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1. Introduction

Demand analysis has been a staple of academic and policy-oriented research in industrial orga-

nization for several decades. Beginning with the seminal work of Berry (1994), Berry et al. (1995),

and Nevo (2003), empirical discrete-choice demand systems became an especially prolific branch

of the industrial organization literature. While powerful and useful given a wealth of rich market-

level data sets in recent years (e.g., Nielsen’s scanner data), this family of methodologies focuses

primarily on extensive-margin consumer decisions—that is, which among many substitutable prod-

ucts to buy—and often places less emphasis on, or abstracts away from intensive-margin consumer

decisions—i.e., how much of a product to buy from a particular producer/provider.

More recently, subscription-based consumption platforms have proliferated, both in brick-and-

mortar applications (e.g., Costco; Sam’s Club; Club Car Wash), in e-commerce (e.g., Instacart,

Audible.com), in services (e.g., Uber Technologies, Lyft, Inc., and YouTubeTV, Tesla, and Charge-

point), and even in meal kits (e.g., Hello Fresh, Home Chef, and Blue Apron). Each of these firms

(and many others) share an interest in optimal nonlinear pricing; that is, they all offer some sort of

subscription program (or a menu of subscription options) to consumers, which involves an up-front

fee in exchange for a percentage-based volume discount.

The existing body of empirical methodologies for demand analysis are not well-suited to these

business models for several reasons. First, intensive-margin demand heterogeneity (in addition

to cross-platform substitution) is a central component of optimal market design in these settings.

Second, typical data used by discrete-choice demand systems are rich in their coverage of many

products or firms within and across markets, but are typically less rich when it comes to consumer-

level transaction data within a given firm. Third, in light of prevailing data limitations, discrete-

choice demand approaches typically achieve tractability by restricting the distributions of consumer

tastes to parsimonious parametric families. In contrast, many firms have generated a wealth of

internal datasets with the opposite strengths and weaknesses of typical demand analysis data: they

tend to be rich on transactions with the firm’s consumer base, often even including randomized

controlled trials (RCTs) on pricing, but are anemic or silent on prices and market shares across

rival producers. Moreover, aside from just facilitating a study of individual-level demand intensity

variation, rich consumer-level data may allow for reduced dependence on parametric restrictions.

Of course, the auctions literature represents another instance of demand analysis methodologies

which are typically more flexible on a priori assumptions about the distribution of consumer tastes,

and which are well-suited for market design. However, empirical auction methods typically rely

on game-theoretic interactions among consumers to identify demand intensities, making them ill-

suited to most settings where consumers are price-takers. Our goal in this paper is to develop a
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new complementary approach with a focus on intensive-margin demand in settings where consumer-

transaction-level data are plentiful, but market-level data are not. This new capability will facilitate

analyses on new and interesting questions relevant to policy-makers and business practitioners. In

particular, we will use our approach to inform design of optimal nonlinear pricing in the form of a

subscription plan offered to consumers.

While our empirical case study in this paper is from an industrial organization context, our

econometric methodology applies to a broad class of adverse-selection models (described briefly

below) with applications including procurement, regulation, taxation, labor-supply, and insur-

ance/healthcare demand. To fix ideas, consider a setting where the principal incentivizes some

desired activity q on the part of a continuum of agents who vary by their willingness to engage

in the activity. Assuming the principal can exogenously vary payoffs offered to agents from say

P0(q) to P1(q), the question we seek to answer is, what can be learned from the resulting aggre-

gate shift in the distribution of agents’ choices from G0(q) to G1(q)? We show that the answer to

this question hinges crucially on whether the unobserved heterogeneity among agents is single- or

multi-dimensional. For example, if agents with the same observed choices q under default incentives

P0(q) are homogeneously price responsive, then inference on the underlying (single-dimensional)

type distribution is straightforward. However, an important challenge arises if agents with similar

observed choices are heterogeneously responsive to price changes, in which case inference on the

underlying (multi-dimensional) type distribution is problematic.

We begin by developing a parsimonious model of intensive-margin demand, and we discuss how

recent results from econometric theory (Torgovitsky (2015); D’Haultfoeuille and Février (2015);

D’Haultfœuille and Février (2020)) can be applied to achieve nonparametric identification of model

primitives, including a flexible consumer utility function and a distribution of idiosyncratic de-

mand intensities. We discuss how this baseline result is due to a key condition which we refer to as

rank stability—that is, when prices exogenously vary (in the cross-section), the mapping between

observed demand quantiles and unobserved consumer type quantiles remains stable. We then dis-

cuss various plausible phenomena—e.g., behavioral mistakes among consumers, and unobserved,

extensive-margin substitution decisions—that can lead to failures of the central rank-stability con-

dition needed for point identification.

We first show how rank-stability violations of known forms—e.g., consumer mistakes in subscrip-

tion purchasing evident within raw data—can be explicitly added to the empirical model to restore

identification, using basic available observables. We then discuss a more difficult empirical prob-

lem: violations of rank stability that are of unknown forms, either because the underlying model

of consumer behavior is incomplete, or because the econometrician lacks sufficient observables to

empirically model them. These may stem from phenomena such as (but not limited to) unobserved

substitution between the firm’s product/service and that of its rival, in the presence of unobserved
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heterogeneity in consumer brand loyalty. This is a particularly thorny issue because such problems

cannot be modeled directly using rich, internal firm data, which lack prices and market shares of ri-

val firms. We develop a robust empirical strategy by deriving identifiable bounds on counterfactual

demand distributions under (out-of-sample) price changes, despite data limitations.

Our partial identification approach focuses on bounding the maximal and minimal price sensitiv-

ity of consumers most likely to purchase a subscription, subject to consistency with observables and

the law of demand (LoD). It assumes availability of plausibly exogenous, cross-sectional, price vari-

ation, where a random set of the firm’s consumers are assigned to “control” status, making demand

decisions under default price p0, while others are assigned to “treatment” status with a discount of

d0 off the default price.1 We show that predictions made by the fully specified rank-stable model

correspond to a sharp upper bound on price responsiveness. Thus, point estimates under the (po-

tentially flawed) rank-stability assumption still provide a useful benchmark for empirical market

design by characterizing the best-case scenario in terms of profits derived from nonlinear pricing.

We also derive a sharp lower bound on price responsiveness at various consumer quantiles, subject

to consistency with observables and the LoD. Thus, we show that the partially specified model still

places informative restrictions on the underlying data-generating process.

As a side benefit, our analysis produces various novel insights to guide effective field experimental

design as well. Our central theme and modelling approach (see Section 2.4.1) highlights how indi-

vidually randomized price variation may be insufficient alone to deliver full econometric exogeneity

and point identification in the presence of multiple dimensions of test-subject heterogeneity. We

also show that this problem may even persist despite incredibly rich price variation (see Section

4.3). Finally, our derivations of robust bounds to grapple with this issue (see Section 2.5, Section

4 introduction, and Section 4.3) provide specific, concrete guidance on optimal pricing RCT design

for a researcher wishing to maximize ex-post inferential power.

While derivations of the bounds are fairly technical, there is some simple intuition behind our

method. Suppose the firm wishes to optimize a nonlinear pricing scheme in the form of a subscrip-

tion offering where consumers pay $S upfront for a discount of d∈ (0, 1) over the ensuing period.

Therefore, the firm has a need to forecast counterfactual demand under arbitrary (S, d) pairs in

order to optimize the subscriptions program. Suppose further that consumers are characterized by

two dimensions of unobserved heterogeneity—namely, demand intensity θi, and brand loyalty to the

firm αi—but only the aggregate demand distributions under control (i.e., price p0) and treatment

(i.e., price p0(1−d0)) are observed, while substitution between the firm and the outside option is

unobserved. In such a world, the least loyal consumers will buy less from the firm at baseline prices,

but will be more elastic than their loyal counterparts, as they shift consumption away from the

1In the IO context, such variation commonly arises by firms’ use of internal pricing RCTs.
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outside option under discount pricing. Moreover, one can characterize a maximally “adversarial”

consumer base which behaves in such a way as to minimize profits from subscription offer (S, d).

This worst-case scenario involves disloyal consumers accounting for a maximal fraction of the ob-

served aggregate shift from the control demand CDF to the treatment demand CDF under discount

d0. This implies that loyal consumers, who purchase most under default prices, are minimally price

sensitive, meaning that they are more likely to buy a subscription but increase spending very little,

so that (S, d) is (nearly) a zero-sum transfer from the firm. Conversely, the best-case scenario is

one where this problem is non-existent: all consumers are loyal, and the aggregate shift between

control and treatment demand CDFs is all due to predictable, rank-stable demand responses.

We implement our approach in an empirical case study with rideshare data. Using the above

insights, we estimate the baseline, single-dimensional (rank-stable) model, and we perform a series

of model specification tests to probe for evidence of rank-stability violations. Interestingly, we

find that our first over-identifying test using multiple arms of the same RCT fails to reject the

rank-stable model, while a more stringent test combining datasets from two separate RCTs does

reject the rank-stable model. We argue that this is so because of how the two RCT designs induce

differing selection patterns of unobserved substitution behavior. This finding sheds further light on

subtle potential limitations of inference from RCT data. If the underlying model is fundamentally

mis-specified (e.g., single- vs multi-dimensional agent heterogeneity), then not only may point

identification be compromised, but also, the researcher’s ability to detect the mis-specification

problem may also be compromised given standard over-identifying restrictions (e.g., availability of

multiple arms of a single RCT).

Using baseline (rank-stable) point estimates of the structural model, we compute a menu of

profit-maximizing subscription offerings, as well as an optimal single subscription plan, in order

to establish best-case profits. We find that the optimal single offering does nearly as well as the

continuum menu of offerings that achieves a fully separating equilibrium. This result helps to

explain why real-world firms like Costco and Lyft tend to prefer simple subscription programs with

only one or a small number of offered options. We then estimate robust lower bounds to show

how an optimal subscription offer should be adjusted under less favorable circumstances where the

baseline model overstates price sensitivity of likely subscribers. Intuitively, these adjustments make

the subscription program somewhat less generous (i.e., higher up-front fees and/or lower discounts)

to hedge profitability against worst-case unobserved rank-stability violations. We find that hedging

the baseline optimal policy against the worst case requires only relatively small adjustments for

robustness, up to a point where non-rank-stable consumers reach a critical mass and subscription

plans cease to be an effective business strategy. We also show how pre-RCT data can be used to

pin down the most empirically relevant worst-case scenario, by estimating the mass of non-rank-

stable consumers. Our estimate of this mass (roughly 16%) suggests strongly that a meaningful
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range of profit-improving subscription offers does exist under data-generating processes that are

consistent with observables. Moreover, the robust subscription offer is able to hedge against worst-

case unobserved consumer behavior, while achieving roughly 95% of baseline projected subscription

profits under the rank-stability assumption.

More broadly, our proposed robust bounds approach is applicable outside the narrow field of

demand estimation in industrial organization. It can be used to stress-test the policy implications

of a wide variety of adverse selection models, including a few prominent examples we discuss here.

First, in the context of procurement, Laffont and Tirole (1986) consider a model where a government

wishes to complete some project and must design a contract to incentivize a monopolist to exert

effort to reduce costs. They assume that monopolists are unobservably heterogeneous along a

single dimension of productivity, but one might expect that monopolists also differ by costs of

unobserved managerial effort as well. Second, in a related context of environmental regulation,

Kang and Silveira (2021) analyze a novel framework where firms have private information on costs of

externality abatement per unit of output. If the regulator is only able to observe total pollution, then

one might imagine an alternate model where firms vary both by their baseline emission level (i.e.,

production technology) as well as by their abatement technology. In such a world, inferences on both

dimensions may be empirically relevant as the regulator seeks to optimally incentivize abatement

on a fixed regulatory budget. Third, in the context of optimal income taxation considered by

Mirrlees (1971), households are assumed to vary only by their (unobserved) labor productivity,

but one might expect households to vary by consumption preferences as well. Fourth, in the

context of labor contracts (e.g., D’Haultfœuille and Février (2020)), workers may be unobservably

heterogeneous by both productivity and leisure preferences which impact labor-supply costs, with

both dimensions being crucial to the design of optimal nonlinear incentive schemes.2

Given exogenous incentive variation, adverse-selection models like those discussed above are

typically non-parametrically identified, if agent heterogeneity can be plausibly restricted to one

dimension. Conversely, these models typically are not identified, even with exogenous incentive

variation, given multiple dimensions of heterogeneity. Our approach offers a new suite of tools

for partial identification under high-dimensional unobserved heterogeneity. We show how to use a

robust bounds approach to “stress-test” and adjust policy prescriptions derived from a potentially

mis-specified one-dimensional structural model.

1.1. Related Literature. Our paper contributes to several literatures. First, we build on the

work of Maskin and Riley (1984), who provide a theoretical framework for how a monopolist

2Hedblom et al. (2022) and Cotton et al. (2023) study labor-supply settings with multiple dimensions of worker

heterogeneity, but they require a combination of panel data and incentive variation to achieve point identification.

We focus on more common settings where only cross-sectional incentive variation is available to the econometrician.
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should set prices under heterogeneous consumer demand intensity.3 A related empirical paper is

Luo et al. (2018), who establish conditions under which structural demand primitives are identified

from observations of equilibrium prices and quantities. Our approach is complementary to theirs:

they show how a monopolist’s first-order conditions can be used to infer demand parameters from

equilibrium outcomes, and our approach uses exogenous (cross-sectional) price variation to infer

parameters for optimal pricing under minimal assumptions and market-level data limitations.

Second, we build on and contribute to a recent literature on identification of non-game-theoretic

adverse-selection models (D’Haultfoeuille and Février (2011), D’Haultfoeuille and Février (2015),

Torgovitsky (2015), Hedblom et al. (2022), Kang and Silveira (2021), and Cotton et al. (2023)).4

Here, point identification of model primitives typically hinges on the crucial exclusion restriction of

rank stability, where the mapping between quantiles of the unobserved characteristic and quantiles

of the observed action remain stable across price changes. We study the question of point and set

identification when the central assumption of rank stability is violated. In doing so, we provide

a theoretical foundation for formalizing rank-stability violations: we show how they arise given

a second dimension of unobserved agent heterogeneity which alters responsiveness to incentive

changes, conditional on a fixed baseline demand.

Third, we contribute to the demand-estimation literature in IO, pioneered by McFadden (1974),

Berry (1994), Berry et al. (1995), and Nevo (2003), and recently surveyed in (Berry and Haile,

2021, BH). Our work represents a significant departure from much of the literature surveyed by

BH, both in terms of the counterfactual questions of interest and in the nature of the data required.

The prior literature focuses on questions of how market-level competition affects consumer welfare,

given estimated extensive-margin substitution patterns.5 By contrast, in our paper we are primarily

interested in how a single firm should optimally set volumetric prices. This focus implies intensive-

margin demand responses of the firm’s consumer base as the primary concern.

Despite these differences, our results provide a case study in thinking about key issues raised

in the broader discussion about demand estimation. In particular, BH point out that randomized

pricing may be neither necessary nor sufficient to identify the counterfactual market shares of

interest, which motivate the need to estimate (extensive-margin) demand in the first place. This

paper explores similar questions within the world of intensive-margin demand: our explicit model

of rank-stability violations further illustrates why randomized price variation may not suffice when

3We focus on single-product, continuous, intensive-margin demand, so we do not consider complications arising in

the case of a multi-product monopolist (e.g., Armstrong (1996) and Luo et al. (2011)). Our model also differs from

settings where demand is discrete (often unitary), with pricing nonlinearity along the quality dimension. In practice,

such applications tend to focus on discrete price/quality pairs (e.g., Leslie (2004) and McManus (2007)).

4The ideas in this literature are also related to an identification strategy proposed by Guerre et al. (2009).
5A smaller strand of the discrete-choice demand literature allows for mixed discrete-continuous consumer decisions,

including Hendel (1999) and Dubé (2004), and surveyed in Richards and Bonnet (2016).
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consumers make continuous choices either. However, our partial identification framework and

empirical application demonstrate that random price variation can nonetheless be used to construct

informative counterfactual bounds that can still meaningfully guide policy decisions.

Fourth, our robust bounds approach is related to a previous literature that studies the (partial)

identifying power of weak assumptions derived from economic theory, often involving incomplete

or partially specified models of decision making. Examples include Haile and Tamer (2003) and

Hortaçsu and McAdams (2010) in the context of auctions, Heckman et al. (1997) in the context

of program evaluation, Freyberger and Larsen (2021) in the context of bargaining, and Kang and

Vasserman (2022), in the context of consumer demand.

The rest of this paper is organized as follows. Section 2 lays out our basic model of intensive-

margin demand and discusses how we achieve point identification or bound identification under

various circumstances. Section 3 discusses data, an estimation strategy and tests of the basic

modelling assumptions. Section 4 presents robust design of optimal nonlinear pricing.

2. Model and Identification

Our basic one-dimensional demand system is an adverse-selection framework that captures salient

features of the producer-consumer relationship: unobservably heterogeneous customers (agents)

wish to consume as much of the service as possible but are idiosyncratically deterred by high

prices, while the supplier (principal) wishes to maximize profits. We denote by q the quantity of a

homogeneous, finely divisible good or service demanded by a consumer.

We assume multiplicatively separable (MS) utility Ui(q; θi) = θiu(q), parameterized by idiosyn-

cratic type θ > 0. Here, u(q) satisfies standard regularity conditions, being strictly increasing

u′(q)>0, ∀q∈R+, and concave u′′(q)<0, with limq→∞u
′(q) = 0. For convenience, we also impose

scale and shift normalizations: u′(0)=1 and u(0)=0. For now, individuals are heterogeneous along

a single dimension (we relax this assumption in Section 2.4.1), with θ indexing each consumer’s

idiosyncratic demand intensity: higher θ individuals are willing to consume more q at any given

price. We assume that demand types follow an absolutely continuous distribution Θ ∼ Fθ ∈ C2

with density fθ that is strictly positive on compact support [
¯
θ, θ̄].

The firm’s pricing schedule for q units of consumption is P (q). Specializing to the case of linear

pricing, we have that P (q) = pq, so each consumer chooses q by solving maxq
{
θu(q)− pq

}
.6 The

first-order condition (FOC) to this optimization problem is given by

θu′(q) = p ⇒ q∗(p; θ) = (u′)−1
(p
θ

)
. (1)

6The pricing schedule can be nonlinear; a sufficient condition is that P (q) is not too convex, or P ′′(q)< |u′′(q)|

∀q∈R+, in which case a well-defined, strictly monotone solution exists. Empirically, this is an innocuous restriction,

given that volume discounts (i.e., concave pricing) is most common in real-world applications.
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Under our assumptions, a unique solution q∗(p; θ) exists, and is strictly decreasing in price p and

strictly increasing in type θ.7 Given pricing schedule P , we denote the distribution of consumer

demand as G(q|P ), though we will generally drop the conditioning on the price schedule unless

needed for clarity. Note that G may have a mass point at q= 0, but above that mass point (if it

exists) G is absolutely continuous with a well-defined density g(q) on a compact support [q, q].

By way of characterizing optimal choices, if consumer i is observed to demand more than con-

sumer j at price p, q∗(p; θi)>q
∗(p; θj), then at any other price p′, q∗(p′; θi)>q

∗(p′; θj) will be true

as well.8 This follows because θi=
p

u′(q∗(p;θi))
> p

u′(q∗(p;θj))
=θj and q∗(p; θ) is increasing in θ, holding

price fixed. This implies what we refer to as the Rank Stability condition (henceforth, RS):

Condition 1 (RS). An individual whose demand is at the rth quantile of G under price p > 0

will also have demand at the rth quantile under any other price p′ > 0. That is, for all (θ, p, p′)∈
[
¯
θ, θ̄]×R2

++ we have q∗(p; θ)=G−1(r|p)⇒ q∗(p′; θ)=G−1(r|p′) for each r∈ [0, 1].

This condition will be a central focus of discussion throughout the paper, but first we consider

other basic implications of the model. Another restriction that separable utility (or any quasilinear

utility model) places on the data is the “Law of Demand” (henceforth, LoD):

Assumption 1. Each individual’s optimal choice q∗(p; θ) is non-increasing in price, or p < p′ ⇒
q∗(p; θ)≤q∗(p′; θ) for every θ∈ [

¯
θ, θ̄].

An empirically testable implication of this basic assumption built into the model is first-order

stochastic dominance of the conditional demand distributions: p<p′ =⇒ G(q|p)≤G(q|p′).
D’Haultfoeuille and Février (2015), Torgovitsky (2015), and D’Haultfœuille and Février (2020)

(henceforth, DF/T) provide a thorough treatment of point identification within this baseline setup.

Briefly though, with an exogenous price change we can identify the CDFs G(q|p) and G(q|p′), and

therefore the corresponding quantile functions as well. Rank stability then implies that the rth

quantile treatment effect is the individual treatment effect for the consumer whose type θ is at

the rth quantile of Fθ. The separable utility model also provides a within-consumer mapping from

consumption level q∗(p; θ) under price p to counterfactual consumption q∗(p′; θ) under price p′:

q∗(p; θi) = (u′)−1

(
p

p′
u′(q∗(p′; θi))

)
⇔ u′(G−1(r|p))

u′(G−1(r|p′))
=
p

p′
, r ∈ [0, 1]. (2)

A remarkable fact implied by MS utility is that under relatively weak conditions, the RS con-

dition plus equation (2) can pin down the values of the utility function u(q) uniquely up to affine

7More precisely, demand is strictly decreasing in p (increasing in θ) in the sense that for any p such that if

q∗(p; θ)>0, then q∗(p′; θ)<q∗(p; θ) whenever p<p′ (q∗(p; θ′) < q∗(p; θ) whenever θ′ < θ).
8Since marginal utility is bounded, each type θ has a finite choke price p(θ) = θu′(0), where they choose q∗

(
θ; θ
)

=0.

Given our setup, this is the sole way for strict monotonicity to be violated, but for expositional simplicity we abstract

from this detail until we prove our main results in Appendices B and C.
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transformations for q∈O for some identified set of points O. An cumbersome technicality is that

u(q) may only be partially identified for q 6∈ O (see DF/T for details). The sharp identified sets

for u(q) are quite informative though. Thus, for expositional simplicity we assume that the utility

function u is known by the econometrician to belong to a set U satisfying the following:

Assumption 2. Fix q0≥0. Define a sequence of points O={qk}∞k=−∞ recursively via the identity

qk+1 = G−d′(Gd(qk)).
9 The family of admissible utility functions U is such that if u, v ∈ U and

u(qk)=v(qk) for all qk ∈ O, then u(q)=v(q) for all q ∈ R+.10

Remark 1. Given an identified u(q), the consumer-level θ’s are also identified (and hence, Fθ as

well), since they can be obtained by inverting the first order condition (1).11 �

Structural identification in the basic model with an exogenous price change arises from three

main restrictions on the data-generating process (DGP): (i) the RS condition, (ii) the LoD, and

(iii) (via MS utility) the model provides a means of extrapolating from demand under observed

prices to counterfactual demand under out-of-sample prices. The RS and LoD conditions buy the

econometrician a surprisingly high degree of identifying power: if a firm has capacity to exoge-

nously vary prices for its product/service it can nonparametrically identify all relevant parameters

necessary for finding the optimal (nonlinear) price schedule. The LoD is always testable, and with

more than two prices, the extrapolation quality of MS utility may even be testable as well. On the

other hand, the RS condition is arguably the most stringent and least testable model implication.

Moving forward we will sometimes refer to the basic setup as the “rank-stable model.”

This leaves an open question: how robust are model-based policy prescriptions to deviations from

perfect rank stability within the underlying DGP? We begin our analysis by exploring a scenario

where RS violations are generated by departures from full rationality in consumers’ subscription

choices. In this case, we briefly show that by explicitly modeling behavioral mistakes, the researcher

can restore point identification using available data. Moreover, we propose a means of directly

estimating behavioral parameters (e.g., offer salience and forecast errors), which is of independent

interest to market designers engaged in nonlinear pricing via optimal subscription programs. We

then proceed to our main methodological contribution by exploring RS violations of unknown

form; i.e., when the precise phenomena producing the violation are not well understood, or when

requisite data for point identification are unavailable. We identify sharp bounds on the set of

9Here, G−d′(r) is the pseudo-inverse of Gd′ , that is G−d′(r)=inf{q : Gd′(q) ≥ r}.
10Since the set O typically includes values across the support of q, the family of utility functions U can be made

quite flexible while still satisfying Assumption 2. E.g., U can be the set of all smoothing splines constrained to take

on values u(qk) = uk for qk ∈ O. Moreover, Assumption 2 can be relaxed under either of the following mild data

augmentations: (i) ∂G(q|p0)
∂p

is identified or (ii) G(q|p0(1−d1)) is identified for one additional discount level d1 6=d0.

11Fθ(θ) is only bound identified up to the largest θ type consuming nothing under the lowest price.



10 BODOH-CREED, HICKMAN, LIST, MUIR, SUN

counterfactual demand CDFs consistent with observables and the LoD. We show that these bounds

can be used to derive optimal pricing prescriptions that are robust to the most extreme profit-

minimizing unobserved consumer behaviors not ruled out by the data and LoD.

2.1. Structural Identification in An Explicit Model of RS Violations. In recent decades,

experimental incentive variation has become an increasingly common tool among firms, govern-

ments, and other organizations. A common impediment to useful inference from controlled ran-

domization is the presence of apparent deviations from fully rational decision making on the part

of experimental participants. Such deviations can include both under-reaction (e.g., salience defi-

ciencies as in Chetty et al. (2009)) and over-reaction (e.g., when irrelevant information influences

behavior as in Arieley et al. (2003)). As motivation for this concern in the consumer demand

context, Lyft ran a RCT in early 2019 where it offered a random subset of its customers the oppor-

tunity to buy a subscription lasting for a month. The resulting data show direct evidence of both

over-reaction and under-reaction within the treatment group offered a subscription plan.

We consider a setting where Lyft runs a randomized experiment with two treatment arms. A

control group must pay the original price, p0, for each unit of consumption while a treatment group

has the option to buy a subscription contract where they pay $S upfront for a discount rate of d0,

so that their new per-unit price will be p0(1−d0). Therefore, treated consumers must first choose

whether to buy the subscription. A perfectly rational consumer of type θ should make this decision

in the following way. Utility with a subscription is θu(q∗(p0(1−d0); θ))−p0(1−d0)q∗(p0(1−d0); θ)−S,

while without a subscription it is θu(q∗(p0; θ))−p0q
∗(p0; θ). Thus, consumer type θ should subscribe

if and only if θu(q∗(p0(1−d0); θ))− p0(1−d0)q∗(p0(1−d0); θ)− S ≥ θu(q∗(p0; θ))− p0q
∗(p0; θ).

Intuitively, consumers should buy the subscription only if the change in surplus is greater than or

equal to the upfront fee S. Consumer surplus from discount d0 is at least as large as p0×d0×q∗(p0; θ)

and no larger than p0×d0×q∗(p0(1−d0); θ), from which follows a set of testable predictions that

do not require assuming MS utility or RS: rational individuals for whom q∗(p0; θ)> S
p0×d0 should

subscribe, while individuals for whom q∗(p0(1−d0); θ)< S
p0×d0 should not. Therefore, we should

never see fully rational consumers decline a subscription and choose q > S
p0×d0 , nor should we see

them subscribe and choose q≤ S
p0×d0 . In contrast, among treated consumers who did not subscribe,

29% would have unambiguously saved money if they had, while 6% of subscribers had low enough

ride-share demand in the subsequent month that they did not recover the subscription fee.

We now augment the model to allow for mistakes in the discrete choice of subscribing, while

maintaining our assumption that consumers are able to choose the optimal quantity q∗(p; θ) without

error.12 We introduce a salience parameter, ρ ∈ (0, 1], representing the probability that a given

12Our behavioral model assumes that i makes mistakes only at the beginning of the period, when i is unsure

whether a subsequent demand shock εi will justify subscribing. Afterward, i’s demand shock is revealed in a timely

enough manner that i neither under-consumes nor over-consumes. This is reasonable if a period (e.g., a month) is



ROBUST INFERENCE ON OPTIMAL NONLINEAR PRICING 11

(treated) consumer receives the relevant messaging and is cognizant of the subscription offer. We

also allow for some fraction δ∈ [0, 1) of consumers to be eager and (conditional on salience) always

purchase the subscription even without weighing costs and benefits.

Finally, since subscription benefits last for a month, we allow for consumers to be imperfect at

forecasting their own demand intensity over the ensuing month. Thus, rather than evaluating their

uptake decision based on their true type θ, they instead base subscription choice on a noisy estimate,

θ̂, of their demand type. Moving forward, it will be convenient to re-parameterize unobserved

types as an individual’s demand under the baseline price, letting η(θ)≡q∗(p0; θ) denote their type.

Because consumption is strictly increasing in θ (absent forecast errors), this is a one-to-one mapping

and no information is lost by this re-parameterization, which allows us to measure errors in the

same (directly observable) units as consumption. We assume that consumers mis-estimate their

type η as η̂ = η + ε where ε∼Hε(ε) represents forecast error.13

Assumption 3. Hε is an absolutely continuous, unimodal distribution, with well-defined density

hε(ε) that is strictly positive on a connected, compact support.

To see why this framework produces RS violations, consider two consumers with types θi<θj ,

such that q∗(p0; θi) < q∗(p0; θj) < q∗(p0(1−d0); θi) < S/(p0 × d0). If both consumers were fully

rational, neither would buy the subscription. However, consumer i could mistakenly purchase the

subscription while j does not. In absence of a subscription offer, θi would consume less than θj ,

but due to behavioral mistakes θi will now consume more than θj , which violates the RS condition.

From above we can see that the ex-post discounted surplus change from subscribing is increasing

in θ, and there exists some cutoff θ∗ where the change exactly offsets the fee S. Let q∗s =q∗(p0; θ∗)

denote the analogous cutoff in consumption space. We can now define an uptake function as

Υ (q)≡Pr[subscribe|q∗(p0; θ)=q]=ρδ+ρ(1−δ)Hε(q−q∗s). Moving forward, it will be convenient to

define a short-hand indicator function, υi ≡ 1[i subscribes].

We now show how to identify the utility function u(q) (and hence q∗s) and the uptake function

Υ(q), by applying some basic ideas from the literature on the LATE interpretation of instrumental

variables (e.g., Imbens and Angrist (1994), Imbens and Rubin (1997)). Recall that identification

hinges on knowing the distributions of demand with and without an exogenous discount. While

the researcher can observe a demand CDF for the sub-population within the treatment group that

receives the discount, G(q|p0(1−d0), υ=1), the complementary demand distribution, G(q|p0, υ=1),

is not directly observable because the set of would-be uptakers in the control group is not known.

composed of K sub-periods (e.g., days) within which i knows the sub-period shock εik before choosing sub-period

demand, but i cannot fully anticipate future sub-period shocks.
13Note that our model represents a static, one-time decision process of whether to purchase a subscription. In a

dynamic model where the consumer makes this decision month after month, one could interpret η̂ as fixed, long-run

average demand intensity, with ηt= η̂−εt representing transitory demand intensity for month t.
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However, if we think of treatment status—i.e., whether a consumer is offered a subscription

plan—as an instrumental variable for uptaker status (and hence, who gets a discount), we can

identify the baseline demand distribution G(q|p0, υ=1) and the uptake function Υ(q). Let Gc(q|p0)

denote the demand CDF for consumers in control, and let Gt(q) be the unconditional demand CDF

for all consumers in treatment, regardless of their subscription choice, and note that each of these is

directly observable to the researcher. Letting τ denote the proportion of uptakers in the treatment

group, we have Gt(q) = τG(q|p0(1−d0), υ= 1)+(1−τ)G(q|p0, υ= 0). Similarly, we can decompose

the control CDF as Gc(q|p0)=τG(q|p0, υ=1)+(1−τ)G(q|p0, υ=0). Combining these two identifies

and rearranging allows us to express G(q|p0, υ=1) in terms of observable quantities

G(q|p0, υ=1)=G(q|p0(1−d0), υ=1)− Gt(q)−Gc(q|p0)

τ
. (3)

This relationship tells us that for uptakers (referred to as “compliers” in the usual LATE par-

lance), we can identify both of the counterfactual CDFs, G(q|p0(1−d), υ= 1) and G(q|p0, υ= 1).

Another way to think about equation (3) is that the term Gt(q)−Gc(q|p0)
τ characterizes quantile-

specific shifts in consumption behavior among the would-be uptakes within the control-group, had

they received discount d0. With G(q|p0, υ=1) and G(q|p0(1−d0), υ=1) known, we have all requisite

information to apply the basic DF/T identification approach to pin down the utility function u(q)

and demand types θ (for all consumers with positive demands).

Finally (ignoring mass points at q = 0), note that Gc(q|p0) and G(q|p0, υ = 1) have densities

gc(q|p0) and g(q|p0, υ=1), and therefore Υ(q) is nonparametrically identified by Bayes’ rule:

Υ(q) =
g(q|p0, υ=1)τ

gc(q|p0)
. (4)

This pins down the behavioral parameters ρ, δ, and Hε. First, note that limq→∞Υ(q) = ρ and

limq→0 Υ(q) = ρδ.14 Finally, with ρ and δ known, we can use the definition of Υ(q) above to identify

Hε(q) using the relationship Hε(q) = Υ(q+q∗s )−ρδ
ρ−ρδ . Summarizing, we have shown how deviations

from fully rational subscription decisions may generate RS violations, but ones that can be fully

addressed to restore point identification using available data.

2.2. Robust Inference Under RS Violations of Unspecified Form. We now shift focus to

more econometrically challenging scenarios where explicitly controlling for RS violations is not

possible. For example, firms usually do not have good information on consumers’ substitution

between their products/services and those of their nearest competitor. Suppose that household 1

usually purchases more volume than household 2 from Firm A, but in a month where Firm A had

a large sales promotion, household 2 made more purchases than household 1. This is potential

evidence that RS is violated and could arise if, for example, household 2 has low brand loyalty

14In general this may lead us to over-estimate δ if Hε(−q∗s )>0. However, one can test for this problem: unimodality

of Hε implies that if Υ(q) is flat within a neighborhood of q = 0 then significant upward bias in δ is unlikely.
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toward Firm A and thus views Firm B as a closer substitute than household 1, which has more

brand loyalty toward Firm A. As a result, sale prices at Firm A are more effective at (unobservably)

switching household 2’s purchasing behavior away from its rival, Firm B.

Note that RS requires the same ordering of purchasing behavior by households 1 and 2 in both

the default (p0) and discount (p0(1− d0)) states. However, the presence of a competitor and

idiosyncratic brand loyalty may drive heterogeneous price sensitivity. Moreover, Firm A would not

have the requisite internal observables to explicitly model cross-firm substitution by its consumers.

More broadly, any phenomenon causing idiosyncratic price sensitivity by consumers with similar

demands under default pricing—e.g., heterogeneous budget constraints or income effects from a

given price change—could render point identification impossible given available data.

This discussion highlights the fact that the RS condition required by the basic identification strat-

egy indeed rules out some economically plausible behavior, which, notably, is not even precluded by

controlled, experimental randomization in pricing. Rather than attempting to formalize all possible

RS violations we adopt the approach of deriving robust bounds on counterfactual demand (and in

turn, on firm profits) projected by the model in the presence of RS violations of unknown form.

The sale-price example described above is an intuitive way of fixing ideas, and is inspired by the

prior demand estimation literature which focuses on consumer substitution patterns; however, our

robust bounds approach does not hinge on this particular interpretation of RS violations.

Before moving on, a comment on the focus of our robust inference method will be helpful.

Typical structural approaches to partial identification (e.g., Haile and Tamer (2003), Hortaçsu and

McAdams (2010), and Freyberger and Larsen (2021)) often focus on estimation of bounds on the

structural primitives θ and Fθ. However, in our case a prominent source of the partial identification

problem is the fact that the consumer base may shift between the control (p0) and treatment (p0(1−
d0)) states due to unobserved substitution between the firm’s product and that of its competitors.

If this is so, then the notion of pinning down a type distribution Fθ for a single, stable consumer

base becomes ill-defined. For that reason, our approach focuses instead on derivation of bounds

on counterfactual demand behavior under alternate pricing levels. Importantly, this approach still

allows for out-of-sample inferences, under discount levels d not observed in the data.

To begin, we focus on the case of a single price change, though in Section 2.5 we show how richer

price variation can be used to refine our profit bounds. In particular, we suppose that corresponding

to each consumer, there are quantities (Qc, Qd) such that the individual would consume Qc if

given the control price p0 and would consume Qd if given some discounted price p0(1−d). We

use the common convention of denoting random variables by upper-case letters, while realizations

of random variables (or fixed numbers) are denoted by lower-case. For the present purpose, we

abstract away from the consumer’s choice of whether or not to purchase a subscription plan, and

we simply assume that a subset of consumers are exposed to an exogenous price drop from p0 to
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p0(1−d0). Let Gcd(qc, qd) denote the joint distribution function of (Qc, Qd). The observed marginal

distributions are as defined earlier, Gc(q)=G(q|p0) and Gd0(q)=G(q|p0(1−d0)).

Given known CDFs Gc and Gd0 , and assuming the LoD, in this section we obtain bounds on

conditional probabilities of the form Pr
[
Qd≤q|Qc≥ S

p0×d

]
. These bounds are important because

profitability of a subscription offering will be largely determined by the sub-population for whom

Qc ≥ S
p0×d , (i.e., baseline consumption is relatively high) which we refer to as strong uptakers.

Formally, strong uptakers are the set SU(p0, S, d) =
{

consumer n : qcn≥ S
p0×d

}
. Given the option

to purchase a subscription offering discount d for $S upfront, under any model of the underlying

preferences consumers for whom Qc ≥ S
p0×d will find it advantageous to subscribe, while (fully

rational) consumers for whom Qd<
S

p0×d will find subscription unambiguously disadvantageous.

The question of whether or not intermediate consumers for whom Qc<
S

p0×d ≤Qd should sub-

scribe still depends on the particular model of preferences. In the interest of robustness we seek

here to impose only minimal assumptions, meaning that the baseline predictions of the RS model

may not hold. Our approach is based on the idea that subscription profitability depends primarily

on how strong uptakers increase consumption in response to the discount. 15

To facilitate robust inference on counterfactual profits, we will be interested in evaluating con-

ditional probabilities of the form Pr
[
Qd≤q|Qc≥ S

p0×d

]
, or in other words, the conditional counter-

factual demand CDFs, for various values of (S, d). We will often refer to these focal conditional

probabilities as strong uptaker distributions (or SUDs) for short. Our goal is to construct a set

of sharp bounds for the SUDs: Bd0(q;S, d) ≤ Pr
[
Qd≤q|Qc≥ S

p0×d

]
≤ Bd0(q;S, d). Since SUDs

represent a conditional counterfactual demand CDF, the upper bound Bd0 (also a CDF) is point-

wise below the SUD; i.e., Bd0(q;S, d) stochastically dominates Pr
[
Qd≤q|Qc≥ S

p0×d

]
. Similar logic

applies to the lower bound Bd0 (also a CDF): fixing the last two arguments (S, d), Bd0(q;S, d) is

pointwise above Pr
[
Qd≤q|Qc≥ S

p0×d

]
, meaning the former is first-order dominated by the latter.

We first construct a rank-stable mapping Qd0 from a given consumer’s baseline consumption

level into the space of counterfactual consumption. We show that this mapping defines a limiting

DGP whose SUDs constitute the sharp upper bound Bd0(q;S, d) on SUDs for other DGPs which do

not necessarily adhere to rank stability but are consistent with the observable demand distributions

under control and treatment. We then construct a similar mapping Qd0 that characterizes maximal

RS violations that still respect the data and the LoD. We show that this mapping defines a DGP

whose SUDs constitute the sharp lower bound Bd0(q;S, d). The bound subscripts denote their

dependence on observed demand CDFs (Gc, Gd0) under prices p0 and p0(1− d0), respectively; note

that the final argument of Bd0/Bd0 may represent out-of-sample discounts d 6=d0.

15Our robust lower-bound on demand is characterized by worst-case, profit-minimizing, unobserved behavior by

consumers. Note that if any of the relatively low intermediate consumers subscribe, it can only be unambiguously

better for the firm, relative to the worst-case scenario.
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As before, let the CDF of Qc be Gc and the CDF of Qd be Gd, while Gd0 represents the observed

demand CDF under the actual discount d0 defining treatment within the RCT. Henceforth, we refer

to this as the in-sample discount, to distinguish it from other out-of-sample (i.e., experimentally

untested) discounts d 6=d0. Given that our discussion in this section focuses on identification rather

than on estimation, this is somewhat of an abuse of conventional terminology, but it nevertheless

is useful in distinguishing inferences that can be made directly based on d0, and those that can

be made somewhat less directly based on alternate d 6= d0.16 Additionally, we define the quantile

functions G−1
c (r) = inf{q : Gc(q) ≥ r} and G−1

d (r) = inf{q : Gd(q) ≥ r}, and note that these may

represent either the inverses of CDFs, if they exist, or the quasi-inverses otherwise.

2.3. Construction of the Upper Bound. While Bd0(q;S, d) lives in probability space, the func-

tional value of Qd0 represents an upper bound on consumption under counterfactual price p0(1−d),

if baseline consumption (under p0) is q. More formally, we define a (stochastic) mapping

Qd0(q; d, v)≡G−1
d (a(q)+b(q)v) , a(q)≡ lim

q′→q−
Gc(q

′), and b(q)≡Gc(q)− lim
q′→q−

Gc(q
′), (5)

where v is a realization of a random variable V ∼Uniform(0, 1) that is independent of (Qc, Qd). In

equation (5), a(q) and b(q) are to deal with possible mass points in the control CDF, Gc; V plays

the role of a “tie-breaking” rule; a(q) is the mass of all consumers with baseline demand below q;

and b(q) is the size of the probability mass at q. Given this definition, we can now also define

Bd0(q;S, d)≡Pr

[
Qd0(Qc; d, v)≤q|Qc≥

S

p0 × d

]
. (6)

The formal proof is fairly technical, but we show that the mapping Qd0(Qc; d, v) ∼ Gd (see Ap-

pendix B.1), meaning that it constitutes a data-generating process that must be consistent with

observables. Moreover, we also show that Bd0 as defined in (6) is an upper bound on the SUDs

Pr
[
Qd≤q|Qc≥ S

p0×d

]
for each (S, d) pair, which, combined with the previous fact implies that it

is the sharp upper bound, because Qd0(q; d, v) is an instance within the class of admissible DGPs

that attains the upper bound Bd0(q;S, d).

For some brief intuition, consider the hypothetical dataset depicted in Panel (A) of Figure 1.

When faced with potential RS violations due to unobserved substitution or some other phenomenon,

characterizing the SUD upper bound reduces to the question of, what fraction of the aggregate

shift from demand CDF Gc (solid line) to discounted demand CDF Gd0 (dashed line) at most could

have been accounted for by high-volume consumers responding to the discount by increasing their

purchase volume? For the special case where Gc has no mass points, we get the simpler expression

Qd0(q; d) = G−1
d (Gc(q)), whose geometric interpretation provides an answer to the question: at

most, all of the aggregate shift represents rank-stable price responses by high-volume consumers.

16This abuse is less awkward if one considers the word “sample” as denoting a dataset with infinite observations.
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Note that by construction here, the distribution of Qd0(Qc; d) is simply the distribution of Qd, since

Qd0(Qc; d) is chosen to match the quantiles of Gc to the corresponding quantiles of Gd. Intuitively

then, the upper-bound DGP Qd0 is one where strong uptakers with high baseline demand are

maximally price responsive, none of the aggregate demand shift is due to unobserved substitution,

and therefore no “rank-jumping” happens at all. Interestingly, this first result, stated formally in

Proposition 1 below, indicates that the naive and potentially mis-specified RS model still serves as

a relevant empirical benchmark for partial identification.

Before stating our first result we adopt an assumption on the underlying model of aggregate

demand. In what follows there will be a distinction between in-sample bounds—e.g., the SUD

upper bound Bd0(q;S, d0) given the in-sample discount d0—and out-of-sample bounds—e.g., the

SUD upper bound Bd0(q;S, d) for an experimentally untested discount level d 6=d0. The assumption

has no impact on in-sample bounds, but provides structure for deriving out-of-sample bounds.

Assumption 4. The set of aggregate demand CDFs Gd arising from out-of-sample discounts d is

such that if the reduced-form aggregate distributions of demand (Gc, Gd0) are known for in-sample

prices, (p0, p0×(1−d0)), then aggregate demand Gd is also known for out-of-sample discounts d 6=d0

and is given by a (known) function Gd(q)=Goosd (q;Gc, Gd0).

Remark 2. Assumption 4 is stated in this way in order to highlight the flexibility of our partial

identification approach. It covers various methods for counterfactual demand extrapolation, ranging

from the basic theoretic demand system from Section 2 above, to more general demand models,

and also allows for more atheoretical, reduced-form approaches to extrapolation. Examples of

extrapolation methods satisfying Assumption 4 include the following:

(1) The observed and counterfactual demand CDFs are consistent with the MS utility model:

Assumption 2 is satisfied and there exists a (u, Fθ) pair, such that Gd(q) =
∫

Θ 1[q∗(p0(1−
d); θ)≤q]dFθ(θ) for all (d, q)∈(−∞, 1)×R+, where q∗(·; θ) is defined in equation (1).17

(2) Observed and counterfactual demand CDFs are consistent with a ϕ-separable utility model:

U(q; θ, ϕ) =


∫ q

0 (u(t)+θ)
1

1−ϕ dt, ϕ<1∫ q
0 exp(u(t)+θ) dt, ϕ=1.

(7)

Moreover, Assumption 2 holds and there exists a (ϕ, u, Fθ) triple, with known ϕ, such that

Gd(q)=
∫

Θ 1[q∗(p0(1−d); θ, ϕ)≤q]dFθ(θ) for all (d, q)∈(−∞, 1)×R+.18

17In our main empirical application we use extrapolation option (1) whenever extrapolations are necessary. In

Appendix B.3, we discuss the more general family of utility functions in option (2), and in Appendix G, we show

that our counterfactuals are insensitive to the exact form of extrapolation.
18See Sun (2023b) and Appendix G for a complete discussion on identification under the ϕ-separable utility model.

If the data include multiple exogenous price shifts, then ϕ need not be known ex-ante to satisfy Assumption 4.
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(3) Quantile treatment effects of discounts on consumer demand are linear in the discount

amount d: G−1
d (Gc(q))=q+ d

d0
[G−1

d0
(Gc(q))− q].

Option (2) above illustrates how the econometrician may decide that some model other than the

MS paradigm may be more appropriate for projecting counterfactual demand shifts. For example,

consider the additively-separable (AS) utility form, U(q; θ) = u(q) + θq, which can be found in

much of the early theoretical principal-agent literature (e.g., see Maskin and Riley (1984) and

Laffont and Tirole (1986)). The main difference between multiplicative and additive separability

is their implications for counterfactual demand extrapolation. MS implies that the price elasticity

of demand, ∂q∗(p;θ)
∂p

p
q∗(p;θ) depends on p and θ only through their implied level of demand q∗(p; θ)

while additive separability implies the same property for the price derivative of demand, ∂q∗(p;θ)
∂p .

The ϕ-separable utility family nests both the MS (ϕ=1) and AS (ϕ=0) models as special cases.

In options (1) and (2), the form of counterfactual extrapolation is derived from an explicit,

rank-stable, structural model of demand. The reader may find this manner of extrapolation philo-

sophically awkward, given that the purpose of our paper is to provide inferential tools in scenarios

where validity of the RS assumption is in question. As we have seen above, Qd0 happens to be

precisely the rank-stable DGP, so for the purposes of bounding counterfactual demand from above

(see Proposition 1), options (1) and (2) are less problematic as aids for out-of-sample inference.

Assumption 4 and options (1) and (2) of Remark 2 should not be interpreted as stating directly

that the underlying DGP is rank stable; rather, they simply state that the researcher is confident

in a particular utility specification for producing sensible counterfactual projections. Option (2)

allows one to base this confidence on a utility model with greater degrees of freedom. However, a

researcher who is skeptical of (1) and (2) may opt for a more agnostic method of extrapolation, with

(3) being an example of one such approach. We will return to the discussion of different approaches

to out-of-sample extrapolation after we derive the lower-bound DGP Qd0 below.

We view Assumption 4 as relatively mild for two reasons. First, additional RCT variation can be

used to probe its validity: given multiple experimental discounts (d0, d1, . . .) one may test whether

utility specifications like (1) or (2) produce realistic out-of-sample projections. One could even run

an experiment where discounts are individually drawn from a continuum distribution in order to

identify a richer extrapolation model. Second, it is important to keep in mind that Assumption 4

deals with extrapolation of reduced-form, aggregate demand, including both subscribers and non-

subscribers, rather than with our primary object of interest, being counterfactual demand among

subscribers only. Another way of articulating this distinction is that Assumption 4 directly concerns

the marginal distributions of demand under alternate prices p0 and p0(1−d), while our primary

object of study is bounds on the copula between consumer i’s demand Qci and Qdi under those two

prices. We now state our first main result, but we relegate a formal proof to Appendix B.1. �



18 BODOH-CREED, HICKMAN, LIST, MUIR, SUN

Proposition 1. Under Assumptions 1 and 4, if Gc(q) and Gd0(q) are known and are discontinuous

at countably many mass points, then Bd0(q;S, d) constitutes an identified, sharp upper bound on

the strong uptaker distributions. That is, for any (potentially out-of-sample) discount d ∈ (0, 1),

and subscription fee S≥0, we have Bd0(q;S, d)≡Pr
[
Qd0(Qc; d, v)≤q|Qc≥ S

p0×d

]
≤Pr

[
Qd≤q|Qc≥ S

p0×d

]
,

where the function Qd0(q; d, v) is defined in (5).

Remark 3. Out-of-Sample Inference First, the in-sample discount d0 together with observables

(Gc, Gd0) and equations (5) and (6) are sufficient to pin down Qd0(q; d0) and Bd0(q;S, d0). Then,

Assumption 4 allows us to project counterfactual demand Goosd (q;Gc, Gd0) under arbitrary dis-

count d 6=d0, where the parameter inputs denote dependence of this projection on the observables

(Gc, Gd0). The counterfactual CDFs Gc and Goosd can then be plugged back into equations (5) and

(6) to get Qd0(q; d) and Bd0(q;S, d), for arbitrary (S, d) pairs. �

2.4. Construction of the Lower Bound. We now construct an analogous mapping Qd0(Qc; d, v)

that represents a lower-bound DGP for counterfactual consumption levels of likely subscribers

consistent with the LoD and the data (Gc, Gd0). To fix ideas on the sorts of phenomena that may

produce empirically relevant violations of rank stability, we begin by generalizing the basic model

from Section 2. This provides one especially salient (though not comprehensive) interpretation of

RS violations arising from multi-dimensional agent heterogeneity within demand estimation.

2.4.1. An Explicit Model of Unobserved Rank Stability Violations. A central motivation behind our

robustness exercise is the lack of information on consumer substitution patterns within a typical

firm’s internal data. The extended model we present here highlights how unobserved heterogeneity

in brand loyalty may lead to apparent RS violations being more prominent among consumers with

low (internal) demand at baseline pricing.

We generalize utility to be a function of total consumption across the default firm, L, and its

competitor, firm C.19 Each consumer i combines consumption from both sources into a composite

good, “transportation,” according to a constant elasticity of substitution “production” function

Ti = Ti(qL, qC) =

[
α

1
η

i q
η−1
η

L + (1− αi)
1
η q

η−1
η

C

] η
η−1

. Here, αi indexes consumer i’s brand preference

for the default firm L. A value of αi = 0.5 means i is perfectly indifferent between interacting

with firm L versus firm C (when prices for both are the same), while αi = 0 (αi = 1) means

that i would be unwilling to purchase from firm L (firm C) at any price. The parameter η is an

elasticity of substitution between the default firm’s services and services of its competitor which, for

expositional simplicity, we take to be fixed in the population. As η→∞ the two services produced

by L and C become perfect substitutes (holding brand loyalty fixed at αi=0.5). Thus, α represents

19The competitor firm C can be thought of as encompassing all of the consumer’s outside options for substitutable

goods/services, from competing private rideshare firms, to public transit, to walking instead.
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intrinsic utility from doing business with firm L specifically, while η determines how similar are the

goods/services produced by each firm when divorced from their respective brand names.

Utility from total consumption is multiplicatively separable U(Ti; θi)=θiu(Ti(qL, qC)), where θi

still indexes i’s idiosyncratic demand intensity. Faced with prices (pL, pC), i chooses (qL, qC) to

solve max(qL,qC)∈R2
+
θiu(Ti(qL, qC)) − pLqL − pCqC . Note that this more general formulation nests

the basic model from Section 2 as a special case (when αi=1 ∀i).
To characterize this demand system, we take advantage of the fact that Ti is homogeneous of

degree 1, meaning that if we wish to scale up composite consumption by some factor ζ×Ti(qL, qc), we

can accomplish this simply by scaling up the two inputs by the same factor ζ×(qL, qC). As a result,

we can solve the consumer’s optimization problem in two steps. First, she solves an expenditure

minimization to determine the optimal shares of the default firm and the competitor, per unit

of composite consumption Ti(qL, qC). Next, the consumer solves an outer utility maximization

problem to determine the level of total transportation consumption.

max
t∈R+

θiu(t)− pT t, subject to pT = min
(qL,qC)∈R2

+

pLqL + pCqC , subject to Ti(qL, qC) = 1.

Then, letting qhL, q
h
C be the solutions to the cost minimization problem above (Hicksian demand), we

have that individual i chooses qL=qhLt
∗ and qC =qhCt

∗ where t∗ solves the outer utility maximization

problem. Standard results on constant elasticity of substitution functions imply that

qhL = αi×
[
αi + (1− αi)

(
pL
pC

)η−1
] η

1−η
, qhC = (1− αi)×

[
(1− αi) + αi

(
pC
pL

)η−1
] η

1−η
, and pT =

[
αip

1−η
L + (1− αi)p1−η

C

] 1
1−η . (8)

For simplicity of discussion, we normalize prices pL = pC = 1, which in turn implies pT = 1.

If the price ratio is one this implies qhL = αi in (8), meaning αi is simply individual i’s share of

consumption supplied by the default firm. For any level of default firm consumption qL there is a

locus of (θi, αi) pairs that rationalize it. To see why, fix qL and note that for each αi∈ (0, 1) there

is some θi such that, given parameters (θi, αi), i consumes exactly qL units from the default firm.

This requirement is defined by combining the identity αit
∗
i = qL with the FOC of the outer utility

maximization, t∗i = (u′)−1(1/θi), to get αi×(u′)−1
(

1
θi

)
= qL. Since u′ is strictly increasing, this

defines a curve in (θ, α)-space of types consistent with a fixed optimal choice qL.

We now derive some comparative statics around prices pL = pC = 1 for a fixed type (θi, αi).

Using the chain rule and product rule, we have ∂qL
∂pL

=
∂qhL
∂pL

t∗ + ∂t∗

∂pT

∂pT
∂pL

qhL, which simplifies to

∂qL
∂pL

= −ηqL 1−αi
α2
i

+ α2
i /u
′′
(
qL
αi

)
since qhL = αi. This expression characterizes the responsiveness

of observed demand for the default firm’s service as its own price pL changes. Importantly, note

that the derivative of demand with respect to pL changes as qL is kept constant but αi varies.

I.e., if consumrs i and j choose the same quantity qL under default pricing, but αi < αj , then

their responsiveness to a price change will be different, thus creating an apparent violation of rank

stability within the internal data available to default firm L.
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Moreover, the model also implies that when services of firms L and C are sufficiently substi-

tutable, a consumer with lower brand loyalty to L will be more sensitive to changes in pL. Once

again, suppose i and j consume the same firm-L quantity qL, but consumer i has less brand loy-

alty, or αi<αj . Subtracting i’s response to an infinitesimal price change from j’s response gives

−ηqL
(

1−αj
α2
j
− 1−αi

α2
i

)
+
(

α2
j

u′′(qL/αj)
− α2

i
u′′(qL/αi)

)
. The first term is strictly positive because αi <αj

while the second term has a generally ambiguous sign. However, provided that consumption choices

are bounded from above, so qL<M<∞, and α>0 for all consumers, the first term will dominate

as η gets large. Intuitively, this implies that as the elasticity of substitution, η, gets sufficiently

large, individuals with lower brand loyalty will tend to be more responsive to changes in pL in terms

of their purchases from firm L (i.e., a larger negative own-price elasticity).20

While the brand-loyalty interpretation is motivated by the consumer demand context, the same

basic principle applies in other adverse-selection/principal-agent models as well. In Appendix A

we briefly discuss five related settings—procurement, regulation of externalities, optimal taxation,

labor contracts, and insurance/healthcare demand—including relevant applications of nonlinear

pricing, and how exogenous price variation no longer suffices for point identification under multi-

dimensional agent heterogeneity. These examples highlight how ideas analogous to those presented

here can be applied to a wide variety of policy-relevant contexts in empirical market design.

2.4.2. Formal Derivation of the SUD Lower Bound. Having formalized a theoretical foundation

for unobserved RS violations, we return our focus to derivation of the lower-bound DGP Qd0 .

That is, despite firm L lacking internal data to empirically model failures of RS, we derive a sharp

lower bound Bd0(q;S, d) = Pr
[
Qd0(Qc; d)≤q|Qc≥ S

p0×d

]
on counterfactual demand CDFs (SUDs)

for strong uptakers. While the example of RS violations driven by unobserved substitution patterns

and brand-loyalty heterogeneity is salient and empirically relevant, the lower bound we derive does

not pre-suppose or hinge on a specific underlying model of unobserved RS violations.21

Our purpose here is to derive a sharp lower bound on the set of all DGPs involving RS violations

consistent with the LoD and with the shapes of the observed CDFs Gc and Gd0 . To do so, we will

need to characterize the sorts of maximal RS violations that respect this a priori information. As

20In the limiting case η→∞, where the two goods become perfect substitutes (modulo brand loyalty), consumers

solve max(qL,qC)∈R2
+
θiu(αiqL + (1 − αi)qC) − pLqL − pCqC . Now, the expenditure minimization problem is simply

to choose qhL = 1
αi

if pL
pC

< αi
1−αi

and qhL = 0 if the inequality is strict in the opposite direction. Consider now a price

change from pL to pL−ε for some small ε>0. Individuals for whom qhL = 1
αi

even before the price change will only

slightly change their consumption levels from qL= 1
αi

(u′)−1
(
pL
αiθi

)
to qL= 1

αi
(u′)−1

(
pL−ε
αiθi

)
. On the other hand, for

some consumers we will have pL−ε
pC

< αi
1−αi

but pL
pC
> αi

1−αi
. For them, qhL will change from 0 (under the original pL) to

1
αi

after the discount, and their consumption from firm L will “rank jump” from from qL=0 to qL= 1
αi

(u′)−1
(
pL−ε
αiθi

)
.

21Other plausible phenomena producing RS violations include heterogeneous income effects and/or budget-

constraint heterogeneity. Our proposed partial identification method allows for the fully-specified underlying model

of RS violations to include multiple channels driving unpredictable heterogeneity in price sensitivity.
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before let d0 denote the in-sample discount, and let Gc and Gd denote the aggregate demand CDFs

under prices p0 and p0(1− d). Given subscription offer (S, d) we fix the usual strong uptaker cutoff

Qc≥ S
p0×d . The LoD and the data (Gc, Gd0) impose considerable discipline on the maximal masses

of rank-jumpers and on the maximal plausible magnitudes of their rank-jumping behaviors. Once

again, for some intuition it is informative to consider the hypothetical dataset depicted in Panel

(A) of Figure 1. We learned in the previous section that the rank-stable DGP is the least upper

bound on counterfactual strong-uptaker demand under discount d. Suppose now that a market

designer naively optimizes profits, π(S, d), from a single offer (S∗, d∗) under the RS assumption.

This optimum fee structure must balance two things for each strong-uptaker θ type in order for it

to be profit-improving: while per-unit revenues are lower for each subscriber (due to discount d∗),

their projected increase in demand volume q∗(p0(1 − d∗); θ) is large enough so that the change in

total revenues to the firm is positive, or S∗ + p0 [(1−d∗)q∗(p0(1−d∗); θ)− q∗(p0; θ)]> 0. Ensuring

the second part is true requires an accurate forecast of demand responsiveness to discount d∗.

With that in mind, one can think of the lower-bound DGP Qd0 as being maximally “adversarial”

in the sense of minimizing the naive market-designer’s profits, π(S∗, d∗), from subscription offer

(S∗, d∗). Recall that the naively presumed DGP Qd0 holds that the entirety of the shift from Gc

(Panel (A) of Figure 1, solid line) to Gd (Panel (A), dashed line) represents a rank-stable demand

increase, which implies maximal demand responses (1−d∗)q∗(p0(1−d∗); θ) − q∗(p0; θ) by high-

baseline-demand θ types who subscribe (i.e., Qc = q∗(p0; θ)≥ S∗

p0×d∗ ). In contrast, the lower-bound

DGP, Qd0 , asks, what is the smallest price response (1−d∗)q∗(p0(1−d∗); θ)− q∗(p0; θ) by uptaker

θ types that cannot be ruled out by the LoD and data? This in turn is equivalent to minimizing

the firm’s total revenue change from its subscription program. In the most extreme case, if strong

uptakers subscribe to receive the discount, but then defy the model projection by not increasing

their purchase volume at all, then the incorrectly calibrated fee schedule (S∗, d∗) merely becomes

a zero-sum transfer from the firm to the consumer. This intuitive adversarial property of Qd0 will

be discussed at length below, but first we formalize our primary objects of interest, Qd0 and Bd0 .

For simplicity, we temporarily assume that Gc and Gd are absolutely continuous and the dif-

ference Gc(q)−Gd(q) is unimodal (i.e., quasi-concave).22 We relax both of these assumptions in

Online Appendix B.2, where we derive the lower bound in greater generality, but to avoid te-

dious complications of exposition we limit further discussion here to the simpler case. The function

Qd0(q; d, v) : Qc → Qd maps baseline consumption levels into minimal plausible counterfactual (dis-

counted) consumption levels, given the LoD and data (Gc, Gd0). Since Qd0 is a lower bound in the

sense of minimizing price responsiveness by strong uptakers, it implies a lower-bound counterfactual

demand CDF Bd0 , or one that is weakly stochastically dominated by the true SUDs.

22The case of a unimodal CDF difference appears to be the most empirically relevant case, both in our setting

and in a number of similar settings such as D’Haultfœuille and Février (2020) and Sun (2023a).
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Figure 1. Proof Intuition For Case 1

(a) Demand CDFs
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(b) Demand PDFs
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(c) Demand CDF Differences
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Notes: Panel (A) plots hypothetical demand CDFs Gc and Gd0 . Panel (B) plots the corresponding demand PDFs. Panel (C) plots

the difference in the demand CDFs, Gc−Gd0 .

Since Gc(q)−Gd(q) is unimodal, it is weakly increasing below its smallest maximizer, q∗min, and

weakly decreasing above its largest maximizer, q∗max. Let qmax be the largest value for which Gc and

Gd disagree and define q̄d0(q)=inf{q′∈ [q∗max, qmax] :Gc(q
′)−Gd(q′)=Gc(q)−Gd(q)}.23 In other words,

qd0 maps relatively low baseline consumption levels q ≤ q∗min into discounted consumption levels

q′≥ q∗max such that the condition described above is satisfied. Because Gc and Gd are continuous,

the inf is attained, so Gc(q)−Gd(q)=Gc(q̄d0(q))−Gd(q̄d0(q)). Letting V ∼Uniform(0, 1) denote a

uniform random variable that is independent of (Qc, Qd), Bd0 and Qd0 are defined by

Bd0(q;S, d) ≡ Pr
[
Qd0(Qc; d, V ) ≤ q

∣∣∣Qc ≥ S
p0×d

]
; and Qd0(q; d, v)=

q̄d0(q) q ≤ q∗min, v ≤
qc(q)−gd(q)

gc(q)

q otherwise.
(9)

Graphical intuition for how q̄d0 and
¯
qd0 are constructed (and in turn, Qd0 as well) can be found in

Panel (C) of Figure 1. Recall thatQd0 represents a maximally adversarial DGP from the perspective

of a market designer who optimized a subscription offer (S∗, d∗) assuming the rank-stable DGP Qd0 .

Intuitively, to achieve the maximally adversarial property of the lower-bound DGP, we start at the

23If Gc, Gd have unbounded support and Gc(q) > Gd(q) for all q, let qmax =∞.
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low end of the demand spectrum (i.e., low values of baseline demand q′ under default price p0)

and we assume the largest possible mass of those consumers are rank-jumpers, which is depicted in

Panel (B) of the figure. Moreover, we also assume that these low-demand rank-jumpers do so in the

worst way from the naive market-designer’s perspective, meaning that they rank jump by the largest

possible margin that would not violate the shape of the treatment demand CDF Gd0 , which can be

seen in Panel (C) of the figure. The CDF difference determines the maximal rank-jumping margin

because, for large values of discounted demand q, it represents the excess mass of consumers who

purchased at least q under discounted price p0×(1−d0), relative to the mass who purchased at least

q under default price p0. Then we continuously apply this adversarial re-allocation of low-demand

consumers for all values of q′ between 0 and q∗min, the minimal argmax of the CDF difference.24

This ensures that the upper tail of the treatment demand CDF Gd0 is maximally populated by

non-subscribers, and therefore minimally populated by subscribers. Conversely, this procedure also

ensures that demand responses by strong uptakers collectively accounted for a minimal fraction of

the upper-tail shift from Gc to Gd0 . In other words, under the DGP Qd0 , subscribers are minimally

price responsive, which maximally exposes the naive market-designer to merely transferring money

to them, with little or no compensating improvement in sales volume.

For another way of understanding the adversarial bound, note that the following must be true of

any admissible DGP, whenever S>0 and the discount is less than markup (i.e., p0(1− d)− c>0):

Fact 1. Anybody who consumes Qc≥ S
p0×d will always be a subscriber.

Fact 2. Anybody who consumes Qc <
S
p0×d will always bring profits to the firm if they subscribe,

relative to the counterfactual of not subscribing.

Fact 1 is true under the LoD because such an individual would surely save money by subscribing.

To see why Fact 2 is true, note that the change in profits to the firm when a consumer buys the

subscription is ∆π ≡ Qd(p0(1 − d)−c)+S−Qc(p0−c) = (Qd−Qc)(p0(1−d)−c)+S−Qc×p0×d.

Since the discount is less than the markup, p0−c
p0

, and Qd≥Qc by the LoD, the first term on the

right-hand side is non-negative. Therefore, S−Qc×p0×d>0 implies ∆π>0, which is true whenever

Qc <
S
p0×d . From these two facts it follows that the firm could do no worse than if (i) everybody

who consumes Qc≥ S
p0×d under default pricing (i.e., all strong uptakers) buys the subscription and

then consumes minimal additional volume, while (ii) nobody who consumes Qc <
S
p0×d ever buys

the subscription. This constitutes the adversarial DGP, since it minimizes firm profitability for a

given (S, d) pair, subject to consistency with observables and the LoD.

For example, this extreme scenario would occur if each consumer’s demand curve had a discon-

tinuity at price p0(1− d) and took the form Q(p;Qc, Qd) = Qc1{p>p0(1−d)}+Qd1{p≤p0(1−d)},

24Note that in the example depicted in Figure 1, the CDF difference has a unique maximum corresponding to the

single crossing point of the PDFs, so q∗min=q∗max. Otherwise, gc(q
′)=gd0(q′) for q′ ∈ [q∗min, q

∗
max] would be true.
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where the joint distribution of (Qc, Qd) follows the DGP described by Qd0 . Such an individual

would not subscribe even though they are highly sensitive to the price change, because their con-

sumer surplus from getting the discount is 0. Extreme demand patterns like this—where aggregate

demand is constant for prices p ∈ (p0(1−d), p0], and decreases precipitously at price p0(1−d)—cannot

be ruled out based solely on the information in (Gc, Gd).

Proposition 2. Under Assumptions 1 and 4, if Gc(q) and Gd0(q) are known and are discontinu-

ous at countably many mass points, then Bd0(q;S, d) constitutes an identified upper bound on the

strong uptaker distributions. That is, for any (potentially out-of-sample) discount d ∈ (0, 1), and

subscription fee S≥0, we have Pr
[
Qd≤q|Qc≥ S

p0×d

]
≤Bd0(q;S, d), where the function Qd0(q; d, v)

is defined in (9) when (Gc, Gd) are absolutely continuous and Gc(q)−Gd(q) is unimodal, and defined

in (24) in Appendix C otherwise. Moreover, Bd0 is sharp in the following ways:

(i) The in-sample bound Bd0(q;S, d0) (which does not depend on Assumption 4) is uniformly

sharp with respect to q in the sense that ∀q the bounding DGP is consistent with the LoD

(i.e., Qd0(q; d0, V )≥q) and the shapes of (Gc, Gd0) (i.e., Pr[Qd0(Qc; d0, V )<q]=Gd0(q)).

(ii) Bd0(q;S, d) is uniformly sharp with respect to q and extrapolated aggregate demand in the

sense that, ∀q the bounding GDP is consistent with (Gc, G
oos
d ) (i.e., Pr[Qd0(Qc; d, V )<q]=

Goosd (q)) and satisfies the LoD with respect to prices p0 and p0(1−d) (i.e., Qd0(q; d, V )≥q).

We relegate a technical proof of Proposition 2 to Appendix B.2. In the proposition, our usage

of the term uniformly sharp follows Firpo and Ridder (2019) and Molinari (2020).25 The notion of

sharpness we have emphasized—uniform sharpness in q space, holding discount d fixed—is moti-

vated by the interests of an empirical market designer using our methodology for robust nonlinear

pricing: In Section 4.3 of our empirical application, a fixed discount level d∗ (the optimum implied

by the rank-stable upper bound) serves as a focal point for lower-bound computation. The follow-

ing corollary provides simpler intuition behind the SUD lower bound for subscription offers that

are not overly generous:26

Corollary 1. For arbitrary (S, d) pairs, we define “small” fee-to-discount ratios S
p0×d as those that

are strictly less than the infimum of the right-most modal region of Gc(q)−Gd(q) (e.g., if Gc(q)−Gd(q)
is unimodal then “small” means S

p0×d <q
∗
min). Then, under the assumptions of Proposition 2, for

an arbitrary subscription offer (S, d) where the fee-to-discount ratio is not small, the sharp SUD

lower bound Bd0 is the same as the conditional control CDF of demand, given strong uptaker status,

or Bd0(q;S, d)=Pr
[
Qc≤q

∣∣Qc≥ S
p0×d

]
= Gc(q)−Gc(S/(p0×d))

Gc(S/(p0×d)) = Gc(q|Qc≥S/(p0×d)).

25Mourifie et al. (2020) use the term functionally sharp to refer to the same concept.

26As we will show in the empirical application, robust policies tend to not be overly generous.
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This corollary implies that for a wide range of potential (S, d) pairs, the SUD lower bound derived

in Proposition 2 depends only on the in-sample demand distribution Gc and is therefore insensitive

to the form of extrapolation used to calculate Gd, as we discuss further in the following remark.

Remark 4. Out-of-Sample Inference First note that the in-sample discount d0 together with

observables (Gc, Gd0) and equation (9) are sufficient to pin down in-sample bounds, Qd0(q; d0, v)

and Bd0(q;S, d0), under d0 coupled with arbitrary subscription fee S. If the researcher is reticent to

impose any additional model structure aside from the LoD—e.g., the extrapolation methods listed

in Remark 2—then Corollary 1 and Proposition 4 (Appendix B.3) apply: in short, little inferential

power beyond the in-sample bounds is possible in that case, due to lack of an obvious way to

project reduced-form aggregate demand Gd. Consider first a discount d>d0 that is more generous

than the in-sample discount. Here we cannot rule out DGPs where an arbitrarily large fraction of

consumers have virtually satiated demand under price p0(1− d0). Thus, Qd0(q; d, v)=Qd0(q; d0, v)

and Bd0(q;S, d) = Bd0(q;S, d0) when d > d0. If d < d0 is less generous, then by similar logic we

cannot rule out DGPs where demand is locally satiated, being arbitrarily close to Gc for any price

p∈(p0, p0(1− d0)). Thus, Bd0(q;S, d)=Gc(q|Qc ≥ S
p0×d) whenever d<d0.

On the other hand, a researcher comfortable leaning on some form of model structure for out-

of-sample inference may still harbor concerns about whether options (1) and (2) of Remark 2

induce excessive mis-specification bias in aggregate demand projections Goosd . In that case, the

reduced-form linear quantile shifts option (3), or Corollary 1 may still be of use. The former may

provide a reasonable first-order approximation to reduced-form aggregate demand quantiles for

general (S, d) pairs, while the latter provides a precise characterization of structural counterfactual

demand quantile bounds for (S, d) pairs that are not overly generous.

In either case, the lower bound under out-of-sample discounts d 6=d0 follow similarly as in Remark

3. First, by Assumption 4, we can use in-sample demand distributions (Gc, Gd0) to produce reduced-

form aggregate demand projections Goosd (q;Gc, Gd0). The counterfactual CDFs Gc and Goosd can

then be plugged back into equations (9) to get Qd0(q; d, v) and Bd0(q;S, d). In our empirical

application, we explored inferences based on all three cases of Remark 2 and Corollary 1, and find

that our main empirical conclusions are insensitive to one’s choice among these options. �

Remark 5. Theory-Free Bound Without imposing the LoD, one can derive an alternate, theory-

free lower bound B̃d0 for the SUDs. The analogous DGP, Q̃d0 would be one that swapped ranks:

the individual whose consumption Qc under default pricing was in the rth quantile of Gc also has

discounted consumption Qd in the (1−r)th quantile of Gd. This DGP Q̃d0 in general need not respect

the LoD. In contrast, we have constructed our main bound Qd0(Qc; d) under the heuristic that we

wish to “maximize” the degree of RS violations subject to the LoD. The comparison between the

resulting demand CDF bounds, B̃d0 and Bd0 , helps to illuminate how structure from basic economic

theory delivers useful inference. We explore this idea empirically in Section 4.3. �
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2.5. Lower-Bound Refinement Using Richer Experimental Variation. We now explore

how multiple discount treatment arms can enhance inferential power. While richer price variation

can be used in various ways—e.g., testing and improving the extrapolation method—we focus here

only on improving the informativeness of the lower bound, holding some extrapolation method

fixed.27 We first describe how bounds on SUDs can be translated into bounds on profits, π(S, d),

from a given subscription program. We then consider richer experimental variation including ad-

ditional discounts Dd = {d′<d′′< · · ·<d(K−1)<d} that are less generous than d—i.e., d(i) ∈ (0, d),

i= 1, . . . ,K−1—and the corresponding aggregate demand data GDd = {Gc, Gd′ , . . . , Gd(K−1) , Gd}.
For the current exercise it will simplify discussion markedly to consider the focal discount d∗, on

which bounding inference is to be done, as belonging to the set Dd, or in other words, d∗=d.28

Based on our discussion in Section 2.4.2, under the assumptions of Proposition 2 the DGP Qd0
satisfies the adversarial property, provided that all individuals consuming Qc<

S
p0×d under Qd0 do

not buy the subscription. However, some adversarial behavior could be ruled out if we were able

to observe the distribution of demand at a price discount between 0 and d. Thus, the information

in GDd allows us to derive a set of refined strong uptakers by including some individuals who were

previously considered part of the set of intermediate consumers (see Section 2.2 and Fact 2), and

obtain tighter bounds on aggregate worst-case post-subscription behavior.

Consider a hypothetical scenario where we observe counterfactual demand Qd′ at a single inter-

mediate discount level d > d′ > 0. When Qd′ = qd′ , then the demand curve passing through the

price-quantity pair (p0(1−d′), qd′) which delivers the least consumer surplus relative to d is the

demand curve Q(p) = qd′1{p ≤ p0(1−d′)}; in other words, where demand is constant for prices

below p0(1−d′), and where demand jumps from 0 to qd′ precisely at price p0(1−d′). In this case, the

change in consumer surplus relative to the base discount of d is p0(d−d′)qd′ . Thus, a consumer with

counterfactual demand Qd′≥ S
p0(d−d′) at the intermediate price point must obtain surplus at least as

large as p0(d−d′)× S
p0(d−d′) =S, and thus, these consumers will unambiguously wish to subscribe to

(S, d) under any DGP consistent with the LoD. With that in mind, we can now define the strong

uptaker set given Dd={d′, d} as RSU(p0, S,Dd)=SU(p0, S, d) ∪
{

consumer n : qd′n≥ S
p0(d−d′)

}
.

In reality, we do not directly observe an individual’s complete (qc, qd′ , qd) triple. However, recall

that the adversarial DGP for an (S, d) pair is one where refined strong uptakers consume minimal

incremental q after subscribing, subject to consistency with observables GDd = {Gc, Gd′ , Gd} and

27A complete treatment of extrapolation methods and their refinements is beyond the scope of this paper, but the

interested reader is directed to Sun (2023b) for an in-depth analysis on this topic.
28To fix ideas, suppose the econometrician has a dataset {Gc, G0.10, G0.15} with demand under default pricing and

two treatment arms, but wishes to derive a refined lower bound relative to discount d= 0.25. Then our discussion

assumes the econometrician will use some extrapolation method to first project aggregate demand Goos0.25, and then

derive a refined bound based on D = {0.10, 0.15, 0.25} and GD = {Gc, G0.10, G0.15, G
oos
0.25}. However, a researcher

unwilling to lean on model structure that facilitates extrapolation would simply take Goos0.25(q)=G0.15(q), ∀q instead.
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the LoD. Characterizing this scenario is equivalent to maximizing an RSU consumer’s Qc while

minimizing that same consumer’s Qd. First, if we re-define p̃0 =p0(1−d′) as the default price, and

d̃ = d−d′
1−d′ , then Corollary 1 applies to the price change from p̃0 to p̃0(1− d̃)—or equivalently, the

price change from p0(1−d′) to p0(1−d)—which indicates that Qd=Qd′ is the DGP with minimal

price responsiveness for RSUs. On the other hand, for the price change from p0 to the intermediate

discounted price p0(1−d′), we can apply the logic of Proposition 1 and conclude that the rank-stable

DGP where Qc=G−1
c [Gd′(Qd′)] is true maximizes Qc, subject to consistency with observables and

the LoD. Finally, note that whenever Gd′(q)<Gc(q) ∀q we have Qd=Qd′>Qc.

This last finding indicates that we have achieved a tightening of the lower-bound DGPQd0(q; d, v),

relative to the case with only a single price change, where we could not rule out Qd =Qc. More

formally, we can define our refined lower-bound DGP as29

QRDd(q;S, d, v) ≡ Qd0(q; d, v)1
{
G−1
d′ [Gc(q)]<

S
p0(d−d′)

}
+G−1

d′ [Gc(q)]1
{
G−1
d′ [Gc(q)]≥ S

p0(d−d′)

}
. (10)

The first term encompasses previous inferences about consumer types when only a single price

change d was available: for demand levels Qd′ between 0 and G−1
d′ [Gc(q)] the adversarial demand

projection does not change. The second term characterizes how the additional intermediate demand

distribution Gd′ allows us to update the worst-case scenario. Specifically, it eliminates some degree

of weak price responsiveness by requiring that RSUs—i.e., consumers with qd′ ≥ S
p0(d−d′) under

discount d′—if they were given the more generous discount d, would have to increase counterfactual

demand by at least a margin of G−1
d′ [Gc(qd′)]−qd′ in order to be consistent with observables.

We can apply identical logic to any other price triple (p0, p0(1 − d(i)), p0(1 − d)) for d(i) ∈Dd =

{d′, . . . , d(K−1), d}, and show that the worst-case DGP consistent with {Gc, Gd(i) , Gd}, and the

LoD implies that all individuals with demand quantile rank r > Gd(i)
(

S
p0(d−d(i))

)
under discount

d(i) must behave consistently with rank-stability when prices shift from p0 to p0(1−d(i)). We can

aggregate these individual worst-case DGPs into a single refined DGP, QRDd(q;S, d), consistent with

all observables, GDd ={Gc, Gd′ , . . . , Gd(K−1) , Gd}, and the LoD.

Whenever d(i)<d(j), if consumers with baseline demand Qc=G−1
c (r) behave in a rank-stable man-

ner when prices shift from p0 to p0(1−d(j)) in the worst-case DGP consistent with {Gc, Gd(j) , Gd},
then they must also behave in rank-stable fashion when prices shift from p0 to p0(1−d(i)) in the

worst-case DGP consistent with {Gc, Gd(j) , Gd} ∪ {Gd(i)}. Formally extending this argument, let

i∗(r) ≡ max
{
i∈{1, . . . ,K} : r > Gd(i)

(
S

p0(d−d(i))

)}
, where, by convention, max ∅ ≡ 0. Thus, the

refined lower-bound DGP and refined SUD bound are

QRDd(q;S, d, v) =

Qd0(q; d, v) i∗(r)=0

G−1

d(i
∗)

[
Gc(q)

]
i∗(r) 6=0

and BRDd(q;S, d)≡Pr
[
QRDd(Qc;S, d, V )≤q|RSU(p0, S,Dd)

]
, (11)

29For simplicity, equation (10) assumes that Gc is absolutely continuous. Otherwise one can replace the “Gc”

terms with a(q) + b(q)v, where a and b are defined in (5).
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where RSU(p0, S,Dd) = SU(p0, S, d)∪
⋃K−1
i=1

{
consumer n : qd(i)n≥ S

p0(d−d(i))

}
. Intuitively, each of

the intermediate price shifts, with their corresponding demand CDFs Gd(i)(q), i = 1, . . . ,K−1,

imposes some lower bound on the minimal price responsiveness of consumers at the rth quantile

under the control demand distribution Gc(q). Equation (11) aggregates this information as the

upper envelope of minimal price responsiveness, for each r∈ [0, 1].

Proposition 3. For Dd={d′, . . . , d(K−1), d}, if GDd ={Gc, Gd′ , . . . , Gd(K−1) , Gd} are known and Gc

is discontinuous at countably many mass points, then BRDd(q;S, d) defined in (11) is identified and

constitutes a lower bound on RSU demand Pr [Qd ≤ q|RSU(p0, S,Dd)] ≤ BRDd(q;S, d).

3. Data, Estimation Strategy, and Results

We now execute an empirical case study using a rich internal dataset from Lyft, a popular

rideshare platform in the United States. Like many firms that offer subscription programs—e.g.,

Costco, Hello Fresh, Chargepoint, Audible.com—rideshare platforms have ongoing relationships

with customers whose demand fluctuates over time, and they collect a wealth of internal transaction

data, often including some platform-imposed exogenous price variation. They also typically have

little or no information on their customers’ demand intensity for goods/services of rival firms.

We begin by analyzing data from a subscriptions RCT of the form described in Section 2.1: in

each of two treatment arms, a random set of consumers were offered the option to buy a monthly

subscription with a discount of da×100%, a= 1, 2, for a month, in exchange for an upfront sub-

scription fee of $S.30 The control group consisted of all other consumers within the same sample

population who did not receive a subscription offer, and thus all made demand decisions over the

ensuing month under default pricing. We use our explicit model of behavioral mistakes (Section

2.1) to allow for deviations from full rationality in uptake decisions, while estimating parameters

of the baseline multiplicatively separable utility model.

We complement this analysis with data from a second pricing RCT that eliminates the need

for considering behavioral mistakes in subscription purchases. In this dataset, a random subset of

consumers (treatment group) received a fixed discount off all rides over a two-week period. The

control group consisted of all other rideshare consumers who operated under default pricing. We

refer to this as the uniform-discount RCT, since the discount was automatically applied to all

treated individuals, thus eliminating concerns over salience, eagerness, or forecast error.

We can fit the point-identified RS structural model to data from each of the three experiments,

as a test of basic model assumptions. As a preview, the two arms of the subscriptions RCT produce

structural estimates that are broadly consistent with each other. This preliminary test suggests

that the baseline RS model appears consistent with the latent DGP. However, we find substantial

30The value of S was the same for both treatment arms, but to protect Lyft’s internal data security we do not

report the amount of S in this paper. See Section 3.1 for full discussion on reported consumption units.
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differences between the shapes of the utility functions recovered from the subscriptions and uniform-

discount RCTs. We interpret these differences as a rejection of rank stability in characterizing Lyft’s

consumer base. In the consumer-demand context, a likely culprit is that the two RCT designs induce

different unseen selection patterns as some consumers substitute consumption between Lyft and its

competitors under discounted pricing. Structural estimates from this section set the stage for our

robust market-design approach discussed in Section 4.

3.1. Reported Consumption Units. Lyft rides are heterogeneous, so we need a measure of

aggregated consumption that can be interpreted as q within the model. The most straightforward

way is to define q as the cost of the ride in absence of discounts. For example, an individual in

control who takes two rides at $20 and $15 is recorded as having q= 35, while another who took

the exact same rides, but had a 10% discount would pay $31.5=(1− 0.1) · ($20 + $15) but would

also be recorded as having non-discount equivalent (NDE) consumption q=35. This convention of

using NDE as our measure of q is convenient for two reasons. First, it allows us to normalize the

baseline market price to p0 =1. Second, two different origin-destination pairs at the same point in

time may differ in miles travelled, while a single origin-destination pair may be considered two very

different goods at different points in time, and hence be priced differently. Measuring q as total

NDE allows for a convenient comparison across these scenarios. This approach is akin to assuming

hedonic valuation of ride attributes (Rosen (1974)), and is similar in spirit to “bid homogenization”

in the auctions literature (e.g., Haile et al. (2006), Athey and Haile (2007)).31

When we report our results in tables and/or figures, we add one more normalization for q to

maintain Lyft’s data confidentiality. Rather than reporting units of q directly, we divide by the 98th

percentile (monthly) q observed in our data, denoted q. Thus, all plots/tables involving q represent

various levels of consumption as fractions of q. Note that regardless of how q is normalized,

percentage discounts are still represented by multiplying prices by d. Since this is a reporting issue

only, for simplicity we maintain the convention that default price for 1 unit of consumption is p0 =1.

3.2. Experiment Overview and Descriptive Statistics. We first analyze the subscriptions

RCT data (from early 2019), where Lyft offered a random subset (treatment group) of its users an

opportunity to buy a discount lasting one month for an upfront fee while baseline rideshare pricing

remained unchanged for a control group. In both treatment arms, the upfront fee was roughly 3%

of q. The offered discount among treated individuals was also randomized to be either d1 =15% off

or d2 =25% off. For this experiment we have a dataset containing an indicator vector tn for which

31In empirical auctions, bids are often regressed on auction covariates to “homogenize” them. The residual is

interpreted as bidder-specific demand intensity, and the regression terms are hedonic utilities of auction covariates.

In our case, ride covariates (proxied for by prices) implicitly play a similar role, while θ represents demand intensity.
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Table 1. Summary Statistics for Subscription Uptake Behavior

Treatment Arm: 15% Off Treatment Arm: 25% Off

Variable Estimate Std.Err. 95%CI Estimate Std.Err. 95%CI

Proportion Strong Uptakers 0.1901 (0.0007) [0.1887,0.1915] 0.2974 (0.0008) [0.2958,0.2990]

Revenue Share of Strong Uptakers 0.6986 (0.0012) [0.6962,0.7009] 0.8433 (0.0007) [0.8420,0.8447]

Proportion Uptakers 0.0091 (0.0002) [0.0088,0.0094] 0.0156 (0.0002) [0.0152,0.0160]

Proportion Saved Money | Uptaker 0.8278 (0.0007) [0.8265,0.8291] 0.9297 (0.0005) [0.9288,0.9306]

Notes: The third row shows the proportion of the treatment group who actually were uptakers. The fourth row shows the proportion

of actual uptakers who saved money as a result of buying the subscription. The sample sizes were, respectively: Control: Nc=318, 949,

15% Off: N15 =318, 755, 25% Off: N25 =319, 547.

treatment consumer n was assigned to (t0n=1 for Control, t1n=1 for 15% off, t2n=1 for 25% off),

an indicator υn for n’s subscription choice, and consumption level, qn.

We complement our analyses of the subscriptions experiments with data from a second RCT in

2019 where Lyft gave automatic discounts of d0 = 10% (for a duration of 2 weeks) to a randomly

chosen set of consumers. Since this treatment gave a default, uniform discount of 10% to each

consumer in treatment, the lack of up-front subscription decisions eliminates previous concerns

over behavioral phenomena such as offer salience and/or eagerness. For each individual n in our

uniform-discount data, we record an indicator tudn for treatment status (i.e., whether or not they

got the 10% discount), and consumption qn over the ensuing two-week period.

Table 1 summarizes uptake decisions in the subscriptions RCT. As is typical of within-firm

datasets, our overall sample size was fairly large (N s = 957, 251), so all estimates reported in the

table are highly significant and statistically different across the two columns, despite low uptake

rates. Strong uptaker status can only be directly confirmed within the control group, where baseline

demand Qc is observed for the entire subsample. We compute statistics about uptakers (i.e., those

who were offered a subscription and purchased it) separately within the two treatment subsamples.

The proportion of strong uptakers naturally increases with the offered discount d, as does the

share of firm revenues which are derived from strong uptakers. Even though almost 30% of the

population are strong uptakers, under 2% of the treatment group actually subscribed, which is

evidence of salience and/or forecast error. This is not surprising, as the experiment was an initial

randomized trial, and hence was not accompanied by the sorts of marketing efforts associated with

launches of mature product lines. Moreover, while a large fraction of subscribers saved money, this

fraction is less than one, providing evidence of eagerness and/or forecast error.

The primary data inputs to our structural analysis are various CDFs of consumption across

different subgroups within the experiments, plotted in Figure 2. In Panel (A), we display the

demand CDFs in the subscription experiments, comparing the control group (sample size N s
0 =

318, 949) to the two treatment groups (sample sizes N s
1 =318, 755 and N s

2 =319, 547, respectively).

In Panel (B), we plot demand CDFs of subscription uptakers in the two treatment arms. These

naturally differ much more from the control demand CDF, due to a combination of selection effects

(uptake decisions) and treatment effects (increased demand under discounted pricing). We can
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reject equality of each treated distribution and the control distribution, as well as equality of

the two treatment distributions, at the 5% level or less in Panels (A) and (B), using a standard

Kolmogorov-Smirnov test: the maximum p-value for all six possible pairwise comparisons in the

two figures is 0.028. In Panel (C) we plot the demand CDFs in the uniform-discount RCT for the

control group (Nud
c =500, 645) and the treatment group (Nud

d =450, 634). We firmly reject equality

of these two CDFs using a Kolmogorov-Smirnov test (p-value ≤ 10−16). Finally, Table 2 contains

a comparison of demand moments across the subscriptions and uniform-discount experiments.

Figure 2. Raw CDFs From Experiemnts

(a) Subscription Aggregate CDFs (b) Subscription Uptaker CDFs (c) Uniform-Discount CDFs

Notes: Panel (A) compares the demand CDF within the control group to the demand CDF in the treatment group. Panel (B) compares

the demand CDF of the control group with the demand CDFs for uptakers within the two treatment arms. Panel (C) compares demand

CDFs of control and treatment for the uniform-discount RCT.

Several facts are evident from the summary statistics and CDF plots. First, the LoD is empir-

ically upheld in all cases, as lower prices drive stochastic dominance shifts in demand. Second,

aggregate effects of the subscriptions treatment were small because the treatment condition here

was an offer to purchase a discount, and only a small fraction of treated consumers did so. Third,

uptakers within the subscription RCT are systematically different from the rest of the sample

population: their demand CDFs differ dramatically from the control CDF. These differences en-

capsulate both selection and treatment effects, which our identification strategy is designed to tease

apart. Fourth, there are some differences between demand distributions in the subscriptions and

uniform-discount experiments: the mass point at zero is somewhat larger in the latter. As we

discuss in Appendix E, these differences disappear after controlling for observable characteristics

of the respective populations, and do not drive our main results or our model test results.

Table 2. Summary Statistics for q

Min 1st Quartile Median 3rd Quartile Max Mean Std. Dev. N

Subscription 0.000 0.000 0.029 0.100 1.000 0.081 0.131 961,003

Uniform Discount 0.000 0.000 0.000 0.102 1.000 0.081 0.148 946,681

Pre/Post Difference (UD) -1.000 -0.084 0.000 0.013 1.000 -0.027 0.160

Notes: Rows one and two present information about the distribution of q in the Subscription RCT and uniform-discount RCT,

respectively. The third row contains information about the distribution of the diferences between the value of q when comparing the

pre-experiment period to the post-experiment period in the uniform-discount RCT.
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3.3. Estimation: Subscriptions experiment. In our main empirical application, we compute

all estimates and counterfactual projections under the multiplicatively separable utility model. In

Appendix G, we probe for robustness to mis-specification error by re-computing estimates and

counterfactuals for the polar opposite extreme of the ϕ-separable family: additively separable

utility (i.e., ϕ = 0). Our main market-design conclusions remain largely unchanged. Thus, the

counterfactual extrapolation encoded in our particular application of Assumption 4 is not a key

driver of our empirical results. Empirically, the conditions required by Corollary 1 turn out to be

satisfied for the optimal contract (S∗, d∗) considered in Section 4 below, which implies that empirical

market-design prescriptions should be largely invariant to one’s choice of extrapolation method.

In Section 2.1, we established a constructive identification argument for two demand CDFs that

satisfy the RS condition 1: G(q|(1−d), υ=1), for (observed) demand under discount for uptakers,

and G(q|1, υ = 1) for (counterfactual) demand under default pricing for uptakers. The former is

known directly from raw data, while the latter is pinned down by equation (3) and the objects τ

(uptake rate), Gc(q) (control demand CDF), and Gta(q) (treatment demand CDF in treatment arm

a=1, 2), which are known from raw data. Within the multiplicatively separable utility model, this

in turn allowed us to identify the uptake function Υ(q), the behavioral parameters ρ (salience), δ

(eagerness), Hε(ε) (forecast-error distribution); and the common utility function u(q).

3.3.1. Stage 1. We begin by parameterizing the two rank-stable demand CDFs as cubic B-splines:

Ĝ(q|1−da, υ = 1;ωa) ≡
∑Ka+3

k=1 ωakBak(q), for a = 1, 2, and Ĝ(q|1, υ = 1;ω0) ≡
∑K0+3

k=1 ωkB0k(q),

where the basis functions Ba/B0 are uniquely determined by knot vectors κa = {κa1<κa2< · · ·<
κa,Ka+1}, a= 1, 2 and κ0 = {κ01<κ02< · · ·<κ0,K+1} (see de Boor (2001)), which are pre-specified

by the econometrician, span the relevant support, and partition it into Ka and K0 sub-intervals,

respectively.32 For each a = 1, 2 the B-spline forms facilitate a straightforward GMM estimator,

(ω̂a, ω̂
a
0) =arg min(ωa,ω0)

{∑Nua
n=1

(
Ĝ(qn|1−da, υ=1;ωa)− G̃(qn|1−da, υ=1)

)2

+
∑Nua

n=1

(
Ĝ(qn|1, υ=1;ω0)− G̃(qn|1−da, υ=1) + G̃ta (qn)−G̃c(qn)

τ̃a

)2
}
,

s.t. ωak ≤ ωa,k+1, k = 1, . . . ,Ka + 2; ω0k ≤ ωk+1, k = 1, . . . ,K + 2;

ω0,1 ≥ 0, ωa,1 ≥ 0 ω0,K0+3 = 1, ωa,Ka+3 = 1; and Ĝ(qn|1, υ=1;ω0) ≤ Ĝ(qn|1−da, υ=1;ωa) ∀n,

(12)

where objects with tildes are empirical analogs of terms on the right-hand side of equation (3):

G̃(qn|1−da, υn=1)=
∑Ns

n′=1 1(qn′≤qn∩tan′=1∩υn′=1)∑Ns

n′=1 1(tan′=1∩υn′=1)
, G̃ta(qn)=

∑Ns

n′=1 1(qn′≤qn∩tan′=1)∑Ns

n′=1 1(tan′=1)
, G̃c(qn)=

∑Ns

n′=1 1(qn′≤qn∩t0n′=1)∑Ns

n′=1 1(t0n′=1)
,

and τ̃=
∑Ns

n=1 1(tan=1∩υn=1)∑Ns

n=1 1(tan=1)
. The penultimate line of the constraints represents terminal conditions

32A B-spline representation is useful for its differentiability and ease of imposing shape constraints directly as

linear restrictions on the parameters (Hickman et al. (2017)). This is especially important because the unsmoothed

empirical analog of equation (3) for G(q|1, υ=1) is not guaranteed to be monotone in finite samples.
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CDFs must satisfy, and the last line is a stochastic dominance condition implied by the LoD.

Resulting GMM estimates of the two main CDFs are plotted in Figure 12 in Online Appendix D.

3.3.2. Stage 2. After computing these estimates (still holding a= 1, 2 fixed), it is straightforward

to plug them directly into Equation (4) to estimate the uptake function and behavioral parameters:

Υ̂a(q)= ĝ(q|1,υ=1;ω̂a0)τ̃a
ĝc(q;ω̂c)

, ρ̂a=limq→∞ Υ̂a(q), δ̂a=
limq→0 Υ̂a(q)

ρ̂a
, and Ĥa

ε (q)= Υ̂a(q+S/da)−ρ̂aδ̂a
ρ̂a−ρ̂aδ̂a

, where ĝc(q; ω̂c)

is the derivative of a B-spline estimate of the control demand CDF.

For utility estimation, we specify a knot vector, κu = {κu1 < κu2 < · · · < κu,Ku+1}, and pa-

rameterize the utility function as a flexible quartic B-spline û(q;ωu) =
∑Ku+4

k=1 ωukBuk(q). Re-

call that the CDF G(q|1, υ = 1) is a selection-corrected analog of the (observed) treatment CDF

G(q|1−da, υ=1), for an identical population of control consumers who would have purchased a sub-

scription, had they received the offer. Within this hypothetical population, the term G̃ta (qn)−G̃c(qn)
τ̃a

represents quantile-specific demand shifts under discount da. For treatment arm a define T̃a(qd)≡
Ĝ−1

[
Ĝ(qd|1−d, υ=1; ω̂a)

∣∣1, υ=1; ω̂a0

]
. This mapping is the prediction any RS model would make

about how much an individual consuming qd at discounted price (1−d) would consume when the

price is p0 =1 instead. For a given guess of the utility parameters ωu, based on equation (2) we can

define T̂ (qd;ωu) ≡ (u′)−1
[

1
1−du

′
(
q∗
[
1−d; θ∗(1−d, qd;ωu);ωu

]
;ωu

)
;ωu

]
= (u′)−1

(
1

1−du
′(qd;ωu);ωu

)
, where

θ∗(1−d, qd;ωu) is the consumer type that chooses qd under discount pricing. This represents the

model-derived prediction for how an individual consuming qd at discounted price (1−d) would

consume under price p0 =1. Therefore, we can pin down ωu by minimizing the l2 distance between

T̃ and T̂ . Letting 0=q1<q2<. . .<qm=qmax be an evenly spaced grid of points, we have:

ω̂au =arg minωu

∑m
j=1

(
T̂ (qj ;ωu)− T̃a(qj)

)2

s.t. ωu1 = 0, ωu1 = κu5−κu2
3 , ωuk ≤ ωu,k+1 − ε, k = 1, . . . ,Ku + 3, ε > 0, and

ωuk−ωu,k−1

κu,k+3−κuk ≤
ωu,k+1−ωuk
κu,k+4−κu,k+1

− ε, k = 2 . . . ,Ku + 3, ε > 0,

(13)

where the first constraint is a boundary condition u(0;ωu) = 0, the second constraint is a scale

normalization u′(0;ωu)=1, and the third and fourth enforce monotonicity and concavity.33,34

3.3.3. Empirical Results. In Figure 3, we plot results from separate estimation of the utility and

uptake functions across the two treatment arms. Estimates for the 15% (25%) discount group are

depicted by dashed (solid) lines, with 95% confidence bands depicted by thin lines. We display

33The boundary derivative condition is equivalent to normalizing the demand type of the marginal consumer under

p0 to one, or θ∗(0, 1)=1. Thus, all estimated demand types are relative to this marginal reference consumer.
34Knots are chosen so that κc = κ0 = κ1 = κ2 = κu in order to facilitate comparisons, with sizes Kc = K0 =

K1 = K2 = Ku = 9, as these afforded high flexibility and additional knots made little difference. For efficiency in

smaller samples, one would choose knots uniformly in quantile-ranks and discipline choice of knot-vector size via cross-

validation, or likelihood approaches (e.g., Bayesian/Akaike information criteria). The number of objective function

(13) evaluations should be m≥Ku; we chose m=50. For the tolerance on the shape constraints we chose ε=10−6.
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the utility function, the elasticity function, and the uptake function. The utility function for the

15% arm is estimated less precisely than for the 25% arm. This is analogous to the fact that in

regressions, standard errors tend to decrease when the regressors have higher variance. The 25%

discount is a larger deviation from default pricing, and thus gives more information about the

average consumer’s responsiveness. We cannot reject the null hypothesis H0 : ûu(q; ω̂1
u)= ûu(q; ω̂2

u)

that the two estimated utility functions are the same, since ûu(q; ω̂2
u) (and its confidence bounds)

lay entirely within the confidence bounds of ûu(q; ω̂1
u). Taken together, these two observations serve

as an over-identification test, and the results thus far suggest that the rank-stable, 1-dimensional

multiplicatively separable model is not inconsistent with the data.

Figure 3. Stage-II Estimation: Utility and Uptake (separate estimation)

(a) Utility Function (b) Elasticity Function (c) Uptake Function

Notes: Thick lines are point estimates; Bootstrapped 95% confidence bands (using 2,000 bootstrap samples) are thin lines.

Moreover, while the comparison is noisy, differences between the uptake functions for the 15% and

the 25% arms are as expected. Given a more attractive subscription offer, we see suggestive evidence

that consumers are more willing to subscribe at every q; this is essentially another manifestation

of the LoD. Table 3 reports structural behavioral parameters implied by the uptake functions. We

find that estimates from the two subscription-RCT treatment arms give similar results.

Table 3. Subscription Uptake Parameters

Parameter 15% Off 95% CI 25% Off 95% CI Joint 95% CI

Salience ρ 0.079 [0.039, 0.140] 0.093 [0.060, 0.164] 0.086 [0.055, 0.137]

Eagerness δ 0.019 [0.004, 0.137] 0.107 [0.023, 0.236] 0.046 [0.066, 0.134]

Forecast Err.
Mean µε -0.315 [−0.127,−0.539] -0.357 [−0.201,−0.632] -0.334 [−0.180,−0.548]

Forecast Err.
St. Dev. σε 0.194 [0.084, 0.305] 0.234 [0.118, 0.391] 0.206 [0.102, 0.317]

Notes: This table reports point estimates and bootstrapped 95% confidence intervals (using 2,000 bootstrap samples) for the parameters

summarizing mistakes consumers make when deciding whether or not to buy a subscription.

Uptake parameter estimates are suggestive of three behavioral tendencies. First, we find a

large degree of inattention: uptake is low, even among very high-consumption individuals. This is

not necessarily surprising, given that the data came from a brand new product offering by Lyft.

Second, even low-demand individuals had some positive probability of buying a subscription. Our
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estimates are consistent with 2%-11% of the consumer base being over-eager, conditional on paying

attention. Third, estimates suggest that consumers are fairly inaccurate at forecasting their own

demand over a 1-month horizon. Not only is there considerable month-to-month demand variation,

but perhaps most striking, there is non-trivial bias as well. Forecast mean bias is roughly a third

of q, meaning consumers on average act as if they require a very high degree of confidence that

they will break even before purchasing a subscription. Our view on the behavioral parameters (ρ,

δ, and Hε) is that they represent short-run messaging/information problems that are solvable by

targeted interventions and consumer learning over time. They suggest an important role for the

marketing wing of the firm in the roll-out of a mature subscription plan offering. Evaluation of

this viewpoint is left to future research, but the results illustrate why many real-world subscription

programs include efforts to help consumers understand when it is worthwhile to subscribe.35

We also estimate the model with a single utility function fitted to data pooled across both

treatment arms: ω̂u = arg minωu{w1
∑m

j=1(T̂ (qj ;ωu) − T̃1(qj))
2 + w2

∑m
j=1(T̂ (qj ;ωu) − T̃2(qj))

2},
where w1 and w2 are weights chosen so that their ratio equals the ratio of the within-treatment-

arm mean pointwise variances of the underlying GMM estimators û(qj ; ω̂
a
u) (across {q1, . . . , qm}).

The results are plotted in Figure 4. These look most similar to estimates from the 25% off data

alone, but with tighter confidence bounds. We also jointly estimate behavioral parameters from

the pooled data; results are displayed in Table 3.

Figure 4. Stage-II Estimation: Utility (joint estimation)

(a) Utility Function (b) Elasticity Function

Notes: Thick lines are point estimates and thin lines are 95% confidence bands.

3.4. Uniform-discount experiment. Estimation on the uniform discount data is similar to the

estimator in Section 3.3, but the analysis is more straightforward because all treated consumers

get the same uniform 10% discount. Thus, the uniform discount estimator is a special case of the

previous one, where the RS condition is unencumbered by uptaker status; i.e., Υ(q)=1 is trivially

satisfied for all consumers in the treatment group. In the analogous stage 1 from Section 3.3, the

relevant CDFs are directly known from raw data: G(q|1−d, υ=1)=Gt(q) and G(q|1, υ=1)=Gc(q).

35E.g., Costco nudges consumers in real-time at the checkout line when they would strictly benefit by increasing

their membership to another level (with a higher up-front fee) in order to take advantage of a higher discount rate.



36 BODOH-CREED, HICKMAN, LIST, MUIR, SUN

Thus, we first smooth the empirical CDFs with B-splines similarly as before:

(ω̂d,ω̂0)=arg min(ωd,ω0)

{∑Nud
d

n=1

(
Ĝ(qn|1−d;ωd)−

∑Nudd
n′=1

1(q′n≤qn)

Nud
d

)2

+
∑Nud

c
n=1

(
Ĝ(qn|1;ω0)−

∑Nudc
n′=1

1(q′n≤qn)

Nudc

)2}
s.t. ωdk ≤ ωd,k+1, k = 1, . . . ,Ka + 2; ω0k ≤ ω0,k+1, k = 1, . . . ,K0 + 2,

ω0,1 ≥ 0, ωd,1 ≥ 0 ω0,K0+3 = 1, ωd,Kd+3 = 1; and Ĝ(qn|1;ω0) ≤ Ĝ(qn|1−d;ωd)∀n = 1, . . . , Nud
c .

After specifying a flexible B-spline utility function û(q;ωu), Stage-2 estimation follows Section

3.3.2 using the GMM estimator (13).36 Finally, for each n we can estimate θ̂n (and hence, F̂θ)

within the multiplicatively separable model by inverting the consumer’s FOC (1) for each qn.37

3.4.1. Results. Utility function estimates and (bootstrapped) confidence bounds are in Figure 5.

Remark 6. Experimental Design The tight confidence bands (relative to subscription RCT esti-

mates) are due to (i) lack of uptake failures arising from behavioral mistakes by consumers, and (ii)

a uniform discount applied to both high- and low-demand patrons, which is less common when an

up-front fee inhibits low-demand patrons from purchasing the discount. Thus, a uniform-discount

RCT naturally treats a wider swathe of the population, which increases statistical power. This

implies a novel methodological insight for optimal experiment design: if the goal is to optimize a

nonlinear pricing scheme, then the best initial RCT to learn about latent agent heterogeneity is a

uniform price shift, rather than a randomized screening mechanism. �

In Panel (C) of Figure 5, we plot the elasticity functions from the uniform-discount experiment

and subscription experiment together. We find statistically and economically significant differences

in elasticity estimates across the two experimental settings.38 Why? These differences reflect the

results of another, more stringent test of the basic RS model of consumer demand. While the

test of over-identifying restrictions in Section 3.3.3—based on comparisons across estimates from

different arms of the same subscription experiment—were unable to reject the model, the results

in this section—comparing estimates from two distinct pricing RCT designs—do reject it. Taking

insights from the model we proposed in Section 2.4.1, if unobserved substitution and heterogeneity

in brand loyalty are present in the DGP, then one would expect the two experimental conditions

to induce different unseen selection patterns (via consumer switching behaviors), which could in

principle account for the substantial differences that we see in the baseline elasticity estimates.

36We again choose knots uniformly on the support [0, q], so we are only left to pick the number of subintervals.

We must also specify the number of objective grid points, m. In practice, we chose Kd=K0 =10, Ku=8, and m=50.
37θ is only bound identified when qc= 0, so we back out Fθ by looking at the distribution of consumption in the

treatment group and code θ to be the maximum type consistent with no consumption for all consumers with q= 0.

Given our normalization u′(0) = 1, this amounts to setting θ=0.9 for individuals in treatment with q=0.
38In Appendix E, we show that systematic differences between the sample populations cannot account for the

differences in Panel (C) of Figure 5, so one can rule out sampling differences as a viable explanation.
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Figure 5. Stage-II Estimation: Utility (uniform-discount RCT)

(a) Utility Function (b) Elasticity Function (c) Cross-RCT Model Test

Notes: Thick lines are point estimates and bootstrapped 95% confidence bands (2,000 bootstrap samples) are depicted by thin lines.

To be useful as a market-design tool these benchmark estimates must be adjusted according

to the magnitude of RS violations in the data. Intuitively, if unobserved consumer substitution

is very common and accounts for a large fraction of the aggregate shift from Gc to Gd, then

the fee-discount offer (S, d) should be adjusted in order to maximize profitability. If unobserved

substitution behavior is less prevalent, then the baseline model presented here will prescribe a

subscription (S, d) that is closer to the true optimum. In datasets our methodology is designed

for—rich internal firm data with no market-level demand shares—these concerns are impossible to

control for directly. Therefore, using current structural estimates as a baseline reference point, we

implement robust market-design via our bounds approach from Sections 2.2–2.4.

4. Counterfactuals and Robust Policy Inference

We now use model estimates from the uniform-discount experiment to design an optimal sub-

scription program; this choice is motivated by three ideas.39 First, differences between the uniform-

discount and subscription RCTs are largely driven by selection effects due to heterogeneity in

mistake making. Second, we argue (Section 3.3.3) that it is feasible in the long run to mitigate con-

sumer mistakes through experience and firm marketing/information interventions.40 Third, since

firms may have a hard time changing its subscription program once details are made public, they

should base market design on their best approximation to long-run counterfactual demand shifts.

We begin by characterizing optimal nonlinear pricing under baseline model estimates which

assume rank stability. Although RS may be violated within the latent DGP, recall from Proposition

1 that it characterizes maximal price responsiveness by subscribers, and therefore still serves as a

useful empirical reference point. After deriving a baseline (rank-stable) optimal policy, we employ

our bounding approach to study how the model recommendation should shift under alternate,

39Note that Lyft’s implemented subscription plan pre-dates our analyses (e.g., Figures 6 and 16), so one cannot

reverse-engineer Lyft’s raw consumption quantiles (e.g., the normalizing constant q) from our results.
40Our findings about the mistakes parameters, for example, spurred internal discussions within Lyft about ways

the firm could help its consumers evaluate whether subscriptions made sense for them or not.
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plausible DGPs. We also propose a simple data-driven method to estimate the degree of RS

violations within the firm’s latent DGP. This enables us to produce a single model prescription

that is robust to the worst-case unobserved behavior among the firm’s consumer base.

4.0.1. Marginal Cost Imputation. Henceforth we assume a constant marginal cost, c. Once again,

in order to protect Lyft’s internal data confidentiality, we do not incorporate raw information on its

internal cost structure into our empirical analyses. Rather, we follow an imputation approach that

is common to various strains of the industrial organization literature, including markup estimation

in demand analysis (e.g., Ackerberg et al. (2007), MacKay and Miller (2021)). See Online Appendix

H.1 for complete details on marginal cost imputation. Methodologically, this exercise will be of

utility to researchers who lack access to internal cost data. Note also that it will become transparent

below how changes in marginal cost c affect our derivation of the optimal subscriptions menu.

4.1. Optimal Menu of Subscriptions. Because our pricing problem is essentially a special case

of the more general nonlinear pricing framework of Maskin and Riley (1984), we only sketch the key

points here. The interested reader can find additional technical details in Online Appendix H.2. We

first derive a profit-maximizing continuous menu of subscription offers to produce a fully separating

equilibrium by consumer types. The basic idea is that a firm’s choice of discount as a function of θ

is pinned down by an analog of the inverse-elasticity markup rule for monopoly pricing. Specifically,

let p(θ) denote discounted price paid by subscribers of type θ (within the optimal menu) and let

ε(θ) = − θfθ(θ)
1−Fθ(θ) be the elasticity of the survivor function 1−Fθ(θ) (interpretable as a demand

curve). Then the firm’s first order condition for p(θ) takes the form p(θ)−c
p(θ) =− 1

ε(θ) which implies

that p(θ) = c
1+1/ε(θ) . Having solved for p(θ), the optimal discount to give to each type θ is simply

d(θ)=1−p(θ)p0
. In turn, the optimal upfront cost schedule S(θ) is pinned down by a combination of the

participation and incentive compatibility constraints. Participation constraints imply a boundary

condition S(θ)=0 whenever d(θ)=0, while incentive compatibility implies the ordinary differential

equation S′(θ)=−p′(θ)q∗(p(θ), θ). Solving this ODE gives the optimal fee schedule, S(θ), and the

locus (S(θ), d(θ)) constitutes the optimal continuum of subscription offerings.

We plot the results in Figure 6. For Lyft’s internal data confidentiality, henceforth we report d

as a fraction of the (imputed) markup under default pricing, and S as a fraction of the maximum

upfront fee from the optimal menu. Our optimal menu exhibits the “no-distortion-at-the-top”

property familiar to mechanism design: the highest type, θ, buys a subscription where marginal

price equals marginal cost: p(θ)=c. This will be a key detail, moving forward.

4.2. Optimal Single Subscription. While a continuum menu is interesting to market-design

researchers, real-world practitioners (e.g., Costco, Lyft, Charge Point, etc.) typically offer either

one or a small number of subscription plans. Firms may prefer simplicity for ease of implementation,

or because customers find it difficult to select their optimal choice from a continuum. This begs

the question, how much profits are left on the table in foregoing the fully separating equilibrium in
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Figure 6. Profitability of Subscription Offers

Notes: Discount d is expressed as a fraction of the markup under default pricing. Upfront fee S is expressed as a fraction of the

maximal upfront fee in the optimal menu. Lighter shades in the heatmap denote higher profitability. We also plot the optimal menu

of subscription prices, and a point representing the optimal single subscription.

favor of a single optimal subscription offer? To answer this question we construct a grid of discounts

d from 0 to marginal cost pricing and another grid of upfront fees S from 0 to 10% larger than

the maximum upfront fee from the optimal menu. For each candidate subscription offer (S, d), we

compute the (fully rational) model-implied subscription and consumption choices of each consumer

type. Integrating over the type distribution gives us an estimate of total profits under each (S, d).

Results of this exercise are also shown in Figure 6, which depicts the optimal single contract,

denoted by (S∗, d∗), with a dot, and a heatmap corresponding to the profitability of various (S, d)

pairs. Lighter shades denote higher profitability. The heatmap, along with the superimposed opti-

mal continuum menu shows an interesting pattern: There is a large region of high-profit contracts,

with intermediate values of d (i.e., not too close to 0 or 1), where any single contract near the

optimal menu performs fairly well.41 The extreme lower-right corner is shaded much more darkly

than the extreme upper-left corner, indicating that the main threat to profitability is offering a

subscription plan that is overly generous (i.e., S being too low and/or d being too high). This

insight will play a key role in our robust subscription offer derivation in the following section.

We find that the best single subscription offers a discount roughly half of the markup and captures

90% of profit gains from an optimal continuum menu. This suggests an answer to the previous ques-

tion regarding the profit-simplicity tradeoff: the full continuum menu is only marginally better than

a well-chosen simple menu. Thus, only mild or moderate concerns about implementing complex

menus could rationalize the fact that most real-world subscription programs are low-dimensional.

4.3. Robust SUD Bound Estimates. Having optimized nonlinear pricing using our baseline

estimates derived under the ideal but potentially faulty RS assumption, we now turn to our robust

41There is reason to believe that the high-profit region in the heatmap of Figure 6 should generally be centered

around the intermediate range of the optimal menu in other settings as well. See Online Appendix F for discussion.
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Figure 7. Robust Bounds

(a) SUD Bounds

(b) Refined SUD Bounds (c) SUD Elasticity Bounds

Notes: Panel (A) plots empirical bounds, Bd0 (q;S∗, d∗) and Bd0 (q;S∗, d∗), and the theory-free lower bound, B̃d0 (q;S∗, d∗). Panels

(B) and (C) plot refined lower bounds BRDd∗ (q;S∗, d∗) under hypothetical intermediate experimental prices Dd∗ , using simulated data

to illustrate how additional exogenous price variation enables further inferential power. Panel (C) plots implied bounds on demand

elasticities, holding discount d∗ fixed, and varying upfront fee S; i.e., E∗ (qc) =
E[ε(Qc)Qc|Qc≥qc]

E[Qc|Qc≥qc]
, where qc= S

p0×d∗
.

bounds analysis. While this approach admits a variety of interpretations, an especially salient moti-

vating example (Section 2.4.1) is unobserved substitution between Lyft and competing transporta-

tion services. Recall from Sections 2.3 and 2.4 that characterizing sharp bounds on counterfactual

demand under (potentially out-of-sample) discounts d hinges only on knowledge of the observable

reduced-form demand CDFs (Ĝc(q), Ĝd0(q)) which are estimable from raw data. We plot the em-

pirical bounds in Figure 7—B̂d0(q;S∗, d∗) as outlined in Remark 3 and B̃d0(q;S∗, d∗) as outlined in

Remark 4—which are interpretable as conditional demand CDF bounds for strong uptakers (i.e.,

consumers for whom Qc ≥ S∗

p0×d∗ ) under the single RS-optimal subscription offer (S∗, d∗). In our

particular empirical application, the lower bound B̃d0(q;S∗, d∗) is the same for all three forms of

extrapolation considered in Remark 2. This is related to the fact that the conditions of Corollary

1 being satisfied, and thus the lower bound depends only on the in-sample CDF, Gc.

For comparison, we also plot what the theory-free SUD lower bound B̃ (dotted line) would have

been had we not imposed our most basic assumption, the Law of Demand (LoD). This theory-free
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bound is totally uninformative because it places too few restrictions on the latent DGP. On the

other hand, our lower bound Bd0 , which does respect the LoD, is quite informative.42 This finding

demonstrates the inferential power to be had from the most basic behavioral assumptions within

an incomplete structural model of demand. In that sense, it mirrors similar findings on partial

identification in the IO literature, including Haile and Tamer (2003), Hortaçsu and McAdams

(2010), and Freyberger and Larsen (2021), who derived remarkably tight empirical bounds on

private valuations within incomplete bidding/bargaining models, by assuming only that consumers

are not overly cavalier with their bidding, and they do not leave obvious gains from trade on the

table. The main difference between our method and previous work is that we focus on directly

bounding counterfactual demand, rather than bounding the structural primitive distribution Fθ.

Panels (B) and (C) of Figure 7 illustrate lower-bound refinements under hypothetically aug-

mented experimental price variation (Section 2.5). We use the point-identified RS model to sim-

ulate additional sets of reduced-form demand CDFs under intermediate discount levels d ∈ Dd∗ ,
for three increasingly rich sets D1

d∗ = {d∗2 , d
∗}, D2

d∗ = {d∗3 ,
2d∗

3 , d∗}, and D3
d∗ = (0, d∗]. The final

case characterizes (hypothetical) maximal continuous price variation between p0 and p0(1−d∗).
We use the simulated datasets, GD1

d∗
= {Gc, G d∗

2
, Gd∗}, GD2

d∗
= {Gc, G d∗

3
, G 2d∗

3
, Gd∗}, and GD3

d∗
=

{Gc;Gd(q|d), d ∈ (0, d∗)}, to compute bound refinements as an illustration of how additional ex-

ogenous price variation enhances identification by ruling out various worst-case (for profits) DGPs.

Panel (B) compares bounds under the actual data, Bd0(q;S∗, d∗) and Bd0(q;S∗, d∗), to hypothetical

bound refinements BRDd∗ (q;S
∗, d∗) under the actual and simulated data. Panel (C) compares anal-

ogous bounds on demand elasticities. Although these bound refinements (thin lines) are merely

based on simulated additional data—being therefore artifacts of our finite-sample CDF estimates

(Ĝc, Ĝd0)—they are useful for characterizing the partial identification frontier under unknown RS

violations for a researcher who can design a pricing experiment with many treatment arms.

Figure 7 provides key insights on identification. Refined lower bounds under D1
d∗ and D2

d∗ cross

because these sets are non-nested. Conversely, the limiting refined bound under D3
d∗ = (0, d∗] is

everywhere below the other two, because Djd∗ ⊂ D
3
d∗ , j = 1, 2. More broadly, while structural

methods are often critiqued for opaqueness on the relation between empirical moments and model

primitives, the Figure clearly illustrates how theory and raw data combine to deliver identifying

power. The gap between the thick dotted line and the thick dashed line in Panel (A) represents

inference derived from the observables using only basic structure from the LoD. The gaps between

the thick dashed lines and the thin dash-dot lines in Panels (B) and (C) represent inference derived

from richer data, holding model structure fixed. Finally, gaps between the thin dash-dot lines and

42Bound tightness depends both on features of the dataset and the (S, d) pair under consideration. As S/(p0 × d)

approaches 0, strong uptakers encompass the entire population, and B(q; 0, d) = B(q; 0, d) = Gd(q). Similarly, as

S/(p0×d) approaches ∞ the set of strong uptakers vanishes, so once again, the gap between the bounds collapses.



42 BODOH-CREED, HICKMAN, LIST, MUIR, SUN

Figure 8. Robustness Tests

(a) Relative Adversarial Profits (b) Robust Profits Under RS

Notes: Panel (A) shows how optimal robust profits vary by λ, relative to RS profits—solid line, i.e.,
πλ(S∗(λ),d∗(λ))−πλ(0,0)

πRS(S∗(0),d∗(0))−πRS(0,0)
—and

how naive relative profits vary by λ—dashed line, i.e.,
πλ(S∗(0),d∗(0))−πλ(0,0)

πRS(S∗(0),d∗(0))−πRS(0,0)
. Panel (B) depicts the cost of adopting a robust policy

(S∗(λ), d∗(λ)) when the DGP is actually rank stable; i.e.,
πRS(S∗(λ),d∗(λ))−πRS(0,0)

πRS(S∗(0),d∗(0))−πRS(0,0)
.

Figure 9. Path of Optimal Single Subscriptions

(a) Before Discontinuity (b) After Discontinuity

Notes: Discounts are expressed as a fraction of the firm’s markup under p0. Upfront fees S are expressed as a fraction of the maximal

upfront fee in the RS-optimal continuum menu. This figure plots evolution of robust optimal subscriptions as λ varies. The black dot

is the RS-optimal subscription offer, and the black triangle is (S∗(0.16), d∗(0.16)) for the calibrated value of λ = 0.16.

the thick solid lines in panels (B) and (C) represent inference derived from the observables by

layering the full, rank-stable, multiplicatively separable utility model on top of the LoD.

4.3.1. Robust Optimal Subscription Plans. We now compute adjustments to the RS-optimal policy

(S∗, d∗) from Figure 6 that add robustness against RS violations; we do so by computing profit

bounds implied by the DGPs Bd0 and Bd0 depicted in Panel (A) of Figure 7. Recall that the

adversarial DGP is one where strong uptakers minimally increase consumption after subscribing,

subject to consistency with observables and the LoD. We can directly compute this worst case by

simulating profits under the adversarial DGP, denoted πA(S, d) for each (S, d) pair, and we can

compare this to profits implied by the RS model, denoted πRS(S, d). Recall from Sections 2.3 and 2.4

that, by construction, these two quantities bound true profits: πA(S, d)≤π(S, d)≤πRS(S, d). πRS

corresponds to an ideal scenario where the basic model is not mis-specified, and πA(S, d) < πRS(S, d)

is a lower bound on profits when unseen RS violations wreak maximum havoc.

In order to further refine market-design decisions, we can interpolate between these extremes by

considering λ-adversarial profits πλ(S, d)≡ λπA(S, d)+(1−λ)πRS(S, d) if fraction λ of consumers

behaved according to the adversarial DGP, while (1−λ) behaved according to the rank-stable DGP.
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An intuitive interpretation would be that (1−λ) of Lyft’s users are loyal, having only a Lyft account

or routinely checking only the Lyft app, while λ fraction exhibit low loyalty, frequently comparing

prices for Uber and Lyft, and then substituting adversarially across the two platforms. Optimizing

with respect to πλ instead of πA allows for improved robust decisions if the market designer believes

that the pure adversarial DGP is overly pessimistic. This is conceptually similar to Hansen and

Sargent (2008), who consider a “structured” model as a benchmark and choose a policy to maximize

the worst-case outcome in a family of unstructured models sufficiently “close” to the structured

model. Aryal and Kim (2013) apply a similar approach to partially identified auction models.

For each λ ∈ (0, 1), we find the robust optimum (S∗(λ), d∗(λ)) via grid search. Figure 9 plots

the (S∗(λ), d∗(λ)) locus; Panel (A) focuses on values of λ ∈ [0, 0.35], while Panel (B) includes

λ > 0.35 also. Figure 8 explores profit implications. Panel (A) characterizes a non-RS world,

where the market designer is or isn’t correcting for RS violations. The solid line is robust ex-

cess profits above linear pricing, πλ(S∗(λ), d∗(λ))− πλ(0, 0), relative to baseline excess profits

πRS(S∗(0), d∗(0))−πRS(0, 0). The dashed line depicts how naive excess profits under a fixed (S∗, d∗)

offer, πλ(S∗(0), d∗(0))−πλ(0, 0), vary with λ, relative to baseline excess profits. The two lines are

mechanically close to each other on the left, since λ controls the magnitude of the RS-violation

problem, by construction. Eventually, the dashed line goes negative, whereas the solid line, by con-

struction, does not for any value of λ. Panel (B) considers fixing a non-existent problem in a RS

world where an over-cautious market designer chooses a robust offer (S∗(λ), d∗(λ)) anyway. There,

we plot “paranoid” excess profits, πRS(S∗(λ), d∗(λ))−πRS(0, 0), relative to true excess profits.

First, note some subtle intuition behind the profit discontinuity at roughly λ=0.35. On one hand,

there is a set of contracts (S, d) that are good for profits near the RS DGP (i.e., for λ near zero), but

non-robust and very bad for profits near the adversarial DGP (i.e., for λ near one). On the other

hand, there is another set of contracts disjoint from the first one—having higher S and lower d—that

are very robust and profit-optimal near the adversarial DGP, but generally rendering substantially

lower profits. Because the corresponding optima are so different, for λ< 0.35 the market designer

prefers to prioritize profitability, and for λ> 0.35 she prefers to prioritize robustness, with λ=0.35

as the indifference point. Panel (A) traces out the locus of robust offers prior to the phase change:

increasing S and reducing d (i.e., a less generous subscription plan) both help the firm hedge against

profit shocks from unseen adverse consumer behavior. In Panel (B), we zoom out and show how

the path jumps discontinuously to a new region of (S, d) space with low profits when λ crosses the

threshold. The lesson from Figures 8 and 9 is that nonlinear pricing via subscription offers is only

a viable strategy when the adversarial fraction of consumers is below roughly one third.

Prior to the phase change, however, Figure 9 suggests that policy prescriptions from the RS model

are fairly robust to moderate perturbations in the underlying DGP. We find that S∗(0.35) is about

9% higher than S∗(0), and d∗(0.35) is about 18% lower than d∗(0). Table 4 depicts implications
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Table 4. Fraction Subscriber Savings Retained: (S∗(λ), d∗(λ)) vs (S∗(0), d∗(0))

λ Strong Uptaker Percentiles 0.1 0.25 0.5 0.75 0.9 Total

λ = 0.35 SU(p0, S
∗(λ), d∗(λ)) 0.157 0.324 0.504 0.615 0.665 0.542

λ = 0.35 SU(p0, S
∗(0), d∗(0)) 0 0 0.287 0.558 0.645 0.497

λ = 0.16 SU(p0, S
∗(λ), d∗(λ)) 0.380 0.607 0.760 0.832 0.858 0.791

λ = 0.16 SU(p0, S
∗(0), d∗(0)) 0 0.179 0.724 0.823 0.856 0.783

Notes: This table reports the retained savings ratio
q(r)d∗(λ)−S∗(λ)
q(r)d∗(0)−S∗(0) , where q(r) is the rth quantile of Qc among strong uptakers, for

r∈{0.1, 0.25, 0.5, 0.75, 0.9}. The final column is aggregate retained savings, or
∫ 1
0 q(r)d

∗(λ)−S∗(λ)dr∫ 1
0 q(r)d

∗(0)−S∗(0)dr
.

of moving from the naive optimum to (S∗(0.35), d∗(0.35)) for consumer surplus (i.e., subscriber

savings). Among the set of strong uptakers relative to the robust optimum, SU(p0, S
∗(λ), d∗(λ)),

the median (90th percentile) consumer retains half (70%) of would-be savings from the more gen-

erous but non-robust contract. Among the set of strong uptakers relative to the naive optimum,

SU(p0, S
∗(0), d∗(0)), the lower quartile consumers retain none of their previous savings, since many

of them transition from uptakers to non-uptakers when the contract becomes less generous. Finally,

Panel (B) of Figure 8 shows that the cost of achieving robustness is fairly low. If the true DGP

really is RS but the market designer assumes 0 ≤ λ ≤ 0.35, then robust profits πλ(S∗(λ), d∗(λ))

account for 80% or more of true optimal profits πRS(S∗(0), d∗(0)). Thus, if we view robust policy

design as insurance against making large errors, then hedging against that risk comes relatively

cheaply for relevant values of λ where subscriptions are a viable business strategy at all.

4.3.2. Estimating λ. This discussion begs the question, what are relevant values of λ to focus

on? To answer this question, it turns out that commonly available auxiliary data—individual-level

consumption data prior to the RCT sample period—will suffice. Let Qpren denote volume demanded

in the two weeks prior to the start of the sampling period for the uniform-discount RCT. Note that

the sample {qpren }
Nud
c +Nud

d
n=1 is realized under default price p0. Now, recall that the adversarial DGP

Qd0(q) maximally violates rank stability, and consider a comparison of the rank correlations between

Qpre and Qd0 in the treatment group, and between Qpre and Qc in control. Under RS, we would

expect these rank correlations to be identical, but if consumer behavior followed the adversarial

DGP the pre-/post-RCT rank correlation should be lower within the treatment group.

This suggests a way to quantify the degree to which the data favor the rank-stable DGP Qd0
over the adversarial DGP Qd0 . Let St denote Spearman’s rank correlation between the pre- and

post-RCT samples within the treatment group, or {qpren , qdn}
Nud
d

n=1. Similarly, let Sc denote the rank

correlation between the pre- and post-RCT samples in the control group, or {qpren , qcn}N
ud
c

n=1. Finally,

let Sa denote the rank correlation between the pre-RCT sample and the adversarial projection for

the control group, or
{
qpren ,Qd0(qcn, v)

}Nud
c

n=1
. We can then define λ̂≡1− (Ŝt−Ŝa)/(Ŝc−Ŝa). Since Sc

may be less than one due to within-consumer time-varying demand, we do not directly construct a

ratio of St to Sc; rather, we compare the differences (St−Sa) and (Sc−Sa) instead. Intuitively, the
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pre/post control rank correlation Sc is generally above the treatment rank correlation St, which in

turn is above the adversarial rank correlation Sa.43 Thus, 0≤ λ̂≤1 should generally be true.

Table 5 in the Online Appendix reports raw rank correlations with 95% confidence intervals. Our

point estimate is λ̂= 0.160, with a 95% confidence upper bound of 0.281, well below the critical

cutoff of λ=0.35 where subscriptions cease to be an effective business strategy. The robust optimal

subscription selects S∗(0.16) at 2.0% above the naive optimum fee, and d∗(0.16) at 8.0% below the

naive optimum discount. This empirical case study demonstrates that our proposed methodology

facilitates effective empirical market design, despite data limitations like unseen confounding choices

by agents. We find that nonlinear pricing policies do indeed exist that are both profit-improving

for the principal, while also being robust against worst-case, unobserved agent behavior.

5. Conclusion

In this paper, we provide a suite of tools that allow a market designer to flexibly estimate pricing

counterfactuals. We clarify key conditions that underlay identification of the canonical adverse-

selection model and highlight one key assumption, rank stability, as being especially problematic

in the presence of multiple dimensions of unobserved agent heterogeneity. Despite significant data

limitations, one can derive informative bounds on counterfactual demand under (out-of sample)

price changes. These bounds arise because empirically plausible DGPs must respect the LoD and

the observed shift(s) in aggregate demand resulting from a known experimental price change(s).

In the demand context, a fully-specified rank-stable DGP corresponds to a sharp upper bound

on consumer price responsiveness, and therefore still serves as a useful empirical benchmark for

market design. The sharp lower bound on price responsiveness corresponds to a worst-case scenario

(for profits) where the firm’s loyal customer base is least price sensitive, and less loyal customers’

substitution patterns account for a maximal fraction of the observed shift in aggregate demand. We

also relax rank stability in a second way that can be explicitly modelled using rich internal data;

namely, when customers fail to optimize subscriber decisions due to salience issues, over-eagerness,

or an inability to perfectly forecast future demand.

Our estimated demand CDF bounds within the rideshare data turn out to be informative, despite

lack of information that would facilitate structural identification of a more complete model of

multi-dimensional agent heterogeneity. The bounds facilitate robust policy prescriptions using rich,

internal data sources similar to those available in many other real-world applications. Our partial

identification approach: (i) enables profitable nonlinear pricing design while achieving robustness

against worst-case deviations from model assumptions, (ii) applies to a wide class of adverse-

selection models, and (iii) serves as a novel guide for more effective experimental design.

43Note that if one assumes a well-behaved model of time-varying demand where persistence arises solely from a

consumer’s stable type θ, and period-t demand shocks εt similar to those described in Section 2.1 are independent

across time, then the inequalities Sc≥St≥Sa follow as a direct consequence of Propositions 1 and 2.
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Appendix A. Examples of Potential RS Violations in Adverse-Selection Settings

A.1. Procurement. Laffont and Tirole (1986) provides a model of optimal procurement for a

public project where the single dimension of heterogeneity is the efficiency βi of the ith firm while

the cost of effort ψ(e) is assumed to be homogeneous across firms. In such settings, common market

design problems include derivation of an optimal menu of incentive contracts to induce firms (with

privately known efficiency βi) to minimize the cost of completing a project. Formally, a type-βi

firm chooses effort level e so that the cost of completing the project is βi−e. The principal cannot

directly observe effort e or type βi, so she must set a reimbursement schedule T (βi−e) to induce

effort on the part of the firm, who chooses effort to solve maxe T (βi − e)−ψ(e).

Suppose, however, that effort costs are actually heterogeneous and given by ψ(e;αi) with ∂2ψ(e;αi)
∂e2

increasing in αi. Intuitively, βi parameterizes vertical shifts in the firm’s effort supply curve while

αi parameterizes rotations of the supply curve. Under this richer model, if two monopolists, given

the same status quo incentive contract, produce at the same cost, the one with a higher αi type

will be less responsive to changes in incentives.

A.2. Regulation. In the environmental regulation model of Kang and Silveira (2021), firms are

heterogeneous with respect θi, which parameterizes the degree to which they derive private benefits

from negligently ignoring pollution regulations. A type-θi firm who chooses negligence level a

receives gross utility θb(a). Trading off these benefits, more negligent firms are more likely to get

caught: the number of infractions observable to the regulator, K, is distributed Poisson(a). The

regulation punishes polluting firms by setting a penalty schedule mapping the number of violations

k to a fee ε(k). The firm then chooses negligence level a to solve maxa θib(a)−
∑∞

k=0 ε(k)akk! .

A potential second source of unobserved heterogeneity in this context might arise if adjustment

to new regulations requires significant investment from firms, and different firms start from different

baseline levels of negligence. For instance, suppose that firms differ in the negligence of their current

business practices āi and the cost of complying with regulation is given by θib(a)−C
2 (a−āi)2. Under

this richer model, suppose that at some baseline fine schedule ε(k), two firms are observed to make

the same abatement decision a. Then the firm with the larger level of āi must have a correspondingly

lower θi and hence will be less responsive to changes in the fine schedule.

A.3. Income Taxation. In the optimal taxation model of Mirrlees (1971), workers are heteroge-

neous with respect to productivity Wi but have homogeneous preferences over consumption and

labor u(c, l). Given an income tax schedule T (lWi), a type-Wi worker chooses labor supply l to solve

maxl u(c, l) s.t. c≤ lWi−T (lWi). In reality, we might expect that different people, given the same

wage, will nonetheless work different amounts, due to different preferences for leisure. Fillmore

and Gallen (2019) parameterize heterogeneity in willingness to work by u(c, l;αi)=v1(c)−αiv2(l).

Higher values of αi then correspond (all else equal) to higher marginal disutility of labor. Suppose
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that under a status-quo tax policy, two workers have the same income, Wil, but worker 1 has a

higher value of αi than worker 2. In this situation, worker 1 will exhibit a lower income elasticity

of taxation relative to worker 2.

A.4. Labor Supply. D’Haultfœuille and Février (2020) introduces a model of labor supply where

workers are heterogeneous with respect to their costs effort, θi. Specifically, a worker with type

θi who supplies y units of effort given wages w0 gets paid yw0, but incurs a utility cost of this

effort equal to θic(y), so her net utility is given by yw0−θic(y). In this model, there is no scope

for productivity differences, but Cotton et al. (2023) and Hedblom et al. (2022) consider settings

where workers additionally vary in their productivity αi. Thus, a worker of type (αi, θi) may receive

utility equal (on average) to αiyw0 − θic(y). This model at first glance seems isomorphic to the

baseline one-dimensional model, since argmaxy αiyw0−θic(y) = argmaxy yw0− θi
αi
c(y), and hence,

type-(αi, θi) individuals are observationally equivalent to type (1, θi/αi) individuals with respect

to their choice of effort y. However, in many labor supply contexts, the econometrician may only

realistically have access to data on total output, αiy and can only indirectly observe effort y.44

The partial identification approach in this paper may allow for the analysis of similar models using

typical, observational data which does not contain sufficient observables to distinguish θi from αi.

A.5. Insurance Demand. In the baseline adverse selection model of insurance demand, con-

sumers are heterogeneous in their propensity for health spending λi. For example, consider a

model where individuals who buy a given insurance policy pay T (s) for s units of healthcare ser-

vices. Individuals are homogeneous with respect to their utility of health u(h), but differ in baseline

illness rates λi. A type-λi individual who consumes s units of service has health level h= s−λi.
Given a fixed insurance plan, this individual solves maxs u(s−λi)−T (s).

The basic adverse selection model implicitly imposes homogeneity in the extent to which health-

care consumption can improve an individual’s health. In reality, some individuals are more at risk

for diseases which are cheaper to treat while other individuals are more at risk for diseases which

can only be treated at a high price. This can be modeled as heterogeneity in the “marginal rate

of transformation” from healthcare services to health, ωi, where a type (ωi, λi) individual who

consumes s units of healthcare services has health h=ωis−λi. This gives rise to the “selection on

moral hazard” effect studied in Einav et al. (2013). Under their quadratic utility specification, if

two individuals, i and j, choose the same consumption s, but ωi>ωj , then individual i’s consump-

tion will be more elastic to changes in T (s) than individual j. The authors are able to identify a

multi-dimensional model of heterogeneity in their setting because individuals are offered multiple

plans, and selection of one plan over another is informative about which type an individual could

44Cotton et al. (2023) and Hedblom et al. (2022) address this issue by a field-experimental data collection procedure

that is informative about both y and αiy.
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be. Such a strategy requires fairly rich data, and might not be available if the analyst only has

access to fully random assignment of insurance plans, such as in the RAND health insurance exper-

iment (Aron-Dine et al. (2013)). Interestingly, in this setting, fully exogenous randomization may

even be antithetical to the goal of identifying structural primitives of a model, due to rank-stability

violations arising out of multi-dimensional heterogeneity.

Appendix B. Proofs of Propositions 1 and 2 (Under Standard Assumptions)

In Appendix B.1, we complete the proof of Proposition 1 by modifying our construction of

Qd0(q) to allow for the presence of mass points and show that our modified DGP attains the

bound corresponding to Bd0(q;S, d). In Appendix B.2, we complete the proof of Proposition 2

by constructing Qd0(q) and showing that it attains the bound corresponding to Bd0(q;S, d) in

the case where the CDF difference Gd0(q)−Gc(q) is quasi-concave, and both distributions are

absolutely continuous. Proofs of the lower bound for the cases where the CDF difference is not quasi-

concave and where mass points exist build on the basic ideas here, but involve tedious technical

complications, so we defer them to Online Appendix C.

As in the main text, let the CDF of potential outcomes in control, Qc be Gc and the CDF

of potential outcomes under some discount d, Qd, be denoted Gd. As in the body of the paper,

we denote random variables by upper-case letters, while realizations of random variables (or fixed

numbers) are denoted by lower-case. Additionally, define the quantile functions G−1
c (r) = inf{q :

Gc(q)≥r} and G−1
d (r)=inf{q : Gd(q)≥r}, and note that these may represent either the inverses of

the CDFs, if they exist, or the quasi-inverses otherwise. Throughout this appendix, we maintain the

assumption that the underlying data-generating process satisfies the Law of Demand (LoD), and

that the econometrician has access to a dataset (Gc, Gd0), where Gc(q) is observed demand under

default price p0, and Gd0(q) is observed demand under a particular discounted price p0(1−d0). The

econometric challenge here essentially stems from the fact that the copula of the joint distribution

of (Qc, Qd0) is unknown. This is because for each consumer we only observe either Qc or Qd0 (but

never both), and (Gc, Gd0) were generated from two separate samples of consumers having similar

distributions of unobserved taste characteristics.

B.1. Proof of Proposition 1 in the Presence of Mass Points in Gc. Recall from equation

(5) that Qd0(q, v; d) ≡ G−1
d (a(q)+b(q)v), where V is an independent uniform random variable,

a(q)≡ limq′→q− Gc(q) is the mass of consumers with baseline demand strictly below q, and b(q)≡
Gc(q)−limq′→q− Gc(q) is the size of the mass point at Qc=q. Intuitively, V is a device for “breaking

ties” in rank that arise when a positive mass of consumers have the same baseline demand q. When

Gc is left-continuous at a particular q then b(q) = 0, and the upper-bound DGP reduces to the

simpler form Qd0(q, v; d)=G−1
d (Gc(q)). We break up our proof into two steps as follows.
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Lemma 1. Qd0(Qc, V ; d0) as defined in Equation (5) is an admissible DGP that cannot be ruled

out by the dataset (Gc, Gd0); that is Pr
[
Qd0(Qc, V ; d0)≤q

]
=Gd0(q).

Proof. At any q where the quantile function G−1
c is strictly increasing at Gd0(q), we have that

Pr
[
Qd0(Qc, V ; d0)≤q

]
=Pr[G−1

d (Gc(Qc)) ≤ q] = Pr[Gc(Qc)≤Gd(q)]=Gd(q) where the last equality

follows because Gc(Qc) is a Uniform(0, 1) random variable. Otherwise, the random variable Qc

has a mass point at q∗q ≡G−1
c (Gd0(q))). By definition of a, a(q∗q )=Pr[Qc<q

∗
q ], so

Pr[Qd0(Qc, V ; d0)≤q]=Pr

[
Qc<q

∗
q or

(
Qc=q∗q and V ≤

Gd0(q)−a(q∗q )

b(q∗q )

)]
=Pr[Qc<q

∗
q ]+Pr

[
Qc = q∗q and V ≤

Gd0(q)−a(q∗q )

b(q∗q )

]
=a(q∗q )+Pr[Qc = q∗q ]×Pr

[
V ≤ Gd0(q)−a(q∗)

b(q∗q )

]
=a(q∗q )+b(q∗q )

Gd0(q)− a(q∗q )

b(q∗q )
=Gd0(q). �

(14)

Lemma 2. Pr[Qd0(Qc, V ; d0)≤q|Qc≥q′] constitutes an upper bound (in the first-order dominance

sense) on Strong Uptaker Distributions; that is, Pr[Qd0(Qc, V ; d0)≤q|Qc≥q′]≤Pr[Qd0≤q|Qc≥q′].

Proof. Consider the joint distribution of (Qc, Qd) with marginal distributions Gc and Gd. The

upper bound property is equivalent to Pr
[
Qd≤q|Qc≥ S

p0×d

]
< Pr

[
Qd0 (Qc; d, v)≤q|Qc≥ S

p0×d

]
being impossible. Suppose for a contradiction that there exists a baseline consumption level q′=

S
p0×d (under price p0), and a counterfactual consumption level q (under price p0(1−d)) satisfying

this inequality. In that case,

Pr
[
Qd0(Qc; d, V ) ≤ q|Qc ≥ q′

]
Pr[Qc ≥ q′] + Pr

[
Qd0(Qc; d, V ) ≤ q|Qc < q′

]
Pr[Qc < q′]

= Pr[Qd0(Qc; d, V ) ≤ q] = Pr [Qd ≤ q]

= Pr
[
Qd ≤ q|Qc ≥ q′

]
Pr[Qc ≥ q′] + Pr

[
Qd ≤ q|Qc < q′

]
Pr[Qc < q′],

⇒Pr[Qc < q′]
(
Pr
[
Qd0(Qc; d, V ) ≤ q|Qc < q′

]
−Pr

[
Qd ≤ q|Qc < q′

])
= Pr[Qc ≥ q′]

(
Pr
[
Qd ≤ q|Qc ≥ q′

]
−Pr

[
Qd0(Qc; d, V ) ≤ q|Qc ≥ q′

])
,

(15)

where the first and third equalities follow from the law of total probability and the second follows

from (14). Our supposition Pr [Qd≤q|Qc ≥ q′]<Pr
[
Qd0(Qc; d, V )≤q|Qc≥q′

]
is thus equivalent to

Pr
[
Qd≤q|Qc<q′

]
>Pr

[
Qd0(Qc; d, V )≤q|Qc<q′

]
, (16)

since the last two lines of (15) have the same sign. By definition, Qd0 is non-decreasing; as

a result, inequality (16) implies Qd0 (q′; d, v) = Qd0
(

S
p0×d ; d, v

)
> q. To see why, note that if

Qd0(q′; d, v) ≤ q, then the conditioning event Qc ≤ q′ implies Qd0(Qc; d, v) ≤ q as well, by mono-

tonicity of Qd0 . This in turn implies Pr
[
Qd0(Qc; d, v)≤q|Qc≤ S

p0×d

]
= 1. But this would violate
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(16) since Pr
[
Qd ≤ q|Qc < S

p0×d

]
cannot exceed 1. In other words, (16) requires that counter-

factual consumption implied by the baseline consumption level q′= S
p0×d must weakly exceed the

benchmark q. Furthermore,

Gd(q) = Pr [Qd ≤ q] = Pr
[
Qd ≤ q|Qc < q′

]
Pr
[
Qc < q′

]
+ Pr

[
Qd ≤ q,Qc ≥ q′

]
> Pr

[
Qd0(Qc; d, V ) ≤ q|Qc < q′

]
Pr
[
Qc < q′

]
+ Pr

[
Qd ≤ q,Qc ≥ q′

]
,

(17)

where the equality follows from the law of total probability and the inequality follows from (16).

This last expression can be re-written as

Pr
[
Qd0(Qc; d, V ) ≤ q|Qc < q′

]
Pr
[
Qc < q′

]
+ Pr

[
Qd ≤ q,Qc ≥ q′

]
= Pr

[
Qd0(Qc; d, V ) ≤ q,Qc < q′

]
+ Pr

[
Qd ≤ q,Qc ≥ q′

]
= Pr

[
Qd0(Qc; d, V ) ≤ q

]
+ Pr

[
Qd ≤ q,Qc ≥ q′

]
= Gd(q) + Pr

[
Qd ≤ q,Qc ≥ q′

]
≥ Gd(q).

(18)

The second equality follows because if Qd0(Qc; d, v)≤q then the event Qc≥q′= S
p0×d is impossible

since otherwise Qd0(Qc; d, v)≥Qd0(q′; d, v)>q. Note, however, that (17) and (18) imply that Gd(q)

is strictly greater than itself, a contradiction. �

Taken together, Lemmas 1 and 2 imply that Qd0 is a sharp upper bound on the range of DGPs

consistent with the dataset (Gc, Gd0). Therefore Bd0(q;S, d0) ≡ Pr
[
Qd0(Qc, V ; d0)≤q|Qc≥q′

]
in

turn constitutes a sharp upper bound (in the first-order dominance sense) on strong uptaker dis-

tributions, or in other words, Bd0(q;S, d0)≤Pr[Qd0≤q|Qc≥q′].
More formally, the two lemmas show that the rank-stable DGP is in fact the (sharp) upper bound

on the set of DGPs that cannot be ruled out by the dataset (Gc, Gd0). In light of Assumption 4, we

can furthermore use the in sample distributions (Gc, Gd0) to construct out-of-sample distribution

G
oos
d (q;Gc, Gd0) for each value of d under consideration. Then, the logic of Lemmas 1 and 2

goes through exactly as before, but with G
oos
d replacing Gd0 in the definitions of Qd0(q, v; d) and

Bd0(q;S, d) and in equations (17) and (18). �

B.2. Proof of Proposition 2. We split our proof into four cases. In Case 1, we complete the

proof in the special case considered in the main text where Gc−Gd0 is quasi-concave and Gc, Gd0 are

absolutely continuous. In all empirical applications considered in the body of this paper, this case

appears to be the most empirically relevant of the three. For generality, in Online Appendix C we

also consider Case 2 and Case 3 as well, where we relax the quasi-concavity and absolute continuity

requirements, respectively. Throughout this section, we will again be making extensive use of a

tie-breaking random variable, V , which is independent of Qc and distributed Unif(0, 1). We also

refer the reader to Figure 1 for intuition on our proof construction; Panel A plots a hypothetical

dataset from a pricing RCT, including control CDF Gc and treatment CDF Gd0 .
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B.2.1. Case 1: Since the CDF difference Gc(q)−Gd0(q) is unimodal, it is weakly increasing below

its smallest maximizer, q∗min, and weakly decreasing above its largest maximizer, q∗max. Let qmax

denote the largest value at which Gc and Gd0 disagree, and define q̄d0(q′) = inf
{
q ∈ [q∗max, qmax] :

Gc(q
′)−Gd0(q′) =Gc(q)−Gd0(q)

}
. We also define a quasi-inverse of q̄d0(q′), which we denote by

¯
qd0(q) = sup

{
q′ ∈ [0, q∗min] : Gc(q

′)−Gd0(q′) =Gc(q)−Gd0(q)
}

. When Gc and Gd0 are absolutely

continuous, the infimum and supremum defined above are attained, so Gc(q)−Gd0(q)=Gc(q̄d0(q))−
Gd0(q̄d0(q)) and Gc(q)−Gd0(q) =Gc(

¯
qd0(q))−Gd0(

¯
qd0(q)). We also note that because Gc and Gd0

have no mass points, q̄d0 and
¯
qd0 are strictly decreasing on their respective domains. Given these

preliminaries, recall from equation (9) that the lower-bound DGP Qd0 is defined by

Qd0(q; d, v) =

q̄d0(q) if q ≤ q∗min, v ≤
qc(q)−gd0 (q)

gc(q)
, and

Qd0(q; d, v)=q otherwise.
(19)

This definition implies that Qd0(Qc) respects the LoD, meaning Qd0(Qc) ≥ Qc. In what follows,

we will often refer to the individuals for whom Qc ≤ q∗min and V ≤ gc(Qc)−gd0 (Qc)

gc(Qc)
as “jumpers”.

The maximal proportion of jumpers that could be consistent with the data (Gc, Gd0), conditional

on Qc, is given by the quantity
gc(Qc)−gd0 (Qc)

gc(Qc)
and is visualized in Panel B of Figure 1.

Lemma 3. Qd0(Qc, V ; d0) as defined in (19) is an admissible DGP that cannot be ruled out by the

dataset, (Gc, Gd0); that is Pr[Qd0(Qc, V ; d0)≤q]=Gd0(q).

Proof. By definition of Qd0 , we have the following:

Pr
[
Qd0(Qc, V )≤q

]
=


A(q) q≤q∗min,

A(q∗min)+B(q) q∗min<q<q
∗
max, and

A(q∗min)+B(q∗max)+C(q) q≥q∗max,

(20)

where A(q)=
∫ q

0

[
1− gc(x)−gd0 (x)

gc(x)

]
gc(x) dx covers the case where q is below the smallest maximizer

q∗min, B(q)=
∫ q
q∗min

gc(x) dx covers the case where q is between the smallest and largest maximizers,

and C(q) =
∫ q
q∗max

gc(x) dx +
∫ q∗min
¯
qd0 (q)

gc(x)−gd0 (x)

gc(x) gc(x) dx covers the case where q is above the largest

maximizer q∗max. A(q) corresponds to the probability thatQd0(Qc, V )≤q resulted because Qc≤q∗min
and the values of (Qc, V ) do not imply a jumper. B(q) and the first term of C(q) together correspond

to the case where Qc∈ [q∗min, q] since conditioning on Qc∈ [q∗min, q] implies Qd0(Qc, V )=Qc≤q with

probability 1. Finally, the second term of C(q) corresponds to jumpers for whom Qc∈ [
¯
qd0(q), q∗min],

in which case, despite jumping, it is still true that Qd0(Qc, V )≤q.
The expression for A can be simplified as A(q) =

∫ q
0 gd0(x) dx=Gd0(q). On the other hand, for

q∗min<q<q
∗
max, Gc(q)−Gd0(q) is constant (by unimodality), which implies gc(q)−gd0(q)=0. Thus,
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B(q) can also be written
∫ q
q∗min

gd0(x) dx, so B(q)=Gd0(q)−Gd0(q∗min). Finally, we also have∫ q∗min

¯
qd0 (q)

gc(x)− gd0(x)

gc(x)
gc(x) dx = Gc(q

∗
min)−Gd0(q∗min)−(Gc(

¯
qd0(q))−Gd0(

¯
qd0(q))

=Gc(q
∗
min)−Gd0(q∗min)−(Gc(q)−Gd0(q)),

which implies C(q)=Gd0(q)−Gd0(q∗max). Plugging these identities into (20) shows that regardless

of the value of q, Pr
[
Qd0(Qc)≤q

]
=Gd0(q). �

Lemma 4. Pr[Qd0(Qc, V ; d0)≤ q|Qc≥ q′] constitutes a lower bound (in the first-order dominance

sense) on Strong Uptaker Distributions; that is, Pr[Qd0(Qc, V ; d0)≤q|Qc≥q′]≥Pr[Qd0≤q|Qc≥q′].

Proof. We must show that the inequality Pr[Qd0 ≤ q|qc ≥ q′]>Pr[Qd0(Qc, V ; d0)≤ q|Qc ≥ q′] is

impossible for any (q, q′) pair. Suppose then, for a contradiction, that it holds for some (q, q′) pair.

By similar logic as in equation (15), this is equivalent to Pr[Qd0 ≤ q|qc<q′]<Pr[Qd0(Qc, V ; d0)≤
q|Qc < q′]. Since Pr[Qd0 ≤ q|qc < q′] + Pr[Qd0 > q|qc < q′] = 1 = Pr[Qd0(Qc, V ; d0) ≤ q|Qc <
q′] + Pr[Qd0(Qc, V ; d0)>q|Qc<q′], our supposition is further equivalent to

Pr[Qd0>q|Qc<q′] > Pr[Qd0(Qc, V ; d0)>q|Qc<q′], (21)

which we now show is impossible. To reduce notational clutter, we denote the RHS of (21) as

RHS(q, q′)≡Pr[Qd0(Qc, V ; d0)>q|Qc<q′]. We further split Lemma 4 into the following steps.

Step 1: If pair (q, q′) satisfies (21) then Qd0(q′, 0) < q: We will construct a proof of Step 1 by

contrapositive by splitting the analysis into two further sub-cases, but it will be useful to first note

the following. When q′<q∗min, Qd0(q′, 0; d0) = q̄d0(q′) can be interpreted as the minimum value of

counterfactual consumption among jumpers for whom Qc<q
′, or Qd0(q′, 0; d0; d0)=inf{Qd0(q′, v) :

Qd0(q′, v; d0)>q′}. On the other hand, if q′≥q∗min, then Qd0(q′, 0; d0)=q′.

Case 1.1: q≤q′: The Law of Demand implies that if Qd0<q, then Qc<q
′ also. This implies that

Gd0(q)=Pr[Qd0≤q]=Pr[Qd0≤q,Qc<q′]=Pr[Qd0≤q|Qc<q′]Pr[Qc<q
′].

Dividing the above equation by Pr[Qc<q
′] =Gc(q

′) shows that Pr[Qd0 ≤ q|Qc<q′] =
Gd0 (q)

Gc(q′)
. Thus,

Pr[Qd0 > q|Qc < q′] = 1−Pr[Qd0 ≤ q|Qc < q′] =
Gc(q′)−Gd0 (q)

Gc(q′)
. This line of reasoning relied only on

the LoD, and applies to the pair of random variables (Qc,Qd0(Qc, V ; d0)) as well, since Qd0 was

constructed to satisfy the LoD. Thus, RHS(q, q′) = Pr[Qd0(Qc, V ; d0)>q|Qc<q′] =
Gc(q′)−Gd0 (q)

Gc(q′)
=

Pr[Qd0>q|Qc<q′] which contradicts (21) for the case where q≤q′.
Case 1.2: q′<q≤Qd0(q′, 0; d0): In this case, RHS(q, q′) is constant in its first argument for all q

on the closed interval
[
q′,Qd0(q′, 0; d0)

]
. To see why, note that conditional on the event Qc<q

′, we

know by the definition of Qd0 that either the value of V is high, so Qd0(Qc, V ; d0)=Qd0(Qc, 1; d0)=

Qc<q
′; or the value of V is low, in which case, Qd0(Qc, V ; d0)=Qd0(Qc, 0; d0)= q̄d0(Qc)>q̄d0(q′)=
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Qd0(q′, 0; d0), where the inequality follows from monotonicity of q̄d0 . In either case, Qd0(Qc, V ; d0)

lies outside of
[
q′,Qd0(q′, 0; d0)

]
with certainty, so for any q on that interval, we have

0≤RHS(q′, q′)−RHS(q, q′)=Pr
[
Qd0(Qc, V ; d0)∈ [q′, q]|Qc>q′

]
≤Pr

[
Qd0(Qc, V ; d0)∈ [q′,Qd0(q′, 0; d0)]|Qc>q′

]
=0,

where the first inequality and equality are by definition of RHS, and the second inequality is implied

by the supposition of Case 1.2. Moreover, the logic employed in Case 1.1 above establishes that if

we replace q with q′ in the first argument of RHS, then we have RHS(q′, q′)=Pr [Qd0>q
′|Qc<q′].

Therefore, since RHS(q, q′) is constant in its first argument for all q∈
[
q′,Qd0(q′, 0, d0)

]
, we have

RHS(q, q′)=RHS(q′, q′)=Pr [Qd0>q
′|Qc<q′]≤Pr [Qd0>q|Qc<q′], which contradicts (21).

The contradictions in Cases 1.1 and 1.2 demonstrate that inequality (21) can only be satisfied

when q′≤Qd0(q′, 0)<q. The next step shows that this case leads to a contradiction as well.

Step 2: Inequality (21) leads to a contradiction when q′≤Qd0(q′, 0)<q:

Using similar logic as in equations (17) and (18), we have

1−Gd0(q)=Pr[Qd0>q]=Pr[Qd0>q|Qc<q′]Pr[Qc<q
′] + Pr[Qd0>q|Qc≥q′]Pr[Qc≥q′]

>Pr[Qd0(Qc, V ; d0)>q|Qc<q′]Pr[Qc<q
′] + Pr[Qd0>q,Qc≥q′]

=Pr[Qd0(Qc, V ; d0)>q,Qc<q
′] + Pr[Qd0≥q,Qc≥q′],

(22)

where the strict inequality follows directly from (21). We now analyze each of the two terms on

the RHS of (22) (last line) in turn. For the first term, note that the events Qd0(Qc, V ; d0) > q

and Qc < q′ can simultaneously occur if and only if (Qc, V ) is a jumper and Qd0(Qc, V ; d0) =

Qd0(Qc, 0; d0) = q̄d0(Qc)>q.
45 But by monotonicity of

¯
qd0 , this is equivalent to Qc<

¯
qd0(q), since

Qc≤
¯
qd0(q̄d0(Qc)), by definition—recall that

¯
qd0 and q̄d0 are quasi-inverses of each other—and since

¯
qd0(q̄d0(Qc))<

¯
qd0(q), which follows from qL(Qc) being strictly greater than q. This further implies

that the first term on the RHS of (22) satisfies

Pr
[
Qd0(Qc, V ; d0)>q,Qc<q

′
]

=Pr
[
(Qc, V ) is a jumper ∩Qc<

¯
qd0(q)

]
=

∫
¯
qd0 (q)

0
Pr

[
V ≤ gc(x)−gd0(x)

gc(x)

]
gc(x) dx

=

∫
¯
qd0 (q)

0

gc(x)−gd0(x)

gc(x)
gc(x) dx

=Gc(
¯
qd0(q))−Gd0(

¯
qd0(q))=Gc(q)−Gd0(q).

45Note that Qc>q is inconsistent with the second event of the joint probability for the case considered in Step 2,

where Qc<q
′<q.
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Next, turning to the second joint probability on the RHS of (22), we have

Pr[Qd0≥q,Qc≥q′]=Pr[Qd0≥q,Qc≥q] + Pr[Qd0≥q, q>Qc≥q′]

=Pr[Qc≥q] + Pr[Qd0≥q, q>Qc>q′]≥1−Gc(q)

where the first equality follows from the law of total probability and the supposition of Step 2, and

the second equality is true because Qc≥ q⇒Qd0 ≥ q by the LoD. As a result, the last line of (22)

is greater than or equal to Gc(q)−Gd0(q)+(1−Gc(q)) = 1−Gd0(q), which combined with the rest

of inequality (22), leads to the contradiction that 1−Gd0(q)>1−Gd0(q). �

Together, Lemmas 3 and 4 imply that Qd0 is a sharp upper bound on the range of DGPs that can-

not be ruled out by the dataset (Gc, Gd0). Therefore, Bd0(q;S, d0)≡Pr
[
Qd0(Qc, V ; d0)≤q|Qc≥q′

]
constitutes a sharp upper bound (in the first-order dominance sense) on strong uptaker distribu-

tions, or in other words, Bd0(q;S, d0)≥Pr[Qd0≤q|Qc≥q′]. �

B.3. Out-of-Sample Inference Using Only the Law of Demand. In this Appendix, we fur-

ther discuss the extent to which out-of-sample inference is possible without Assumption 4 but still

main. If one assumes only the LoD, but is uncomfortable adding additional structure such as

that discussed in Remark 2, then for out-of-sample discounts, counterfactual CDFs can be sharply

bounded only as follows:

Proposition 4. Under Assumption 1 and for arbitrary (S, d) pairs, if Gc(q) and Gd0(q) are known

and are discontinuous at countably many mass points, then the following constitute (identified)

sharp bounds on SUDs:

BLoDd0 (q;S, d)≡


Bd0
(
q; Sd0d , d0

)
, if d<d0,

Bd0(q;S, d0), if d=d0,

0, if d>d0;

BLoDd0 (q;S, d)≡


Gc

(
q|Qc≥ S

p0×d

)
, if d<d0,

Bd0(q;S, d0), if d=d0,

Bd0
(
q; Sd0d , d0

)
, if d>d0.

(23)

For some brief intuition on the bounds in Equation (23), note that when an out-of-sample

discount is less generous than d0—i.e., 0<d<d0—the LoD implies that Gd lies somewhere between

Gc and Gd0 but does not give any further information. The upper bound on DGPs that cannot be

ruled out by existing data thus corresponds to the case where we make the most optimistic possible

assumption about shifts in consumer demand, i.e., that Gd=Gd0 for any d∈ (0, d0). On the other

hand, the lower bound corresponds to the case where we make the most pessimistic assumption

that Gd=Gc for any d∈ (0, d0). Similarly, when an out-of-sample discount is more generous than

d0—i.e., d0<d—the lower bound corresponds to making the most pessimistic possible assumption

that Gd=Gd0 , while the upper bound is completely uninformative, since we know only that Gd is

located to the right of Gd0 , and demand is otherwise unconstrained from above by the LoD.




