variables u = δD,jn0t − ψD,nt in the integral, equation (A15) becomes17

QD,nt = FD,nt

∫ ∞

−∞

exp(βD,o[u+ ψD,nt]) exp(ψD,nt)

exp(u+ ψD,nt) + exp(ψD,nt)
du (A16)

= FD,nt exp(βD,oψD,nt)

∫ ∞

−∞

exp(βD,ou)

1 + exp(u)
du. (A17)

Equation A17 implies the following log-linear specification that we use to estimate βD,o

log(QD,nt) = βD,oψD,nt + log[FD,nt

∫ ∞

−∞

exp(βD,ou)

1 + exp(u)
du]. (A18)

In equation (A18), we can write ψD,nt = ψoD,nt + ψuD,nt, where ψoD,nt can be computed from
observable data based on equation (A25) once aαD and βD are estimated. With an instrument
for ψoD,nt, we can then estimate βD,o by two-stage least squares. The identifying assumption is
that the unobservable βD,oψuD,nt + log)FD,nt) is uncorrelated with the instrument. After βD,o is
estimated, the only term in equation (A18) that changes when banks’ change their interest rates is
the observable term ψoD,nt. Equation (A18) therefore determines how aggregate quantities respond
to rate changes, and equation (A11) pins down the distribution of deposits between banks. We
therefore have a completely specified demand system once αD, βD, and βD,o are estimated.

17Note that the change of variable v = exp(u) implies that
∫∞
−∞

exp(βD,ou)
1+exp(u) du =

∫∞
0

vβD,o

v(1+v)dv <
∫∞
0
v(βD,o−2)dv

is finite for any 0 < βD,o < 1. All of our estimates in the paper lie in this range, so our demand system is well
specified.
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A.2.3 Explicit Expression for ψoD,nt

We use equation (A11) to write an individual bank’s deposit quantity as

QD,nmt =

∫ ∞

−∞

FD,nt exp(βD,oδD,jn0t) exp(αDRD,nmt +XD,nmtβD + δD,nmt)

exp(δD,jn0t) +
∑

m′>0 exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
dδD,jn0t. (A19)

The total quantity of deposits in a market is, summing over m > 0,

QD,nt =

∫ ∞

−∞

FD,nt exp(βD,oδD,jn0t)
∑

m>0 exp(αDRD,nmt +XD,nmtβD + δD,nmt)

exp(δD,jn0t) +
∑

m′>0 exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)
dδD,jn0t.(A20)

Taking the ratio of the expressions in equations (A19)-(A20) yields

QD,nmt

QD,nt

=
exp(αDRD,nmt +XD,nmtβD + δD,nmt)∑
m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)

(A21)

logQD,nmt = logQD,nt + log
exp(αDRD,nmt +XD,nmtβD + δD,nmt)∑
m′ exp(αDRD,nm′t +XD,nm′tβD + δD,nm′t)

(A22)

= logQD,nt + αDRD,nmt +XD,nmtβD + δD,nmt − ψoD,nt − ψuD,nt. (A23)

Averaging the expression in equation (A23) across the Nnt different banks m in market n at time t
yields

1

Nnt

∑
m

log(QD,nmt) = log(QD,nt) +
1

Nnt

∑
m

(αDRD,nmt +XD,nmtβD)− ψoD,nt, (A24)

since the market-specific mean of δD,nmt is ψuD,nt. This yields the expression we use to compute
ψoD,nt directly from data

ψoD,nt =
1

Nnt

∑
m

(αDRD,nmt +XD,nmtβD)−
1

Nnt

∑
m

log(QD,nmt/QD,nt). (A25)

We also have from the original definition ψoD,nt = ψD,nt − ψuD,nt that

∂ψoD,nt
∂RD,nmt

=
∂ψD,nt
∂RD,nmt

= αD
exp (αDRD,nmt +XD,nmtβD + δD,nmt)∑

m′>0 exp (αDRD,nm′t +XD,nm′tβD + δD,nm′t)
= αD

QD,nmt

QD,nt

.(A26)
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A.2.4 Derivation of Individual Bank and Market-Level Demand Curves

Taking the derivative of the expression in equation (A23) for logQD,nmt yields

∂ logQD,nmt

∂RD,nmt

= αD +
∂ logQD,nt

∂RD,nmt

−
∂ψoD,nt
∂RD,nmt

(A27)

= αD +

(
∂ logQD,nt

∂ψoD,nt
− 1

)
∂ψoD,nt
∂RD,nmt

(A28)

= αD + αD

(
∂ logQD,nt

∂ψoD,nt
− 1

)
QD,nmt

QD,nt

(A29)

= αD + αD(βD,o − 1)
QD,nmt

QD,nt

. (A30)

In equation (A30), we apply our log-linear expression in equation (A18) which yields βD,o =
∂ logQD,nt

∂ψo
D,nt

. We similarly have that if another bank m′ ̸= m changes its interest rate, the quantity
QD,nmt changes as

∂ logQD,nmt

∂RD,nm′t
=
∂ logQD,nt

∂RD,nm′t
−

∂ψoD,nt
∂RD,nm′t

= αD(βD,o − 1)
QD,nm′t

QD,nt

. (A31)

The log-linear expression in equation (A18) allows us to derive an expression for the impact of an
individual bank’s rates on market-level quantities:

∂ logQD,nt

∂RD,nmt

= βD,o
∂ψoD,nt
∂RD,nmt

=
QD,nmt

QD,nt

αDβD,o. (A32)

In equation (A32) we use the expression for
∂ψo

D,nt

∂RD,nmt
in equation (A26). Summing equation (A32)

across all banks in the market n at time t gives an expression for how total quantities respond when
all banks raise their rates:

∂ logQD,nt

∂RD,nt

= αDβD,o. (A33)

A.3 Cost Function Estimation

This appendix provides additional details of how we estimate the cost function for banks to have
deposits, mortgages, corporate loans, and securities on its balance sheet. We first infer a bank’s
marginal costs of holding deposits, mortgages, and loans from the following expressions.
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− QD,nmt

∂QD,nmt/∂RD,nmt

−RD,nmt = −RD,m
t +

∂C(Θmt)

∂QD,nmt

(A34)

− QM,nmt

∂QM,nmt/∂RM,nmt

−RM,nmt = −RM,m
t − ∂C(Θmt)

∂QM,nmt

, (A35)

− QL,nmt

∂QL,nmt/∂RL,nmt

−RL,nmt = −RL,m
t − ∂C(Θmt)

∂QL,nmt

. (A36)

The left-hand side of equations (A34) to (A36) depend only on observed interest rates and markups
so we can infer the marginal costs ∂C(Θmt)

∂QD,nmt
, ∂C(Θmt)
∂QM,nmt

, and ∂C(Θmt)
∂QL,nmt

up to the value of unknown con-
stants RD,m

t , RM,m
t , RL,m

t . These constants are market-wide discount rates reflecting the riskiness
of cash flows from deposits, mortgages, and loans, so they do not depend on the composition Θmt

of the bank’s balance sheet. Hence, we can replace the marginal costs on the left-hand sides of
equations (19) to (20) with their observable counterparts from equations (A34) to (A36). The
right-hand sides would change only in their intercept since the discount rates RD,m

t , RM,m
t , RL,m

t

does not depend on the composition of the bank’s balance sheet. The bank-level marginal cost
estimates we use are then averages of our bank-market level estimates

1

ND,nt

(
∑
n

− QD,nmt

∂QD,nmt/∂RD,nmt

−RD,nmt) = MCD,mt (A37)

1

NM,nt +NL,nt

[(
∑
n

− QM,nmt

∂QM,nmt/∂RM,nmt

−RM,nmt) +
∑
n

(− QL,nmt

∂QL,nmt/∂RL,nmt

−RL,nmt)] = MCL∗,mt.(A38)
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A Loan outside option

Table OA1: Outside Option estimates (Loans)

This table reports the outside option size for corporate loans in trillions of dollars. The implied βo
gives the value of βL,o that would after a Taylor expansion yield the same elasticity of demand for
small changes, using equation (OA3) below.

Year Size of Outside Option Implied βL,o
2001 0.75 0.42
2002 0.79 0.46
2003 0.85 0.50
2004 0.75 0.37
2005 0.76 0.34
2006 0.83 0.33
2007 1.00 0.35
2008 1.61 0.66
2009 1.90 0.78
2010 1.56 0.59
2011 1.18 0.39
2012 1.30 0.46
2013 1.15 0.35
2014 1.23 0.37
2015 1.51 0.42
2016 1.58 0.43
2017 1.55 0.39

The estimate of the implied βo can be inferred from knowing the overall market size FL,nt, which

is possible once the outside option is observed. The total quantity of deposits and total market size in

a logit demand system are related by

QL,nt = FL,nt
exp(ψL,nt)

1 + exp(ψL,nt)
. (OA1)

Equation (OA1) can be used to solve for ψD,nt from observed data on QD,nt and FD,nt. Moreover, in

this logit model,
∂ log(QL,nt)

∂ψL,nt
= 1− exp(ψL,nt)

1 + exp(ψL,nt)
=

1

1 + exp(ψL,nt)
(OA2)

while our modified log-linear model implies ∂ log(QL,nt)

∂ψL,nt
= βL,o.

Our approximation is therefore

βL,o =
1

1 + exp(ψL,nt)
. (OA3)
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B Extension: loan demand with relationships

This appendix presents a modification of our demand system that allows us to estimate the aggregate

elasticity of corporate loan demand without using an observed outside good quantity. We do so by

exploiting data on firm-bank relationships in the DealScan dataset. In the main text, we relied on a

proxy for the number of firms in the market that did not borrow from a bank to infer the overall elastic-

ity of loan demand. In contrast, we were able to estimate this aggregate elasticity of demand directly

from the data for mortgages and deposits. The model presented here allows us to perform a similar

estimation exercise for corporate loans by using the network structure of bank-firm relationships for

additional information. This makes up for the small number of state-level corporate loan markets

that prevents us from applying the approach we used for deposits and mortgages with county-level

markets.

Our modified model is identical to the demand system in the main text except that firms get extra

utility k from borrowing from a bank they previously borrowed from. At time t, firm i in market n

has the choice to borrow from banks indexed by m. We assume each firm i wants to borrow the same

amount FL,nt as all other firms in the market. Firm i gets utility

uL,inmt = αLRL,nmt +XL,nmtβL + δL,nmt + kli,mt + ϵi,nmt (OA4)

from choosing to borrow from bank m and selects its bank to maximize utility. Here, kli,mt is the

new term that describes the utility from prior relationships: if this firm borrowed from this bank in the

past, then, li,mt = 1; otherwise li,mt = 0. We expect k > 0 so that firms prefer to borrow from banks

with prior relationships. The variables ϵi,nmt follow the type one extreme value distribution and are

i.i.d. across firms. Firms also have an outside option yielding utility for firm i of

uL,in0t = δL,in0t + εin0t. (OA5)

from not borrowing. The additional variable δL,in0t is i.i.d. across firms i and has a measure given by

the density f(δL,in0t) = exp(βL,oδL,in0t).

Conditional on the realized δF,in0t, the probability firm i borrows from bank m is

exp(αLRL,nmt +XL,nmtβL + δL,nmt + kli,mt)

exp(δF,in0t) +
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + kli,m′t)
, (OA6)
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and the expected amount a firm borrows from a bank is, integrating over δF,in0t,

QL,i,nmt =

∫ ∞

−∞

FL,nt exp(αLRL,nmt +XL,nmtβL + δL,nmt + kli,mt) exp(βD,oδL,in0t)

exp(δL,in0t) +
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + kli,m′t)
dδL,in0t. (OA7)

The crucial feature of this modified demand system is that if firms prefer to borrow from the same

banks they have previously, a firm’s total borrowing quantity is more sensitive to the rates charged

by its relationship banks than the rates charged by other banks. That is, if k > 0, ∂QL,i,nmt

∂RL,nmt
is larger

if li,m′t = 1 than if li,m′t = 0. Once we have estimated k, we can infer the aggregate elasticity

of loan demand by observing how a shock to a bank’s rates impacts the borrowing quantities of its

relationship firms relative to the borrowing quantities of other firms.

B.1 Estimating the price disutility parameter αL from new borrowers

We first consider the borrowing decisions of those firms which have no previous banking relationships.

If there is a large number N of such firms, then (by the law of large numbers) the amount borrowed

from bank m by firms with no previous borrowing relationships is

Qnew
nmt = N

∫ ∞

−∞

FL,nt exp(αLRL,nmt +XL,nmtβL + δL,nmt) exp(βD,oδF,in0t)

exp(δL,in0t) +
∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t)
dδL,in0t. (OA8)

Taking the log of equation (OA8) yields

log(Qnew
nmt)− log(Qnew

nm′t) = αL(RL,nmt +RL,nm′t) + (XL,nmt −XL,nm′t)βL + (δL,nmt − δL,nm′t). (OA9)

This log-linear expression allows us to estimate the demand parameters of our model exactly

in the same manner as in our baseline setting, which is a standard logit demand system. The only

difference is that here we use the quantities of borrowing by the subset of firms with no previous

relationships. Because the latent demand term δL,nmt may be correlated with the lending rate, we

use the two-stage least squares specification (with the same instrument following Cortés and Strahan

(2017) as in the main text)

log(Qnew
nmt) = ζL,nt + αLRL,nmt +XL,nmtβL + (δL,nmt − EL,ntδL,nmt)

RL,nmt = γL,nt + γLzL,nmt +XL,nmtγD + eL,nmt.

This provides us with a consistent estimate of αL and βL. Table OA2 reports the result from this

regression. The price disutility parameter αl = −244.51 is somewhat smaller in magnitude than our

main text estimate αL = −310.13.
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Table OA2: Demand System Estimates

This table reports the two-stage least squares results for estimating price disutility parameter αL of
our loan demand system. These regressions are run at the market-bank-year level, with a control for
loan loss provision as in the main text. The sample period is from 2001 to 2017. *, **, and *** denote
significance at the 10%, 5%, and 1% level, respectively.

Dependent variable:

Loan Market Share

Rate (with IV) −244.51∗∗∗

(81.43)
Loan Loss Provision 7.21∗∗

(3.60)

Num. of Obs. 13,364

B.2 Estimating the relationship stickiness parameter k

Having estimated αL and βL, we next infer how much firms value borrowing from a bank with which

they have a past relationship. We do so by comparing the distribution of borrowing by new firms to

the borrowing of firms that have past relationships. Because the unobserved latent demand δ shows

up in the borrowing choices of both types of firms, we can use data on the borrowing decisions of new

firms to control for unobserved heterogeneity in δ.

It is useful to classify firms by their “relationship vector” l, which equals 1 for every bank m the

firm has previously borrowed from and equals 0 otherwise. For such a firm with relationship vector

l, its probability of borrowing from a bank with which it already has a relationship conditional on

borrowing at all is∑
m∈l exp(αLRL,nmt +XL,nmtβL + δL,nmt + k)∑

m′ exp(αLRL,nm′t +XL,nm′tβL + δL,nm′t + k1m′∈l)
=

∑
m∈l exp(log

∑
nQ

new
nm′t + k)∑

m′ exp(log
∑

nQ
new
nm′t + k1m′∈l)

.

(OA10)

Here,
∑

nQ
new
nm′t is the aggregate quantity of lending from bank m′ to only new firms with no previous

relationships. This equation follows from equation (OA6).

The ratio in equation (OA10) can be compared to the observed data Plt|borrow, the fraction of

observed borrowing by firms with relationship vector l that is from banks the firms have previous

relationships with. Choosing the parameter k to make Plt|borrow −
∑

m∈l exp(log
∑

nQ
new
nm′t+k)∑

m′ exp(log
∑

nQ
new
nm′t+k1m′∈l)

as close

as possible to 0 provides an estimate of k. We use this to construct a moment condition that aggregates
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across all possible relationship vectors, weighted by their total loan quantities Ql,rel:

∑
l

Ql,rel

[
Plt|borrow −

∑
m∈l exp(log

∑
nQ

new
nm′t + k)∑

m′ exp(log
∑

nQ
new
nm′t + k1m′∈l)

]
= 0. (OA11)

Solving equation (OA11) yields our estimate of k. Our solution is k = 2.268, which means that

holding other characteristics constant, firms are exp(k) = 9.66 times more likely to borrow from

banks with past relationships relative to the decisions of new borrowers.

B.3 Estimating the aggregate elasticity of loan demand

To estimate the aggregate elasticity of loan demand, we need to observe how the quantity that a firm

borrows is impacted by shocks to the supply of credit. For a firm with relationship vector l, the

probability that it borrows from a bank instead of choosing the outside option is∫ ∞

−∞

∑
m exp(αLRL,nmt +XL,nmtβL + δL,nmt + kli,mt) exp(βD,oδL,in0t)

exp(δL,in0t) +
∑

m′ exp(αLRL,nm′t +XL,nmtβL + δL,nmt + kli,mt)
dδL,in0t (OA12)

=

∫ ∞

−∞

exp(ψi,nt) exp(βD,oδL,in0t)

exp(δL,in0t) + exp(ψi,nt)
dδL,in0t, (OA13)

where ψi,nt = log(
∑

m′ exp(αLRL,nm′t+XL,nm′tβL+ δL,nm′t+ kli,m′t)). As in the main text, we can

use a change of variables u = δD,jn0t − ψi,nt in the integral in equation (OA13) to get

exp(βL,oψ
i,nt)

∫ ∞

−∞

exp(βL,ou)

exp(u) + 1
du. (OA14)

If k were equal to 0, then ψi,nt would not depend on the firm i and would be identical to ψD,nt
in the main text. As for ψD,nt in the main text, every term in ψi,nt except for the mean of δL,nm′t is

identifiable given the parameters already estimated, so we define

ψui,nt = ψunt =
1

Nnt

∑
m

δL,nmt. (OA15)

ψoi,nt = log

(∑
m

exp(αLRL,nmt +XL,nmtβL + δL,nmt − ψui,nt + kli,mt)

)
. (OA16)

Here, ψoi,nt is observable, ψunt is not observable, and ψoi,nt + ψunt = ψi,nt. The expected quantity
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∑
i∈lQi,t borrowed by a firm with relationship vector l is

log(
∑
i∈l

Qi,t) = log(FL,nt) + log(

∫ ∞

−∞

exp(βL,ou)

exp(u) + 1
du) + βL,o(ψ

o
i,nt + ψunt).

We can estimate βL,o with a firm level instrument zi,nt by

log(
∑
i∈l

Qi,t) = log(FL,nt) + β(ψoi,nt + ψunt) + ϵint (OA17)

ψoi,nt = κo + λozi,nt + ηint. (OA18)

To construct our instrument, we take for each firm the average amount of log natural disaster damage

done in regions where its relationship banks have branches.

The above expressions depend on knowing observed value of ψoi,nt, which were first initially

inferred from looking at the quantity of borrowing from new firms. While ψoi,nt, can be inferred from

observed data, this step has to be done jointly with the estimate of βL,o.

The fraction of observed borrowing that goes to bank m is

∑
iQL,i,nmt∑

m

∑
iQL,i,nmt

=

∑
i

exp(αLRL,nmt+XL,nmtβL+δL,nmt+kli,mt)∑
m′ exp(αLRL,nm′t+XL,nm′tβL+δL,nm′t+kli,mt)

exp(βL,o(ψ
o
i,nt + ψui,nt))∑

i

∑
m

exp(αLRL,nmt+XL,nmtβL+δL,nmt+kli,mt)∑
m′ exp(αLRL,nm′t+XL,nm′tβL+δL,nm′t+kli,mt)

exp(βL,o(ψoi,nt + ψui,nt))
. (OA19)

This expression depends on the unobserved variable βL,o that we aim to estimate. For a postulated

value of βL,o, we solve this system of equations given by equation (OA19) for the values of δL,nmt.

There is one fewer equation than unknown, so we solve for the δL,nmt up to the value of their unknown

mean. We then use these values to construct the variable ψoi,nt (which does not depend on the mean

of the δL,nmt’s) and run the two-stage least square regressions (OA17) and (OA18) above to get a new

estimate of βL,o. We iterate this procedure until βL,o reaches a fixed point.

The result is reported in Table OA3. We find βL,o = 0.41. Compared to Table 4 in the main text,

this estimate is similar to the implied value of 0.35 as in the year of 2007, which is the first input for

our counterfactual analysis.

Finally, we use our parameters to compute the implied aggregate elasticity of loan demand. For

this, we need an expression for how the quantity of total loans varies when every bank raises its loan

rates by the same amount. We will denote the total quantity borrowed by Q and a change in every

bank’s rate a derivative with respect to R.
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Table OA3: Outside Option Estimates

This table reports the two-stage least squares results for estimating the outside option parameter βL,o
in the loan market. The sample period is from 2001 to 2017.

βL,o 0.41∗∗∗

(0.01)

Num. of Obs. 38,851

Equation (OA17) implies that the total quantity of borrowing is

Q =
∑
l

NlFL,nt exp(βL,o(ψ
o
i,nt + ψunt)). (OA20)

Note that

∂ψoi,nt
∂R

=

(
αL
∑

m exp(αLRL,nmt +XL,nmtβL + δL,nmt − ψui,nt + kli,mt)
)(∑

m exp(αLRL,nmt +XL,nmtβL + δL,nmt − ψui,nt + kli,mt)
) = αL (OA21)

is the same for all firms i. The derivative of the borrowing quantity in equation (OA20) with respect

to an equal increase in the rates of every bank is

dQ

dR
=
∑
l

[NlFL,nt exp(βL,o(ψ
o
i,nt + ψunt))]βL,o

∂ψoi,nt
∂R

= QβL,oαL (OA22)

It follows that d logQ
dR

= αLβL,o just like in the demand systems in the main text. Plugging in our

estimates αL = −244.51, βL,o = .41, we get that a 10 basis point increase in all bank rates leads to a

decline in total loan quantities of .41 × 24.45% = 10.0%. This is close to the main text estimate of

0.35× 31.0% = 10.9% using our main text estimate of αL = −310 and the year 2007 outside option

estimate of 0.35 on which we based our first benchmark counterfactual.

C Extension: loan demand by borrower ratings

This appendix presents another modification of our demand system that explores the heterogeneity

across different loans. We obtain ratings data for borrowing firms from Compustat. We classify firms

with an investment-grade rating as high-rating and the remaining ones as low-rating, which includes

unrated firms. We then estimate the demand system separately for these two types of loans, assuming

that these two markets are fully segmented. Other than splitting the market, our demand system

specification and instrument are identical to the main text.
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Table OA4: Loan Demand System Estimates with Rating

This table reports the two-stage least squares results for estimating the price disutility parameters of our loan
demand systems, with the market split between high-rating and low-rating loans. The sample period is from
2001 to 2017. We report standard errors clustered by bank in the parentheses. *, **, and *** denote significance
at the 10%, 5%, and 1% level, respectively.

High Rating Low Rating

Rate (with IV) −442.47∗∗ −265.69∗∗∗

(221.64) (88.09)
Loan Loss Provision 5.35 5.51

(3.79) (3.75)

Num. of Obs. 13727 18749

Table (OA4) reports the coefficient estimates. Compared to the rate disutility parameter of

−310.13 in the baseline specification in the main text, high rating loans have a rate disutility pa-

rameter of −442.47, and low rating loans have a rate disutility parameter of −265.69. This implies

that the market for high rating loans is more rate-elastic than the market for low rating loans, which

possibly reflects the fact that high rating loans are more homogeneous and thus more substitutable.

Following the same procedure we outlined in the main text, we take a stance on the loan markets’

outside options. In this case, we compute the outside option separately for firms with high and low

ratings, which allows us to construct the loan markets’ mark-ups and marginal costs. In the main

text, we reported that a 10 basis point change in loan rates would result in a 10.9 % change in loan

quantities in the year 2007. Here, using our separate outside option quantities for each group, we

compute that there would be a 4.9% change in high rated loan quantities and 12.5% change in low

rated loan quantities. Weighted by the relative size of the two loan groups, this leads to an overall

quantity change of 9.3%, close to the overall demand elasticity we found in the main text for corporate

loans.

Using our loan marginal cost estimates, we repeat our cost function estimation in Table (4). Table

(OA5) reports the new results. These cost function estimates imply the following Hessian matrix,

which is very similar to the baseline Hessian matrix in the main text.

H =

 1.07 −0.68 −0.70

−0.68 0.55 0.39

−0.70 0.39 0.51

 .
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Table OA5: Cost Function Regression Estimates with Loan Rating Extensions

This table reports the sensitivity of bank-level costs and quantities to losses from natural disasters and a Bartik
deposit shock. Sheldus Instrument refers to property losses due to natural disasters as explained in Section
4.3. Bartik Deposit Instrument refers to a Bartik-style instrument of deposit growth as explained in Section 4.3.
Rates are in basis points and quantities are in millions. The sample period is from 2001 to 2017. We report
standard errors clustered by bank in the parentheses. *, **, and *** denote significance at the 10%, 5%, and
1% level, respectively.

Panel (a): Results using Natural Disaster Instrument

Deposit Cost Mtg/Loan Cost Deposit Vol Mtg/Loan Vol Security Vol

(1) (2) (3) (4) (5)

Sheldus Instrument −3.17∗∗∗ 2.66∗∗∗ 28.31∗∗∗ 26.37∗∗∗ 18.97∗∗

(0.33) (0.90) (8.11) (6.25) (8.12)
Loan Loss Provision −6.04∗ 1.79 6.98 527.36∗∗∗ 1.51

(3.34) (1.45) (7.79) (202.27) (2.40)

R2 0.58 0.82 0.00 0.01 0.00
Adj. R2 0.58 0.82 0.00 0.01 0.00
Num. of Obs. 53651 12620 118942 119236 118923

Panel (b): Results using Bartik Deposit Shock

Deposit Cost Mtg/Loan Cost Deposit Vol Mtg/Loan Vol Security Vol

(1) (2) (3) (4) (5)

Bartik Instrument 31.31∗∗∗ −29.90∗∗ 1048.26∗∗ 474.34∗∗∗ 1084.52∗∗

(8.13) (14.82) (417.94) (136.09) (508.92)
Loan Loss Provision −4.76 −7.83∗∗ 7.19 153.96 −48.37

(3.35) (3.44) (48.79) (93.89) (48.10)

R2 0.43 0.82 0.00 0.01 0.00
Adj. R2 0.43 0.82 0.00 0.00 0.00
Num. of Obs. 50091 12006 62352 62458 62346

D Estimating demand and cost curves for firms in multiple markets

This appendix analyzes the decisions of a firm that sells goods in multiple markets. The key result is

that a demand shock in one market can be used both to identify the demand curves the firm faces in

other markets as well as to identify the firm’s marginal cost curve of production. A firm sets price Pn
for the goods it sells in market n, facing demand curveDn(Pn, λn). The parameter λn is an exogenous

shock that shifts demand for the good only in market n. There is a total of N markets. The firm faces

a cost C(
∑

nDn(Pn, λn)) +
∑

n ϵnDn(Pn, λn) of production. The firm maximizes its profits∑
n

PnDn(Pn, λn)− C(
∑
n

Dn(Pn, λn))−
∑
n

ϵnDn(Pn, λn) (OA23)
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yielding first-order condition for Pn

Dn(Pn, λn) + Pn[
∂(Dn)(Pn, λn)

∂Pn
]− (C ′(

∑
n

Dn(Pn, λn)) + ϵn)(Dn)
′(Pn, λn) = 0 (OA24)

Dn(Pn, λn)
∂(Dn)(Pn,λn)

∂Pn

+ Pn − C ′(
∑
n

Dn(Pn, λn)) + ϵn = 0 (OA25)

When this system of equations has a unique solution, it implicitly defines a function P (λ), mapping

the vector of the λn demand shocks to a vector of prices, with price Pn(λ) in market n. For j not

equal to n, we have that

d

dλj
[Dn(Pn, λn)] =

∂Dn(Pn, λn)

∂Pn

∂Pn
∂λj

(OA26)

d
dλj

[Dn(Pn, λn)]

∂Pn

∂λj

=
∂Dn(Pn, λn)

∂Pn
(OA27)

It follows that if we divide the response of quantities in market n to the demand shock λj by the

response of prices in market n to the demand shock λj , we get the slope ∂Dn(Pi,λi)
∂Pn

of the demand

curve. This implies that a two-stage least squares regression estimating the impact of Pn on Dn using

the demand shock λj as an instrument identifies the slope of the demand curve in market n. This is

the approach we take when using a natural disaster instrument to estimate our demand system.

Having estimated the demand curves Di faced by the firm, we identify the average MC of the

firm’s marginal costs across markets by

MC = C ′(
∑
n

Dn(Pn, λn)) +
1

N

∑
n

ϵn (OA28)

The response of this marginal cost to a shock to any given λj is

dMC

dλj
= C ′′(

∑
n

Dn(Pn, λn))
d[
∑

nDn(Pn(λ), λn)]

dλj
(OA29)

It follows that if we regress the marginal cost MC on the demand shock λj and then regress the

total quantity
∑

nDn(Pn(λ), λj) on the demand shock λj , the ratio of these regression coefficients

identifies the slope C ′′() of the firm’s marginal cost curve. This shows how in a setting where firms

are active in multiple markets, we can use a demand shock in a given market to identify both the

demand curve the firm faces in other markets as well as the firm’s marginal cost curve.
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E Bank marginal costs and markups

This section presents evidence on banks’ marginal costs of providing deposits, mortgages, and corpo-

rate loans. The marginal cost is the sum of two terms: the observed interest rate the bank offers and

the markup it charges. Using our estimated demand systems, we infer a bank’s markups and marginal

costs from equations (A34)-(A36) together with the expression in equation (A30) for the curvature
∂ logQD,nmt

∂RD,nmt
of a bank’s demand curve.

We present summary statistics on deposit, mortgage, and corporate loan markups in table OA6.

Mortgage markups average 20 basis points with a standard deviation of 1.9 basis points. Loan

markups average 33 basis points with a standard deviation of 1.6 basis points. As we show in ta-

ble OA7, mortgage and loan marginal costs are predicted almost perfectly by knowing the interest

rate a bank charges in a given market, with an R-squared of .9997 for mortgages and .9998 for cor-

porate loans. In contrast, the average 86 basis point markup for deposits is smaller than the standard

deviation of 105 basis points, and deposit rates only predict deposit marginal costs with an R-squared

of .3548.

Table OA6: Marginal Cost Summary Statistics

This table reports summary statistics about deposit, mortgage, and corporate loan markups implied by
our demand system. For deposits and mortgages, each observation is one bank in one county during
one year. For corporate loans, each observation is one bank in one state during one year.

Deposit Markup Mortgage Markup Loan Markup
Average (bps) 86 20 33
Standard Deviation (bps) 105 1.9 1.6

While observed interest rates almost entirely explain mortgage and loan marginal costs, we show

that cross-sectional dispersion in the amount of market power each bank has matters as well for

deposits. In our logit-style demand systems, market power is determined entirely by the share of

deposits each bank has in a market. The larger a bank’s market share, the more it acts effectively as a

monopolist, and the larger the markup it charges.18 If we run an OLS regression of deposit markups on

a bank’s market share in a given county-year, the R-squared is .239. If instead we run this regression

separately county-year by county-year, allowing the slope and intercept to be county-year specific, we

find an average R-square of .9923 and a minimum value of .9331 across all markets. While it is also

possible to accurately predict loan and mortgage markups using market shares, this explains almost

18This relationship between market share and the size of markups holds as well for mortgages and loans, but the dispersion
in markups is so small that it has little effect on our marginal cost estimates.

53



Table OA7: Marginal Cost Summary Statistics: Regressions

This table reports the results of regressing a bank’s marginal costs on its chosen interest rates. The
regression is at the bank-county-year level for deposits and mortgages and the bank-state-year level
for corporate loans. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Deposit Mortgage Loan

(Intercept) 0.01∗∗∗ −0.00∗∗∗ −0.00∗∗∗

(0.00) (0.00) (0.00)
Rate 1.03∗∗∗ 1.00∗∗∗ 1.00∗∗∗

(0.00) (0.00) (0.00)

R2 0.35 1.00 1.00
Num. of Obs. 219542 64411 22165

none of the variation in mortgage and loan marginal costs since the standard deviation of markups is

so small for these markets.

F Computation details for counterfactuals

This section derives the system of equations we use for counterfactual simulations with our model.

We compute a fixed point in the space of bank-level quantity variables. First, we hypothesize a

sequence of quantities of deposits, mortgages, and corporate loans for each bank. Second, taking as

given the yield on securities, we solve for the bank-level security quantities that are consistent with

this yield. Third, we use these bank-level quantities and the Hessian of our bank’s cost function to

compute changes in each bank’s marginal costs. Fourth, we now can solve separately for each market

in which banks operate for the equilibrium rates and quantities that are consistent with these marginal

costs. Finally, we sum up these market-level quantities to obtain bank-level quantities. The model

is at equilibrium when these final quantities are equal to the hypothesized quantities we started with.

Because our problem is high-dimensional, we require an analytic expression for the Jacobian of this

fixed point operator we describe below.

Let B be the number of banks and V be the space of 3B dimensional vectors representing each

bank’s deposit, loan, and mortgage quantities. We want to compute how these quantities change

when the central bank raises the supply of reserves so that security yields increase by R. We define

a function fR : V → V that equals 0 after the economy equilibrates in response to this increased

reserve supply.
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Step 1: Computing security quantities First, we define a function f ∗,R
1 from bank level deposit,

mortgage, and loan quantities to an associated security quantity consistent with the rate rise R. Any

quantity variable with an o above (for “original”) refers to the quantity we observe in the data before

our counterfactual. For each bank m, this function is given by (where Bm is the number of branches

of the bank)

R =
1

Bm

(
∂2C

∂QD∂QS

∂2C
∂QM∂QS

∂2C
∂QL∂QS

∂2C
∂QS∂QS

)
∗


QD,m −Qo

D,m

QM,m −Qo
M,m

QL,m −Qo
L,m

QS,m −Qo
S,m

 (OA30)

This implies

QS,m = Qo
S,m +

Bm

∂2C
∂QS∂QS

(R− 1

Bm

(
∂2C

∂QD∂QS

∂2C
∂QM∂QS

∂2C
∂QL∂QS

)
∗

QD,m −Qo
D,m

QM,m −Qo
M,m

QL,m −Qo
L,m

). (OA31)

The Jacobian of this function is −1
∂2C

∂QS∂QS

(
∂2C

∂QD∂QS

∂2C
∂QM∂QS

∂2C
∂QL∂QS

)
for the effect of bank i’s quan-

tities on bank i’s security quantity and 0 for the effect of any other bank j on bank i’s quantities. Let

fR1 be given by (id : V → V , f ∗,R
1 ), which maps each bank’s 3 given quantities to themselves together

with this implied security quantity.

Step 2: Computing marginal costs

Next, we define a map f2 from each bank’s quantities QD,m, QM,m, QL,m, QS,m to the change in

its marginal costs from those before the counterfactual. This change in marginal costs is given by

MCD,m −MCo
D,m

MCM,m −MCo
M,m

MCL,m −MCo
L,m

 =
1

Bi


∂2C

∂QD∂QD

∂2C
∂QM∂QD

∂2C
∂QL∂QD

∂2C
∂QS∂QD

∂2C
∂QD∂QD

∂2C
∂QM∂QM

∂2C
∂QL∂QM

∂2C
∂QS∂QM

∂2C
∂QD∂QL

∂2C
∂QM∂QL

∂2C
∂QL∂QL

∂2C
∂QS∂QL

 ∗


QD,m −Qo

D,m

QM,m −Qo
M,m

QL,m −Qo
L,m

QS,m −Qo
S,m

 .

(OA32)

The Jacobian of f2 is 1
Bi


∂2C

∂QD∂QD

∂2C
∂QM∂QD

∂2C
∂QL∂QD

∂2C
∂QS∂QD

∂2C
∂QD∂QD

∂2C
∂QM∂QM

∂2C
∂QL∂QM

∂2C
∂QS∂QM

∂2C
∂QD∂QL

∂2C
∂QM∂QL

∂2C
∂QL∂QL

∂2C
∂QS∂QL

 from a bank’s own quantities to

its marginal cost changes and 0 for all other terms in the Jacobian matrix.

Note that while marginal costs vary across bank branches, the only term in the bank’s cost function
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that changes with the composition of the bank’s balance sheet is the Hessian, which depends only on

bank level quantities. As a result, the difference MCD,m−MCo
D,m is the same for all deposit markets

for bank m, and the same result holds for mortgages and loans.

Step 3: Computing market-level interest rates In each market, given the marginal cost changes

of each bank in the market, we now compute the change in the bank’s chosen interest rates that

are consistent with the marginal cost changes. This step has the benefit that it can be computed

separately market by market, drastically reducing the computational burden. However, we do not

have a closed-form expression for how marginal costs map to chosen interest rates. That said, we do

have a closed-form expression for the inverse function which maps interest rates to implied marginal

costs.

That is, we consider a mapping g from each bank’s change in interest rates ∆rnmt to implied

marginal costs that solve that all solve equation (OA53) (for deposits or mortgages) or (OA55) (for

loans). This system of equations must be solved numerically, but it is tractable since it can be solved

separately market by market. In market n, equations (OA53), (OA55) define a function g from a

vector of rate changes for each bank in the market to an expression for that bank’s change in marginal

cost from that implied in the data. By solving g to equal our vector of marginal cost changes, we are

computing the function f3 = g−1 that maps marginal cost changes to interest rates. This is precisely

the object we need to solve our model. The Jacobian of f3 = g−1 is the inverse of the Jacobian of g,

which is given by equation (OA56) for deposit and mortgage markets and (OA57) for loan markets.

Step 4: Computing new Bank-level quantities Finally, we define a function f4 that maps the

interest rates all banks choose to bank-level quantities implied by the demand side of the model.

The total quantity of deposits on a bank’s balance sheet is, summing equation (OA45) across

markets,

QD,mt =
∑
n

QD,nmt =
∑
n

Q
i

D,nt

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δinmt + α(∆rnmt)).

For our loan demand system, we have

QL,mt =
∑
n

FL,nt
exp(δinmt + α(∆rnmt)

1 +
∑

m′ exp(δinm′t + α(∆rnm′t))
(OA33)

This defines a function f4 from the rate changes we computed above back to a list of bank-level
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deposit, mortgage, and loan quantities. The Jacobian of this function is given by

∂

∂∆rnm∗t
Dmt (OA34)

= (βo − 1)αQ
i

D,nt

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−2

(
∑

m′ exp(δinm′t))
βo

exp(δinm∗t + α(∆rnm∗t)) exp(δ
i
nmt + α(∆rnmt))

+ 1{m=m∗}αQ
i

D,nt

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δinmt + α(∆rnmt))

for deposits and mortgages. For loans, the relevant terms of the Jacobian are given by

∂

∂∆rnm∗t
Lmt = αFL,nt[−

exp(δinm∗t + α(∆rnm∗t)) exp(δ
i
nmt + α(∆rnmt))

(1 +
∑

m′ exp(δinm′t + α(∆rnm′t)))2
(OA35)

+
exp(δinmt + α(∆rnmt))

1 +
∑

m′ exp(δinm′t + α(∆rnm′t))
] (OA36)

Finally,

fR = fR1 ◦ f2 ◦ f3 ◦ f4 (OA37)

maps V to V, and a fixed point of fR yields a counterfactual equilibrium of the economy. The Jacobian

of this function is (by the expression for the Jacobian of composed functions) J(fR1 ) × J(f2) ×
J(f3) × J(f4), where J(.) denotes the Jacobian of each individual function. We provided closed

form expressions for all of these Jacobians except f3, which was a function defined by solving a

system of equations (that must be computed numerically). However, f3 is given by the inverse of our

function g that does have a closed form Jacobian, which can be used to give the Jacobian of f3 at its

computed numerical solution. We compute our counterfactual by solving the equation fR(v)− v = 0

numerically, using our analytic expression for its Jacobian to speed computation. The remainder

of this appendix provides additional calculations for formulas referenced in the description of the

function fR we use to solve for an equilibrium.

F.1 Demand Systems under Log-linear Functional Form

Each bank m has deposits QD,nmt in region n at time t. The total quantity of deposits in the region is

QD,nt =
∑

mQD,nmt. Let δnmt denote the desirability of its deposit:

δnmt = αDRD,nmt +XnmtβD + δD,nmt (OA38)
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and deposits QD,nmt can be expressed as

QD,nmt = QD,nt

exp(δnmt)∑
m′ exp(δnm′t)

. (OA39)

Let Q
i

D,nt and δo,int denote the actual value in the data (i for initial). Assuming that we are analyzing a

counterfactual where the only change in the desirability of a deposit is its interest rate, we have

δnmt = δinmt + αD(rnmt − rinmt), (OA40)

We apply equation (A18) to note that

∂ logQD,nt

∂δoD,nt
= βo (OA41)

which implies that

QD,nt = Q
i

D,nt exp(βo(δ
o
D,nt − δo,int )) (OA42)

= Q
i

D,nt exp(βo(log
∑
m′

exp(δnm′t)− log
∑
m′

exp(δinm′t))). (OA43)

This yields the explicit expression for quantities

QD,nmt = QD,nt

exp(δnmt)∑
m′ exp(δnm′t)

= Q
i

D,nt

(
∑

m′ exp(δnm′t))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δnmt). (OA44)

Note that the value of this expression is unchanged if we add a constant to all δ and δi variables

in region n at time t. We also have the difference between the δ of any two goods in the same market

is the difference in their log quantities sold. It follows that we can simply use δinmt = log(Qi
D,nmt) to

compute the expression, since δinmt − log(Qi
D,nmt) is the constant across all goods in each market.

Under our maintained assumption that only prices and not product qualities change in counter-

factuals, we can write δnmt = δinmt + α(∆rnmt) where ∆rnmt = RD,nmt − Ri
D,nmt is the change in

interest rates relative to the pre-counterfactual data. We can therefore write QD,nmt as

QD,nmt = Q
i

D,nt

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
βo−1

(
∑

m′ exp(δinm′t))
βo

exp(δinmt + α(∆rnmt)). (OA45)
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F.2 Logit Demand Systems

For a logit demand system applied in the loan market, we have that

QL,nmt = FL,nt
exp(δnmt)

1 +
∑

m′ exp(δnm′t)
= FL,nt

exp(δinmt + α(∆rnmt)

1 +
∑

m′ exp(δinm′t + α(∆rnm′t))
. (OA46)

Because the outside good is observed for our logit demand system, FL,nt is known and this expression

can be used to compute quantities. δinmt is known as well too from solving for the unique values that

rationalize the initial quantities Qi
L,nmt.

F.3 Marginal Cost from Optimality Condition

The optimal pricing-implied marginal cost comes from the first order condition is

RD,nmt = RD
t − QD,nmt(RD,nmt)

Q′
D,nmt(RD,nmt)

− ∂C(QD,nmt(RD,nmt), . . .)

∂QD,nmt

. (OA47)

Because

log(QD,nmt) = log(Q
i

D,nt) + (βo − 1) log(
∑
m′

exp(δinm′t + α(∆rnm′t))) (OA48)

− βo log(
∑
m′

exp(δinm′t)) + (δinmt + α(∆rnmt)). (OA49)

we have

∂ log(QD,nmt)

∂∆rnmt
= α + α(βo − 1)

exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

(OA50)

This implies

∂C

∂QD,nmt

= RD
t −

[
∂ log(QD,nmt)

∂rnmt

]−1

−RD,nmt (OA51)

= RD
t −

[
α + α(βo − 1)

exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−1

−RD,nmt (OA52)

and thus this demand system on its own implies a marginal cost of providing deposits coming from
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the optimal rate setting first order condition:

∂C

∂QD,nmt

− ∂Ci

∂QD,nmt

=

[
α +

α(βo − 1) exp(δinmt)∑
m′ exp(δinm′t)

]−1

(OA53)

−
[
α +

α(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−1

−∆rnmt

F.4 Marginal Cost from Optimality Condition: Logit

For our pure logit demand system used for loan markets we have

∂ log(QD,nmt)

∂∆rnmt
= α− α

exp(δinmt + α(∆rnmt))

1 +
∑

m′ exp(δinm′t + α(∆rnm′t))
. (OA54)

It follows that

∂C

∂QD,nmt

− ∂Ci

∂QD,nmt

= [α− α
exp(δinmt)

1 +
∑

m′ exp(δinm′t)
]−1

−[α− α
exp(δinmt + α(∆rnmt))

1 +
∑

m′ exp(δinm′t + α(∆rnm′t))
]−1 −∆rnmt. (OA55)

This defines a function g which maps chosen rate changes to marginal costs. While the inverse of

this function is not in closed form, we solve for it numerically. Having done so, we use the inverse

function theorem to get its symbolic Jacobian, using the Jacobian expression we derive next.

F.5 Jacobian of marginal cost from optimality condition

For numerical accuracy, the Jacobian of equation (OA53) is needed. The derivative of this marginal

cost is only non-zero with respect to other rates in the same region and time. The change of bank m’s
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marginal cost with respect to bank m∗’s rate is give by

∂

∂∆rnm∗t

∂C

∂QD,nmt

=
∂

∂rnm∗t

(
−
[
α +

α(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−1

−∆rnmt

)
(OA56)

= −
[
1 +

(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−2

· (βo − 1)

(
exp(δinmt + α(∆rnmt)) exp(δ

i
nm∗t + α(∆rnm∗t))

(
∑

m′ exp(δinm′t + α(∆rnm′t)))
2

+ 1{m=m∗}
exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

)
− 1{m=m∗}

= −
[
1 +

(βo − 1) exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

]−2

(βo − 1)

· exp(δinmt + α(∆rnmt))∑
m′ exp(δinm′t + α(∆rnm′t))

(
exp(δinm∗t + α(∆rnm∗t))∑
m′ exp(δinm′t + α(∆rnm′t))

+ 1{m=m∗}

)
− 1{m=m∗}.

The Jacobian for the logit demand system is

∂

∂∆rnm∗t

∂C

∂QD,nmt

=
∂

∂rnm∗t

(
−
[
α− α

exp(δinmt + α(∆rnmt))

1 +
∑

m′ exp(δinm′t + α(∆rnm′t))

]−1

−∆rnmt

)

= −
[
α− α

exp(δinmt + α(∆rnmt))

1 +
∑

m′ exp(δinm′t + α(∆rnm′t))

]−2

·

(
exp(δinmt + α(∆rnmt)) exp(δ

i
nm∗t + α(∆rnm∗t))

(1 +
∑

m′ exp(δinm′t + α(∆rnm′t))
2

+ 1{m=m∗}
exp(δinmt + α(∆rnmt))

1 +
∑

m′ exp(δinm′t + α(∆rnm′t)

)
− 1{m=m∗}. (OA57)

G Number of banks by Year

We report in table OA8 the number of banks that are included in our counterfactual analysis each

year. For a bank to be included, it must have at least one branch with deposits in the FDIC database,

Call Reports data at the bank level, and either mortgage lending in HMDA or corporate lending in

Dealscan that year. We find a broad upward time trend from 2397 banks initially to 3614 at the end.

The main driver of this trend is an increase in the number of banks we are able to identify in the

HMDA database. Note that we are able to run our counterfactual even for banks that are missing

RateWatch interest rate data, since the model is able to solve for the change in a bank’s equilibrium

interest rate without knowing the initial level.
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We note that the sample size does not mechanically bias our results. Our results would not be

significantly effected by changes in the size of the banking industry for two reasons as long as our

sample is representative. First, in our cross-sectional instrumental variable regressions, we are able

to obtain consistent estimates from any sufficiently large representative sample, since we only use

information about differences between observations and not on aggregate sizes. Second, the one place

where we do use the aggregate size in our estimation is when we scale our TGA shock estimates to

infer the parameter H33. If we had too small or too large of a sample, our scaling makes sure that the

aggregate impact of a reserve injection on reserve yields would be the same.

Table OA8: Number of Banks by Year in the Counterfactual

This table reports the number of banks that are present in the counterfactual each year.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Number of Banks 2397 2527 2655 2788 2903 3042 3132 3304 3514 3600 3614

H Counterfactual: non-deposit funding costs

This section presents a counterfactual that raises a bank’s cost of non-deposit financing following

Kandrac and Schlusche (2021). We specifically analyze a policy counterfactual where the fees for

FDIC deposit insurance were adjusted. After the policy change, some banks were charged for their

non-deposit debt financing and not only their deposits, effectively raising the cost of their non-deposit

financing. As in Kandrac and Schlusche (2021), our counterfactual compares the outcomes of treated

banks to a control group who were exempt from deposit insurance fees. We find results consistent

with Kandrac and Schlusche (2021) that treated banks lowered both their lending and their holdings

of bank reserves relative to control banks.

We first impose that non-deposit debt financing is given a 10 basis point increase in its cost.19

Second, based on summary statistics in the Call Reports from 2001 to 2017, we find that the average

bank has assets of 667 million, equity of 60 million, and deposits of 412 million. Based on this, we

have that 74.4% of non-deposit financing is coming from sources other than the equity market. We

assume that this fraction of non-deposit financing stays fixed and treat it as a 7.44 basis point increase

in the cost of all non-deposit financing. Holding a bank’s quantities fixed, this implies that holding

reserves, loans, and mortgages has a 7.44 basis point increase in its marginal cost. We randomly

select 29.1% of the banking system to receive this treatment, consistent with the summary statistics in

Kandrac and Schlusche (2021) and perform our counterfactual in 2010, the year of the policy change.

19While the exact number for this insurance fee is complex, 10 basis points is consistent with the ranges presented in
https://www.fdic.gov/deposit/insurance/assessments/proposed.html for FDIC assessment rates.
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Finally, we hold the equilibrium yield on reserves fixed and allow aggregate reserve quantities to clear

that market at this existing yield.

We report our findings in table OA9. Like Kandrac and Schlusche (2021), we find that treated

banks have a reduction in their reserves and lending relative to control banks. This is because the treat-

ment simultaneously raises their costs of reserve and loan holdings. Because the market for reserves

is perfectly elastic, we find that reserve quantities are the most responsive to the shock. Mortgage and

loan quantities are also highly elastic at the level of an individual bank, so these quantities respond

in the tens of billions as well. We note that our qualitative result that loans and reserves move in the

same direction remains robust to altering the input parameters of the counterfactual.

Table OA9: Outside Option estimates (Loans)

This table reports the impact of a change in the cost of non-deposit financing for a randomly selected
29.1% sample of treated banks. Treated banks have a 7.44 basis point increase in the marginal cost of
holding mortgages, corporate loans, and reserves, while control banks have no exogenous change to
their cost function. Quantity changes are reported in billions of dollars.

Group Deposits Mortgages Loans Reserves
Treated -9.72 -25.60 -36.75 -266.97
Control 14.14 20.56 0.18 -2.03
Difference -23.85 -46.17 -36.92 -264.94
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