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1. Introduction

Demand analysis has been a staple of academic and policy-oriented research in industrial orga-

nization for several decades. Beginning with the seminal work of Berry (1994), Berry et al. (1995),

and Nevo (2003), empirical discrete-choice demand systems became an especially prolific branch

of the industrial organization literature. While powerful and useful given a wealth of rich market-

level data sets in recent years (e.g., Nielsen’s scanner data), this family of methodologies focuses

primarily on extensive-margin consumer decisions—that is, which among many substitutable prod-

ucts to buy—and often places less emphasis on, or abstracts away from intensive-margin consumer

decisions—i.e., how much of a product to buy from a particular producer/provider.

More recently, subscription-based consumption platforms have proliferated, both in brick-and-

mortar applications (e.g., Costco; Sam’s Club; Club Car Wash), in e-commerce (e.g., Instacart,

Audible.com), in services (e.g., Uber Technologies, Lyft, Inc., and YouTubeTV, Tesla, and Charge-

point), and even in meal-kits (e.g., Hello Fresh, Home Chef, and Blue Apron). Each of these

firms (and many others) share an interest in optimal nonlinear pricing; that is, they all offer some

sort of subscription program (or a menu of subscription options) to consumers, which involves an

up-front fee in exchange for a percentage-based volume discount. The existing body of empirical

methodologies for demand analysis are not well-suited to these business models for several rea-

sons. First, intensive-margin demand heterogeneity (in addition to cross-platform substitution) is

a central concern for market design in these settings. Second, typical data used by discrete-choice

demand systems are rich in their coverage of many products or firms within and across markets,

but are typically less rich when it comes to consumer-level transaction data within a given firm.

Third, in light of prevailing data limitations, discrete-choice demand approaches typically achieve

tractability by restricting the distributions of consumer tastes to parsimonious parametric families.

In contrast, many firms have generated a wealth of internal datasets with the opposite strengths

and weaknesses: they tend to be rich on transactions with the firm’s consumer base, often even

including randomized controlled trials (RCTs) on pricing, but are anemic or silent on prices and

market shares of rival producers. Moreover, aside from facilitating a study of individual demand-

intensity variation, rich consumer-level data may reduce our dependence on parametric assump-

tions. Our goal is to develop a new complementary approach with a focus on intensive-margin

demand in settings where explicit randomized pricing and consumer-transaction-level data are plen-

tiful, but market-level data are not. This capability, relevant to both policy-makers and business

practitioners, will facilitate answers to new and interesting questions on optimal design of nonlinear

pricing in settings characterized by unobserved heterogeneity in consumer demand intensity.

While our empirical case study in this paper is from an industrial organization context, our

econometric methodology applies to a broad class of adverse-selection models with applications
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including procurement, regulation, taxation, labor-supply, and insurance/healthcare demand. To

fix ideas, consider a setting where the principal incentivizes some desired activity q on the part

of a continuum of agents who vary by their willingness to engage in the activity. Assuming some

exogenous source of variation in payoffs offered to agents from say P0(q) to P1(q), the question we

examine is, what can be learned from the resulting aggregate shift in the distribution of agents’

choices from G0(q) to G1(q)? We show that the answer to this question hinges crucially on whether

agent unobserved heterogeneity is single- or multi-dimensional. If agents with the same observed

choices q under default incentives P0(q) are homogeneously price responsive, then inference on the

underlying (single-dimensional) type distribution is straightforward. However, an important chal-

lenge arises if agents with similar observed choices are heterogeneously responsive to price changes,

in which case inference on the underlying (multi-dimensional) type distribution is problematic.

We begin with a parsimonious model of intensive-margin demand, and we discuss how re-

cent results from econometric theory (Torgovitsky (2015); D’Haultfoeuille and Février (2015);

D’Haultfœuille and Février (2020)) may suffice to identify model primitives (e.g., utility functions

and demand-type distributions), using exogenous price variation. We discuss how this baseline re-

sult is due to a key condition which we refer to as rank stability—that is, when prices exogenously

vary (in the cross-section), the mapping between observed demand quantiles and unobserved con-

sumer type quantiles remains stable.1 We then discuss various plausible phenomena that may

violate the central rank-stability condition and complicate model identification.

We first show how rank-stability violations of known forms—e.g., consumer behavioral mistakes

in subscription purchasing—can be explicitly modeled to restore identification using basic available

observables. We then discuss a more difficult empirical problem: rank-stability violations of un-

known forms, either because the underlying model of consumer behavior is incomplete, or because

the econometrician lacks sufficient observables to explicitly control for them. These may stem from

phenomena such as (but not limited to) brand loyalty heterogeneity and unobserved substitution

between the firm’s product/service and that of its rival. This is a particularly thorny issue because

such problems cannot be modeled directly using rich, internal firm data, which lack prices and mar-

ket shares of rival firms. We develop a robust empirical strategy by deriving identifiable bounds on

counterfactual demand distributions under (out-of-sample) price changes, despite data limitations.

Our partial identification approach focuses on bounding the maximal and minimal price sensi-

tivity of consumers most likely to purchase a subscription, subject to consistency with observables

and the law of demand (LoD). It assumes availability of plausibly exogenous, cross-sectional, price

variation, where a random set of agents are assigned to “control” status, making demand decisions

1Our identification approach in this paper hinges on cross-sectional price variation, so the term “robust” is taken

to signify robustness against arbitrary, unobserved rank-stability violations in the latent demand system, holding

prices/features of rival goods fixed. We leave questions about responses by rival platforms to future research.
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under default price p0, while others are assigned to “treatment” status with a discount of d0 off the

default price. We show that predictions made by the fully specified rank-stable model correspond

to a sharp upper bound on price responsiveness. Thus, point estimates under the (potentially

flawed) rank-stability assumption still provide a useful benchmark for empirical market design. We

also derive a sharp lower bound on price responsiveness at various consumer quantiles, subject to

consistency with observables and the LoD. Thus, we show that the partially specified model still

places informative restrictions on the underlying data-generating process.

While derivations of the bounds are fairly technical, there is some simple intuition behind our

method. Consider a firm that implements a nonlinear pricing scheme in the form of a subscription

offering, where consumers may pay $S upfront for a discount of d∈ (0, 1) over the ensuing period.

Suppose that the firm assumes rank stability and forecasts counterfactual demand under arbitrary

(S, d) pairs in order to optimize the subscription program. Suppose further that consumers are

characterized by two dimensions of unobserved heterogeneity—namely, demand intensity θi, and

brand loyalty to the firm αi—but only the aggregate demand distributions under control (i.e., price

p0) and treatment (i.e., price p0(1−d0)) are observed, while substitution between the firm and

its rivals is unobserved. The least loyal consumers will buy less from the firm at baseline prices,

but will be more elastic than their loyal counterparts, as they shift consumption away from the

outside option under discount pricing. Moreover, one can characterize a maximally “adversarial”

consumer base which behaves in such a way as to minimize profits from the rank-stable optimum

subscription offer (S∗, d∗). This worst-case scenario involves disloyal consumers accounting for a

maximal fraction of the observed aggregate shift from the control demand CDF to the treatment

demand CDF. This in turn implies that loyal consumers, who purchase most under default prices,

are minimally price sensitive, meaning that they are more likely to buy a subscription but increase

spending very little, so that (S∗, d∗) is a (nearly) zero-sum cash transfer from the firm.

As a side benefit, our analysis also produces various novel insights to guide effective RCT design.

Our modelling approach (see Section 2.4.1) highlights how randomized pricing may be insufficient

alone to deliver point identification in the presence of multi-dimensional agent heterogeneity. We

show that this problem may even persist despite continuous price variation (see Section 4.3). Finally,

our derivations of robust bounds to grapple with this issue (see Remark 4, Section 2.5, Section 4

introduction, and Section 4.3) produce novel, concrete guidance on optimal randomized incentives

for a researcher wishing to maximize ex-post inferential power.

We implement our approach in an empirical case study with rideshare data. Using the above

insights, we estimate the baseline, single-dimensional (rank-stable) model, and we perform a series

of model specification tests to probe for evidence of rank-stability violations. Interestingly, we find

that our first over-identifying test, using multiple arms of the same RCT, fails to reject the rank-

stable model, while a more stringent test combining datasets from two separate RCTs does reject



4 BODOH-CREED, HICKMAN, LIST, MUIR, SUN

the rank-stable model. We argue that this is so because of how the two RCT designs induce differing

selection patterns of unobserved substitution behavior. This finding sheds further light on subtle

potential limitations of inference from RCT data. If the underlying model is fundamentally mis-

specified (e.g., single- vs multi-dimensional heterogeneity), then not only may point identification

be compromised, but the researcher’s ability to detect a mis-specification may also be compromised

given standard over-identifying restrictions from multiple arms of a single RCT.

Using baseline (rank-stable) point estimates of the structural model, we compute a menu of

profit-maximizing subscription offerings, as well as an optimal single subscription plan, in order

to establish best-case profits. We find that the optimal single offering does nearly as well as the

continuum menu of offerings that achieves a fully separating equilibrium. This result helps explain

why real-world firms like Costco and Lyft tend to prefer simple subscription programs with only

one or a small number of offered options. We then estimate robust lower bounds to show how an

optimal subscription offer should be adjusted under less favorable circumstances where the baseline

model overstates price sensitivity of likely subscribers. Intuitively, these adjustments make the

subscription program somewhat less generous (i.e., higher up-front fees and/or lower discounts) to

hedge profitability against worst-case unobserved phenomena. We find that hedging the baseline

optimal policy against the worst case requires only relatively small adjustments for robustness, up

to a point where non-rank-stable consumers reach a critical mass and subscription plans cease to be

an effective business strategy. We also show how pre-RCT data can be used to pin down the most

empirically relevant worst-case scenario, by estimating the mass of non-rank-stable consumers. Our

estimate of this mass (roughly 16%) suggests strongly that a meaningful range of profit-improving

subscription offers does exist under data-generating processes that are consistent with observables.

Moreover, the robust subscription offer is able to fully insure the principal against deviations from

baseline model assumptions, while achieving roughly 95% of baseline projected subscription profits.

Our partial identification framework is applicable outside of just demand estimation in IO. It can

be used to stress-test the policy implications of a variety of adverse-selection models under potential

multi-dimensional heterogeneity, including several prominent examples. First, Laffont and Tirole

(1986) model a procurer that wishes to design a contract to incentivize a monopolist to complete a

project while exerting effort to reduce costs. Monopolists are unobservably heterogeneous along a

single dimension of productivity, but one might expect that they also differ by costs of unobserved

managerial effort. Second, in the regulation context, Kang and Silveira (2021) analyze a novel

framework where firms have private information on costs of externality abatement per unit of

output. If the regulator can only observe total pollution, then one can imagine related settings

where firms vary both by their baseline emission level (i.e., production technology) as well as by their

abatement technology. In such a world, inferences on both dimensions may be empirically relevant

to optimally incentivizing abatement on a fixed regulatory budget. Third, in the optimal taxation
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context, Mirrlees (1971) modeled households as varying only by (unobserved) labor productivity,

but one might expect them to vary by consumption preferences as well. Fourth, in the labor

context, D’Haultfœuille and Février (2020) derive optimal empirical piece-rate contracts for census

workers that exhibit heterogeneous labor-supply costs. One can imagine other labor settings where

variation in the productivity of effort is also crucial to the design of optimal incentive schemes.2 To

the extent that higher dimensions of agent heterogeneity are empirically salient, our robust bounds

approach provides a path forward for viable inference in the face of formidable data limitations,

such as availability of only a single source of exogenous incentive variation.

1.1. Related Literature. Our paper contributes to several literatures. First, we build on the work

of Maskin and Riley (1984), who provide a theoretical framework for how a monopolist should set

prices under heterogeneous consumer demand intensity.3 A related empirical paper is Luo et al.

(2018), who establish conditions under which structural demand primitives are identified from

observations of equilibrium prices and quantities. Our approach is complementary to theirs: they

achieve identification using equilibrium conditions while we do so using exogenous cross-sectional

price variation under minimal assumptions and market-level data limitations.

Second, we build on and contribute to a recent literature on identification of non-game-theoretic

adverse-selection models (D’Haultfoeuille and Février (2011), D’Haultfoeuille and Février (2015),

Torgovitsky (2015), Hedblom et al. (2022), Kang and Silveira (2021), and Cotton et al. (2023)).4

Here, point identification of model primitives typically hinges on the crucial exclusion restriction of

rank stability. We study the question of point and set identification when this exclusion restriction

does not hold. In doing so, we provide a theoretical foundation for formalizing rank-stability

violations: we show how they arise given a second dimension of unobserved agent heterogeneity

which alters responsiveness to incentive changes, conditional on a fixed baseline demand.

Third, we contribute to the demand-estimation literature in IO, pioneered by McFadden (1974),

Berry (1994), Berry et al. (1995), and Nevo (2003), and recently surveyed in (Berry and Haile,

2021, BH). Our work represents a significant departure from much of the literature surveyed by

BH, which focuses on questions of how market-level competition affects consumer welfare, given

estimated extensive-margin substitution patterns.5 By contrast, in our paper we are primarily

2Hedblom et al. (2022) and Cotton et al. (2023) study labor-supply settings with multiple dimensions of worker

heterogeneity, but they require a combination of panel data and incentive variation to achieve point identification.

We focus on more common settings where only cross-sectional incentive variation is available to the econometrician.

In the IO context, this may stem from explicit price randomization, while D’Haultfœuille and Février (2020) and

Kang and Silveira (2021) provide examples of plausibly exogenous incentive variation in observational data.

3Multi-product monopoly settings (e.g., Armstrong (1996) and Luo et al. (2011)) are beyond the current scope.

4The ideas in this literature are also related to an identification strategy proposed by Guerre et al. (2009).
5A smaller strand of the discrete-choice demand literature allows for mixed discrete-continuous consumer decisions.

See Dubin and McFadden (1984), Hendel (1999), Dubé (2004), McManus (2007), and Richards and Bonnet (2016).
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interested in how a single firm should optimally set volumetric prices. This focus implies intensive-

margin demand responses of the firm’s consumer base as the primary concern. Despite these

differences, our results provide a case study in thinking about key issues raised in the broader

discussion of demand estimation. BH point out that randomized pricing may be neither necessary

nor sufficient to identify the counterfactual market shares of interest, which motivate the need

to estimate (extensive-margin) demand in the first place.6 This paper explores similar questions

within the world of intensive-margin demand: our model further illustrates why randomized price

variation may not suffice when consumers make continuous choices either. However, our partial

identification framework and empirical application demonstrate that random price variation can

nonetheless facilitate informative counterfactual bounds and meaningfully guide policy decisions.

Fourth, our robust bounds approach is related to a previous literature that studies the (partial)

identifying power of weak assumptions derived from economic theory, often involving incomplete

or partially specified models of decision making. Examples include Haile and Tamer (2003) and

Hortaçsu and McAdams (2010) in the context of auctions, Heckman et al. (1997) in the context

of program evaluation, Freyberger and Larsen (2021) in the context of bargaining, and Kang and

Vasserman (2022), in the context of consumer demand.

The rest of this paper is organized as follows. Section 2 lays out our basic model of intensive-

margin demand and discusses how we achieve point identification or bound identification under

various circumstances. Section 3 discusses data, an estimation strategy and tests of the basic

modelling assumptions. Section 4 presents robust design of optimal nonlinear pricing.

2. Model and Identification

Our basic one-dimensional demand system is an adverse-selection framework that captures salient

features of the producer-consumer relationship: unobservably heterogeneous customers (agents)

make volumetric consumption choices, q, subject to prevailing prices, while the supplier (principal)

wishes to maximize profits. For now, individuals are heterogeneous along a single dimension (we

relax this assumption in Section 2.4.1), with θi > 0 indexing consumer i’s idiosyncratic demand

intensity: higher θ individuals are willing to consume more q at any given price. We assume that

demand types follow an absolutely continuous distribution Θ ∼ Fθ ∈ C2 with density fθ that is

strictly positive on compact support [
¯
θ, θ̄]. For our baseline model specification we assume multi-

plicatively separable (MS) agent utility Ui(q; θi) = θiu(q), where u(q) satisfies standard regularity

conditions, being strictly increasing u′(q)>0, ∀q∈R+, and concave u′′(q)<0, with limq→∞u
′(q)=0.

For convenience, we impose scale and shift normalizations as well: u(0)=0 and u′(0)=1.

The firm’s pricing schedule for q units of consumption is P (q). Specializing to the case of linear

pricing, we have that P (q) = pq, so each consumer chooses q by solving maxq
{
θu(q) − pq

}
. The

6Chan and Hamilton (2006) make a similar point in the context of medical RCTs.
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first-order condition (FOC) to this optimization problem is given by

θu′(q) = p ⇒ q∗(p; θ) = (u′)−1
(p
θ

)
. (1)

Under our assumptions, a unique solution q∗(p; θ) exists, and is strictly decreasing in price p and

strictly increasing in type θ.7 Given pricing schedule P , we denote the distribution of consumer

demand as G(q|P ), though we will generally drop the conditioning on the price schedule unless

needed for clarity. Note that G may have a mass point at q= 0, but above that mass point (if it

exists) G is absolutely continuous with a well-defined density g(q) on a compact support [q, q].

By way of characterizing optimal choices, if consumer i is observed to demand more than con-

sumer j at price p, q∗(p; θi)>q
∗(p; θj), then at any other price p′, q∗(p′; θi)>q

∗(p′; θj) will be true

as well.8 This follows because θi=
p

u′(q∗(p;θi))
> p

u′(q∗(p;θj))
=θj and q∗(p; θ) is increasing in θ, holding

price fixed. This implies what we refer to as the Rank Stability condition (henceforth, RS):

Condition 1 (RS). An individual whose demand is at the rth quantile of G under price p > 0

will also have demand at the rth quantile under any other price p′ > 0. That is, for all (θ, p, p′)∈
[
¯
θ, θ̄]×R2

++ we have q∗(p; θ)=G−1(r|p)⇒ q∗(p′; θ)=G−1(r|p′) for each r∈ [0, 1].

This condition will be a central focus of discussion throughout the paper, but first we consider

other basic implications of the model. Another restriction that separable utility (or any quasilinear

utility model) places on the data is the “Law of Demand” (henceforth, LoD):

Assumption 1. Each individual’s optimal choice q∗(p; θ) is non-increasing in price, or p < p′ ⇒
q∗(p; θ)≤q∗(p′; θ) for every θ∈ [

¯
θ, θ̄].

An empirically testable implication of this basic assumption built into the model is first-order

stochastic dominance of the conditional demand distributions: p<p′ =⇒ G(q|p)≤G(q|p′).
D’Haultfoeuille and Février (2015), Torgovitsky (2015), and D’Haultfœuille and Février (2020)

(henceforth, DF/T) provide a thorough treatment of point identification within this baseline setup.

Briefly though, with an exogenous price change we can identify the CDFs G(q|p) and G(q|p′), and

therefore the corresponding quantile functions as well. Rank stability then implies that the rth

quantile treatment effect is the individual treatment effect for the consumer whose type θ is at

the rth quantile of Fθ. The separable utility model also provides a within-consumer mapping from

consumption level q∗(p; θ) under price p to counterfactual consumption q∗(p′; θ) under price p′:

q∗(p; θi) = (u′)−1

(
p

p′
u′(q∗(p′; θi))

)
⇔ u′(G−1(r|p))

u′(G−1(r|p′))
=
p

p′
, r ∈ [0, 1]. (2)

7More precisely, demand is strictly decreasing in p (increasing in θ) in the sense that for any p such that if

q∗(p; θ)>0, then q∗(p′; θ)<q∗(p; θ) whenever p<p′ (q∗(p; θ′) < q∗(p; θ) whenever θ′ < θ).
8Since marginal utility is bounded, each type θ has a finite choke price p(θ) = θu′(0), where they choose q∗

(
θ; θ
)

=0.

Given our setup, this is the sole way for strict monotonicity to be violated, but for expositional simplicity we abstract

from this detail until we prove our main results in Appendices A and B.
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A remarkable fact implied by MS utility is that under relatively weak conditions, the RS con-

dition plus equation (2) can pin down the values of the utility function u(q) uniquely up to affine

transformations for q ∈O for some identified set of points O. A cumbersome technicality is that

u(q) may only be partially identified for q 6∈ O (see DF/T for details). The sharp identified sets

for u(q) are quite informative though. Thus, for expositional simplicity we assume that the utility

function u is known by the econometrician to belong to a set U satisfying the following:

Assumption 2. Fix q0≥0. Define a sequence of points O={qk}∞k=−∞ recursively via the identity

qk+1 = G−d′(Gd(qk)).
9 The family of admissible utility functions U is such that if u, v ∈ U and

u(qk)=v(qk) for all qk ∈ O, then u(q)=v(q) for all q ∈ R+.10

Given an identified u(q), the consumer-level θ’s are also identified (and hence, Fθ as well), since

they can be obtained by inverting the first order condition (1).11 Identification of structural coun-

terfactuals in the basic model with an exogenous price change arises from three main restrictions

on the data-generating process (DGP): (i) the RS condition, (ii) the LoD, and (iii) (via MS utility)

the model provides a means of extrapolating from demand under observed prices to counterfac-

tual demand under out-of-sample prices. The RS and LoD conditions buy the econometrician a

lot of inferential power: if a firm can exogenously vary its price, it can nonparametrically iden-

tify all relevant parameters necessary for finding the optimal nonlinear price schedule. The LoD

is testable, and with more than two prices, the extrapolation quality of MS utility may even be

testable as well. However, the RS condition is arguably the most stringent and least testable model

implication. Moving forward we will refer to the basic setup as the “rank-stable model.”

This leaves an open question: how robust are model-based policy prescriptions to deviations from

perfect rank stability within the underlying DGP? We begin our analysis by exploring RS violations

generated by behavioral mistakes in subscription choices. We show that the researcher can restore

point identification by explicitly modeling mistakes, and we propose a direct estimator of behav-

ioral parameters, which is of independent interest. We then proceed to our main methodological

contribution by exploring RS violations of unknown form; i.e., when the phenomena producing the

violation are not well understood, or when requisite data for point identification are unavailable.

We identify sharp bounds on the set of counterfactual demand CDFs consistent with observables

and the LoD. We show that these bounds can be used to derive useful pricing prescriptions that are

robust to the most extreme unobserved consumer behaviors not ruled out by the data and LoD.

9Here, G−d′(r) is the pseudo-inverse of Gd′ , that is G−d′(r)=inf{q : Gd′(q) ≥ r}.
10Since the set O typically includes values across the support of q, the family of utility functions U can be made

quite flexible while still satisfying Assumption 2. E.g., U can be the set of all smoothing splines constrained to take

on values u(qk) = uk for qk ∈ O. Moreover, Assumption 2 can be relaxed under either of the following mild data

augmentations: (i) ∂G(q|p)
∂p

is identified or (ii) G(q|p′′) is identified for one additional price level p′′ /∈{p, p′}.
11Fθ(θ) is only bound identified up to the largest θ type consuming nothing under the lowest price.
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2.1. Structural Identification in An Explicit Model of RS Violations. Experimental in-

centive variation has become a common tool among practitioners and researchers, but often, an

impediment to useful inference from controlled randomization is apparent deviations from fully ra-

tional decision making on the part of experimental participants. Such deviations can include both

under-reaction (e.g., Chetty et al. (2009)) and over-reaction (e.g., Arieley et al. (2003)). As moti-

vation for this concern, we note that our raw data from a rideshare RCT—where some consumers

were randomly selected to receive an offer to purchase a subscription (see Section 3)—show direct

evidence of both over-reaction and under-reaction within the treatment group.

Now consider a randomized experiment with two treatment arms. A control group must pay

the original price, p0, for each unit of consumption while a treatment group has the option to buy

a subscription contract where they pay $S upfront for a discount rate of d0, so that their new

per-unit price will be p0(1−d0). Therefore, treated consumers must first choose whether to buy the

subscription. A perfectly rational consumer of type θ should make this decision in the following

way. Utility with a subscription is θu(q∗(p0(1−d0); θ))−p0(1−d0)q∗(p0(1−d0); θ)−S, while without

a subscription it is θu(q∗(p0; θ))− p0q
∗(p0; θ). Thus, consumer type θ should subscribe if and only

if θu(q∗(p0(1−d0); θ))− p0(1−d0)q∗(p0(1−d0); θ)− S ≥ θu(q∗(p0; θ))− p0q
∗(p0; θ).

Rational consumers should buy the subscription only if surplus is greater than or equal to

the upfront fee S. Surplus from discount d0 is at least (p0d0)× q∗(p0; θ) (i.e., the price drop

times demand under default price) and no larger than (p0d0)×q∗(p0(1−d0); θ) (i.e., the price drop

times counterfactual discounted demand), from which follows two testable predictions: rational

individuals should subscribe if q∗(p0; θ)> S
p0×d0 , and should not subscribe if q∗(p0(1−d0); θ)< S

p0×d0 .

Thus, we should never see fully rational consumers decline a subscription and choose q> S
p0×d0 , nor

should we see them subscribe and choose q ≤ S
p0×d0 . In contrast, among treated consumers who

did not subscribe, 29% would have unambiguously saved money, while 6% of subscribers had low

enough demand in the subsequent month that they did not recover the subscription fee.

We now augment the model to allow for mistakes in the discrete choice of subscribing, while

maintaining our assumption that consumers are able to choose the optimal quantity q∗(p; θ) without

error.12 We introduce a salience parameter, ρ ∈ (0, 1], representing the probability that a given

(treated) consumer receives the relevant messaging and is cognizant of the subscription offer. We

also allow for some fraction δ ∈ [0, 1) of consumers to be eager and (conditional on salience)

always purchase the subscription even without weighing costs and benefits. Finally, we allow for

12Our behavioral model assumes that i makes mistakes only at the beginning of the period, when i is unsure

whether a subsequent demand shock εi will justify subscribing. Afterward, i’s demand shock is revealed in a timely

enough manner that i neither under-consumes nor over-consumes. This is reasonable if a period (e.g., a month) is

composed of K sub-periods (e.g., days) within which i knows the sub-period shock εik before choosing sub-period

demand, but i cannot fully anticipate future sub-period shocks.
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consumers to be imperfect at forecasting their own demand intensity over the period following their

subscription decision. Thus, rather than evaluating their uptake decision based on their true type θ,

they instead base subscription choice on a noisy estimate, θ̂, of their demand type. Moving forward,

it will be convenient to re-parameterize unobserved types as an individual’s demand under the

baseline price, letting η(θ)≡q∗(p0; θ) denote their type. Because consumption is strictly increasing

in θ (absent forecast errors), this is a one-to-one mapping, which allows us to measure errors in the

same (directly observable) units as consumption. We assume that consumers mis-estimate their

type η as η̂ = η + ε where ε∼Hε(ε) represents forecast error and satisfies the following:13

Assumption 3. Hε is an absolutely continuous, unimodal distribution, with well-defined density

hε(ε) that is strictly positive on a connected, compact support.

To see why this behavioral framework produces RS violations, consider two consumers with types

θi<θj , such that q∗(p0; θi)<q
∗(p0; θj)<q

∗(p0(1−d0); θi)<S/(p0×d0). If both consumers were fully

rational, neither would buy the subscription. However, consumer i could mistakenly purchase the

subscription while j does not. In absence of a subscription offer, θi would consume less than θj ,

but due to behavioral mistakes θi will now consume more than θj , which violates the RS condition.

From above we can see that the ex-post discounted surplus change from subscribing is increasing

in θ, and there exists some cutoff θ∗ where the change exactly offsets the fee S. Let q∗s =q∗(p0; θ∗)

denote the analogous cutoff in consumption space. We now define an uptake indicator, υi ≡
1[i subscribes], and an uptake function as Υ (q)≡Pr[subscribe|q∗(p0; θ)=q]=ρδ+ρ(1−δ)Hε(q−q∗s).

We now show how to identify the utility function u(q) (and hence q∗s) and the uptake function

Υ(q), by applying some basic ideas from the literature on the LATE interpretation of instrumental

variables (e.g., Imbens and Angrist (1994), Imbens and Rubin (1997)). Recall that identification

hinges on knowing the distributions of demand with and without an exogenous discount. While

the researcher can observe a demand CDF for the sub-population within the treatment group that

receives the discount, G(q|p0(1−d0), υ=1), the complementary demand distribution, G(q|p0, υ=1),

is not directly observable because the set of would-be uptakers in the control group is not known.

However, if we think of treatment status—i.e., whether a consumer is offered a subscription

plan—as an instrumental variable for uptaker status (and hence, who gets a discount), we can

identify the baseline demand distribution G(q|p0, υ=1) and the uptake function Υ(q). Let Gc(q|p0)

denote the demand CDF for consumers in control, and let Gt(q) be the unconditional demand CDF

for all consumers in treatment, regardless of their subscription choice, and note that each of these is

directly observable to the researcher. Letting τ denote the proportion of uptakers in the treatment

13Note that our model represents a static, one-time decision process of whether to purchase a subscription. In a

dynamic model where the consumer makes this decision month after month, one could interpret η̂ as fixed, long-run

average demand intensity, with ηt= η̂−εt representing transitory demand intensity for month t.
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group, we have Gt(q) = τG(q|p0(1−d0), υ= 1)+(1−τ)G(q|p0, υ= 0). Similarly, we can decompose

the control CDF as Gc(q|p0)=τG(q|p0, υ=1)+(1−τ)G(q|p0, υ=0). Combining these two identifies

and rearranging allows us to express G(q|p0, υ=1) in terms of observable quantities

G(q|p0, υ=1)=G(q|p0(1−d0), υ=1)− Gt(q)−Gc(q|p0)

τ
. (3)

This relationship tells us that for uptakers (referred to as “compliers” in the usual LATE par-

lance), we can identify both of the counterfactual CDFs, G(q|p0(1−d0), υ= 1) and G(q|p0, υ= 1).

The term Gt(q)−Gc(q|p0)
τ in equation (3) characterizes quantile-specific consumption shifts among

would-be uptakes within the control-group, had they received discount d0. With G(q|p0, υ=1) and

G(q|p0(1−d0), υ = 1) known, we have all requisite information to apply the DF/T identification

approach to pin down the utility function u(q) and demand types θ.

Finally (ignoring mass points at q = 0), note that Gc(q|p0) and G(q|p0, υ = 1) have densities

gc(q|p0) and g(q|p0, υ=1), and therefore Υ(q) is nonparametrically identified by Bayes’ rule:

Υ(q) =
g(q|p0, υ=1)τ

gc(q|p0)
. (4)

This pins down the behavioral parameters ρ, δ, and Hε. First, note that limq→∞Υ(q) = ρ and

limq→0 Υ(q) = ρδ.14 Finally, with ρ and δ known, we can use the definition of Υ(q) above to

nonparametrically identify Hε(q) using the relationship Hε(q) = Υ(q+q∗s )−ρδ
ρ−ρδ .

2.2. Robust Inference Under RS Violations of Unspecified Form. We now note that ex-

plicitly controlling for RS violations is not always possible. For example, suppose that Ian typically

purchases more volume than John from Firm A, but in a month where A offered a discount, John

made more purchases than Ian from A. This could arise if, for example, John has low brand loyalty

toward Firm A and thus views Firm B ’s product as a closer substitute than Ian, who is more loyal

to Firm A. As a result, sale prices at Firm A are more effective at switching John’s purchasing

behavior away from its rival, Firm B. The inferential problem stems from the fact that Firm A

knows more about its own internal prices and sales than it will ever know about its rival, making

it unclear from A’s perspective how to interpret John’s apparent change in consumption.

Note that RS requires the same ordering of purchasing behavior by Ian and John in both the

default (p0) and discount (p0(1−d0)) states. However, the presence of a competitor and idiosyncratic

brand loyalty may drive heterogeneous price sensitivity. Moreover, Firm A would not have the

requisite internal observables to explicitly model cross-firm substitution by its consumers. More

broadly, any phenomenon causing idiosyncratic price sensitivity by consumers with similar demands

under default pricing—e.g., heterogeneity in budget constraints, income effects, or complementary

with other goods—could render point identification impossible given available data.

14In general this may lead us to over-estimate δ if Hε(−q∗s )>0. However, one can test for this problem: unimodality

of Hε implies that if Υ(q) is flat within a neighborhood of q = 0 then significant upward bias in δ is unlikely.
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This discussion highlights the fact that the RS condition required by the basic identification strat-

egy indeed rules out some economically plausible behavior, which, notably, is not even precluded by

controlled, experimental randomization in pricing. Rather than attempting to formalize all possible

RS violations, we adopt the approach of deriving robust bounds on counterfactual demand (and in

turn, on firm profits) projected by the model in the presence of RS violations of unknown form.

The sale-price example described above is an intuitive way of fixing ideas, and is inspired by the

prior demand estimation literature which focuses on consumer substitution patterns; however, our

robust bounds approach does not hinge on this particular interpretation of RS violations.

As a precursor, a comment on the focus of our robust inference method will be helpful. Typ-

ical structural approaches to partial identification (e.g., Haile and Tamer (2003), Hortaçsu and

McAdams (2010), and Freyberger and Larsen (2021)) often focus on bounding structural primi-

tives like θ and Fθ. However, in our case a prominent source of the partial identification problem

is the fact that the effective consumer base may shift between the control (p0) and treatment

(p0(1−d0)) states due to unobserved substitution between the firm and its rivals. If this is so,

then the notion of pinning down a type distribution Fθ for a single, stable consumer base becomes

problematic. For that reason, our approach focuses instead on bounding counterfactual demand

distributions under alternate pricing levels.

To begin, we focus on the case of a single price change, though in Section 2.5 we show how

richer price variation can be used for bound refinements. For each consumer, there are quantities

(Qci, Qdi) such that consumer i would choose Qci if given the control price p0 and Qdi if given

some discounted price p0(1−d). We use the common convention of denoting random variables

by upper-case letters, while realizations of random variables are denoted by lower-case. For the

present purpose, we abstract away from the consumer’s choice of whether or not to purchase a

subscription plan, and we simply assume that a subset of consumers are exposed to an exogenous

price drop from p0 to p0(1−d0). Let Gcd(qc, qd) denote the joint distribution function of (Qc, Qd),

with marginal distributions Gc(q)=G(q|p0) and Gd(q)=G(q|p0(1−d)).

In this section we obtain bounds on conditional probabilities of the form Pr
[
Qd≤q|Qc≥ S

p0×d

]
.

These bounds are important because profitability of a subscription offering will be largely deter-

mined by the sub-population of most-likely subscribers for whom Qc ≥ S
p0×d , which we refer to

as strong uptakers. Formally, strong uptakers are the set SU(p0, S, d) =
{

consumer i : qci≥ S
p0×d

}
.

Under any model of the underlying preferences, consumers will find it advantageous to subscribe

if Qc ≥ S
p0×d , while consumers for whom Qd <

S
p0×d will find subscription unambiguously disad-

vantageous. The question of whether or not intermediate consumers for whom Qc <
S

p0×d ≤ Qd
should subscribe still depends on the particular model of preferences. In the interest of robust-

ness we therefore focus on strong uptakers, since the baseline predictions of the RS model—which

determine whether intermediate consumers subscribe—may not hold.



ROBUST INFERENCE ON OPTIMAL NONLINEAR PRICING 13

To facilitate robust inference on counterfactual profits, our empirical objects of study are strong

uptaker distributions (SUDs), defined as Pr
[
Qd≤q|Qc≥ S

p0×d

]
. These represent the conditional

counterfactual demand CDFs of most-likely subscribers for a given (S, d) pair, and our goal is to

construct a set of sharp SUD bounds, Bd0(q;S, d) ≤ Pr
[
Qd≤q|Qc≥ S

p0×d

]
≤ Bd0(q;S, d). Since

SUDs are CDFs, the object Bd0 (also a CDF) is point-wise below the SUD, but is an upper bound

in the sense that it stochastically dominates the true SUD. Similarly, Bd0 (also a CDF) is point-wise

above the true SUD, meaning the former is dominated by the latter.

We first construct a rank-stable mapping Qd0 from a given consumer’s baseline consumption

level into the space of counterfactual consumption. We show that this mapping defines a limiting

DGP whose SUDs constitute the sharp upper bound Bd0(q;S, d) on SUDs for other DGPs which do

not necessarily adhere to rank stability but are consistent with the observable demand distributions

under control and treatment. We then construct a similar mapping Qd0 that characterizes maximal

RS violations that still respect the data and the LoD. We show that this mapping defines a DGP

whose SUDs constitute the sharp lower bound Bd0(q;S, d). The bound subscripts denote their

dependence on observed demand CDFs (Gc, Gd0) under prices p0 and p0(1− d0), respectively.

As before, let the CDF of Qc be Gc and the CDF of Qd be Gd, while Gd0 represents the observed

demand CDF under the actual discount d0 defining treatment within the RCT. Henceforth, we refer

to this as the in-sample discount, to distinguish it from other out-of-sample (i.e., experimentally

untested) discounts d 6=d0. Given our current focus on identification rather than on estimation, this

is somewhat of an abuse of terminology, but it is useful in distinguishing inferences directly based on

d0, from those that can be made somewhat less directly based on alternate d 6=d0.15 Additionally,

we define the quantile functions G−1
c (r) = inf{q : Gc(q) ≥ r} and G−1

d (r) = inf{q : Gd(q) ≥ r}, and

note that these may represent the inverse CDFs, if they exist, or the quasi-inverses otherwise.

2.3. Construction of the Upper Bound. While Bd0(q;S, d) lives in probability space, the func-

tional value of Qd0 represents an upper bound on consumption under counterfactual price p0(1−d),

if baseline consumption (under p0) is q. More formally, we define a (stochastic) mapping

Qd0(q; d, v)≡G−1
d (a(q)+b(q)v) , a(q)≡ lim

q′→q−
Gc(q

′), and b(q)≡Gc(q)− lim
q′→q−

Gc(q
′), (5)

where v is a realization of a random variable V ∼Uniform(0, 1) that is independent of (Qc, Qd). In

equation (5), a(q) and b(q) are to deal with possible mass points in the control CDF, Gc; V plays

the role of a “tie-breaking” rule; a(q) is the mass of all consumers with baseline demand below q;

and b(q) is the size of the probability mass at q. Given this definition, we can now also define

Bd0(q;S, d)≡Pr

[
Qd0(Qc; d, v)≤q|Qc≥

S

p0 × d

]
. (6)

15This abuse is less awkward if one considers the word “sample” as denoting a dataset with infinite observations.
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The formal proof is fairly technical, but we show that the mapping Qd0(Qc; d, v) ∼ Gd(q) (see

Appendix A.1), meaning that it constitutes a data-generating process that must be consistent with

observables. Moreover, we show that Bd0 is an upper bound on the SUDs Pr
[
Qd≤q|Qc≥ S

p0×d

]
for

each (S, d) pair. This, combined with the previous fact, implies that it is the sharp upper bound,

since Qd0(q; d, v) is an admissible DGP that attains the upper bound Bd0(q;S, d).

For some intuition, consider the hypothetical dataset depicted in Panel (A) of Figure 1. Char-

acterizing the SUD upper bound reduces to the question of, what is the maximal fraction of the

aggregate shift from demand CDF Gc to discounted demand CDF Gd0 that was accounted for by

high-demand consumers responding to the discount by increasing their purchase volume? For the

special case where Gc has no mass points, we get the simpler expression Qd0(q; d, v) =Qd0(q; d) =

G−1
d (Gc(q)), whose geometric interpretation provides an answer: at most, all of the aggregate shift

represents rank-stable price responses by high-demand consumers. The distribution of Qd0(Qc; d)

is simply the distribution of Qd, since Qd0(Qc; d) is chosen to match the quantiles of Gc to the

corresponding quantiles of Gd. Intuitively then, the upper-bound DGP Qd0 is one where strong

uptakers with high baseline demand are maximally price responsive, none of the aggregate demand

shift is due to unobserved substitution, and therefore no “rank-jumping” happens at all. Interest-

ingly, this first result, stated formally in Proposition 1, indicates that the naive and potentially

mis-specified RS model still serves as a relevant empirical benchmark.

Before stating our first result we adopt an assumption on the underlying model of aggregate

demand. In what follows there will be a distinction between in-sample bounds—e.g., the SUD

upper bound Bd0(q;S, d0) given the in-sample discount d0—and out-of-sample bounds—e.g., the

SUD upper bound Bd0(q;S, d) for an experimentally untested discount level d 6=d0. The assumption

has no impact on in-sample bounds, but provides structure for deriving out-of-sample bounds.

Assumption 4. The set of aggregate demand CDFs Gd arising from out-of-sample discounts d is

such that if the reduced-form aggregate distributions of demand (Gc, Gd0) are known for in-sample

prices, (p0, p0×(1−d0)), then aggregate demand Gd is also known for out-of-sample discounts d 6=d0

and is given by a (known) function Gd(q)=Goosd (q;Gc, Gd0).

Remark 1. Assumption 4 is stated in this way in order to highlight the flexibility of our partial

identification approach. It covers various methods for extrapolation of aggregate counterfactual

demand, ranging from the basic theoretic demand system above, to more general demand models,

and also allows for atheoretical, reduced-form approaches to extrapolation. Options include,

(1) The observed and counterfactual demand CDFs are consistent with the MS utility model:

Assumption 2 is satisfied and there exists a (u, Fθ) pair, such that Gd(q) =
∫

Θ 1[q∗(p0(1−
d); θ)≤q]dFθ(θ) for all (d, q)∈(−∞, 1)×R+, where q∗(·; θ) is defined in equation (1).
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(2) Observed and counterfactual demand CDFs are consistent with a ϕ-separable utility model:

U(q; θ, ϕ) =


∫ q

0 (u(t)+θ)
1

1−ϕ dt, ϕ<1∫ q
0 exp(u(t)+θ) dt, ϕ=1.

(7)

Moreover, Assumption 2 holds and there exists a (ϕ, u, Fθ) triple, with known ϕ, such that

Gd(q)=
∫

Θ 1[q∗(p0(1−d); θ, ϕ)≤q]dFθ(θ) for all (d, q)∈(−∞, 1)×R+.16

(3) (Chernozhukov et al. (2010)) Aggregate quantile shifts are linear in the discount d, up to

rearrangement: Gd(q)=Pr

[
Qc +

d×(G−1
d0

(Gc(Qc))−Qc)
d0

≤q
]
.

In our main empirical application we use extrapolation option (1), but in Appendix A.3, we

discuss the more general family of utility functions in option (2), and in Appendix F, we show that

our counterfactuals are insensitive to the exact form of extrapolation. Option (2) illustrates how the

econometrician may decide that some model other than the MS paradigm may be more appropriate

for projecting counterfactual demand shifts. For example, consider the additively-separable (AS)

utility form, U(q; θ) = u(q) + θq (e.g., see Maskin and Riley (1984) and Laffont and Tirole (1986)).

The main difference between MS utility and AS utility is their implications for counterfactual

demand extrapolation. MS implies that the price elasticity of demand, ∂q∗(p;θ)
∂p

p
q∗(p;θ) depends on p

and θ only through their implied level of demand q∗(p; θ), while additive separability implies the

same property for the price derivative of demand, ∂q∗(p;θ)
∂p . The ϕ-separable utility family nests

both MS (ϕ=1) and AS (ϕ=0) as special cases.

In options (1) and (2), counterfactual extrapolations stem from an explicit, rank-stable, structural

model of demand. At first glance this may seem philosophically awkward, given that the purpose

of our paper is to provide inferential tools in scenarios where validity of the RS assumption is in

question. As we have seen above, Qd0 happens to be precisely the rank-stable DGP, so for the

purposes of bounding counterfactual demand from above (Proposition 1), options (1) and (2) are

less problematic as aids for out-of-sample inference. Options (1) and (2) of Remark 1 should not

be interpreted as assuming directly that individual-level demand within the DGP is rank stable;

rather, they simply state that the researcher is confident in a particular utility specification for

producing sensible counterfactual projections for aggregate demand shifts.

A researcher who is skeptical of (1) and (2) may opt for a more agnostic method of extrapolation,

with (3) being an example of one such approach. In Remark 3 below we discuss how all three op-

tions augment identifying power specifically by imposing local smoothness conditions on aggregate

demand shifts under a price change from p0 to p0(1 − d0). The intuition behind the third option,

a special case of methods proposed by Chernozhukov et al. (2010), is that we can use the two

available pieces of information, G−1
c (r) and G−1

d0
(r), r ∈ [0, 1], to approximate quantile treatment

16See Sun (2023b) and Appendix F for a complete discussion on identification under the ϕ-separable utility model.

If the data include multiple exogenous price shifts, then ϕ need not be known ex-ante to satisfy Assumption 4.
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effects of a discount as being locally linear in the discount d.17 However, the linear approximation

may lead to technical problems where, for discounts outside the range (0, d0), quantile projections

cross. Chernozhukov et al. (2010) solve this problem by a method they refer to as rearrangement,

which guarantees that quantile projections are monotone in r. We will return to the discussion of

different approaches to out-of-sample extrapolation after we derive the lower-bound DGP Qd0 .

Assumption 4 and Remark 1 are relatively mild for two reasons. First, additional RCT variation

can be used to probe its validity: given multiple experimental discounts (d0, d1, . . .) one may test

whether utility specifications like (1) or (2) produce realistic out-of-sample projections. Second, it

is important to keep in mind that Assumption 4 deals with extrapolation of reduced-form, aggre-

gate demand—i.e., both subscribers and non-subscribers—rather than with the primary structural

primitive, counterfactual demand among subscribers only. Put another way, Assumption 4 directly

concerns the marginal distributions of demand under alternate prices p0 and p0(1−d), while our

primary objects of study are bounds on the copula between consumer i’s demand Qci and Qdi under

those two prices. We now state our first result, relegating a formal proof to Appendix A.1. �

Proposition 1. Under Assumptions 1 and 4, if Gc(q) and Gd0(q) are known and are discontinuous

at countably many mass points, then Bd0(q;S, d) constitutes an identified, sharp upper bound on

the strong uptaker distributions. That is, for any (potentially out-of-sample) discount d ∈ (0, 1),

and subscription fee S≥0, we have Bd0(q;S, d)≡Pr
[
Qd0(Qc; d, v)≤q|Qc≥ S

p0×d

]
≤Pr

[
Qd≤q|Qc≥ S

p0×d

]
,

where the function Qd0(q; d, v) is defined in (5).

Remark 2. Out-of-Sample Inference The in-sample discount d0 together with observed (Gc, Gd0)

and equations (5) and (6) are sufficient to pin down Qd0(q; d0, v) and Bd0(q;S, d0). Then, Assump-

tion 4 allows us to project aggregate demand Goosd (q;Gc, Gd0) under arbitrary discount d 6=d0—e.g.,

via options (1), (2), or (3) of Remark 1—where the parameter inputs denote dependence of this

projection on the observables (Gc, Gd0). The counterfactual CDFs Gc and Goosd can then be plugged

back into equations (5) and (6) to get Qd0(q; d, v) and Bd0(q;S, d), for arbitrary (S, d) pairs. �

2.4. Construction of the Lower Bound. We now construct an analogous mapping Qd0(Qc; d, v)

that represents a lower-bound DGP for counterfactual consumption levels of likely subscribers

consistent with the LoD and the data (Gc, Gd0). To fix ideas on the sorts of phenomena that may

produce empirically relevant violations of rank stability, we begin by generalizing the basic model

from Section 2. This provides one especially salient (though not comprehensive) interpretation of

RS violations arising from multi-dimensional agent heterogeneity within demand estimation.

2.4.1. An Explicit Model of Unobserved Rank Stability Violations. A central motivation behind our

robustness exercise is the lack of information on consumer substitution patterns within a typical

17For values of d∈ (0, d0), option (3) is exactly equivalent to linear quantile shifts. Moreover, with an additional

discount, say d0 and d′0, one could use Chernozhukov et al. (2010) to define a locally quadratic variant of (3) instead.
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firm’s internal data. The extended model we present here highlights how unobserved heterogeneity

in brand loyalty may lead to apparent RS violations being more prominent among consumers with

low (internal) demand at baseline pricing.

We generalize utility to be a function of total consumption across the default firm, L, and its

competitor, firm C.18 Each consumer i combines consumption from both sources into a composite

good, “transportation,” according to a constant elasticity of substitution “production” function

Ti = Ti(qL, qC) =

[
α

1
η

i q
η−1
η

L + (1− αi)
1
η q

η−1
η

C

] η
η−1

. Here, αi indexes consumer i’s brand preference

for the default firm L. A value of αi = 0.5 means i is perfectly indifferent between interacting

with firm L versus firm C (when prices for both are the same), while αi = 0 (αi = 1) means

that i would be unwilling to purchase from firm L (firm C) at any price. The parameter η is an

elasticity of substitution between the default firm’s services and services of its competitor which, for

expositional simplicity, we take to be fixed in the population. As η→∞ the two services produced

by L and C become perfect substitutes (holding brand loyalty fixed at αi=0.5). Thus, α represents

intrinsic utility from doing business with firm L specifically, while η determines how similar are the

goods/services produced by each firm when divorced from their respective brand names.

Utility from total consumption is multiplicatively separable U(Ti; θi)=θiu(Ti(qL, qC)), where θi

still indexes i’s idiosyncratic demand intensity. Faced with prices (pL, pC), i chooses (qL, qC) to

solve max(qL,qC)∈R2
+
θiu(Ti(qL, qC)) − pLqL − pCqC . Note that this more general formulation nests

the basic model from Section 2 as a special case (when αi=1 ∀i).
To characterize this demand system, we take advantage of the fact that Ti is homogeneous of

degree 1, meaning that if we wish to scale up composite consumption by some factor ζ×Ti(qL, qC), we

can accomplish this simply by scaling up the two inputs by the same factor ζ×(qL, qC). As a result,

we can solve the consumer’s optimization problem in two steps. First, she solves an expenditure

minimization to determine the optimal shares of the default firm and the competitor, per unit

of composite consumption Ti(qL, qC). Next, the consumer solves an outer utility maximization

problem to determine the level of total transportation consumption.

max
t∈R+

θiu(t)− pT t, subject to pT = min
(qL,qC)∈R2

+

pLqL + pCqC , subject to Ti(qL, qC) = 1.

Then, letting qhL, q
h
C be the solutions to the cost minimization problem above (Hicksian demand), we

have that individual i chooses qL=qhLt
∗ and qC =qhCt

∗ where t∗ solves the outer utility maximization

problem. Standard results on constant elasticity of substitution functions imply that

qhL = αi×
[
αi + (1− αi)

(
pL
pC

)η−1
] η

1−η
, qhC = (1− αi)×

[
(1− αi) + αi

(
pC
pL

)η−1
] η

1−η
, and pT =

[
αip

1−η
L + (1− αi)p1−η

C

] 1
1−η . (8)

18The competitor firm C can be thought of as encompassing all of the consumer’s outside options for substitutable

goods/services, from competing private rideshare firms, to public transit, to walking instead.
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For simplicity of discussion, we normalize prices pL = pC = 1, which in turn implies pT = 1.

If the price ratio is one this implies qhL = αi in (8), meaning αi is simply individual i’s share of

consumption supplied by the default firm. For any level of default firm consumption qL, there is a

locus of (θi, αi) pairs that rationalize it. To see why, fix qL and note that for each αi∈ (0, 1) there

is some θi such that, given parameters (θi, αi), i consumes exactly qL units from the default firm.

This requirement is defined by combining the identity αit
∗
i = qL with the FOC of the outer utility

maximization, t∗i = (u′)−1(1/θi), to get αi×(u′)−1
(

1
θi

)
= qL. Since u′ is strictly increasing, this

defines a curve in (θ, α)-space of types consistent with a fixed optimal choice qL.

We now derive some comparative statics around prices pL = pC = 1 for a fixed type (θi, αi).

Using the chain rule and product rule, we have ∂qL
∂pL

=
∂qhL
∂pL

t∗ + ∂t∗

∂pT

∂pT
∂pL

qhL, which simplifies to

∂qL
∂pL

= −ηqL 1−αi
α2
i

+ α2
i /u
′′
(
qL
αi

)
since qhL = αi. This expression characterizes the responsiveness

of observed demand for the default firm’s service as its own price pL changes. Importantly, note

that the derivative of demand with respect to pL changes as qL is kept constant but αi varies.

I.e., if consumrs i and j choose the same quantity qL under default pricing, but αi < αj , then

their responsiveness to a price change will be different, thus creating an apparent violation of rank

stability within the internal data available to default firm L.

Moreover, the model also implies that when services of firms L and C are sufficiently substi-

tutable, a consumer with lower brand loyalty to L will be more sensitive to changes in pL. Once

again, suppose i and j consume the same firm-L quantity qL, but consumer i has less brand loy-

alty, or αi<αj . Subtracting i’s response to an infinitesimal price change from j’s response gives

−ηqL
(

1−αj
α2
j
− 1−αi

α2
i

)
+
(

α2
j

u′′(qL/αj)
− α2

i
u′′(qL/αi)

)
. The first term is strictly positive because αi <αj

while the second term has a generally ambiguous sign. However, provided that consumption choices

are bounded from above, so qL<M<∞, and α>0 for all consumers, the first term will dominate

as η gets large. Intuitively, this implies that as the elasticity of substitution, η, gets sufficiently

large, individuals with lower brand loyalty will tend to be more responsive to changes in pL in terms

of their purchases from firm L (i.e., a larger negative own-price elasticity).19

While the brand-loyalty interpretation is motivated by the consumer demand context, the same

basic principle applies in other adverse-selection/principal-agent models as well. In Section 5.1

we briefly discuss five related settings—procurement, regulation of externalities, optimal taxation,

19In the limiting case η→∞, where the two goods become perfect substitutes (modulo brand loyalty), consumers

solve max(qL,qC)∈R2
+
θiu(αiqL + (1 − αi)qC) − pLqL − pCqC . Now, the expenditure minimization problem is simply

to choose qhL = 1
αi

if pL
pC

< αi
1−αi

and qhL = 0 if the inequality is strict in the opposite direction. Consider now a price

change from pL to pL−ε for some small ε>0. Individuals for whom qhL = 1
αi

even before the price change will only

slightly change their consumption levels from qL= 1
αi

(u′)−1
(
pL
αiθi

)
to qL= 1

αi
(u′)−1

(
pL−ε
αiθi

)
. On the other hand, for

some consumers we will have pL−ε
pC

< αi
1−αi

but pL
pC
> αi

1−αi
. For them, qhL will change from 0 (under the original pL) to

1
αi

after the discount, and their consumption from firm L will “rank jump” from from qL=0 to qL= 1
αi

(u′)−1
(
pL−ε
αiθi

)
.
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labor contracts, and insurance/healthcare demand—including relevant applications of nonlinear

pricing, and how exogenous price variation no longer suffices for point identification under multi-

dimensional agent heterogeneity. These examples highlight how ideas analogous to those presented

here can be applied to a wide variety of policy-relevant contexts in empirical market design.

2.4.2. Formal Derivation of the SUD Lower Bound. Having formalized a theoretical foundation for

unobserved RS violations, we return our focus to derivation of the lower-bound DGP Qd0 . That

is, despite firm L lacking internal data to empirically model failures of RS, we derive a sharp lower

bound Bd0(q;S, d) = Pr
[
Qd0(Qc; d)≤q|Qc≥ S

p0×d

]
on counterfactual demand CDFs (SUDs) for

strong uptakers. While the example of RS violations driven by unobserved substitution patterns

and brand-loyalty heterogeneity is salient and empirically relevant, the lower bound we derive

does not hinge on any specific underlying model of unobserved RS violations. Other plausible

phenomena producing RS violations could include heterogeneous income effects and/or budget-

constraint heterogeneity. Our method also allows for the fully-specified underlying model of RS

violations to include multiple channels driving unpredictable heterogeneity in price sensitivity.

Our purpose here is to derive a sharp lower bound on the set of latent DGPs that are consistent

with the LoD and the observables. To do so, we must characterize maximal RS violations that

respect this a priori information. The LoD and the data (Gc, Gd0) impose considerable discipline

on the maximal mass of rank-jumpers and on plausible magnitudes of their rank-jumping behaviors.

Recall that the rank-stable DGP is the least upper bound on counterfactual strong-uptaker demand

under discount d. Suppose that a market designer naively optimizes profits, π(S, d), from a single

offer (S∗, d∗) under the RS assumption. This optimum fee structure must balance three things

for each subscriber θ type in order for it to be profit-improving: it must (i) offer consumers a

viable path to savings, or (p0d
∗)q∗(p0(1 − d∗); θ) − S∗ ≥ 0, and while (ii) discounted revenues

are lower for each subscriber by (p0d
∗)q∗(p0; θ), their (iii) projected increase in demand volume

q∗(p0(1−d∗); θ)−q∗(p0; θ) is large enough so that the change in total revenues to the firm is positive:

S∗ − (p0d
∗)q∗(p0; θ) + p0(1−d∗) [q∗(p0(1−d∗); θ)− q∗(p0; θ)]>0. (9)

Ensuring this is true requires an accurate forecast of demand responsiveness to discount d∗.

With that in mind, one can think of the lower-bound DGP Qd0 as being maximally adversarial

in the sense of minimizing the naive market-designer’s profits, π(S∗, d∗), from subscription offer

(S∗, d∗). For the hypothetical dataset depicted in Panel (A) of Figure 1, the naively presumed DGP

Qd0 holds that the entirety of the shift from Gc (solid line) to Gd (dashed line) represents a rank-

stable demand increase, which implies maximal demand responses [q∗(p0(1−d∗); θ) − q∗(p0; θ)] =

G−1
d (Fθ(θ))−G−1

c (Fθ(θ)) by high-θ subscribers (i.e., q∗(p0; θ)≥ S∗

p0×d∗ ). In contrast, the lower-bound

Qd0 asks, what is the smallest price response by uptaker θ types that cannot be ruled out by the LoD

and data? This is equivalent to minimizing the firm’s total revenue change from its subscription
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program (left-hand side of (9)). In the most extreme case, strong uptakers subscribe but then do

not increase purchase volume at all, and the left-hand side of (9) becomes S∗− (p0d
∗)q∗(p0; θ)≤ 0,

denoting a zero-sum transfer from firm to consumer. This intuitive adversarial property of Qd0 will

be discussed at length below, but first we formalize our primary objects of interest, Qd0 and Bd0 .

For simplicity, we temporarily assume that Gc and Gd are absolutely continuous and the differ-

ence Gc(q)−Gd(q) is unimodal (i.e., quasi-concave). We relax both of these assumptions in our

proofs in Online Appendix A.2, but to avoid tedious complications of exposition we limit discussion

here to the simpler case.20 The function Qd0(q; d, v) : Qc → Qd maps baseline consumption levels

under p0 into minimal plausible consumption levels under discount d, given the LoD and data

(Gc, Gd0). Since Gc(q)−Gd(q) is unimodal, it is weakly increasing below its smallest maximizer,

q∗min, and weakly decreasing above its largest maximizer, q∗max. Let qmax be the largest value for

which Gc and Gd disagree and define q̄d0(q)=inf{q′∈ [q∗max, qmax] :Gc(q
′)−Gd(q′)=Gc(q)−Gd(q)}.21

In other words, qd0 maps relatively low baseline consumption levels q≤ q∗min into discounted con-

sumption levels q′≥q∗max such that the condition described above is satisfied. Because Gc and Gd

are continuous, the inf is attained, so Gc(q)−Gd(q) =Gc(q̄d0(q))−Gd(q̄d0(q)). Letting V denote a

Uniform(0, 1) random variable that is independent of (Qc, Qd), Bd0 and Qd0 are defined by

Bd0(q;S, d) ≡ Pr
[
Qd0(Qc; d, V ) ≤ q

∣∣∣Qc ≥ S
p0×d

]
; and Qd0(q; d, v)=

q̄d0(q) q ≤ q∗min, v ≤
qc(q)−gd(q)

gc(q)

q otherwise.
(10)

Graphical intuition for how q̄d0 and
¯
qd0 are constructed (and in turn, Qd0 as well) can be found

in Panels (B) and (C) of Figure 1. Recall that Qd0 represents a maximally adversarial DGP from

the perspective of a market designer who optimized a subscription offer (S∗, d∗) assuming the

rank-stable DGP Qd0 . Intuitively, to achieve the maximally adversarial property we start at the

low end of the demand spectrum (i.e., low values of baseline demand q′ under default price p0)

and we assume the largest possible mass of those consumers are rank-jumpers, which is depicted in

Panel (B) of the figure. Moreover, we also assume that these low-demand rank-jumpers do so in the

worst way from the naive market-designer’s perspective, meaning that they rank jump by the largest

possible margin that would not violate the shape of the treatment demand CDF Gd0 , which can be

seen in Panel (C) of the figure. The CDF difference determines the maximal rank-jumping margin

because, for large values of discounted demand q, it represents the excess mass of consumers who

purchased at least q under discounted price p0×(1−d0), relative to the mass who purchased at least

q under default price p0. Then we continuously apply this adversarial re-allocation of low-demand

20The case of a unimodal CDF difference appears to be the most empirically relevant case, both in our setting

and in a number of similar settings such as D’Haultfœuille and Février (2020) and Sun (2023a).

21If Gc, Gd have unbounded support and Gc(q) > Gd(q) for all q, let qmax =∞.
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Figure 1. Proof Intuition For Case 1

(a) Demand CDFs
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(b) Demand PDFs
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(c) Demand CDF Differences
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Notes: Panel (A) plots hypothetical demand CDFs Gc and Gd0 . Panel (B) plots the corresponding demand PDFs. Panel (C) plots

the difference in the demand CDFs, Gc−Gd0 .

consumers for all values of q′ between 0 and q∗min, the minimal argmax of the CDF difference.22

This ensures that the upper tail of the treatment demand CDF Gd0 is maximally populated by

non-subscribers, and therefore minimally populated by subscribers. Conversely, this procedure also

ensures that demand responses by strong uptakers collectively accounted for a minimal fraction of

the upper-tail shift from Gc to Gd0 , which maximally exposes the naive market-designer to merely

transferring money to them, with little or no compensating improvement in sales volume.

A remaining question concerns whether Qd0 can be fully adversarial without accounting for

the behavior of intermediate consumers, some of whom would subscribe. For another way of

understanding the adversarial bound, note that the following must be true of any admissible DGP,

whenever S>0 and the discount is less than markup (i.e., p0(1− d)− c>0):

Fact 1. Anybody who consumes Qc≥ S
p0×d will always be a subscriber.

Fact 2. Anybody who consumes Qc <
S
p0×d will always bring profits to the firm if they subscribe,

relative to the counterfactual of not subscribing.

Fact 1 is true under the LoD because such an individual would surely save money by subscribing.

To see why Fact 2 is true, note that the change in profits to the firm when a consumer buys the

subscription is ∆π ≡ Qd(p0(1 − d)−c)+S−Qc(p0−c) = (Qd−Qc)(p0(1−d)−c)+S−Qc×p0×d.

Since the discount is less than the markup, p0−c
p0

, and Qd≥Qc by the LoD, the first term on the

right-hand side is non-negative. Therefore, S−Qc×p0×d>0 implies ∆π>0, which is true whenever

22Note that in the example depicted in Figure 1, the CDF difference has a unique maximum corresponding to the

single crossing point of the PDFs, so q∗min=q∗max. Otherwise, gc(q
′)=gd0(q′) for q′ ∈ [q∗min, q

∗
max] would be true.
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Qc<
S
p0×d . From these two facts it follows that the firm could do no worse than if (i) everyone with

Qc≥ S
p0×d under default pricing (i.e., all strong uptakers) buys the subscription and then consumes

minimal additional volume, while (ii) nobody with Qc<
S
p0×d under default pricing ever subscribes.

For example, this extreme scenario would occur if each consumer’s demand curve had a discon-

tinuity at price p0(1− d) and took the form Q(p;Qc, Qd) = Qc1{p>p0(1−d)}+Qd1{p≤p0(1−d)},
where the joint distribution of (Qc, Qd) follows the DGP described by Qd0 . Such an individual

would not subscribe even though they are highly sensitive to the price change, because their con-

sumer surplus from getting the discount is 0. Extreme demand patterns like this—where aggregate

demand is virtually constant for prices p ∈ (p0(1−d), p0], and increases precipitously at price

p0(1−d)—cannot be ruled out based solely on the information in (Gc, Gd).

Proposition 2. Under Assumptions 1 and 4, if Gc(q) and Gd0(q) are known and are discontinuous

at countably many mass points, then Bd0(q;S, d) constitutes an identified upper bound on the strong

uptaker distributions. That is, for any (potentially out-of-sample) discount d ∈ (0, 1), and sub-

scription fee S≥ 0, we have Pr
[
Qd≤q|Qc≥ S

p0×d

]
≤Bd0(q;S, d), where the function Qd0(q; d, v) is

defined in (10) when (Gc, Gd) are absolutely continuous and Gc(q)−Gd(q) is unimodal, and defined

in (25) in Appendix B otherwise. Moreover, Bd0 is sharp in the following ways:

(i) The in-sample bound Bd0(q;S, d0) (which does not depend on Assumption 4) is uniformly

sharp with respect to q in the sense that ∀q the bounding DGP is consistent with the LoD

(i.e., Qd0(q; d0, V )≥q) and the shapes of (Gc, Gd0) (i.e., Pr[Qd0(Qc; d0, V )<q]=Gd0(q)).

(ii) Bd0(q;S, d) is uniformly sharp with respect to q and extrapolated aggregate demand in the

sense that, ∀q the bounding GDP is consistent with (Gc, G
oos
d ) (i.e., Pr[Qd0(Qc; d, V )<q]=

Goosd (q)) and satisfies the LoD with respect to prices p0 and p0(1−d) (i.e., Qd0(q; d, V )≥q).

We relegate a technical proof of Proposition 2 to Appendix A.2. Our usage of the term uniformly

sharp follows Firpo and Ridder (2019) and Molinari (2020). The notion of sharpness we have

emphasized—uniform sharpness in q space, holding discount d fixed—is motivated by the interests

of an empirical market designer using our methodology for robust nonlinear pricing: in Section

4.3 of our empirical application, a fixed discount level d∗ (the optimum implied by the rank-stable

upper bound) serves as a focal point for lower-bound computation. The following corollary provides

simpler intuition behind the SUD lower bound for subscription offers that are not overly generous:23

Corollary 1. Let “small” fee-to-discount ratios S
p0×d be those that are strictly less than the infimum

of the right-most modal region of Gc(q)−Gd(q) (e.g., if Gc(q)−Gd(q) is unimodal then “small” means

S
p0×d < q∗min). Then, under the assumptions of Proposition 2, for a subscription offer (S, d) that

is not overly generous (i.e., where the fee-to-discount ratio is not small), the sharp SUD lower

23As we will show in the empirical application, robust policies tend to not be overly generous.
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bound Bd0 is the same as the conditional control CDF of demand, given strong uptaker status, or

Bd0(q;S, d)=Pr
[
Qc≤q

∣∣Qc≥ S
p0×d

]
= Gc(q)−Gc(S/(p0×d))

Gc(S/(p0×d)) = Gc(q|Qc≥S/(p0×d)).

This corollary implies that for a wide range of potential (S, d) pairs, the SUD lower bound derived

in Proposition 2 depends only on the in-sample demand distribution Gc and is therefore insensitive

to the form of extrapolation used to calculate Gd, as we discuss further in the following remark.

Remark 3. Out-of-Sample Inference First note that the in-sample discount d0 together with

observables (Gc, Gd0) and equation (10) (or equation (25)) suffice to pin down in-sample bounds,

Qd0(q; d0, v) and Bd0(q;S, d0), under d0 coupled with arbitrary subscription fee S. A researcher

reticent to impose any additional model structure (e.g., Assumption 4 and Remark 1) aside from

the LoD, can apply Corollary 1 and Proposition 4 (Appendix A.3), giving a less informative out-of-

sample lower bound which we label as BLoDd0
(q;S, d). Little inferential power beyond the in-sample

bounds is possible in that case, due to lack of a way to project out-of-sample reduced-form aggregate

demand Gd. To see why, consider first a discount d<d0 that is less generous than the in-sample

discount. Here, without imposing any restrictions on the smoothness of aggregate demand shifts

between prices p0 and p0(1−d0), we cannot rule out DGPs where demand is locally satiated, being

arbitrarily close to Gc for any price p ∈ (p0, p0(1−d0)). Thus, BLoDd0
(q;S, d) = Gc(q|Qc ≥ S

p0×d).

Similarly, without imposing any local smoothness conditions on aggregate demand shifts, for d>d0

that is more generous we cannot rule out DGPs where an arbitrarily large fraction of consumers

have virtually satiated demand under price p0(1−d0). Thus, BLoDd0
(q;S, d)=Bd0(q;S, d0).

On the other hand, Assumption 4 and Remark 1 provide the researcher with concrete means of

imposing local smoothness conditions on aggregate demand shifts between prices p0 and p0(1−d). A

researcher comfortable leaning on such restrictions may still harbor concerns about whether options

(1) and (2) of Remark 1 induce excessive mis-specification bias in aggregate demand projections

Goosd . In that case, the reduced-form linear quantile shifts option (3), or Corollary 1 are still useful.

The former provides a relatively model-agnostic first-order approximation to aggregate demand

quantiles for general (S, d) pairs, while the latter provides a precise characterization of structural

counterfactual demand quantile bounds for (S, d) pairs that are not overly generous.

In either case, the lower bound under out-of-sample discounts d 6=d0 are as in Remark 2. First,

by Assumption 4, we can use in-sample demand distributions (Gc, Gd0) to produce reduced-form

aggregate demand projections Goosd (q;Gc, Gd0) by some preferred method. The CDFs Gc and Goosd

can then be plugged back into equations (10) to get Qd0(q; d, v) and Bd0(q;S, d). In our empirical

application, we explore inferences based on all three cases of Remark 1 and Corollary 1, and find

that our main empirical conclusions are insensitive to one’s choice among these options. �

Remark 4. Optimal Experimental Design The first paragraph of Remark 3 also suggests a key

insight about optimal experimental randomization to maximize ex-post inferential power. If the

experimentalist’s prior indicates that the optimal discount lay in some neighborhood d∗ ∈ (
¯
d, d̄),
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then inferential power is maximized by choosing a less generous experimental discount d0≤
¯
d. An

alternative view of this insight is that an experimentalist who is comfortable with extrapolation

but wishes to lean more on data than on model structure should also choose d0≤
¯
d. �

Remark 5. Theory-Free Bound Without imposing the LoD, one can derive an alternate, theory-

free lower bound B̃d0 for the SUDs. The analogous DGP, Q̃d0 would be one that swapped ranks:

the individual whose consumption Qc under default pricing was in the rth quantile of Gc also has

discounted consumption Qd in the (1−r)th quantile of Gd. This DGP Q̃d0 in general need not

respect the LoD. In contrast, we have constructed our main lower bound Qd0 under the principle

that we wish to maximizethe degree of RS violations subject to the LoD. The comparison between

the resulting demand CDF bounds, B̃d0 and Bd0 , helps to illuminate how structure from basic

economic theory delivers useful inference. We explore this idea empirically in Section 4.3. �

2.5. Lower-Bound Refinement Using Richer Experimental Variation. We now explore

how multiple discount treatment arms can enhance inferential power. While richer price variation

can be used in various ways—e.g., testing and improving the extrapolation method—we focus here

only on improving the informativeness of the lower bound, holding some extrapolation method

fixed.24 Consider now a set of additional discounts Dd = {d′< d′′< · · ·< d(K−1) < d} that are less

generous than d—i.e., d(i)∈ (0, d), i=1, . . . ,K−1—and the corresponding aggregate demand data

GDd = {Gc, Gd′ , . . . , Gd(K−1) , Gd}. To simplify discussion, we will consider the focal discount d∗, on

which bounding inference is to be done, as belonging to the set Dd, or in other words, d∗=d.25

Recall from our discussion in Section 2.4.2 that the DGP Qd0 satisfies the adversarial property,

provided that all individuals consuming Qc<
S
p0×d under Qd0 do not buy the subscription. However,

some adversarial behavior could be ruled out if we were able to observe the distribution of demand at

a price discount between 0 and d, thus effecting a shift in the strong uptaker cutoff. The information

in GDd allows us to derive a set of refined strong uptakers by including some individuals who were

previously considered part of the set of intermediate consumers (see Section 2.2 and Fact 2).

Consider a hypothetical scenario where we observe counterfactual demand Qd′ at a single inter-

mediate discount level d > d′ > 0. When Qd′ = qd′ , then the demand curve passing through the

price-quantity pair (p0(1−d′), qd′) which delivers the least consumer surplus relative to d is the

demand curve Q(p) = qd′1{p ≤ p0(1−d′)}; in other words, where demand is constant for prices

24A complete treatment of extrapolation methods and their refinements is beyond the scope of this paper, but the

interested reader is directed to Sun (2023b) for an in-depth analysis on this topic.
25To fix ideas, suppose the econometrician has a dataset {Gc, G0.10, G0.15} with demand under default pricing and

two treatment arms, but wishes to derive a refined lower bound relative to discount d= 0.25. Then our discussion

assumes the econometrician will use some extrapolation method to first project aggregate demand Goos0.25, and then

derive a refined bound based on D = {0.10, 0.15, 0.25} and GD = {Gc, G0.10, G0.15, G
oos
0.25}. However, a researcher

unwilling to lean on model structure that facilitates extrapolation would simply take Goos0.25(q)=G0.15(q), ∀q instead.
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below p0(1−d′), and where demand jumps from 0 to qd′ precisely at price p0(1−d′). In this case, the

change in consumer surplus relative to the base discount of d is p0(d−d′)qd′ . Thus, a consumer with

counterfactual demand Qd′ ≥ S
p0(d−d′) at the intermediate price point must obtain surplus at least

as large as p0(d−d′)× S
p0(d−d′) =S, and thus, these consumers will unambiguously wish to subscribe

to (S, d) under any DGP consistent with the LoD. Thus, we can define the refined strong uptaker

set given Dd={d′, d} as RSU(p0, S,Dd)=SU(p0, S, d) ∪
{

consumer n : qd′n≥ S
p0(d−d′)

}
.

In reality, we do not directly observe an individual’s complete (qc, qd′ , qd) triple. However, recall

that the adversarial DGP for an (S, d) pair is one where refined strong uptakers consume minimal

incremental q after subscribing, subject to consistency with observables GDd = {Gc, Gd′ , Gd} and

the LoD. Characterizing this scenario is equivalent to maximizing a RSU consumer’s Qc while

minimizing that same consumer’s Qd. First, if we re-define p̃0 =p0(1−d′) as the default price, and

d̃ = d−d′
1−d′ , then Corollary 1 applies to the price change from p̃0 to p̃0(1− d̃)—or equivalently, the

price change from p0(1−d′) to p0(1−d)—which indicates that Qd=Qd′ is the DGP with minimal

price responsiveness for RSUs. On the other hand, for the price change from p0 to the intermediate

discounted price p0(1−d′), we can apply the logic of Proposition 1 and conclude that the rank-stable

DGP where Qc=G−1
c [Gd′(Qd′)] is true maximizes Qc, subject to consistency with observables and

the LoD. Finally, note that whenever Gd′(q)<Gc(q) ∀q we have Qd=Qd′>Qc.

This last finding indicates that we have achieved a tightening of the lower-bound DGPQd0(q; d, v),

relative to the case with only a single price change, where we could not rule out Qd =Qc. More

formally, we can define our refined lower-bound DGP as26

QRDd(q;S, d, v) ≡ Qd0(q; d, v)1
{
G−1
d′ [Gc(q)]<

S
p0(d−d′)

}
+G−1

d′ [Gc(q)]1
{
G−1
d′ [Gc(q)]≥ S

p0(d−d′)

}
. (11)

The first term encompasses previous inferences about consumer types when only a single price

change d was available: for demand levels Qd′ between 0 and G−1
d′ [Gc(q)] the adversarial demand

projection does not change. The second term characterizes how the additional intermediate demand

distribution Gd′ allows us to update the worst-case scenario. Specifically, it eliminates some degree

of weak price responsiveness by requiring that RSUs—i.e., consumers with qd′ ≥ S
p0(d−d′) under

discount d′—if they were given the more generous discount d, would have to increase counterfactual

demand by at least a margin of G−1
d′ [Gc(qd′)]−qd′ in order to be consistent with observables.

We can apply identical logic to any other price triple (p0, p0(1 − d(i)), p0(1 − d)) for d(i) ∈Dd =

{d′, . . . , d(K−1), d}, and show that the worst-case DGP consistent with {Gc, Gd(i) , Gd}, and the

LoD implies that all individuals with demand quantile rank r > Gd(i)
(

S
p0(d−d(i))

)
under discount

d(i) must behave consistently with rank-stability when prices shift from p0 to p0(1−d(i)). We can

26For simplicity, equation (11) assumes that Gc is absolutely continuous. Otherwise one can replace the “Gc”

terms with a(q) + b(q)v, where a and b are defined in (5).



26 BODOH-CREED, HICKMAN, LIST, MUIR, SUN

aggregate these individual worst-case DGPs into a single refined DGP, QRDd(q;S, d), consistent with

all observables, GDd ={Gc, Gd′ , . . . , Gd(K−1) , Gd}, and the LoD.

Whenever d(i)<d(j), if consumers with baseline demand Qc=G−1
c (r) behave in a rank-stable man-

ner when prices shift from p0 to p0(1−d(j)) in the worst-case DGP consistent with {Gc, Gd(j) , Gd},
then they must also behave in rank-stable fashion when prices shift from p0 to p0(1−d(i)) in the

worst-case DGP consistent with {Gc, Gd(j) , Gd} ∪ {Gd(i)}. Formally extending this argument, let

i∗(r) ≡ max
{
i∈{1, . . . ,K} : r > Gd(i)

(
S

p0(d−d(i))

)}
, where, by convention, max ∅ ≡ 0. Thus, the

refined lower-bound DGP and refined SUD bound are

QRDd(q;S, d, v) =

Qd0(q; d, v) i∗(r)=0

G−1

d(i
∗)

[
Gc(q)

]
i∗(r) 6=0

and BRDd(q;S, d)≡Pr
[
QRDd(Qc;S, d, V )≤q|RSU(p0, S,Dd)

]
, (12)

where RSU(p0, S,Dd) = SU(p0, S, d)∪
⋃K−1
i=1

{
consumer n : qd(i)n≥ S

p0(d−d(i))

}
. Intuitively, each of

the intermediate price shifts, with their corresponding demand CDFs Gd(i)(q), i = 1, . . . ,K−1,

imposes some lower bound on the minimal price responsiveness of consumers at the rth quantile

under the control demand distribution Gc(q). Equation (12) aggregates this information as the

upper envelope of minimal price responsiveness, for each r∈ [0, 1].

Proposition 3. For Dd={d′, . . . , d(K−1), d}, if GDd ={Gc, Gd′ , . . . , Gd(K−1) , Gd} are known and Gc

is discontinuous at countably many points, then BRDd(q;S, d) defined in (12) is an identified refined

lower bound on RSU demand Pr [Qd ≤ q|RSU(p0, S,Dd)] ≤ BRDd(q;S, d).

In general, it cannot be established that BRDd must always be below Bd0 for all q because the

former bounds worst-case behavior of a different set of consumers than the latter—namely, Refined

Strong Uptakers rather than Strong Uptakers—making it difficult to rule out crossings of the two

for low values of q. However, the above discussion does establish a general, concrete sense in which

BRDd refines or tightens the range of plausible inferences, relative to Bd0 : if πA(S,Dd) denotes worst-

case, adversarial profits from subscription offer (S, d) consistent with experimental discounts in the

set Dd, then refined lower-bound profits are weakly greater, or πA(S, d)≤πA(S,Dd).

Remark 6. Refined Out-of-Sample Inference: a Single Observed Price Change Thus far,

the discussion in this section has considered the additional discounts in Dd\{d0} and the additional

CDFs in GDd\{Gc, Gd0} as primarily coming from raw data, being the product of richer experimental

variation. However, introducing Assumption 4 affords an alternative interpretation of Proposition

3: a researcher who has only {Gc, Gd0} in raw data, but is comfortable with imposing smoothness

conditions on aggregate demand shifts, may choose each new discount d(i) ∈ Dd \{d0} from the

interval (0, d)—where d is the focal discount of interest (e.g., the naive optimal discount projection

from the rank-stable upper bound)—and then use out-of-sample projections (e.g., via options (1),

(2), or (3) of Remark 1) to populate the set GDd ={Goosd′ (·;Gc, Gd0), Goos
d(K)(·;Gc, Gd0)} ∪ {Gc, Gd0}.
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Such an approach would provide a means of refining worst-case profit bounds based on more

limited data and the researcher’s a priori beliefs about smoothness of aggregate demand shifts, by

ruling out locally satiated demand scenarios similar to those discussed in Remark 3. Combining

this insight with the discussion in Remarks 3 and 5, our proposed method allows for different levels

of reliance upon raw data and model structure to facilitate various levels of increasing inferential

lower-bound precision, summarized as follows:

(i) (Theory-Free) B̃d0 using only raw data {Gc, Gd0}
(ii) (No-Extrapolation) BLoDd0

using {Gc, Gd0}, the LoD (Assumption 1), and Proposition 4

(iii) (Extrapolation-Light) Bd0 using {Gc, Gd0}, Assumptions 1 & 4, and Proposition 2

(iv) (Extrapolation-Full) BRd0 using {Gc, Gd0}, Assumptions 1 & 4, and Proposition 3. �

3. Data, Estimation Strategy, and Results

We execute an empirical case study using a rich internal dataset from Lyft, a popular rideshare

platform in the United States. Like many firms that offer subscription programs—e.g., Club Car

Wash, Hello Fresh, Chargepoint, Audible.com—rideshare platforms have ongoing relationships with

customers whose demand fluctuates over time, and they collect a wealth of internal transaction data,

often including some platform-imposed exogenous price variation. They also typically have little

or no information on their customers’ demand intensity for goods/services of rival firms.

We begin by analyzing data from a subscriptions RCT of the form described in Section 2.1: in

each of two treatment arms, a random set of consumers were offered the option to buy a monthly

subscription with a discount of da×100%, a= 1, 2, for a month, in exchange for an upfront sub-

scription fee of $S.27 The control group consisted of all other consumers within the same sample

population who did not receive a subscription offer, and thus all made demand decisions over the

ensuing month under default pricing. We use our explicit model of behavioral mistakes (Section

2.1) to allow for deviations from full rationality in uptake decisions, while estimating parameters

of the baseline multiplicatively separable utility model.

We complement this analysis with data from a second pricing RCT that precludes considerations

of behavioral mistakes in subscription decisions. A random subset of consumers (treatment group)

received a fixed discount off all rides over a two-week period. The control group consisted of all

other rideshare consumers who operated under default pricing. We refer to this as the uniform-

discount RCT, since d was automatically applied to all treated individuals, thus eliminating concerns

over salience, eagerness, or forecast error. We can fit the point-identified RS structural model to

data from each of the three experiments, as a test of basic model assumptions like rank stability.

Structural estimates here also set the stage for our robust market-design exercise in Section 4.

27The value of S was the same for both treatment arms, but to protect Lyft’s internal data security we do not

report the amount of S in this paper. See Section 3.1 for full discussion on reported consumption units.
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3.1. Reported Consumption Units. Lyft rides are heterogeneous, so we need a measure of

aggregated consumption that can be interpreted as q within the model. The most straightforward

way is to define q as the cost of the ride in absence of discounts. For example, an individual in

control who takes two rides at $20 and $15 is recorded as having q= 35, while another who took

the exact same rides, but had a 10% discount would pay $31.5=(1− 0.1) · ($20 + $15) but would

also be recorded as having non-discount equivalent (NDE) consumption q=35. This convention of

using NDE as our measure of q is convenient for two reasons. First, it allows us to normalize the

baseline market price to p0 =1. Second, two different origin-destination pairs at the same point in

time may differ in miles travelled, while a single origin-destination pair may be considered two very

different goods at different points in time, and hence be priced differently. Measuring q as total

NDE allows for a convenient comparison across these scenarios. This approach is akin to assuming

hedonic valuation of ride attributes (Rosen (1974)), and is similar in spirit to “bid homogenization”

in the auctions literature (e.g., Haile et al. (2006), Athey and Haile (2007)).28

When we report our results in tables and/or figures, we add one more normalization for q to

maintain Lyft’s data confidentiality. Rather than reporting units of q directly, we divide by the 98th

percentile (monthly) q observed in our data, denoted q. Thus, all plots/tables involving q represent

various levels of consumption as fractions of q. Note that regardless of how q is normalized,

percentage discounts are still represented by multiplying prices by d. Since this is a reporting issue

only, for simplicity we maintain the convention that default price for 1 unit of consumption is p0 =1.

3.2. Experiment Overview and Descriptive Statistics. We first analyze the subscriptions

RCT data (from early 2019), where Lyft offered a random subset (treatment group) of its users an

opportunity to buy a discount lasting one month for an upfront fee while baseline rideshare pricing

remained unchanged for a control group. In both treatment arms, the upfront fee was roughly 3%

of q. The offered discount among treated individuals was also randomized to be either d1 =15% off

or d2 =25% off. For this experiment we have a dataset containing an indicator vector tn for which

treatment consumer n was assigned to (t0n=1 for Control, t1n=1 for 15% off, t2n=1 for 25% off),

an indicator υn for n’s subscription choice, and consumption level, qn.

We complement our analyses of the subscriptions experiments with data from a second RCT in

2019 where Lyft gave automatic discounts of d0 = 10% (for a duration of 2 weeks) to a randomly

chosen set of consumers. Since this treatment gave a default, uniform discount of 10% to each

consumer in treatment, the lack of up-front subscription decisions eliminates previous concerns

over behavioral phenomena such as offer salience and/or eagerness. For each individual n in our

28In empirical auctions, bids are often regressed on auction covariates to “homogenize” them. The residual is

interpreted as bidder-specific demand intensity, and the regression terms are hedonic utilities of auction covariates.

In our case, ride covariates (proxied for by prices) implicitly play a similar role, while θ represents demand intensity.
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Table 1. Summary Statistics for Subscription Uptake Behavior

Treatment Arm: 15% Off Treatment Arm: 25% Off

Variable Estimate Std.Err. 95%CI Estimate Std.Err. 95%CI

Proportion Strong Uptakers 0.1901 (0.0007) [0.1887,0.1915] 0.2974 (0.0008) [0.2958,0.2990]

Revenue Share of Strong Uptakers 0.6986 (0.0012) [0.6962,0.7009] 0.8433 (0.0007) [0.8420,0.8447]

Proportion Uptakers 0.0091 (0.0002) [0.0088,0.0094] 0.0156 (0.0002) [0.0152,0.0160]

Proportion Saved Money | Uptaker 0.8278 (0.0007) [0.8265,0.8291] 0.9297 (0.0005) [0.9288,0.9306]

Notes: The third row shows the proportion of the treatment group who actually were uptakers. The fourth row shows the proportion

of actual uptakers who saved money as a result of buying the subscription. The sample sizes were, respectively: Control: Nc=318, 949,

15% Off: N15 =318, 755, 25% Off: N25 =319, 547.

uniform-discount data, we record an indicator tudn for treatment status (i.e., whether or not they

got the 10% discount), and consumption qn over the ensuing two-week period.

Table 1 summarizes uptake decisions in the subscriptions RCT. As is typical of within-firm

datasets, our overall sample size was fairly large (N s = 957, 251), so all estimates reported in the

table are highly significant and statistically different across the two columns, despite low uptake

rates. Strong uptaker status can only be directly confirmed within the control group, where baseline

demand Qc is observed for the entire subsample. We compute statistics about uptakers (i.e., those

who were offered a subscription and purchased it) separately within the two treatment subsamples.

The proportion of strong uptakers naturally increases with the offered discount d, as does the

share of firm revenues which are derived from strong uptakers. Even though almost 30% of the

population are strong uptakers, under 2% of the treatment group actually subscribed, which is

evidence of salience and/or forecast error. This is not surprising, as the experiment was an initial

randomized trial, and hence was not accompanied by the sorts of marketing efforts associated with

launches of mature product lines. Moreover, while a large fraction of subscribers saved money, this

fraction is less than one, providing evidence of eagerness and/or forecast error.

The primary data inputs to our structural analysis are various CDFs of consumption across

different subgroups within the experiments, plotted in Figure 2. In Panel (A), we display the

demand CDFs in the subscription experiments, comparing the control group (sample size N s
0 =

318, 949) to the two treatment groups (sample sizes N s
1 =318, 755 and N s

2 =319, 547, respectively).

In Panel (B), we plot demand CDFs of subscription uptakers in the two treatment arms. These

naturally differ much more from the control demand CDF, due to a combination of selection effects

(uptake decisions) and treatment effects (increased demand under discounted pricing). We can

reject equality of each treated distribution and the control distribution, as well as equality of

the two treatment distributions, at the 5% level or less in Panels (A) and (B), using a standard

Kolmogorov-Smirnov test: the maximum p-value for all six possible pairwise comparisons in the

two figures is 0.028. In Panel (C) we plot the demand CDFs in the uniform-discount RCT for the

control group (Nud
c =500, 645) and the treatment group (Nud

d =450, 634). We firmly reject equality

of these two CDFs using a Kolmogorov-Smirnov test (p-value ≤ 10−16). Finally, Table 2 contains

a comparison of demand moments across the subscriptions and uniform-discount experiments.
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Figure 2. Raw CDFs From Experiemnts

(a) Subscription Aggregate CDFs (b) Subscription Uptaker CDFs (c) Uniform-Discount CDFs

Notes: Panel (A) compares the demand CDF within the control group to the demand CDF in the treatment group. Panel (B) compares

the demand CDF of the control group with the demand CDFs for uptakers within the two treatment arms. Panel (C) compares demand

CDFs of control and treatment for the uniform-discount RCT.

Several facts are evident from the summary statistics and CDF plots. First, the LoD is empir-

ically upheld in all cases, as lower prices drive stochastic dominance shifts in demand. Second,

aggregate effects of the subscriptions treatment were small because the treatment condition here

was an offer to purchase a discount, and only a small fraction of treated consumers did so. Third,

uptakers within the subscription RCT are systematically different from the rest of the sample

population: their demand CDFs differ dramatically from the control CDF. These differences en-

capsulate both selection and treatment effects, which our identification strategy is designed to tease

apart. Fourth, there are some differences between demand distributions in the subscriptions and

uniform-discount experiments: the mass point at zero is somewhat larger in the latter. As we

discuss in Appendix D, these differences disappear after controlling for observable characteristics

of the respective populations, and do not drive our main results or our model test results.

Table 2. Summary Statistics for q

Min 1st Quartile Median 3rd Quartile Max Mean Std. Dev. N

Subscription 0.000 0.000 0.029 0.100 1.000 0.081 0.131 961,003

Uniform Discount 0.000 0.000 0.000 0.102 1.000 0.081 0.148 946,681

Pre/Post Difference (UD) -1.000 -0.084 0.000 0.013 1.000 -0.027 0.160

Notes: Rows one and two present information about the distribution of q in the Subscription RCT and uniform-discount RCT,

respectively. The third row contains information about the distribution of the diferences between the value of q when comparing the

pre-experiment period to the post-experiment period in the uniform-discount RCT.

3.3. Estimation: Subscriptions experiment. In our main empirical application, we compute

all estimates and counterfactual projections under the multiplicatively separable utility model. In

Appendix F, we probe for robustness to mis-specification error by re-computing estimates and

counterfactuals for the polar opposite extreme of the ϕ-separable family: additively separable

utility (i.e., ϕ = 0). Our main market-design conclusions remain largely unchanged. Thus, the

counterfactual extrapolation encoded in our particular application of Assumption 4 is not a key

driver of our empirical results. Empirically, the conditions required by Corollary 1 turn out to be
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satisfied for the optimal contract (S∗, d∗) considered in Section 4 below, which implies that empirical

market-design prescriptions should be largely invariant to one’s choice of extrapolation method.

In Section 2.1, we established a constructive identification argument for two demand CDFs that

satisfy the RS condition 1: G(q|(1−d), υ=1), for (observed) demand under discount for uptakers,

and G(q|1, υ = 1) for (counterfactual) demand under default pricing for uptakers. The former is

known directly from raw data, while the latter is pinned down by equation (3) and the objects τ

(uptake rate), Gc(q) (control demand CDF), and Gta(q) (treatment demand CDF in treatment arm

a=1, 2), which are known from raw data. Within the multiplicatively separable utility model, this

in turn allowed us to identify the uptake function Υ(q), the behavioral parameters ρ (salience), δ

(eagerness), Hε(ε) (forecast-error distribution); and the common utility function u(q).

3.3.1. Stage 1. We begin by parameterizing the two rank-stable demand CDFs as cubic B-splines:

Ĝ(q|1−da, υ = 1;ωa) ≡
∑Ka+3

k=1 ωakBak(q), for a = 1, 2, and Ĝ(q|1, υ = 1;ω0) ≡
∑K0+3

k=1 ωkB0k(q),

where the basis functions Ba/B0 are uniquely determined by knot vectors κa = {κa1<κa2< · · ·<
κa,Ka+1}, a= 1, 2 and κ0 = {κ01<κ02< · · ·<κ0,K+1} (see de Boor (2001)), which are pre-specified

by the econometrician, span the relevant support, and partition it into Ka and K0 sub-intervals,

respectively.29 For each a = 1, 2 the B-spline forms facilitate a straightforward GMM estimator,

(ω̂a, ω̂
a
0) =arg min(ωa,ω0)

{∑Nua
n=1

(
Ĝ(qn|1−da, υ=1;ωa)− G̃(qn|1−da, υ=1)

)2

+
∑Nua

n=1

(
Ĝ(qn|1, υ=1;ω0)− G̃(qn|1−da, υ=1) + G̃ta (qn)−G̃c(qn)

τ̃a

)2
}
,

s.t. ωak ≤ ωa,k+1, k = 1, . . . ,Ka + 2; ω0k ≤ ωk+1, k = 1, . . . ,K + 2;

ω0,1 ≥ 0, ωa,1 ≥ 0 ω0,K0+3 = 1, ωa,Ka+3 = 1; and Ĝ(qn|1, υ=1;ω0) ≤ Ĝ(qn|1−da, υ=1;ωa) ∀n,

(13)

where objects with tildes are empirical analogs of terms on the right-hand side of equation (3):

G̃(qn|1−da, υn=1)=
∑Ns

n′=1 1(qn′≤qn∩tan′=1∩υn′=1)∑Ns

n′=1 1(tan′=1∩υn′=1)
, G̃ta(qn)=

∑Ns

n′=1 1(qn′≤qn∩tan′=1)∑Ns

n′=1 1(tan′=1)
, G̃c(qn)=

∑Ns

n′=1 1(qn′≤qn∩t0n′=1)∑Ns

n′=1 1(t0n′=1)
,

and τ̃=
∑Ns

n=1 1(tan=1∩υn=1)∑Ns

n=1 1(tan=1)
. The last line of the constraints represents terminal conditions CDFs must

satisfy, and a stochastic dominance condition implied by the LoD. Resulting GMM estimates of

the two main CDFs are plotted in Figure 12 in Online Appendix C.

3.3.2. Stage 2. After computing these estimates (still holding a= 1, 2 fixed), it is straightforward

to plug them directly into Equation (4) to estimate the uptake function and behavioral parameters:

Υ̂a(q)= ĝ(q|1,υ=1;ω̂a0)τ̃a
ĝc(q;ω̂c)

, ρ̂a=limq→∞ Υ̂a(q), δ̂a=
limq→0 Υ̂a(q)

ρ̂a
, and Ĥa

ε (q)= Υ̂a(q+S/da)−ρ̂aδ̂a
ρ̂a−ρ̂aδ̂a

, where ĝc(q; ω̂c)

is the derivative of a B-spline estimate of the control demand CDF.

29A B-spline representation is useful for its differentiability and ease of imposing shape constraints directly as

linear restrictions on the parameters (Hickman et al. (2017)). This is especially important because the unsmoothed

empirical analog of equation (3) for G(q|1, υ=1) is not guaranteed to be monotone in finite samples.
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For utility estimation, we specify a knot vector, κu = {κu1 < κu2 < · · · < κu,Ku+1}, and pa-

rameterize the utility function as a flexible quartic B-spline û(q;ωu) =
∑Ku+4

k=1 ωukBuk(q). Re-

call that the CDF G(q|1, υ = 1) is a selection-corrected analog of the (observed) treatment CDF

G(q|1−da, υ=1), for an identical population of control consumers who would have purchased a sub-

scription, had they received the offer. Within this hypothetical population, the term G̃ta (qn)−G̃c(qn)
τ̃a

represents quantile-specific demand shifts under discount da. For treatment arm a define T̃a(qd)≡
Ĝ−1

[
Ĝ(qd|1−d, υ=1; ω̂a)

∣∣1, υ=1; ω̂a0

]
. This mapping is the prediction any RS model would make

about how much an individual consuming qd at discounted price (1−d) would consume when the

price is p0 =1 instead. For a given guess of the utility parameters ωu, based on equation (2) we can

define T̂ (qd;ωu) ≡ (u′)−1
[

1
1−du

′
(
q∗
[
1−d; θ∗(1−d, qd;ωu);ωu

]
;ωu

)
;ωu

]
= (u′)−1

(
1

1−du
′(qd;ωu);ωu

)
, where

θ∗(1−d, qd;ωu) is the consumer type that chooses qd under discount pricing. This represents the

model-derived prediction for how an individual consuming qd at discounted price (1−d) would

consume under price p0 =1. Therefore, we can pin down ωu by minimizing the l2 distance between

T̃ and T̂ . Letting 0=q1<q2<. . .<qm=qmax be an evenly spaced grid of points, we have:

ω̂au =arg minωu

∑m
j=1

(
T̂ (qj ;ωu)− T̃a(qj)

)2

s.t. ωu1 = 0, ωu1 = κu5−κu2
3 , ωuk ≤ ωu,k+1 − ε, k = 1, . . . ,Ku + 3, ε > 0, and

ωuk−ωu,k−1

κu,k+3−κuk ≤
ωu,k+1−ωuk
κu,k+4−κu,k+1

− ε, k = 2 . . . ,Ku + 3, ε > 0,

(14)

where the first constraint is a boundary condition u(0;ωu) = 0, the second constraint is a scale

normalization u′(0;ωu)=1, and the third and fourth enforce monotonicity and concavity.30,31

3.3.3. Empirical Results. Figure 3 plots the uptake functions (Panel (C)) and Table 3 reports

structural behavioral parameters implied by the uptake functions. While the comparison is noisy,

differences between the uptake functions for the 15% and the 25% treatment arms are as expected.

Given a more attractive subscription offer, we see suggestive evidence that consumers are more

willing to subscribe at every q; this is essentially another manifestation of the LoD.

Uptake parameter estimates are suggestive of three behavioral tendencies. First, we find a

large degree of inattention: uptake is low, even among very high-consumption individuals. This is

not necessarily surprising, given that the data came from a brand new product offering by Lyft.

Second, even low-demand individuals had some positive probability of buying a subscription. Our

30The boundary derivative condition is equivalent to normalizing the demand type of the marginal consumer under

p0 to one, or θ∗(0, 1)=1. Thus, all estimated demand types are relative to this marginal reference consumer.
31Knots are chosen so that κc = κ0 = κ1 = κ2 = κu in order to facilitate comparisons, with sizes Kc = K0 =

K1 = K2 = Ku = 9, as these afforded high flexibility and additional knots made little difference. For efficiency in

smaller samples, one would choose knots uniformly in quantile-ranks and discipline choice of knot-vector size via cross-

validation, or likelihood approaches (e.g., Bayesian/Akaike information criteria). The number of objective function

(14) evaluations should be m≥Ku; we chose m=50. For the tolerance on the shape constraints we chose ε=10−6.
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Table 3. Subscription Uptake Parameters

Parameter 15% Off 95% CI 25% Off 95% CI Joint 95% CI

Salience ρ 0.079 [0.039, 0.140] 0.093 [0.060, 0.164] 0.086 [0.055, 0.137]

Eagerness δ 0.019 [0.004, 0.137] 0.107 [0.023, 0.236] 0.046 [0.066, 0.134]

Forecast Err.
Mean µε -0.315 [−0.127,−0.539] -0.357 [−0.201,−0.632] -0.334 [−0.180,−0.548]

Forecast Err.
St. Dev. σε 0.194 [0.084, 0.305] 0.234 [0.118, 0.391] 0.206 [0.102, 0.317]

Notes: This table reports point estimates and bootstrapped 95% confidence intervals (using 2,000 bootstrap samples) for the parameters

summarizing mistakes consumers make when deciding whether or not to buy a subscription.

estimates are consistent with 2%-11% of the consumer base being over-eager, conditional on paying

attention. Third, estimates suggest that consumers are fairly inaccurate at forecasting their own

demand over a 1-month horizon. Not only is there considerable month-to-month demand variation,

but perhaps most striking, there is non-trivial bias as well. Forecast mean bias is roughly a third

of q, meaning consumers on average act as if they require a very high degree of confidence that

they will break even before purchasing a subscription. Our view on the behavioral parameters (ρ,

δ, and Hε) is that they represent short-run messaging/information problems that are solvable by

targeted interventions and consumer learning over time. They suggest an important role for the

marketing wing of the firm in the roll-out of a mature subscription plan offering. Evaluation of

this viewpoint is left to future research, but the results illustrate why many real-world subscription

programs include efforts to help consumers understand when it is worthwhile to subscribe.32

In Figure 3, we plot estimates of the utility function (Panel (A)) and elasticity function (Panel

(B)) from separate estimation of the utility and uptake functions across the two treatment arms.

Estimates for the 15% (25%) discount group are depicted by dashed (solid) lines, with 95% confi-

dence bands depicted by thin lines. The utility function for the 15% arm is estimated less precisely

than for the 25% arm. This is analogous to the fact that in regressions, standard errors tend to

decrease when the regressors have higher variance. The 25% discount is a larger deviation from

default pricing, and thus gives more information about the average consumer’s responsiveness. We

cannot reject the null hypothesis H0 : ûu(q; ω̂1
u)= ûu(q; ω̂2

u) that the two estimated utility functions

are the same, since ûu(q; ω̂2
u) (and its confidence bounds) lay entirely within the confidence bounds

of ûu(q; ω̂1
u). This serves as an over-identification test, and the results thus far suggest that the

rank-stable, 1-dimensional multiplicatively separable model is not inconsistent with the data.

We also estimate the model with a single utility function fitted to data pooled across both

treatment arms: ω̂u = arg minωu{w1
∑m

j=1(T̂ (qj ;ωu) − T̃1(qj))
2 + w2

∑m
j=1(T̂ (qj ;ωu) − T̃2(qj))

2},
where w1 and w2 are weights chosen so that their ratio equals the ratio of the within-treatment-arm

mean pointwise variances of the underlying GMM estimators û(qj ; ω̂
a
u) (across {q1, . . . , qm}). The

results are plotted in Figure 4, with jointly estimated behavioral parameters in Table 3.

32E.g., Costco nudges consumers in real-time at the checkout line when they would strictly benefit by increasing

their membership to another level (with a higher up-front fee) in order to take advantage of a higher discount rate.
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Figure 3. Stage-II Estimation: Utility and Uptake (separate estimation)

(a) Utility Function (b) Elasticity Function (c) Uptake Function

Notes: Thick lines are point estimates; Bootstrapped 95% confidence bands (using 2,000 bootstrap samples) are thin lines.

Figure 4. Stage-II Estimation: Utility (joint estimation)

(a) Utility Function (b) Elasticity Function

Notes: Thick lines are point estimates and thin lines are 95% confidence bands.

3.4. Uniform-discount experiment. Estimation on the uniform discount data is similar to the

estimator in Section 3.3, but simpler because all treated consumers get the same 10% discount.

Thus, the estimator is a special case of the previous one, where Υ(q)=1 is trivially satisfied for all

consumers in the treatment group. In the analogous stage 1 from Section 3.3, the relevant CDFs

are directly known from raw data: G(q|1−d, υ=1)=Gt(q) and G(q|1, υ=1)=Gc(q). Thus, we first

smooth the empirical CDFs with B-splines similarly as before:

(ω̂d,ω̂0)=arg min(ωd,ω0)

{∑Nud
d

n=1

(
Ĝ(qn|1−d;ωd)−

∑Nudd
n′=1

1(q′n≤qn)

Nud
d

)2

+
∑Nud

c
n=1

(
Ĝ(qn|1;ω0)−

∑Nudc
n′=1

1(q′n≤qn)

Nudc

)2}
s.t. ωdk ≤ ωd,k+1, k = 1, . . . ,Ka + 2; ω0k ≤ ω0,k+1, k = 1, . . . ,K0 + 2,

ω0,1 ≥ 0, ωd,1 ≥ 0 ω0,K0+3 = 1, ωd,Kd+3 = 1; and Ĝ(qn|1;ω0) ≤ Ĝ(qn|1−d;ωd)∀n = 1, . . . , Nud
c .

After specifying a flexible B-spline utility function û(q;ωu), Stage-2 estimation follows Section

3.3.2 using the GMM estimator (14).33 Finally, for each n we can estimate θ̂n (and hence, F̂θ)

within the multiplicatively separable model by inverting the consumer’s FOC (1) for each qn.34

33We again choose knots uniformly on the support [0, q], so we are only left to pick the number of subintervals.

We must also specify the number of objective grid points, m. In practice, we chose Kd=K0 =10, Ku=8, and m=50.
34θ is only bound identified when qc= 0, so we back out Fθ by looking at the distribution of consumption in the

treatment group and code θ to be the maximum type consistent with no consumption for all consumers with q= 0.

Given our normalization u′(0) = 1, this amounts to setting θ=0.9 for individuals in treatment with q=0.
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3.4.1. Results. Utility function estimates and (bootstrapped) confidence bounds are in Figure 5.

Remark 7. Experimental Design The tight confidence bands (relative to subscription RCT esti-

mates) are due to (i) lack of uptake failures arising from behavioral mistakes by consumers, and (ii)

a uniform discount applied to both high- and low-demand patrons, which is less common when an

up-front fee inhibits low-demand patrons from purchasing the discount. Thus, a uniform-discount

RCT naturally treats a wider swathe of the population, which increases statistical power. This

implies a novel methodological insight for optimal experiment design: if the goal is to optimize a

nonlinear pricing scheme, then the best initial RCT to learn about latent agent heterogeneity is a

uniform price shift, rather than a randomized screening mechanism. �

In Panel (C) of Figure 5, we plot the elasticity functions from the uniform-discount experiment

and subscription experiment together. We find statistically and economically significant differences

in elasticity estimates across the two experimental settings.35 These differences reflect a more

stringent test of the basic RS model of consumer demand: while the previous test of over-identifying

restrictions (Section 3.3.3), based on comparisons of estimates from different arms of the same RCT,

were unable to reject the model, a comparison of estimates from two distinct pricing RCT designs

does reject it. Taking cues from the 2-dimensional model in Section 2.4.1, if unobserved substitution

and brand-loyalty heterogeneity are present in the DGP, one would expect the two experimental

conditions to induce different unseen selection patterns (via consumer switching behaviors), which

could in principle account for the substantial differences in elasticity estimates. To be useful as a

market-design tool these benchmark estimates must be evaluated for robustness to RS violations

in the data. If unobserved consumer substitution is common and accounts for a large fraction

of the aggregate shift from Gc to Gd, then the fee-discount offer (S, d) should be adjusted in

order to preserve profitability, but if unobserved consumer substitution is less prevalent, then the

baseline model will prescribe a subscription (S, d) that is closer to the true optimum. Using current

structural estimates as a baseline reference point, we now implement a robust market-design exercise

via our bounds approach from Sections 2.2–2.4.

4. Counterfactuals and Robust Policy Inference

We now use model estimates from the uniform-discount experiment to design an optimal sub-

scription program; this choice is motivated by two ideas.36 First, the uniform-discount RCT gives

a more precise view of demand responses to discounts, as it is not complicated by behavioral mis-

takes. Second, since consumer mistakes can be mitigated in the long run through experience and

35In Appendix D, we show that systematic differences between the sample populations cannot account for the

differences in Panel (C) of Figure 5, so one can rule out sampling differences as a viable explanation.
36Note that Lyft’s implemented subscription plan pre-dates our analyses (e.g., Figures 6 and 16), so one cannot

reverse-engineer Lyft’s raw consumption quantiles (e.g., the normalizing constant q) from our results.
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Figure 5. Stage-II Estimation: Utility (uniform-discount RCT)

(a) Utility Function (b) Elasticity Function (c) Cross-RCT Model Test

Notes: Thick lines are point estimates and bootstrapped 95% confidence bands (2,000 bootstrap samples) are depicted by thin lines.

firm marketing/information interventions,37 and since firms have a hard time changing subscription

programs once details are made public, they should base market design on their best approximation

to long-run counterfactual demand shifts. We begin by characterizing optimal nonlinear pricing

under baseline model estimates which assume rank stability. Although RS may be violated within

the latent DGP, recall from Proposition 1 that it characterizes maximal price responsiveness by

subscribers, and therefore still serves as a useful empirical reference point. After deriving a baseline

(rank-stable) optimal policy, we employ our bounding approach to study how the model recom-

mendation should shift under alternate, plausible DGPs. We also propose a simple data-driven

method to estimate the degree of RS violations within the firm’s latent DGP.

4.0.1. Marginal Cost Imputation. Henceforth we assume a constant marginal cost, c. Once again,

in order to protect Lyft’s internal data confidentiality, we do not incorporate raw information on its

internal cost structure into our empirical analyses. Rather, we follow an imputation approach that

is common to various strains of the industrial organization literature, including markup estimation

in demand analysis (e.g., Ackerberg et al. (2007), MacKay and Miller (2021)). See Online Appendix

G.1 for complete details on marginal cost imputation. Methodologically, this exercise will be of

utility to researchers who lack access to internal cost data. Note also that it will become transparent

below how changes in marginal cost c affect our derivation of the optimal subscriptions menu.

4.1. Optimal Menu of Subscriptions. Because our pricing problem is essentially a special case

of the more general nonlinear pricing framework of Maskin and Riley (1984), we only sketch the

key points here; see Online Appendix G.2 for additional technical details. We first derive a profit-

maximizing continuous menu of subscription offers to produce a fully separating equilibrium by

consumer types. The basic idea is that a firm’s choice of discount as a function of θ is pinned

down by an analog of the inverse-elasticity markup rule for monopoly pricing. Specifically, let

p(θ) denote discounted price paid by subscribers of type θ (within the optimal menu) and let

37Our findings about the mistakes parameters, for example, spurred internal discussions within Lyft about ways

the firm could help its consumers evaluate whether subscriptions made sense for them or not.
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ε(θ) = − θfθ(θ)
1−Fθ(θ) be the elasticity of the survivor function 1−Fθ(θ) (interpretable as a demand

curve). Then the firm’s first order condition for p(θ) takes the form p(θ)−c
p(θ) =− 1

ε(θ) which implies

that p(θ) = c
1+1/ε(θ) . Having solved for p(θ), the optimal discount to give to each type θ is simply

d(θ)=1−p(θ)p0
. In turn, the optimal upfront cost schedule S(θ) is pinned down by a combination of the

participation and incentive compatibility constraints. Participation constraints imply a boundary

condition S(θ)=0 whenever d(θ)=0, while incentive compatibility implies the ordinary differential

equation S′(θ)=−p′(θ)q∗(p(θ), θ). Solving this ODE gives the optimal fee schedule, S(θ), and the

locus (S(θ), d(θ)) constitutes the optimal continuum of subscription offerings. We plot the results

in Figure 6. For Lyft’s internal data confidentiality, we report d as a fraction of the (imputed)

markup under default pricing, and S as a fraction of the maximum upfront fee from the optimal

menu. Our optimal menu exhibits the “no-distortion-at-the-top” property familiar to mechanism

design: the highest type, θ, buys a subscription where marginal price equals marginal cost: p(θ)=c.

4.2. Optimal Single Subscription. While a continuum menu is interesting to market-design

researchers, real-world practitioners (e.g., Costco, Lyft, Charge Point, etc.) typically offer one or

a small number of subscription plans. Firms may prefer simplicity for ease of implementation,

or because customers find it difficult to select their optimal choice from a continuum. This begs

the question, how much profits are left on the table in foregoing the fully separating equilibrium in

favor of a simplistic subscription program? To answer this question we construct a grid of discounts

d from 0 to marginal cost pricing and another grid of upfront fees S from 0 to 10% larger than

the maximum upfront fee from the optimal menu. For each candidate subscription offer (S, d), we

compute the (fully rational) model-implied subscription and consumption choices of each consumer

type. Integrating over the type distribution gives us an estimate of total profits under each (S, d).

Results of this exercise are also shown in Figure 6, which depicts the optimal single contract,

denoted by (S∗, d∗), with a dot, and a heatmap corresponding to the profitability of various (S, d)

pairs. Lighter shades denote higher profitability. The heatmap, along with the superimposed opti-

mal continuum menu shows an interesting pattern: There is a large region of high-profit contracts,

with intermediate values of d (i.e., not too close to 0 or 1), where any single contract near the

optimal menu performs fairly well.38 The lower-right corner is shaded much more darkly than the

upper-left corner, indicating that the main threat to profitability is offering a subscription plan

that is overly generous (i.e., S being too low and/or d being too high). This insight will play a key

role in our robust subscription offer derivation in the following section.

We find that the best single subscription offers a discount roughly half of the markup and captures

90% of profit gains from an optimal continuum menu. This suggests an answer to the previous ques-

tion regarding the profit-simplicity tradeoff: the full continuum menu is only marginally better than

38There is reason to believe that the high-profit region in the heatmap of Figure 6 should generally be centered

around the intermediate range of the optimal menu in other settings as well. See Online Appendix E for discussion.
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Figure 6. Profitability of Subscription Offers

Notes: Discount d is expressed as a fraction of the markup under default pricing. Upfront fee S is expressed as a fraction of the

maximal upfront fee in the optimal menu. Lighter shades in the heatmap denote higher profitability. We also plot the optimal menu

of subscription prices, and a point representing the optimal single subscription.

a well-chosen simple menu. Thus, only mild or moderate concerns about implementing complex

menus could rationalize the fact that most real-world subscription programs are low-dimensional.

4.3. Robust SUD Bound Estimates. Having optimized nonlinear pricing under the ideal but

potentially faulty RS assumption, we turn to our robust bounds analysis, motivated by possible

unobserved substitution between Lyft and rival services (Section 2.4.1), among other plausible RS

failures (Section 4.3). Given the aggregate demand CDFs (Ĝc, Ĝd0) from raw data, Proposition 1

enables us to construct upper bounds on counterfactual subscriber demand under (S∗, d∗), while

Remark 6 provides a suite of options for constructing lower bounds, varying by reliance on data

vs model structure. We compare these bounds in Figure 7. The thick solid line in Panel (A) is

the estimated SUD upper bound, while the thick dashed line is the extrapolation-light SUD lower

bound Bd0 (option (iii) of Remark 6). We also plot the theory-free lower bound B̃d0 (thick dotted

line, option (i) of Remark 6) which does not impose the LoD. The theory-free bound is totally

uninformative because it places too few restrictions on the latent DGP, while Bd0 , which does

respect the LoD, is quite informative by comparison.39 This finding demonstrates the inferential

power to be had from the most basic behavioral assumptions within an incomplete structural model

of demand. It mirrors similar findings on partial identification in the IO literature, including Haile

and Tamer (2003), Hortaçsu and McAdams (2010), and Freyberger and Larsen (2021), who derived

remarkably tight empirical bounds on private valuations within incomplete bidding/bargaining

models, by assuming only that consumer behavior adheres to basic rationality constraints.

Panels (B) and (C) of Figure 7 also plot extrapolation-full bounds BRDd (thin dash-dot line, option

(iv) of Remark 6) based on a continuum of price changes, Dd∗ = (0, d∗], and their projected (out-

of-sample) aggregate demand CDFs, Goosd (q;Gc, Gd0), obtained by imposing the local smoothness

39Bound tightness depends both on features of the dataset and the (S, d) pair under consideration. As S/(p0 × d)

approaches 0, strong uptakers encompass the entire population, and B(q; 0, d) = B(q; 0, d) = Gd(q). Similarly, as

S/(p0×d) approaches ∞ the set of strong uptakers vanishes, so once again, the gap between the bounds collapses.
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Figure 7. Robust Bounds

(a) SUD Bounds

(b) Refined SUD Bounds (c) SUD Elasticity Bounds

Notes: Panel (A) plots empirical bounds, Bd0 (q;S∗, d∗) and Bd0 (q;S∗, d∗), and the theory-free lower bound, B̃d0 (q;S∗, d∗). Panels

(B) and (C) plot refined lower bounds BRDd∗ (q;S∗, d∗) under hypothetical intermediate experimental prices Dd∗ , using simulated data

to illustrate how additional exogenous price variation enables further inferential power. Panel (C) plots implied bounds on demand

elasticities, holding discount d∗ fixed, and varying upfront fee S; i.e., E∗ (qc) =
E[ε(Qc)Qc|Qc≥qc]

E[Qc|Qc≥qc]
, where qc= S

p0×d∗
.

conditions in Remark 1 (option (1)).40 For illustrative purposes we also depict hypothetical refined

bounds from two intermediate discount sets: D1
d∗ = {d∗2 , d

∗} and D2
d∗ = {d∗3 ,

2d∗

3 , d∗} (medium

dotted and dash-dot lines) as well. Recall from Section 2.5 that the thin and medium lines are

also interpretable as bound refinements that could alternatively be obtained in fully nonparametric

fashion from additional price variation within the RCT. The figure illustrates how adding new

information—either through imposing smoothness conditions or by incorporating more data—leads

to tighter bounds on counterfactual subscriber demand by ruling out various latent DGPs where

subscribers are relatively price-insensitive. Panel (C) compares analogous demand elasticities of

strong uptakers: the thick solid line is a lower-bound from the rank-stable DGP, while the other

lines are upper bounds from various combinations of data and model structure.41

40In Figure 13 (Appendix C) we show that in the current context using rideshare data, out-of-sample CDF

projections using options (2) or (3) of Remark 1 are remarkably similar. This suggests that imposing any one of the

three varieties of smoothness conditions would have lead to nearly identical lower-bound refinements.
41A subtle insight on inference from RCT data arises from Panels (B) and (C): note that the thin dash-dot line

assumes availability of fully continuous discount variation between 0 and the focal discount d∗, but multi-dimensional

unobserved agent heterogeneity may still prevent point identification (i.e. upper and lower bounds coinciding).



40 BODOH-CREED, HICKMAN, LIST, MUIR, SUN

While structural methods are often critiqued for opaqueness on the relation between empirical

moments and model primitives, Figure 7 transparently illustrates how theory and raw data combine

to deliver identifying power for a broad class of adverse selection models. The gap between the

thick dotted line and the thick dashed line in Panel (A) represents inference derived from the

observables using only basic structure from the LoD. The gaps between the thick dashed lines

and the thin/medium lines in Panels (B) and (C) are interpretable as additional inference derived

either from richer data, holding model structure fixed, or from imposition of additional structure

(smoothness conditions), holding data fixed (see Remark 6). Finally, gaps between the thin dash-

dot lines and the thick solid lines in panels (B) and (C) are inference derived from the observables

by layering the full, rank-stable, multiplicatively separable utility model on top of the LoD.

4.3.1. Robust Optimal Subscription Plans. We now consider adjustments to the RS-optimal policy

(S∗, d∗) based on bounds from Figure 7 in order to add robustness against unobserved RS violations.

Recall that the adversarial DGP is one where strong uptakers minimally increase consumption after

subscribing, subject to consistency with observables and the LoD. We can directly compute this

worst case by simulating profits under the adversarial DGP, denoted by πA(S, d) for each (S, d),

and we can compare these to rank-stable profits, denoted πRS(S, d), the opposite-extreme latent

DGP not ruled out by data. Henceforth, we adopt the refined extrapolation-full lower bound BRDd
(Remark 6, option (iv)) as our main specification, because we view Assumption 4 and Remark 1,

which require that aggregate demand evolves smoothly with price changes, as being reasonable. For

comparison we also compute profits based on the extrapolation-light bound Bd0 (Remark 6, option

(iii)). The additional model structure that separates the former from the latter eliminates from

consideration various pathological worst-case DGPs, where aggregate demand expands sporadically

with price drops, and the experimentalist just happened to pick price levels p0 and p0(1 − d0),

between which all consumers are locally sated. We differentiate the corresponding adversarial

profits under each extrapolation mode as πAe (S, d), e ∈ {l, f}. Recall from Sections 2.3–2.5 that

these quantities bound true profits: πAl (S, d)≤πAf (S, d)≤π(S, d)≤πRS(S, d).

In order to further refine market-design decisions, we can interpolate between the upper- and

lower-bound DGPs by considering λ-adversarial profits πλe (S, d) ≡ λπAe (S, d)+(1−λ)πRS(S, d) if

fraction λ of consumers behave according to the adversarial DGP, while (1−λ) behave according

to the rank-stable DGP. An intuitive interpretation would be that (1−λ) of Lyft’s users are loyal,

having only a Lyft account or routinely checking only the Lyft app. The remaining λ fraction exhibit

low loyalty, and are also assumed to substitute adversarially across the two platforms in response

to Lyft price changes. Optimizing with respect to πλe instead of πAe allows for improved robust

decisions if the market designer believes that the pure adversarial DGP is overly pessimistic.42 Our

42A common alternative approach would have been to compute the set of all subscription offers (S∗, d∗) that are

optimal relative to some counterfactual strong-uptaker demand CDF consistent with the bounds in Figure 7. We
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Figure 8. Path of Optimal Single Subscriptions

(a) Before Discontinuity (b) After Discontinuity

Notes: This figure plots evolution of robust optimal subscriptions as λ varies. The solid line and heat map are as in Figure 6, being

from the (potentially mis-specified) baseline RS model. The circle is the RS-optimal subscription offer, (S∗(0), d∗(0)). The dashed line

shows the path of robust adjustment using the extrapolation-light lower bound (Remark 6), and the dash-dot line is similar, but uses

the extrapolation-full lower bound (Remark 6). The triangle and square are (S∗(0.16), d∗(0.16)) for the estimated value of λ̂ = 0.16.

Figure 9. Robustness Tests

(a) Relative Adversarial Profits (b) Robust Profits Under RS

Notes: Panel (A) shows how optimal robust profits vary by λ, relative to RS profits—solid line, i.e.,
πλ(S∗(λ),d∗(λ))−πλ(0,0)

πRS(S∗(0),d∗(0))−πRS(0,0)
—and

how naive relative profits vary by λ—dashed line, i.e.,
πλ(S∗(0),d∗(0))−πλ(0,0)

πRS(S∗(0),d∗(0))−πRS(0,0)
. Panel (B) depicts the cost of adopting a robust policy

(S∗(λ), d∗(λ)) when the DGP is actually rank stable; i.e.,
πRS(S∗(λ),d∗(λ))−πRS(0,0)

πRS(S∗(0),d∗(0))−πRS(0,0)
.

approach is conceptually related to Hansen and Sargent (2008), who consider a “structured” model

as a benchmark and choose a policy to maximize the worst-case outcome in a family of unstructured

models sufficiently “close” to the structured model.

For each λ∈(0, 1) we find the robust optimum, (S∗e (λ), d∗e(λ)), via grid search. Figure 8 plots the

(S∗e (λ), d∗e(λ)) locus for our main specification (dash-dot line) along with the extrapolation-light

analog (dashed line). Panel (A) zooms in on values of λ∈ [0, 0.35] for the main specification, while

Panel (B) includes λ > 0.35 also. Figure 9 translates the robust (S, d) adjustments for various

levels of λ into profit implications. Panel (A) characterizes a non-RS world, where λ is the actual

degree of RS violations in the DGP. The dash-dot and dashed lines are robust excess profits above

linear pricing, πλe (S∗e (λ), d∗e(λ))−πλ(0, 0), relative to baseline excess profits πRS(S∗e (0), d∗e(0))−
πRS(0, 0), given extrapolation mode e ∈ {l, f}. The solid line depicts how naive excess profits,

do not pursue this approach partly because of the computational complexity involved in traversing the full set of

CDFs between our bounds. More fundamentally though, as Aryal and Kim (2013) point out in a related context of

setting auction reserve prices, the identified set of optimal policies may be of limited practical value: it includes many

elements that may only yield small profit gains in the best case while causing large profit losses in the worst case.
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Table 4. Fraction Subscriber Savings Retained: (S∗f (λ), d∗f (λ)) vs (S∗(0), d∗(0))

λ Strong Uptaker Percentiles 0.1 0.25 0.5 0.75 0.9 Total

λ = 0.35 SU(p0, S
∗
f (λ), d∗f (λ)) 0.157 0.324 0.504 0.615 0.665 0.542

λ = 0.35 SU(p0, S
∗(0), d∗(0)) 0 0 0.287 0.558 0.645 0.497

λ = 0.16 SU(p0, S
∗
f (λ), d∗f (λ)) 0.380 0.607 0.760 0.832 0.858 0.791

λ = 0.16 SU(p0, S
∗(0), d∗(0)) 0 0.179 0.724 0.823 0.856 0.783

Notes: This table reports the retained savings ratio
q(r)d∗f (λ)−S∗f (λ)

q(r)d∗(0)−S∗(0) , where q(r) is the rth quantile of Qc among strong uptakers, for

r∈{0.1, 0.25, 0.5, 0.75, 0.9}. The final column is aggregate retained savings, or

∫ 1
0 q(r)d

∗
f (λ)−S∗f (λ)dr∫ 1

0 q(r)d
∗(0)−S∗(0)dr

.

πλf (S∗f (0), d∗f (0))−πλ(0, 0), vary with λ, relative to baseline excess profits. The three lines are

mechanically close to each other on the left where λ is near zero. Eventually, the solid line goes

negative, whereas the robust adjustments prevent the other two lines from doing so. Panel (B)

considers the implications of fixing a non-existent problem in a RS world, where an over-cautious

market designer incorrectly chooses a robust offer (S∗e (λ), d∗e(λ)) anyway. There, we plot “paranoid”

excess profits, πRS(S∗e (λ), d∗e(λ))−πRS(0, 0), relative to true excess profits, as a measure of the

insurance premium required to guard profits against the worst possible unobserved contingency.

For some intuition behind the profit discontinuity at λ= 0.35, first note that there is a set of

contracts (S, d) that are good for profits near the RS DGP (λ near zero), but non-robust and very

bad for profits near the adversarial DGP (λ near one). There is another disjoint set of contracts—

with higher up-front fees S—that are very robust and profit-optimal near the adversarial DGP,

but generally rendering low excess profits everywhere. In our main specification, for λ< 0.35 the

market designer prioritizes profitability, and for λ> 0.35 she prioritizes robustness, with λ= 0.35

as the indifference point. Panel (A) traces out the locus of robust offers prior to the phase change:

increasing S and reducing d (i.e., subscription generosity) both help hedge against profit shocks

from unseen adverse consumer behavior. In Panel (B), we zoom out and show how the path jumps

to a new region of (S, d) space with low profits when λ crosses the threshold.

The lesson from Figures 9 and 8 is that nonlinear pricing via subscription offers is only guaranteed

to be a viable strategy when the adversarial fraction of consumers is below roughly one third under

the main specification, and below one quarter under the unrefined extrapolation-light specification.

Finally, Panel (B) of Figure 9 shows that the cost of achieving robustness is fairly low. If the true

DGP really is RS but the market designer assumes 0≤λ≤0.35, then robust profits πλ(S∗(λ), d∗(λ))

still capture 80% or more of true excess profits. Thus, if we view robust policy design as insurance

against making large errors, then fully hedging against that risk comes relatively cheaply for relevant

values of λ where subscriptions are a viable business strategy at all.

Prior to the phase change, Figure 8 shows that policy prescriptions from the RS model are

fairly robust to moderate perturbations in the underlying DGP. In our main specification we find

that S∗f (0.35) is about 9% higher than S∗(0), and d∗f (0.35) is about 18% lower than d∗(0). Table

4 depicts implications of moving from the naive optimum to (S∗f (0.35), d∗f (0.35)) for consumer
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surplus. Among the set of strong uptakers relative to the robust optimum, SU(p0, S
∗
f (λ), d∗f (λ)),

the median (90th percentile) consumer retains half (two thirds) of would-be savings from the more

generous but non-robust contract. Among the set of strong uptakers relative to the naive optimum,

SU(p0, S
∗(0), d∗(0)), the lower quartile consumers retain none of their previous savings, since many

of them transition from uptakers to non-uptakers when the contract becomes less generous.

4.3.2. Estimating λ. This discussion begs the question, what are relevant values of λ to focus

on? To answer this question, it turns out that commonly available auxiliary data—individual-level

consumption data prior to the RCT sample period—will suffice. Let Qpren denote volume demanded

in the two weeks prior to the start of the sampling period for the uniform-discount RCT. Note that

the sample {qpren }
Nud
c +Nud

d
n=1 is realized under default price p0. Now, recall that the adversarial DGP

Qd0(q) maximally violates rank stability, and consider a comparison of the rank correlations between

Qpre and Qd0 in the treatment group, and between Qpre and Qc in control. Under RS, we would

expect these rank correlations to be identical, but if consumer behavior followed the adversarial

DGP the pre-/post-RCT rank correlation should be lower within the treatment group.

This suggests a way to quantify the degree to which the data favor the rank-stable DGP Qd0
over the adversarial DGP Qd0 . Let St denote Spearman’s rank correlation between the pre- and

post-RCT samples within the treatment group, or {qpren , qdn}
Nud
d

n=1. Similarly, let Sc denote the rank

correlation between the pre- and post-RCT samples in the control group, or {qpren , qcn}N
ud
c

n=1. Finally,

let Sa denote the rank correlation between the pre-RCT sample and the adversarial projection for

the control group, or
{
qpren ,Qd0(qcn, v)

}Nud
c

n=1
. We can then define λ̂≡1− (Ŝt−Ŝa)/(Ŝc−Ŝa). Since Sc

may be less than one due to within-consumer time-varying demand, we do not directly construct a

ratio of St to Sc; rather, we compare the differences (St−Sa) and (Sc−Sa) instead. Intuitively, the

pre/post control rank correlation Sc is generally above the treatment rank correlation St, which in

turn is above the adversarial rank correlation Sa.43 Thus, 0≤ λ̂≤1 should generally be true.

Table 6 in the Online Appendix reports raw rank correlations with 95% confidence intervals. Our

point estimate is λ̂= 0.160, with a 95% confidence upper bound of 0.281, well below the critical

cutoff of λ=0.35 where subscriptions cease to be an effective business strategy. The robust optimal

subscription selects S∗f (0.16) at 2.0% above the naive optimum fee, and d∗f (0.16) at 8.0% below

the naive optimum discount. This contract implies an implicit “insurance premium” of only 5%

of baseline subscription profits (Figure 9, Panel (B)), to hedge against the worst likely case, while

consumers retain nearly 80% of surplus gains, relative to the naive optimum. Thus, our empirical

case study demonstrates that one may use partial identification to facilitate effective empirical

43If one assumes a well-behaved model of time-varying demand where persistence arises solely from a consumer’s

stable type θ, and period-t demand shocks εt similar to those described in Section 2.1 are independent across time,

then the inequalities Sc≥St≥Sa follow as a direct consequence of Propositions 1 and 2.
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market design, despite crucial limitations like unseen confounding choices by agents. We find that

nonlinear pricing policies exist that are both surplus improving for agents, profit-improving for the

principal, and robust against worst-case, unobserved contingencies.

5. Discussion and Conclusion

5.1. Potential Applications in Broader Adverse-Selection Settings. Our proposed method-

ology may facilitate new empirical analyses outside of consumer demand in IO. Here we give a brief

overview of a few examples of related settings where non-linear pricing is of interest and multi-

dimensional agent heterogeneity is a salient challenge to inference. Recall that these inferential

challenges arise when agents with the same observed action are heterogeneously price sensitive.

5.1.1. Regulation. In the environmental regulation model of Kang and Silveira (2021), firms are

heterogeneous with respect to θi, which parameterizes private benefits from negligently ignoring

pollution regulations. A type-θi firm who chooses negligence level a receives gross utility θib(a).

Trading off these benefits, more negligent firms are more likely to get caught: the number of

infractions observable to the regulator, K, is distributed Poisson(a). The regulation punishes

polluting firms by setting a penalty schedule mapping the number of violations k to a fee ε(k). The

firm then chooses negligence level a to solve maxa θib(a)−
∑∞

k=0 ε(k)akk! . Now suppose that long-run

adjustments to new, heavier regulations requires investment, firms start from various baseline levels

of negligence, āi, and the cost of compliance is θib(a) − C
2 (a − āi)2. Under this richer model, if

two firms make the same observed abatement decision a, then the one with larger āi must have a

correspondingly lower θi and hence will be less responsive to changes in the fine schedule.

5.1.2. Income Taxation and Labor Supply. In the optimal taxation model of Mirrlees (1971), work-

ers are heterogeneous with respect to productivity Wi but have one unit of time to allocate, and

homogeneous preferences over consumption and leisure u(c, l). Given an income tax schedule

T ((1− l)Wi), a type-Wi worker chooses leisure l to solve maxl u(c, l) s.t. c≤(1−l)Wi−T ((1−l)Wi).

In another labor-supply setting where census workers perform a low-skill task, D’Haultfœuille and

Février (2020) adopt a model of labor supply where workers are heterogeneous with respect to their

cost of effort, θi: they supply y units of effort and get paid piece-rate wage w0, but incur a utility

cost of this effort, θic(y), with net utility given by yw0−θic(y). In more general settings, it may be

empirically relevant to allow for households or workers to differ both by (opportunity) cost of effort

and by productivity of effort. In such settings, workers (households) with a fixed observed effort y

(labor-supply (1−l)) will be heterogeneously responsive to changes in wage (tax) incentives.

5.1.3. Insurance Demand. Consumers are often thought of as being heterogeneous in their propen-

sity for health spending λi. For example, consider a simple model where individuals who buy a

given insurance policy pay T (s) for s units of healthcare services. Individuals are homogeneous
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with respect to their utility of health u(h), but differ in baseline illness rates λi. A type-λi individ-

ual who consumes s units of service has health level h= s−λi. Given a fixed insurance plan, this

individual solves maxs u(s−λi)−T (s). In reality, some individuals are more at risk for diseases which

are cheaper to treat while others are more at risk for diseases which can only be treated at a high

price. This can be modeled as a second dimension of unobserved heterogeneity in the “marginal

rate of transformation” from healthcare services to health, ωi, where a type (ωi, λi) individual who

consumes s units of healthcare services has health h= ωis−λi. This gives rise to the “selection

on moral hazard” effect studied in Einav et al. (2013). Under their quadratic utility specification,

if two individuals, i and j, choose the same consumption s, but ωi >ωj , then individual i’s con-

sumption will be more elastic to changes in T (s) than individual j. Einav et al. (2013) are able

to identify a multi-dimensional model of heterogeneity using rich menu variation in plan offerings,

but such a strategy would be infeasible in many other settings such as the RAND health insurance

experiment (Aron-Dine et al. (2013)), where plans are randomly assigned to consumers.

5.2. Conclusion. We propose a suite of tools that allow a market designer to flexibly estimate

pricing counterfactuals. We clarify key conditions that underlay identification of the canonical

adverse-selection model and highlight one key assumption, rank stability, as being especially prob-

lematic in the presence of multiple dimensions of unobserved heterogeneity. Despite significant

data limitations, one can derive informative bounds on counterfactual demand under (out-of sam-

ple) price changes. These bounds arise because empirically plausible DGPs must respect the LoD

and the observed shift(s) in aggregate demand resulting from a known experimental price change(s).

In the demand context, a (naive but) fully-specified rank-stable DGP corresponds to a sharp

upper bound on consumer price responsiveness, and therefore still serves as a useful empirical

benchmark for market design. The sharp lower bound on price responsiveness corresponds to a

worst-case scenario (for profits) where the firm’s loyal customer base is least price sensitive, and less

loyal customers’ unobserved substitution patterns account for a maximal fraction of the observed

shift in aggregate demand. We also relax rank stability in a second way that can be explicitly

modelled using rich internal data; namely, when customers fail to optimize subscriber decisions due

to salience issues, over-eagerness, or an inability to perfectly forecast future demand.

Our estimated demand CDF bounds within the rideshare data turn out to be informative, despite

lack of information that would facilitate structural identification of a more complete model of

multi-dimensional agent heterogeneity. The bounds facilitate robust policy prescriptions using rich,

internal data sources similar to those available in many other real-world applications. Our partial

identification approach: (i) enables profitable nonlinear pricing design while achieving robustness

against worst-case deviations from model assumptions, (ii) applies to a wide class of adverse-

selection models, and (iii) serves as a novel guide for more effective experimental design.
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