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1. Introduction

Estimating supply and demand for differentiated products is a fundamental empirical chal-

lenge for a wide range of economic questions. Nearly thirty years ago, Berry, Levinsohn,

and Pakes (1995) developed a class of estimators that allow for both flexible substitution

patterns and endogenous prices. A key feature of the BLP approach is that it requires only

“aggregate data” on prices and total sales of products at the market level, and exploits

cross-market variation in prices, demographics, and product assortment in order to estimate

flexible substitution patterns (Berry and Haile, 2014).

In many cases, researchers also have access to additional data on the decisions of indi-

vidual consumers. These data may come from customer surveys (e.g., Maritz surveys recent

automobile purchasers), or from tracking of individual purchasers (e.g., through loyalty cards

or NielsenIQ panelists). These data are particularly useful when they link demographic in-

formation of individuals to characteristics of products, and when they contain information

about the choices within individuals across time or product assortment. A growing literature

has connected these “micro data” to the “aggregate data” of the classic BLP approach. Two

prominent early examples of this “micro BLP” approach include Petrin (2002) and Berry,

Levinsohn, and Pakes (2004), and it has been used in a wide variety of applications, 28 of

which we list in Table 1.

Despite the popularity of incorporating micro data into BLP-style estimation, the litera-

ture lacks a standardized framework that is sufficiently general to encompass most use cases.

Except for a few recent papers that use our framework,1 the authors of nearly every paper

in Table 1 implement the BLP estimator on their own, use different notation, and extend

the model to incorporate micro data in a problem-specific manner. Not only does this make

replication difficult, but the lack of corresponding formal econometric results makes it chal-

lenging to evaluate the statistical properties of micro BLP-style estimators. As an example,

a key practical question is how one should weight the contributions of “aggregate data”

versus “micro data” in the resulting GMM estimator. Different choices may result in sub-

stantially different parameter estimates. One advantage of using a standardized framework

is this guarantees that such decisions are made in a consistent way.

Along with a standardized framework, we also systematize the types of “micro moments”

that researchers can construct from “micro datasets.” That is, one could attempt to match:

1Backus, Conlon, and Sinkinson (2021), Armitage and Pinter (2022), and Conlon and Rao (2023) use our
software package PyBLP to estimate micro BLP models. More papers use PyBLP to estimate BLP-style
models with only aggregate data, but since our focus in this paper is on incorporating micro data, we do not
collect a list of these other papers in this article.
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(a) the correlation or covariance between price paid and income; (b) the average income

of consumers who purchase particular products; (c) the average price paid for consumers

of different income levels; or (d) the probability of purchasing certain cheap or expensive

products for consumers of specific income levels. All of these moments are ways to measure

similar features of the same joint distribution. Which moments researchers ultimately em-

ploy may largely be driven by convenience or necessity. Surveys tend to report a series of

marginal distributions or “crosstabs” without providing the underlying individual responses,

and industry reports (or other academic papers) may provide only simple summary statistics,

instead of a complete dataset with individual choices. One issue we address is the extent to

to which simple moments can approximate the information contained in a complete sample

of individual decisions. In doing so, we also provide a characterization of the “optimal micro

moments” in the spirit of Chamberlain (1987).

A second challenge, compatibility, arises when “aggregate data” and “micro data” are

sampled from different populations or according to different sampling schemes (as in, e.g.,

Imbens and Lancaster, 1994). For example, researchers might have over a decade of purchase

data on automobiles, but a consumer survey from only a single year. Alternatively, survey

data may oversample individuals who are likely to purchase vehicles, suggest a different

distribution of income than the overall population, or simply have variables that are measured

differently than in the aggregated purchase data. In these cases, adding certain forms of micro

moments may make estimates worse rather than better. Certain forms of micro moments

may be more or less robust to these issues. Systematizing the types of micro moments

researchers can construct allows us to be explicit about these challenges, and to discuss the

pros and cons of different approaches to addressing them.

In our prior work, Conlon and Gortmaker (2020), we presented best practices for BLP-

style estimation with aggregate data, and provided a common framework, PyBLP, which

implements these best practices in an open-source Python package.2 The goal of this article is

to extend these best practices to the case with micro data and make recommended techniques

accessible to a wider range of researchers through PyBLP. For brevity’s sake, we will refer to

Conlon and Gortmaker (2020) whenever possible, particularly for more in-depth discussion

of computation and simulation. In this article, after building up enough notation to define

the aggregate BLP estimator in Section 2, we focus more on the applied econometrics that

come with combining different sources of data into a single estimator.

2We recommend installing PyBLP on top of an Anaconda distribution, which comes pre-packaged with
PyBLP’s primary dependencies. Users of other languages such as MATLAB, Julia, and R can use PyBLP
with packages that allow for between-language interoperability (e.g., reticulate for R).
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Our work builds on a growing literature aimed at improving and better understanding

the econometric properties of BLP-style estimation. Particularly important papers are Berry

and Haile (2014, 2022), which develop a nonparametric framework for studying identification

of BLP-style models using aggregate and micro data. Complementary to nonparametric

results, in Section 3 we rely on economists’ intuition from linear IV problems and econometric

results in Salanié and Wolak (2022) to illustrate when aggregate data may be insufficient to

accurately estimate key demand parameters. In Section 7 we run large-scale Monte Carlo

experiments, which provide insights into how nonparametric identification results translate

to finite samples.

A key contribution of this article is to provide a standardized econometric framework for

how to incorporate many different types of micro data into BLP-style estimation. In Sec-

tion 4 we characterize micro datasets as information from statistically independent surveys of

potentially selected consumers. Conditional on aggregate data (product characteristics and

underlying demographic distributions), a survey administrator selects a finite set of under-

lying consumers with known sampling probabilities. Information from the resulting dataset

(consumer choices and demographics) can be incorporated into estimation by adding “micro

moments,” which match observed statistics with their model counterparts.

In Section 5 we demonstrate how our framework encompasses essentially the same micro

moments used by all of the prior literature in Table 1. To demonstrate this, in Section 8

we show how using our framework, PyBLP can estimate the model in Petrin (2002) with

only a few lines of code. We also provide a more in-depth empirical example estimating

demand for soft drinks with NielsenIQ data. For estimating parameters that govern how

consumers with different demographics value different product characteristics, we point to

micro moments that contain information about the covariance between demographics and

product characteristics. For estimating parameters that govern the degree of unobserved

preference heterogeneity, we point to second choice data about what consumers would have

chosen had their first choice been unavailable (as in, e.g., Berry, Levinsohn, and Pakes, 2004).

Our framework, however, is much more general, and supports matching a wide range

of statistics computed from surveys with many forms of selection. Our goal is to cover

most empirical use-cases, including using all the information in a micro sample. Supported

statistics include smooth functions of sample means, including correlations and regression

coefficients. Underlying samples of consumers can be selected based on their market, de-

mographics, or even endogenous product choices. Supporting general forms of choice-based

sampling is particular important because many surveys are targeted at consumers who have
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purchased certain products.

We provide asymptotic analysis of our standardized framework under each asymptotic

thought experiment that seems reasonable. This builds on Myojo and Kanazawa (2012), who

extend the many products asymptotics of Berry, Linton, and Pakes (2004) to a specific type

of micro moments originally used by Petrin (2002).3 Through deriving asymptotic results,

we highlight a few cases in which the micro BLP estimator can break down, but in general

find that the estimator can perform well under many sizes of aggregate and micro data.

In Section 7’s Monte Carlo experiments we confirm that desirable asymptotic properties

translate to finite samples.

A potential concern is that the standard error estimators used by a number of papers,

including Petrin (2002), require knowledge of the sample covariance matrix of micro summary

statistics. Although a survey may report the average income by purchase group, it is unlikely

to report the sample covariances between these averages. Thankfully, knowledge of this

additional information is not necessary for inference. In Appendix D we derive novel analytic

expressions for the asymptotic covariance matrix of a very broad class of micro moments,

which allow researchers to form consistent standard error estimators with only the micro

summary statistics themselves and information about the number of underlying observations.

In addition to a new framework for micro moments, in Section 6 we also contribute a

novel characterization of the “optimal micro moments” and a simple procedure for computing

them. In a best-case scenario when we observe and are willing to use all the results from a

consumer survey that is fully compatible with the aggregate data, we can construct micro

moments that match a consistent estimate of the average score function of the micro data.

Along with consistent estimates of an optimal weighting matrix and Chamberlain’s (1987)

optimal instruments,4 the resulting estimator is statistically efficient within the class of all

possible micro BLP estimators.5 Computing each of these components requires only a few

lines of code with PyBLP.

Characterizing the optimal micro moments also allows us to explore what types of sum-

mary statistics researchers may wish to collect if unable or unwilling to use a full micro

3For the many markets case, Freyberger (2015) and Hong, Li, and Li (2021) study asymptotics for the
aggregate BLP estimator. Grieco, Murry, Pinkse, and Sagl (2023) study many market asymptotics for their
closely-related estimator that also combines aggregate and micro data.

4In Conlon and Gortmaker (2020) we discuss optimal instruments at length and how to obtain
computationally-cheap approximations to them.

5After defining relevant notation in Sections 2 and 4, we delineate this class more clearly in Section 6
and prove efficiency in Appendix E. It does not contain estimators that relax the Berry et al. (1995) share
constraint, such as Grieco, Murry, Pinkse, and Sagl’s (2023) CLER estimator.
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dataset in estimation. Inspecting the functional form of micro data scores provides intuition

about why some standard micro moments in the literature perform particularly well, and

why so-far unused micro moments can perform better. In Section 7’s Monte Carlo exper-

iments, we study the relative performance of standard, less-standard, and optimal micro

moments, while also building up intuition for best practices involving aggregate variation,

pooling statistics across markets, and numerical integration.

In Section 8 we bring these best practices to a real-data example, in which we use

NielsenIQ scanner and consumer survey data—two of the most used sources of data in

the recent industrial organization literature—to estimate pre-2017 demand for soft drinks

in Seattle. We then predict what would happen if prices increased by how much they did

after the 2018 implementation of Seattle’s sweetened beverage tax (SBT), and compare our

substitution estimates to what actually happened. We expect that a structural approach to

predicting policy effects is most useful in settings with limited reduced form evidence; how-

ever, we choose a SBT because we can compare our results with those from existing studies

about the Seattle SBT.6 We obtain similar results to what actually happened. Incorporating

micro data allows us to break down our predictions by demographic group and achieve more

realistic substitution patterns. Incorporating second choice data, which we show how to

collect in a simple online survey, allows us to even better discipline substitution patterns,

particularly to the outside good. By going through a sizable empirical exercise in detail, we

hope to make clear what using our framework and implementing our recommendations looks

like in practice.

Our work on optimal micro moments builds on literature that uses the likelihood of

micro data in BLP-adjacent estimation, starting with Goolsbee and Petrin (2004) and Chin-

tagunta and Dubé (2005). Most similar is Grieco, Murry, Pinkse, and Sagl’s (2023) con-

formant likelihood-based estimator with exogeneity restrictions (CLER), which efficiently

combines the full likelihood from individual choices with product-level aggregate moments.

The main distinction is that our approach starts with relatively complete aggregate data and

augments the BLP approach with additional statistics taken from surveys or other sources,

while the CLER approach starts with the likelihood of relatively complete individual choices

and augments this with moments from aggregate purchases. Compared to using optimal

micro moments in our framework, there are costs and benefits to instead using the CLER

approach to estimate demand, making each approach more appropriate in different settings.

6For example, Powell and Leider (2020) uses a differences-in-differences approach, comparing with Port-
land, to measure price passthrough and substitution after the introduction of the tax.
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CLER will be more statistically efficient for researchers who are interested in estimating

demand with full individual choice data and fully-compatible aggregate data.7 Since CLER

requires optimizing over each product’s mean utility as a separate nonlinear parameter, it

may be less-well suited for researchers who are interested in matching summary statistics,

incorporating supply-side information, or otherwise extending the BLP estimator with mo-

ments that introduce non-convexities into the objective function.8

There is also a recent literature of alternative approaches to BLP problems, some of

which we discuss, and others of which are beyond the scope of this paper. In Appendix B

we discuss how our results extend to the random coefficients nested logit (RCNL) model of

Brenkers and Verboven (2006). PyBLP fully supports the RCNL model, as well as an ap-

proximation to the pure characteristics model of Berry and Pakes (2007). Similar to Salanié

and Wolak’s (2022) estimator that we discuss in Section 3, Lee and Seo (2015) also pro-

vide another approximate BLP estimator. Dubé, Fox, and Su (2012) propose an estimation

algorithm for the aggregate BLP estimator based on the mathematical programming with

equilibrium constraints (MPEC) method of Su and Judd (2012), which Conlon (2013) ex-

tends to generalized empirical likelihood (GEL) estimators. Hong, Li, and Li (2021) propose

estimating a Laplace-type estimator with Hamiltonian Monte Carlo. In this article we follow

Conlon and Gortmaker (2020) and focus on the more popular nested fixed point approach

to computation.

2. Aggregate Data and Estimation Framework

In the left column of Table 2 we summarize the notation that we will introduce in this

section. Throughout, we will use language that refers to consumers purchasing products in

markets. However, the model is much more general, and can be used to study many types

of decision-makers choosing from various types of choice sets.

Aggregate Data

Aggregate data are split into independent and identically distributed markets9 that represent

different realized choice sets for different consumers. Each market t ∈ T has a finite set of

products Jt, a finite set of consumer types It, and a market size Mt ∈ R that measures the

7CLER achieves efficiency gains by relaxing Berry, Levinsohn, and Pakes’s (1995) constraint that observed
shares equal those predicted by the model.

8Common extensions that we consider in this paper that CLER should easily support include using second
choice data, adding a nesting structure, and most common forms of sampling selection.

9This can be relaxed in standard ways to incorporate various forms of cross-market dependence, which
we can account for with, for example, clustered standard errors. See Appendix D for more details.
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mass of consumers in the market.

Each product j ∈ Jt has characteristics (xjt, zjt, ξjt). There are c = 1, . . . , C observed

characteristics xjt = (x1jt, . . . , xCjt)
′ ∈ R

C×1 that directly affect consumer demand. Typ-

ically, xjt includes both exogenous characteristics, which are uncorrelated with mean-zero

unobserved quality ξjt ∈ R, and endogenous characteristics, such as price, which we expect

to be correlated with ξjt. Instruments zjt = (z1jt, . . . , zMAjt)
′ ∈ R

MA×1 include the exogenous

characteristics in xjt along with other exogenous observables and will be interacted with ξjt

to form MA moments from the aggregate data.

Each consumer type i ∈ It has characteristics (wit, yit, νit) and constitutes a known

share wit ∈ [0, 1] of consumers in the market, where
∑

i∈It
wit = 1. Each consumer type has

r = 1, . . . , R observed demographics yit = (y1it, . . . , yRit)
′ ∈ R

R×1 and unobserved preferences

νit = (ν1it, . . . , νCit)
′ ∈ R

C×1 for the observed characteristics xjt. Typically, demographics

yit will be sampled from census data or some other representative survey and νit will be a

numerical approximation to an independent standard normal distribution. Types can be

interpreted as a fixed set of Monte Carlo draws or another numerical approximation to a

continuous distribution with integration weights wit.
10

We focus on a discrete set of consumer types for notational convenience and practical

relevance. In practice, most researchers use a fixed number of Monte Carlo draws from the

distribution of demographics and unobserved preferences. For brevity’s sake, in this paper

we do not discuss the econometric implications of simulation error resulting from only using

a finite number of draws. Instead, in our Monte Carlo experiments and replication exercise,

we use best practices from Conlon and Gortmaker (2020), which involve either using a large

number of scrambled Halton draws (Owen, 2017) or an appropriate quadrature rule, and do

not account for simulation error when computing standard errors.11

The mass Mt of consumers are differentiated by type i ∈ It and by idiosyncratic prefer-

ences εijt ∈ R for each product j ∈ Jt and the outside alternative, denoted j = 0. Indirect

utility from selecting j ∈ Jt ∪ {0} is12

uijt = δjt + µijt + εijt, ui0t = εi0t. (1)

10Simple Monte Carlo draws are equally-weighted, with wit = 1/|It|. Types may have different weights,
for example, when demographics are sampled from a survey with sampling weights or when quadrature is
used to approximate a continuous distribution.

11For those who are concerned about simulation error, PyBLP does support resampling consumer types to
compute an estimate of the contribution of simulation error to the BLP or micro BLP estimator’s asymptotic
covariance matrix.

12Identification requires two normalizations. We follow standard practice by normalizing δ0t = µi0t = 0.
Levels of δjt and µijt are then interpreted as relative to those of the outside option.
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Mean utility δjt ∈ R is common across consumer types and depends on product characteris-

tics (xjt, ξjt). Typically, an additivity assumption is made so that

δjt = x′
jtβ + ξjt. (2)

The heterogeneous component of utility µijt ∈ R differs across types and will additionally

depend on demographics and preferences (yit, νit). A popular functional form is

µijt = x′
jt(Πyit + Σνit). (3)

With normally distributed unobserved preferences νit ∼ N(0, I), indirect utility can be

written as uijt = x′
jtβit + εijt with random coefficients distributed βit ∼ N(β + Πyit,ΣΣ

′).

We focus on this functional form because it is by far the most popular, but we also dis-

cuss the three most common variants, which we also support in PyBLP. First, to guarantee

downward sloping demand for all consumers, one can replace the random coefficient βcit on

price xcjt = pjt with a lognormal random coefficient (see Appendix A). Second, to parsimo-

niously incorporate geographic distance or other important product-specific demographics

yijt, one can replace interactions between product dummies in xjt and demographics in yit

with yijt. Third, one can use other parametric distributions for νit, such as exponential or

χ2 distributions.

Each consumer chooses among the discrete alternatives j ∈ Jt ∪ {0} and selects the

option that maximizes indirect utility. With type I extreme value idiosyncratic preferences

εijt, the logit probability that a consumer of type i ∈ It chooses a product j ∈ Jt is
13

sijt =
exp(δjt + µijt)

1 +
∑

k∈Jt
exp(δkt + µikt)

. (4)

Again, we focus on this distribution for εijt because it is by far the most popular.14

In Appendix B we discuss the most common variant, which is to assume that εijt follows

the assumptions of a two-level nested logit. The resulting random coefficients nested logit

(RCNL) model of Brenkers and Verboven (2006), which we also support in PyBLP, is popular

in applications where the most important product characteristic governing substitution is

13The one in the denominator is from the outside alternative normalization δ0t = µi0t = 0.
14The pure characteristics model of Berry and Pakes (2007), which PyBLP can approximate, eliminates

idiosyncratic preferences εijt altogether. Although our focus is on more tractable models with εijt, incorpo-
rating micro data does allow for the estimation of more flexible models in which heterogeneous utility µijt

dominates, reducing dependence on εijt that can otherwise contribute to unrealistic substitution patterns.
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categorical.

Aggregate market shares are given by integrating over the mass of consumers. The mixed

logit market share of product j ∈ Jt is

sjt =
∑

i∈It

wit · sijt. (5)

We use sjt to refer to generic market shares, potentially evaluated at different parameters

sjt(θ). We use Sjt = sjt(θ0) to refer to the observed market shares generated by the true

parameters θ0.

The goal is to recover the true parameters θ0 = (β0,Π0,Σ0) that characterize the demand

system. Since we will frequently refer to our earlier work, it is worth pointing out a difference

in notation. In Conlon and Gortmaker (2020), we partitioned θ into three parts: θ1 referred

to β; θ2, to (Π,Σ); and θ3, to supply-side parameters.15 Since our focus here is on the

demand side, we use the notation θ = (β,Π,Σ), not θ = (θ1, θ2, θ3).

Towards recovering θ0, the researcher first makes an assumption about how to define

markets t ∈ T and their sizes Mt. For each product, the researcher collects characteristics,

instruments, and market shares: {(xjt, zjt,Sjt)}j∈Jt . Typically, market shares are observed

quantities divided by the assumed number of consumers in the market. Finally, the researcher

makes an assumption about consumer types: {(wit, yit, νit)}i∈It .

Aggregate BLP Estimator

Since unobserved quality ξjt ∈ R is mean-zero and uncorrelated with the MA instruments zjt,

our assumptions about the aggregate data deliver MA moment conditions E[ξjt · zjt] = 0.16

Using these, we can construct a GMM estimator for θ from NA =
∑

t∈T |Jt| aggregate

observations and a weighting matrix ŴA where hats denote sample approximations:17

θ̂A = argmin
θ

ĝA(θ)
′ŴAĝA(θ), ĝA(θ) =

1

NA

∑

t∈T

∑

j∈Jt

(δ̂jt(Π,Σ)− x′
jtβ︸ ︷︷ ︸

ξ̂jt(θ)

) · zjt. (6)

The key insight of Berry, Levinsohn, and Pakes (1995), building on Berry (1994), is that

15With a supply side, the parameter in β on price would instead be in θ2.
16It is common to assume E[ξjt | zjt] = 0 and convert these conditional moments into unconditional ones.
17Typically, we solve this problem twice. Once to obtain a consistent estimator for the optimal weighting

matrix—and for the optimal instruments, if appropriate—and a second time to obtain the efficient estimator.
The most common choice for the initial weighting matrix is the 2SLS weighting matrix, which would be
efficient if ξjt were homoskedastic.
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we can invert the demand system and recover δjt from sjt(Π,Σ, δt) by matching the observed

shares Sjt. In each market t ∈ T , we can solve a system of |Jt| nonlinear equations to find

the unique |Jt| mean utilities δ̂jt(Π,Σ) that equate observed market shares Sjt with their

model counterparts:

Sjt = sjt(Π,Σ) ≡
∑

i∈It

wit ·
exp[δ̂jt(Π,Σ) + x′

jt(Πyit + Σνit)]

1 +
∑

k∈Jt
exp[δ̂kt(Π,Σ) + x′

kt(Πyit + Σνit)]
, ∀j ∈ Jt. (7)

The econometric properties of this estimator under many products are discussed in Berry,

Linton, and Pakes (2004); many markets, in Freyberger (2015) and Hong, Li, and Li (2021).18

In Conlon and Gortmaker (2020) we discuss modern best practices for this type of estimation

and implement them as defaults in PyBLP: fast and stable algorithms for solving the inner

problem for δ̂jt(Π,Σ) and the outer problem for θ̂A, fast and accurate ways to integrate

over consumer types i ∈ It, robust solutions to various numerical challenges, and when

appropriate, the use of fixed effect absorption and Chamberlain’s (1987) optimal instruments.

Throughout this article, we continue to use all of these best practices for the aggregate portion

of estimation.

A common extension, which we discuss at length in Conlon and Gortmaker (2020), is

to derive an additional set of aggregate moment conditions from the first-order pricing con-

ditions of firms and to append the sample analogues of these moments to those in ĝA(θ).

Especially when using an approximation to the optimal instruments, incorporating well-

specified supply-side moments can substantially improve the performance of the aggregate

estimator. However, in this article, we primarily focus on the demand-only model to highlight

the contribution of micro data.19

3. Aggregate Variation Only

Absent a well-specified supply side, it can be difficult to flexibly estimate the nonlinear pa-

rameters (Π,Σ) governing heterogeneous tastes without strong instruments and substantial

cross-market variation. The frustrating result is an estimator with poor econometric per-

formance or an estimated demand system with unreasonable substitution patterns. In this

section, we discuss the identification of the aggregate model to motivate incorporating micro

data.

18In Appendix D we discuss both many products, |Jt| → ∞, and many markets, |T | → ∞.
19Of course, PyBLP supports combining micro and supply-side moments. We provide an example of this

in Section 8, where we use both to replicate Petrin (2002).
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Intuitively, identification of (Π,Σ) requires cross-market variation in demographic distri-

butions and choice sets. For a fully nonparametric treatment of identification with aggregate,

market-level data, see Berry and Haile (2014) or the summary in Section 5 of Berry and Haile

(2021). Our experience is that a good starting point for understanding whether there is suffi-

cient aggregate variation is the typical economist’s strong intuition about linear IV regression

models.

Intuition from Linear Regression

To leverage this intuition, we use results in Salanié and Wolak (2022), who approximate the

aggregate estimator in (6) with a linear IV regression. We write down the full approximation

using this paper’s notation in Appendix C but here consider only the simplest scalar case

with C = 1 product characteristic, R = 1 demographic, and three parameters, θ = (β, π, σ).

A second-order Taylor expansion around π = σ = 0 gives the following linear model with

four regressors:20

log
sjt
s0t

≈ βxjt + σ2ajt + πmy
txjt + π2vyt ajt + ξjt, ajt =

(xjt

2
−

∑

k∈Jt

skt · xkt

)
· xjt (8)

where my
t =

∑
i∈It

wit ·yit is the within-market demographic mean, vyt =
∑

i∈It
wit ·(yit−my

t )
2

is its variance, and ajt is an “artificial regressor” that reflects within-market differentiation

of the product characteristic xjt.
21 If π = σ = 0, the approximation is exact, and collapses

to a simple logit regression: log(sjt/s0t) = δjt = βxjt + ξjt.

The linear model in (8) is only an approximation, but its intuition about identification

translates fairly well to the full model. First, without an instrument for the artificial regressor

ajt we should expect our estimate for σ2 to be asymptotically biased—ajt is a function

of endogenous market shares skt, which are correlated with unobserved quality ξjt.
22 The

“differentiation IVs” proposed by Gandhi and Houde (2020) and further evaluated in Conlon

and Gortmaker (2020) look similar to ajt and work well in practice compared to other types of

“BLP instruments” that are functions of other products’ exogenous characteristics.23 Indeed,

20Here, s0t does not refer to a “true” share, like the true θ0, but just the outside share for j = 0.
21Salanié and Wolak (2022) give additional intuition for the functional form of ajt. A quadratic form is

unsurprising because xjt multiplies νit. The
1
2 comes from the symmetric shape of the logistic distribution.

22In a fully nonparametric model, a different instrument is needed for each of the |Jt| market shares (Berry
and Haile, 2014).

23In Section 7 we use the “quadratic” version of differentiation IVs in our Monte Carlo experiments. For
this example, differentiation IVs would be zjt = (xjt, âjt,m

y
t xjt, v

y
t âjt)

′ where âjt =
∑

k 6=j(xkt − xjt)
2.

Expanded, âjt = x2
jt − 2xjt

∑
k 6=j xkt +

∑
k 6=j x

2
kt and ajt = x2

jt/2− xjt

∑
k 6=j sktxkt. The main difference is

the share skt-weighted average of xkt in ajt instead of the unweighted average in âjt. Weighting by share is

11



the first stage of an IV regression using differentiation IVs implements precisely the “IIA test”

recommended by Gandhi and Houde (2020): estimate the simple logit regression controlling

for differentiation IVs and consider a richer model if the IVs are statistically relevant.

Second, absent significant cross-market variation in assortment Jt, the artificial regressor

ajt will be nearly collinear with xjt and x2
jt, and it will be difficult to separately identify σ2

from linear coefficients. This aligns with the standard intuition that with only aggregate

data, the degree of unobserved preference heterogeneity, here measured by σ2, is identified

by how consumers substitute between products when faced with cross-market variation in

choice sets.

Third, if the distribution of the demographic yit, here measured by its mean my
t and

variance vyt , does not vary much across markets, the regressors my
txjt and vyt ajt will be

nearly collinear with xjt and ajt, and it will be difficult to separately identify π and π2 from

β and σ2. Absent cross-market variation in (my
t , v

y
t ), distinctions between taste variation

from demographics versus unobserved heterogeneity will be solely driven by functional form.

With only aggregate data, separate identification of (Π,Σ) requires cross-market variation

in demographics.

Even when using appropriate instruments, a lack of cross-market choice set and demo-

graphic variation will either result in poor estimators of (Π,Σ) or leave researchers with no

alternative other than to estimate a more restrictive demand system. Supply restrictions

aside, the typical solution is to exploit within-market variation from micro data that links

demographics to individual choices, rather than aggregate market shares.

In practice, our recommendation when considering estimating a demand system with

only aggregate data aligns with those of Salanié and Wolak (2022) and Gandhi and Houde

(2020). We recommend first running a version of the IV regression in (8), with the full

version written out in Appendix C, to get a sense of whether aggregate variation will be

sufficient to estimate a flexible demand system.24 If so, the estimates from this regression

will give a sense of what reasonable starting values and parameter bounds may look like.

4. A Unified Framework for Micro Data and Estimation

In the right column of Table 2, we summarize additional notation that we will introduce in

this section. We begin by explaining our notation and the framework we will use to charac-

infeasible because market shares are endogenous. The other difference is the “BLP instrument”
∑

k 6=j x
2
kt.

24With a reasonably small number of characteristics and demographics, is perhaps simplest to treat π2 as
an unconstrained fourth parameter, say γ, and to estimate π only from cross-market variation in demographic
means my

t , while “controlling” for vyt ajt.
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terize “micro datasets,” indexed by d. We then build up additional notation to incorporate

“micro moments” into the BLP estimator. Our “micro moments,” indexed by m, are smooth

functions of “micro parts,” indexed by p, which are in turn conditional expectations of scalar

functions we call “micro values.”

Survey Data

We begin with the assumption that micro data are split into datasets d ∈ D that report

results from statistically independent consumer surveys. Statistically, micro data are gener-

ated conditional on all aggregate data: products Jt, consumer types It, and sizes Mt of all

markets t ∈ T .25 We use the notation PA, EA, and VA to denote probabilities, expectations,

and variances conditional on all aggregate data.

Each consumer n is defined by a 3-tuple (tn, in, jn) and chooses j ∈ Jt∪{0} with (mixed)

logit choice probability PA(jn = j | tn = t, in = i) = sijt following (4). Likewise, within

a market, the weight corresponding to each consumer type i ∈ It is the same as in the

aggregate demand model (5), and is given by PA(in = i | tn = t) = wit. These types i and

weights wit include both observed demographics yit and unobserved preferences νit.

However, not all consumers need be observed in a micro dataset. Instead, we assume that

a survey administrator selects a finite set of consumers n ∈ Nd with independent sampling

probabilities PA(n ∈ Nd | tn = t, in = i, jn = j) = wdijt. Most common survey designs can

be represented with different sampling probabilities wdijt, including arbitrary stratification

by the consumer’s market, type, and even choice. For a survey to be useful, we need to know

how it was conducted, so we will assume that the researcher knows the sampling probabilities

wdijt for each dataset d ∈ D.

Consider some simple examples. If the survey randomly samples from all consumers in

different markets, sampling probabilities should be proportional to the number of consumers

in each market, wdijt ∝ Mt. An alternative would be to stratify across markets so that

consumers are sampled from each market with equal probability, wdijt ∝ 1/|T |. Other

common sampling schemes might only sample individuals conditional on making a purchase,

wdijt ∝ 1{j 6= 0}, or on purchasing a particular brand b, with wdijt ∝ 1{j ∈ Jb}. It is

also common to sample individuals whose income yrit is above or below some level (such as

households eligible for WIC), for example wdijt ∝ 1{yrit < $50,000}. We can combine these

into a more detailed example: wdijt ∝ Mt · 1{yrit < $50,000, t ∈ Td, j 6= 0} would generate

a random sample of consumers from a few markets Td ⊂ T with income below $50,000 who

25Depending on which asymptotic thought experiment from Appendix D is most appropriate, we may also
include survey sampling probabilities, defined shortly, in the aggregate data.
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make a purchase.

Micro Statistics

Ideally, the researcher would observe a matched dataset of all sampled consumers’ markets,

choices, and demographics: {(tn, jn, yintn)}n∈Nd
.26 For example, the NielsenIQ panelist data

tracks the products purchased by households, which stores they visit, and the demographics

of the corresponding household. In this scenario, we can make full use of all the information

in the micro dataset.27 In many other cases, we will have incomplete data from a limited

number of consumers, or summary statistics for subsets of individuals. The extent of our

micro data will determine which “micro moments” we can and cannot compute.

We will use each micro summary statistic that we observe to define one of m = 1, . . . ,MM

micro moments. Each micro momentm matches a single summary statistic, which could be a

simple average, a weighted average, a conditional average, or even a covariance or regression

coefficient.

Consider a simple example. We are interested in capturing the relationship between

having children and purchasing a minivan. Suppose we have access to summary statistics

from a representative survey of households that purchased a car in d = 2023. Specifically,

suppose we observe two summary statistics: the average number of kids across surveyed

households, as well as the average number of kids across minivan purchasers,

kids2023 =
1

N2023

∑

n∈N2023

kidsintn , (9)

kidsmini
2023 =

1
N2023

∑
n∈N2023

kidsintn · 1{jn ∈ Jmini}
1

N2023

∑
n∈N2023

1{jn ∈ Jmini}
. (10)

We can use these two summary statistics to define MM = 2 micro moments. The first,

kids2023, is a simple average, and the second, kidsmini
2023, is the ratio of two simple averages. To

cover both of these cases (and many more), our framework supports summary statistics that

are smooth functions of simple averages.28

We call each simple average a “micro part.” Each of the p = 1, . . . , PM micro parts is an

26By definition, the researcher does not know unobserved preferences νit.
27In Section 6 we discuss optimal micro moments that make full use of the information in a micro dataset.

In Section 8 we demonstrate how to do so with NielsenIQ data.
28Below, we explain how to write weighted averages as simple averages using this same framework.
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average over all Ndp = |Ndp | observations in its micro dataset dp ∈ D:

vp =
1

Ndp

∑

n∈Ndp

vpinjntn . (11)

Each part p is defined as the average of a function vp(tn, jn, yintn), or vpinjntn for short, that

may depend on the choice conditions (e.g., prices, assortment, and product characteristics)

in the market tn, the consumer demographics yintn , and the selected choices jn. The choice

of vp(·) is determined both by what statistics are available in our data, and which model

parameters we are trying to estimate.

To match kids2023 and kidsmini
2023, we will need to define PM = 3 micro parts: the average

number of kids in the micro data, the share of households who purchased a minivan, and

the average number of kids multiplied by a dummy for purchasing a minivan,

v1 =
1

N2023

∑

n∈N2023

v1injntn , v1ijt = kidsit, (12)

v2 =
1

N2023

∑

n∈N2023

v2injntn , v2ijt = 1{j ∈ Jmini}, (13)

v3 =
1

N2023

∑

n∈N2023

v3injntn , v3ijt = kidsit · 1{j ∈ Jmini}. (14)

We have assumed that in the survey, we directly observe v1 = kids2023, but that we do not

directly observe v2 or v3, only their ratio v3/v2 = kidsmini
2023. To express the simple average

kids2023, the ratio kidsmini
2023, and any other smooth function of averages, such as covariances

or even regression coefficients, we need to define slightly more notation.

Each micro moment m matches a scalar summary statistic denoted fm(v) ∈ R, which is

a smooth function fm : RPM×1 → R of potentially all micro moment parts v = (v1, . . . , vPM
)′.

In our example, our MM = 2 two summary statistics can be written as

kids2023 = f1(v) = v1, (15)

kidsmini
2023 = f2(v) = v3/v2. (16)

In general, each micro moment is defined by both its underlying micro values vpijt and its

smooth function fm(·). We expect that most useful summary statistics are smooth functions

of averages, so we think that our definition of micro moments is fairly nonrestrictive. We

discuss common summary statistics in Section 5.
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Model Analogues

Our assumptions about consumer and survey sampling allow us to compute the model ana-

logue for each observed summary statistic fm(v). Under the model, each micro moment

part vp(θ) is defined as the expectation of vpijt conditional on the aggregate data and the

parameters θ:

vp(θ) ≡ E
θ
A[vpinjntn ] =

∑
t∈T

∑
i∈It

∑
j∈Jt∪{0}

wit · sijt(θ) · wdpijt · vpijt∑
t∈T

∑
i∈It

∑
j∈Jt∪{0}

wit · sijt(θ) · wdpijt

. (17)

Notice that we aggregate over all markets t, individuals i, and products j using the same

sijt(θ) from (4), and the same wit we use to compute the aggregate shares sjt in (5). We

rely on the sampling weights wdpijt and micro values vpijt to limit each part’s calculation

to sub-populations of individuals and to calculate conditional expectations. Likewise, by

varying the model parameters θ, we are implicitly re-weighting vpijt so that the objective is

to choose θ such that the model average from (17) matches the survey average from (11).

The model analogue of the observed micro summary statistic fm(v) is fm(v(θ)) where

v(θ) = (v1(θ), . . . , vPM
(θ))′. At the true θ0, iterated expectations and the continuous mapping

theorem give m = 1, . . . ,MM conditions fm(v) − fm(v(θ0))
P
−→ 0.29 Slightly abusing the

definition of a statistical moment, we will call each of these conditions a “micro moment.”30

29Here, convergence in probability is not conditional on the aggregate data, so these conditions are statis-
tically compatible with the aggregate moments E[ξjt · zjt] = 0.

30If fm(v) = vp is a simple average, condition m can be interpreted without abusing terminology as
a moment E[vpijt − vp(θ0)] = 0. If all summary statistics were simple averages, the minimum distance
estimator we will define shortly would instead be a GMM estimator.
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Micro BLP Estimator

We can extend the aggregate GMM estimator in (6) with MM new micro moments and a

larger weighting matrix Ŵ = diag(ŴA, ŴM).
31 This gives a minimum distance estimator:32

θ̂ = argmin
θ

ĝ(θ)′Ŵ ĝ(θ), ĝ(θ) =

[
ĝA(θ)

ĝM(θ)

]
, ĝM(θ) =




f1(v)− f1(v(θ))
...

fMM
(v)− fMM

(v(θ))


 . (18)

In practice, we can concentrate out the linear parameters β and only optimize over the

nonlinear parameters (Π,Σ). For each guess of (Π,Σ), we need to solve the nested fixed

point for all mean utilities δ̂jt(Π,Σ). The micro BLP estimation algorithm is given below.

Algorithm 1 Nested Fixed Point with Micro Moments

For each guess of the nonlinear parameters (Π,Σ):

1. For each market t ∈ T , solve (5) for δ̂jt(Π,Σ) for all products j ∈ Jt. In Conlon and Gortmaker
(2020) we describe and evaluate different solvers in Sections 3 and 5.

2. For each micro moment m = 1, . . . ,MM, compute fm(v(θ)) = fm(v(δ̂(Π,Σ),Π,Σ)) in (17). Stack the
micro sample moments ĝM(θ) = (f1(v)− f1(v(θ)), . . . , fMM

(v)− fMM
(v(θ)))′.

3. Recover linear parameters β̂(Π,Σ) from the linear IV GMM regression δ̂jt(Π,Σ) = x′
jtβ + ξjt. In

Conlon and Gortmaker (2020) we describe fixed effect absorption in Section 3 and the regression in
Appendix A.

4. Compute residual unobserved qualities ξ̂jt(θ) = δ̂jt(Π,Σ) − x′
jtβ̂(Π,Σ). Construct the aggregate

sample moments ĝA(θ) =
1

NA

∑
t∈T

∑
j∈Jt

ξ̂jt(θ) · zjt.

5. Stack sample moments into ĝ(θ) = (ĝA(θ)
′, ĝM(θ)′)′ and construct the objective ĝ(θ)′Ŵ ĝ(θ).

Since the first use of the micro BLP estimator in Petrin (2002), a wide range of papers,

many of which we reference in Section 1, have extended the aggregate BLP estimator with

various forms of moments based on micro data. Although each paper uses its own notation

and language, in Section 5 we describe how most of these cases fit into our framework.

Although variants of the micro BLP estimator have been used extensively in practice, its

31The optimal weighting matrix is block diagonal because the aggregate and micro moments are uncorre-
lated (see Appendix D).

32Again, we typically solve this problem twice, once with an initial weighting matrix and again with the
optimal one, and, if appropriate, optimal instruments and optimal micro moments. With micro moments,
there is no “canonical” choice for the initial weighting matrix, like the 2SLS weighting matrix for the aggregate
estimator. Instead, we prefer to compute and invert all moments’ covariances at some initial guess for θ0,
which could be informed by estimators based on aggregate data.
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econometric properties have received less attention than those of the aggregate estimator.

Appendices sometimes provide heuristic discussions of asymptotic covariances (e.g., in Petrin,

2002; Berry, Levinsohn, and Pakes, 2004), and Grieco, Murry, Pinkse, and Sagl (2023)

provide formal analysis of many markets asymptotics for their closely-related estimator.

However, the only formal asymptotic analysis of a special case of the micro BLP estimator

in (18) of which we are aware is in Myojo and Kanazawa (2012), which extends the many

products asymptotics of Berry, Linton, and Pakes (2004) with micro moments of the specific

form used by Petrin (2002).33 Both of these papers also study the effect of simulation error,

which, again, we omit from this article, but think may be an interesting direction for future

research.

In Appendix D we derive the econometric properties of the general micro BLP estimator

under different asymptotic thought experiments: (a) many markets, including those covered

by surveys; (b) many markets, few with surveys, but the surveys are large; and (c) few

markets, but markets and surveys are both large. Asymptotic normality is straightforward

to show for cases (a) and (b) because markets are independent. Without a growing number

of markets, case (c) requires either ruling out micro moments with asymptotic variances that

depend on specific products, or dropping markets covered by micro data from the aggregate

moments.34

A convenient result in Appendix D is that the choice of asymptotic thought experiment

does not affect how we compute the estimator or its asymptotic variance. Additionally, con-

sistent estimators of standard errors can be formed without any external information about

the sampling error in the summary statistics fm(v) other than the number of observations

Nd.
35 This means that in order to do valid inference, researchers do not need to know sample

covariances or standard errors for the summary statistics they are matching.36

The choice of asymptotic thought experiment does inform how we think about rates

of convergence for θ̂. Parameter estimators will in general converge at the faster rate of

33Myojo and Kanazawa (2012) also incorporate supply-side moments and run a Monte Carlo experiment.
In contrast, our focus in this article is on best practices for a broader class of micro BLP estimators under
a variety of different asymptotic thought experiments.

34For example, matching the mean income for those who purchase a specific product j may make the
asymptotic distribution of θ̂ depend on the potentially non-normal characteristics of j. As a robustness
check, we could set instruments zjt = 0 for all markets t in which we match this moment.

35Given Nd and sampling weights wdijt, we can form a consistent estimate of the covariance
CA(vpinjntn , vqinjntn) between each pair of micro parts p and q, and use the delta method to obtain the
asymptotic covariance matrix for the micro moments.

36By default, PyBLP computes analytic asymptotic covariances. However, it does allow researchers to
specify their own asymptotic covariance matrix for micro moments, so that if researchers can use alternative
measures of this matrix, if desired.
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the aggregate or micro data, depending on which sample size is larger. The exception is

estimators of linear parameters β, which are only identified by aggregate variation in the

linear IV regression. If some nonlinear parameters in (Π,Σ) are not identified or only weakly

identified by variation from the larger sample, the other sample provides “backup variation”

that may still guarantee strong identification at the slower rate.37 For example, if there

is no cross-market variation in the distribution of demographics whatsoever, Π will not be

identified from aggregate variation, and its estimator will converge at the rate of the micro

data.

The punchline is that under fairly mild and typical assumptions, the micro BLP estimator

is asymptotically normal with reasonable rates of convergence. In Section 7 we run large-scale

Monte Carlo experiments to confirm that these desirable asymptotic properties translate to

finite samples.

Weighted Micro Data

So far, there are three places where weights can show up in our framework. It is worth

clarifying their different roles. First, wit measures the share of all consumers in market t

who are of type i where the type contains both observed (demographic) and unobserved

heterogeneity. The choice of wit should be largely unaffected by the micro data.38 Second,

wdijt is the probability that a consumer in market t of type i who chooses j is selected to

be in micro dataset d. Third, although the notation in (11) suggests that micro parts vp

are simple averages, many surveys datasets involve weighting schemes in order to better

approximate the demographics or choices of the target population.

As an example, the simple average of income among NielsenIQ panelists tends to be higher

than the national average. NielsenIQ provides projection factors so that after weighting, the

demographics of their panelist sample is broadly demographically similar to the entire US

population (including incomes). This presents a choice to the researcher: define vp as the

simple average of panelist income or as the projection factor-weighted average of panelist

income (or to construct custom projection factors that are better suited to one’s setting).

We expect that in many cases, the latter will be preferred as researchers are often interested

in estimating the preferences of an overall population.

As in many surveys, the NielsenIQ projection factors can be interpreted as inverse sam-

pling weights w̃dijt ∝ 1/wdijt, which adjust for non-random selection into the micro dataset.

37Grieco, Murry, Pinkse, and Sagl (2023) call this property of their related estimator “conformant.”
38In most specifications the researcher will use equally weighted pseudo-random Monte Carlo draws so

that wit =
1

|It|
or quadrature rules over a (multivariate) standard normal distribution.
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In this case we could multiply our “micro values” vpijt by w̃dpijt to produce valid estimates

of quantities across all consumers, not just consumers selected to be in the micro dataset.

For concreteness, consider the running example of minivans and kids. If we assume that

the survey was representative, sampling weights should depend only on market size, whether

the market is in 2023, and purchasing a car: wdijt ∝ Mt · 1{t ∈ T2023, j 6= 0}. In this case,

kids2023 from (15) represents an unbiased estimate of the average number of children among

households that purchased a car in 2023.

Another possibility is that the survey over-sampled high-income households (perhaps as

“likely automobile buyers”), using sampling weights proportional to some known, increasing

function of household income: wdijt ∝ g(incomeit) · Mt · 1{t ∈ T2023, j 6= 0}. In this case,

a simple average kids2023 over v1injntn = kidsintn is biased for its population counterpart.

However, if the survey administrator computed inverse sampling weights w̃dijt ∝ 1/wdijt

and instead reported a weighted average with v1ijt = w̃dijt · kidsit, then kids2023 would be

unbiased.

When defining the model analogue fm(v(θ)) of a micro statistic fm(v), it is crucially

important to know whether and how this statistic has already been weighted. If fm(v) has

already been adjusted (e.g., with inverse sampling weights) so that it is a valid estimate of

some quantity across all consumers, then we can drop the sampling probabilities wdijt from

the right-hand side of the model analogue in (17).39 On the other hand, if vp is a simple

average over a selected sample, we certainly need to take the sampling probabilities wdijt into

account. A simple sanity check is to compare the distribution of each of the demographics

under the the demand model (with just the wit weights), to the demographics of the corre-

sponding micro dataset. This comparison is feasible if we condition on demographics i and

markets t, but not if we condition on choices j which depend on the unknown parameters θ.

The formula in (17) provides some ambiguity in how we define micro sampling weights

wdijt and micro part values vpijt, particularly for conditional expectations. Suppose we were

only interested in the average number of children among minivan buyers, kidsmini
2023. Previously,

we represented this with fm(v) = v3/v2 where

wdijt ∝ Mt · 1{t ∈ T2023, j 6= 0},
v2ijt = 1{j ∈ Jmini},

v3ijt = kidsit · 1{j ∈ Jmini}.
(19)

An alternative would be to instead condition the micro dataset on only minivan buyers, and

39Using PyBLP, this amounts to setting wdijt equal to some constant.
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use only a single micro part fm(v) = v1 instead of the ratio:

wdijt ∝ Mt · 1{t ∈ T2023, j ∈ Jmini}, v1ijt = kidsit. (20)

After plugging into (17) and evaluating fm(v), both of these will yield the same number:

kidsmini
2023. Though the two approaches contain identical information, we typically discourage

the second approach even though it appears simpler.

The main disadvantage is that if, as before, we also wanted to include the average number

of children among all car buyers, kids2023, these would now be defined over two different

micro datasets. In order to correctly calculate weighting matrices and perform inference

in Appendix D, we require that each micro dataset be statistically independent. This is

impossible if one micro dataset is simply a subset of another. A substantive restriction of

our general framework for micro moments is that we require some care in how datasets (and

corresponding survey weights) are constructed in order to provide correct inference.

5. Standard Micro Moments

The empirical literature has used a variety of different micro moments. In Table 3 we list

popular micro moments and the papers from Table 1 that use variants of them.

Demographic Information

Many surveys report information that links purchase behavior to demographic variables.

Our running example will be Petrin (2002), which uses summary statistics from a random

survey of consumers to help estimate parameters in Π on interactions between consumer

demographics and product characteristics.

Petrin (2002) observes the share of consumers in a certain income group i ∈ Im who

purchase a new vehicle, and uses this information to incorporate a “P(j 6= 0 | i ∈ Im)”

moment. We develop this notation-abusing shorthand to refer to a micro moment m that

matches fm(v) = v1/v2 with micro values v1ijt = 1{j 6= 0}·1{i ∈ Im} and v2ijt = 1{i ∈ Im}.
40

Intuitively, this type of micro moment should help estimate a coefficient in Π that shifts

utility for consumers in the income group.

To target a coefficient in Π on the interaction between family size and a minivan dummy,

Petrin (2002) could discretize family size yrit into groups of consumers i ∈ Im, collect mini-

40This assumes the underlying dataset d is not selected, wdijt = 1. If based on a survey the samples only
those in the income group, wdijt = 1{i ∈ Jm}, this shorthand would refer to a micro moment that simply
matches the share fm(v) = v3 of inside purchases with v3ijt = 1{j 6= 0}.
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vans into a group of products j ∈ Jm (e.g., minivans), and incorporate similar “P(j ∈ Jm |

i ∈ Im)” moments. Often, surveys only collect information by broad demographic groups

like Im. However, Petrin (2002) observes the mean family size of those who purchase mini-

vans, and uses this to incorporate a “E[yrit | j ∈ Jm]” moment, which intuitively contains

more information than a single discretized counterpart.

Similarly, surveys that collect data about individual products rather than just broad

categories of choices can be even more informative. For a product characteristic xcjt such as

price or size that is more granular than 1{j ∈ Jm}, matching “E[xcjt | i ∈ Im, j 6= 0]” could

be more useful for estimating a coefficient in Π on the corresponding characteristic.

Even more potentially informative is the covariance “C(xcjt, yrit | j 6= 0)” between a

product characteristic xcjt and a demographic yrit.
41 Unlike both “E[yrit | j ∈ Jm]” and

“E[xcjt | i ∈ Im, j 6= 0],” which discretize xcjt and yrit into broad categories, a covariance

potentially contains more useful information about a coefficient in Π on the interaction

between xcjt and yrit. Although more demanding on the available micro data, there have

been a few papers that have matched covariances (see Table 5).42

Many useful summary statistics can be written as a function of simple averages. For

example, correlations and regression coefficients are covariances scaled by smooth functions

of variances. PyBLP supports all such forms of micro moments, requiring only that the user

specify the function fm(·), as well as its derivative for computing objective gradients and

delta method-based covariances.

Second Choices

First incorporated in BLP-style estimation by Berry, Levinsohn, and Pakes (2004), “sec-

ond choices” are a particularly useful form of micro data that requires additional notation.

What choices consumers would have made had their first choice been unavailable provides a

great deal of information about substitution patterns, and we show how to incorporate this

information in our framework below.

Each consumer n in a micro dataset d ∈ D with second choices has an additional char-

acteristic kn. Given a market tn = t and type in = i, a consumer chooses j ∈ Jt ∪ {0} first

and k ∈ Jt ∪ {0} \ {j} second with probability PA(jn = j, kn = k | tn = t, in = i) = sijkt.

Idiosyncratic preferences εijt remain the same across first and second choices. With εijt dis-

41In a dataset d that already conditions on inside purchase, wdijt = 1{j 6= 0}, this shorthand refers to a
micro moment m that matches fm(v) = v1−v2 ·v3 with values v1ijt = xcjt ·yrit, v2ijt = xcjt, and v3ijt = yrit.

42Nurski and Verboven (2016) match actual covariances, while Berry, Levinsohn, and Pakes (2004) match
two moments: “E[xcjt ·yrit | j 6= 0]” and “E[yrit | j 6= 0].” Since “E[xcjt | j 6= 0]” is equal to a fixed constant,
these two moments span the single covariance.
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tributed type I extreme value, the probability of the joint event can be written in a familiar

form, sijkt = sijt · sik(-j)t where sik(-j)t = sikt/(1− sijt) is the probability of choosing k when j

is eliminated from the choice set.43 In practice, we derive and use a less intuitive but more

general expression sijkt = sik(-j)t−sikt, which also works for the previously-mentioned nested

logit variant discussed in Appendix B.44

The survey sampling probability PA(n ∈ Nd | tn = t, in = i, jn = j, kn = k) = wdijkt

can also depend on second choices. For example, wdijkt ∝ Mt · 1{j, k 6= 0} would generate a

random sample of consumers whose first and second choices were both inside alternatives.

Each micro moment part p based on a micro dataset dp with second choices has micro

values vpijkt that can depend on second choices. For example, if vp is the share of participants

in a survey whose second choice was in some set Kp (e.g., Ford vehicles or light trucks), its

micro values are vpijkt = 1{k ∈ Kp}. The conditional expectation of micro values based on

second choices is

vp(θ) =

∑
t∈T

∑
i∈It

∑
j∈Jt∪{0}

∑
k∈Jt∪{0}\{j}

wit · sijkt(θ) · wdpijkt · vpijkt∑
t∈T

∑
i∈It

∑
j∈Jt∪{0}

∑
k∈Jt∪{0}\{j}

wit · sijkt(θ) · wdpijkt

. (21)

It is conceptually straightforward to incorporate third or fourth choices by adding more

subscripts and sums. We limit our attention to second choices because additional sums

severely increase computational cost and required notation.45

In papers such as Berry, Levinsohn, and Pakes (2004) that use second choice data, a

popular statistic is the covariance “C(xcjt, xek(-j)t | j, k 6= 0)” between first and second choice

characteristics xcijt and xekt.
46 Intuitively, this should contain information about a parameter

in Σ that measures the variance of unobserved preference heterogeneity νcit for xcijt if e = c,

or the covariance between unobserved preferences νcit and νeit for xcijt and xeijt if e 6= c.

Holding mean preferences δjt equal, if when j is eliminated from the choice set consumers

tend to select a second choice k that has a very similar characteristic xckt ≈ xcjt, it must be

43For more details see Conlon and Mortimer (2021) and the “individual diversion ratio”. The expression
Dj→k,i = sik(-j)t = sikt/(1−sijt) works for type I extreme value εijt, but for other distributions such as that
used by the nested logit model in Appendix B, sik(-j)t can be computed numerically by removing j from the
choice set and computing the probability of choosing k.

44That is, Pε(uijt > uikt > uiℓt, ∀ℓ 6= j, k) = Pε(uikt > uiℓt, ∀ℓ 6= j, k) − Pε(uikt > uiℓt, ∀ℓ 6= k). The
second term is simply sikt. The first term can be equivalently expressed as limδjt→−∞ sikt, which equals
sik(-j)t for both the simple and nested logit models.

45With longer lists of ranked choice data, researchers often consider full maximum likelihood type ap-
proaches rather than aggregated moments (see, e.g., Agarwal and Somaini, 2020).

46In practice, Berry, Levinsohn, and Pakes (2004) split this covariance up and match two moments,
“E[xcjt · xek(-j)t | j, k 6= 0]” and “E[xek(-j)t | j, k 6= 0],” to work with simple averages.
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that νcit has a high variance. Otherwise, we would expect to see proportionate substitution

to all remaining alternatives.

Relatively complete data on consumers’ first and second choices is becoming more com-

mon in empirical research. In these cases, researchers may have survey data which measures

PA(jn = j, kn = k | n ∈ Nd) directly. That is, they may observe first and second choices

in aggregate, but not necessarily the corresponding demographic information for the con-

sumers. For example, Grieco et al. (2021) have survey data from Maritz that surveys new car

purchasers both on which car they purchased and what model they would purchase if their

choice were unavailable. Conlon et al. (2023) use the same survey data, and show that it is

possible to provide semi-parametric (mixed logit) estimates of utilities using only first and

second choices from a single market. In our empirical example in Section 8, we demonstrate

how to collect simple second choice data from an online survey. In the UK, a typical survey

question asked by the Competition and Markets Authority (CMA) to evaluate a potential

merger is “where would you have made your purchases today if this store were closed for six

months?” (Reynolds and Walters, 2008).

As mentioned above, a common data constraint is that many surveys may not collect

information about individual products or product characteristics, but only for groups of

products. Conceptually, it is straightforward to incorporate information on how many con-

sumers would substitute to another minivan or pickup truck without specifying the brand:

‘P(k(-b(j)) ∈ Km | j ∈ Jm)” with vmijkt = 1{k ∈ Km} and wdijkt = 1{j ∈ Jm}. These kinds

of information might be especially useful if the goal is to estimate a random coefficient on a

dummy for “pickup truck” or “minivan.”

One extension available in PyBLP is elimination not only of the exact first choice j, but

a group of products h(j) containing j.47 This extension is particularly useful because often,

second choice data will be at a higher level of aggregation than products. For example,

the researcher may have access to information about where consumers may substitute when

their favorite brand h(j) = b(j) is eliminated from the market (e.g., Coca Cola), which

includes their first choice product j (e.g., a 2-liter bottle of Coca Cola). Alternatively, we

might observe how consumers substitute when all hospitals from the Partners system were

eliminated from the choice set.

47The only real difference is that we compute sik(-h(j))t instead of sik(-j)t. With εijt distributed type I
extreme value, we can write sik(-h(j))t = sikt/(1−

∑
h(ℓ)=h(j) siℓt).
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Compatibility Issues

An important challenge with combining aggregate and micro data is compatibility. It is rare

to find two datasets that are perfectly compatible. Variables may be measured or defined

slightly differently, data may be collected at different frequencies or during different periods,

and survey data may oversample individuals in unexpected ways.

A frequent source of incompatibilities arises when the distribution of characteristics xjt,

demographics yit, or choices sjt differs significantly between the aggregate purchase data and

the micro survey data. This could arise because the income of shoppers in a survey differs

from the income of shoppers at a particular store, or if surveyed consumers face a different

set of products (or characteristics such as prices) than those in the aggregate data. It could

also arise because of bad luck or poor survey design. For example, nationally, Coca-Cola has

around a 48% market share, while Pepsi has around a 20% market share. If we surveyed

individuals about their soft drink preferences (as we do in Section 8) and found that more

consumers preferred Pepsi to Coca-Cola, this would present a potential incompatibility with

the aggregate sales data.

One likely violation of compatibility that is likely to arise in practice is that many papers

match micro moments averaged over the entire sample, rather than a subset of markets. An

example of correctly addressing compatibility can be found in Grieco et al. (2021) where

the authors observe aggregate purchase data from 1980 to 2018, as well as individual sur-

vey data from the years 1991, 1999, 2005, 2015. Because the distribution of prices and

characteristics are quite different in 1991 and 2015, it is important to condition on the

year when constructing micro datasets so that w1991,ijt = Mt · {j 6= 0, t ∈ T1991} and

w2015,ijt = Mt · {j 6= 0, t ∈ T2015}, rather than averaging over all years.

As another example, Backus et al. (2021) compute both the chain-year specific joint

distribution of characteristics (income and presence of children) when forming wit and cal-

culate separate micro moments for each chain-year. This results in a very large number of

micro moments, but guarantees compatibility in the sense that this correctly matches in-

dividual shoppers to the correct product assortment and prices. By conditioning on chain,

this avoids the possibility that the NielsenIQ panelists systematically shop at a different set

of supermarket chains than predicted by the aggregate sales patterns Mt. This issue will

arise frequently with the NielsenIQ data, where not all supermarket chains report scanner

data sales, but panelists report purchases at all stores whether or not they are in the scanner

dataset.

Another example of where compatibility of micro data presents a challenge can be found
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in Conlon and Rao (2023). A well-known problem with survey data on alcohol consumption

is that reported per capita consumption reflects only 30-40% of alcohol purchases. While it

might be tempting to construct moments to match the probability of purchasing a unit of

alcohol conditional on income within some range, “P(j 6= 0 | yit ∈ [ya, ya]),” these moments

are incompatible with aggregate sales data. That is, there is no set of parameters θ such

that one could match both the aggregate no purchase share s0t and the purchase or no-

purchase shares by income. One approach would be to not include micro moments from

an incompatible survey, but the other is to define compatible moments that are potentially

less efficient. The authors apply Bayes Rule and match the probability that a given unit of

alcohol is purchased by households of each income level, “P(yit ∈ [ya, ya] | j 6= 0).” This

avoids the issue that the marginal distribution of purchasing alcohol “P(j 6= 0)” is completely

different across the aggregate and micro datasets, while still including information on the

relationship between alcohol purchases and income.48

In general, researchers may wish to match summary statistics that are compatible with

their full dataset, rather than use all the information in a dataset that they suspect is less

compatible. In our Monte Carlo experiments in Section 7, we provide a typical example where

income is measured differently across datasets, but being careful about what information to

match can still deliver an unbiased estimator.

In other settings, researchers may be unsure about whether there are compatibility issues.

The good news is that testing for compatibility is straightforward (Imbens and Lancaster,

1994). If there is sufficient variation from the aggregate data (or from micro datasets that

are known to be compatible) to identify the model, we can use an overidentification test.

Our preferred approach is to estimate the model without the potentially incompatible micro

moments to obtain θ̂, and then form a test statistic from differences ∆̂M = f(v) − f(v(θ̂))

between observed and estimated micro statistics,49

Wald = NA∆̂
′
MŜ

−1
M ∆̂M  χ2(MM) (22)

where Ŝ−1
M is the properly-scaled asymptotic covariance matrix of the micro moments that

we derive in Appendix D, and which is automatically reported by PyBLP for standard error

calculations.

48This of course relies on the assumption that higher or lower income individuals aren’t systematically
under-reporting relative to other income groups.

49If there are some compatible micro moments, these can be used to obtain θ̂, should have their elements
in ∆̂M set to zero, and their count should be subtracted from the χ2 degrees of freedom.
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6. Optimal Micro Moments

Having built intuition for common forms of micro moments, we discuss optimality. How

should we choose what statistics to match, given data availability, computational resources,

compatibility, and interpretability requirements?

Matching Scores

In terms of data availability, a best-case scenario is observing not just a few micro statistics

vm, but rather a complete dataset of all sampled consumers’ markets, choices, and demo-

graphics {(tn, jn, yintn)}n∈Nd
. When we say “complete” we must observe not only individual

choices, but also all of the relevant demographics required to compute the choice probabil-

ities in (4). Rather than use the standard micro moments from Section 5, we can use the

scores from the individual data likelihood and combine them with the aggregate moments

from aggregate estimator in (6). This has the advantage that it will efficiently use all of the

information in the micro dataset, and also that it may reduce the overall number of micro

moments used in estimation. The disadvantage is that the individual scores are infeasible

and require an initial estimate θ̂ in order to compute them.

Our preferred approach is a two-step procedure that minimizes computational costs while

still making full use of the micro data.50 After obtaining a first-stage estimator θ̂ with sub-

optimal micro moments, the researcher constructs optimal micro moments m that match the

average score function fm(v) = vm for each micro dataset dm evaluated at each nonlinear

parameter θm:
51

vmijt(θ̂) =
∂ logPθ̂

A(tn = t, jn = j, yintn = yit | n ∈ Ndm)

∂θm
. (23)

In words, the score tells us how the log choice probability varies with parameters θ for an

individual with demographics yit in market t. Conveniently, we only need to calculate this

for the option j that an individual chooses.

In Appendix F we provide full expressions for micro data scores and demonstrate how

to compute them with PyBLP. Incorporating second choices into our procedure is a simple

matter of adding additional subscripts and a more complicated score expression, so here we

focus on first choices.

50Our approach is closely related to the unfortunately-named “one-step” method discussed, for example,
in Section 3.4 of Newey and McFadden (1994).

51This can be done in PyBLP with only a few lines of code. See Figure F1 in Appendix F.
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First, we compute the score vminjntn(θ̂) in (23) evaluated at each observation n ∈ Nd

and take their average over individuals, choices, and markets to get vm(θ̂). We also pre-

compute vmijt(θ̂) for each possible (i, j, t) so that scores only need to be computed a single

time. After also constructing an estimator of the optimal weighting matrix and, if desired,

an approximation to Chamberlain’s (1987) optimal instruments, the researcher obtains the

second-stage estimator.

Algorithm 2 Optimal Micro BLP Estimator

Given a sense for reasonable bounds for the nonlinear parameters (Π,Σ), for example from running a version
of the IV regression in (8) and Appendix C:

1. Use sub-optimal micro moments to obtain a first-stage estimator θ̂ by minimizing the objective con-
structed by Algorithm 1. We recommend drawing a few different starting values from within reasonable
parameter bounds. In Conlon and Gortmaker (2020) we describe and evaluate other best practices
for nonlinear optimization in Sections 3 and 5.

2. Approximate Chamberlain’s (1987) optimal instruments ẑjt(θ̂) by following Algorithm 2 in Conlon
and Gortmaker (2020), originally proposed by Berry, Levinsohn, and Pakes (1999).

3. Approximate the optimal micro moment m for each dataset dm and nonlinear parameter pm pair by
computing vm(θ̂) = 1

Ndm

∑
n∈Ndm

vminjntn(θ̂) in (23).

4. Estimate the optimal weighting matrix Ŵ (θ̂) by inverting an estimator of the asymptotic covariance
matrix of the moments in Appendix D.

5. Use approximations to the optimal IVs, micro moments, and weighting matrix to obtain the second-
stage estimator by minimizing the objective constructed by Algorithm 1. Again, we recommend
drawing a few different starting values from within reasonable parameter bounds.

In Appendix E we show that if the first-stage estimator is consistent, then the second-

stage estimator is asymptotically efficient within the class of all possible micro BLP estima-

tors. By this, we mean that Algorithm 2 delivers an estimator with an asymptotic variance

that is no greater than that of another micro BLP estimator based on any weighting matrix

Ŵ , instruments zjt, micro moment functions fm(·), and micro values vpijt. Restricting our-

selves to this class of micro BLP estimators rules out efficiency gains from estimators outside

this class, such as those that do not require that observed market shares Sjt exactly equal

their model counterparts.52

Only needing to compute scores once makes our two-step approach particularly computa-

tionally efficient. The more familiar approach of stacking scores with the original moments

52For example, Grieco, Murry, Pinkse, and Sagl’s (2023) CLER estimator obtains efficiency gains by
relaxing the share constraint, particularly when the number of micro observations is a nontrivial proportion
of the observations underlying aggregate market shares.
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(e.g., in Imbens and Lancaster, 1994) would require re-computing all observations’ scores

for each optimization iteration over θ.53 This is also the case for Grieco, Murry, Pinkse,

and Sagl’s (2023) approach of subtracting a properly-scaled log-likelihood from the original

objective.54

Grieco et al. (2023) point to a potential downside of using scores instead of their approach

of using the log-likelihood itself: population scores may have multiple zeros even when the

population likelihood has a unique maximum.55 Although the aggregate moments should

help to smooth out such spurious local minima, this downside does highlight the importance

of drawing a few different starting values when performing nonlinear optimization.

A final concern is with inconsistent first-stage estimates. In practice, we recommend

using standard micro moments discussed in the last section, which should typically provide

consistent and credible parameter estimates for the first stage. If standard micro moments

in conjunction with aggregate variation seem to only weakly identify or not identify some

parameters, another option is to also match scores in the first stage, but evaluated at an

informed guess of the true θ0 rather than a consistent estimate, which in some cases may be

more informative about θ than standard micro moments.56

Intuition from Scores

Often, instead of having the full results from a survey, researchers will only have access

to or be willing to use summary statistics because of cost, interpretability, compatibility,

confidentiality, or other data limitations. For estimating a given model, the most efficient

summary statistic would be the score, averaged across all surveyed individuals. Although

survey administrators are unlikely to collect scores for different models, inspecting the func-

tional form of scores for some simple models does motivate the functional form of some of

the common micro moments discussed in Section 5.

We present full score expressions in Appendix F but here consider the simplest case with

53Technically, one only need compute scores for each distinct set of demographic values, product choice, and
market. This speeds up computation when demographics take on only a few discrete values and purchases
are not spread across many products.

54Grieco et al. (2023) emphasize that this approach makes the demand-only objective convex in each δjt,
which makes nonlinear optimization over all NA values of δjt computationally feasible.

55For example, when Grieco et al. (2023) treat δjt as a parameter, the score for Σ is zero both at the true

Σ0 and Σ = 0. This is not the case here because the micro BLP score also depends on
∂δjt
∂θ′

, but it does
suggest that such a concern is more than a theoretical edge-case.

56For example, limited cross-market choice set variation and standard micro moments that do not use
second choices may result in a poorly-identified Σ. Using more information in the full micro dataset may
help provide a consistent first-stage estimator.
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C = 1 observed characteristic, R = 1 demographic, three parameters θ = (β, π, σ), and a

micro dataset d with no selection, wdijt = 1. First consider the case without any unobserved

heterogeneity, σ = 0. The score for β is zero,57 and for π is

∂ logPA(tn = t, jn = j, yintn = yit | n ∈ Nd)

∂π
=

∂uijt

∂π
−

∑

k∈Jt

sikt ·
∂uikt

∂π
. (24)

in which the derivative of indirect utility for j 6= 0 in (1) with respect to π is

∂uijt

∂π
=

∂µijt

∂π
+

∂δjt
∂π

= xjt · yit +
∂δjt
∂π

. (25)

Since sijt and
∂δjt
∂π

are functions of π,58 the only term directly observed in the micro data

is xjt · yit. This suggests that the “C(xjt, yit | j 6= 0)” moment discussed above should be

very informative about π because it is similar to the score.59 If xjt = 1, then the primary

term is simply yit, suggesting that “E[yit | j 6= 0]” should be informative about π in this

simpler case. In Section 7 we confirm this intuition with Monte Carlo experiments.

Often, demographics will be discrete (e.g., levels of education, presence of children, or

binned income). For example, Petrin (2002) matches “E[xjt | yit = 1] = P(j 6= 0 | yit = 1)”

where xjt = 1 is an indicator for all inside goods and yit is an indicator for high income

consumers. Intuition about informativeness is similar in this case. Up to a denominator

“P(yit = 1),” which is a constant scaling factor that only depends on demographic data,

matching this moment is identical to matching a “E[xjt · yit]” moment, which is very similar

to the score.

However, matching only a single covariance or expectation leaves some information on

the table because it does not span the subsequent terms in the score. Similarly, for the

case with σ 6= 0, the score for π becomes an integral over unobserved heterogeneity, further

distancing a single “C(xjt, yit | j 6= 0)” moment from the true score.

To focus on the value of second choices, next consider the case with observed heterogene-

57Micro data are uninformative about β because it enters into choice probabilities sijt only through mean
utilities δjt, which are pinned down by the aggregate data share constraint in (7).

58Since mean utilities are pinned down by the share constraint in (7), their derivatives are given by invoking

the implicit function theorem: ∂δt
∂π

=
(
∂st
∂δt

)−1 ∂st
∂π

.
59Grieco et al. (2023) also note the similarity of “C(xjt, yit | j 6= 0)” moments to the score for π. Their

expression does not involve
∂δjt
∂π

because their estimator treats each δjt as a separate parameter rather than
as an implicit function of π.
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ity, σ 6= 0, but without any observed demographics, π = 0. The score for σ is

∂ logPA(tn = t, jn = j, kn = k | n ∈ Nd)

∂σ

=
∑

i∈It

wit · sijkt∑
ι∈It

wιt · sιjkt

[
∂uijt

∂σ
+

∂uikt

∂σ
−

∑

ℓ∈Jt

siℓt ·
∂uiℓt

∂σ
−

∑

ℓ∈Jt\{j}

siℓ(-j)t ·
∂uiℓt

∂σ

]
,

(26)

in which the derivative of indirect utilities for j, k 6= 0 with respect to σ is

∂uijt

∂σ
+

∂uikt

∂σ
= νit · (xjt + xkt) +

∂δjt
∂σ

+
∂δkt
∂σ

. (27)

The only term directly observed in the micro data is (xjt + xkt). This is scaled by the

average unobserved preference νit among those who choose j first and k second, but the sum

itself is similar to the “C(xjt, xk(-j)t, | j, k 6= 0)” moment discussed above, suggesting that

such a second choice covariance should indeed be very informative about σ. And if available,

the average or sum “E[xjt+xk(-j)t | j, k 6= 0]” of first- and second-choice characteristics could

be even more informative. We confirm this intuition in Section 7. Of course, only matching

a covariance or sum will not fully match the expression in (26), which involves even more

terms after adding in observed demographics (see Appendix F).

Inspecting scores in this way can provide some intuition for which micro moments may

be particularly informative. We provide additional examples for extensions with lognormal

random coefficients and nesting parameters in Appendices A and B. In general, however,

the best summary statistics to match will depend on the model specification and the true

parameter values.

In Appendix G we provide a more formal approach for determining which summary statis-

tics are most informative about the parameters in the model. Given a first-stage estimator

θ̂ and a sampling scheme wdijt, we recommend simulating a micro dataset and regressing

simulated scores on candidate micro values,60 keeping only those sets of micro values that

maximize the R2 of the regression. This type of procedure identifies a small number of

maximally informative summary statistics that are more likely to be collected by survey

administrators than model-specific average scores.

60In Appendix G we also demonstrate how this can be done in only a few lines of code with PyBLP.
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7. Monte Carlo Experiments

We provide several Monte Carlo experiments to illustrate the performance of the micro

BLP estimator with different micro moments. We also use our simulations to illustrate the

importance of practical choices that need to be made when doing empirical research, which

we will further expand upon in the empirical examples of Section 8.

Monte Carlo Configuration

Our simulation configurations build on those of Conlon and Gortmaker (2020), which are

loosely based on those of Armstrong (2016). We first describe a baseline configuration, and

in the following subsections describe how we modify this configuration to compare different

aspects of the micro BLP estimator.

For each configuration, we construct and estimate the model on 1,000 different synthetic

datasets. In each of T = |T | = 40 markets we randomly choose either 2, 5, or 10 firms,

and have each firm produce 3, 5, or 5 products in that market. The number of products is

generally between 10 < |Jt| < 30. Across markets, the number of aggregate observations is

generally between 400 < NA < 1,200.

There are C = 3 observed product characteristics xjt = (1, x2jt, pjt)
′: a constant, an

exogenous characteristic x2jt ∼ U(2, 4), and endogenous prices pjt. We generate a realistic

correlation between pjt and unobserved quality ξjt by drawing ξjt and cost shocks from a

mean-zero bivariate normal distribution, by drawing a cost shifter, and by numerically solv-

ing for Bertrand-Nash equilibrium prices pjt and shares sjt with the fixed point approach

of Morrow and Skerlos (2011).61 Since our focus is not on weak cost shifters, our marginal

cost parameterization generates a strong correlation between the cost shifter and price. In-

struments zjt are (1, x2jt)
′, the cost shifter, and the differentiation IVs of Gandhi and Houde

(2020) discussed in Section 3.62 We parameterize mean utility in (2) to give “realistic”

outside shares generally between 0.6 < S0t < 0.9:

δjt = β1 + βxx2jt + αpjt + ξjt, β0 = (β01, β0x, α0)
′ = (−6, 3,−3)′. (28)

In each market t, we generate different Monte Carlo draws to represent |It| = 1,000

61Firms choose prices to maximize their products’ profits sjt(pt) · (pjt − cjt) subject to marginal costs
cjt = 2 + 0.1× x2jt + 1.0× wjt + ωjt. The cost shifter is distributed wjt ∼ U(0, 1). Unobserved quality ξjt
and the cost shock ωjt are mean-zero bivariate normal with common variance 0.2 and covariance 0.1.

62As noted in Footnote 23, we use the “quadratic” version of differentiation IVs: â2jt =
∑

k(x2jt − x2kt)
2

both alone (when we include unobserved heterogeneity) and interacted with the mean my
t =

∑
i wit · yit of

a consumer demographic yit, discussed shortly.
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consumer types, each with an equal share wit = 1/|It|. Since income is the most common

demographic to appear in demand systems, we randomly assign each market to a US state

and draw R = 1 demographic yit from a lognormal distribution fit to the 2019 American

Community Survey (ACS) income distribution for that state. To start, we do not include

unobserved heterogeneity when parameterizing heterogeneous utility in (3):

µijt = π1yit + πxx2jtyit, Π0 = (π01, π0x, 0)
′ = (−0.1, 0.1, 0)′, Σ0 = 0. (29)

Finally, we simulate a micro dataset d with an average of 1,000 observations per market.

Since the most common type of consumer survey samples only those who select an inside

alternative, we use selection probabilities wdijt = 1{j 6= 0}.

To obtain an estimator θ̂ = (β̂1, β̂x, α̂, π̂1, π̂x) we follow the recipe in Algorithm 2 for

the optimal micro BLP estimator, but to start we do not approximate the optimal micro

moments. To solve the fixed point for δ̂jt(Π,Σ) and optimize over θ, we use best practices

described in Conlon and Gortmaker (2020).63 To numerically integrate over the distribution

of income yit, we resample 1,000 times from its true distribution.

Monte Carlo Results

When reporting results from our simulations, we focus on the median absolute error (MAE)

and median bias of the parameter estimators. In Appendices H and I we provide additional

results measuring the performance of standard error counterfactual calculations, which are

generally in line with the performance of parameter estimators across configurations. Com-

putation was done on the Harvard Business School compute cluster.64

Demographic Variation

In Table 4 we vary the amount of cross-market demographic variation and measure the

performance of the aggregate BLP estimator. When in each market income yit is drawn

from a lognormal distribution fit to the same national distribution of income, there is no

cross-market variation, so as discussed in Section 3, π1 and πx are not identified.

In the second row, randomly assigning each market to one of the 50 US states provides

63We accelerate the fixed point with the SQUAREM method of Varadhan and Roland (2008) and use an
L∞ tolerance of 1E-14. To optimize, we supply objectives and analytic gradients to SciPy’s trust region
algorithm “trust-constr” and use an L∞ gradient-based tolerance of 1E-5. For each GMM step, we draw
three sets of starting values from 100% above and below the true parameter values.

64For our configurations, six rounds of optimization (three sets of starting values for each GMM step)
typically take 1–3 minutes, plus another 30 seconds for computing optimal micro moments. Using second
choice moments typically takes 3–8 times longer.
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some cross-market variation, which gives an estimator with very little finite sample bias.

However, income distributions do not vary much across states, so the estimator still has

high variance, even when using optimal instruments.65 Assigning markets instead to the

982 Public Use Microdata Areas (PUMAs) increases the amount of cross-market income

variation, further reducing the bias and variance of π̂1 and π̂x.

In the last three rows, we double the number of markets to T = 80 but keep the amount

of cross-market demographic variation the same by re-using the demographic distribution in

each t ≤ 40 for market t+ 40. As the amount of cross-market choice set variation increases,

bias and variance of π̂1 and π̂x decrease. In line with the linear regression intuition from

Section 3, more variation in demand helps estimate Π, which is identified by how cross-

market demographic variation shifts demand. However, without a great deal of demographic

variation, the estimator is still fairly noisy.

Since we made the cost shifter a strong instrument and did not model preference het-

erogeneity for price (see Appendix A for simulation results for when we do), the coefficient

on price α̂ has very little bias and variance across all configurations. The performance of

the linear parameter estimators β̂1 and β̂x track the performance of the nonlinear estimators

π̂1 and π̂x, so for simplicity’s sake, we focus only on estimators of nonlinear parameters in

subsequent results.

Standard Micro Moments

Sticking with T = 40 markets and state-level income variation, in Table 5 we illustrate

the impact of standard micro moments discussed in Section 5. Matching only the mean

income of those who do not choose the outside alternative with a “E[yit | j 6= 0]” moment

somewhat reduces variance, but not by much. A “C(x2jt, yit | j 6= 0)” moment contains more

information and reduces variance a bit more, particularly for the πx parameter whose score

it approximates. However, it is only with the combination of both moments that we greatly

reduce the variance of both estimators.

Since “C(x2jt, yit | j 6= 0)” equals “E[x2jt · yit | j 6= 0] + E[xj2t | j 6= 0] · E[yit | j 6= 0],”

when paired with a “E[yit | j 6= 0]” moment it contains essentially the same information as

matching the first term in the score for πx, the interaction “E[x2jt ·yit | j 6= 0].” Accordingly,

both perform almost identically. Of course, matching a covariance can be more appealing

because it is more interpretable and is more likely to be reported by a survey.

A survey that does not report covariances may still report average characteristics by

65Optimal instruments are well-known to reduce the bias and variance of the aggregate BLP estimator
(Reynaert and Verboven, 2014; Conlon and Gortmaker, 2020).
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demographic groups, allowing us to use a “E[x2jt | yit < yt, j 6= 0]” moment that matches

the mean x2jt for low-income consumers. Discretizing yit discards some information, reducing

correlation with the score for πx, so the estimator has a higher variance. Since in this simple

simulation the score for πx is dominated by x2jt · yit, adding the discretized moment on top

of the continuous one does not particularly improve the performance of the estimator.66

To visualize the relationship between “E[x2jt ·yit | j 6= 0],” “E[x2jt | yit < yt, j 6= 0],” and

the score, for each observation in the micro data underlying Table 5 we compute x2jt · yit,

x2jt · 1{yit < yt}, and the score for πx. We report their correlation matrix in Figure 1.67 As

expected, x2jt · yit and the score have strong correlation of 0.675.68 Discretizing yit reduces

the correlation with the score by around 11% to 0.6.

This same approach can be used as a diagnostic: researchers can use the score contribu-

tions of simulated individuals under the model at the estimated parameters θ̂, and compare

these to their micro statistics (see Appendix G). While this requires an estimate of θ̂, it

provides a simple way to measure whether the micro statistics do a good job capturing the

potential micro-level variation.

Optimal Micro Moments and Compatibility

In Table 6 we illustrate the performance of optimal micro moments. The first row is the

same as the fourth row in Table 5. In the second row, we use these same standard moments

to obtain a first-stage estimator, and in the second GMM step, use optimal micro moments

that match scores of π1 and πx. This requires using the full micro dataset rather than two

summary statistics, but it does, unsurprisingly, decrease the variance of the estimator. In the

middle two rows, we use the slightly less-informative micro moment “E[x2jt | yit < yt, j 6= 0]”

in the sixth row of Table 5. When using this as a first-stage estimator, the finite sample

performance of the optimal micro moments is slightly worse, although not by much.

In the last two rows, we illustrate an example where the “optimal micro moments” can

perform worse than matching simple summary statistics. We simulate a second, independent

micro dataset that is configured the same as the first, except we replace income yit with a

66In more complicated simulations, for example with unobserved heterogeneity, adding additional moments
can help explain variation in the more complicated score.

67The score is evaluated at the true θ0. We report the absolute value of correlations, taking a median
across the 1,000 simulated micro datasets.

68How to interpret this number? With a single parameter and a single linear micro moment, the asymptotic
standard deviation (SD) of the efficient GMM estimator is one over this correlation times the score’s SD (see
Appendix G). Since the Normal distribution’s MAD is proportional to its SD, this correlation should hence
equal the ratio of MAEs obtained under the optimal moment versus the sub-optimal moment. Even though
we are not in the scalar case, we see approximately this result in Table 6.
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censored version ỹit, an indicator for whether an individual is above or below the median

income yt. These new micro data (tn, jn, ỹintn) are not “complete” in the sense that they do

not contain all of the information necessary to compute the individual choice probabilities

(which require the actual income yit). To approximate what a researcher might do here, when

computing the scores we replace ỹit with the 25th percentile of income if below the median or

the 75th percentile if above. As we see in the last row of Table 6, the optimal micro moments

from the incompatible micro dataset perform significantly worse than no micro moments at

all, particularly for π̂1. Adding micro statistics of the form “E[x2jt | ỹit < yt, j 6= 0]”

contains relevant information and does not have the same compatibility problems, giving

similar improvements as before.

While we focus on changing the set of moments to address the compatibility problem,

an alternative would be to modify the model to match the observed moments. One option

might be to consider two sets of coefficients (πh, πl), for high- and low-income individuals.

This would eliminate the compatibility problem and allow us to use the scores.69

Pooling Markets

Often, a researcher may have the same type of micro statistic for different markets. A

practical question is whether one should pool these into a single micro moment,70 or match

a separate micro moment for each market. Computationally, pooling is not particularly

important, since micro values will still need to be computed in each market. Statistically,

however, we should expect market-specific moments to contain more information, reducing

the variance of the estimator.

However, it is well-known that adding many moment conditions asymptotically biases

the standard GMM estimator (Han and Phillips, 2006; Newey and Windmeijer, 2009). In

Figure 2 we illustrate this bias-variance tradeoff. From left to right, we increase the number

of micro moments, pooling them across a decreasing number of markets. This reduces

the variance of the estimator at the cost of some bias. In general, we prefer more micro

moments to fewer, particularly if markets are very observably different, since this will reduce

the variance of the estimator. However, much like adding many instruments to simple linear

IV regressions can be problematic (see, e.g., Angrist, Imbens, and Krueger, 1999), it is

important to be aware of bias or lack of interpretability that one might be introducing by

69Strictly speaking, without changing the data generating process, this model would be misspecified so we
omit it from Table 6.

70Given summary statistics vt each based on Nt observations, the pooled summary statistic would be∑
t Nt · vt/

∑
t Nt.
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adding a large number of moments.

Numerical Integration

In Table 7 we consider another important choice: how to choose sets of consumer types It

to numerically integrate over a population of consumers. In Conlon and Gortmaker (2020)

we emphasize how bounded and continuously differentiable integrals for market shares can

be well-approximated with a small number of quadrature nodes and weights.71 In the first

two rows of Table 7 we compare |It| = 7 Gauss-Hermite quadrature nodes with |It| = 1,000

Monte Carlo draws from the true distribution of income yit. Statistical performance is

comparable, but with quadrature, it takes two orders of magnitude less time to compute the

estimator.72

In the bottom two rows, we provide a typical example for which quadrature should

not be used. Instead of matching a “C(x2jt, yit | j 6= 0)” moment, which is continuously

differentiable in income yit, we match “E[x2jt | yit < yt, j 6= 0],” which is not because of

the low-income indicator. As already discussed, discretizing income discards information,

so the estimator performs worse regardless of the integration rule. But more importantly,

since quadrature rules are specific to the domain of integration (e.g., a normal density over

R), they will not correctly integrate sub-intervals. This becomes apparent in Table 7. Other

than not using quadrature in these cases, there are no obvious solutions when computing sjt

requires integrating over the entire distribution and the micro moments require integration

over a sub-interval.

Problem Scaling

In Section 4 and Appendix D we discuss the econometric properties of the micro BLP

estimator under different asymptotic thought experiments: (a) many markets, including

those covered by surveys; (b) many markets, few with surveys, but the surveys are large;

and (c) few markets, but markets and surveys are both large. Still using “E[yit | j 6= 0]”

and “C(x2jt, yit | j 6= 0)” micro moments, in Figure 3 we use our simulations to illustrate

that the estimator’s reasonable rates of convergence translate to finite samples. From left

to right, each column corresponds to cases (a), (b), and (c), respectively. For all cases, the

variance of the estimator decreases similarly as we increase the number of aggregate and

71Theoretically, the integrand is approximated with a polynomial and then integrated exactly.
72For more dimensions of integration—more demographics or unobserved preferences—this computational

performance gap decreases, and quadrature, including more sophisticated sparse grids, becomes comparable
to Monte Carlo methods. See Figure 1 in Conlon and Gortmaker (2020).
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micro observations. In Appendix H we document that standard error estimators have good

coverage and low bias in finite samples, reflecting the asymptotic normality of the estimator.

Unobserved Heterogeneity

So far, our simulations only model one source of observed heterogeneity: income. To discuss

the role of unobserved heterogeneity, we draw unobserved preferences ν2it for x2jt from the

standard normal distribution and use 1,000 scrambled Halton draws (Owen, 2017) to approx-

imate this distribution during estimation. We then add a σxx2jtν2it term to heterogeneous

utility, and choose σx to make unobserved preferences fairly important:

µijt = π1yit + πxx2jtyit + σxx2jtν2it,
Π0 = (π01, π0x, 0)

′ = (−0.1, 0.1, 0)′,

Σ0 = diag(0, σ0x, 0) = diag(0, 0.5, 0).
(30)

In Table 8 we illustrate how the standard “E[yit | j 6= 0]” and “C(x2jt, yit | j 6= 0)”

moments still greatly improve the performance of the estimator. Optimal micro moments

do even better.

Our default configuration has a great deal of cross-market variation in choice sets Jt,

including the number of products |Jt| and the values of product characteristics (xjt, ξjt).

This is precisely the type of aggregate variation that is needed to identify Σ (Berry and

Haile, 2014). As a result, particularly because we are using optimal instruments, σ̂x has very

low bias and variance, even without any micro moments.

In the bottom three rows, we use the same choice set Jt = J in each market. Even

with optimal instruments, σ̂x has a substantial amount of bias and variance, and including

micro data that link demographics to choices does not particularly improve the performance

of σ̂x. This illustrates an important insight of Berry, Levinsohn, and Pakes (2004) that is

formalized nonparametrically by Berry and Haile (2022): cross-market choice set variation is

still needed to nonparametrically identify Σ, even when using within-market variation that

links demographics to choices.73

Second Choices

Some datasets will simply not exhibit much cross-market choice set variation, either because

there is only a single or a few markets, or because product offerings are fairly uniform. An

alternative is using second choice data. Intuitively, each second choice observation is similar

73In our simulations, identification of Π comes from both within- and cross-market variation in demo-
graphics, as well as our parametric assumptions about how demographics enter into utility.
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to observing a counterfactual market in which the consumer’s first choice is removed from

the choice set.

In Table 9 we illustrate the benefits from second choice data for our configuration with

no choice set variation. In addition to the main micro dataset, we simulate a second, in-

dependent micro dataset that conditions on inside choices as well, but also reports second

choices.

Matching the covariance “C(x2jt, x2k(-j)t | j, k 6= 0)” between the exogenous product

characteristic for first and second choices greatly reduces the variance of σ̂x. Matching the

sum “E[x2jt + x2k(-j)t | j, k 6= 0],” which is closer to the score for σx in (26), reduces the

variance even more. Figure 4 reports a correlation matrix between micro values underlying

these moments and the score for σx. Since x2jt ·x2k(-j)t and x2jt+x2k(-j)t are highly correlated

with one another, their correlations with the score are similar.

We also consider matching the share of consumers who divert from a low- or high-x2jt

first choice j to a low-x2kt second choice k. The hope is that this type of diversion ratio

is easier to measure or more likely to be collected than the covariance. Discretizing x2jt in

this way reduces the correlation of each individual diversion ratio with the score, but in our

simulations, matching only two diversion ratios is comparable in terms of variance reduction

with the standard “C(x2jt, x2k(-j)t | j, k 6= 0)” moment.

If the full second choice micro data are available, we can do even better. In the bottom

row of Table 9 we show that the estimator is further improved when we use optimal micro

moments that for the second GMM step match the scores of π1, πx, and σx.

8. Empirical Examples

We provide two empirical examples to illustrate how to use micro moments with real data.

We first replicate Petrin (2002) to highlight the importance of incorporating demographics.

Second, we demonstrate how to use NielsenIQ data and how to collect second choices in a

more modern empirical example estimating demand for soft drinks.

Each market is a different time period for the same geographic region: either the entire

US in Petrin (2002) or the city of Seattle in our soft drink example. Although there are

only a few time periods, and hence limited cross-market variation, there are many products

and micro observations. Both examples are ones for which the many product/large survey

asymptotics seem to be most appropriate.
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Petrin (2002) Replication

We estimate the model of Petrin (2002) and replicate its primary counterfactual: quantifying

the consumer welfare gain from the introduction of the minivan. This paper was the first

to incorporate micro moments into the BLP framework, and its counterfactual highlights

how important it can be to incorporate demographics. Like Berry, Levinsohn, and Pakes

(1995), Petrin (2002) also derives an additional set of aggregate moment conditions from

the first-order pricing conditions of firms. We demonstrate how to construct and solve the

problem with PyBLP in Figure 5.

After confirming that we can exactly replicate the published estimates from the original

paper’s IV logit model, we estimate the paper’s micro BLP model and calculate counterfac-

tual welfare twice. First, we follow the original paper by using the sample covariance matrix

of micro moments estimated from the full micro data. Second, we discard this matrix and

let PyBLP estimate the moments’ covariances at first-step parameter estimates. The appeal

of the latter approach is that it only requires summary statistics from the micro data, not

their covariances, which will often not be reported by surveys. The two approaches are

asymptotically equivalent, and we get nearly identical estimates.

We report our results in Table 10. Compared with the published estimates, results are

similar, particularly those for marginal costs, although there are some substantial differences

for the price and random coefficients.74 In particular, we estimate somewhat lower price

elasticities. We do get a similar estimate for the headline 1984 compensating variation

from the introduction of the minivan: $430 million (with a standard error of $250 million)

compared with $367 million estimated by the original paper. In line with the original paper,

a large difference compared to the estimate under the logit model highlights the importance

of including demographics in this setting.75 We do not report estimates with optimal micro

moments because the original paper’s replication package does not include the complete

(proprietary) micro data, only summary statistics.

We cannot perfectly replicate the original paper because its replication package does

not include the importance sampling nodes and weights used in the final specification. In-

stead, we use 1,000 scrambled Halton draws (Owen, 2017), and find that after this point,

74Results would also be similar for the base coefficients, but Petrin (2002) uses a truncated χ2(3) distribu-
tions for unobserved preferences, which, unlike the more standard N(0, 1) distributions, are not mean zero,
so differences in random coefficients that scale unobserved preferences shift mean preferences.

75The original paper only reports compensating variation for the logit model across multiple years, so we
compute compensating variation for 1984 ourselves in the first column of Table 10. The logit parameter
estimates in Table 10 are our own, and match those in the original paper up to rounding error.
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increasing this number does not much change our estimates. Another important difference is

that instead of using the derivative-free Nelder-Mead algorithm, which can be slow and per-

form poorly (Conlon and Gortmaker, 2020) we supply analytic gradients to a BFGS-based

optimizer, and confirm that we get the same estimates for different sets of starting values.

Predicting Substitution from Seattle’s Sweetened Beverage Tax

In recent years, one of the most used sources of matched aggregate and micro data for

consumer purchases are the NielsenIQ Retailer Scanner and Consumer Panel datasets as

provided by the Kilts Center at the Chicago Booth School of Business. The scanner data

contains product characteristics and weekly sales for a large sample of retailers across the

US. The consumer data contains consumer demographics and purchase decisions for a large

sample of participating US households.

To demonstrate how to use micro moments with NielsenIQ data, we estimate pre-2017

demand for soft drinks in Seattle. We then predict what would happen if prices increased

by how much they did after the 2018 implementation of Seattle’s sweetened beverage tax

(SBT)—the most recent SBT implemented in the US—and compare our substitution esti-

mates to what actually happened. We view this exercise as in-between answering a policy

question and a Monte Carlo, since we are using real data but already know what happened.

This type of exercise could be repeated for different cities to evaluate the potential effects of

proposed taxes.76

In Appendix J we discuss all the decisions we make when constructing our data: market

definition, demographic data, product data, instruments, market sizes, micro data, and a

custom second choice survey. We also discuss other decisions we could have made, weighing

their pros and cons. We hope Appendix J will be particularly helpful for researchers using

NielsenIQ data or collecting second choice data to estimate their own demand systems.

We collect quarterly sales data from 2007 to 2016 on 2,672 soft drink UPCs sold at five

large retailers in Seattle, for a total of NA = 78, 161 product-retailers.77 In each quarter t,

the market share Sjt of product-retailer j is total ounces purchased divided by the market

size Mt. To compute market sizes, we estimate of the number of trips made to these retailers

76Similarly, Zhen et al. (2014) estimate an Exact Affine Stone Index (EASI) demand model (Lewbel and
Pendakur, 2009) that includes 23 different categories related to soft drinks to evaluate the impact of SBTs.
EASI is a product space approach to demand estimation, which we view as complementary to characteristics
space approaches like BLP.

77This includes fruit drinks and diet drinks, but for simplicity we do not consider juice or other sugary
product categories. We combine product-retailers in the bottom 5% of ounces sold with the outside good in
each quarter.
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and scale this by a maximum potential demand per trip of 720 ounces.78 Later in this section

we will discuss how such market size assumptions can affect estimates.

Our product characteristics xjt are price and indicators for diet and small-sized drinks.79

We use a Hausman (1996)-type instrument for prices (contemporaneous prices in cities other

than Seattle) that is very similar to the one used by Allcott et al. (2019) and construct

a Gandhi and Houde (2020)-style differentiation IV to identify the standard deviation of

normally distributed unobserved preference heterogeneity for price.80

We report aggregate BLP estimates in the first column of Table 11. We include product-

retailer and retailer-quarter fixed effects to account for product-specific preferences and time-

varying demand for retailers. We cluster standard errors by brand b(j). Across specifications,

our estimated price elasticity of demand is around -1.3, which is on the high end of typical

estimates in the existing literature between -0.8 and -1.4 (e.g., Powell et al., 2013).

We also report results from our counterfactual in which we increase the prices of taxed

2016 products by how much they seemed to have increased after the introduction of the

2018 SBT of 1.75 cents per ounce:81 1.15 cents for taxed small-sized drinks and 0.97 cents

for taxed family-sized ones (Powell and Leider, 2020).82 We use a manual classification of

taxed and untaxed goods that was created and graciously provided to us by the authors and

research team of Powell and Leider (2020). Although the Seattle tax excluded diet beverages,

tax status is not one-to-one with our diet indicator, with a strong but imperfect correlation

of -0.76 in our 2016 data. Our estimates of a decrease in taxed ounces purchased of -30% and

a small increase in untaxed ounces of 1% are not too far from the -22% and 4% estimated by

Powell and Leider (2020), but as we discuss below, could benefit from additional dimensions

of preference heterogeneity.

The political discourse surrounding SBTs and related economic theory emphasizes their

78We have an in-depth discussion of market sizes and how we form these estimates in Appendix J.
79Following Powell and Leider (2020), we define small- or individual-sized products as single-unit beverages

that are no more than one liter in volume. Diet classification is in Appendix J, and is particularly important
for this setting because the Seattle tax excluded diet drinks. A more in-depth study of soft drink demand
would incorporate random coefficients on more characteristics.

80As we discuss below, we do not attempt to identify the distributions of random coefficients on other diet
and small-sized indicators with only aggregate data because along these dimensions, cross-quarter choice set
variation is very limited.

81Although modeling the supply side and predicting passthrough is beyond the scope of this paper, doing
so would be useful for informing SBT policy. To obtain reasonable passthrough estimates, one would likely
need to model the joint pricing decisions of retailers and distributors, since both are important in the market
for soft drinks.

82Powell and Leider (2020) estimate these passthrough rates of 66% and 55% with a differences-in-
differences approach, using Portland as the control group. They also use NielsenIQ scanner data.
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differential effects by income (see, e.g., Allcott et al., 2019; Conlon et al., 2022). To predict

differential substitution by income group, we include an indicator in demographics yit for

households with income above the 2016 median in Washington. We also include an indicator

for households with at least one child.83 We construct demographic shares for each of the

four bins from annual American Community Survey (ACS) data for Seattle, and re-weight

NielsenIQ households in Seattle by these ACS shares.

Since at the city level these demographics vary little during our sample period,84 we do

not attempt to identify how preferences vary by demographic group with only cross-market

variation.85 Indeed, following our advice from Section 3, running a FRAC regression gives

very noisy point estimates for Π. This is unsurprising because such estimates are essentially

formed from 2016− 2007 = 9 observations.

Instead, we match two sets of standard micro moments: “E[yrit | j 6= 0]” and “C(xcjt, yrit |

j 6= 0)” for the R = 2 demographics and C = 3 characteristics. We use the Consumer Panel

data and compute m = 1, . . . ,MM = 8 micro moment sample values fm(v) from a sample of

Nd = 10,455 grocery trips with an inside purchase j 6= 0.86

The second column of Table 11 reports micro BLP estimates. We estimate a slight decline

of price sensitivity with income,87 and households with children also tend to be more price

sensitive. Both low income households and those with children tend to dislike diet drinks.

Incorporating micro data allows us to predict how the tax counterfactual differentially affects

consumers by demographic group. Slightly more elastic demand for households with low

income or children results in slightly more substitution away from taxed goods. However,

compared to a baseline reduction in taxed volume of 30%, we are able to reject predicted

differences of more than 4 percentage points for low versus high income households and 7

percentage points for households with versus without children at a 5% significance level.

These predictions are generally in-line with those of Barker et al. (2022), who pool 529

households in the NielsenIQ Consumer Panel dataset together with data before and after the

83We limit our attention to two binary demographics for simplicity in this empirical example. A more
in-depth study would incorporate more functions of demographics measured in Census and NielsenIQ data.

84The share of high income households increases from 35% in 2007 to only 40% in 2016. The share of
households with at least one child increases from 10% to only 11%.

85If we try to do so by including instruments that interact moments of the demographic distribution with
characteristics and differentiation IVs, we get very noisy estimates that severely corrupt our other estimates.

86We compute weighted averages and covariances to account for both non-random participation of house-
holds in the NielsenIQ panel and different numbers of total grocery trips per quarter. See Appendix J for
more details.

87An unconditional negative covariance in the micro data between prices and high income is potentially
misleading. High income households also tend to purchase cheaper family-sized products. This negative
covariance switches sign after controlling for package size.
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implementation of seven recent SBTs in the US between 2015 (Berkeley) and 2018 (Seattle),

and struggle to find statistically significant differences in the impact of these taxes by income

group and presence of children. We view a structural approach that incorporates micro data

as complementary to approaches such as that of Barker et al. (2022), which makes different

modeling assumptions but can be limited by small sample sizes.88

Incorporating demographics captures some heterogeneous preferences for the outside good

and diet beverages. But the model is missing a great deal of potential unobserved heterogene-

ity. Unfortunately, with market fixed effects, the distribution of unobserved preferences for

the outside good is not identified with only aggregate data,89 and we find that cross-quarter

aggregate variation in the number of diet drinks is also insufficient to precisely estimate the

scale of unobserved preferences for diet drinks.

Instead, we use survey-based second choice data.90 To demonstrate how researchers can

run a second choice survey, we use Prolific Academic to recruit 100 participants who live

in Washington State for an online survey.91 Our survey design is similar to that used for

choice-based conjoint analysis (e.g., Allenby et al., 2019), and we provide more details at the

end of Appendix J, including discussion of potential biases that often show up in results from

online surveys. We use the survey to compute two diversion ratios: the share of participants

who would divert to the outside good or a diet soft drink if their first choice non-diet brand

were unavailable.92 Like in the NielsenIQ micro data, we weight observations by ounces

typically purchased and adjust for non-random sampling by demographic group.

In the third column of Table 11, we match these two diversion statistics for the last quarter

in our sample.93 If respondents’ non-diet first choice soft drink brand were unavailable,

88One country with much larger sample sizes for studying the impact of SBTs is the UK, through data
collected by the National Child Measurement Programme (see, e.g., Rogers et al., 2023).

89Recalling the FRAC intuition from Section 3, the artificial regressor on a constant xjt = 1 is ajt =
s0t − 1/2, variation of which is absorbed by market t fixed effects.

90Another approach would be to compute first- and seconds shares from a single household’s purchases
over time in the NielsenIQ micro data. The validity of this approach will depend on what generated changes
in product availability or characteristics that led to switching. Since we generally expect product availability
to be correlated across products, we prefer self-reported second choices, but observational diversion can be
useful in settings where survey data is unavailable or unreliable.

91A larger sample size would be appropriate for a more complete empirical study. Allenby et al. (2019)
notes that many conjoint practitioners use sample sizes of 500 to 1,000.

92We increase the total number of survey participants to 139 until we get 100 participants who say they
have purchased at least one of eight of the most popular non-diet brands in Seattle during the last 30 days:
Coke, Pepsi, Gatorade, Powerade, Canada Dry, Dr Pepper, Mountain Dew, or Seven Up.

93By matching statistics computed for Washington residents, not just Seattle residents, and for consumers
in 2023, not 2016, we are assuming that these diversion ratios would not be much different for Seattle in
2016. At a minimum, in Appendix J we check whether the statistics are different for the 25% of respondents
who live in Seattle and do find some difference for diversion to the outside good, although they are noisy.
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“P(Dietk(−b(j))t | Surveyed Non-dietjt) = 16%” of respondents said they would divert to a

diet beverage, and “P(k(−b(j)) = 0 | Surveyed Non-dietjt) = 17%” said they would divert to

the outside good, which includes both non-soft drinks and no beverage. Without matching

these two additional moments, the model predicts 92% and 3%, respectively, suggesting that

there is a great deal of unobserved preference heterogeneity left unmodeled.

Indeed, we get large estimated standard deviations on normally distributed unobserved

preferences for inside goods and the diet characteristic. As a result, the counterfactual

predicts a smaller decrease in taxed volume purchased, -16%, somewhat undershooting the

estimate of -22% in Powell and Leider (2020), and a larger increase in untaxed volume

purchased, 9%, somewhat overshooting but not statistically different from the estimate of

4% in Powell and Leider (2020). Given the nature of an imperfect prediction exercise, we

do not expect to perfectly predict what actually happened, but do view our second choice

estimates as more credible than those that rely more heavily on strong assumptions about

market size.

Finally, in the fourth column of Table 11, we replace the standard micro moments with

optimal micro moments in the second GMM step. We do not replace our second choice

moments because, as is often the case, our survey did not collect full micro data, only

enough to compute our desired diversion ratios. Point estimates and counterfactual results

are fairly similar, suggesting that most of the information in the NielsenIQ micro data

is already spanned by the standard micro moments for this model. This should not be

surprising because the model discretized observed heterogeneity into four types: high and

low income, and with and without children. We provide more in-depth discussions of how

to compute optimal micro moments with PyBLP at the end of Appendix E and how to do

so with NielsenIQ micro data near the end of Appendix J.

There are a number of extensions that would improve a more complete policy exercise.

Incorporating more product characteristics, more consumer demographics, and more second

choice data would help to better explain substitution patterns. Discussed in Appendix A,

a lognormal random coefficient on price often provides a better fit, and can be helpful for

modeling a supply side.94 In Appendix B we discuss adding a nesting structure, which could

be useful for explaining substitution between categorical characteristics such as brand or

store. PyBLP also supports inclusion of product-specific demographics such as geographic

distance to stores, which could allow researchers to predict cross-border shopping effects.95

94This guarantees downward sloping demand for all consumers, which can help guarantee pricing equilib-
rium existence and uniqueness.

95We discuss adding geographic distance in more depth in Appendix J.
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9. Conclusion and Practical Advice

This article was motivated with a frustration experienced by many researchers with the

aggregate BLP estimator: aggregate variation is usually very limited, leading to poor esti-

mates of demand. Coupled with the best practices from Conlon and Gortmaker (2020) for

the aggregate side of estimation, we confirm in this article that incorporating micro data can

substantially improve the finite-sample performance of the BLP estimator. Our hope is that

going forward, a standardized framework for doing so will encourage more researchers to use

or collect micro data, particularly second choices, which can be very useful for estimating

the degree of unobserved preference heterogeneity.

This article makes a number of contributions that we believe to be novel. Perhaps most

importantly, we provide a flexible econometric framework for incorporating many different

types of micro data into BLP-style estimation, which we subject to a number of different

asymptotic thought experiments. These include cases where we observe relatively complete

data on individual choices, demographics, and characteristics, and cases where we observe

only limited statistics from surveys of individuals. Characterizing the asymptotic covariance

matrix also allows us to clarify that researchers do not need to observe sample covariances

between micro summary statistics to do valid statistical inference. Finally, we contribute a

novel characterization of the optimal micro moments in the spirit of Chamberlain (1987) and

a computationally straightforward procedure for computing them, which can be done with

only a few lines of code when using PyBLP. These have the advantage of not only reducing

bias and increasing efficiency, but can also significantly reduce the overall dimension of the

problem.

We also provide some practical tips to researchers. First, researchers can and should check

how much cross-sectional (or time series) variation there is in the aggregate data using the

FRAC estimator of Salanié and Wolak (2022). Second, researchers can measure how much

of the variation in the (infeasible) optimal micro moments from the score contributions can

be captured using their micro statistics, even if complete individual data is not available.

Third, researchers should be mindful of compatibility issues across datasets. The marginal

distribution of demographics like income, or the purchase probabilities of particular choices

may vary significantly between aggregate and micro datasets. In this case, blindly matching

moments from micro datasets (including the “optimal micro moments”) may be worse than

using only aggregate data. However, we illustrate that alternative micro statistics can be

designed to be more robust in this scenario. Fourth, while quadrature rules are often the

best choice for evaluating numerical integrals of mixed logit models with aggregate data,
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most quadrature rules are not designed to accurately integrate sub-intervals; in this case,

less accurate (but unbiased) Monte Carlo rules may be preferred. Finally, researchers should

think about which model parameters are most relevant for the policies they are interested

in, and carefully consider designing surveys or experiments to help better estimate those

objects. Here we provide a proof of concept showing how a small and inexpensive survey

could be designed to better understand the effects of a sugary beverage tax.

Our goal has been to extend the best practices in Conlon and Gortmaker (2020) to the

case with micro data, not only through this paper but also in a single software package, Py-

BLP. We have provided a list of best practices, evaluated them with large-scale simulations,

and made them either defaults or easy to use in PyBLP. Our hope is that these practices can

now be made available to a wider range of researchers, including those already using PyBLP.

For researchers who wish to incorporate micro data into similar econometric frameworks that

are not yet supported by PyBLP, we hope that the framework and results developed in this

article, along with PyBLP’s well-documented code, serve as a useful starting point.
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Table 1: Empirical Literature

Demand Estimation

Paper Industry Country Years

Petrin (2002) Automobiles United States 1981–1993
Berry, Levinsohn, and Pakes (2004) Automobiles United States 1993
Thomadsen (2005) Fast Food United States 1999
Goeree (2008) Personal Computers United States 1996–1998
Ciliberto and Kuminoff (2010) Cigarettes United States 1993–2002
Nakamura and Zerom (2010) Coffee United States 2000–2004
Beresteanu and Li (2011) Automobiles United States 1999–2006
Li (2012) Automobiles United States 1999–2006
Copeland (2014) Automobiles United States 1999–2008
Starc (2014) Health Insurance United States 2004–2008
Ching, Hayashi, and Wang (2015) Nursing Homes United States 1999
Li, Xiao, and Liu (2015) Automobiles China 2004–2009
Nurski and Verboven (2016) Automobiles Belgium 2010–2011
Barwick, Cao, and Li (2017) Automobiles China 2009–2011
Murry (2017) Automobiles United States 2007–2011
Wollmann (2018) Commercial Vehicles United States 1986–2012
Li (2018) Automobiles China 2008–2012
Li, Gordon, and Netzer (2018) Digital Cameras United States 2007–2010
Backus, Conlon, and Sinkinson (2021) Cereal United States 2007–2016
Grieco, Murry, and Yurukoglu (2021) Automobiles United States 1980–2018
Neilson (2021) Primary Schools Chile 2005–2016
Armitage and Pinter (2022) Automobiles United States 2009–2017
Döpper, MacKay, Miller, and Stiebale (2022) Retail United States 2006–2019
Durrmeyer (2022) Automobiles France 2003–2008
Weber (2022) Trucks United States 2010–2018
Bodéré (2023) Preschools United States 2010–2018
Montag (2023) Laundry Machines United States 2005–2015
Conlon and Rao (2023) Distilled Spirits United States 2007–2013

This table collects a non-exhaustive list of empirical papers that use the micro BLP
estimator, along with the industry, country, and years for which each paper estimates
demand. Some papers estimate demand for the listed broad industry and subsequently
focus on a sub-industry. We only list published and recent working papers that do not
diverge too much from the standard demand-side BLP model. In Table 3 we reorganize
these papers by which micro moments they use.
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Table 2: Notation

Notation for aggregate data and estimation (Section 2) Notation for micro data and estimation (Section 4)

t ∈ T Markets d ∈ D Micro datasets
Mt ∈ R+ Market size wdijt ∈ [0, 1] Sampling probability

wdijkt ∈ [0, 1] Joint sampling probability
j ∈ Jt Products
j = 0 Outside alternative n ∈ Nd Micro observations
c = 1, . . . , C Observed product characteristics tn ∈ T Micro observation market
m = 1, . . . ,MA Instruments in ∈ Itn Micro observation type
xcjt ∈ R Observed product characteristic jn ∈ Jtn ∪ {0} Micro observation choice
xjt ∈ RC×1 All observed product characteristics kn ∈ Jtn ∪ {0} \ {jn} Micro observation second choice
zmjt ∈ R Instrument
zjt ∈ RMA×1 All instruments p = 1, . . . , PM Micro parts
ξjt ∈ R Mean-zero unobserved product quality dp ∈ D Micro part dataset

vpijt ∈ R Micro part value
i ∈ It Consumer types vpijkt ∈ R Second choice micro part value
r = 1, . . . , R Consumer demographics
wit ∈ [0, 1] Consumer type share m = 1, . . . ,MM Micro moments
yrit ∈ R Consumer demographic fm : RPM×1 → R Micro moment function
yit ∈ RR×1 All consumer demographics
νcit ∈ R Unobserved preference vp ∈ R Micro part sample value
νit ∈ RC×1 All unobserved preferences v ∈ RPM×1 All micro part sample values

fm(v) ∈ R Micro moment sample value
uijt ∈ R Indirect utility
δjt ∈ R Mean utility vp(θ) ∈ R Micro part expected value
µijt ∈ R Heterogeneous utility v(θ) ∈ RPM×1 All micro part expected values
εijt ∈ R Idiosyncratic preference fm(v(θ)) ∈ R Micro moment expected value
sijt ∈ (0, 1) Choice probability
sjt ∈ (0, 1) Market share sijkt ∈ (0, 1) Joint choice probability
Sjt ∈ (0, 1) Observed market share sik(-j)t ∈ (0, 1) Probability of choosing k without j

sik(-h(j)t ∈ (0, 1) The same, but without a group h(j)

β ∈ RC×1 Linear parameters
Π ∈ RC×R Consumer demographic parameters M = MA +MM Number of combined moments
Σ ∈ RC×C Unobserved preference parameters ĝ(θ) ∈ RM×1 Combined sample moments

θ = (β,Π,Σ) All parameters Ŵ ∈ RM×M Combined weighting matrix

NA =
∑

t∈T
|Jt| Number of aggregate observations Nd = |Nd| Number of micro observations

ĝA(θ) ∈ RMA×1 Aggregate sample moments ĝM(θ) ∈ RMM×1 Micro sample moments

ŴA ∈ RMA×MA Aggregate weighting matrix ŴM ∈ RMM×MM Micro weighting matrix

This table summarizes the notation we introduce in Sections 2 and 4. Subscripts on parameters such as θ0
refer to true values. Subscripts on operators such as PA indicate conditioning on all aggregate data.
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Table 3: Micro Moment Examples

Shorthand Papers

“P(j ∈ Jm | i ∈ Im)” Petrin (2002); Thomadsen (2005); Goeree (2008); Nakamura and Zerom (2010); Beresteanu
and Li (2011); Li (2012); Starc (2014); Ching, Hayashi, and Wang (2015); Li, Xiao, and Liu
(2015); Barwick, Cao, and Li (2017); Li (2018); Li, Gordon, and Netzer (2018); Bodéré (2023)

“E[yrit | j ∈ Jm]” Petrin (2002); Ciliberto and Kuminoff (2010); Li (2012); Copeland (2014); Nurski and Verboven
(2016); Murry (2017); Wollmann (2018); Backus, Conlon, and Sinkinson (2021); Armitage and
Pinter (2022); Döpper, MacKay, Miller, and Stiebale (2022); Durrmeyer (2022); Weber (2022);
Conlon and Rao (2023)

“E[xcjt | i ∈ Im, j 6= 0]” Starc (2014); Grieco, Murry, and Yurukoglu (2021); Neilson (2021); Weber (2022); Bodéré
(2023); Conlon and Rao (2023)

“C(xcjt, yrit | j 6= 0)” Berry, Levinsohn, and Pakes (2004); Nurski and Verboven (2016); Backus, Conlon, and Sink-
inson (2021); Durrmeyer (2022); Montag (2023)

“C(xcjt, xek(-j)t | j, k 6= 0)” Berry, Levinsohn, and Pakes (2004); Grieco, Murry, and Yurukoglu (2021); Montag (2023)

This table lists examples of micro moments that we discuss in Section 5. Each row lists our notation-abusing
shorthand and empirical papers from Table 1 that have used essentially the same micro moment.

Table 4: Demographic Variation

MAE (%) Bias (%)

Variation Distributions Markets π̂1 π̂x β̂1 β̂x α̂ π̂1 π̂x β̂1 β̂x α̂

National 1 40 436.6 133.3 8.3 5.1 1.2 -110.3 -45.6 1.8 2.1 0.1
States 50 40 197.8 60.6 3.9 2.4 1.2 -31.3 -12.6 0.6 0.4 0.1
PUMAs 982 40 97.5 30.0 2.7 1.4 1.2 -5.8 -4.7 0.2 0.2 0.1

National 1 80 327.7 102.8 6.1 4.0 0.9 -98.5 -48.4 2.0 2.1 0.0
States 50 80 139.5 42.7 2.7 1.6 0.9 -7.4 -6.1 0.2 0.2 -0.0
PUMAs 982 80 65.9 21.3 1.9 1.0 0.8 -4.9 -2.4 0.2 0.2 -0.0

This table reports median absolute error (MAE) and median bias of parameter estimates over
1,000 simulated datasets for different amounts of cross-market demographic variation. We ran-
domly assign each market either to the same national distribution of income, to one of 50 US
states, or to one of the 982 Public Use Microdata Areas (PUMAs) used by the American Com-
munity Survey (ACS). In the last three rows, we simulate 40 more markets, keeping the same
demographic distributions as in the first 40, but with different choice sets.

Table 5: Standard Micro Moments

MAE (%) Bias (%)

Micro Moments Shorthand π̂1 π̂x π̂1 π̂x

No Micro Moments 197.8 60.6 -31.3 -12.6
“E[yit | j 6= 0]” 164.8 44.9 2.9 1.4
“C(x2jt, yit | j 6= 0)” 53.8 11.7 17.5 2.3
“E[yit | j 6= 0], C(x2jt, yit | j 6= 0)” 34.0 10.8 4.1 1.1

“E[yit | j 6= 0], E[x2jt · yit | j 6= 0]” 37.6 12.0 3.2 0.7
“E[yit | j 6= 0], E[x2jt | yit < yt, j 6= 0]” 62.7 17.3 0.9 1.0
“E[yit | j 6= 0], E[x2jt | yit < yt, j 6= 0], C(x2jt, yit | j 6= 0)” 34.2 10.7 4.3 1.1

This table reports median absolute error (MAE) and median bias of parameter
estimates over 1,000 simulated datasets for different combinations of standard
micro moments. The cutoff yt is the median income yit in market t.
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Figure 1: Standard Micro Moment Correlations

This figure reports median absolute correlations be-
tween different micro statistics over 1,000 simulated mi-
cro datasets underlying the micro moments in Table 5.
For each micro observation n in market tn = t of type
in = i with choice jn = j, we compute three statistics:
x2jt · yit captures variation in “E[x2jt · yit | j 6= 0]” and
“C(x2jt, yit | j 6= 0)” moments, x2jt · 1{yit < yt} cap-
tures variation in “E[x2jt | yit < yt, j 6= 0]” moments, and
∂ logPA(t, j, yit | n ∈ Nd)/∂πx is the score for πx at the
true θ0.
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Table 6: Optimal Micro Moments and Compatibility

MAE (%) Bias (%)

Micro Moments (plus E[yit | j 6= 0]) Incompatible Optimal π̂1 π̂x π̂1 π̂x

“C(x2jt, yit | j 6= 0)” 34.0 10.8 4.1 1.1
“C(x2jt, yit | j 6= 0)” Yes 23.8 6.3 -0.6 -0.1

“E[x2jt | yit < yt, j 6= 0]” 62.7 17.3 0.9 1.0
“E[x2jt | yit < yt, j 6= 0]” Yes 24.1 6.4 -0.5 -0.4

“E[x2jt | ỹit < yt, j 6= 0]” Yes 64.4 18.0 0.8 0.7
“E[x2jt | ỹit < yt, j 6= 0]” Yes Yes 107.1 19.1 104.6 -13.7

This table reports median absolute error (MAE) and median bias of parameter esti-
mates over 1,000 simulated datasets for standard and optimal micro moments. The
first and third rows are the same as the fourth and sixth rows in Table 5. The sec-
ond and fourth rows use these same standard micro moments in the first GMM step
to construct optimal micro moments for the second step. For the last two rows, we
simulate a second, independent micro dataset that is configured the same, except we
replace yit with ỹit: the 25th percentile of income if below the median or the 75th
percentile if above. We use this second dataset for “E[x2jt | ỹit < yt, j 6= 0]” and in
the last row, optimal micro moments as well.
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Figure 2: Pooling Markets

This figure reports median absolute error (MAE) and median bias of parameter estimates over 1,000
simulated datasets for an increasing number of micro moments that are pooled across a decreasing
number of markets. On the left, we match the same MM = 2 micro moments “E[yit | j 6= 0]” and
“C(x2jt, yit | j 6= 0)” in the fourth row of Table 5, which are pooled across all T = 40 markets. On
the right, we match MM = 80 micro moments “E[yit | j 6= 0, t]” and “C(x2jt, yit | j 6= 0, t),” one
for each market t. In the middle, we pool moments across decreasing numbers of markets (factors
of the full 40). We do not use any observables to select which markets to pool for each micro
moments. The top panel reports results for π̂1; the bottom, for π̂x.
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Table 7: Numerical Integration

MAE (%) Bias (%)

Micro Moments (plus “E[yit | j 6= 0]”) Integration π̂1 π̂x π̂1 π̂x

“C(x2jt, yit | j 6= 0)” Quadrature 31.6 9.2 -1.9 -1.1
“C(x2jt, yit | j 6= 0)” Monte Carlo 34.0 10.8 4.1 1.1

“E[x2jt | yit < yt, j 6= 0]” Quadrature 251.8 71.0 24.6 5.4
“E[x2jt | yit < yt, j 6= 0]” Monte Carlo 62.7 17.3 0.9 1.0

This table reports median absolute error (MAE) and median bias of pa-
rameter estimates over 1,000 simulated datasets for different choices of
consumer types It for numerically integrating over the lognormal popu-
lation distribution of income yit. “Quadrature” refers to |It| = 7 Gauss-
Hermite nodes and weights that exactly integrate polynomials of degree
2 × 7 − 1 = 13 or less. Quadrature nodes are transformed into nodes for
income with the mean and standard deviation of log income in each mar-
ket. “Monte Carlo” refers to |It| = 1,000 pseudo-Monte Carlo draws from
the true distribution of income. The cutoff yt is the median income yit in
market t.
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Figure 3: Problem Scaling

This figure reports median absolute error (MAE) and median bias of parameter estimates over
1,000 simulated datasets as finite sample sizes approach the three asymptotic thought experiments
discussed in Appendix D. In all panels we match the same “E[yit | j 6= 0]” and “C(x2jt, yit | j 6= 0)”
moments in the fourth row of Table 5. The leftmost panel fixes the number of products and micro
observations per market and scales up the number of markets, including those with micro data.
The middle panel fixes the number of products per market and the number of markets with micro
data and scales up the number of aggregate markets and the number of micro observations in each
of the fixed number of markets. The rightmost panel fixes the number of markets and scales up
the number of products and micro observations per market.
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Table 8: Unobserved Heterogeneity

MAE (%) Bias (%)

Micro Moments Shorthand Jt = J Optimal π̂1 π̂x σ̂x π̂1 π̂x σ̂x

No Micro Moments 225.7 76.5 3.4 -43.4 -14.6 -0.3
“E[yit | j 6= 0], C(x2jt, yit | j 6= 0)” 39.2 12.1 3.2 3.3 0.1 -0.3
“E[yit | j 6= 0], C(x2jt, yit | j 6= 0)” Yes 29.1 8.3 3.3 -2.8 -0.7 -0.3

No Micro Moments Yes 153.6 79.3 99.5 2.8 21.9 31.8
“E[yit | j 6= 0], C(x2jt, yit | j 6= 0)” Yes 33.6 23.1 94.0 -0.8 -13.8 -82.3
“E[yit | j 6= 0], C(x2jt, yit | j 6= 0)” Yes Yes 31.8 24.0 99.2 -5.5 -17.9 -86.4

This table reports median absolute error (MAE) and median bias of parameter estimates
over 1,000 simulated datasets with unobserved preferences for different amounts of choice
set variation and different micro moments. We draw unobserved preferences ν2it from the
standard normal distribution and add σxx2jtν2it to µijt with the true σ0x = 0.5. In the bot-
tom three rows, we use the same choice set Jt = J in each market, cluster our estimates of
the asymptotic covariance matrix for ξjt by product j, and use the number of markets T as
the number of aggregate observations NA.

Table 9: Second Choices

MAE (%) Bias (%)

Micro Moments (plus “E[yit | j 6= 0], C(x2jt, yit | j 6= 0)”) Optimal π̂1 π̂x σ̂x π̂1 π̂x σ̂x

No Second Choice Moments 33.2 23.2 94.4 -0.9 -14.0 -82.7
“C(x2jt, x2k(-j)t | j, k 6= 0)” 33.9 12.0 16.4 3.7 0.3 -2.3
“E[x2jt + x2k(-j)t | j, k 6= 0]” 34.0 10.4 5.3 4.4 1.7 -0.5
“P(x2k(-j)t < x2t | x2jt R x2t, j, k 6= 0)” 34.7 11.0 12.5 3.5 1.9 -2.9
“P(x2k(-j)t < x2t | x2jt R x2t, j, k 6= 0)” Yes 16.9 4.8 4.3 -0.3 -0.8 -1.0

This table reports median absolute error (MAE) and median bias of parameter estimates over 1,000
simulated datasets with unobserved preferences for different micro moments based on second choice
data. We draw unobserved preferences ν2it from the standard normal distribution and add σxx2jtν2it
to µijt with the true σ0x = 0.5. To eliminate cross-market choice set variation, we use the same choice
set Jt = J in each market, cluster our estimates of the asymptotic covariance matrix for ξjt by prod-
uct j, and use the number of markets T as the number of aggregate observations NA. In addition to
the main micro dataset, we simulate a second, independent micro dataset that is configured the same,
except that it also reports second choices. The shorthand “P(x2k(-j)t < x2t | x2jt R x2t, j, k 6= 0)”
refers to two moments that match the share of individuals who divert from a below- or above-median
x2jt first choice j to a below-median x2kt second choice k.
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Figure 4: Second Choice Micro Moment Correlations

This figure reports median absolute correlations be-
tween different micro statistics over 1,000 simulated mi-
cro datasets underlying the second choice moments in Ta-
ble 9. For each micro observation n in market tn = t
of type in = i with choices jn = j and kn = k, we
compute four statistics: x2jt · x2k(-j)t captures variation
in “C(x2jt, x2k(-j)t | j, k 6= 0)” moments, x2jt + x2k(-j)t
captures variation in “E[x2jt + x2k(-j)t | j, k 6= 0]” mo-
ments, 1{x2jt < x2t} · 1{x2k(-j)t < x2t} captures variation
in “P(x2k(-j)t < x2t | x2jt < x2t, j, k 6= 0)” moments, and
∂ logPA(t, j, k, yit | n ∈ Nd)/∂σx is the score for σx at the
true θ0.
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Figure 5: Petrin (2002) Replication Code
import numpy as np

import pandas as pd

from pyblp import data, Problem, Formulation, MicroDataset, MicroPart, MicroMoment, Optimization, Iteration

# Configure the aggregate problem: linear demand ("X1"), nonlinear demand ("X2"), marginal costs ("X3"), and demographics

problem = Problem(

product_formulations=[

Formulation('1 + hpwt + space + air + mpd + fwd + mi + sw + su + pv + pgnp + trend + trend2'),

Formulation('1 + I(-prices) + hpwt + space + air + mpd + fwd + mi + sw + su + pv'),

Formulation('1 + log(hpwt) + log(wt) + log(mpg) + air + fwd + trend * (jp + eu) + log(q)'),

],

costs_type='log',

agent_formulation=Formulation('1 + I(low / income) + I(mid / income) + I(high / income) + I(log(fs) * fv) + age + fs + mid + high'),

product_data=pd.read_csv(data.PETRIN_PRODUCTS_LOCATION),

agent_data=pd.read_csv(data.PETRIN_AGENTS_LOCATION),

)

# Configure the micro dataset: name, number of observations, and a function that computes sampling weights

micro_dataset = MicroDataset("CEX", 29125, lambda t, p, a: np.ones((a.size, 1 + p.size)))

# Configure micro moment parts: names, datasets, and functions that compute micro values

age_mi_part = MicroPart("E[age_i * mi_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 7]]))

age_sw_part = MicroPart("E[age_i * sw_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 8]]))

age_su_part = MicroPart("E[age_i * su_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 9]]))

age_pv_part = MicroPart("E[age_i * pv_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 10]]))

fs_mi_part = MicroPart("E[fs_i * mi_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 7]]))

fs_sw_part = MicroPart("E[fs_i * sw_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 8]]))

fs_su_part = MicroPart("E[fs_i * su_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 9]]))

fs_pv_part = MicroPart("E[fs_i * pv_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 10]]))

inside_mid_part = MicroPart("E[1{j > 0} * mid_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 7], np.r_[0, p.X2[:, 0]]))

inside_high_part = MicroPart("E[1{j > 0} * high_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 8], np.r_[0, p.X2[:, 0]]))

mi_part = MicroPart("E[mi_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 7]]))

sw_part = MicroPart("E[sw_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 8]]))

su_part = MicroPart("E[su_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 9]]))

pv_part = MicroPart("E[pv_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 10]]))

mid_part = MicroPart("E[mid_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 7], np.r_[1, p.X2[:, 0]]))

high_part = MicroPart("E[high_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 8], np.r_[1, p.X2[:, 0]]))

# Configure micro moments: names, observed values, parts, and functions that combine parts

compute_ratio = lambda v: v[0] / v[1]

compute_ratio_gradient = lambda v: [1 / v[1], -v[0] / v[1]**2]

micro_moments = [

MicroMoment("E[age_i | mi_j]", 0.783, [age_mi_part, mi_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[age_i | sw_j]", 0.730, [age_sw_part, sw_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[age_i | su_j]", 0.740, [age_su_part, su_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[age_i | pv_j]", 0.652, [age_pv_part, pv_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | mi_j]", 3.86, [fs_mi_part, mi_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | sw_j]", 3.17, [fs_sw_part, sw_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | su_j]", 2.97, [fs_su_part, su_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | pv_j]", 3.47, [fs_pv_part, pv_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[1{j > 0} | mid_i]", 0.0794, [inside_mid_part, mid_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[1{j > 0} | high_i]", 0.1581, [inside_high_part, high_part], compute_ratio, compute_ratio_gradient),

]

# Configure two-step minimum distance: starting values, numerical optimization, clustered aggregate moments, and micro moments

problem_results = problem.solve(

sigma=np.diag([3.23, 0, 4.43, 0.46, 0.01, 2.58, 4.42, 0, 0, 0, 0]),

pi=np.array([

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 7.52, 31.13, 34.49, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0.57, 0, 0, 0, 0],

[0, 0, 0, 0, 0.28, 0, 0, 0, 0],

[0, 0, 0, 0, 0.31, 0, 0, 0, 0],

[0, 0, 0, 0, 0.42, 0, 0, 0, 0],

]),

optimization=Optimization('bfgs', {'gtol': 1e-4}),

iteration=Iteration('squarem', {'atol': 1e-13}),

se_type='clustered',

W_type='clustered',

micro_moments=micro_moments,

)

This Python code demonstrates how to construct and solve the problem from Petrin (2002) with
PyBLP. Names in the formulation objects correspond to variable names in the datasets, which are
packaged with PyBLP. Micro moment values are from Table 6a in the working paper version of
Petrin (2002). We report replication results from running this code in the rightmost column of
Table 10.
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Table 10: Petrin (2002) Replication

Replicated with

Different Micro Covariances

Logit Published Micro Data Estimated

Price Low Income 0.13 7.52 3.81 3.86

Coefficients (0.01) (1.24) (0.36) (0.36)

Middle Income 0.13 31.13 11.93 12.06

(0.01) (4.07) (1.00) (1.01)

High Income 0.13 34.49 23.56 23.79

(0.01) (2.56) (2.43) (2.40)

Base Constant -10.05 -15.67 -8.81 -8.91

Coefficients (0.34) (4.39) (1.39) (1.42)

Horsepower/Weight 3.79 -2.83 8.42 8.34

(0.47) (8.16) (2.27) (2.40)

Size 3.25 4.80 4.93 4.89

(0.27) (3.57) (1.71) (1.61)

Air Conditioning Standard 0.22 3.88 3.59 3.81

(0.08) (2.21) (1.24) (1.22)

Miles/Dollar 0.05 -15.79 -0.13 -0.14

(0.06) (0.87) (0.33) (0.32)

Front Wheel Drive 0.15 -12.32 -6.48 -6.45

(0.06) (2.36) (1.83) (1.81)

Minivan -0.10 -5.65 -1.98 -2.10

(0.15) (0.68) (0.46) (0.48)

Station Wagon -1.12 -1.31 -1.31 -1.33

(0.06) (0.36) (0.25) (0.20)

Sport-utility -0.62 -4.38 -1.08 -1.08

(0.11) (0.41) (0.29) (0.28)

Full-size Van -1.89 -5.26 -3.34 -3.31

(0.13) (1.30) (0.57) (0.52)

Percent Change in GNP 0.04 0.24 0.03 0.03

(0.01) (0.02) (0.01) (0.01)

Random Constant 3.23 -0.00 0.03

Coefficients (0.72) (0.54) (0.53)

Horsepower/Weight 4.43 0.03 0.12

(1.60) (0.83) (0.81)

Size 0.46 -0.12 -0.09

(1.07) (0.68) (0.61)

Air Conditioning Standard 0.01 -1.16 -1.33

(0.78) (1.03) (1.09)

Miles/Dollar 2.58 -0.16 -0.16

(0.14) (0.22) (0.22)

Front Wheel Drive 4.42 1.62 1.62

(0.79) (0.37) (0.37)

Minivan 0.57 0.40 0.42

(0.10) (0.05) (0.05)

Station Wagon 0.28 0.16 0.17

(0.09) (0.06) (0.04)

Continued on the next page.
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Continued from the previous page.

Logit Published Micro Data Estimated

Sport-utility 0.31 0.10 0.10

(0.09) (0.06) (0.05)

Full-size Van 0.42 0.25 0.25

(0.21) (0.10) (0.08)

Cost Constant 1.50 1.38 1.40

Coefficients (0.08) (0.14) (0.14)

log(Horsepower/Weight) 0.84 0.88 0.88

(0.03) (0.05) (0.05)

log(Weight) 1.28 1.42 1.41

(0.04) (0.08) (0.08)

log(Miles/Gallon) 0.23 0.13 0.12

(0.04) (0.06) (0.06)

Air Conditioning Standard 0.24 0.27 0.27

(0.01) (0.02) (0.02)

Front Wheel Drive 0.01 0.07 0.07

(0.01) (0.02) (0.02)

Trend -0.01 -0.01 -0.01

(0.01) (0.00) (0.00)

Japan 0.12 0.10 0.10

(0.01) (0.03) (0.03)

Japan × Trend -0.01 0.00 0.00

(0.01) (0.00) (0.00)

Europe 0.47 0.46 0.46

(0.03) (0.04) (0.04)

Europe × Trend -0.01 -0.01 -0.01

(0.01) (0.00) (0.00)

log(Quantity) -0.05 -0.07 -0.07

(0.01) (0.01) (0.01)

Micro “P(Middle Ageit | Minivanjt) = 0.783” 0.750 0.749 0.754

Moments “P(Middle Ageit | Station Wagonjt) = 0.730” 0.675 0.677 0.683

“P(Middle Ageit | Sport-utilityjt) = 0.740” 0.663 0.680 0.681

“P(Middle Ageit | Full-size Vanjt) = 0.652” 0.725 0.730 0.729

“E[Family Sizeit | Minivanjt] = 3.86” 3.85 3.83 3.87

“E[Family Sizeit | Station Wagonjt] = 3.17” 3.19 3.15 3.18

“E[Family Sizeit | Sport-utilityjt] = 2.97” 3.02 2.98 2.98

“E[Family Sizeit | Full-size Vanjt] = 3.47” 3.44 3.51 3.49

“P(j 6= 0 | Middle Incomeit) = 0.0794” 0.0807 0.0799 0.0799

“P(j 6= 0 | High Incomeit) = 0.1581” 0.1596 0.1598 0.1602

Minivan 1984 Compensating Variation (Dollars, Millions) 1,240.34 367.29 429.89 425.91

Innovation (242.46) (250.10) (224.57)

This table reports replication results for Petrin (2002) described in Section 8. From left to right, we report
our exactly replicated IV logit estimates, micro BLP estimates from the original paper, replication results
with micro moment covariances estimated from the micro data, and results with covariances estimated by
PyBLP so the only micro statistics needed are the values in Figure 5. Standard errors are in parentheses;
we compute those for the minivan innovation counterfactual with a parametric bootstrap.
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Table 11: Predicting Substitution from Seattle’s Sweetened Beverage Tax

Micro Moments

Aggregate Standard Diversion Optimal

Price/Ounce Constant -52.645 -52.343 -38.538 -37.902

Coefficients (4.660) (4.694) (4.034) (4.217)

High Income Household 3.549 3.178 4.062

(0.940) (1.046) (0.992)

Child in Household -6.915 -8.119 -11.105

(1.274) (1.406) (1.458)

Unobserved Preference 19.631 19.229 15.256 14.941

(1.802) (1.805) (2.569) (2.749)

Inside Goods High Income Household -0.053 0.348 -0.278

Coefficients (0.040) (0.130) (0.120)

Child in Household 0.498 1.210 1.884

(0.050) (0.239) (0.355)

Unobserved Preference 4.964 5.178

(0.387) (0.410)

Diet Formula High Income Household 0.708 0.999 0.684

Coefficients (0.043) (0.142) (0.124)

Child in Household -0.852 -1.463 -1.037

(0.056) (0.271) (0.216)

Unobserved Preference 2.606 2.671

(0.868) (0.950)

Small Sized High Income Household -0.690 -0.710 -0.662

Coefficients (0.060) (0.061) (0.058)

Child in Household 0.689 0.716 0.641

(0.069) (0.071) (0.066)

Standard Micro “P(Highit | j 6= 0) = 0.597” 0.597 0.597 0.561

Statistics “P(Childit | j 6= 0) = 0.203” 0.203 0.203 0.228

“C(Pricejt,Highit | j 6= 0) = -0.0004” -0.0004 -0.0004 -0.0002

“C(Pricejt,Childit | j 6= 0) = -0.0001” -0.0001 -0.0001 -0.0004

“C(Dietjt,Highit | j 6= 0) = 0.0355” 0.0355 0.0355 0.0220

“C(Dietjt,Childit | j 6= 0) = -0.0264” -0.0264 -0.0264 -0.0172

“C(Smalljt,Highit | j 6= 0) = -0.0207” -0.0207 -0.0207 -0.0192

“C(Smalljt,Childit | j 6= 0) = 0.0116” 0.0116 0.0116 0.0089

Diversion Micro “P(k(-b(j)) = 0 | Surveyed Non-dietjt) = 0.16” 0.92 0.93 0.16 0.14

Statistics “P(Dietk(-b(j))t | Surveyed Non-dietjt) = 0.17” 0.03 0.03 0.17 0.17

Continued on the next page.
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Continued from the previous page.

Aggregate Standard Diversion Optimal

Aggregate Product-Retailer-Quarters 78,161 78,161 78,161 78,161

Observations →֒ Products 2,672 2,672 2,672 2,672

→֒ Retailers 5 5 5 5

→֒ Quarters (Markets) 40 40 40 40

→֒ Brands (Clusters) 425 425 425 425

Fixed Product-Retailers 5,815 5,815 5,815 5,815

Effects Retailer-Quarters 200 200 200 200

Micro Grocery Trips 10,455 10,455 10,455

Observations →֒ Household-Years 1,130 1,130 1,130

→֒ Survey Years 10 10 10

Second Choice Responses 100 100

Tax Weighted Average Taxed Elasticity -1.354 -1.349 -1.327 -1.320

Counterfactual (0.064) (0.065) (0.090) (0.095)

Taxed Volume Change (%) -30.095 -29.973 -15.870 -15.652

(1.439) (1.452) (1.676) (1.487)

→֒ Low Income Households -31.134 -16.472 -16.289

(1.435) (1.941) (1.635)

→֒ High − Low Income 1.967 1.026 1.104

(0.778) (0.895) (0.615)

→֒ Households without Children -28.790 -15.282 -14.508

(1.471) (1.760) (1.626)

→֒ With − without Children -4.891 -2.475 -4.793

(0.915) (1.492) (2.218)

Untaxed Volume Change (%) 0.872 0.835 9.238 9.383

(0.036) (0.039) (3.430) (3.490)

→֒ Low Income Households 0.948 12.782 11.643

(0.040) (4.000) (3.919)

→֒ High − Low Income -0.163 -5.114 -3.522

(0.039) (1.370) (0.850)

→֒ Households without Children 0.736 8.096 8.453

(0.035) (3.256) (3.246)

→֒ With − without Children 0.620 7.234 4.740

(0.064) (1.540) (1.955)

This table reports results for the empirical example described in Section 8. From left to right, we
report estimates using aggregate moments, adding standard micro moments, adding second choice
moments, and replacing standard micro moments with the optimal micro moments described in Sec-
tion 6. Standard errors are clustered by brand for the aggregate moments and are in parentheses; we
compute those for tax counterfactual with a parametric bootstrap.
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