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1. Introduction

Estimating supply and demand for differentiated products is a fundamental empirical chal-

lenge for a wide range of economic questions. Nearly thirty years ago, Berry, Levinsohn,

and Pakes (1995) developed a class of estimators that allow for both flexible substitution

patterns and endogenous prices. A key feature of the BLP approach is that it requires only

“aggregate data” on prices and total sales of products at the market level, and exploits

cross-market variation in prices, demographics, and product assortment in order to estimate

flexible substitution patterns (Berry and Haile, 2014).

In many cases, researchers also have access to additional data on the decisions of indi-

vidual consumers. These data may come from customer surveys (e.g., Maritz surveys recent

automobile purchasers), or from tracking of individual purchasers (e.g., through loyalty cards

or NielsenIQ panelists). These data are particularly useful when they link demographic in-

formation of individuals to characteristics of products, and when they contain information

about the choices within individuals across time or product assortment. A growing literature

has connected these “micro data” to the “aggregate data” of the classic BLP approach. Two

prominent early examples of this “micro BLP” approach include Petrin (2002) and Berry,

Levinsohn, and Pakes (2004), and it has been used in a wide variety of applications, 28 of

which we list in Table 1. The common feature of the micro BLP approach is a GMM esti-

mator that augments the “aggregate BLP” moment conditions for demand (and optionally

supply) with additional moments formed from micro data on individual purchases or survey

responses.

Despite the popularity of incorporating micro data into BLP-style estimation, the litera-

ture lacks a standardized framework that is sufficiently general to encompass most use cases.

Except for a few recent papers that use our software package,1 most authors in Table 1

implement the BLP estimator on their own, use different notation, and extend the model

to incorporate micro data in a problem-specific manner. This make replication difficult and

the lack of corresponding formal econometric results makes it challenging to evaluate the

statistical properties of micro BLP-style estimators. As an example, a key practical ques-

tion is how one should weight the contributions of “aggregate data” versus “micro data”

in the resulting estimator. Different choices may result in substantially different parameter

estimates. One advantage of using a standardized framework is this guarantees that such

1Backus, Conlon, and Sinkinson (2021), Armitage and Pinter (2022), Calder-Wang and Kim (2024) and
Conlon and Rao (2023) use our software package PyBLP to estimate micro BLP models. More papers use
PyBLP to estimate BLP-style models with only aggregate data, but since our focus in this paper is on
incorporating micro data, we do not collect a list of these other papers in this article.
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decisions are made in a consistent way.

Along with delineating a standardized framework, we also systematize the types of “mi-

cro moments” that researchers can construct from “micro datasets.” That is, one could

attempt to match: (a) the correlation or covariance between price paid and income; (b) the

average income of consumers who purchase particular products; (c) the average price paid

for consumers of different income levels; or (d) the probability of purchasing certain cheap

or expensive products for consumers of specific income levels. All of these moments are

ways to measure similar features of the same joint distribution. Which moments researchers

ultimately employ may largely be driven by convenience or necessity. Surveys tend to report

a series of marginal distributions or “crosstabs” without providing the underlying individual

responses, and industry reports (or other academic papers) may provide only simple sum-

mary statistics, instead of a complete dataset with individual choices. One issue we address

is the extent to to which simple moments can approximate the information contained in a

complete sample of individual decisions. In doing so, we also provide a characterization of

the “optimal micro moments” in the spirit of Chamberlain (1987).

A second challenge, compatibility, arises when “aggregate data” and “micro data” are

sampled from different populations or according to different sampling schemes (as in, e.g.,

Imbens and Lancaster, 1994). For example, researchers might have over a decade of purchase

data on automobiles, but a consumer survey from only a single year. Alternatively, survey

data may oversample individuals who are likely to purchase vehicles, suggest a different

distribution of income than the overall population, or simply have variables that are measured

differently than in the aggregated purchase data. In these cases, adding certain forms of micro

moments may make estimates worse rather than better. Certain forms of micro moments

may be more or less robust to these issues. Systematizing the types of micro moments

researchers can construct allows us to be explicit about these challenges, and to discuss the

pros and cons of different approaches to addressing them.

In our prior work, Conlon and Gortmaker (2020), we collected recommended practices

for BLP-style estimation with aggregate data, and provided a common framework, PyBLP,

which implements these recommended practices in an open-source Python package.2 The

goal of this article is to extend this earlier work to the case with micro data and make

recommended techniques accessible to a wider range of researchers through PyBLP. For

brevity’s sake, we will refer to Conlon and Gortmaker (2020) whenever possible, particularly

2We recommend installing PyBLP on top of an Anaconda distribution, which comes pre-packaged with
PyBLP’s primary dependencies. Users of other languages such as MATLAB, Julia, and R can use PyBLP
with packages that allow for between-language interoperability (e.g., reticulate for R).
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for more in-depth discussion of computation and simulation. In this article, after building

up enough notation to define the aggregate BLP estimator in Section 2, we focus more on

the applied econometrics that come with combining different sources of data into a single

estimator.

Our work builds on a growing literature aimed at improving and better understanding

the econometric properties of BLP-style estimation. Particularly important papers are Berry

and Haile (2014, 2022), which develop a nonparametric framework for studying identification

of BLP-style models using aggregate and micro data. Complementary to nonparametric

results, in Section 3 we rely on economists’ intuition from linear IV problems and econometric

results in Salanié and Wolak (2022) to illustrate when aggregate data may be insufficient to

accurately estimate key demand parameters. In Section 7 we run Monte Carlo experiments

to describe how nonparametric identification results translate to finite samples.

A key contribution of this article is to delineate a standardized econometric framework

for how to incorporate many different types of micro data into BLP-style estimation. In Sec-

tion 4 we characterize micro datasets as information from statistically independent surveys of

potentially selected consumers. Conditional on aggregate data (product characteristics and

underlying demographic distributions), a survey administrator selects a finite set of under-

lying consumers with known sampling probabilities. Information from the resulting dataset

(consumer choices and demographics) can be incorporated into estimation by adding “micro

moments,” which match observed statistics with their model counterparts.

In Section 5 we demonstrate how the framework considered in this paper encompasses

essentially the same micro moments used by the prior literature (and described in Table 1).3

In Section 8, we provide a more in-depth empirical example estimating demand for soft drinks

with NielsenIQ data. For estimating parameters that govern how consumers with different

demographics value different product characteristics, we point to micro moments that contain

information about the covariance between demographics and product characteristics. For

estimating parameters that govern the degree of unobserved preference heterogeneity, we

point to second choice data about what consumers would have chosen had their first choice

been unavailable (as in, e.g., Berry, Levinsohn, and Pakes, 2004).

The framework we consider, however, is more general, and supports matching many dif-

ferent statistics computed from surveys with many forms of selection. Our goal is to cover

most empirical use-cases, including using all the information in a micro sample. Supported

3In Appendix D, we show how using this framework, PyBLP estimates the model in Petrin (2002) with
only a few lines of code.
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statistics include smooth functions of sample means, including correlations and regression

coefficients. Underlying samples of consumers can be selected based on their market, de-

mographics, or even endogenous product choices. Supporting general forms of choice-based

sampling is particularly important because many surveys are targeted at consumers who

have purchased certain products.

We provide asymptotic analysis of different asymptotic thought experiments that show

up in empirical work. This builds on Myojo and Kanazawa (2012), who extend the many

products asymptotics of Berry, Linton, and Pakes (2004) to a specific type of micro moments

originally used by Petrin (2002).4 With smooth micro moments, our analysis suggests that

the estimator can perform well under many sizes of aggregate and micro data, particularly

when there are many independent markets. In Section 7’s Monte Carlo experiments we

confirm that desirable asymptotic properties translate to finite samples.

A potential concern is that the standard error estimators used by a number of papers,

including Petrin (2002), require knowledge of the sample covariance matrix of micro sum-

mary statistics. Although a survey may report the average income by purchase group, it is

unlikely to report the sample covariances between these averages. We show that knowledge

of this additional information is not necessary for inference. Classical GMM estimation does

not require that the researcher have a dataset with sample covariances between moments

because these covariances can be estimated after obtaining a consistent estimator for the

parameters. The same logic holds for micro moments. In Appendix E we derive analytic ex-

pressions for the asymptotic covariance matrix of a very broad class of micro moments, which

allow researchers to form consistent standard error estimators with only the micro summary

statistics themselves and information about the number of underlying observations.

In addition to delineating a standardized framework for micro moments, in Section 6 we

also contribute a characterization of the “optimal micro moments” and a simple procedure for

computing them. In a best-case scenario when we observe and are willing to use all the results

from a consumer survey that is fully compatible with the aggregate data, we can construct

micro moments that match a consistent estimator of the average score function of the micro

data. Along with consistent estimators of an optimal weighting matrix and Chamberlain’s

(1987) optimal instruments,5 we show that the resulting estimator is statistically efficient

4For the many markets case, Freyberger (2015) and Hong, Li, and Li (2021) study asymptotics for the
aggregate BLP estimator. Grieco, Murry, Pinkse, and Sagl (2023) study many market asymptotics for their
estimator which includes likelihood functions for the both the aggregate shares and micro data.

5In Conlon and Gortmaker (2020) we discuss optimal instruments at length and how to obtain
computationally-cheap approximations to them.
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within the class of all possible micro BLP estimators.6

Characterizing the optimal micro moments also allows us to explore what types of sum-

mary statistics researchers may wish to collect if unable or unwilling to use a full micro

dataset in estimation. Inspecting the functional form of micro data scores provides intu-

ition about why some standard micro moments in the literature perform particularly well,

and why so-far unused micro moments can perform better. In Section 7’s Monte Carlo

experiments, we study the relative performance of standard, less-standard, and “optimal mi-

cro moments,” while also pointing to recommended practices involving aggregate variation,

pooling statistics across markets, and numerical integration.

In Section 8 we bring these recommended practices to a real-data example, in which we

use NielsenIQ scanner and consumer survey data—two popular data sources in the indus-

trial organization and marketing literatures—to estimate pre-2017 demand for soft drinks

in Seattle. We then predict what would happen if prices increased by how much they did

after the 2018 implementation of Seattle’s sweetened beverage tax (SBT), and compare our

substitution estimates to what actually happened. We expect that a structural approach to

predicting policy effects is most useful in settings with limited reduced form evidence; how-

ever, we choose a SBT because we can compare our results with those from existing studies

about the Seattle SBT.7 We obtain similar results to what actually happened. Incorporat-

ing micro data allows us to break down our predictions by demographic group and achieve

more realistic substitution patterns. Incorporating second choice data, which we show how

to collect in a quick online survey, allows us to even better discipline substitution patterns,

particularly to the outside good. By going through a full empirical exercise in detail, we

hope to make clear what using the framework and recommendations considered in this paper

looks like in practice.

Our work on optimal micro moments builds on literature that uses the likelihood of micro

data in BLP-adjacent estimation, starting with Goolsbee and Petrin (2004) and Chintagunta

and Dubé (2005). The standard approach in this literature is a two-step procedure: maximize

the likelihood of the micro data and then run an IV regression of estimated mean utilities

on product characteristics. Typically, researchers using micro BLP start with relatively

complete aggregate data and add additional statistics taken from surveys or other sources,

6After defining relevant notation in Sections 2 and 4, we delineate this class more clearly in Section 6
and prove efficiency in Appendix F. It does not contain estimators that swap the Berry et al. (1995) share
constraint for a likelihood, such as the one proposed by Grieco, Murry, Pinkse, and Sagl (2023).

7For example, Powell and Leider (2020) uses a differences-in-differences approach, comparing with Port-
land, to measure price passthrough and substitution after the introduction of the tax.
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while researchers using such likelihood-based alternatives often start with the likelihood of

relatively complete individual choices and augment this with second-stage moments from

aggregate purchases. In contemporaneous work, Grieco, Murry, Pinkse, and Sagl (2023)

propose a novel and efficient single-step estimator, which combines an individual likelihood,

an aggregate data likelihood, and moments from aggregate demand.8 Although a full review

of likelihood-based approaches is beyond the scope of this guide for micro BLP estimation,

we recommend that researchers try multiple approaches and carefully weigh the statistical

and computational costs and benefits of each.

There is also a recent literature of alternative computational and statistical approaches

to BLP problems which are beyond the scope of this paper. Dubé, Fox, and Su (2012) pro-

pose an estimation algorithm for the aggregate BLP estimator based on the mathematical

programming with equilibrium constraints (MPEC) method of Su and Judd (2012), which

Conlon (2013) extends to generalized empirical likelihood (GEL) estimators. Lee and Seo

(2015) provide an alternative estimator based on iterative approximations to the BLP prob-

lem (with aggregate data). Hong, Li, and Li (2021) propose implementing a Laplace-type

estimator studied by Chernozhukov and Hong (2003) with Hamiltonian Monte Carlo.

In this article we follow Conlon and Gortmaker (2020) and focus on the more common

nested-fixed-point approach to computation, which focuses primarily on the mixed logit.

In Appendix B we discuss how our results extend to the random coefficients nested logit

(RCNL) model of Brenkers and Verboven (2006). PyBLP fully supports the RCNL model,

as well as an approximation to the pure characteristics model of Berry and Pakes (2007).

2. Aggregate Data and Estimation Framework

In the left column of Table 2 we summarize the notation that we will introduce in this

section. Throughout, we will use language that refers to consumers purchasing products in

markets. However, the model is more general, and can be used to study different types of

decision-makers choosing from various choice sets.

Aggregate Data

Aggregate data are split into independent and identically distributed markets9 that represent

different realized choice sets for different consumers. Each market t ∈ T has a finite set of

products Jt, a finite set of consumer types It, and a market size Mt ∈ R that measures the

8Grieco, Murry, Pinkse, and Sagl (2023) also provide a Julia package, Grumps.jl.
9This can be relaxed in standard ways to incorporate various forms of cross-market dependence, which

can be accounted for with, for example, clustered standard errors. See Appendix E for more details.
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mass of consumers in the market.

Each product j ∈ Jt has characteristics (xjt, zjt, ξjt). There are c = 1, . . . , C observed

characteristics xjt = (x1jt, . . . , xCjt)
′ ∈ RC×1 that directly affect consumer demand. Typ-

ically, xjt includes both exogenous characteristics, of which mean-zero unobserved quality

ξjt ∈ R is mean-independent, and endogenous characteristics, such as price, which we expect

to be correlated with ξjt. Instruments zjt = (z1jt, . . . , zMAjt)
′ ∈ RMA×1 include the exogenous

characteristics in xjt along with other exogenous observables and will be interacted with ξjt

to form MA moments from the aggregate data E[ξjt · zjt] = 0.

In each market, there is a mass Mt of consumers. It is notationally convenient to split

this mass up into discrete consumer types i ∈ It. Each constitutes a known share wit ∈ [0, 1]

of consumers in the market, where
∑

i∈It wit = 1. Each consumer type has two sets of charac-

teristics: r = 1, . . . , R observed demographics yit = (y1it, . . . , yRit)
′ ∈ RR×1 and c = 1, . . . , C

unobserved preferences νit = (ν1it, . . . , νCit)
′ ∈ RC×1 for the observed characteristics xjt.

10

Typically, demographics yit will be sampled from census data or some other representative

survey and νit will be sampled from a standard (potentially multivariate) normal distribution.

In the literature, i sometimes refers to individual consumers, rather than types of con-

sumers. We focus on a discrete set of consumer types for notational convenience and practi-

cal relevance. In practice, most researchers use a fixed number of Monte Carlo draws from

the distribution of demographics and unobserved preferences.11 If the true distribution of

consumer preferences is continuous, consumer types should be interpreted as a numerical

approximation to this continuous distribution with integration weights wit.

For brevity’s sake, in this paper we do not discuss the econometric implications of sim-

ulation error resulting from only using a finite number of draws. Instead, in our Monte

Carlo experiments and empirical example, we use recommended practices from Conlon and

Gortmaker (2020), which involve either using a large number of scrambled Halton draws

(Owen, 2017) or an appropriate quadrature rule, and do not account for simulation error

when computing standard errors.12

In addition to differentiation by type i ∈ It, the mass Mt of consumers is also differenti-

10There will also be a third set of characteristics, idiosyncratic preferences εijt, defined below. Unlike yit
and νit, idiosyncratic preferences εijt will differ among consumers of the same type.

11Simple Monte Carlo draws are equally-weighted, with wit = 1/|It|. Types may have different weights, for
example, when demographics are sampled from a survey with sampling weights or when quadrature is used
to approximate a continuous distribution. With certain types of quadrature such as sparse grid integration,
weights wit can be negative and may not sum to one. This can also happen with importance sampling.

12For those who are concerned about simulation error, PyBLP does support resampling consumer types to
compute an estimate of the contribution of simulation error to the BLP or micro BLP estimator’s asymptotic
covariance matrix.
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ated by idiosyncratic preferences εijt ∈ R for each product j ∈ Jt and the outside alternative,

denoted j = 0. Indirect utility from selecting j ∈ Jt ∪ {0} is13

uijt = δjt + µijt + εijt, ui0t = εi0t. (1)

Mean utility δjt ∈ R is common across consumer types and depends on product characteris-

tics (xjt, ξjt). Typically, an additivity assumption is made so that

δjt = x′
jtβ + ξjt. (2)

The heterogeneous component of utility µijt ∈ R differs across types and will additionally

depend on demographics and preferences (yit, νit). A popular functional form is

µijt = x′
jt(Πyit + Σνit). (3)

With normally distributed unobserved heterogeneity νit ∼ N(0, I), indirect utility can

be written as uijt = x′
jtβit+ εijt with random coefficients distributed βit ∼ N(β+Πyit,ΣΣ

′).

We focus on this functional form because it is the most popular, but we also discuss three

common variants, which are also supported by PyBLP. First, to guarantee downward sloping

demand for all consumers, one can replace the random coefficient βcit on price xcjt = pjt with

a lognormal random coefficient (see Appendix A). Second, to parsimoniously incorporate

geographic distance or other important product-specific demographics yijt, one can replace

interactions between product dummies in xjt and demographics in yit with yijt. Third, one

can use other parametric distributions for νit, such as exponential or χ2 distributions.

Each consumer chooses among the discrete alternatives j ∈ Jt ∪ {0} and selects the

option that maximizes indirect utility. With type I extreme value idiosyncratic preferences

εijt, the logit probability that a consumer of type i ∈ It chooses a product j ∈ Jt is
14

sijt =
exp(δjt + µijt)

1 +
∑

k∈Jt
exp(δkt + µikt)

. (4)

Again, we focus on this distribution for εijt because it is the most popular.15 In Ap-

13Identification requires two normalizations. We follow standard practice by normalizing δ0t = µi0t = 0.
Levels of δjt and µijt are then interpreted as relative to those of the outside option.

14The one in the denominator is from the outside alternative normalization δ0t = µi0t = 0.
15The pure characteristics model of Berry and Pakes (2007), which PyBLP can approximate (with approach

(a) in Section 4.3 of the original paper), eliminates idiosyncratic preferences εijt altogether. For a modern
non-approximate algorithm for estimating the pure characteristics model, see Bonnet et al. (2022). Although
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pendix B we discuss a common variant, which is to assume that εijt follows the assumptions

of a two-level nested logit. The resulting random coefficients nested logit (RCNL) model of

Brenkers and Verboven (2006), is popular in applications where the most important product

characteristic governing substitution is categorical.

Aggregate market shares are given by integrating over the mass of consumers. The mixed

logit market share of product j ∈ Jt is

sjt =
∑
i∈It

wit · sijt. (5)

We use sjt to refer to generic market shares, potentially evaluated at different parameters

sjt(θ). We use Sjt = sjt(θ0) to refer to the observed market shares generated by the true

parameters θ0.

The goal is to recover the true parameters θ0 = (β0,Π0,Σ0) that characterize the demand

system. Since we will frequently refer to our earlier work, it is worth pointing out a difference

in notation. In Conlon and Gortmaker (2020), we partitioned θ into three parts: θ1 referred

to the demand-side “linear parameters” β; θ2, to the “nonlinear” parameters, which are

typically (Π,Σ); and θ3, to supply-side “linear” parameters.16 Since our focus here is on the

demand side, we use the notation θ = (β,Π,Σ), not θ = (θ1, θ2, θ3).

Towards recovering θ0, the researcher first makes an assumption about how to define

markets t ∈ T and their sizes Mt. For each product, the researcher collects character-

istics, instruments, and market shares: {(xjt, zjt,Sjt)}j∈Jt . Typically, market shares are

observed quantities divided by the assumed number of consumers in the market. A chal-

lenge in demand estimation is measuring this market size—in our empirical example in

Section 8 we discuss how different market size assumptions can affect estimates and provide

some recommendations. Finally, the researcher makes an assumption about consumer types:

{(wit, yit, νit)}i∈It .

Aggregate BLP Estimator

Since unobserved quality ξjt ∈ R is mean-zero and mean-independent of the MA instruments

zjt, our assumptions about the aggregate data deliverMA moment conditions E[ξjt ·zjt] = 0.17

our focus is on more tractable models with εijt, incorporating micro data does allow for the estimation of
more flexible models in which heterogeneous utility µijt dominates, reducing dependence on εijt that can
otherwise contribute to unrealistic substitution patterns.

16With a supply side, the parameter in β on price becomes “nonlinear” in the sense that it needs to be
optimized over, and would instead be in θ2.

17It is common to assume E[ξjt | zjt] = 0 and convert these conditional moments into unconditional ones.
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Using these, we can construct a GMM estimator for θ from NA =
∑

t∈T |Jt| aggregate
observations and a weighting matrix ŴA where hats denote sample approximations:18

θ̂A = argmin
θ

ĝA(θ)
′ŴAĝA(θ), ĝA(θ) =

1

NA

∑
t∈T

∑
j∈Jt

(δ̂jt(Π,Σ)− x′
jtβ︸ ︷︷ ︸

ξ̂jt(θ)

) · zjt. (6)

A key insight of Berry, Levinsohn, and Pakes (1995), building on Berry (1994), is that

we can invert the demand system and recover δjt from sjt(Π,Σ, δt) by matching the observed

shares Sjt. In each market t ∈ T , we can solve a system of |Jt| nonlinear equations to find

the unique |Jt| mean utilities δ̂jt(Π,Σ) that equate observed market shares Sjt with their

model counterparts:

Sjt = sjt(Π,Σ, δ̂t) ≡
∑
i∈It

wit ·
exp[δ̂jt + x′

jt(Πyit + Σνit)]

1 +
∑

k∈Jt
exp[δ̂kt + x′

kt(Πyit + Σνit)]
, ∀j ∈ Jt. (7)

The econometric properties of this estimator under many products (“large J” asymp-

totics) are discussed in Berry, Linton, and Pakes (2004); many markets, in Freyberger (2015)

and Hong, Li, and Li (2021).19 In Conlon and Gortmaker (2020) we discuss recommended

practices for this type of estimation and implement them as defaults in PyBLP: fast and

stable algorithms for solving the inner problem for δ̂jt(Π,Σ) and the outer problem for θ̂A,

fast and accurate ways to integrate over consumer types i ∈ It, robust solutions to various

numerical challenges, and when appropriate, the use of fixed effect absorption and Chamber-

lain’s (1987) optimal instruments. Throughout this article, we continue to use all of these

recommended practices for the aggregate portion of estimation.

A common extension, which we discuss at length in Conlon and Gortmaker (2020), is

to derive an additional set of aggregate moment conditions from the first-order pricing con-

ditions of firms and to append the sample analogues of these moments to those in ĝA(θ).

Especially when using an approximation to the optimal instruments, incorporating well-

specified supply-side moments can substantially improve the performance of the aggregate

estimator. However, in this article, we primarily focus on the demand-only model to highlight

the contribution of micro data.20

18Typically, we solve this problem twice. Once to obtain a consistent estimator for the optimal weighting
matrix—and for the optimal instruments, if appropriate—and a second time to obtain the efficient estimator.
The most common choice for the initial weighting matrix is the 2SLS weighting matrix, which would be
efficient if ξjt were homoskedastic.

19In Appendix E we discuss both many products, |Jt| → ∞, and many markets, |T | → ∞.
20PyBLP supports combining micro and supply-side moments. We provide an example of this in Ap-
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3. Aggregate Variation Only

It can be difficult to flexibly estimate the nonlinear parameters (Π,Σ) governing heteroge-

neous tastes without substantial cross-market variation in product assortment (or prices),

strong instruments, or a well-specified supply-side. This often forces researches to choose be-

tween a flexible demand system with poor econometric performance or a restricted demand

system with unreasonable substitution patterns. In this section, we discuss the parametric

identification of the aggregate model to motivate incorporating micro data, and propose

some simple diagnostics.

Intuitively, identification of (Π,Σ) requires cross-market variation in demographic distri-

butions and choice sets. For a fully nonparametric treatment of identification with aggregate,

market-level data, see Berry and Haile (2014) or the summary in Section 5 of Berry and Haile

(2021). Our experience is that a good starting point for understanding whether there is suf-

ficient aggregate variation is intuition about linear IV regression models.

Intuition from Linear Regression

To leverage this intuition, we use results in Salanié and Wolak (2022), who approximate the

aggregate estimator in (6) with a linear IV regression. There are pros and cons to using an

approximate estimator discussed at length in Salanié and Wolak (2022), but for the purposes

of this paper, we use it as a convenient source of intuition and quick checks on the data.

We write down the full approximation using this paper’s notation in Appendix C but here

consider only the simplest scalar case with C = 1 product characteristic, R = 1 demographic,

and three parameters, θ = (β, π, σ). A second-order Taylor expansion around π = σ = 0

gives the following linear model with four regressors:21

log
sjt
s0t

≈ βxjt + σ2ajt + πmy
txjt + π2vyt ajt + ξjt, ajt =

(xjt

2
−
∑
k∈Jt

skt · xkt

)
· xjt (8)

where my
t =

∑
i∈It wit ·yit is the within-market demographic mean, vyt =

∑
i∈It wit ·(yit−my

t )
2

is its variance, and ajt is an “artificial regressor” that reflects within-market differentiation

of the product characteristic xjt.
22 If π = σ = 0, the approximation is exact, and collapses

to a familiar logit regression: log(sjt/s0t) = δjt ≡ βxjt + ξjt.

pendix D, where we use both to replicate Petrin (2002).
21Here, s0t does not refer to a “true” share, like the true θ0, but just the outside share for j = 0.
22Salanié and Wolak (2022) give additional intuition for the functional form of ajt. A quadratic form is

unsurprising because xjt multiplies νit. The
1
2 comes from the symmetric shape of the logistic distribution.
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The linear model in (8) is only an approximation, but its intuition about identification

translates fairly well to the full model. First, without an instrument for the artificial regressor

ajt we should expect our estimate for σ2 to be asymptotically biased—ajt is a function of

endogenous market shares skt, which are correlated with unobserved quality ξjt. Berry and

Haile (2014) describe this problem as the “endogeneity of share” that needs to be addressed

in the random coefficients model.23 The “differentiation IVs” proposed by Gandhi and

Houde (2020) and further evaluated in Conlon and Gortmaker (2020) look similar to ajt and

work well in practice compared to other types of “BLP instruments” that are functions of

other products’ exogenous characteristics.24 Indeed, the first stage of an IV regression using

differentiation IVs implements precisely the “IIA test” recommended by Gandhi and Houde

(2020): estimate the simple logit regression controlling for differentiation IVs and consider

a richer model if the IVs are statistically relevant.

Second, absent significant cross-market variation in assortment Jt, the artificial regressor

ajt will be nearly collinear with xjt and x2
jt, and it will be difficult to separately identify σ2

from β. This aligns with the standard intuition that with only aggregate data, the degree of

unobserved preference heterogeneity, here measured by σ2, is identified by how consumers

substitute between products when faced with cross-market variation in choice sets.

Third, with only aggregate data, separate identification of (Π,Σ) requires cross-market

variation in demographics yit. If the distribution of yit, here measured by its first two

moments: mean my
t and variance vyt , does not vary much across markets, the regressors

my
txjt and vyt ajt will be nearly collinear with xjt and ajt, and it will be difficult to separately

identify π and π2 from β and σ2. Absent cross-market variation in (my
t , v

y
t ), distinctions

between taste variation from demographics versus unobserved heterogeneity will be solely

driven by functional form.

Even when using appropriate instruments, a lack of cross-market choice set and demo-

graphic variation will either result in poor estimators of (Π,Σ) or leave researchers with no

alternative other than to estimate a more restrictive demand system. Supply restrictions

aside, the typical solution is to exploit within-market variation from micro data that links

23In a fully nonparametric model, a different instrument is needed for each of the |Jt| market shares (Berry
and Haile, 2014).

24In Section 7 we use the “quadratic” version of differentiation IVs in our Monte Carlo experiments. For
this example, differentiation IVs would be zjt = (xjt, âjt,m

y
t xjt, v

y
t âjt)

′ where âjt =
∑

k ̸=j(xkt − xjt)
2.

Expanded, âjt = x2
jt − 2xjt

∑
k ̸=j xkt +

∑
k ̸=j x

2
kt and ajt = x2

jt/2− xjt

∑
k ̸=j sktxkt. The main difference is

the share skt-weighted average of xkt in ajt instead of the unweighted average in âjt. Weighting by share is
infeasible because market shares are endogenous. (This suggests a potential improvement upon the Gandhi
and Houde (2020) IV which would be to construct ŝkt as a function of exogenous variables). The other
difference is the “BLP instrument”

∑
k ̸=j x

2
kt.
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demographics to individual choices, rather than aggregate market shares.

In practice, our recommendation when considering estimating a demand system with

only aggregate data aligns with those of Salanié and Wolak (2022) and Gandhi and Houde

(2020). We recommend first running a version of the IV regression in (8), with the full

version written out in Appendix C, to get a sense of whether aggregate variation will be

sufficient to estimate a flexible demand system.25 If so, the estimates from this regression

will give a sense of what reasonable starting values and parameter bounds may look like.

4. A Standardized Framework for Micro Data and Estimation

In the right column of Table 2, we summarize additional notation that we will introduce in

this section. We begin by explaining the notation and the framework we will use to charac-

terize “micro datasets,” indexed by d. We then build up additional notation to incorporate

“micro moments” into the BLP estimator. “Micro moments,” indexed by m, are smooth

functions of “micro parts,” indexed by p, which are in turn conditional expectations of scalar

functions called “micro values.”

Survey Data

We begin with the assumption that micro data are split into datasets d ∈ D that report

results from statistically independent consumer surveys. Statistically, micro data are gener-

ated conditional on all aggregate data: products Jt, consumer types It, and sizes Mt of all

markets t ∈ T .26 We use the notation PA, EA, and VA to denote probabilities, expectations,

and variances conditional on all aggregate data.

Each consumer n is defined by a 3-tuple (tn, in, jn) and chooses j ∈ Jt∪{0} with (mixed)

logit choice probability PA(jn = j | tn = t, in = i) = sijt following (4). Likewise, within each

market, by construction the weight corresponding to each consumer type i ∈ It is the same

as in the aggregate demand model (5), and is given by PA(in = i | tn = t) = wit. These

types i and weights wit include both observed demographics yit and unobserved preferences

νit.

However, not all consumers need be observed in a micro dataset. Instead, we assume that

a survey administrator selects a finite set of consumers n ∈ Nd with independent sampling

25With a reasonably small number of characteristics and demographics, is perhaps simplest to treat π2 as
an unconstrained fourth parameter, say γ, and to estimate π only from cross-market variation in demographic
means my

t , while “controlling” for vyt ajt.
26Depending on which asymptotic thought experiment from Appendix E is most appropriate, we may also

include survey sampling probabilities, defined shortly, in the aggregate data.
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probabilities PA(n ∈ Nd | tn = t, in = i, jn = j) = wdijt. Most common survey designs

can be represented with different sampling probabilities wdijt, including stratification by the

consumer’s market, type, and even choice. For a survey to be useful, we need to know how

it was conducted, so we will assume that the researcher knows the sampling probabilities

wdijt for each dataset d ∈ D.

Consider some examples. If the survey randomly samples from all consumers in different

markets, sampling probabilities should be proportional to the number of consumers in each

market, wdijt ∝ Mt. An alternative would be to stratify across markets so that consumers

are sampled from each market with equal probability, wdijt ∝ 1/|T |. Other common sampling

schemes might only sample individuals conditional on making a purchase, wdijt ∝ 1{j ̸= 0},
or on purchasing a particular brand b, with wdijt ∝ 1{j ∈ Jb}. It is also common to sample

individuals whose income yrit is above or below some level (such as households eligible for

WIC), for example wdijt ∝ 1{yrit < $50,000}. We can combine these into a more detailed

example: wdijt ∝ Mt · 1{yrit < $50,000, t ∈ Td, j ̸= 0} would generate a random sample of

consumers from a few markets Td ⊂ T with income below $50,000 who make a purchase.

Micro Statistics

Ideally, the researcher would observe a complete dataset of all sampled consumers’ markets,

choices, and demographics: {(tn, jn, yintn)}n∈Nd
.27 For example, the NielsenIQ panelist data

tracks the products purchased by households, which stores they visit, and the demographics

of the corresponding household. In this scenario, we can make full use of all the information

in the micro dataset.28 In many other cases, we will have incomplete data from a limited

number of consumers, or summary statistics for subsets of individuals. The extent of our

micro data will determine which “micro moments” we can and cannot compute.

We will use each micro summary statistic that we observe to define one of m = 1, . . . ,MM

micro moments. Each micro momentm matches a single summary statistic, which could be a

simple average, a weighted average, a conditional average, or even a covariance or regression

coefficient.

Consider the following example. We are interested in capturing the relationship between

having children and purchasing a minivan. Suppose we have access to summary statistics

from a representative survey of households that purchased a car in d = 2023. Specifically,

suppose we observe two summary statistics: the average number of kids across surveyed

27By definition, the researcher does not know unobserved preferences νit.
28In Section 6 we discuss optimal micro moments that make full use of the information in a micro dataset.

In Section 8 we demonstrate how to do so with NielsenIQ data.
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households, as well as the average number of kids across minivan purchasers,

kids2023 =
1

N2023

∑
n∈N2023

kidsintn , (9)

kidsmini
2023 =

1
N2023

∑
n∈N2023

kidsintn · 1{jn ∈ Jmini}
1

N2023

∑
n∈N2023

1{jn ∈ Jmini}
. (10)

We can use these two summary statistics to define MM = 2 micro moments. The first,

kids2023, is a simple average, and the second, kidsmini
2023, is the ratio of two simple averages.

To cover both of these cases (and many more), the framework we consider in this paper

supports summary statistics that are smooth functions of simple averages.29

We call each simple average a “micro part.” Each of the p = 1, . . . , PM micro parts is an

average over all Ndp = |Ndp | observations in its micro dataset dp ∈ D:

vp =
1

Ndp

∑
n∈Ndp

vpinjntn . (11)

Each part p is defined as the average of a function vp(tn, jn, yintn), or vpinjntn for short, that

may depend on the choice conditions (e.g., prices, assortment, and product characteristics)

in the market tn, the consumer demographics yintn , and the selected choices jn. The choice

of vp(·) is determined both by what statistics are available in our data, and which model

parameters we are trying to estimate.

To match kids2023 and kidsmini
2023, we will need to define PM = 3 micro parts: the average

number of kids in the micro data, the share of households who purchased a minivan, and

the average number of kids multiplied by a dummy for purchasing a minivan,

v1 =
1

N2023

∑
n∈N2023

v1injntn , v1ijt = kidsit, (12)

v2 =
1

N2023

∑
n∈N2023

v2injntn , v2ijt = 1{j ∈ Jmini}, (13)

v3 =
1

N2023

∑
n∈N2023

v3injntn , v3ijt = kidsit · 1{j ∈ Jmini}. (14)

We have assumed that in the survey, we directly observe v1 = kids2023, but that we do not

directly observe v2 or v3, only their ratio v3/v2 = kidsmini
2023. To express the simple average

29Below, we explain how to write weighted averages as simple averages using this same framework.
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kids2023, the ratio kidsmini
2023, and any other smooth function of averages, such as covariances

or even regression coefficients, we need to define slightly more notation.

Each micro moment m matches a scalar summary statistic denoted fm(v) ∈ R, which is

a smooth function fm : RPM×1 → R of potentially all micro moment parts v = (v1, . . . , vPM
)′.

In our example, our MM = 2 two summary statistics can be written as

kids2023 = f1(v) = v1, (15)

kidsmini
2023 = f2(v) = v3/v2. (16)

In general, each micro moment is defined by both its underlying micro values vpijt and its

smooth function fm(·). We expect that most useful summary statistics are smooth functions

of averages (including indicator functions), so we think that our definition of micro moments

is fairly nonrestrictive. We discuss common summary statistics in Section 5.

Model Analogues

Our assumptions about consumer and survey sampling allow us to compute the model ana-

logue for each observed summary statistic fm(v). Under the model, each micro moment

part vp(θ) is defined as the expectation of vpijt conditional on the aggregate data and the

parameters θ:

vp(θ) ≡ Eθ
A[vpinjntn ] =

∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ) · wdpijt · vpijt∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ) · wdpijt

. (17)

Notice that we aggregate over all markets t, individuals i, and products j using the same

sijt(θ) from (4), and the same wit we use to compute the aggregate shares sjt in (5). We

rely on the sampling weights wdpijt and micro values vpijt to limit each part’s calculation

to sub-populations of individuals and to calculate conditional expectations. Likewise, by

varying the model parameters θ, we are implicitly re-weighting vpijt so that the objective is

to choose θ such that the model average from (17) matches the survey average from (11).

The model analogue of the observed micro summary statistic fm(v) is fm(v(θ)) where

v(θ) = (v1(θ), . . . , vPM
(θ))′. At the true θ0, iterated expectations and the continuous mapping

theorem give m = 1, . . . ,MM conditions fm(v) − fm(v(θ0))
P−→ 0.30 Slightly abusing the

definition of a statistical moment, we will call each of these conditions a “micro moment.”31

30Here, convergence in probability is not conditional on the aggregate data, so these conditions are statis-
tically compatible with the aggregate moments E[ξjt · zjt] = 0.

31If fm(v) = vp is a simple average, condition m can be interpreted without abusing terminology as
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Micro BLP Estimator

We can extend the aggregate GMM estimator in (6) with MM new micro moments and a

larger weighting matrix Ŵ = diag(ŴA, ŴM).
32 This gives a minimum distance estimator:33

θ̂ = argmin
θ

ĝ(θ)′Ŵ ĝ(θ), ĝ(θ) =

[
ĝA(θ)

ĝM(θ)

]
, ĝM(θ) =


f1(v)− f1(v(θ))

...

fMM
(v)− fMM

(v(θ))

 . (18)

In practice, we can concentrate out the linear parameters β and only optimize over the

nonlinear parameters (Π,Σ). For each guess of (Π,Σ), we need to solve the nested fixed

point for all mean utilities δ̂jt(Π,Σ). The micro BLP estimation algorithm is given below.

Algorithm 1 Nested Fixed Point with Micro Moments

For each guess of the nonlinear parameters (Π,Σ):

1. For each market t ∈ T , solve (5) for δ̂jt(Π,Σ) for all products j ∈ Jt. Conlon and Gortmaker (2020)
describes and evaluates different solvers in Sections 3 and 5.

2. For each micro moment m = 1, . . . ,MM, compute fm(v(θ)) = fm(v(δ̂(Π,Σ),Π,Σ)) in (17). Stack the
micro sample moments ĝM(θ) = (f1(v)− f1(v(θ)), . . . , fMM(v)− fMM(v(θ)))′.

3. Recover linear parameters β̂(Π,Σ) from the linear IV GMM regression δ̂jt(Π,Σ) = x′
jtβ+ ξjt. Conlon

and Gortmaker (2020) describes fixed effect absorption in Section 3 and the regression in Appendix
A.

4. Compute residual unobserved qualities ξ̂jt(θ) = δ̂jt(Π,Σ) − x′
jtβ̂(Π,Σ). Construct the aggregate

sample moments ĝA(θ) =
1

NA

∑
t∈T

∑
j∈Jt

ξ̂jt(θ) · zjt.

5. Stack sample moments into ĝ(θ) = (ĝA(θ)
′, ĝM(θ)′)′ and construct the objective ĝ(θ)′Ŵ ĝ(θ).

Since early uses of the micro BLP estimator in Petrin (2002) and Berry, Levinsohn, and

Pakes (2004), a wide range of papers, many of which we reference in Section 1, have extended

the aggregate BLP estimator with various forms of moments based on micro data. Although

each paper uses its own notation and language, in Section 5 we describe how most of these

a moment E[vpijt − vp(θ0)] = 0. If all summary statistics were simple averages, the minimum distance
estimator we will define shortly would instead be a GMM estimator.

32The optimal weighting matrix is block diagonal because the aggregate and micro moments are uncorre-
lated (see Appendix E).

33Again, we typically solve this problem twice, once with an initial weighting matrix and again with the
optimal one, and, if appropriate, optimal instruments and optimal micro moments. With micro moments,
there is no “canonical” choice for the initial weighting matrix, like the 2SLS weighting matrix for the aggregate
estimator. Instead, we prefer to compute and invert all moments’ covariances at some initial guess for θ0,
which could be informed by estimators based on aggregate data.
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cases fit into the framework considered in this paper.

Although variants of the micro BLP estimator have been used extensively in practice, its

econometric properties have received less attention than those of the aggregate estimator.

Appendices sometimes provide heuristic discussions of asymptotic covariances (e.g., in Petrin,

2002; Berry, Levinsohn, and Pakes, 2004), and Grieco, Murry, Pinkse, and Sagl (2023)

provide formal analysis of many markets asymptotics for their likelihood estimator. However,

the only formal asymptotic analysis of a special case of the micro BLP estimator in (18) of

which we are aware is in Myojo and Kanazawa (2012), which extends the many products

asymptotics of Berry, Linton, and Pakes (2004) with micro moments of the specific form

used by Petrin (2002).34 Both of these papers also study the effect of simulation error,

which, again, we omit from this article, but think may be an interesting direction for future

research.

In Appendix E we describe the econometric properties of the general micro BLP estimator

under different asymptotic thought experiments: (a) many markets, including those covered

by surveys; (b) many markets, few with surveys, but the surveys are large; and (c) few

markets, but markets and surveys are both large. With smooth micro moments, asymptotic

normality appears straightforward for cases (a) and (b) because markets are independent.

Without a growing number of markets, case (c) requires either ruling out micro moments

with asymptotic variances that depend on specific products, or dropping markets covered by

micro data from the aggregate moments.35

A convenient result in Appendix E is that the choice of asymptotic thought experiment

does not affect how we compute the estimator or its asymptotic variance. Additionally, con-

sistent estimators of standard errors can be formed without any external information about

the sampling error in the summary statistics fm(v) other than the number of observations

Nd.
36 This means that in order to do valid inference, researchers do not need to know sample

34Myojo and Kanazawa (2012) also incorporate supply-side moments and run a Monte Carlo experiment.
In contrast, our focus in this article is on recommended practices for a broader class of micro BLP estimators
under a variety of different asymptotic thought experiments.

35For example, matching the mean income for those who purchase a specific product j may make the
asymptotic distribution of θ̂ depend on the potentially non-normal characteristics of j. As a robustness
check, we could set instruments zjt = 0 for all markets t in which we match this moment.

36The intuition is the same as for classical GMM estimation, for which the researcher does not need to
have a dataset with sample covariances between moments because these covariances can be estimated after
obtaining a consistent estimator for the parameters. Specifically, given Nd and sampling weights wdijt, we
can form a consistent estimator of the covariance CA(vpinjntn , vqinjntn) between each pair of micro parts p
and q, and use the delta method to obtain the asymptotic covariance matrix for the micro moments. See
equations (E15) and (E16) in Appendix E.

18



covariances or standard errors for the summary statistics they are matching.37

The choice of asymptotic thought experiment does inform how we think about rates

of convergence for θ̂. Parameter estimators will in general converge at the faster rate of

the aggregate or micro data, depending on which sample size is larger. The exception is

estimators of linear parameters β, which are only identified by aggregate variation in the

linear IV regression. If some nonlinear parameters in (Π,Σ) are not identified or only weakly

identified by variation from the larger sample, the other sample provides “backup variation”

that may still guarantee strong identification at the slower rate.38 For example, if there

is no cross-market variation in the distribution of demographics whatsoever, Π will not be

identified from aggregate variation, and its estimator will converge at the rate of the micro

data.

The punchline is that we generally expect the micro BLP estimator to be asymptotically

normal with reasonable rates of convergence. In Section 7 we run Monte Carlo experiments

to confirm that such desirable asymptotic properties translate to finite samples.

Weighted Micro Data

So far, there are three places where weights can show up. It is worth clarifying their different

roles. First, wit measures the share of all consumers in market t who are of type i where

the type contains both observed (demographic) and unobserved heterogeneity. The choice

of wit should be largely unaffected by the micro data.39 Second, wdijt is the probability

that a consumer in market t of type i who chooses j is selected to be in micro dataset d.

Third, although the notation in (11) suggests that micro parts vp are simple averages, many

surveys datasets involve weighting schemes in order to better approximate the demographics

or choices of the target population.

As an example, the simple average of income among NielsenIQ panelists tends to be higher

than the national average. NielsenIQ provides projection factors so that after weighting, the

demographics of their panelist sample is broadly demographically similar to the entire US

population (including incomes). This presents a choice to the researcher: define vp as the

simple average of panelist income or as the projection factor-weighted average of panelist

income (or to construct custom projection factors that are better suited to one’s setting).

37By default, PyBLP computes analytic asymptotic covariances. However, it does allow researchers to
specify their own asymptotic covariance matrix for micro moments, so that if researchers can use alternative
measures of this matrix, if desired.

38Grieco, Murry, Pinkse, and Sagl (2023) call this property of their related estimator “conformant.”
39In most specifications the researcher will use equally weighted pseudo-random Monte Carlo draws so

that wit =
1

|It| or quadrature rules over a (multivariate) standard normal distribution.
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We expect that in many cases, the latter will be preferred as researchers are often interested

in estimating the preferences of an overall population.

As in many surveys, the NielsenIQ projection factors can be interpreted as inverse sam-

pling weights w̃dijt ∝ 1/wdijt, which adjust for non-representative selection into the micro

dataset. In this case we could multiply our “micro values” vpijt by w̃dpijt to produce valid

estimates of quantities across all consumers, not just consumers selected to be in the micro

dataset.

For concreteness, consider the running example of minivans and kids. If we assume that

the survey was representative, sampling weights should depend only on market size, whether

the market is in 2023, and purchasing a car: wdijt ∝ Mt · 1{t ∈ T2023, j ̸= 0}. In this case,

kids2023 from (15) represents an unbiased estimate of the average number of children among

households that purchased a car in 2023.

Another possibility is that the survey over-sampled high-income households (perhaps as

“likely automobile buyers”), using sampling weights proportional to some known, increasing

function of household income: wdijt ∝ g(incomeit) · Mt · 1{t ∈ T2023, j ̸= 0}. In this case,

a simple average kids2023 over v1injntn = kidsintn is biased for its population counterpart.

However, if the survey administrator computed inverse sampling weights w̃dijt ∝ 1/wdijt

and instead reported a weighted average with v1ijt = w̃dijt · kidsit, then kids2023 would be

unbiased.

When defining the model analogue fm(v(θ)) of a micro statistic fm(v), it is important to

know whether and how this statistic has already been weighted. If fm(v) has already been

adjusted (e.g., with inverse sampling weights) so that it is a valid estimate of some quantity

across all consumers, then we can drop the sampling probabilities wdijt from the right-hand

side of the model analogue in (17).40 On the other hand, if vp is a simple average over a

selected sample, we need to take the sampling probabilities wdijt into account. A simple

sanity check is to compare the distribution of each of the demographics under the demand

model (with just the wit weights), to the demographics of the corresponding micro dataset.

This comparison is feasible if we condition on demographics i and markets t, but not if we

condition on choices j which depend on the unknown parameters θ0.

The formula in (17) provides some ambiguity in how we define micro sampling weights

wdijt and micro part values vpijt, particularly for conditional expectations. Suppose we were

only interested in the average number of children among minivan buyers, kidsmini
2023. Previously,

40Using PyBLP, this amounts to setting wdijt equal to some constant.
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we represented this with fm(v) = v3/v2 where

wdijt ∝ Mt · 1{t ∈ T2023, j ̸= 0},
v2ijt = 1{j ∈ Jmini},

v3ijt = kidsit · 1{j ∈ Jmini}.
(19)

An alternative would be to instead condition the micro dataset on only minivan buyers, and

use only a single micro part fm(v) = v1 instead of the ratio:

wdijt ∝ Mt · 1{t ∈ T2023, j ∈ Jmini}, v1ijt = kidsit. (20)

After plugging into (17) and evaluating fm(v), both of these will yield the same number:

kidsmini
2023. Though the two approaches contain identical information, the first approach may

be preferred, even though the second may appear simpler.

The main disadvantage of the second approach is that if, as before, we also wanted to

include the average number of children among all car buyers, kids2023, these would now be

defined over two different micro datasets and would no longer have a well-defined covariance.

In order to correctly calculate weighting matrices and perform inference in Appendix E, we

require that each micro dataset be statistically independent. This is impossible if one micro

dataset is simply a subset of another. This requires care in how datasets (and corresponding

survey weights) are constructed in order to provide correct inference.

A different but related reason for using a weighted average micro part vp is if one has direct

information about choice probabilities sijt. For example, absent unobserved heterogeneity, a

dataset may directly report the share sijt of times a consumer of type i in market t chooses

j. Relatedly, carefully-designed surveys may elicit subjective choice probabilities sijt directly

rather than stated choices jn (e.g., Blass et al., 2010). In these cases, it may be appropriate

to weight one’s micro values vpijt by the observed choice probabilities.41 The micro sample

size Nd appropriate for conducting inference will depend on assumptions about how the

observed shares or subjective choice probabilities were generated.42

41If the observed micro data are {sinjntn}n∈Nd
and each sinjntn is a consistent estimator for sijt, then

vp = 1
Nd

∑
n∈Nd

sinjntn · vpinjntn is consistent for the same model analogue vp(θ0) in (17) as before.
42For shares, Nd is ideally be the number of independent underlying choices. If based on correlated

choices of only a few individuals, a conservative Nd is the number of these individuals. For subjective choice
probabilities, one may wish to follow Blass et al. (2010) and use a clustered bootstrap to compute a custom
asymptotic covariance matrix for micro moments (see Footnote 37).
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5. Standard Micro Moments

The empirical literature has used a variety of different micro moments. In Table 3 we list

popular micro moments and the papers from Table 1 that use variants of them.

Demographic Information

Many surveys report information that links purchase behavior to demographic variables.

Our running example will be Petrin (2002), which uses summary statistics from a random

survey of consumers to help estimate parameters in Π on interactions between consumer

demographics and product characteristics.

Petrin (2002) observes the share of consumers in a certain income group i ∈ Im who

purchase a new vehicle, and uses this information to incorporate a “P(j ̸= 0 | i ∈ Im)”

moment. We develop this notation-abusing shorthand to refer to a micro moment m that

matches fm(v) = v1/v2 with micro values v1ijt = 1{j ̸= 0}·1{i ∈ Im} and v2ijt = 1{i ∈ Im}.43

Intuitively, this type of micro moment should help estimate a coefficient in Π that shifts

utility for consumers in the income group.

To target a coefficient in Π on the interaction between family size and a minivan dummy,

Petrin (2002) could discretize family size yrit into groups of consumers i ∈ Im, collect mini-

vans into a group of products j ∈ Jm (e.g., minivans), and incorporate similar “P(j ∈ Jm |
i ∈ Im)” moments. Often, surveys only collect information by broad demographic groups

like Im. However, Petrin (2002) observes the mean family size of those who purchase mini-

vans, and uses this to incorporate a “E[yrit | j ∈ Jm]” moment, which intuitively contains

more information than a single discretized counterpart.

Similarly, surveys that collect data about individual products rather than just broad

categories of choices can be even more informative. For a product characteristic xcjt such as

price or size that is more granular than 1{j ∈ Jm}, matching “E[xcjt | i ∈ Im, j ̸= 0]” could

be more useful for estimating a coefficient in Π on the corresponding characteristic.

Even more potentially informative is the covariance “C(xcjt, yrit | j ̸= 0)”or interaction

“E[xcjt · yrit | j ̸= 0]” between a product characteristic xcjt and a demographic yrit.
44 Unlike

both “E[yrit | j ∈ Jm]” and “E[xcjt | i ∈ Im, j ̸= 0],” which discretize xcjt and yrit into broad

categories, a covariance potentially contains more useful information about a coefficient in Π

43This assumes the underlying dataset d is not selected, wdijt = 1. If based on a survey the samples only
those in the income group, wdijt = 1{i ∈ Jm}, this shorthand would refer to a micro moment that simply
matches the share fm(v) = v3 of inside purchases with v3ijt = 1{j ̸= 0}.

44In a dataset d that already conditions on inside purchase, wdijt = 1{j ̸= 0}, this shorthand refers to a
micro moment m that matches fm(v) = v1−v2 ·v3 with values v1ijt = xcjt ·yrit, v2ijt = xcjt, and v3ijt = yrit.
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on the interaction between xcjt and yrit. Although more demanding on the available micro

data, there have been a few papers that have matched covariances (see Table 5).45

Many useful summary statistics can be written as a function of simple averages. For

example, correlations and regression coefficients are covariances scaled by smooth functions

of variances. PyBLP supports all such forms of micro moments, requiring only that the user

specify the function fm(·), as well as its derivative for computing objective gradients and

delta method-based covariances.

Second Choices

First incorporated in BLP-style estimation by Berry, Levinsohn, and Pakes (2004), “second

choices” are a particularly useful form of micro data that requires additional notation. What

choices consumers would have made had their first choice been unavailable provides a great

deal of information about substitution patterns, and we explain how to incorporate this

information below.

Each consumer n in a micro dataset d ∈ D with second choices has an additional char-

acteristic kn. Given a market tn = t and type in = i, a consumer chooses j ∈ Jt ∪ {0} first

and k ∈ Jt ∪ {0} \ {j} second with probability PA(jn = j, kn = k | tn = t, in = i) = sijkt.

Idiosyncratic preferences εijt remain the same across first and second choices. With εijt dis-

tributed type I extreme value, the probability of the joint event can be written in a familiar

form, sijkt = sijt · sik(-j)t where sik(-j)t = sikt/(1− sijt) is the probability of choosing k when j

is eliminated from the choice set.46 In practice, we derive and use a less intuitive but more

general expression sijkt = sik(-j)t−sikt, which also works for the previously-mentioned nested

logit variant discussed in Appendix B.47

The survey sampling probability PA(n ∈ Nd | tn = t, in = i, jn = j, kn = k) = wdijkt

can also depend on second choices. For example, wdijkt ∝ Mt · 1{j, k ̸= 0} would generate a

random sample of consumers whose first and second choices were both inside alternatives.

Each micro moment part p based on a micro dataset dp with second choices has micro

45Nurski and Verboven (2016) match actual covariances, while Berry, Levinsohn, and Pakes (2004) match
two moments: “E[xcjt ·yrit | j ̸= 0]” and “E[yrit | j ̸= 0].” Since “E[xcjt | j ̸= 0]” is equal to a fixed constant,
these two moments span the single covariance.

46For more details see Conlon and Mortimer (2021) and the “individual diversion ratio”. The expression
Dj→k,i = sik(-j)t = sikt/(1−sijt) works for type I extreme value εijt, but for other distributions such as that
used by the nested logit model in Appendix B, sik(-j)t can be computed numerically by removing j from the
choice set and computing the probability of choosing k.

47That is, Pε(uijt > uikt > uiℓt, ∀ℓ ̸= j, k) = Pε(uikt > uiℓt, ∀ℓ ̸= j, k) − Pε(uikt > uiℓt, ∀ℓ ̸= k). The
second term is simply sikt. The first term can be equivalently expressed as limδjt→−∞ sikt, which equals
sik(-j)t for both the simple and nested logit models.
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values vpijkt that can depend on second choices. For example, if vp is the share of participants

in a survey whose second choice was in some set Kp (e.g., Ford vehicles or light trucks), its

micro values are vpijkt = 1{k ∈ Kp}. The conditional expectation of micro values based on

second choices is

vp(θ) =

∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}
∑

k∈Jt∪{0}\{j}wit · sijkt(θ) · wdpijkt · vpijkt∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}
∑

k∈Jt∪{0}\{j}wit · sijkt(θ) · wdpijkt

. (21)

It is conceptually straightforward to incorporate third or fourth choices by adding more

subscripts and sums. We limit our attention to second choices because additional sums

severely increase computational cost and required notation.48

In papers such as Berry, Levinsohn, and Pakes (2004) that use second choice data, a

popular statistic is the covariance “C(xcjt, xek(-j)t | j, k ̸= 0)” between first and second choice

characteristics xcijt and xekt.
49 Intuitively, this should contain information about a parameter

in Σ that measures the variance of unobserved preference heterogeneity νcit for xcijt if e = c,

or the covariance between unobserved preferences νcit and νeit for xcijt and xeijt if e ̸= c.

Holding mean preferences δjt equal, if when j is eliminated from the choice set consumers

tend to select a second choice k that has a very similar characteristic xckt ≈ xcjt, it must be

that νcit has a high variance. Otherwise, we would expect to see proportionate substitution

to all remaining alternatives.

Relatively complete data on consumers’ first and second choices is becoming more com-

mon in empirical research. In these cases, researchers may have survey data which measures

PA(jn = j, kn = k | n ∈ Nd) directly. That is, they may observe first and second choices

in aggregate, but not necessarily the corresponding demographic information for the con-

sumers. For example, Grieco et al. (2021) have survey data from Maritz that surveys new car

purchasers both on which car they purchased and what model they would purchase if their

choice were unavailable. Conlon et al. (2023) use the same survey data, and show that it is

possible to provide semi-parametric (mixed logit) estimates of utilities using only first and

second choices from a single market. In our empirical example in Section 8, we collect simple

second choice data from an online survey. In the UK, a typical survey question asked by the

Competition and Markets Authority (CMA) to evaluate a potential merger is “where would

you have made your purchases today if this store were closed for six months?” (Reynolds

48With longer lists of ranked choice data, researchers often consider full maximum likelihood type ap-
proaches rather than aggregated moments (see, e.g., Agarwal and Somaini, 2020).

49In practice, Berry, Levinsohn, and Pakes (2004) split this covariance up and match two moments,
“E[xcjt · xek(-j)t | j, k ̸= 0]” and “E[xek(-j)t | j, k ̸= 0],” to work with simple averages.
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and Walters, 2008).

A common data constraint is that many surveys may not collect information about

individual products or product characteristics, but only for groups of products. Conceptually,

it is straightforward to incorporate information on how many consumers would substitute to

another minivan or pickup truck without specifying the brand: ‘P(k(-b(j)) ∈ Km | j ∈ Jm)”

with vmijkt = 1{k ∈ Km} and wdijkt = 1{j ∈ Jm}. These kinds of information might be

especially useful if the goal is to estimate a random coefficient on a dummy for “pickup

truck” or “minivan.”

One extension available in PyBLP is elimination not only of the exact first choice j, but

a group of products h(j) containing j.50 This extension can be useful when second choice

data is at a higher level of aggregation than products. For example, the researcher may have

access to information about how consumers substitute when their favorite brand h(j) = b(j)

is eliminated from the market (e.g., Coca Cola), which includes their first choice product

j (e.g., a 2-liter bottle of Coca Cola). Alternatively, we might observe how consumers

substitute when all hospitals from the Partners system were eliminated from the choice set.

Compatibility Issues

Another challenge with combining aggregate and micro data is compatibility. Variables may

be measured or defined slightly differently, data may be collected at different frequencies or

during different periods, and survey data may oversample individuals in unexpected ways.

A frequent source of incompatibilities arises when the distribution of characteristics xjt,

demographics yit, or choices sjt differs significantly between the aggregate purchase data and

the micro survey data. This could arise because the income of shoppers in a survey differs

from the income of shoppers at a particular store, or if surveyed consumers face a different

set of products (or characteristics such as prices) than those in the aggregate data. It could

also arise because of bad luck or poor survey design. For example, nationally, Coca-Cola has

around a 48% market share, while Pepsi has around a 20% market share. If we surveyed

individuals about their soft drink preferences (as we do in Section 8) and found that more

consumers preferred Pepsi to Coca-Cola, this would present a potential incompatibility with

the aggregate sales data.

One likely violation of compatibility that is likely to arise in practice is that many papers

match micro moments averaged over the entire sample, rather than a subset of markets. An

50The only real difference is that we compute sik(-h(j))t instead of sik(-j)t. With εijt distributed type I
extreme value, we can write sik(-h(j))t = sikt/(1−

∑
h(ℓ)=h(j) siℓt).
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example of correctly addressing compatibility can be found in Grieco et al. (2021) where

the authors observe aggregate purchase data from 1980 to 2018, as well as individual sur-

vey data from the years 1991, 1999, 2005, 2015. Because the distribution of prices and

characteristics are quite different in 1991 and 2015, it is important to condition on the

year when constructing micro datasets so that w1991,ijt = Mt · {j ̸= 0, t ∈ T1991} and

w2015,ijt = Mt · {j ̸= 0, t ∈ T2015}, rather than averaging over all years.

As another example, Backus et al. (2021) compute both the chain-year specific joint

distribution of characteristics (income and presence of children) when forming wit and cal-

culate separate micro moments for each chain-year. This results in a very large number of

micro moments, but guarantees compatibility in the sense that this correctly matches in-

dividual shoppers to the correct product assortment and prices. By conditioning on chain,

this avoids the possibility that the NielsenIQ panelists systematically shop at a different set

of supermarket chains than predicted by the aggregate sales patterns Mt. This issue will

arise frequently with the NielsenIQ data, where not all supermarket chains report scanner

data sales, but panelists report purchases at all stores whether or not they are in the scanner

dataset.

Another example of where compatibility of micro data presents a challenge can be found

in Conlon and Rao (2023). A well-known problem with survey data on alcohol consumption

is that reported per capita consumption reflects only 30-40% of alcohol purchases. While it

might be tempting to construct moments to match the probability of purchasing a unit of

alcohol conditional on income within some range, “P(j ̸= 0 | yit ∈ [ya, ya]),” these moments

are incompatible with aggregate sales data. That is, there is no set of parameters θ such

that one could match both the aggregate no purchase share s0t and the purchase or no-

purchase shares by income. One approach would be to not include micro moments from

an incompatible survey, but the other is to define compatible moments that are potentially

less efficient. The authors apply Bayes Rule and match the probability that a given unit of

alcohol is purchased by households of each income level, “P(yit ∈ [ya, ya] | j ̸= 0).” This

avoids the issue that the marginal distribution of purchasing alcohol “P(j ̸= 0)” is completely

different across the aggregate and micro datasets, while still including information on the

relationship between alcohol purchases and income.51

In general, researchers may wish to match summary statistics that are compatible with

their full dataset, rather than use all the information in a dataset that they suspect is less

51This relies on the assumption that higher or lower income individuals aren’t systematically under-
reporting relative to other income groups.
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compatible. In our Monte Carlo experiments in Section 7, we provide a typical example where

income is measured differently across datasets, but being careful about what information to

match can still deliver an unbiased estimator.

In other settings, researchers may be unsure about whether there are compatibility issues.

The good news is that testing for compatibility is straightforward (Imbens and Lancaster,

1994). If there is sufficient variation from the aggregate data (or from micro datasets that

are known to be compatible) to identify the model, we can use an overidentification test.

Our preferred approach is to estimate the model without the potentially incompatible micro

moments to obtain θ̂, and then form a test statistic from differences ∆̂M = f(v) − f(v(θ̂))

between observed and estimated micro statistics,52

Wald = NA∆̂
′
MŜ

−1
M ∆̂M ⇝ χ2(MM) (22)

where Ŝ−1
M is the properly-scaled asymptotic covariance matrix of the micro moments that

we derive in Appendix E, and which is automatically reported by PyBLP for standard error

calculations.

6. Optimal Micro Moments

Having discussed common forms of micro moments, we discuss optimality. How should we

choose what statistics to match, given data availability, computational resources, compati-

bility, and interpretability requirements?

Matching Scores

In terms of data availability, a best-case scenario is observing not just a few micro statistics

vm, but rather a complete dataset of all sampled consumers’ markets, choices, and demo-

graphics {(tn, jn, yintn)}n∈Nd
. When we say “complete” we must observe not only individual

choices, but also all of the relevant demographics required to compute the choice probabil-

ities in (4). Rather than use the standard micro moments from Section 5, we can use the

scores from the individual data likelihood and combine them with the aggregate moments

from aggregate estimator in (6). This has the advantage that it will efficiently use all of the

information in the micro dataset, and also that it may reduce the overall number of micro

moments used in estimation. The disadvantage is that the individual scores are infeasible

and require an initial estimate θ̂ in order to compute them.

52If there are some compatible micro moments, these can be used to obtain θ̂, should have their elements
in ∆̂M set to zero, and their count should be subtracted from the χ2 degrees of freedom.
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Our preferred approach is a two-step procedure that minimizes computational costs while

still making full use of the micro data.53 After obtaining a first-stage estimator θ̂ with sub-

optimal micro moments, the researcher constructs optimal micro moments m that match the

average score function fm(v) = vm for each micro dataset dm evaluated at each nonlinear

parameter θm:
54

vmijt(θ̂) =
∂ logPθ̂

A(tn = t, jn = j, yintn = yit | n ∈ Ndm)

∂θm
. (23)

We use the notation Pθ̂
A to define a probability that is conditional on all the aggregate

data, including estimated unobserved qualities ξ̂jt. In words, the score tells us how the log

(conditional) choice probability varies with parameters θ for an individual with demographics

yit in market t. Conveniently, we only need to calculate this for the option j that an individual

chooses.

In Appendix G we provide full expressions for micro data scores and demonstrate how to

compute them with PyBLP. Incorporating second choices into this procedure requires adding

additional subscripts and having a more complicated score expression, so here we focus on

first choices.

First, we compute the score vminjntn(θ̂) in (23) evaluated at each observation n ∈ Nd

and take their average over individuals, choices, and markets to get vm(θ̂). This becomes

the target that the optimal micro moments aim to match. We also pre-compute vmijt(θ̂)

for each possible (i, j, t) so that scores only need to be computed a single time. For each

guess of θ, we only need compute choice probabilities sijt(θ), just like for standard micro mo-

ments. After also constructing an estimator of the optimal weighting matrix and, if desired,

an approximation to Chamberlain’s (1987) optimal instruments, the researcher obtains the

second-stage estimator.

53This approach is closely related to the “one-step” method discussed, for example, in Section 3.4 of Newey
and McFadden (1994).

54This can be done in PyBLP with only a few lines of code. See Figure G1 in Appendix G.
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Algorithm 2 Optimal Micro BLP Estimator

Given a sense for reasonable bounds for the nonlinear parameters (Π,Σ), for example from running a version
of the IV regression in (8) and Appendix C:

1. Use sub-optimal micro moments to obtain a first-stage estimator θ̂ by minimizing the objective con-
structed by Algorithm 1. We recommend drawing a few different starting values from within reasonable
parameter bounds. In Conlon and Gortmaker (2020) we describe and evaluate other recommended
practices for nonlinear optimization in Sections 3 and 5.

2. Approximate Chamberlain’s (1987) optimal instruments ẑjt(θ̂) by following Algorithm 2 in Conlon
and Gortmaker (2020), originally proposed by Berry, Levinsohn, and Pakes (1999).

3. Approximate the target micro moment m for each dataset dm and nonlinear parameter pm pair by
computing vm(θ̂) = 1

Ndm

∑
n∈Ndm

vminjntn(θ̂) in (23).

4. Estimate the optimal weighting matrix Ŵ (θ̂) by inverting an estimator of the asymptotic covariance
matrix of the moments in Appendix E.

5. Use approximations to the optimal IVs, micro moments, and weighting matrix to obtain the second-
stage estimator by minimizing the objective constructed by Algorithm 1. Again, we recommend
drawing a few different starting values from within reasonable parameter bounds.

In Appendix F we show that if the first-stage estimator is consistent, then the second-

stage estimator is asymptotically efficient within the class of all possible micro BLP estima-

tors. By this, we mean that Algorithm 2 delivers an estimator with an asymptotic variance

that is no greater than that of another micro BLP estimator based on any weighting matrix

Ŵ , instruments zjt, micro moment functions fm(·), and micro values vpijt. Restricting our-

selves to this class of micro BLP estimators rules out efficiency gains from estimators outside

this class, such as those that do not require that observed market shares Sjt exactly equal

their model counterparts.55

Only needing to compute scores once makes the two-step approach computationally at-

tractive. The more familiar approach of stacking scores with the original moments (e.g., in

Imbens and Lancaster, 1994) would require re-computing all observations’ scores for each

optimization iteration over θ.56

Grieco et al. (2023) point to a potential downside of using scores instead of the log-

likelihood itself: scores may have multiple zeros (e.g., the likelihood may have multiple local

optima) even when the likelihood has a unique global maximum. In our case, an analogous

55For example, the estimator proposed by Grieco, Murry, Pinkse, and Sagl (2023) obtains efficiency gains
by relaxing the share constraint, particularly when the number of micro observations is a nontrivial proportion
of the observations underlying aggregate market shares.

56Technically, one only need compute scores for each distinct set of demographic values, product choice, and
market. This speeds up computation when demographics take on only a few discrete values and purchases
are not spread across many products.
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problem could arise if there are multiple values of θ that satisfy the micro-moments using

the “optimal” score functions. In that case, our recommended procedure selects the value of

θ which minimizes the contribution of the aggregate moments to the objective.57

A final concern is with inconsistent first-stage estimates. In practice, we recommend

using standard micro moments discussed in the last section, which should typically provide

consistent and credible parameter estimates for the first stage. If standard micro moments

in conjunction with aggregate variation seem to only weakly identify or not identify some

parameters, another option is to also match scores in the first stage, but evaluated at an

informed guess of the true θ0 rather than a consistent estimator, which in some cases may

be more informative about θ than standard micro moments.58 A final option is to not use

micro BLP and instead use one of the likelihood-based approaches discussed in Section 1,

which maximize the micro likelihood directly.

Intuition from Scores

Often, instead of having the full results from a survey, researchers will only have access

to or be willing to use summary statistics because of cost, interpretability, compatibility,

confidentiality, or other data limitations. For estimating a given model, the most efficient

summary statistic would be the score of the individual likelihood‘, averaged across all sur-

veyed individuals. Although survey administrators are unlikely to collect scores for different

models, inspecting the functional form of scores for some simple models does motivate the

functional form of some of the common micro moments discussed in Section 5.

We present full score expressions in Appendix G but here consider the simplest case with

C = 1 observed characteristic, R = 1 demographic, three parameters θ = (β, π, σ), and a

micro dataset d with no selection, wdijt = 1. First consider the case without any unobserved

heterogeneity, σ = 0. The score for β is zero,59 and for π is

∂ logPA(tn = t, jn = j, yintn = yit | n ∈ Nd)

∂π
=

∂uijt

∂π
−
∑
k∈Jt

sikt ·
∂uikt

∂π
. (24)

57If one uses scores and still finds multiple global optima that each set the micro scores to zero (and give
the same values of the aggregate moments), a practical suggestion is to compute the micro likelihood at each
and select the one with the highest likelihood.

58For example, limited cross-market choice set variation and standard micro moments that do not use
second choices may result in a poorly-identified Σ. Using more information in the full micro dataset may
help provide a consistent first-stage estimator.

59Micro data are uninformative about β because it enters into choice probabilities sijt only through mean
utilities δjt, which are pinned down by the aggregate data share constraint in (7).
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in which the derivative of indirect utility for j ̸= 0 in (1) with respect to π is

∂uijt

∂π
=

∂µijt

∂π
+

∂δjt
∂π

= xjt · yit +
∂δjt
∂π

. (25)

Since sijt and
∂δjt
∂π

are functions of π,60 the only term directly observed in the micro data

is xjt · yit. This suggests that the “C(xjt, yit | j ̸= 0)” or “E[xjt · yit | j ̸= 0]” moments

discussed above should be informative about π because they are similar to the score.61 If

xjt = 1, then the primary term is simply yit, suggesting that “E[yit | j ̸= 0]” should be

informative about π in this simpler case. In Section 7 we confirm this intuition with Monte

Carlo experiments.

Often, demographics will be discrete (e.g., levels of education, presence of children, or

binned income). For example, Petrin (2002) matches “E[xjt | yit = 1] = P(j ̸= 0 | yit = 1)”

where xjt = 1 is an indicator for all inside goods and yit is an indicator for high income

consumers. Intuition about informativeness is similar in this case. Up to a denominator

“P(yit = 1),” which is a constant scaling factor that only depends on demographic data,

matching this moment is identical to matching a “E[xjt · yit]” moment, which is very similar

to the score.

However, matching only a single covariance or expectation leaves some information on

the table because it does not span the subsequent terms in the score. Similarly, for the

case with σ ̸= 0, the score for π becomes an integral over unobserved heterogeneity, further

distancing a single “C(xjt, yit | j ̸= 0)” moment from the true score.

To focus on the value of second choices, next consider the case with observed heterogene-

ity, σ ̸= 0, but without any observed demographics, π = 0. The score for σ is

∂ logPA(tn = t, jn = j, kn = k | n ∈ Nd)

∂σ

=
∑
i∈It

wit · sijkt∑
ι∈It wιt · sιjkt

[
∂uijt

∂σ
+

∂uikt

∂σ
−
∑
ℓ∈Jt

siℓt ·
∂uiℓt

∂σ
−
∑

ℓ∈Jt\{j}

siℓ(-j)t ·
∂uiℓt

∂σ

]
,

(26)

60Since mean utilities are pinned down by the share constraint in (7), their derivatives are given by invoking

the implicit function theorem: ∂δt
∂π =

(
∂st
∂δt

)−1 ∂st
∂π .

61Grieco et al. (2023) also note the similarity of “C(xjt, yit | j ̸= 0)” moments to the score for π. Their

expression does not involve
∂δjt
∂π because their estimator treats each δjt as a separate parameter rather than

as an implicit function of π.
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in which the derivative of indirect utilities for j, k ̸= 0 with respect to σ is

∂uijt

∂σ
+

∂uikt

∂σ
= νit · (xjt + xkt) +

∂δjt
∂σ

+
∂δkt
∂σ

. (27)

The only term directly observed in the micro data is (xjt + xkt). This is scaled by the

average unobserved preference νit among those who choose j first and k second, but the sum

itself is similar to the “C(xjt, xk(-j)t, | j, k ̸= 0)” moment discussed above, suggesting that

such a second choice covariance should indeed be informative about σ. And if available, the

average or sum “E[xjt + xk(-j)t | j, k ̸= 0]” of first- and second-choice characteristics could

be informative as well. We confirm this intuition in Section 7. Although these moments

can work well in practice, only matching a covariance or sum will not fully match the

expression in (26), which involves even more terms after adding in observed demographics

(see Appendix G).

Inspecting scores in this way can provide some intuition for which micro moments may

be informative and which may not. We provide additional examples for extensions with

lognormal random coefficients and nesting parameters in Appendices A and B. In general,

however, the ideal summary statistics to match will depend on the model specification and

the true parameter values.

In Appendix H we provide a more systematic approach for determining which summary

statistics are more or less informative about the parameters in the model, in the sense that

some will be more or less correlated with the score. Given a first-stage estimator θ̂ and a

sampling scheme wdijt, we recommend simulating a micro dataset and regressing simulated

scores on candidate micro values vpijt,
62 keeping only those sets of micro values that maximize

the R2 of the regression. In the presence of a large number of summary statistics, we also

consider a LASSO-based approach. This type of heuristic selection procedure does not come

with any theoretical guarantees, but it can help to identify a small number of maximally

informative summary statistics that are more likely to be collected by survey administrators

than model-specific average scores.

7. Monte Carlo Experiments

We provide several Monte Carlo experiments to illustrate the performance of the micro

BLP estimator with different micro moments. We also use our simulations to illustrate the

importance of practical choices that need to be made when doing empirical research, which

62In Appendix H we also demonstrate how this can be done in only a few lines of code with PyBLP.
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we further discuss in the empirical example of Section 8.

Monte Carlo Configuration

Our simulation configurations build on those of Conlon and Gortmaker (2020), which are

loosely based on those of Armstrong (2016). We first describe a baseline configuration, and

in the following subsections describe how we modify this configuration to compare different

aspects of the micro BLP estimator.

For each configuration, we construct and estimate the model on 1,000 different synthetic

datasets. In each of T = |T | = 40 markets we randomly choose either 2, 5, or 10 firms,

and have each firm produce 3, 5, or 5 products in that market. The number of products is

generally between 10 < |Jt| < 30. Across markets, the number of aggregate observations is

generally between 400 < NA < 1,200.

There are C = 3 observed product characteristics xjt = (1, x2jt, pjt)
′: a constant, an

exogenous characteristic x2jt ∼ U(2, 4), and endogenous prices pjt. We generate a realistic

correlation between pjt and unobserved quality ξjt by drawing ξjt and cost shocks from a

mean-zero bivariate normal distribution, by drawing a cost shifter, and by numerically solv-

ing for Bertrand-Nash equilibrium prices pjt and shares sjt with the fixed point approach

of Morrow and Skerlos (2011).63 Since our focus is not on weak cost shifters, our marginal

cost parameterization generates a strong correlation between the cost shifter and price. In-

struments zjt are (1, x2jt)
′, the cost shifter, and the differentiation IVs of Gandhi and Houde

(2020) discussed in Section 3.64 We parameterize mean utility in (2) to give “realistic”

outside shares generally between 0.6 < S0t < 0.9:

δjt = β1 + βxx2jt + αpjt + ξjt, β0 = (β01, β0x, α0)
′ = (−6, 3,−3)′. (28)

In each market t, we generate different Monte Carlo draws to represent |It| = 1,000

consumer types, each with an equal share wit = 1/|It|. For our simulations we found 1,000

types to strike a good balance between variance and compute time.65 We do not want to

63Firms choose prices to maximize their products’ profits sjt(pt) · (pjt − cjt) subject to marginal costs
cjt = 2 + 0.1× x2jt + 1.0× wjt + ωjt. The cost shifter is distributed wjt ∼ U(0, 1). Unobserved quality ξjt
and the cost shock ωjt are mean-zero bivariate normal with common variance 0.2 and covariance 0.1. With
multi-product firms and random coefficients we cannot guarantee a unique equilibrium. Instead, we compute
an equilibrium, which is sufficient to generate somewhat realistic variation in prices.

64As noted in Footnote 24, we use the “quadratic” version of differentiation IVs: â2jt =
∑

k(x2jt − x2kt)
2

both alone (when we include unobserved heterogeneity) and interacted with the mean my
t =

∑
i wit · yit of

a consumer demographic yit, discussed shortly.
65For example, we experimented with doubling the draws for our first few tables. This doubled the compute
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create the impression that 1,000 or any other specific number of draws will be adequate for

a specific setting. For empirical work, we recommend increasing the number of draws until

one’s estimates stabilize, and following other recommendations in Section 5 of Conlon and

Gortmaker (2020) to directly check that the chosen integration rule performs well compared

to other feasible alternatives.

Since income is the most common demographic to appear in demand systems, we ran-

domly assign each market to a US state and draw R = 1 demographic yit from a lognormal

distribution fit to the 2019 American Community Survey (ACS) income distribution for that

state. To start, we do not include unobserved heterogeneity when parameterizing heteroge-

neous utility in (3):

µijt = π1yit + πxx2jtyit, Π0 = (π01, π0x, 0)
′ = (−0.1, 0.1, 0)′, Σ0 = 0. (29)

Finally, we simulate a micro dataset d with an average of 1,000 observations per market.

Since the most common type of consumer survey samples only those who select an inside

alternative, we use selection probabilities wdijt = 1{j ̸= 0}.
To obtain an estimator θ̂ = (β̂1, β̂x, α̂, π̂1, π̂x) we follow the recipe in Algorithm 2 for

the optimal micro BLP estimator, but to start we do not approximate the optimal micro

moments. To solve the fixed point for δ̂jt(Π,Σ) and optimize over θ, we use recommended

practices described in Conlon and Gortmaker (2020).66 To numerically integrate over the

distribution of income yit, we resample from its true distribution.

Monte Carlo Results

When reporting results from our simulations, we focus on the median absolute error (MAE)

and median bias of the parameter estimators. In Appendices I and J we provide additional

results measuring the performance of standard error counterfactual calculations, which are

generally in line with the performance of parameter estimators across configurations. Com-

putation was done on the Harvard Business School compute cluster.67

cost but only slightly reduced the variance of our estimates, leaving the simulations’ takeaways unchanged.
66We accelerate the fixed point with the SQUAREM method of Varadhan and Roland (2008) and use an

L∞ tolerance of 1E-14. To optimize, we supply objectives and analytic gradients to SciPy’s trust region
algorithm “trust-constr” and use an L∞ gradient-based tolerance of 1E-5. For each GMM step, we draw
three sets of starting values from 100% above and below the true parameter values.

67For our configurations, six rounds of optimization (three sets of starting values for each GMM step)
typically take 1–3 minutes, plus another 30 seconds for computing optimal micro moments. Using second
choice moments typically takes 3–8 times longer.
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Demographic Variation

In Table 4 we vary the amount of cross-market demographic variation and measure the

performance of the aggregate BLP estimator. When in each market income yit is drawn

from a lognormal distribution fit to the same national distribution of income, there is no

cross-market variation, so as discussed in Section 3, π1 and πx are not identified.

In the second row, randomly assigning each market to one of the 50 US states provides

some cross-market variation, which gives an estimator with very little finite sample bias.

However, income distributions do not vary much across states, so the estimator still has

high variance, even when using the feasible approximation to the optimal instruments.68

Assigning markets instead to the 982 Public Use Microdata Areas (PUMAs) increases the

amount of cross-market income variation, further reducing the bias and variance of π̂1 and

π̂x.

In the last three rows, we double the number of markets to T = 80 but keep the amount

of cross-market demographic variation the same by re-using the demographic distribution in

each t ≤ 40 for market t+ 40. As the amount of cross-market choice set variation increases,

bias and variance of π̂1 and π̂x decrease. In line with the linear regression intuition from

Section 3, more variation in demand helps estimate Π, which is identified by how cross-

market demographic variation shifts demand. However, without a great deal of demographic

variation, the estimator is still fairly noisy.

Since we made the cost shifter a strong instrument and did not model preference het-

erogeneity for price (see Appendix A for simulation results for when we do), the coefficient

on price α̂ has very little bias and variance across all configurations. The performance of

the linear parameter estimators β̂1 and β̂x track the performance of the nonlinear estimators

π̂1 and π̂x, so for simplicity’s sake, we focus only on estimators of nonlinear parameters in

subsequent results.

Standard Micro Moments

Sticking with T = 40 markets and state-level income variation, in Table 5 we illustrate

the impact of standard micro moments discussed in Section 5. Matching only the mean

income of those who do not choose the outside alternative with a “E[yit | j ̸= 0]” moment

somewhat reduces variance, but not by much. A “C(x2jt, yit | j ̸= 0)” moment contains more

information and reduces variance a bit more, particularly for the πx parameter whose score

68Optimal instruments are well-known to reduce the bias and variance of the aggregate BLP estimator
(Reynaert and Verboven, 2014; Conlon and Gortmaker, 2020).
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it approximates. However, it is only with the combination of both moments that we greatly

reduce the variance of both estimators.

Since “C(x2jt, yit | j ̸= 0)” equals “E[x2jt · yit | j ̸= 0] + E[xj2t | j ̸= 0] · E[yit | j ̸= 0],”

when paired with a “E[yit | j ̸= 0]” moment it contains essentially the same information as

matching the first term in the score for πx, the interaction “E[x2jt ·yit | j ̸= 0].” Accordingly,

both perform almost identically. However, matching a covariance could be more appealing in

some settings because it is more interpretable and is more likely to be reported by a survey

than, for example, the mean of an interaction term.

A survey that does not report covariances may still report average characteristics by

demographic groups, allowing us to use a “E[x2jt | yit < yt, j ̸= 0]” moment that matches

the mean x2jt for low-income consumers. Discretizing yit discards some information, reducing

correlation with the score for πx, so the estimator has a higher variance. Since in this simple

simulation the score for πx is dominated by x2jt · yit, adding the discretized moment on top

of the continuous one does not particularly improve the performance of the estimator.69

To visualize the relationship between “E[x2jt ·yit | j ̸= 0],” “E[x2jt | yit < yt, j ̸= 0],” and

the score, for each observation in the micro data underlying Table 5 we compute x2jt · yit,
x2jt · 1{yit < yt}, and the score for πx. We report their correlation matrix in Figure 1.70 As

expected, x2jt · yit and the score have strong correlation of 0.675.71 Discretizing yit reduces

the correlation with the score by around 11% to 0.6.

This same approach can be used as a diagnostic: researchers can use the score contribu-

tions of simulated individuals under the model at the estimated parameters θ̂, and compare

these to their micro statistics (see Appendix H). While this requires an estimate of θ̂, it

provides a simple way to measure whether the micro statistics do a good job capturing the

potential micro-level variation.

When using multiple moments to target the same parameter, a natural and important

question is which moments contribute the most. Honore, Jørgensen, and de Paula (2020),

building on the sensitivity measures proposed by Andrews, Gentzkow, and Shapiro (2017),

provide a suite of diagnostics for measuring the informativeness of moments for parameter

69In more complicated simulations, for example with unobserved heterogeneity, adding additional moments
can help explain variation in the more complicated score.

70The score is evaluated at the true θ0. We report the absolute value of correlations, taking a median
across the 1,000 simulated micro datasets.

71How to interpret this number? With a single parameter and a single linear micro moment, the asymptotic
standard deviation (SD) of the efficient GMM estimator is one over this correlation times the score’s SD (see
Appendix H). Since the Normal distribution’s MAD is proportional to its SD, this correlation should hence
equal the ratio of MAEs obtained under the optimal moment versus the sub-optimal moment. Even though
we are not in the scalar case, we see approximately this result in Table 6.
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estimates. We make computing these straightforward with PyBLP.72 For example, in the

last row of Table 5, a 1% decrease in the asymptotic variance of “C(x2jt, yit | j ̸= 0)” is

associated with 5.1% and 5.5% decreases in those of π̂1 and π̂x, respectively, but the same

elasticities are only around 0.004% for “E[x2jt | yit < yt, j ̸= 0].”73 As we would expect, the

additional moment provides little additional informativeness beyond the covariance.

Optimal Micro Moments and Compatibility

In Table 6 we illustrate the performance of optimal micro moments. The first row is the

same as the fourth row in Table 5. In the second row, we use these same standard moments

to obtain a first-stage estimator, and in the second GMM step, use optimal micro moments

that match scores of π1 and πx. This requires using the full micro dataset rather than two

summary statistics, but it does, unsurprisingly, decrease the variance of the estimator. In the

middle two rows, we use the slightly less-informative micro moment “E[x2jt | yit < yt, j ̸= 0]”

in the sixth row of Table 5. When using this as a first-stage estimator, the finite sample

performance of the optimal micro moments is slightly worse, although not by much.

In the last two rows, we illustrate an example where the “optimal micro moments” can

perform worse than matching simple summary statistics. We simulate a second, independent

micro dataset that is configured the same as the first, except we replace income yit with a

censored version ỹit, an indicator for whether an individual is above or below the median

income yt. These new micro data (tn, jn, ỹintn) are not “complete” in the sense that they do

not contain all of the information necessary to compute the individual choice probabilities

(which require the actual income yit). To approximate what a researcher might do here, when

computing the scores we replace ỹit with the 25th percentile of income if below the median or

the 75th percentile if above. As we see in the last row of Table 6, the optimal micro moments

from the incompatible micro dataset perform significantly worse than no micro moments at

all, particularly for π̂1. Adding micro statistics of the form “E[x2jt | ỹit < yt, j ̸= 0]”

contains relevant information and does not have the same compatibility problems, giving

similar improvements as before.

While we focus on changing the set of moments to address the compatibility problem,

an alternative would be to modify the model to match the observed moments. One option

might be to consider two sets of coefficients (πh, πl), for high- and low-income individuals.

72The ingredients are estimates of the asymptotic covariance matrices of the parameter estimates and
moments, along with the moments’ Jacobian. These ingredients, along with the sensitivity measure of
Andrews et al. (2017), are automatically reported by PyBLP.

73These numbers are medians over 1,000 simulated datasets of the the E3 measure from Honore et al.
(2020). The corresponding elasticities for “E[yit | j ̸= 0]” are 6.60% and 6.56% for π̂1 and π̂x, respectively.
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This would eliminate the compatibility problem and allow us to use the scores.74

Pooling Markets

Often, a researcher may have the same type of micro statistic for different markets. A

practical question is whether one should pool these into a single micro moment,75 or match

a separate micro moment for each market. Computationally, pooling is not particularly

important, since micro values vpijt will still need to be computed in each market. Statistically,

however, we should expect market-specific moments to contain more information, reducing

the variance of the estimator.

However, it is well-known that adding many moment conditions asymptotically biases

the standard GMM estimator (Han and Phillips, 2006; Newey and Windmeijer, 2009). In

Figure 2 we illustrate this bias-variance tradeoff. From left to right, we increase the number

of micro moments, pooling them across a decreasing number of markets. This reduces

the variance of the estimator at the cost of some bias. In general, we prefer more micro

moments to fewer, particularly if markets are very observably different, since this will reduce

the variance of the estimator. However, much like adding many instruments to simple linear

IV regressions can be problematic (see, e.g., Angrist, Imbens, and Krueger, 1999), it is

important to be aware of bias or lack of interpretability that one might be introducing by

adding a large number of moments.

Numerical Integration

In Table 7 we consider another important choice: how to choose sets of consumer types It

to numerically integrate over a population of consumers. In Conlon and Gortmaker (2020)

we emphasize how bounded and continuously differentiable integrals for market shares can

be well-approximated with a small number of quadrature nodes and weights.76 In the first

two rows of Table 7 we compare |It| = 7 Gauss-Hermite quadrature nodes with |It| = 1,000

Monte Carlo draws from the true distribution of income yit. Statistical performance is

comparable, but with quadrature, it takes two orders of magnitude less time to compute the

estimator.77

74Strictly speaking, without changing the data generating process, this model would be misspecified so we
omit it from Table 6.

75Given summary statistics vt each based on Nt observations, the pooled summary statistic would be∑
t Nt · vt/

∑
t Nt.

76Theoretically, the integrand is approximated with a polynomial and then integrated exactly.
77For more dimensions of integration—more demographics or unobserved preferences—this computational

performance gap decreases, and quadrature, including more sophisticated sparse grids, becomes comparable
to Monte Carlo methods. See Figure 1 in Conlon and Gortmaker (2020).
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In the bottom two rows, we provide a typical example for which quadrature should

not be used. Instead of matching a “C(x2jt, yit | j ̸= 0)” moment, which is continuously

differentiable in income yit, we match “E[x2jt | yit < yt, j ̸= 0],” which is not because of

the low-income indicator. As already discussed, discretizing income discards information,

so the estimator performs worse regardless of the integration rule. But more importantly,

since quadrature rules are specific to the domain of integration (e.g., a normal density over

R), they will not correctly integrate sub-intervals. This becomes apparent in Table 7. Other

than not using quadrature in these cases, there are no obvious solutions when computing sjt

requires integrating over the entire distribution and the micro moments require integration

over a sub-interval.

Problem Scaling

In Section 4 and Appendix E we discuss the econometric properties of the micro BLP esti-

mator under different asymptotic thought experiments: (a) many markets, including those

covered by surveys; (b) many markets, few with surveys, but the surveys are large; and

(c) few markets, but markets and surveys are both large. Still using “E[yit | j ̸= 0]” and

“C(x2jt, yit | j ̸= 0)” micro moments, in Figure 3 we use our simulations to illustrate that the

estimator’s reasonable rates of convergence translate to finite samples. From left to right,

each column corresponds to cases (a), (b), and (c), respectively. For all cases, the variance

of the estimator decreases similarly as we increase the number of aggregate and micro ob-

servations. In Appendix I we document that standard error estimators have good coverage

and low bias in finite samples, reflecting the asymptotic normality of the estimator.

Unobserved Heterogeneity

So far, our simulations only model one source of observed heterogeneity: income. To discuss

the role of unobserved heterogeneity, we draw unobserved preferences ν2it for x2jt from the

standard normal distribution and use 1,000 scrambled Halton draws (Owen, 2017) to approx-

imate this distribution during estimation. We then add a σxx2jtν2it term to heterogeneous

utility, and choose σx to make unobserved preferences fairly important:

µijt = π1yit + πxx2jtyit + σxx2jtν2it,
Π0 = (π01, π0x, 0)

′ = (−0.1, 0.1, 0)′,

Σ0 = diag(0, σ0x, 0) = diag(0, 0.5, 0).
(30)

In Table 8 we illustrate how the standard “E[yit | j ̸= 0]” and “C(x2jt, yit | j ̸= 0)”

moments still greatly improve the performance of the estimator. Optimal micro moments
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do even better.

Our default configuration has a great deal of cross-market variation in choice sets Jt,

including the number of products |Jt| and the values of product characteristics (xjt, ξjt).

This is precisely the type of aggregate variation that is needed to identify Σ (Berry and

Haile, 2014). As a result, particularly because we are using optimal instruments, σ̂x has very

low bias and variance, even without any micro moments.

In the bottom three rows, we use the same choice set Jt = J in each market. Even

with optimal instruments, σ̂x has a substantial amount of bias and variance, and including

micro data that link demographics to choices does not particularly improve the performance

of σ̂x. This illustrates an important insight of Berry, Levinsohn, and Pakes (2004) that is

formalized nonparametrically by Berry and Haile (2022): cross-market choice set variation is

still needed to nonparametrically identify Σ, even when using within-market variation that

links demographics to choices.78

Second Choices

Some datasets will simply not exhibit much cross-market choice set variation, either because

there is only a single or a few markets, or because product offerings are fairly uniform. An

alternative is using second choice data. Intuitively, each second choice observation is similar

to observing a counterfactual market in which the consumer’s first choice is removed from

the choice set.

In Table 9 we illustrate the benefits from second choice data for our configuration with

no choice set variation. In addition to the main micro dataset, we simulate a second, in-

dependent micro dataset that conditions on inside choices as well, but also reports second

choices.

Matching the covariance “C(x2jt, x2k(-j)t | j, k ̸= 0)” between the exogenous product

characteristic for first and second choices greatly reduces the variance of σ̂x. Matching

the sum “E[x2jt + x2k(-j)t | j, k ̸= 0],” which is closer to the score for σx in (26), reduces

the variance even more. Figure 4 reports a correlation matrix between micro values vpijkt

underlying these moments and the score for σx. Since x2jt · x2k(-j)t and x2jt + x2k(-j)t are

highly correlated with one another, their correlations with the score are similar.

We also consider matching the share of consumers who divert from a low- or high-x2jt

first choice j to a low-x2kt second choice k. The hope is that this type of diversion ratio

is easier to measure or more likely to be collected than the covariance. Discretizing x2jt in

78In our simulations, identification of Π comes from both within- and cross-market variation in demo-
graphics, as well as our parametric assumptions about how demographics enter into utility.
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this way reduces the correlation of each individual diversion ratio with the score, but in our

simulations, matching only two diversion ratios is comparable in terms of variance reduction

with the standard “C(x2jt, x2k(-j)t | j, k ̸= 0)” moment.

If the full second choice micro data are available, we can do even better. In the bottom

row of Table 9 we show that the estimator is further improved when we use optimal micro

moments that for the second GMM step match the scores of π1, πx, and σx.

8. Predicting Substitution from Seattle’s Sweetened Beverage Tax

Finally, we provide an empirical example to illustrate how to use micro moments with real

data. Appendix D provides a second example, replicating the results in Petrin (2002) with

PyBLP.

In recent years, one of the most used sources of matched aggregate and micro data for

consumer purchases in the US are the NielsenIQ Retailer Scanner and Consumer Panel

datasets as provided by the Kilts Center at the Chicago Booth School of Business. The

scanner data contains product characteristics and weekly sales for a large sample of retailers

across the US. The consumer data contains consumer demographics and purchase decisions

for a large sample of participating US households.

To demonstrate how to use micro moments with NielsenIQ data, we estimate pre-2017

demand for soft drinks in Seattle. We then predict what would happen if prices increased

by how much they did after the 2018 implementation of Seattle’s sweetened beverage tax

(SBT)—the most recent SBT implemented in the US—and compare our substitution esti-

mates to what actually happened. We view this exercise as in-between answering a policy

question and a Monte Carlo, since we are using real data but already know what happened.

This type of exercise could be repeated for different cities to evaluate the potential effects of

proposed taxes.79

In Appendix K we discuss all the decisions we make when constructing our data: market

definition, demographic data, product data, instruments, market sizes, micro data, and a

custom second choice survey. We also discuss other decisions we could have made, weighing

their pros and cons. We hope Appendix K will be particularly helpful for researchers using

NielsenIQ data or collecting second choice data to estimate their own demand systems.

We collect quarterly sales data from 2007 to 2016 on 2,672 soft drink UPCs sold at five

79Similarly, Zhen et al. (2014) estimate an Exact Affine Stone Index (EASI) demand model (Lewbel and
Pendakur, 2009) that includes 23 different categories related to soft drinks to evaluate the impact of SBTs.
EASI is a product space approach to demand estimation, which we view as complementary to characteristics
space approaches like BLP.
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large retailers in Seattle, for a total of NA = 78, 161 product-retailers.80 In each quarter t,

the market share Sjt of product-retailer j is total ounces purchased divided by the market

size Mt. To compute market sizes, we estimate of the number of trips made to these retailers

and scale this by a maximum potential demand per trip of 720 ounces.81 Later in this section

we will discuss how such market size assumptions can affect estimates.

Our product characteristics xjt are price and indicators for diet and small-sized drinks.82

We use a Hausman (1996)-type instrument for prices (contemporaneous prices in cities other

than Seattle) that is very similar to the one used by Allcott et al. (2019) and construct

a Gandhi and Houde (2020)-style differentiation IV to identify the standard deviation of

normally distributed unobserved preference heterogeneity for price.83

We report aggregate BLP estimates in the first column of Table 10. We include product-

retailer and retailer-quarter fixed effects to account for product-specific preferences and time-

varying demand for retailers. We cluster standard errors by brand b(j). Across specifications,

our estimated price elasticity of demand is around -1.3, which is on the high end of typical

estimates in the existing literature between -0.8 and -1.4 (e.g., Powell et al., 2013).

We also report results from our counterfactual in which we increase the prices of taxed

2016 products by how much they seemed to have increased after the introduction of the

2018 SBT of 1.75 cents per ounce:84 1.15 cents for taxed small-sized drinks and 0.97 cents

for taxed family-sized ones (Powell and Leider, 2020).85 We use a manual classification of

taxed and untaxed goods that was created and graciously provided to us by the authors and

research team of Powell and Leider (2020). Although the Seattle tax excluded diet beverages,

80This includes fruit drinks and diet drinks, but for simplicity we do not consider juice or other sugary
product categories. We combine product-retailers in the bottom 5% of ounces sold with the outside good in
each quarter.

81We have an in-depth discussion of market sizes and how we form these estimates in Appendix K.
82Following Powell and Leider (2020), we define small- or individual-sized products as single-unit beverages

that are no more than one liter in volume. Diet classification is in Appendix K, and is particularly important
for this setting because the Seattle tax excluded diet drinks. A more in-depth study of soft drink demand
would incorporate random coefficients on more characteristics.

83As we discuss below, we do not attempt to identify the distributions of random coefficients on other diet
and small-sized indicators with only aggregate data because along these dimensions, cross-quarter choice set
variation is very limited.

84Although modeling the supply side and predicting passthrough is beyond the scope of this paper, doing
so would be useful for informing SBT policy. For example, O’Connell and Smith (2021) use simulated
maximum likelihood to estimate a similar demand model for soft drinks in the UK and study how market
power affects passthrough. In their Appendix E, they conduct a similar validation exercise for the supply
side, comparing their predicted passthrough estimates with those that actually occurred following a UK SBT
in 2018.

85Powell and Leider (2020) estimate these passthrough rates of 66% and 55% with a differences-in-
differences approach, using Portland as the control group. They also use NielsenIQ scanner data.
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tax status is not one-to-one with our diet indicator, with a strong but imperfect correlation

of -0.76 in our 2016 data. Our estimates of a decrease in taxed ounces purchased of -30% and

a small increase in untaxed ounces of 1% are not too far from the -22% and 4% estimated by

Powell and Leider (2020), but as we discuss below, could benefit from additional dimensions

of preference heterogeneity.

The political discourse surrounding SBTs and related economic theory emphasizes their

differential effects by income (see, e.g., Allcott et al., 2019; Conlon et al., 2022). To predict

differential substitution by income group, we include an indicator in demographics yit for

households with income above the 2016 median in Washington. We also include an indicator

for households with at least one child.86 We construct demographic shares for each of the

four bins from annual American Community Survey (ACS) data for Seattle, and re-weight

NielsenIQ households in Seattle by these ACS shares.

Since at the city level these demographics vary little during our sample period,87 we do

not attempt to identify how preferences vary by demographic group with only cross-market

variation.88 Indeed, following our advice from Section 3, running the approximate regression

from Salanié and Wolak (2022) gives very noisy point estimates for Π. This is unsurprising

because such estimates are essentially formed from 2016− 2007 = 9 observations.

Instead, we match two sets of standard micro moments: “E[yrit | j ̸= 0]” and “C(xcjt, yrit |
j ̸= 0)” for the R = 2 demographics and C = 3 characteristics. We use the Consumer Panel

data and compute m = 1, . . . ,MM = 8 micro moment sample values fm(v) from a sample of

Nd = 10,455 grocery trips with an inside purchase j ̸= 0.89

The second column of Table 10 reports micro BLP estimates. We estimate a slight decline

of price sensitivity with income,90 and households with children also tend to be more price

sensitive. Both low income households and those with children tend to dislike diet drinks.

Incorporating micro data allows us to predict how the tax counterfactual differentially affects

consumers by demographic group. Slightly more elastic demand for households with low

86We limit our attention to two binary demographics for simplicity in this empirical example. A more
in-depth study would incorporate more functions of demographics measured in Census and NielsenIQ data.

87The share of high income households increases from 35% in 2007 to only 40% in 2016. The share of
households with at least one child increases from 10% to only 11%.

88If we try to do so by including instruments that interact moments of the demographic distribution with
characteristics and differentiation IVs, we get very noisy estimates that severely corrupt our other estimates.

89We compute weighted averages and covariances to account for both non-random participation of house-
holds in the NielsenIQ panel and different numbers of total grocery trips per quarter. See Appendix K for
more details.

90An unconditional negative covariance in the micro data between prices and high income is potentially
misleading. High income households also tend to purchase cheaper family-sized products. This negative
covariance switches sign after controlling for package size.
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income or children results in slightly more substitution away from taxed goods. However,

compared to a baseline reduction in taxed volume of 30%, we are able to reject predicted

differences of more than 4 percentage points for low versus high income households and 7

percentage points for households with versus without children at a 5% significance level.

These predictions are generally in-line with those of Barker et al. (2022), who pool 529

households in the NielsenIQ Consumer Panel dataset together with data before and after the

implementation of seven recent SBTs in the US between 2015 (Berkeley) and 2018 (Seattle),

and struggle to find statistically significant differences in the impact of these taxes by income

group and presence of children. We view a structural approach that incorporates micro data

as complementary to approaches such as that of Barker et al. (2022), which makes different

modeling assumptions but can be limited by small sample sizes.91

Incorporating demographics captures some heterogeneous preferences for the outside good

and diet beverages. But the model is missing a great deal of potential unobserved heterogene-

ity. Unfortunately, with market fixed effects, the distribution of unobserved preferences for

the outside good is not identified with only aggregate data,92 and we find that cross-quarter

aggregate variation in the number of diet drinks is also insufficient to precisely estimate the

scale of unobserved preferences for diet drinks.

Instead, we use survey-based second choice data.93 To demonstrate how researchers can

run a second choice survey, we use Prolific Academic to recruit 100 participants who live in

Washington State for an online survey.94 Our survey design is similar to that used for choice-

based conjoint analysis (e.g., Allenby et al., 2019), and we provide more details at the end

of Appendix K, including discussion of potential biases that often show up in results from

online surveys. We use the survey to compute two diversion ratios: the share of participants

who would divert to the outside good or a diet soft drink if their first choice non-diet brand

were unavailable.95 Like in the NielsenIQ micro data, we weight observations by ounces

91One country with much larger sample sizes for studying the impact of SBTs is the UK, through data
collected by the National Child Measurement Programme (see, e.g., Rogers et al., 2023).

92Recalling the FRAC intuition from Section 3, the artificial regressor on a constant xjt = 1 is ajt =
s0t − 1/2, variation of which is absorbed by market t fixed effects.

93Another approach would be to compute first- and seconds shares from a single household’s purchases
over time in the NielsenIQ micro data. The validity of this approach will depend on what generated changes
in product availability or characteristics that led to switching. Since we generally expect product availability
to be correlated across products, we prefer self-reported second choices, but observational diversion can be
useful in settings where survey data is unavailable or unreliable.

94A larger sample size would be appropriate for a more complete empirical study. Allenby et al. (2019)
notes that many conjoint practitioners use sample sizes of 500 to 1,000.

95We increase the total number of survey participants to 139 until we get 100 participants who say they
have purchased at least one of eight of the most popular non-diet brands in Seattle during the last 30 days:
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typically purchased and adjust for non-random sampling by demographic group.

In the third column of Table 10, we match these two diversion statistics for the last quarter

in our sample.96 If respondents’ non-diet first choice soft drink brand were unavailable,

“P(Dietk(−b(j))t | Surveyed Non-dietjt) = 16%” of respondents said they would divert to a

diet beverage, and “P(k(−b(j)) = 0 | Surveyed Non-dietjt) = 17%” said they would divert to

the outside good, which includes both non-soft drinks and no beverage. Without matching

these two additional moments, the model predicts 92% and 3%, respectively, suggesting that

there is a great deal of unobserved preference heterogeneity left unmodeled.

Indeed, we get large estimated standard deviations on normally distributed unobserved

preferences for inside goods and the diet characteristic. As a result, the counterfactual

predicts a smaller decrease in taxed volume purchased, -16%, somewhat undershooting the

estimate of -22% in Powell and Leider (2020), and a larger increase in untaxed volume

purchased, 9%, somewhat overshooting but not statistically different from the estimate of

4% in Powell and Leider (2020). Given the nature of an imperfect prediction exercise, we

do not expect to perfectly predict what actually happened, but do view our second choice

estimates as more credible than those that rely more heavily on strong assumptions about

substitution proportional to share and market size.

Finally, in the fourth column of Table 10, we replace the standard micro moments with

optimal micro moments in the second GMM step. We do not replace our second choice

moments because, as is often the case, our survey did not collect full micro data, only

enough to compute our desired diversion ratios. Point estimates and counterfactual results

are fairly similar, suggesting that most of the information in the NielsenIQ micro data

is already spanned by the standard micro moments for this model. This should not be

surprising because the model discretized observed heterogeneity into four types: high and

low income, and with and without children. We provide more in-depth discussions of how

to compute optimal micro moments with PyBLP at the end of Appendix F and how to do

so with NielsenIQ micro data near the end of Appendix K.

There are a number of extensions that would improve a more complete policy exercise.

Incorporating more product characteristics, more consumer demographics, and more second

choice data would help to better explain substitution patterns. Discussed in Appendix A,

Coke, Pepsi, Gatorade, Powerade, Canada Dry, Dr Pepper, Mountain Dew, or Seven Up.
96By matching statistics computed for Washington residents, not just Seattle residents, and for consumers

in 2023, not 2016, we are assuming that these diversion ratios would not be much different for Seattle in
2016. At a minimum, in Appendix K we check whether the statistics are different for the 25% of respondents
who live in Seattle and do find some difference for diversion to the outside good, although they are noisy.
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a lognormal random coefficient on price often provides a better fit, and can be helpful for

modeling a supply side.97 In Appendix B we discuss adding a nesting structure, which could

be useful for explaining substitution between categorical characteristics such as brand or

store. PyBLP also supports inclusion of product-specific demographics such as geographic

distance to stores, which could allow researchers to predict cross-border shopping effects.98

9. Conclusion and Practical Advice

This article was motivated with a frustration experienced by many researchers with the ag-

gregate BLP estimator: aggregate variation is usually very limited, leading to poor estimates

of demand. Coupled with the recommended practices from Conlon and Gortmaker (2020)

for the aggregate side of estimation, we confirm in this article that incorporating micro data

can substantially improve the finite-sample performance of the BLP estimator. Our hope is

that going forward, a standardized framework for doing so will encourage more researchers to

use or collect micro data, particularly second choices, which can be very useful for estimating

the degree of unobserved preference heterogeneity.

This article makes a number of contributions. Perhaps most importantly, we delineate

a flexible econometric framework for incorporating many different types of micro data into

BLP-style estimation, which we subject to a number of different asymptotic thought experi-

ments. These include cases where we observe relatively complete data on individual choices,

demographics, and characteristics, and cases where we observe only limited statistics from

surveys of individuals. Characterizing the asymptotic covariance matrix also allows us to

clarify that researchers do not need to observe sample covariances between micro summary

statistics to do valid statistical inference. Finally, we contribute a characterization of the

optimal micro moments in the spirit of Chamberlain (1987) and a computationally straight-

forward procedure for computing them, which can be done with only a few lines of code when

using PyBLP. These have the advantage of not only reducing bias and increasing efficiency,

but can also significantly reduce the overall dimension of the problem.

We also provide some practical tips to researchers. First, researchers can check how much

cross-sectional (or time series) variation there is in the aggregate data using the FRAC

estimator of Salanié and Wolak (2022). Second, researchers can measure how much of

the variation in the (infeasible) optimal micro moments from the score contributions can

be captured using their micro statistics, even if complete individual data is not available.

97This guarantees downward sloping demand for all consumers, which can help guarantee pricing equilib-
rium existence and uniqueness and allow for more flexible pass-through (Miravete et al., 2023).

98We discuss adding geographic distance in more depth in Appendix K.
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Third, researchers should be mindful of compatibility issues across datasets. The marginal

distribution of demographics like income, or the purchase probabilities of particular choices

may vary significantly between aggregate and micro datasets. In this case, matching moments

from micro datasets (including the “optimal micro moments”) may be worse than using only

aggregate data. However, we illustrate that alternative micro statistics can be designed to

be more robust in this scenario. Fourth, while quadrature rules are often the best choice for

evaluating numerical integrals of mixed logit models with aggregate data, most quadrature

rules are not designed to accurately integrate sub-intervals; in this case, less accurate (but

unbiased) Monte Carlo rules may be preferred. Finally, researchers should think about which

model parameters are most relevant for the policies they are interested in, and carefully

consider designing surveys or experiments to help better estimate those objects. Here we

provide a proof of concept showing how a small and inexpensive survey could be designed

to better understand the effects of a sugary beverage tax.

Our goal has been to extend the recommended practices in Conlon and Gortmaker (2020)

to the case with micro data, not only through this paper but also in a single software package,

PyBLP. We have provided a list of recommended practices, evaluated them with simulations,

and made them either defaults or easy to use in PyBLP. Our hope is that these practices

can now be made available to a wider range of researchers. For researchers who wish to

incorporate micro data into similar econometric frameworks that are not yet supported

by PyBLP, we hope that the framework and results developed in this article, along with

PyBLP’s well-documented code, serve as a useful starting point.
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Table 1: Empirical Literature

Demand Estimation

Paper Industry Country Years

Petrin (2002) Automobiles United States 1981–1993
Berry, Levinsohn, and Pakes (2004) Automobiles United States 1993
Thomadsen (2005) Fast Food United States 1999
Goeree (2008) Personal Computers United States 1996–1998
Ciliberto and Kuminoff (2010) Cigarettes United States 1993–2002
Nakamura and Zerom (2010) Coffee United States 2000–2004
Beresteanu and Li (2011) Automobiles United States 1999–2006
Li (2012) Automobiles United States 1999–2006
Copeland (2014) Automobiles United States 1999–2008
Starc (2014) Health Insurance United States 2004–2008
Ching, Hayashi, and Wang (2015) Nursing Homes United States 1999
Li, Xiao, and Liu (2015) Automobiles China 2004–2009
Nurski and Verboven (2016) Automobiles Belgium 2010–2011
Barwick, Cao, and Li (2017) Automobiles China 2009–2011
Murry (2017) Automobiles United States 2007–2011
Wollmann (2018) Commercial Vehicles United States 1986–2012
Li (2018) Automobiles China 2008–2012
Li, Gordon, and Netzer (2018) Digital Cameras United States 2007–2010
Backus, Conlon, and Sinkinson (2021) Cereal United States 2007–2016
Grieco, Murry, and Yurukoglu (2021) Automobiles United States 1980–2018
Neilson (2021) Primary Schools Chile 2005–2016
Armitage and Pinter (2022) Automobiles United States 2009–2017
Döpper, MacKay, Miller, and Stiebale (2022) Retail United States 2006–2019
Durrmeyer (2022) Automobiles France 2003–2008
Weber (2022) Trucks United States 2010–2018
Bodéré (2023) Preschools United States 2010–2018
Montag (2023) Laundry Machines United States 2005–2015
Conlon and Rao (2023) Distilled Spirits United States 2007–2013
Calder-Wang and Kim (2024) Rental Housing United States 2011–2018

This table collects a non-exhaustive list of empirical papers that use the micro BLP
estimator, along with the industry, country, and years for which each paper estimates
demand. Some papers estimate demand for the listed broad industry and subsequently
focus on a sub-industry. We only list published and recent working papers that do not
diverge too much from the standard demand-side BLP model. In Table 3 we reorganize
these papers by which micro moments they use.
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Table 2: Notation

Notation for aggregate data and estimation (Section 2) Notation for micro data and estimation (Section 4)

t ∈ T Markets d ∈ D Micro datasets
Mt ∈ R+ Market size wdijt ∈ [0, 1] Sampling probability

wdijkt ∈ [0, 1] Joint sampling probability
j ∈ Jt Products
j = 0 Outside alternative n ∈ Nd Micro observations
c = 1, . . . , C Observed product characteristics tn ∈ T Micro observation market
m = 1, . . . ,MA Instruments in ∈ Itn Micro observation type
xcjt ∈ R Observed product characteristic jn ∈ Jtn ∪ {0} Micro observation choice
xjt ∈ RC×1 All observed product characteristics kn ∈ Jtn ∪ {0} \ {jn} Micro observation second choice
zmjt ∈ R Instrument
zjt ∈ RMA×1 All instruments p = 1, . . . , PM Micro parts
ξjt ∈ R Mean-zero unobserved product quality dp ∈ D Micro part dataset

vpijt ∈ R Micro part value
i ∈ It Consumer types vpijkt ∈ R Second choice micro part value
r = 1, . . . , R Consumer demographics
wit ∈ [0, 1] Consumer type share m = 1, . . . ,MM Micro moments
yrit ∈ R Consumer demographic fm : RPM×1 → R Micro moment function
yit ∈ RR×1 All consumer demographics
νcit ∈ R Unobserved preference vp ∈ R Micro part sample value
νit ∈ RC×1 All unobserved preferences v ∈ RPM×1 All micro part sample values

fm(v) ∈ R Micro moment sample value
uijt ∈ R Indirect utility
δjt ∈ R Mean utility vp(θ) ∈ R Micro part expected value
µijt ∈ R Heterogeneous utility v(θ) ∈ RPM×1 All micro part expected values
εijt ∈ R Idiosyncratic preference fm(v(θ)) ∈ R Micro moment expected value
sijt ∈ (0, 1) Choice probability
sjt ∈ (0, 1) Market share sijkt ∈ (0, 1) Joint choice probability
Sjt ∈ (0, 1) Observed market share sik(-j)t ∈ (0, 1) Probability of choosing k without j

sik(-h(j)t ∈ (0, 1) The same, but without a group h(j)

β ∈ RC×1 Linear parameters
Π ∈ RC×R Consumer demographic parameters M = MA +MM Number of combined moments
Σ ∈ RC×C Unobserved preference parameters ĝ(θ) ∈ RM×1 Combined sample moments

θ = (β,Π,Σ) All parameters Ŵ ∈ RM×M Combined weighting matrix

NA =
∑

t∈T |Jt| Number of aggregate observations Nd = |Nd| Number of micro observations
ĝA(θ) ∈ RMA×1 Aggregate sample moments ĝM(θ) ∈ RMM×1 Micro sample moments

ŴA ∈ RMA×MA Aggregate weighting matrix ŴM ∈ RMM×MM Micro weighting matrix

This table summarizes the notation we introduce in Sections 2 and 4. Subscripts on parameters such as θ0
refer to true values. Subscripts on operators such as PA indicate conditioning on all aggregate data.
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Table 3: Micro Moment Examples

Shorthand Papers

“P(j ∈ Jm | i ∈ Im)” Petrin (2002); Thomadsen (2005); Goeree (2008); Nakamura and Zerom (2010); Beresteanu
and Li (2011); Li (2012); Starc (2014); Ching, Hayashi, and Wang (2015); Li, Xiao, and Liu
(2015); Barwick, Cao, and Li (2017); Li (2018); Li, Gordon, and Netzer (2018); Bodéré (2023)

“E[yrit | j ∈ Jm]” Petrin (2002); Ciliberto and Kuminoff (2010); Li (2012); Copeland (2014); Nurski and Verboven
(2016); Murry (2017); Wollmann (2018); Backus, Conlon, and Sinkinson (2021); Armitage and
Pinter (2022); Döpper, MacKay, Miller, and Stiebale (2022); Durrmeyer (2022); Weber (2022);
Conlon and Rao (2023)

“E[xcjt | i ∈ Im, j ̸= 0]” Starc (2014); Grieco, Murry, and Yurukoglu (2021); Neilson (2021); Weber (2022); Bodéré
(2023); Conlon and Rao (2023)

“C(xcjt, yrit | j ̸= 0)” Berry, Levinsohn, and Pakes (2004); Nurski and Verboven (2016); Backus, Conlon, and Sink-
inson (2021); Durrmeyer (2022); Montag (2023); Calder-Wang and Kim (2024)

“C(xcjt, xek(-j)t | j, k ̸= 0)” Berry, Levinsohn, and Pakes (2004); Grieco, Murry, and Yurukoglu (2021); Montag (2023)

This table lists examples of micro moments that we discuss in Section 5. Each row lists our notation-abusing
shorthand and empirical papers from Table 1 that have used essentially the same micro moment.

Table 4: Demographic Variation

MAE (%) Bias (%)

Variation Distributions Markets π̂1 π̂x β̂1 β̂x α̂ π̂1 π̂x β̂1 β̂x α̂

National 1 40 436.6 133.3 8.3 5.1 1.2 -110.3 -45.6 1.8 2.1 0.1
States 50 40 197.8 60.6 3.9 2.4 1.2 -31.3 -12.6 0.6 0.4 0.1
PUMAs 982 40 97.5 30.0 2.7 1.4 1.2 -5.8 -4.7 0.2 0.2 0.1

National 1 80 327.7 102.8 6.1 4.0 0.9 -98.5 -48.4 2.0 2.1 0.0
States 50 80 139.5 42.7 2.7 1.6 0.9 -7.4 -6.1 0.2 0.2 -0.0
PUMAs 982 80 65.9 21.3 1.9 1.0 0.8 -4.9 -2.4 0.2 0.2 -0.0

This table reports median absolute error (MAE) and median bias of parameter estimates over
1,000 simulated datasets for different amounts of cross-market demographic variation. We ran-
domly assign each market either to the same national distribution of income, to one of 50 US
states, or to one of the 982 Public Use Microdata Areas (PUMAs) used by the American Com-
munity Survey (ACS). In the last three rows, we simulate 40 more markets, keeping the same
demographic distributions as in the first 40, but with different choice sets.

Table 5: Standard Micro Moments

MAE (%) Bias (%)

Micro Moments Shorthand π̂1 π̂x π̂1 π̂x

No Micro Moments 197.8 60.6 -31.3 -12.6
“E[yit | j ̸= 0]” 164.8 44.9 2.9 1.4
“C(x2jt, yit | j ̸= 0)” 53.8 11.7 17.5 2.3
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 34.0 10.8 4.1 1.1

“E[yit | j ̸= 0], E[x2jt · yit | j ̸= 0]” 37.6 12.0 3.2 0.7
“E[yit | j ̸= 0], E[x2jt | yit < yt, j ̸= 0]” 62.7 17.3 0.9 1.0
“E[yit | j ̸= 0], E[x2jt | yit < yt, j ̸= 0], C(x2jt, yit | j ̸= 0)” 34.2 10.7 4.3 1.1

This table reports median absolute error (MAE) and median bias of parameter
estimates over 1,000 simulated datasets for different combinations of standard
micro moments. The cutoff yt is the median income yit in market t.
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Figure 1: Standard Micro Moment Correlations

x2jt yit x2jt 1{yit < yt} log A(t, j, yit n d)
x

x2jt yit

x2jt 1{yit < yt}

log A(t, j, yit n d)
x

1.000 0.405 0.675

0.405 1.000 0.600

0.675 0.600 1.000

This figure reports median absolute correlations be-
tween different micro statistics over 1,000 simulated mi-
cro datasets underlying the micro moments in Table 5.
For each micro observation n in market tn = t of type
in = i with choice jn = j, we compute three statistics:
x2jt · yit captures variation in “E[x2jt · yit | j ̸= 0]” and
“C(x2jt, yit | j ̸= 0)” moments, x2jt · 1{yit < yt} cap-
tures variation in “E[x2jt | yit < yt, j ̸= 0]” moments, and
∂ logPA(t, j, yit | n ∈ Nd)/∂πx is the score for πx at the
true θ0.
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Table 6: Optimal Micro Moments and Compatibility

MAE (%) Bias (%)

Micro Moments (plus E[yit | j ̸= 0]) Incompatible Optimal π̂1 π̂x π̂1 π̂x

“C(x2jt, yit | j ̸= 0)” 34.0 10.8 4.1 1.1
“C(x2jt, yit | j ̸= 0)” Yes 23.8 6.3 -0.6 -0.1

“E[x2jt | yit < yt, j ̸= 0]” 62.7 17.3 0.9 1.0
“E[x2jt | yit < yt, j ̸= 0]” Yes 24.1 6.4 -0.5 -0.4

“E[x2jt | ỹit < yt, j ̸= 0]” Yes 64.4 18.0 0.8 0.7
“E[x2jt | ỹit < yt, j ̸= 0]” Yes Yes 107.1 19.1 104.6 -13.7

This table reports median absolute error (MAE) and median bias of parameter esti-
mates over 1,000 simulated datasets for standard and optimal micro moments. The
first and third rows are the same as the fourth and sixth rows in Table 5. The sec-
ond and fourth rows use these same standard micro moments in the first GMM step
to construct optimal micro moments for the second step. For the last two rows, we
simulate a second, independent micro dataset that is configured the same, except we
replace yit with ỹit: the 25th percentile of income if below the median or the 75th
percentile if above. We use this second dataset for “E[x2jt | ỹit < yt, j ̸= 0]” and in
the last row, optimal micro moments as well.
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Figure 2: Pooling Markets
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This figure reports median absolute error (MAE) and median bias of parameter estimates over 1,000
simulated datasets for an increasing number of micro moments that are pooled across a decreasing
number of markets. On the left, we match the same MM = 2 micro moments “E[yit | j ̸= 0]” and
“C(x2jt, yit | j ̸= 0)” in the fourth row of Table 5, which are pooled across all T = 40 markets. On
the right, we match MM = 80 micro moments “E[yit | j ̸= 0, t]” and “C(x2jt, yit | j ̸= 0, t),” one
for each market t. In the middle, we pool moments across decreasing numbers of markets (factors
of the full 40). We do not use any observables to select which markets to pool for each micro
moments. The top panel reports results for π̂1; the bottom, for π̂x.
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Table 7: Numerical Integration

MAE (%) Bias (%)

Micro Moments (plus “E[yit | j ̸= 0]”) Integration π̂1 π̂x π̂1 π̂x

“C(x2jt, yit | j ̸= 0)” Quadrature 31.6 9.2 -1.9 -1.1
“C(x2jt, yit | j ̸= 0)” Monte Carlo 34.0 10.8 4.1 1.1

“E[x2jt | yit < yt, j ̸= 0]” Quadrature 251.8 71.0 24.6 5.4
“E[x2jt | yit < yt, j ̸= 0]” Monte Carlo 62.7 17.3 0.9 1.0

This table reports median absolute error (MAE) and median bias of pa-
rameter estimates over 1,000 simulated datasets for different choices of
consumer types It for numerically integrating over the lognormal popu-
lation distribution of income yit. “Quadrature” refers to |It| = 7 Gauss-
Hermite nodes and weights that exactly integrate polynomials of degree
2 × 7 − 1 = 13 or less. Quadrature nodes are transformed into nodes for
income with the mean and standard deviation of log income in each mar-
ket. “Monte Carlo” refers to |It| = 1,000 pseudo-Monte Carlo draws from
the true distribution of income. The cutoff yt is the median income yit in
market t.

54



Figure 3: Problem Scaling
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This figure reports median absolute error (MAE) and median bias of parameter estimates over
1,000 simulated datasets as finite sample sizes approach the three asymptotic thought experiments
discussed in Appendix E. In all panels we match the same “E[yit | j ̸= 0]” and “C(x2jt, yit | j ̸= 0)”
moments in the fourth row of Table 5. The leftmost panel fixes the number of products and micro
observations per market and scales up the number of markets, including those with micro data.
The middle panel fixes the number of products per market and the number of markets with micro
data and scales up the number of aggregate markets and the number of micro observations in each
of the fixed number of markets. The rightmost panel fixes the number of markets and scales up
the number of products and micro observations per market.
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Table 8: Unobserved Heterogeneity

MAE (%) Bias (%)

Micro Moments Shorthand Jt = J Optimal π̂1 π̂x σ̂x π̂1 π̂x σ̂x

No Micro Moments 225.7 76.5 3.4 -43.4 -14.6 -0.3
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 39.2 12.1 3.2 3.3 0.1 -0.3
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 29.1 8.3 3.3 -2.8 -0.7 -0.3

No Micro Moments Yes 153.6 79.3 99.5 2.8 21.9 31.8
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 33.6 23.1 94.0 -0.8 -13.8 -82.3
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes Yes 31.8 24.0 99.2 -5.5 -17.9 -86.4

This table reports median absolute error (MAE) and median bias of parameter estimates
over 1,000 simulated datasets with unobserved preferences for different amounts of choice
set variation and different micro moments. We draw unobserved preferences ν2it from the
standard normal distribution and add σxx2jtν2it to µijt with the true σ0x = 0.5. In the bot-
tom three rows, we use the same choice set Jt = J in each market, cluster our estimates of
the asymptotic covariance matrix for ξjt by product j, and use the number of markets T as
the number of aggregate observations NA.

Table 9: Second Choices

MAE (%) Bias (%)

Micro Moments (plus “E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)”) Optimal π̂1 π̂x σ̂x π̂1 π̂x σ̂x

No Second Choice Moments 33.2 23.2 94.4 -0.9 -14.0 -82.7
“C(x2jt, x2k(-j)t | j, k ̸= 0)” 33.9 12.0 16.4 3.7 0.3 -2.3
“E[x2jt + x2k(-j)t | j, k ̸= 0]” 34.0 10.4 5.3 4.4 1.7 -0.5
“P(x2k(-j)t < x2t | x2jt ⋛ x2t, j, k ̸= 0)” 34.7 11.0 12.5 3.5 1.9 -2.9
“P(x2k(-j)t < x2t | x2jt ⋛ x2t, j, k ̸= 0)” Yes 16.9 4.8 4.3 -0.3 -0.8 -1.0

This table reports median absolute error (MAE) and median bias of parameter estimates over 1,000
simulated datasets with unobserved preferences for different micro moments based on second choice
data. We draw unobserved preferences ν2it from the standard normal distribution and add σxx2jtν2it
to µijt with the true σ0x = 0.5. To eliminate cross-market choice set variation, we use the same choice
set Jt = J in each market, cluster our estimates of the asymptotic covariance matrix for ξjt by prod-
uct j, and use the number of markets T as the number of aggregate observations NA. In addition to
the main micro dataset, we simulate a second, independent micro dataset that is configured the same,
except that it also reports second choices. The shorthand “P(x2k(-j)t < x2t | x2jt ⋛ x2t, j, k ̸= 0)”
refers to two moments that match the share of individuals who divert from a below- or above-median
x2jt first choice j to a below-median x2kt second choice k.
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Figure 4: Second Choice Micro Moment Correlations

x2jt x2k( j)t x2jt + x2k( j)t 1{x2jt < x2t} ×  
1{x2k( j)t < x2t}

log A(t, j, k, yit n d)
x

x2jt x2k( j)t

x2jt + x2k( j)t

1{x2jt < x2t} ×  
1{x2k( j)t < x2t}

log A(t, j, k, yit n d)
x

1.000 0.998 0.155 0.256

0.998 1.000 0.176 0.256

0.155 0.176 1.000 0.034

0.256 0.256 0.034 1.000

This figure reports median absolute correlations be-
tween different micro statistics over 1,000 simulated mi-
cro datasets underlying the second choice moments in Ta-
ble 9. For each micro observation n in market tn = t
of type in = i with choices jn = j and kn = k, we
compute four statistics: x2jt · x2k(-j)t captures variation
in “C(x2jt, x2k(-j)t | j, k ̸= 0)” moments, x2jt + x2k(-j)t
captures variation in “E[x2jt + x2k(-j)t | j, k ̸= 0]” mo-
ments, 1{x2jt < x2t} · 1{x2k(-j)t < x2t} captures variation
in “P(x2k(-j)t < x2t | x2jt < x2t, j, k ̸= 0)” moments, and
∂ logPA(t, j, k, yit | n ∈ Nd)/∂σx is the score for σx at the
true θ0.
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Table 10: Predicting Substitution from Seattle’s Sweetened Beverage Tax

Micro Moments

Aggregate Standard Diversion Optimal

Price/Ounce Constant -52.645 -52.343 -38.538 -37.902

Coefficients (4.660) (4.694) (4.034) (4.217)

High Income Household 3.549 3.178 4.062

(0.940) (1.046) (0.992)

Child in Household -6.915 -8.119 -11.105

(1.274) (1.406) (1.458)

Unobserved Preference 19.631 19.229 15.256 14.941

(1.802) (1.805) (2.569) (2.749)

Inside Goods High Income Household -0.053 0.348 -0.278

Coefficients (0.040) (0.130) (0.120)

Child in Household 0.498 1.210 1.884

(0.050) (0.239) (0.355)

Unobserved Preference 4.964 5.178

(0.387) (0.410)

Diet Formula High Income Household 0.708 0.999 0.684

Coefficients (0.043) (0.142) (0.124)

Child in Household -0.852 -1.463 -1.037

(0.056) (0.271) (0.216)

Unobserved Preference 2.606 2.671

(0.868) (0.950)

Small Sized High Income Household -0.690 -0.710 -0.662

Coefficients (0.060) (0.061) (0.058)

Child in Household 0.689 0.716 0.641

(0.069) (0.071) (0.066)

Standard Micro “P(Highit | j ̸= 0) = 0.597” 0.597 0.597 0.561

Statistics “P(Childit | j ̸= 0) = 0.203” 0.203 0.203 0.228

“C(Pricejt,Highit | j ̸= 0) = -0.0004” -0.0004 -0.0004 -0.0002

“C(Pricejt,Childit | j ̸= 0) = -0.0001” -0.0001 -0.0001 -0.0004

“C(Dietjt,Highit | j ̸= 0) = 0.0355” 0.0355 0.0355 0.0220

“C(Dietjt,Childit | j ̸= 0) = -0.0264” -0.0264 -0.0264 -0.0172

“C(Smalljt,Highit | j ̸= 0) = -0.0207” -0.0207 -0.0207 -0.0192

“C(Smalljt,Childit | j ̸= 0) = 0.0116” 0.0116 0.0116 0.0089

Diversion Micro “P(k(-b(j)) = 0 | Surveyed Non-dietjt) = 0.16” 0.92 0.93 0.16 0.14

Statistics “P(Dietk(-b(j))t | Surveyed Non-dietjt) = 0.17” 0.03 0.03 0.17 0.17

Continued on the next page.
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Continued from the previous page.

Aggregate Standard Diversion Optimal

Aggregate Product-Retailer-Quarters 78,161 78,161 78,161 78,161

Observations ↪→ Products 2,672 2,672 2,672 2,672

↪→ Retailers 5 5 5 5

↪→ Quarters (Markets) 40 40 40 40

↪→ Brands (Clusters) 425 425 425 425

Fixed Product-Retailers 5,815 5,815 5,815 5,815

Effects Retailer-Quarters 200 200 200 200

Micro Grocery Trips 10,455 10,455 10,455

Observations ↪→ Household-Years 1,130 1,130 1,130

↪→ Survey Years 10 10 10

Second Choice Responses 100 100

Tax Weighted Average Taxed Elasticity -1.354 -1.349 -1.327 -1.320

Counterfactual (0.064) (0.065) (0.090) (0.095)

Taxed Volume Change (%) -30.095 -29.973 -15.870 -15.652

(1.439) (1.452) (1.676) (1.487)

↪→ Low Income Households -31.134 -16.472 -16.289

(1.435) (1.941) (1.635)

↪→ High − Low Income 1.967 1.026 1.104

(0.778) (0.895) (0.615)

↪→ Households without Children -28.790 -15.282 -14.508

(1.471) (1.760) (1.626)

↪→ With − without Children -4.891 -2.475 -4.793

(0.915) (1.492) (2.218)

Untaxed Volume Change (%) 0.872 0.835 9.238 9.383

(0.036) (0.039) (3.430) (3.490)

↪→ Low Income Households 0.948 12.782 11.643

(0.040) (4.000) (3.919)

↪→ High − Low Income -0.163 -5.114 -3.522

(0.039) (1.370) (0.850)

↪→ Households without Children 0.736 8.096 8.453

(0.035) (3.256) (3.246)

↪→ With − without Children 0.620 7.234 4.740

(0.064) (1.540) (1.955)

This table reports results for the empirical example described in Section 8. From left to right, we
report estimates using aggregate moments, adding standard micro moments, adding second choice
moments, and replacing standard micro moments with the optimal micro moments described in Sec-
tion 6. Standard errors are clustered by brand for the aggregate moments and are in parentheses; we
compute those for tax counterfactual with a parametric bootstrap.
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A. Lognormal Price Coefficient

Perhaps the most popular variant of the BLP-style model in Section 2 is one in which we

replace the random coefficient βcit on price xcjt = pjt with a negative lognormal random

coefficient:

αcit = − exp(Πcyit + Σcνit) < 0, νit ∼ N(0, I). (A1)

One reason this variant is popular is that it guarantees downward-sloping demand for

all consumers. This is in contrast to a normally distributed αcjt, which would give upward-

sloping demand for consumer types with very positive unobserved preferences νcit for price.

When using this variant, which is fully supported by PyBLP, one drops the linear co-

efficient in β on price and instead estimates a nonlinear coefficient in Π on a constant

demographic to shift the level of αcit. Typically, one may also wish to estimate another non-

linear coefficient in Π on income to reflect wealth effects, and potentially a third nonlinear

coefficient in Σ to reflect unobserved heterogeneity in price sensitivity that is not accounted

for by measured income. In addition to an instrument for endogenous prices such as a cost

shifter, one will also want to interact this with mean income and build a differentiation IV

from it to have three instruments for the three parameters that govern the distribution of

αcit.

Intuition from Scores

To build intuition about which micro moments may help estimate the parameters that gov-

ern a lognormal random price coefficient, consider the simplest case with C = 1 observed

characteristic, price pjt; R = 1 demographic, income yit; no unobserved heterogeneity, Σ = 0;

and a micro dataset d with no selection, wdijt = 1. The score for πp in αit = exp(πpyit) is

the same as in (24), but the derivative of indirect utility for j ̸= 0 with respect to πp is now

∂uijt

∂πp

=
∂µijt

∂πp

+
∂δjt
∂πp

= pjt · αit · yit +
∂δjt
∂πp

. (A2)

Compared to the linear random coefficient case in (25), the first term is now scaled by αit.

A first-order Taylor approximation around πp = 0 gives pjt ·αit ·yit ≈ pjt ·yit+πp ·pjt ·y2it.
This suggests that the most important moment to match is again “C(pjt, yit | j ̸= 0).” To the

extent that higher-order terms explain more variation in the score, it may also help to match

a “C(pjt, y2it | j ̸= 0)” moment, if available. Moments of the form “E[pjt | yit < yt, j ̸= 0]”

are more likely to be collected by surveys, and may also help to better span the curvature
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in the score introduced by the lognormal coefficient.

Monte Carlo Results

To illustrate the performance of the micro BLP estimator with a lognormal price coefficient,

we modify our Monte Carlo configuration described in Section 7 with unobserved hetero-

geneity for x2jt to instead have a lognormal random coefficient on price:

µijt = π1yit + αitpjt, αit = − exp(α + πpyit + σpν3it), (A3)

in which we draw ν3it from the standard normal distribution, and use 1,000 scrambled Halton

draws (Owen, 2017) to approximate this distribution during estimation.

In Table A1 we illustrate the impact of the micro moments discussed above. Without any

micro moments, π̂1 and π̂p have substantial variance because they are identified only from

limited cross-market variation in the distribution of income. This only slightly contaminates

the estimator of σp, which is otherwise well-estimated because our default configuration has

a great deal of cross-market choice set variation.

Like with a normally distributed coefficient, matching “E[yit | j ̸= 0]” and “C(pjt, yit | j ̸=
0)” substantially reduces the variance of the estimators. Incorporating a “C(pjt, y2it | j ̸= 0)”

moment does not seem to be particularly helpful, suggesting that at least in this simulation,

the first term in a Taylor approximation to the score explains most of the variation. Finally,

optimal micro moments that require the full micro dataset reduce the bias and variance of

the estimator even more.

Table A1: Lognormal Price Coefficient

MAE (%) Bias (%)

Micro Moments Shorthand Optimal π̂1 π̂p σ̂p π̂1 π̂p σ̂p

No Micro Moments 809.8 195.4 3.6 26.2 -24.8 -0.8
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0)” 47.7 12.8 3.0 -4.4 2.0 -0.0
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0), C(pjt, y2it | j ̸= 0)” 47.4 13.0 3.0 -3.8 1.9 -0.1
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0), C(pjt, y2it | j ̸= 0)” Yes 37.0 11.0 3.1 1.1 0.8 -0.1

This table reports median absolute error (MAE) and median bias of parameter estimates over
1,000 simulated datasets for different combinations of micro moments with a lognormal price
coefficient.
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B. Nested Logit and RCNL

Another popular variant of the BLP-style model in Section 2 is one in which we replace type

I extreme value idiosyncratic preferences εijt with those that follow the assumptions of a two-

level nested logit (McFadden, 1978; Cardell, 1997). The resulting random coefficients nested

logit (RCNL) model of Brenkers and Verboven (2006), which is fully supported by PyBLP,

is popular in applications where the most important characteristic governing substitution is

categorical, with categories or nests h ∈ Ht in each market t ∈ T . Each product j ∈ Jt is in

nest h(j) ∈ Ht and each nest h ∈ Ht contains products Jht ⊂ Jt.

Within-category correlation of εijt is governed by a new parameter ρ.99 PyBLP also

supports assigning a different parameter ρh to each category h, but for notational simplicity,

we focus on the case here with a common nesting parameter. The nested logit probability

that a consumer of type i ∈ It chooses a product j ∈ Jt is
100

sijt = sih(j)t · sijt|h(j) =
exp[(1− ρ) · IVih(j)t]

1 +
∑

h∈Ht
exp[(1− ρ) · IViht]

· expVijt

exp IVih(j)t

, (B1)

in which Vijt = (δjt + µijt)/(1− ρ) is the scaled non-idiosyncratic indirect utility from j and

IViht = log
∑

j∈Jht
expVijt is McFadden’s (1978) “inclusive value” of h.

In Conlon and Gortmaker (2020) we discuss recommended practices for this extension

to the aggregate estimator.101 Salanié and Wolak (2022) extend their FRAC approximation

discussed in Section 3 and Appendix C to the RCNL case. Although these results could be

used to extend our full FRAC expression in Appendix C, the resulting estimating equation

would be less interpretable and nonlinear in ρ, so we do not derive this extension ourselves.

Ackerberg and Rysman (2005) study identification of the nested logit model and illustrate

how the nested logit structure gives rise to two key sources of aggregate variation that can

each identify ρ: cross-category switching due to changes in product characteristics xjt and

cross-category switching due to changes in the number of products Jht = |Jht|. Although it is

convenient that ρ can be identified from different sources of aggregate variation, Ackerberg

and Rysman (2005) also argue that the strong restrictions imposed by the nested logit

structure that lead to this behavior can be undesirable. Their solution is to include the

number of products in xjt so that it is clear what variation identifies ρ. An alternative

99Within nest h(j) = h(k) = h, the correlation between εijt and εikt was originally derived by Oliveira
(1959) to be 1− (1− ρ)2.
100We impose the same normalization δ0t = µi0t = 0 and put the outside alternative in its own nest

h(0) = 0. Its inclusive value is then IVi0t = 0, giving the one in the denominator of sih(j)t.
101We use slightly different notation here to make score expressions less cumbersome.
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approach would be to match only micro statistics, discussed below, that the researcher

believes are intuitive sources of identifying variation.

Intuition from Scores

One concern is that with a nesting structure, intuition about the score for Π from Section 6

may be different. It turns out that this is not the case. The score for a scalar Π = π is

∂ logPA(tn = t, jn = j, yintn = yit | n ∈ Nd)

∂π

=
∂Vijt

∂π
−
(
ρ
∑

k∈Jh(j)t

sikt|h(j) ·
∂Vikt

∂π
+ (1− ρ)

∑
k∈Jt

sikt ·
∂Vikt

∂π

)
,

(B2)

in which the derivative of the scaled value with respect to π is

∂Vijt

∂π
=
(
xjt · yit +

∂δjt
∂π

)
/(1− ρ). (B3)

These expressions are very similar to their non-nested counterparts in (24) and (25).

The only term directly observed in the micro data is xjt · yit, suggesting that the standard

“C(xjt, yit | j ̸= 0)” moment should still be very informative about π. In the next subsection,

we confirm this intuition in a small Monte Carlo experiment.

To build intuition about which micro moments will be most useful for estimating the new

parameter ρ, consider the case without any unobserved heterogeneity, Σ = 0, and a micro

dataset d with no selection, wdijt = 1. The score for ρ is

∂ logPA(tn = t, jn = j, yintn = yit | n ∈ Nd)

∂ρ
(B4)

=
∂Vijt

∂ρ
− IVih(j)t −

(
ρ
∑

k∈Jh(j)t

sikt|h(j) ·
∂Vikt

∂ρ
+ (1− ρ)

∑
k∈Jt

sikt ·
∂Vikt

∂ρ
−
∑
h∈Ht

siht · IViht

)
.

Noting the similarity to the score for π in (24), we again focus on the first couple of terms.

The derivative of the scaled value with respect to ρ is

∂Vijt

∂ρ
=
(
Vijt +

∂δjt
∂ρ

)
/(1− ρ). (B5)

Intuitively, Vijt will correlate with particularly important parts of utility, suggesting that

most types of micro moments discussed so far may help at least a little to estimate ρ.

The derivative
∂δjt
∂ρ

can in general be quite complicated, but without any heterogeneity,
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Π = Σ = 0, it simplifies to
∂δjt
∂ρ

= − log sjt|h(j) where sjt|h(j) is the share of j within its

category h(j).102 Finally, IVih(j)t is the inclusive or expected value from all products in h(j).

Both sjt|h(j) and IVih(j)t will correlate with the category size Jh(j)t. However, in the spirit

of Ackerberg and Rysman (2005), we may not believe that such moments are particularly

credible sources of identification.

Unlike Π, micro data that only links demographics to first choices does not appear to

be particularly useful for estimating ρ because such demographics do not explicitly show

up in its score. Like Σ, however, second choice data is potentially more promising. This is

not surprising—a nesting structure is the same as including random coefficients on category

indicator variables with a particular distribution.

Recalling that sijkt = sik(-j)t− sikt, the score for ρ on a micro dataset with second choices

is sik(-j)t/sijkt times (B4) replacing j with k and with contributions from j removed, minus

sikt/sijkt times (B4) replacing j with k and still with contributions from j. The terms that

we have been focusing on are

∂Vikt

∂ρ
−
(sik(-j)t

sijkt
· log

∑
ℓ∈Jh(k)t\{j}

expViℓt −
sikt
sijkt

· log
∑

ℓ∈Jh(k)t

expViℓt

)
. (B6)

The second choice score looks very different when the choices are in the same category

compared to when they are in different categories. For example, when in different cate-

gories, the above expression simplifies to ∂Vikt

∂ρ
− IVih(k)t. This motivates matching the share

“P(h(j) = h(k) | j, k ̸= 0)” of individuals who would not divert to a different category, which

is a fairly intuitive source of identifying variation for ρ. If using different nesting parameters

for different categories, one could match a separate share for diversion from each category.

Further inspection of the second choice score could yield additional moments, although they

may provide less credible sources of identification.

Monte Carlo Results

To illustrate the performance of the micro BLP estimator with a nesting structure, we modify

our baseline Monte Carlo configuration described in Section 7. We randomly assign each

product j to one of |Ht| = 3 categories or nests h(j) with probabilities 0.1, 0.3, and 0.6, and

re-draw nests until each |Jht| ≥ 2. The true nesting parameter is ρ0 = 0.2.

In Table B1 we illustrate the impact of the micro moments discussed above. Just like

for the non-nested model, matching “E[yit | j ̸= 0]” and C(x2jt, yit | j ̸= 0)” substantially

102For this simple nested logit model, Berry (1994) derived δjt = log(sjt/s0t)− ρ log sjt|h(j).

73



reduces the variance of the estimators for π1 and πx. With substantial cross-market choice

set variation in the first two rows, ρ̂ has very low bias and variance, just like σ̂x in our

configuration with unobserved preferences for x2jt in Section 7.

Also like the configuration with unobserved preferences, using the same choice set Jt = J
in the third row eliminates cross-market choice set variation, substantially increasing the bias

and variance of ρ̂. Intuitively, just like how cross-market choice set variation is needed to

credibly identify Σ, it is also needed to credibly identify ρ with just aggregate data.

In the following rows, we illustrate the benefits of second choice data. First, we match

the same moments that we considered for targeting σx: the covariance between the exoge-

nous product characteristic for first and second choices, the sum of these, and the share of

consumers who divert from a low- or high-x2jt first choice to a low-x2kt second choice. Each

substantially improves the performance of ρ̂, even though these moments are not specifically

“targeted” to the nested case.

We also consider matching the share of individuals who would not divert to a different

category, which, as discussed above, is a fairly intuitive source of identifying variation for

ρ. Unsurprisingly, this targeted moment performs the best, delivering very low variance.

Finally, optimal micro moments that require the full micro dataset reduce the bias and

variance of the estimator even more.

Table B1: Nesting Parameter

MAE (%) Bias (%)

Micro Moments Shorthand Jt = J Optimal π̂1 π̂x ρ̂ π̂1 π̂x ρ̂

No Micro Moments 210.9 67.8 3.7 -10.0 -1.1 0.2
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 36.8 11.1 3.3 -1.1 -0.4 0.1

“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 44.7 14.2 65.3 20.9 5.4 -28.8
and “C(x2jt, x2kt | j, k ̸= 0)” Yes 28.2 8.7 6.5 2.3 0.5 -0.3
and “E[x2jt + x2kt | j, k ̸= 0]” Yes 28.6 9.3 6.5 5.3 0.9 -0.5
and “P(x2kt < x2t | x2jt ⋛ x2t, j, k ̸= 0)” Yes 26.4 8.5 4.8 4.6 1.0 -0.2
and “P(h(j) = h(k) | j, k ̸= 0)” Yes 27.6 8.9 1.2 4.0 0.8 -0.2
and “P(h(j) = h(k) | j, k ̸= 0)” Yes Yes 10.6 2.8 1.1 -1.6 -0.6 -0.0

This table reports median absolute error (MAE) and median bias of parameter estimates over
1,000 simulated datasets for different combinations of micro moments with a nesting parameter.
After the first two rows, we use the same choice set Jt = J in each market, cluster our estimates
of the asymptotic covariance matrix for ξjt by product j, and use the number of markets T as
the number of aggregate observations NA. In addition to the main micro dataset, we simulate a
second, independent micro dataset that is configured the same, except that it also reports second
choices. The shorthand “P(x2kt < x2t | x2jt ⋛ x2t, j, k ̸= 0)” refers to two moments that match
the share of individuals who divert from a below- or above-median x2jt first choice j to a below-
median x2kt second choice k.
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C. FRAC Approximation

Salanié and Wolak (2022) approximate the aggregate BLP estimator with a “small-σ” expan-

sion, which gives a linear two stage least squares estimator that is fast to compute, “robust”

to different high moments of random coefficients,103 and approximately correct (“FRAC”).

For detailed discussion of the limitations and benefits of the FRAC estimator, see Salanié

and Wolak (2022). In (8) we wrote down the FRAC estimator for the simplest scalar case

with C = 1 product characteristic and R = 1 demographic.

Here, using the notation in this paper, we write down the FRAC estimator for the full

model with c = 1, . . . , C characteristics, r = 1, . . . , R demographics, and indirect utility

given by (1) to (3). This estimator is derived by Salanié and Wolak (2022), whose paper

contains many more details about the estimator and its performance. We rewrite expressions

in the original paper to assist readers who are more familiar with our notation.

A second-order Taylor expansion of the Berry, Levinsohn, and Pakes (1995) inversion

around (Π,Σ) = 0 yields

log
sjt
s0t

=
∑
c

βc · xcjt +
∑
c′≤c

(ΣΣ′)cc′ · acc′jt

+
∑
c

∑
r

Πcr ·my
rt · xcjt +

∑
c′≤c

∑
r, r′

Πcr · Πc′r′ · vyrr′t · acc′jt

+ ξjt +O
(
∥ Π

Σ ∥
3/2
)
,

(C1)

in which the within-market mean of demographic r ismy
rt =

∑
i∈It wit ·yrit, the within-market

covariance between demographics r and r′ is vyrr′t =
∑

i∈It wit · (yrit−my
rt) · (yr′it−my

r′t), and

“artificial regressors” are

acc′jt =


(

xcjt

2
−
∑

k∈Jt
skt · xckt

)
· xcjt if c′ = c,

xcjt · xc′jt − xcjt

∑
k∈Jt

skt · xc′kt − xc′jt

∑
k∈Jt

skt · xckt if c′ ̸= c.
(C2)

In practice, one would ignore the approximation term in (C1) and estimate the regression

using standard instruments for the endogenous regressors (including the artificial regressors).

A small complication is that Π enters both linearly and quadratically. When the number of

characteristics and demographics are reasonably small, it is perhaps simplest to treat each

103By “robust,” the authors mean that the approximate estimator depends only on the first two moments
of the random coefficients and not higher moments. In more recent versions of the paper, the authors use
“detail-free” but keep the “FRAC” acronym.
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Πcr · Πc′r′ as an additional unconstrained parameter, and to estimate Π only from cross-

market variation in demographic means my
rt, while “controlling” for each of the C2 × R2

covariates vyrr′t · acc′jt.
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D. Petrin (2002) Replication

We estimate the model of Petrin (2002) and replicate its primary counterfactual: quantifying

the consumer welfare gain from the introduction of the minivan. This paper was the first

to incorporate micro moments into the BLP framework, and its counterfactual highlights

how important it can be to incorporate demographics. Like Berry, Levinsohn, and Pakes

(1995), Petrin (2002) also derives an additional set of aggregate moment conditions from

the first-order pricing conditions of firms. We demonstrate how to construct and solve the

problem with PyBLP in Figure D1.

After confirming that we can exactly replicate the published estimates from the original

paper’s IV logit model, we estimate the paper’s micro BLP model and calculate counterfac-

tual welfare twice. First, we follow the original paper by using the sample covariance matrix

of micro moments estimated from the full micro data. Second, we discard this matrix and

let PyBLP estimate the moments’ covariances at first-step parameter estimates. The appeal

of the latter approach is that it only requires summary statistics from the micro data, not

their covariances, which will often not be reported by surveys. The two approaches are

asymptotically equivalent, and we get nearly identical estimates.

We report our results in Table D1. Compared with the published estimates, results are

similar, particularly those for marginal costs, although there are some substantial differences

for the price and random coefficients.104 In particular, we estimate somewhat lower price

elasticities. We do get a similar estimate for the headline 1984 compensating variation

from the introduction of the minivan: $430 million (with a standard error of $250 million)

compared with $367 million estimated by the original paper. In line with the original paper,

a large difference compared to the estimate under the logit model highlights the importance

of including demographics in this setting.105 We do not report estimates with optimal micro

moments because the original paper’s replication package does not include the complete

(proprietary) micro data, only summary statistics.

We cannot perfectly replicate the original paper because its replication package does

not include the importance sampling nodes and weights used in the final specification. In-

stead, we use 1,000 scrambled Halton draws (Owen, 2017), and find that after this point,

104Results would also be similar for the base coefficients, but Petrin (2002) uses a truncated χ2(3) distribu-
tions for unobserved preferences, which, unlike the more standard N(0, 1) distributions, are not mean zero,
so differences in random coefficients that scale unobserved preferences shift mean preferences.
105The original paper only reports compensating variation for the logit model across multiple years, so we

compute compensating variation for 1984 ourselves in the first column of Table D1. The logit parameter
estimates in Table D1 are our own, and match those in the original paper up to rounding error.
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increasing this number does not much change our estimates. Another important difference is

that instead of using the derivative-free Nelder-Mead algorithm, which can be slow and per-

form poorly (Conlon and Gortmaker, 2020) we supply analytic gradients to a BFGS-based

optimizer, and confirm that we get the same estimates for different sets of starting values.
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Figure D1: Petrin (2002) Replication Code
import numpy as np

import pandas as pd

from pyblp import data, Problem, Formulation, MicroDataset, MicroPart, MicroMoment, Optimization, Iteration

# Configure the aggregate problem: linear demand ("X1"), nonlinear demand ("X2"), marginal costs ("X3"), and demographics

problem = Problem(

product_formulations=[

Formulation('1 + hpwt + space + air + mpd + fwd + mi + sw + su + pv + pgnp + trend + trend2'),

Formulation('1 + I(-prices) + hpwt + space + air + mpd + fwd + mi + sw + su + pv'),

Formulation('1 + log(hpwt) + log(wt) + log(mpg) + air + fwd + trend * (jp + eu) + log(q)'),

],

costs_type='log',

agent_formulation=Formulation('1 + I(low / income) + I(mid / income) + I(high / income) + I(log(fs) * fv) + age + fs + mid + high'),

product_data=pd.read_csv(data.PETRIN_PRODUCTS_LOCATION),

agent_data=pd.read_csv(data.PETRIN_AGENTS_LOCATION),

)

# Configure the micro dataset: name, number of observations, and a function that computes sampling weights

micro_dataset = MicroDataset("CEX", 29125, lambda t, p, a: np.ones((a.size, 1 + p.size)))

# Configure micro moment parts: names, datasets, and functions that compute micro values

age_mi_part = MicroPart("E[age_i * mi_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 7]]))

age_sw_part = MicroPart("E[age_i * sw_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 8]]))

age_su_part = MicroPart("E[age_i * su_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 9]]))

age_pv_part = MicroPart("E[age_i * pv_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 10]]))

fs_mi_part = MicroPart("E[fs_i * mi_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 7]]))

fs_sw_part = MicroPart("E[fs_i * sw_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 8]]))

fs_su_part = MicroPart("E[fs_i * su_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 9]]))

fs_pv_part = MicroPart("E[fs_i * pv_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 10]]))

inside_mid_part = MicroPart("E[1{j > 0} * mid_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 7], np.r_[0, p.X2[:, 0]]))

inside_high_part = MicroPart("E[1{j > 0} * high_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 8], np.r_[0, p.X2[:, 0]]))

mi_part = MicroPart("E[mi_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 7]]))

sw_part = MicroPart("E[sw_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 8]]))

su_part = MicroPart("E[su_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 9]]))

pv_part = MicroPart("E[pv_j]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 10]]))

mid_part = MicroPart("E[mid_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 7], np.r_[1, p.X2[:, 0]]))

high_part = MicroPart("E[high_i]", micro_dataset, lambda t, p, a: np.outer(a.demographics[:, 8], np.r_[1, p.X2[:, 0]]))

# Configure micro moments: names, observed values, parts, and functions that combine parts

compute_ratio = lambda v: v[0] / v[1]

compute_ratio_gradient = lambda v: [1 / v[1], -v[0] / v[1]**2]

micro_moments = [

MicroMoment("E[age_i | mi_j]", 0.783, [age_mi_part, mi_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[age_i | sw_j]", 0.730, [age_sw_part, sw_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[age_i | su_j]", 0.740, [age_su_part, su_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[age_i | pv_j]", 0.652, [age_pv_part, pv_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | mi_j]", 3.86, [fs_mi_part, mi_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | sw_j]", 3.17, [fs_sw_part, sw_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | su_j]", 2.97, [fs_su_part, su_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[fs_i | pv_j]", 3.47, [fs_pv_part, pv_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[1{j > 0} | mid_i]", 0.0794, [inside_mid_part, mid_part], compute_ratio, compute_ratio_gradient),

MicroMoment("E[1{j > 0} | high_i]", 0.1581, [inside_high_part, high_part], compute_ratio, compute_ratio_gradient),

]

# Configure two-step minimum distance: starting values, numerical optimization, clustered aggregate moments, and micro moments

problem_results = problem.solve(

sigma=np.diag([3.23, 0, 4.43, 0.46, 0.01, 2.58, 4.42, 0, 0, 0, 0]),

pi=np.array([

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 7.52, 31.13, 34.49, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0.57, 0, 0, 0, 0],

[0, 0, 0, 0, 0.28, 0, 0, 0, 0],

[0, 0, 0, 0, 0.31, 0, 0, 0, 0],

[0, 0, 0, 0, 0.42, 0, 0, 0, 0],

]),

optimization=Optimization('bfgs', {'gtol': 1e-4}),

iteration=Iteration('squarem', {'atol': 1e-13}),

se_type='clustered',

W_type='clustered',

micro_moments=micro_moments,

)

This Python code demonstrates how to construct and solve the problem from Petrin (2002) with
PyBLP. Names in the formulation objects correspond to variable names in the datasets, which are
packaged with PyBLP. Micro moment values are from Table 6a in the working paper version of
Petrin (2002). We report replication results from running this code in the rightmost column of
Table D1.

79



Table D1: Petrin (2002) Replication

Replicated with

Different Micro Covariances

Logit Published Micro Data Estimated

Price Low Income 0.13 7.52 3.81 3.86

Coefficients (0.01) (1.24) (0.36) (0.36)

Middle Income 0.13 31.13 11.93 12.06

(0.01) (4.07) (1.00) (1.01)

High Income 0.13 34.49 23.56 23.79

(0.01) (2.56) (2.43) (2.40)

Base Constant -10.05 -15.67 -8.81 -8.91

Coefficients (0.34) (4.39) (1.39) (1.42)

Horsepower/Weight 3.79 -2.83 8.42 8.34

(0.47) (8.16) (2.27) (2.40)

Size 3.25 4.80 4.93 4.89

(0.27) (3.57) (1.71) (1.61)

Air Conditioning Standard 0.22 3.88 3.59 3.81

(0.08) (2.21) (1.24) (1.22)

Miles/Dollar 0.05 -15.79 -0.13 -0.14

(0.06) (0.87) (0.33) (0.32)

Front Wheel Drive 0.15 -12.32 -6.48 -6.45

(0.06) (2.36) (1.83) (1.81)

Minivan -0.10 -5.65 -1.98 -2.10

(0.15) (0.68) (0.46) (0.48)

Station Wagon -1.12 -1.31 -1.31 -1.33

(0.06) (0.36) (0.25) (0.20)

Sport-utility -0.62 -4.38 -1.08 -1.08

(0.11) (0.41) (0.29) (0.28)

Full-size Van -1.89 -5.26 -3.34 -3.31

(0.13) (1.30) (0.57) (0.52)

Percent Change in GNP 0.04 0.24 0.03 0.03

(0.01) (0.02) (0.01) (0.01)

Random Constant 3.23 -0.00 0.03

Coefficients (0.72) (0.54) (0.53)

Horsepower/Weight 4.43 0.03 0.12

(1.60) (0.83) (0.81)

Size 0.46 -0.12 -0.09

(1.07) (0.68) (0.61)

Air Conditioning Standard 0.01 -1.16 -1.33

(0.78) (1.03) (1.09)

Miles/Dollar 2.58 -0.16 -0.16

(0.14) (0.22) (0.22)

Front Wheel Drive 4.42 1.62 1.62

(0.79) (0.37) (0.37)

Minivan 0.57 0.40 0.42

(0.10) (0.05) (0.05)

Station Wagon 0.28 0.16 0.17

(0.09) (0.06) (0.04)

Continued on the next page.
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Continued from the previous page.

Logit Published Micro Data Estimated

Sport-utility 0.31 0.10 0.10

(0.09) (0.06) (0.05)

Full-size Van 0.42 0.25 0.25

(0.21) (0.10) (0.08)

Cost Constant 1.50 1.38 1.40

Coefficients (0.08) (0.14) (0.14)

log(Horsepower/Weight) 0.84 0.88 0.88

(0.03) (0.05) (0.05)

log(Weight) 1.28 1.42 1.41

(0.04) (0.08) (0.08)

log(Miles/Gallon) 0.23 0.13 0.12

(0.04) (0.06) (0.06)

Air Conditioning Standard 0.24 0.27 0.27

(0.01) (0.02) (0.02)

Front Wheel Drive 0.01 0.07 0.07

(0.01) (0.02) (0.02)

Trend -0.01 -0.01 -0.01

(0.01) (0.00) (0.00)

Japan 0.12 0.10 0.10

(0.01) (0.03) (0.03)

Japan × Trend -0.01 0.00 0.00

(0.01) (0.00) (0.00)

Europe 0.47 0.46 0.46

(0.03) (0.04) (0.04)

Europe × Trend -0.01 -0.01 -0.01

(0.01) (0.00) (0.00)

log(Quantity) -0.05 -0.07 -0.07

(0.01) (0.01) (0.01)

Micro “P(Middle Ageit | Minivanjt) = 0.783” 0.750 0.749 0.754

Moments “P(Middle Ageit | Station Wagonjt) = 0.730” 0.675 0.677 0.683

“P(Middle Ageit | Sport-utilityjt) = 0.740” 0.663 0.680 0.681

“P(Middle Ageit | Full-size Vanjt) = 0.652” 0.725 0.730 0.729

“E[Family Sizeit | Minivanjt] = 3.86” 3.85 3.83 3.87

“E[Family Sizeit | Station Wagonjt] = 3.17” 3.19 3.15 3.18

“E[Family Sizeit | Sport-utilityjt] = 2.97” 3.02 2.98 2.98

“E[Family Sizeit | Full-size Vanjt] = 3.47” 3.44 3.51 3.49

“P(j ̸= 0 | Middle Incomeit) = 0.0794” 0.0807 0.0799 0.0799

“P(j ̸= 0 | High Incomeit) = 0.1581” 0.1596 0.1598 0.1602

Minivan 1984 Compensating Variation (Dollars, Millions) 1,240.34 367.29 429.89 425.91

Innovation (242.46) (250.10) (224.57)

This table reports replication results for Petrin (2002). From left to right, we report our exactly replicated
IV logit estimates, micro BLP estimates from the original paper, replication results with micro moment
covariances estimated from the micro data, and results with covariances estimated by PyBLP so the only
micro statistics needed are the values in Figure D1. Standard errors are in parentheses; we compute
those for the minivan innovation counterfactual with a parametric bootstrap.
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E. Asymptotics

In this appendix, our goal is not to provide a fully formal set of conditions under which

the micro BLP estimator is consistent and asymptotically normal, but rather to provide

just enough formalities to give insight into when the estimator is expected to work well,

and to derive asymptotic variances needed for quantifying uncertainty, and expressions for

estimating them used by PyBLP. We primarily focus on asymptotic normality but briefly

discuss consistency. The punchline is that we should expect the estimator to work well

in most situations. Our Monte Carlo experiments in Section 7 and in particular those in

Figure 3 suggest that these desirable asymptotic properties translate to finite samples.

We do point to a few situations when the micro BLP estimator may perform poorly.

First, non-smooth micro moments may make showing consistency and asymptotic normality

difficult. Second, micro moments that depend on the non-normal characteristics of specific

products (e.g., matching the mean income for those who purchase a specific product j) may

violate asymptotic normality. Third, and more generally, it is important to be cautious of

depending on one source of data for identifying a parameter (e.g., a tiny micro dataset) but

it is in fact the other data (e.g., the aggregate data) that is large.

The micro BLP model has a number of quantities that could be interpreted as “sample

sizes.” The total number of aggregate observations NA =
∑

t∈T |Jt| can be decomposed into

the number of markets T = |T | and the number of products per market Jt = |Jt|. Similarly,

in micro dataset d ∈ D, the total number of observations Nd = |Nd| can be decomposed into

the number of micro markets Td = |Td| = |{t ∈ T :
∑

i∈It
∑

j∈Jt∪{0}wdijt > 0}| with nonzero

sampling weights that it is possible to sample from and the number of micro observations

per market Ndt = |Ndt| = |{n ∈ Nd : tn = t}|.
Depending on the relative sizes of these quantities, different asymptotic thought experi-

ments are more or less appropriate. The following cases should cover most situations. For

simplicity, we focus on cases for which the asymptotic behavior is the same for all micro

datasets.

(a) Fixing Jt, let T → ∞ and Td → ∞ with T/Td → λa
d. This case is most appropriate

when there are many markets, including those covered by surveys.

(a1) A large fraction of markets are covered by surveys: λa
d ∈ [1,∞).

(a2) A small fraction is covered, but this still represents a large number: λa
d = ∞.

(b) Fixing Jt and Td, let T → ∞ and Nd → ∞ with T/Nd → λb
d. This case requires at
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least one large micro dataset d with Ndt → ∞ and is most appropriate when there are

many markets, few with surveys, but the surveys are large.

(b1) The number of markets and the sizes of surveys are comparable: λb
d ∈ (0,∞).

(b2) The number of markets is appreciably larger: λb
d = ∞.

(b3) The sizes of surveys are appreciably larger: λb
d = 0.

(c) Fixing T and Td, let NA → ∞ and Nd → ∞ with NA/Nd → λc
d. This case requires

at least one large market t with Jt → ∞ and is most appropriate when there are few

markets, but markets and surveys are both large.

(c1) The number of products and the sizes of surveys are comparable: λc
d ∈ (0,∞).

(c2) The number of products is appreciably larger: λc
d = ∞.

(c3) The sizes of surveys are appreciably larger: λc
d = 0.

Each case considers asymptotics for a sequence of data generating processes (DGPs)

indexed by NA. Each case (a), (b), and (c) fixes sequences of (T, Td), (T,Nd), and (NA, Nd),

respectively, indexed by NA. This delivers different sequences of DGPs for each case. Each

DGP prescribes how aggregate data are generated according to the process described in

Section 2, and conditional on the aggregate data, how micro data are generated according to

the process described in Section 4. We will describe the behavior of the micro BLP estimator

under each of these fixed sequences.

In cases (a2), (b2), (b3), (c2), and (c3), sample sizes diverge at different rates. A fully

formal analysis would need to account for infinities and zeros in resulting limit variances and

moment Jacobians. Instead, we focus primarily on cases (a1), (b1), and (c1), and provide

more informal discussion of the remaining cases.

For the aggregate estimator, Freyberger (2015) and Hong et al. (2021) provide a more

formal treatment of the many-markets case with T → ∞. Berry, Linton, and Pakes (2004)

provide a more formal treatment of the many-products case with Jt → ∞. Myojo and

Kanazawa (2012) extend this many-products treatment to case (c1) with micro moments of

the form used by Petrin (2002).

PyBLP also supports clustered aggregate moments. Case (a) or (b) is most appropriate

when the number of clusters scales with the number of markets; we will consider the case

when we expect ξjt to be correlated within market, so we cluster by market t. Case (c)

is most appropriate when the number of clusters scales with the number of products per
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market; we will also consider the case when we expect ξjt to be correlated within a product

identifier j that is common across markets, so we cluster by j.

One “sample size” that we do not consider in our asymptotic analysis is the number of

simulation draws underlying each finite set of consumer types It, if simulation was indeed

used to form these sets. Myojo and Kanazawa (2012) extend Berry, Linton, and Pakes’s

(2004) analysis of simulation error to case (c1), which substantially complicates asymptotics.

Incorporating simulation error into the asymptotic analysis presented in this appendix may

be an interesting direction for future research. Our sense is that resulting practical guidance

will be similar to recommended practices outlined in Conlon and Gortmaker (2020), which

boil down to using many scrambled Halton draws (Owen, 2017) or a suitable quadrature rule,

but we do not attempt to provide more formal analysis here. For those particularly concerned

about sampling error, PyBLP also supports resampling from consumer types to estimate the

contribution of simulation error to the estimator’s asymptotic covariance matrix.

Consistency

Let Q̂(θ) = ĝ(θ)′Ŵ ĝ(θ) be the sample objective in (18) and let Θ be the parameter space.

Theorem 2.1 of Newey and McFadden (1994) states that if there exists a function Q(θ) such

that (i) Q(θ) is uniquely maximized at θ0; (ii) Θ is compact; (iii) Q(θ) is continuous; (iv)

Q̂(θ) converges uniformly in probability to Q(θ), then θ̂
P−→ θ0.

For nonlinear models, it can be difficult to derive primitive and easy to interpret con-

ditions that deliver consistency (e.g., p. 2127 in Newey and McFadden, 1994). We simply

assume that all high-level conditions in the above Theorem 2.1 all satisfied. Our goal is to

provide just enough formalities to give some practical suggestions about estimation, not to

derive fully primitive conditions under which the estimator is consistent, which would be

beyond the scope of this paper. For the micro BLP model, the substantive conditions are

likely (i) and (ii), as is usually the case (e.g. p. 2123 in Newey and McFadden, 1994). In

practice, we recommend following the practices discussed in Conlon and Gortmaker (2020)—

using multiple starting values and checking both first- and second-order conditions—to be

more confident that the sample objective is globally minimized at θ̂. We also recommend

imposing the assumed bounds on Θ during optimization.

The remaining conditions (iii) and (iv) are standard continuity and uniform convergence

assumptions, which are fairly mild in models for which we expect moments to exist and

be continuous (e.g., p. 2123 in Newey and McFadden, 1994). Coming up with primitive

conditions that deliver uniform convergence for case (c) may be particularly difficult because
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of the non-standard limit theorems required to handle that case, which we discuss below

when we can develop more useful intuition.

One specific case that these assumptions do not cover is non-smooth micro moment func-

tions fm. Specifically, it can require significantly more work to weaken conditions for consis-

tency and asymptotic normality when the objective function (which depends directly on fm)

is not even once differentiable (Newey and McFadden, 1994, e.g., Section 7 in). Thankfully,

all micro BLP applications with which we are familiar match averages or covariances, both

of which can be implemented with twice continuously differentiable micro moment functions.

Asymptotic Normality

Let Ĝ(θ) = ∂ĝ(θ)
∂θ′

. Assume Ŵ
P−→ W is positive semi-definite, as is the case for all weighting

matrices we consider. Given consistency θ̂
P−→ θ0, Theorem 3.2 of Newey and McFadden

(1994) states that if (i) θ0 is in the interior of Θ; (ii) ĝ(θ) is continuously differentiable in

a neighborhood N of θ0; (iii) N
1/2
A ĝ(θ0)

D−→ N(0, S); (iv) there is G(θ) that is continuous

at θ0 and supθ∈N∥Ĝ(θ) − G(θ)∥ P−→ 0; (v) for G = G(θ0), G′WG is nonsingular, then

N
1/2
A (θ̂−θ0)

D−→ N(0, (G′WG)−1G′WSWG(G′WG)−1). We scale byN
1/2
A because the number

of aggregate observations is the common “sample size” and goes to infinity in all the above

cases. We will point to cases when some parts of θ̂ converge at different rates.

Again, we simply assume that all conditions except (iii) are satisfied, since our goal is

not to focus on deriving primitive conditions, but rather to provide some high-level practical

advice. In practice, (i) can be a concern when standard deviation estimators in Σ̂ are near

zero. Although beyond the scope of this paper, we point to Ketz (2019) who discusses how

this boundary issue can result in asymptotic size distortions for the aggregate BLP estimator.

We focus on condition (iii), that N
1/2
A g(θ0)

D−→ N(0, S). Let ĝP(θ0) = v − v(θ0) be

micro part sample moments with terms that when passed through micro moment functions

f = (f1, . . . , fMM
)′ deliver micro sample “moments” ĝM(θ0) = f(v)−f(v(θ0)). It will suffice to

show that N
1/2
A (ĝA(θ0)

′, ĝP(θ0)
′)′

D−→ N(0,Ω) since the delta method (e.g., Theorem 3.1 in van

der Vaart, 2000) then delivers (iii) with S = diag(IMA
, F ) Ω diag(IMA

, F )′ where F = ∂f(v(θ0))
∂v′

.

Again, use of the standard delta method rules out non-smooth micro moment functions.

Specifically, it requires continuous differentiability, although other primitive conditions that

we have simply assumed will likely require twice continuous differentiability.

Towards deriving Ω for each case (a), (b), and (c), which we denote by Ωa, Ωb, and Ωc, we

decompose the number of aggregate observations into NA = T ·J where the average number
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of products per market is J = 1
T

∑
t∈T Jt. For each case, we rewrite

N
1/2
A

[
ĝA(θ0)

ĝP(θ0)

]
=


J1/2 · 1

T 1/2

∑
t∈T

1
Jt

∑
j∈Jt

ξjt · zjt
J1/2 · T 1/2

T
1/2
d1

· 1

T
1/2
d1

∑
t∈Td1

1
Nd1t

∑
n∈Nd1t

(v1injnt − v1(θ0))

...

J1/2 · T 1/2

T
1/2
dPM

· 1

T
1/2
dPM

∑
t∈TdPM

1
NdPM

t

∑
n∈NdPM

t
(vPMinjnt − vPM

(θ0))

 (E1a)

=


J1/2 · 1

T 1/2

∑
t∈T

1
Jt

∑
j∈Jt

ξjt · zjt
J1/2 · T 1/2

N
1/2
d1

· 1

N
1/2
d1

∑
n∈Nd1

(v1injntn − v1(θ0))

...

J1/2 · T 1/2

N
1/2
dPM

· 1

N
1/2
dPM

∑
n∈NdPM

(vPMinjntn − vPM
(θ0))

 (E1b)

=



1

N
1/2
A

∑
t∈T
∑

j∈Jt
ξjt · zjt

N
1/2
A

N
1/2
d1

· 1

N
1/2
d1

∑
n∈Nd1

(v1injntn − v1(θ0))

...
N

1/2
A

N
1/2
dPM

· 1

N
1/2
dPM

∑
n∈NdPM

(vPMinjntn − vPM
(θ0))


. (E1c)

Depending on the asymptotic thought experiment, variants of the Central Limit Theorem

may or may not apply to the different sums in the above expressions. Regardless, we will need

the covariance matrix Ω0 for the mean-zero vector (ξjt · zjt, v1injntn − v1(θ0), . . . , vPMinjntn −
vPM

(θ0))
′. The upper-left block is simply

Ω0
00 = V(ξjt · zjt). (E2)

Since micro data are generated conditional on the aggregate data, there is zero covariance

between aggregate moments and each micro part p:

Ω0
0p = E[ξjt · zjt · EA[vpinjntn − vp(θ0)]] = 0. (E3)

Since micro datasets are independent conditional on the aggregate data, there is also zero

covariance between parts p and q based on different datasets dp ̸= dq:

Ω0
pq = E[(vpinjntn − vp(θ0)) · EA[vqinjntn − vq(θ0) | Ndp ]] = 0. (E4)
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The covariance between parts p and q based on the same dataset dp = dq = d is

Ω0
pq = E[CA(vpinjntn , vqinjntn)], (E5)

in which conditional on aggregate data, the covariance between parts p and q is

CA(vpinjntn , vqinjntn)

=

∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ0) · wdijt · (vpijt − vp(θ0)) · (vqijt − vq(θ0))∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ0) · wdijt

.
(E6)

Case (a) with fixed Jt and T/Td → λa
d is when there are many markets, including those

covered by surveys. Since markets are i.i.d., terms in the sums over t ∈ T and t ∈ Td in

(E1a) are as well. The classical Central Limit Theorem and the Cramér–Wold device (e.g.,

Theorem 29.4 in Billingsley, 1995) delivers convergence in distribution to N(0,Ωa) where Ωa

has the same zeros as Ω0. Without any clustering,106 its upper-left block is

Ωa
00 = E[Jt] · V

(
1

Jt

∑
j∈Jt

ξjt · zjt
)

(E7)

= E[Jt] · E
[
V
(

1

Jt

∑
j∈Jt

ξjt · zjt
∣∣∣∣ Jt)]+ 0

= E[Jt] · E[1/Jt] · Ω0
00.

Since Td → ∞, we treat survey selection probabilities wdijt as random variables in the aggre-

gate data, and hence i.i.d. across markets. Intuitively, as the number of markets increases,

each survey is extended similarly across these new markets. This means that we can equiv-

alently write (E5) as Ωpq = E[CA(vpinjntn , vqinjntn | n ∈ Ndt)], conditioning on an arbitrary

market t within the outer expectation over i.i.d. markets. For micro parts p and q based on

106With clustering, for example, by market t, Ωa
00 = E[Jt] · V( 1

Jt

∑
j∈Jt

ξjt · zjt), the second term of which
is estimable with a cluster-robust covariance estimator. The other terms in Ωa are the same.
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the same dataset dp = dq = d,

Ωa
pq = E[Jt] · λa

d · C
(

1

Ndt

∑
n∈Ndt

(vpinjntn − vp(θ0)),
1

Ndt

∑
n∈Ndt

(vqinjntn − vq(θ0))

)
(E8)

= E[Jt] · λa
d · E

[
CA

(
1

Ndt

∑
n∈Ndt

(vpinjntn − vp(θ0)),
1

Ndt

∑
n∈Ndt

(vqinjntn − vq(θ0))

∣∣∣∣Ndt

)]
+ 0

= E[Jt] · λa
d · E[1/Ndt] · Ω0

pq.

Sub-case (a1) with T/Td → λa
d ∈ [1,∞) is when the number of survey markets Td diverges

at the same rate as the total number of markets T . All elements of θ̂ converge to θ0 at the

common rate T 1/2, which for this case is asymptotically equivalent to N
1/2
A , maxd∈D T

1/2
d ,

and maxd∈D N
1/2
d .

Sub-case (a2) with T/Td → λa
d = ∞ is when the number of markets T diverges faster

than the number of survey markets Td. Our discussion of cases like this with sample sizes

diverging at different rates will be heuristic and particularly informal; a fully-formal analysis

would need to account for infinities and zeros in limit variances and moment Jacobians.

Intuitively, if aggregate variation is sufficient to strongly identify all parameters in θ, all of

θ̂ should converge at the faster rate of T 1/2 and the micro data should be asymptotically

negligible.107 If some parameters are not identified or only weakly identified by aggregate

variation but are identified by variation in some micro datasets d, then their estimators in

θ̂ should at least converge at the slower rate of maxd T
1/2
d . For example, if there is no cross-

market variation in the distribution of demographics whatsoever, Π will not be identified

from aggregate variation, and its estimator should converge at the rate of the micro data.

Case (b) with fixed Jt, fixed Td, and T/Nd → λb
d is when there are many markets, few

with surveys, but the surveys are large. For this thought experiment to make sense, we need

to treat survey sampling probabilities as non-random; otherwise, each new market would

have a chance of being included in a micro dataset, and surveys would extend to infinitely

many markets. Unlike case (a), the Central Limit Theorem would not directly apply to

terms in the sums over t ∈ T and n ∈ Nd in (E1b) because there are overlapping markets

that introduce correlation between the terms. However, conditional on all aggregate data in

these overlapping markets t ∈ ∪d∈DTd, which are asymptotically negligible as T → ∞, the

classical Central Limit Theorem and the Cramér–Wold (e.g., Theorem 29.4 in Billingsley,

1995) device guarantee conditional convergence in distribution to N(0,Ωb) where Ωb now

107In this case, the aggregate moments’ asymptotic covariance matrix should be finite and the micro mo-
ments’ asymptotic covariance matrix should be infinite because it is scaled by λa

d = ∞.
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depends on the aggregate data in these markets. Again, Ωb has the same zeros as Ω0 and

the same upper-left block case as for case (a),

Ωb
00 = Ωa

00. (E9)

For micro parts p and q based on the same dataset dp = dq = d,

Ωb
pq = E[Jt] · λb

d · Ω0
pq, (E10)

in which we can write (E5) as Ωpq = CA(vpinjntn , vqinjntn) without the outer expectation

because we are already conditioning on all aggregate data in markets t ∈ Td on which micro

dataset d could possibly depend.

Sub-case (b1) with T/Nd → λb
d ∈ (0,∞) is when the number of markets T diverges at

the same rate as each survey size Nd. Rates of convergence are the same as for sub-case (a1).

Sub-case (b2) with T/Nd → λb
d = ∞ is when the number of markets T diverges faster

than each survey size Nd. Rates of convergence should intuitively be the same as for sub-case

(a2).

Sub-case (b3) with T/Nd → λb
d = 0 is when the number of markets T diverges slower

than each survey size Nd. Like corner cases (a2) and (b2), we only provide a particularly

heuristic discussion of this case. Since micro data are uninformative about linear parameters

β (see Footnote 59), β̂ should converge to β0 at the slower rate of T 1/2. If variation in

some micro datasets d is sufficient to strongly identify all nonlinear parameters in (Π,Σ), all

of (Π̂, Σ̂) should converge at the faster rate of maxd N
1/2
d and the aggregate data will only

have an asymptotic influence on the linear estimators β̂. If some nonlinear parameters are

not identified or only weakly identified by micro variation but are identified by aggregate

variation, then their estimators should at least converge at the slower rate of T 1/2.

Case (c) with fixed T , fixed Td, and NA/Nd → λc
d is when there are few markets, but mar-

kets and surveys are both large. Unlike case (b), fixing T means that overlapping markets

t ∈ ∪d∈DTd are no longer asymptotically negligible. The simplest approach is to still condi-

tion on all aggregate data in these overlapping markets; if there are any markets remaining

without micro data, the classical Central Limit Theorem and the Cramér–Wold (e.g., The-

orem 29.4 in Billingsley, 1995) device applied to (E1c) would again guarantee conditional

convergence in distribution to N(0,Ωc) where Ωc again depends on the aggregate data in

these markets. Again, Ωc has the same zeros as Ω0. Without any clustering,108 its upper-left

108With clustering, for example, by product j ∈ Jt = J , Ωc
00 = T ·V( 1

T

∑
t∈T ξjt · zjt), the second term of
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block is simply

Ωc
00 = Ω0

00. (E11)

For micro parts p and q based on the same dataset dp = dq = d,

Ωc
pq = λc

d · Ω0
pq, (E12)

in which like for case (b), we can simply write (E5) as Ω0
pq = CA(vpinjntn , vqinjntn) because

we are already conditioning on the relevant aggregate data.

In practice, conditioning on overlapping markets means dropping them from the aggregate

moments by setting instruments zjt = 0 in all t ∈ ∪d∈DTd. If a sizeable proportion of markets

are covered by surveys, this means discarding a great deal of aggregate variation, which

may be useful in finite samples for estimating linear parameters β, or for providing backup

variation if micro data does not identify or only weakly identifies some of the nonlinear

parameters (Π,Σ).

We can retain this aggregate variation by applying the Lyapunov Central Limit Theorem

for triangular arrays (e.g., Theorem 27.3 in Billingsley, 1995) to (E1c). This requires making

two additional assumptions that correspond to B4(d) and B4(h) in Myojo and Kanazawa

(2012). First, we assume that as NA → ∞, the limit of Ωpq = CA(vpinjntn , vqinjntn) becomes

non-random. For example, we could apply a law of large numbers to sums over products in

(E6). This would be problematic if, for example, our micro moments match statistics for only

a single or a few products (e.g., “E[yrit | j = jm]” for a single product jm), rather than for

groups of products that expand asymptotically. Dropping markets with such statistics could

be a safer approach. Second, for each dataset d ∈ D, we assume there exists a δd > 0 such that

Nd ·E[∥[vpinjntn − vp(θ0)]dp=d/Nd∥2+δd ] → 0 as NA → ∞. This Lyapunov condition is similar

to the regularity conditions we have assumed for consistency and asymptotic normality, and

in general, we expect it to hold.

Sub-case (c1) with NA/Nd → λc
d ∈ (0,∞) is when the number of products NA diverges

at the same rate as each survey size Nd. Rates of convergence are the same as for sub-cases

(a1) and (b1).

Sub-case (c2) with NA/Nd → λc
d = ∞ is when the number of products NA diverges

faster than each survey size Nd. Rates of convergence should intuitively be the same as for

sub-cases (a2) and (b2).

Sub-case (c3) with NA/Nd → λc
d = 0 is when the number of products NA diverges slower

which is estimable with a cluster-robust covariance estimator. The other terms in Ωc are the same.
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than each survey size Nd. Rates of convergence should intuitively be the same as for sub-case

(b3).

Asymptotic Variance Estimation with PyBLP

To obtain a consistent estimator of the asymptotic variance matrix for θ̂, it suffices to find

a consistent estimator Ŝ
P−→ S. Given the assumptions used to show asymptotic normality,

Theorem 4.2 of Newey and McFadden (1994) states that (Ĝ′Ŵ Ĝ)−1Ĝ′Ŵ ŜŴ Ĝ(Ĝ′Ŵ Ĝ)−1 P−→
(G′WG)−1G′WSWG(G′WG)−1.

With micro moments, there is no “canonical” choice for the initial weighting matrix, like

the 2SLS weighting matrix for the aggregate estimator. Instead, we prefer to use Ŵ = Ŝ−1

at some initial guess for the true θ0, which could be informed by estimates that only use

aggregate variation. After one round of optimization, we compute a consistent estimator of

an efficient weighting matrix Ŵ = Ŝ−1 at the initial consistent estimator θ̂.

There are at least three approaches to computing Ĝ = ∂ĝ(θ̂)
∂θ′

: numerical, analytic, or

automatic differentiation. In practice, Ĝ(θ) is also needed during numerical optimization

to provide the optimizer with the objective’s gradient ∂Q̂(θ)
∂θ

= 2Ĝ(θ)′Ŵ ĝ(θ). In PyBLP we

support both numerical and analytic differentiation, but use analytic derivatives by default

to minimize numerical error.109 In Appendix A2 of Conlon and Gortmaker (2020) we derive

expressions for derivatives of aggregate sample moments, including for the case with supply-

side moments. For micro sample moments,

∂ĝM(θ)

∂θ′
=


∂f1(v(θ))

∂v′
∂v(θ)
∂θ′

...
∂fMM

(v(θ))

∂v′
∂v(θ)
∂θ′

 , (E13)

in which when PyBLP users specify a micro moment function fm they also specify its deriva-

tive function ∂fm
∂v

, and each ∂vp(θ)

∂θ′
is simply the derivative of (17). The one difficulty is that

choice probabilities sijt(θ) depend on θ both directly and through their dependence on δ̂(θ),

which needs to be accounted for during differentiation.

Finally, we compute Ŝ = diag(ŜA, ŜM). The block-diagonal structure comes from the

109We chose to implement analytic gradients because ceding control to an automatic differentiation library
can limit one’s ability to handle numerical errors. However, automatic differentiation is a promising technique
for structural estimation and we are optimistic going forward.
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lack of correlation between aggregate and micro moments. Without any clustering,110

ŜA =
1

NA

∑
t∈T

∑
j∈Jt

ĝjtĝ
′
jt, ĝjt = ξ̂jt(θ̂) · zjt. (E14)

The micro block is

ŜM = F̂ ŜPF̂
′, F̂ =

∂f(v(θ̂))

∂v′
, (E15)

in which element (p, q) of ŜP is zero if dp ̸= dq, and otherwise equal to NA

Nd
· Ω̂0

pq where Ω̂0
pq is

the sample analogue of (E6):

Ω̂0
pq =

∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ̂) · wdijt · (vpijt − vp(θ̂)) · (vqijt − vq(θ̂))∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ̂) · wdijt

. (E16)

For each primary case (a1), (b1), and (c1), diag(ŜA, ŜP) converges in probability to Ωa, Ωb,

and Ωc.

110For clusters ℓ = 1, . . . , L of products Jℓt ⊂ Jt, we compute ŜA = 1
NA

∑L
ℓ=1 ĝℓĝ

′
ℓ for ĝℓ =

∑
t∈T

∑
j∈Jℓt

ĝjt.
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F. Efficiency

In Algorithm 2 we describe an algorithm for computing an optimal micro BLP estimator.

Building on Appendix E where we discuss under which conditions the estimator is consistent

and asymptotically normal, here we show that the optimal estimator we compute is in fact

asymptotically efficient within the class of possible micro BLP estimators. We also discuss

why it should in general be unnecessary to adjust for first-step estimation error.

Similar to Appendix E, our goal is not to provide a fully formal set of conditions under

which the estimator we compute is asymptotically efficient within the class of estimators

that we consider. Instead of fully working out the tangent spaces and regularity conditions

that a precise econometric treatment would require, we limit our formality to that of the

heuristic efficiency framework in Section 5.3 of Newey and McFadden (1994).

An optimal micro BLP estimator has three parts: an optimal weighting matrix, optimal

instruments, and optimal micro moments that match conditional scores. Efficiency should

be intuitive. The form of an optimal weighting matrix for minimum distance estimation is

well-known. Since aggregate and micro moments are uncorrelated (because micro-moments

are defined conditional on the aggregate data; see (E3)), it is intuitive that it should be effi-

cient to replace each with their efficient counterparts when alone. With aggregate moments

alone, Chamberlain’s (1987) optimal instruments are efficient. With micro moments alone,

maximum likelihood would be efficient, so matching scores should be as well.

Optimal Weighting Matrix

Since the micro BLP estimator in (18) is a minimum distance estimator, we can apply Theo-

rem 5.2 in Newey and McFadden (1994), which guarantees that Ŵ = Ŝ−1 from Appendix E

is asymptotically efficient in the class of minimum distance estimators matching the same

statistics. Going forward, we will assume the use of the optimal weighting matrix W = S−1

to simplify expressions.

Optimal Instruments and Matching Scores

For simplicity, we will focus on only demand-side aggregate moments and micro moments

based on only a single micro dataset d. Extending the argument for efficiency to stacked

supply-side moments and multiple micro datasets is straightforward, although notationally

cumbersome.

Given aggregate moment conditions E[ξjt | zjt] = 0, any function b of zjt yields valid

unconditional moments E[gA(j, t; θ0)] = E[ξjt(θ0) · b(zjt)] = 0 based on the aggregate data.
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Similarly, given conditional likelihoods PA(tn, jn, yintn | n ∈ Nd), any function v of the

aggregate data and (tn, jn, yintn) yields valid moments E[gP(n; θ0)] = E[v(n; θ0)− v(θ0)] = 0

where v(θ) = Eθ
A[v(n; θ0)]. These can be passed through any smooth function f to form

valid “micro moments” f(v)− f(v(θ0))
P−→ 0 where v = 1

Nd

∑
n∈Nd

v(n; θ0).

Using the efficiency framework in Section 5.3 of Newey and McFadden (1994), our goal

is to find the “index” τ = (b, f, v) that minimizes the asymptotic variance of a minimum

distance estimator based on these “moments.” Restricting our search to indices τ with

f(v) = v and v(θ0) = 0 will deliver asymptotic efficiency within all GMM estimators that

stack aggregate and micro moments gA and gP = v. We consider the slightly more general

case, which requires applying the delta method.

We incorporate the delta method into a combination of two of Newey and McFadden’s

(1994) applications that show the efficiency of Chamberlain’s (1987) optimal instruments

and of maximum likelihood. First, we rewrite the asymptotic variance of a generic micro

BLP estimator from Appendix E. Let

G =

[
GA

GM

]
, GA = E

[
∂gA(j, t; θ0)

∂θ′

]
, GM = E

[
F · ∂gP(n; θ0))

∂θ′

]
, F =

∂f(v(θ0))

∂v′
. (F1)

The asymptotic variance of a micro BLP estimator based on τ and weighting matrix W is

Vτ = D−1
τ E[Yτ (j, t, n)Yτ (j, t, n)

′]D−1′
τ ,

Dτ = G′WG, Yτ (j, t, n) = G′W

[
gA(j, t; θ0)

F · gP(n; θ0)

]
.

(F2)

Using the above notation, Theorem 5.3 in Newey and McFadden (1994) states that if τ ∗

satisfies Dτ = E[Yτ (j, t, n) · Yτ∗(j, t, n)
′] for all τ , then any estimator with variance Vτ∗ is

efficient in the class of estimators indexed by τ . A standard intuition for this result is that

efficient estimators are uncorrelated with the difference with any other consistent estimator

in the same class. We will show that this result holds for τ ∗ = (b∗, f ∗, v∗) where

b∗(zjt) = E
[
∂ξjt(θ0)

∂θ

∣∣∣∣ zjt]V(ξjt | zjt)−1 (F3)

are Chamberlain’s (1987) optimal instruments for the case with a scalar error term,

f ∗(v) = v (F4)
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is simply the identity function so that minimum distance collapses to GMM under τ ∗, and

v∗(n; θ) = v∗(n) = SA(n | d)′ (F5)

implements Section 6’s optimal micro moments by matching the average 1 × dim(θ) score

SA(n | d) function from (G1) evaluated at the true θ0 and micro observation n ∈ Nd. Note

that this choice of v∗(n; θ) = v∗(n) does not depend on θ.

Stacking scores directly with v∗(n; θ) = Sθ
A(n | d)′ would also be efficient, and would

require very little modification to the below proof. We prefer our approach because, as we

discuss in Section 6, the lack of dependence on θ makes it more computationally tractable.

In particular, we do not need to differentiate the score, and we only need to compute scores

for every micro observation a single time. These computational benefits are typical for

estimators based on the unfortunately-named “one step” method discussed, for example, in

Section 3.4 of Newey and McFadden (1994).

First, we re-establish the result from Appendix E that aggregate and micro moments are

uncorrelated. Iterated expectations give

E[gA(j, t; θ0) · gP(n; θ0)′] = E[gA(j, t; θ0) · EA[gP(n; θ0)
′]] = 0. (F6)

In particular, this implies that the optimal weighting matrix is block-diagonal. Under τ ∗,

W ∗ = V

(
ξjt · b∗(zjt)

v∗(n)

)−1

=

[
(ξjt · b∗(zjt) · b∗(zjt)′ · ξjt)−1 0

0 (v∗(n) · v∗(n)′)−1

]
, (F7)

in which we have used the fact that the score is mean-zero, EA[v
∗(n)] = EA[SA(n | d)′] = 0.

Next, using the definition for b∗ and iterated expectations, we can rewrite

E
[
∂gA(j, t; θ0)

∂θ′

]
= E

[
∂ξjt(θ0)

∂θ′
· b(zjt)

]
= E[ξjt · b(zjt) · b∗(zjt)′ · ξjt]. (F8)

To derive a similar expression for the micro moments, we differentiate Eθ[gP(n; θ)] = 0 with

respect to θ. Differentiating under the expectation requires regularity conditions similar to

those we have assumed for consistency and asymptotic normality in Appendix E. Evaluating

at θ0 and using the definition for v∗, we can also rewrite

E
[
∂gP(n; θ0)

∂θ′

]
= −E[gP(n; θ0) · SA(n | d)] = −E[gP(n; θ0) · v∗(n)′]. (F9)
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Using all of the above results, we can simplify

Yτ∗(j, t, n) = E

[
ξjt · b∗(zjt) · b∗(zjt)′ · ξjt

−v∗(n) · v∗(n)′

]′
W ∗

[
ξjt · b∗(zjt)

v∗(n)

]
=

[
ξjt · b∗(zjt)
−v∗(n)

]
. (F10)

Again using the lack of correlation between aggregate and micro moments,

Dτ = G′WE

[
ξjt · b(zjt) · b∗(zjt)′ · ξjt
−F · gP(n; θ0) · v∗(n)′

]
= E[Yτ (j, t, n) · Yτ∗(j, t, n)

′]. (F11)

Two-step Estimation

In the discussion so far, we have replaced the optimal weighting matrix, instruments, and

micro moments with consistent estimators obtained in a first step. Typically, we would

have to correct for first-step estimation error when calculating second-step standard errors.

However, according to the general principle developed, for example, in Section 6 of Newey and

McFadden (1994), adjusting for first-step estimation error is unnecessary if the consistency

of the first-step estimator does not affect the consistency of the second-step estimator.

In Appendix E we simply follow the literature by assuming consistency of θ̂ for general

weighting matrices, instruments, and micro moments, while also discussing when this as-

sumption may fail. Typically, however, we expect both steps to deliver consistent estimators

so that this principle holds and we do not have to adjust for first-step estimation error. In-

deed, standard errors calculated for our Monte Carlo experiments in Appendix I have fairly

low bias and good coverage in finite samples when using optimal instruments and optimal

micro moments.
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G. Micro Data Scores

In micro dataset d ∈ D, the 1×dim(θ) score function, conditional on all the aggregate data,

and evaluated at parameters θ and micro observation n ∈ Nd, is

Sθ
A(n | d) = ∂ logPθ

A(tn, jn, yintn | n ∈ Nd)

∂θ′
, (G1)

or with an additional kn if dataset d contains second choices. The probability of n ∈ Nd

evaluated at θ is

Pθ
A(tn, jn, yintn | n ∈ Nd) =

∑
i∈Itn

1{yitn = yintn} · witn · sijntn(θ) · wdijntn∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ) · wdijt

, (G2)

or with second choices,

Pθ
A(tn, jn, kn, yintn | n ∈ Nd)

=

∑
i∈Itn

1{yitn = yintn} · witn · sijnkntn(θ) · wdijnkntn∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}
∑

k∈Jt∪{0}\{j}wit · sijkt(θ) · wdijkt

.
(G3)

The numerator of (G2) is an integral over unobserved heterogeneity νitn . Without un-

observed heterogeneity (i.e., Σ = 0), observing a consumer’s demographic yintn is equivalent

to observing the consumer’s type in, so the numerator in (G2) is simply sinjntn(θ) · wdinjntn .

If there is unobserved heterogeneity, it is often simplest to approximate the integral with

quadrature.

The denominator of (G2) is PA(n ∈ Nd), the probability of an arbitrary consumer being

selected for the survey. If this probability does not depend on θ because, for example,

selection probabilities wdijt do not depend on choice j, then the denominator drops out of

the score.

Computing Scores with PyBLP

It is straightforward to compute scores with PyBLP. We use the results from a first stage to

estimate the average score in the micro dataset and match it with its model analogue in the

second stage.

Specifically, in our code in Figure G1 we start with the results from a problem (for

example, from the replication in Figure D1 of Petrin, 2002) and some micro data. For each

observation n in the micro data and each nonlinear parameter θm in θ, we evaluate (G1) at
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the first stage parameter estimates θ̂:

vminjntn(θ̂) =
∂ logPθ̂

A(tn, jn, yintn | n ∈ Ndm)

∂θm
. (G4)

This is the same expression as (23). In the code, we call these micro scores. Then, for each

possible (i, j, t), we compute

vmijt(θ̂) =
∂ logPθ̂

A(tn = t, jn = j, yintn = yit | n ∈ Ndm)

∂θm
. (G5)

In the code, we call these agent scores. The optimal micro moments match the average

score function in the micro data,

fm(v(θ̂)) = vm(θ̂) =
1

Ndm

∑
n∈Ndm

vminjntn(θ̂), (G6)

with its model analogue

fm(v(θ; θ̂)) = vm(θ; θ̂) =

∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ) · wdpijt · vpijt(θ̂)∑
t∈T
∑

i∈It
∑

j∈Jt∪{0}wit · sijt(θ) · wdpijt

. (G7)

In the code, the average score is defined with the value argument to MicroMoment and its

model analogue is defined with the compute values argument to MicroPart.

One trick that can speed up computing scores in the micro data arises because the score

is the same for each distinct set of demographic values, product choice, and market. To use

this, we can call each of these a different “observation,” and when computing the average

vm, overweight these “observations” by how many actual micro observations are underlying

them. This trick will particularly speed up computation time when demographics take on

only a few discrete values (e.g., when they are binary-valued) and purchases are concentrated

within a small number of products.

98



Figure G1: Computing Optimal Micro Moments with PyBLP
from pyblp import Integration, MicroPart, MicroMoment

# Compute scores, integrating over unobserved preferences with quadrature

score_integration = Integration('product', size=7)

micro_scores = problem_results.compute_micro_scores(micro_dataset, micro_data, score_integration)

agent_scores = problem_results.compute_agent_scores(micro_dataset, integration=score_integration)

# Construct optimal micro moments

optimal_micro_moments = []

for m, (micro_scores_m, agent_scores_m) in enumerate(zip(micro_scores, agent_scores)):

optimal_micro_moments.append(MicroMoment(

name=f"Score for parameter #{m}",

value=micro_scores_m.mean(),

parts=MicroPart(

name=f"Score for parameter #{m}",

dataset=micro_dataset,

compute_values=lambda t, p, a, v=agent_scores_m: v[t],

),

))

This Python code demonstrates how to construct optimal micro moments with PyBLP. After
obtaining problem results as in the Petrin (2002) replication code in Figure D1, and given another
dataset of micro observations, we compute scores for the micro dataset and all possible consumer
type-choices, and then use these to construct a list of optimal micro moments.
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H. Selection Procedure

To supplement our discussion of optimal micro moments in Section 6, we provide a more

systematic approach for determining which summary statistics are most informative about

the parameters in the model. The heuristic selection procedure that we propose does not

come with any theoretical guarantees, but it can help to identify a small number of maximally

informative summary statistics that are more likely to be collected by survey administrators

than model-specific average scores.

Like our two-step approach for computing optimal micro moments, we begin with a

specific model and a first-stage estimator θ̂ or educated guess. The researcher may not have

full access to a micro dataset d, either because of data limitations or because the survey has

yet to be administered. However, given knowledge about sampling probabilities wdijt, we

can easily simulate many observations from the dataset {(tn, jn, yintn)}n∈Nd
under θ̂. We can

then compute scores values vminjntn in (23) for each simulated observation n ∈ Nd and add

a column of score values for each nonlinear parameter to the simulated micro dataset.

In addition to scores, we can also add columns for many candidate micro values vpinjntn ,

averages of which could reasonably be collected by a survey administrator. For example, we

could restrict ourselves to second-order polynomial interactions of demographics yrintn and

merged-in aggregate data, such as product characteristics xcjntn and market shares Sjntn . We

can exclude trivial candidates such as a constant, vpinjntn = 1, or others with expectations

that do not depend on θ.111

Given a simulated dataset of scores and candidate micro values, we can run a number of

procedures to determine which sets of micro values are most informative about the scores.

Perhaps the simplest is to regress each subset of candidate micro values on the scores and

keep those sets with the highest R2. If there are many candidate micro values, a lasso

regression could be more practical. To compare these different procedures, it will help to

more care define the problem and how it motivates a selection procedure.

The Problem

We wish to select m = 1, . . . ,MM micro moments to minimize the asymptotic variance of

the micro BLP estimator in (18). Since aggregate and micro moments are asymptotically

uncorrelated (see Appendix E), it will suffice to minimize the micro moments’ contribution

111For example, with no conditioning, wdijt = 1, a candidate micro value simply equal to a demographic,
vpinjntn = yrintn , gives an expected micro value equal to the mean of that demographic, vm(θ) =

∑
i∈Itn

witn ·
yrit, which is uninformative about θ.
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to the asymptotic variance. Since micro moments from different micro datasets are also

asymptotically uncorrelated, we will focus on a single dataset d. For simplicity, we focus

on means: fm(v) = vm. The following discussion could be amended to focus on smooth

functions of means by using the multivariate delta method to obtain asymptotic covariance

matrices.

Let E[gM(n; θ0)] = E[v(n) − v(θ0)] = 0 be the MM × 1 vector of unconditional micro

moments where v(θ) = Eθ
A[v(n)] and v(n) = (v1injntn , . . . , vMMinjntn)

′. Under the optimal

weighting matrix, the contribution of these micro moments to the asymptotic variance of

θ̂ is the familiar expression for the asymptotic variance of an efficient GMM estimator.

Denoting by V a finite set of candidate micro values, the problem is

min
v(·)∈V

∥∥∥(G′
MV(gM(n; θ0))−1GM

)−1
∥∥∥ , GM = E

[
∂gM(n; θ0)

∂θ′

]
, (H1)

in which ∥·∥ is a matrix norm that governs relative weights on parameters in θ. To simplify

(H1), note that V(gM(n; θ0)) = V(v(n)) and

∂gM(n; θ0)

∂θ′
=

∂v(θ0)

∂θ′
=

∂Eθ0
A [v(n)]

∂θ′
= EA[v(n)SA(n | d)], (H2)

in which SA(n | d) is the 1 × dim(θ) score function from (G1) evaluated at the true θ0 and

micro observation n ∈ Nd. Using iterated expectations, we can rewrite (H1) as

min
v(·)∈V

∥∥∥(E[v(n)SA(n | d)]′V(v(n))−1E[v(n)SA(n | d)]
)−1
∥∥∥ . (H3)

Candidate Micro Values

For this problem to make sense, we need to restrict the set of candidate micro values V .
First, as discussed above, V should only contain micro moment values that could reason-

ably be collected by a survey administrator, such as those with low complexity and high

interpretability. For example, we could restrict V to second-order polynomial interactions of

demographics and merged-in aggregate data.

Second, for any given vminjntn we can define another that delivers the same asymptotic

variance by multiplying it by a constant. Without loss, we can normalize diag(V(v(n))) = 1.

In the context of the feasible procedure described in Section 6, this amounts to standardizing

candidate micro values before including them in a lasso regression.

Lastly, for (H1) and (H3) to be well-defined, we require G ̸= 0. In practice, this amounts
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to excluding trivial candidates with expectations vm(θ) = EA[vminjntn ] that do not depend

on θ. For example, if weights wdijt do not depend on choices j, we can exclude all candidates

vmijt that do not depend on both i and j, such as vmijt = xcjt or vmijt = yrit.

Intuition from the Scalar Case

For intuition about the rewritten problem in (H3), consider the case with dim(θ) = 1 pa-

rameter and MM = 1 micro moment with E[v(n)SA(n | d)] = C(v(n),SA(n | d)). Since we

normalized V(v(n)) = 1 and V(SA(n | d)) does not depend on v(·), we can rewrite (H3) as

max
v(·)∈V

|Corr(v(n),SA(n | d))| . (H4)

Intuitively, our goal is to find the micro values in V that are maximally correlated with

the true scores of the model. This is precisely true for the simplest case in (H4), and

approximately true for the general case, for which we have to choose a norm ∥·∥ to weight

different parameters and it matters how micro values correlate.

Relationship to R2

Instead of minimizing the exact objective in (H3), it is easier to regress parameters’ scores

on candidate sets of micro values and to keep those that maximize the sum of R2 values

across parameters. For intuition about why this simpler procedure approximates the exact

objective, consider the case with dim(θ) = 1 but with possibly more than one micro moment.

Let Y = (SA(1 | d), . . . ,SA(Nd | d)) be a Nd × 1 vector and let X = (v(1), . . . , v(Nd))
′ be

a Nd ×MM matrix. In vector-matrix form, the R2 of a regression of Y on X is

R2 = 1− Y ′(I −X(X ′X)−1X ′)Y

(Y − Y )′(Y − Y )
. (H5)

The X that maximizes the R2 of this regression maximizes (X ′Y )′(X ′X)−1X ′Y . Equiva-

lently, we could minimize the inverse of this expression, which is precisely the sample analog

of the objective in (H3).

Implementing the Procedure with PyBLP

In practice, we replace the true θ0 with a consistent estimator θ̂ and replace expectations

with averages over many simulated micro observations n ∈ Nd. It is straightforward to

simulate micro data and compute scores with PyBLP. In Figure H1 we start with results
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from a problem (for example, from the Petrin, 2002, replication in Figure D1), simulate

micro data, and compute scores for it.

Values above micro moment counts in Figure H2 report Monte Carlo results for our

procedure where we regress each parameter’s score on candidate micro values vmijt,
112 sum

the R2 values across parameters and keep the set of candidate micro values that maximize

this sum of R2 values. Using more interactions requires collecting more summary statistics,

but they help span the optimal score, improving the performance of the estimator. Which

interactions are most correlated with the simulated scores depends on the simulation, but

“E[yit | j ̸= 0]” and “E[xjt · yit | j ̸= 0]” do tend to be some of the first few micro moments

retained by the procedure. For comparison, we also include values above “Standard” and

“Optimal,” which correspond to the first two rows in Table 6.

In Figure H3 we report analogous results for minimizing the exact objective in (H3), in

which ∥·∥ is the Frobenius norm. Results are fairly similar once there are at least three

micro moments. Finally, in Figure H4 we run a multivariate lasso regression of scores on all

candidate micro values, tune the regularization parameter so that there is only the desired

number of nonzero coefficients, and keep the corresponding micro values. The results are

a bit worse than for the best subset approaches. However, lasso regressions are far more

computationally tractable when there are many micro values, and lasso seems to give a good

sense of which may be useful for an exercise that is in any case somewhat heuristic.

Figure H1: Computing Simulated Scores with PyBLP
# Simulate micro data

simulated_data = problem_results.simulate_micro_data(micro_dataset, seed=0)

# Compute scores, integrating over unobserved preferences with quadrature

score_integration = pyblp.Integration('product', size=7)

simulated_scores = problem_results.compute_micro_scores(micro_dataset, simulated_data, score_integration)

This Python code demonstrates how to simulate scores with PyBLP. After obtaining problem
results as in the Petrin (2002) replication code in Figure D1, we simulate micro data and compute
scores for each simulated observation.

112We interact yintn , 1{yintn < ytn}, 1{yintn ≥ ytn}, 1{jn ̸= 0}, x2jntn , 1{x2jntn < x2tn}, 1{x2jntn ≥ x2tn},
and Sjntn where yt and x2t are medians of yit and x2jt in market t.
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Figure H2: R2 Approach
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This figure reports median absolute error (MAE) and median bias of parameter estimates over 1,000
simulated datasets for approximations to the optimal micro moments. Values above “Standard”
correspond to the same “E[yit | j ̸= 0]” and “C(x2jt, yit | j ̸= 0)” moments in the fourth row of
Table 5. For other values, we use these same standard moments to obtain a first-stage estimator.
Values above “Optimal” correspond to optimal micro moments. Values above micro moment counts
correspond to the following procedure. First, we construct second-order polynomial interactions
from yintn , 1{yintn < ytn}, 1{yintn ≥ ytn}, 1{jn ̸= 0}, x2jntn , 1{x2jntn < x2tn}, 1{x2jntn ≥ x2tn},
and Sjntn where yt and x2t are medians of yit and x2jt in market t. Second, we exclude trivial
interactions that do not depend on both in and jn, since this would generate micro moments that
would not depend on θ. Finally, we find the set of micro values that maximize the sum of R2

values across regressions of each parameter’s simulated scores on standardized versions of these
micro values and use these micro values to form micro moments for the second GMM step.
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Figure H3: Exact Approach
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This figure is the same as Figure H2, but instead of using a best subset selection procedure that
maximizes total R2, instead minimizes the exact objective in (H3), in which ∥·∥ is the Frobenius
norm.
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Figure H4: Lasso Approach
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This figure is the same as Figure H2, but instead of using a best subset selection procedure that
maximizes total R2, instead tunes the regularization parameter for a multivariate lasso regression
to obtain a specific number of micro values with nonzero coefficients.
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I. Monte Carlo Results for Standard Errors

For each table and figure in Section 7 and Appendices A and B, we also report analogous

results for coverage and median bias of standard error estimators based on the expressions

in Appendix E for estimating the asymptotic covariance matrix for θ̂:

ŜE(θ̂) =

√
diag

(
(Ĝ′Ŵ Ĝ)−1Ĝ′Ŵ ŜŴ Ĝ(Ĝ′Ŵ Ĝ)−1

)
/NA. (I1)

To evaluate the performance of the standard error estimators, we report coverage and

median bias. Coverage is the percent of simulations in which a 95% confidence interval based

on a standard error estimate covers the true parameter value.

The bias of standard error estimators is more difficult to evaluate than that of point

estimates because comparisons are made with respect to a moving target. To compute a

parameter’s “true” standard error against which we compare its estimated standard error,

we compute the standard deviation of the parameter’s point estimate across all 1,000 simu-

lations.

Table I1: Standard Errors, Demographic Variation

Coverage (%) Bias (%)

Variation Distributions Markets π̂1 π̂x β̂1 β̂x α̂ π̂1 π̂x β̂1 β̂x α̂

National 1 40 71.7 77.8 72.5 75.4 95.0 -81.6 -78.4 -48.7 -50.3 -8.6
States 50 40 86.8 87.4 90.1 88.0 94.3 -41.3 -36.1 -19.3 -20.8 -4.0
PUMAs 982 40 90.8 90.5 94.3 92.9 94.4 -62.1 -83.0 -9.7 -45.6 -11.7

National 1 80 76.9 76.0 77.0 75.0 95.4 -58.6 -65.5 -38.2 -51.7 -7.2
States 50 80 90.4 89.3 91.0 89.7 94.7 -49.7 -21.1 -16.7 -8.4 -2.6
PUMAs 982 80 92.0 91.6 93.8 91.9 95.3 -9.8 -10.9 -3.2 -7.8 -2.3

This table reports standard error coverage and median bias for Table 4.

Table I2: Standard Errors, Standard Micro Moments

Coverage (%) Bias (%)

Micro Moments Shorthand π̂1 π̂x π̂1 π̂x

No Micro Moments 86.8 87.4 -41.3 -36.1
“E[yit | j ̸= 0]” 92.3 91.7 -11.9 -11.5
“C(x2jt, yit | j ̸= 0)” 92.2 84.5 -94.7 -95.8
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 84.4 81.2 -28.9 -34.3

“E[yit | j ̸= 0], E[x2jt · yit | j ̸= 0]” 87.3 85.4 -23.5 -28.5
“E[yit | j ̸= 0], E[x2jt | yit < yt, j ̸= 0]” 95.0 94.8 -1.6 -2.3
“E[yit | j ̸= 0], E[x2jt | yit < yt, j ̸= 0], C(x2jt, yit | j ̸= 0)” 84.9 81.7 -28.2 -33.1

This table reports standard error coverage and median bias for Table 5.
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Table I3: Standard Errors, Optimal Micro Moments and Compatibility

Coverage (%) Bias (%)

Micro Moments (plus E[yit | j ̸= 0]) Incompatible Optimal π̂1 π̂x π̂1 π̂x

“C(x2jt, yit | j ̸= 0)” 84.4 81.2 -28.9 -34.3
“C(x2jt, yit | j ̸= 0)” Yes 92.5 94.0 -7.2 -5.0

“E[x2jt | yit < yt, j ̸= 0]” 95.0 94.8 -1.6 -2.3
“E[x2jt | yit < yt, j ̸= 0]” Yes 92.9 93.5 -8.2 -6.1

“E[x2jt | ỹit < yt, j ̸= 0]” Yes 92.4 92.0 -7.8 -8.6
“E[x2jt | ỹit < yt, j ̸= 0]” Yes Yes 34.6 54.7 -57.0 -56.5

This table reports standard error coverage and median bias for Table 6.

Figure I1: Standard Errors, Pooling Markets
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This figure reports standard error coverage and median bias for Figure 2.

108



Table I4: Standard Errors, Numerical Integration

Coverage (%) Bias (%)

Micro Moments (plus “E[yit | j ̸= 0]”) Integration π̂1 π̂x π̂1 π̂x

“C(x2jt, yit | j ̸= 0)” Quadrature 87.6 85.6 -22.0 -26.1
“C(x2jt, yit | j ̸= 0)” Monte Carlo 84.4 81.2 -28.9 -34.3

“E[x2jt | yit < yt, j ̸= 0]” Quadrature 38.3 38.1 -75.9 -75.8
“E[x2jt | yit < yt, j ̸= 0]” Monte Carlo 95.0 94.8 -1.6 -2.3

This table reports standard error coverage and median bias for Table 7.

Figure I2: Standard Errors, Problem Scaling
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This figure reports standard error coverage and median bias for Figure 3.
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Table I5: Standard Errors, Unobserved Heterogeneity

Coverage (%) Bias (%)

Micro Moments Shorthand Jt = J Optimal π̂1 π̂x σ̂x π̂1 π̂x σ̂x

No Micro Moments 86.0 85.7 92.0 -13.0 -9.7 -15.3
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 83.7 80.8 91.0 -28.4 -33.3 -16.0
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 93.9 91.5 90.9 -9.5 -11.6 -16.6

No Micro Moments Yes 99.7 99.8 99.5 65.0 70.0 227.2
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 95.9 89.5 98.4 -5.3 -19.2 164.9
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes Yes 93.7 74.3 95.7 -27.7 -73.8 -3.1

This table reports standard error coverage and median bias for Table 8.

Table I6: Standard Errors, Second Choices

Coverage (%) Bias (%)

Micro Moments (plus “E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)”) Optimal π̂1 π̂x σ̂x π̂1 π̂x σ̂x

No Second Choice Moments 96.1 89.1 98.5 -4.7 -19.7 160.7
“C(x2jt, x2k(-j)t | j, k ̸= 0)” 91.0 90.0 94.0 -23.2 -22.1 -23.6
“E[x2jt + x2k(-j)t | j, k ̸= 0]” 90.2 86.5 93.3 -25.4 -32.7 -55.3
“P(x2k(-j)t < x2t | x2jt ⋛ x2t, j, k ̸= 0)” 91.2 89.9 92.2 -25.9 -34.5 -49.6
“P(x2k(-j)t < x2t | x2jt ⋛ x2t, j, k ̸= 0)” Yes 87.7 86.1 76.9 -27.8 -26.0 -50.6

This table reports standard error coverage and median bias for Table 9.

Table I7: Standard Errors, Lognormal Price Coefficient

Coverage (%) Bias (%)

Micro Moments Shorthand Optimal π̂1 π̂p σ̂p π̂1 π̂p σ̂p

No Micro Moments 63.4 70.0 90.0 -45.3 -42.7 -38.4
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0)” 87.7 87.7 88.8 -22.8 -24.3 -19.8
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0), C(pjt, y2it | j ̸= 0)” 87.5 87.3 89.0 -23.0 -24.4 -20.8
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0), C(pjt, y2it | j ̸= 0)” Yes 92.4 91.1 88.7 -12.1 -16.0 -21.2

This table reports standard error coverage and median bias for Table A1.

Table I8: Standard Errors, Nesting Parameter

Coverage (%) Bias (%)

Micro Moments Shorthand Jt = J Optimal π̂1 π̂x ρ̂ π̂1 π̂x ρ̂

No Micro Moments 90.3 91.2 95.9 -19.3 -22.2 -0.5
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 80.9 78.9 95.2 -32.6 -37.6 -0.9

“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 99.5 99.0 99.7 128.0 96.6 209.8
and “C(x2jt, x2kt | j, k ̸= 0)” Yes 90.5 85.3 92.0 -24.9 -31.4 -68.5
and “E[x2jt + x2kt | j, k ̸= 0]” Yes 90.7 86.5 90.3 -26.5 -33.5 -69.8
and “P(x2kt < x2t | x2jt ⋛ x2t, j, k ̸= 0)” Yes 90.7 85.1 92.6 -24.9 -31.4 -53.5
and “P(h(j) = h(k) | j, k ̸= 0)” Yes 90.1 84.0 88.5 -26.8 -33.8 -43.5
and “P(h(j) = h(k) | j, k ̸= 0)” Yes Yes 84.1 87.5 79.5 -40.6 -39.7 -70.4

This table reports standard error coverage and median bias for Table B1.
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J. Monte Carlo Results for Counterfactuals

For each table and figure in Section 7 and Appendices A and B, we also report analogous

results for median absolute error (MAE) and median bias of estimates from a counterfactual

in which we make high-x2jt goods relatively more expensive to produce. For each product j,

we increase its marginal cost cjt in Footnote 63 by 2× x2jt and subtract 6 to keep costs the

same on average.

We then re-compute equilibrium prices pjt with the fixed point approach of Morrow and

Skerlos (2011) and report the associated change in consumer surplus, separately for high and

low-income consumers with income above and below the median yt in each market. With

unit market sizes Mt = 1 and up to an arbitrary constant, the consumer surplus of those

with income yt ≤ yit < yt is

CS =
1

α

∑
t∈T

∑
i∈It

wit · 1{yt ≤ yit < yt}∑
τ∈T

∑
ι∈Iτ wιτ · 1{yτ ≤ yιτ < yτ}

log

(
1 +

∑
j∈Jt

exp(δjt + µijt)

)
. (J1)

One complication comes from eliminating cross-market choice set variation in Tables 8,

9, and B1 by using the same choice set Jt = J in each market. This drastically reduces the

effective number of observations used to estimate linear parameters β to around |J | ≈ 20.

Although the nonlinear parameters (Π,Σ) can be estimated well with appropriate micro

moments, β is estimated poorly, obscuring results from the counterfactual. To still have

meaningful results in these three tables, we set β̂ = β0 before computing counterfactuals

whenever Jt = J .

Table J1: Counterfactual, Demographic Variation

MAE (%) Bias (%)

Variation Distributions Markets Low yit High yit Low yit High yit

National 1 40 48.8 111.0 -18.7 9.9
States 50 40 24.4 58.0 -4.2 4.8
PUMAs 982 40 18.2 53.2 -1.4 1.1

National 1 80 37.4 103.6 -17.7 25.0
States 50 80 16.8 46.3 -2.6 0.1
PUMAs 982 80 11.9 46.8 -1.1 2.6

This table reports median absolute error (MAE) and median bias of each
CS for Table 4.
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Table J2: Counterfactual, Standard Micro Moments

MAE (%) Bias (%)

Micro Moments Shorthand Low yit High yit Low yit High yit

No Micro Moments 24.4 58.0 -4.2 4.8
“E[yit | j ̸= 0]” 20.6 52.5 0.7 -2.7
“C(x2jt, yit | j ̸= 0)” 14.9 33.8 1.0 -3.1
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 14.2 33.8 0.1 -2.5

“E[yit | j ̸= 0], E[x2jt · yit | j ̸= 0]” 14.5 33.4 -0.2 -2.4
“E[yit | j ̸= 0], E[x2jt | yit < yt, j ̸= 0]” 15.6 36.2 -0.1 -3.5
“E[yit | j ̸= 0], E[x2jt | yit < yt, j ̸= 0], C(x2jt, yit | j ̸= 0)” 14.3 33.7 0.2 -2.7

This table reports median absolute error (MAE) and median bias of each CS for Table 5.

Table J3: Counterfactual, Optimal Micro Moments and Compatibility

MAE (%) Bias (%)

Micro Moments (plus E[yit | j ̸= 0]) Incompatible Optimal Low yit High yit Low yit High yit

“C(x2jt, yit | j ̸= 0)” 14.2 33.8 0.1 -2.5
“C(x2jt, yit | j ̸= 0)” Yes 14.2 32.5 -0.6 -0.2

“E[x2jt | yit < yt, j ̸= 0]” 15.6 36.2 -0.1 -3.5
“E[x2jt | yit < yt, j ̸= 0]” Yes 14.2 32.9 -0.3 -0.8

“E[x2jt | ỹit < yt, j ̸= 0]” Yes 14.6 37.7 -1.1 -1.5
“E[x2jt | ỹit < yt, j ̸= 0]” Yes Yes 15.5 35.6 -3.3 -0.3

This table reports median absolute error (MAE) and median bias of each CS for Table 6.
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Figure J1: Counterfactual, Pooling Markets
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This figure reports median absolute error (MAE) and median bias of each CS for Figure 2.
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Table J4: Counterfactual, Numerical Integration

MAE (%) Bias (%)

Micro Moments (plus “E[yit | j ̸= 0]”) Integration Low yit High yit Low yit High yit

“C(x2jt, yit | j ̸= 0)” Quadrature 21.5 46.0 -2.7 -0.8
“C(x2jt, yit | j ̸= 0)” Monte Carlo 14.2 33.8 0.1 -2.5

“E[x2jt | yit < yt, j ̸= 0]” Quadrature 25.7 53.6 -0.9 -7.9
“E[x2jt | yit < yt, j ̸= 0]” Monte Carlo 15.6 36.2 -0.1 -3.5

This table reports median absolute error (MAE) and median bias of each CS for Table 7.

Figure J2: Counterfactual, Problem Scaling
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This figure reports median absolute error (MAE) and median bias of each CS for Figure 3.
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Table J5: Counterfactual, Unobserved Heterogeneity

MAE (%) Bias (%)

Micro Moments Shorthand Jt = J Optimal Low yit High yit Low yit High yit

No Micro Moments 76.8 39.6 0.1 -4.9
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 40.9 22.1 3.7 1.8
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 43.6 22.1 2.6 0.9

No Micro Moments Yes 32.3 30.5 -0.6 0.4
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 20.8 21.6 0.3 -3.4
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes Yes 21.8 22.1 -1.2 -9.0

This table reports median absolute error (MAE) and median bias of each CS for Table 8.

Table J6: Counterfactual, Second Choices

MAE (%) Bias (%)

Micro Moments (plus “E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)”) Optimal Low yit High yit Low yit High yit

No Second Choice Moments 20.8 21.7 0.4 -3.4
“C(x2jt, x2k(-j)t | j, k ̸= 0)” 6.5 6.0 0.1 0.2
“E[x2jt + x2k(-j)t | j, k ̸= 0]” 2.8 2.6 -0.0 0.0
“P(x2k(-j)t < x2t | x2jt ⋛ x2t, j, k ̸= 0)” 5.4 5.1 -0.4 -0.4
“P(x2k(-j)t < x2t | x2jt ⋛ x2t, j, k ̸= 0)” Yes 2.0 1.9 0.1 -0.1

This table reports median absolute error (MAE) and median bias of each CS for Table 9.

Table J7: Counterfactual, Lognormal Price Coefficient

MAE (%) Bias (%)

Micro Moments Shorthand Optimal Low yit High yit Low yit High yit

No Micro Moments 38.4 83.4 -4.1 4.5
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0)” 11.4 17.4 0.6 -0.6
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0), C(pjt, y2it | j ̸= 0)” 11.5 17.5 0.6 -0.6
“E[yit | j ̸= 0], C(pjt, yit | j ̸= 0), C(pjt, y2it | j ̸= 0)” Yes 11.5 17.7 0.8 -0.5

This table reports median absolute error (MAE) and median bias of each CS for Table A1.

Table J8: Counterfactual, Nesting Parameter

MAE (%) Bias (%)

Micro Moments Shorthand Jt = J Optimal Low yit High yit Low yit High yit

No Micro Moments 24.9 66.4 -0.5 -2.7
“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” 13.7 33.6 -1.0 -0.6

“E[yit | j ̸= 0], C(x2jt, yit | j ̸= 0)” Yes 44.6 44.6 -0.8 0.3
and “C(x2jt, x2kt | j, k ̸= 0)” Yes 6.0 6.7 0.1 -0.2
and “E[x2jt + x2kt | j, k ̸= 0]” Yes 6.4 6.3 -0.0 -0.1
and “P(x2kt < x2t | x2jt ⋛ x2t, j, k ̸= 0)” Yes 4.8 4.8 0.0 -0.1
and “P(h(j) = h(k) | j, k ̸= 0)” Yes 1.7 1.8 0.1 -0.1
and “P(h(j) = h(k) | j, k ̸= 0)” Yes Yes 1.1 1.2 0.0 0.1

This table reports median absolute error (MAE) and median bias of each CS for Table B1.
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K. Data Details for Estimating Seattle Soft Drink Demand

In this appendix, we discuss all of the decisions we make when constructing the data that

we use for our empirical example in Section 8 where we predict substitution from Seattle’s

2018 sweetened beverage tax (SBT). We also discuss possible alternative decisions and what

these would imply for a micro BLP approach to estimation.

Markets

The first step is to define markets t ∈ T . We define a market as the entirety of the city

of Seattle in each of the 40 quarters from 2007Q1 to 2016Q4.113 We focus on food and

mass merchandiser stores (NielsenIQ channel codes F and M) to keep our sample more

manageable, but could have also included convenience stores. The NielsenIQ Retail Scanner

dataset starts to have Seattle data in 2007Q1, and after 2016Q4, two large retailers in Seattle

drop out of the NielsenIQ sample. Ending far before the January 2018 implementation of

the actual tax is in the spirit of this type of prediction exercise, since we do not want to use

variation from the tax to estimate demand, but rather to validate our predictions.

Aggregate sales data are weekly, but we aggregate to a quarterly frequency to partially

alleviate concerns about stockpiling, which the standard BLP model does not account for.114

Aggregating to a yearly frequency would further alleviate stockpiling concerns and would

reduce computational costs, but it would eliminate a great deal of price variation that is

needed estimate the price elasticity of demand.

Adding regions other than Seattle as additional markets would increase the amount of

cross-market choice set and demographic variation. But if demand parameters are assumed

to be the same across geographic regions, doing so would also require an assumption that

preferences for soft drinks are similar across included geographies. We only consider Seattle

because doing so does not require making this additional assumption. Thankfully, the com-

bination of aggregate and micro data at our disposal has enough variation for us to predict

the effects of the 2018 SBT tax with reasonable precision.

One important concern specific to the tax prediction exercise is that after the tax was

implemented, consumers may have switched to stores right outside the city where prices were

113We use Seattle’s 3-digit ZIP code 981 to identify stores and households in the city in NielsenIQ data.
We use its five Public Use Microdata Areas (PUMAs) to identify the population of Seattle households in the
American Community Survey (ACS).
114Existing studies (e.g., Hendel and Nevo, 2006) have documented stockpiling at a weekly frequency.

Allcott et al. (2019) find no evidence of stockpiling at the quarterly frequency for soft drinks in NielsenIQ
data.
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lower. However, unlike other SBTs like in Philadelphia with strong evidence of cross-border

shopping (e.g., Roberto et al., 2019; Cawley et al., 2019; Seiler et al., 2021), there did not

seem to be substantial cross-border shopping after the Seattle tax (Powell and Leider, 2020).

If cross-border shopping were a concern, one could include stores in the area around

Seattle into each quarter’s market, define each product j as a product-store combination, and

incorporate geographic distance or travel time dijt between between stores and households

into the demand system.115 To do so, we would need demographic data and store locations at

a more detailed level, for example 5-digit ZIP code.116 When running the tax counterfactual,

consumers in the model would trade-off lower prices with distance, giving a more reasonable

estimate of cross-border shopping. For example, Chen et al. (2022) use a variant of Grieco

et al.’s (2023) estimator to estimate the importance of travel time in generating cross-border

effects around the implementation of Philadelphia’s SBT tax.

Another approach to geographic market definition would be to split up Seattle into a

separate market for each geographic part of Seattle (e.g., north, downtown, and south), each

group of stores (e.g., by retailer), or both. Again, there is a tradeoff. Splitting up Seattle into

multiple cross-sectional markets would generate useful cross-market variation, but it would

require an assumption that consumers’ choice sets are truly defined by these cross-sectional

segments. If estimating how demand varies with demographics, as in our empirical example,

this would also require demographic data at a more detailed level.

Demographics

Since our market definition is the entirety of Seattle at a quarterly frequency, we collect

household-level demographic data for the entirety of Seattle from the American Consumer

Survey (ACS) at the highest frequency possible, which is annual.117 In the ACS, Seattle is

split up into five Public Use Microdata Areas (PUMAs), which we combine.

An approach that splits Seattle up into multiple geographic regions could use different

PUMAs for different market definitions. If instead of geography, Seattle were instead split up

by groups of stores, Census data would be less useful because it does not contain information

about where households typically shop for groceries. An alternative approach would be to

115PyBLP fully supports variables like dijt, which we call “product-specific demographics.”
116NielsenIQ stores only have 3-digit ZIP codes, but one can impute their 5-digit ZIP codes taking the

trip-weighted average centroid of ZIP codes of households in the NielsenIQ Consumer Panel data who shop
at the store (DellaVigna and Gentzkow, 2019; Chen et al., 2022).
117The time dimension turns out to not be very important for our setting because there is very little time

series variation during this period in the demographics we consider: the share of households that are high
income and have children.
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sample from households in the NielsenIQ Consumer Panel dataset who shop at each group

of stores; however, the number of households would be quite small.

In general, constructing demographic distributions from NielsenIQ households can work

if estimating demand over larger geographic regions where the number of households being

sampled from is quite large.118 However, one might still want to merge in Census data to

construct sampling weights that guarantee sampling from NielsenIQ households is similar to

sampling from the actual population.119 We discuss sampling weight construction below in

the micro data subsection.

Since our model only includes two binary demographic variables (yit includes high income

and children indicator variables), it is enough to know the share of households in Seattle in

each year in each of the four demographic bins. Without any unobserved preference hetero-

geneity, these shares are integration weights wit. We define a high income household as one

with pre-tax household income above $67,106, the median household income of Washing-

ton state in 2016. We deflate all dollar-valued variables, including income, using the 2016

Consumer Price Index (CPI). Households with children are those with at least one member

below the age of 18.

To incorporate unobserved heterogeneity νit, we expand each of our four demographic

groups into as many integration nodes are needed for our quadrature rule. We then mul-

tiply the demographic shares by the quadrature rule’s integration weights to get the final

integration weights wit.

For models with continuous demographic variables, such as real-valued income, one ap-

proach is to fit a parametric distribution to the demographic,120 and incorporate it with a

quadrature rule just as we incorporate unobserved preference heterogeneity. If there is more

than one continuous demographic, it is often easier to use simple Monte Carlo methods,

resampling a large number of households from the data, along with Monte Carlo draws for

unobserved heterogeneity. In this case, integration weights wit would simply be 1/|It|.
Lastly, by computing household-level demographic shares (weighting by the household

118For smaller geographic regions and noisier demographic distributions, one approach is to account for
this sampling error by resampling from the small number of households during a nonparametric bootstrap.
Alternatively, PyBLP supports estimating the contribution of demographic sampling error to asymptotic
moment covariances through resampling demographic at the parameter estimates.
119The NielsenIQ data provides projection weights, but our understanding is that these are more useful

for constructing a nationally-representative sample, not a sample that is representative for a more specific
region.
120For example, Backus et al. (2021) use NielsenIQ income bins to fit parametric income distributions at

the Designated Market Area (DMA)-chain level, which generally contains many more NielsenIQ households
than just Seattle.
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weights provided by the ACS), we are assuming that each consumer in the model is a Seattle

household. Another approach would be defining consumers as individuals within households,

in which case we would want to compute demographic shares at the individual level. We

focus on households because households tend to do grocery shopping as a unit and that is

how NielsenIQ records purchases.

Products

In the NielsenIQ Retail Scanner dataset, we define a product j as a Uniform Product Code

(UPC)-retailer combination.121 Defining a separate product for each of the five retailers in

our sample at which it is sold allows us to exploit cross-retailer price variation, which we

will use to construct our price instrument.

When there are a great deal of products in a market,122 it may be much more compu-

tationally tractable to aggregate UPCs up to the brand level. Similarly, in many papers

estimating demand for automobiles, products are defined at more aggregated levels than

trim. We choose to define products at the more fine UPC level because this allows us to

estimate differential preferences for small or individual-sized drinks, which following Powell

and Leider (2020) we define as single units no more than one liter in volume.123 However,

we do cluster our standard errors for the aggregate data at the brand level, since we ex-

pect marketing and other dimensions of unobserved quality to be strongly correlated within

brand.

To construct each set of products Jt, we limit our analysis to NielsenIQ product modules

for soft drinks and fruit drinks.124 There are other modules containing juices with added

sugar that the Seattle SBT tax affected, but for simplicity we do not include these other

modules and drop juice drinks that are in the above modules.125

If we wished to study substitution to other beverage categories, such as juices or other

sugary goods, we could have included additional product modules. We choose to focus on

substitution to diet drinks for simplicity, and because diet drinks were excluded from the

121Throughout this appendix, “UPC” will refer to a UPC and version number combination.
122For example, this would be the case if we defined product j as each UPC-store to incorporate distances

dijt into estimation.
123This product characteristic ends up being important because it is highly correlated with price per ounce

and preferences for it differ strongly by demographic group.
124The modules that we consider are “Soft Drinks - Carbonated,” “Soft Drinks - Low Calorie,” “Fruit

Drinks - Canned,” “Fruit Drinks - Other Container,” and “Fruit Drinks & Juices - Cranberry.”
125We identify juice drinks as those with “JC” surrounded by word boundaries in their UPC descriptions.

These constitute only 3.2% of the total ounces purchased in our data because the product modules we
consider do not include those that are primarily juice.
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Seattle tax. Using the same instrument that we describe shortly, although in a national set-

ting, Allcott et al. (2019) only find evidence of substitution from sugar-sweetened beverages

to diet drinks among beverage categories. Comparing with NielsenIQ data from Portland,

Oddo et al. (2021) and Powell and Leider (2022) do find evidence of some small substitution

to sweets and alcohol, respectively, so a more complete analysis could benefit from including

such categories in the demand system as well. For example, Zhen et al. (2014) estimate an

Exact Affine Stone Index (EASI) demand model (Lewbel and Pendakur, 2009) that includes

23 different categories related to soft drinks to evaluate the impact of SBTs. The micro BLP

approach estimates demand in characteristics space, rather than in complementary prod-

uct space approaches like EASI and related Almost Ideal Demand System (AIDS) models

(Deaton and Muellbauer, 1980).

A common concern with datasets that include many products is that those with very

small quantities purchased are in fact unavailable to most consumers, have low-quality data,

or have quantities that are noisily estimated. Within each quarter, we combine all products

in the bottom 5% of ounces sold with the outside good, effectively dropping these very

small-quantity products from our analysis. Among these dropped products, the largest only

constituted 0.008% of total ounces purchased during its quarter. We also drop less than

0.03% of product-quarters with size units not denoted in ounces. Across quarters, there are

an average of |Jt| ≈ 1,954 products with a standard deviation of 154.

In addition to the small-size indicator, we also construct a diet indicator from formula,

type, and UPC descriptions.126 To identify which products were taxed, we use a manual

classification that was created and graciously provided to us by the authors and research

team of Powell and Leider (2020). Their data are slightly different, but their classification

covers 99% of products in our sample in 2016, and we manually match a remaining few

products, primarily using the diet indicator.

We define prices pjt as the quantity-weighted price per ounce (deflated by the quarterly

2016 CPI) of UPC-retailer j in quarter t, and quantities qjt as total ounces sold of j in

quarter t. An alternative approach would be to define quantities as units sold, and prices

as price per unit. We find that using raw units instead of volume leads to a great deal

of price variation that is hard to explain, except by constructing many additional product

characteristics. Price per unit volume tends to be more uniform and easier to explain with

a demand model.

126We define diet drinks as those with formula or type descriptions equal to “DIET”, “LIGHT”, “RE-
DUCED CALORIE”, “LITE”, “LOW CALORIE”, or “LOW CALORIE CAFFEINE FREE” or with UPC
descriptions that include “DT” or “LT” surrounded by word boundaries.

120



Instruments

For prices, we construct a Hausman (1996)-type instrument very similar to the one used by

Allcott et al. (2019), which exploits the tendency of retailers to vary prices independently of

one another, but uniformly across their own stores (DellaVigna and Gentzkow, 2019). Across

all NielsenIQ Designated Market Areas (DMAs) that do not include Seattle, we compute the

quantity-weighted average price per ounce for each UPC-quarter and UPC-retailer-quarter.

Our instrument z1jt for the price pjt of UPC-retailer j in quarter t is the difference of these

two numbers,127 which reflects retailer-specific deviations of prices in non-Seattle markets.

Estimating the simple logit model, Kleibergen and Paap’s (2006) F -statistic is 1,003.128

To identify σp, the degree of unobserved preference heterogeneity for prices, we use the

“quadratic” version of Gandhi and Houde’s (2020) differentiation IVs, which we discuss in

Section 3 and also use in our Monte Carlo experiments in Section 7. First, to deal with

price endogeneity, we construct predicted prices p̂jt from a linear regression of prices pjt on

the Hausman-type instrument, along with product-retailer and retailer-quarter fixed effects.

The differentiation IV z2jt =
∑

k ̸=j(p̂kt − p̂jt)
2 is the sum of squared deviations of predicted

prices from other products in that quarter. This reflects each product’s exogenous degree of

isolation in product space, as measured by its price.

Since there is a great deal of cross-quarter variation in both prices and the Hausman-type

instrument, with this differentiation IV we are able to estimate σp fairly precisely with only

aggregate variation. Since there is very little cross-quarter variation in the distribution of

demographics in Seattle, we do not attempt to identify coefficients in Π with aggregate vari-

ation. Indeed, when we try to estimate the model with instruments for these coefficients,129

we get unsurprisingly noisy estimates that severely corrupt other estimates of interest.

Market Sizes

To convert quantities qjt, in ounces, into market shares, Sjt = qjt/Mt, however q0t is unob-

served, and therefore we need to make an assumption about each quarter’s market size Mt,

127For a small number of UPC-retailers with no observed sales in the NielsenIQ data outside the Seattle
DMA, we set z1jt = 0. This means that we only use instrument variation from UPC-retailers in other DMAs
to identify the price elasticity.
128We regress log quantities on prices per ounce, using our Hausman-type instrument. Like in Table 10,

we absorb product-retailer and retailer-quarter fixed effects, and cluster standard errors by brand. Retailer-
quarter fixed effects absorb variation in market sizes and outside quantities.
129If we were working with many different cross-sectional geographic markets, we could attempt to identify

Π with only aggregate variation by including instruments that interact demographic means with product
characteristics and their differentiation IVs.
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also in ounces. We assume that each market size Mt is equal to an estimate of the number

of trips at the stores in our data in quarter t, multiplied by 720 ounces per trip. We choose

720 because in a histogram of ounces purchased per trip,130 720 ounces (or four 144 ounce

packages of 12 cans each) was the last significant spike in the right tail (95th percentile),

suggesting that it is the maximum “reasonable” purchase size per trip of beverages in our

analysis.

To estimate the number of trips per quarter, we combine the NielsenIQ Retail Scanner

data with the Consumer Panel data. Across all Seattle retailers in our product data, we

compute each quarter’s total revenue across all dry grocery product groups.131 Across all

Seattle households and trips to Seattle stores in our micro data, discussed below, we compute

each quarter’s weighted average revenue per trip across these same product groups.132 Our

estimate of the number of trips per quarter is the ratio of these two numbers. We restrict

our attention to dry grocery rather than all goods (e.g., laundry detergent), because we do

not want to include non-grocery trips that are unlikely to include beverage purchases.

Another approach that aims to get a sense of foot traffic in the NielsenIQ data is to

regress the total quantity of inside goods on goods that are usually purchased during a

typical grocery trip, like milk and eggs (e.g., Backus et al., 2021). Market sizes would then

be the predicted number of inside goods purchased as a function of, say, milk and eggs,

scaled by a common number to target a certain outside good share. This targeted outside

good share is similar to our assumed 720 ounces per trip, and ultimately requires a strong

assumption about the size of the market. However, this approach, along with the one that

we use in this paper, both capture reasonable cross-market variation in the market size. The

benefit of a regression approach is it does not require an estimate of revenue per trip, which

can be quite noisy if working with markets that have very few households in the Consumer

Panel data.

Perhaps the most common approach is to convert total population of the surrounding

area into quantity units with another conversion factor. This approach seems less reasonable

if markets are defined by groups of stores within a region, but could be reasonable for markets

defined by clear geographic regions. If we were to estimate the typical number of trips per

quarter from the Consumer Panel data, multiply by the total population of Seattle, and

130We compute this histogram by aggregating ounces purchased in the below micro data to the trip level,
and then computing the weighted average of these ounces per trip in different bins. We discuss household
sampling weights below.
131Perhaps confusingly, the department code of 1 corresponding to dry grocery includes all beverage cate-

gories we consider. It contains most standard grocery products.
132We discuss household sampling weights below when describing how we construct micro data.
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scale by 720 ounces, our outside share would be very large because it would include all

beverage sales that NielsenIQ does not cover. We could scale down our estimate by some

factor of NielsenIQ coverage, but we found estimating trips directly from NielsenIQ to be

more straightforward.

For our counterfactual, it would be problematic if the outside good contained a large

volume of taxed beverages. It would be unclear by how much to increase the price of the

outside good, or equivalently, decrease the price of all inside goods. And not increasing

the price of the outside good would result in an unreasonable degree of substitution to the

outside good.

In general, a biased market size will also bias demand estimates and counterfactual sub-

stitution patterns. One exception is the simple logit model with market fixed effects, which

absorb variation from outside quantities and the market size, so that parameter estimates

are unaffected by the choice of market size. However, counterfactual substitution will still

be affected. The own- and cross-price elasticities of demand for the simple logit model are

ϵjjt = α · pjt · (1 − Sjt) and ϵjkt = −α · pjt · Skt, in which α < 0 is the coefficient on price.

Since market shares are usually very small, (1−Sjt) ≈ 1, and the own-price elasticity ϵjjt is

mostly unaffected by the choice of market size. However, the elasticity of substitution to the

outside option ϵj0t is biased upwards by a large outside share S0t due to a too-large market

size Mt, and substitution to other inside goods k /∈ {0, j} is biased downward.

Incorporating random coefficients can help discipline substitution with data rather than

often untestable assumptions about the size of the market. Ideally, we would like to estimate

a random coefficient on the outside good, or equivalently, on a constant for all inside goods.

The degree of preference heterogeneity for the outside good versus inside goods is closely

related to how consumers substitute between the two. One challenge is that with only

aggregate data and market fixed effects, the distribution of this random coefficient is not

identified.133 In our setting, micro moments identify demographic-specific preferences for

all inside goods. Since we only consider two demographics, however, incorporating second

choice data is important to more credibly estimate the degree of unobserved preference

heterogeneity for all inside goods. We discuss how we collect second choices below.

133Recall the FRAC regression from Section 3. The artificial regressor on a constant characteristic xjt = 1
is ajt = S0t − 1/2, the outside share minus one-half, variation of which is absorbed by market t fixed effects.
Moments of the demographic distribution are also collinear with market fixed effects.
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Micro Data

The NielsenIQ Consumer Panel dataset tracks the purchase decisions of households over

time. The dataset is split into sub-datasets, one for each panel year. We keep all panel years

from 2007–2016, and restrict to trips to stores in our product data made by households who

live in Seattle. We only use data on inside purchases of products in our product data.

To account for non-random participation of households in the NielsenIQ panel, we con-

struct sampling weights for each household-year. We use these weights whenever computing

statistics from the NielsenIQ data, including above when computing average revenue per

trip. For each demographic bin and year, the sampling weight is equal to the share of

Seattle households in this bin from the ACS, divided by the same share from NielsenIQ. Re-

weighting households helps adjust for non-random selection into the NielsenIQ dataset.134

Our micro moments match means and covariances. When computing micro moment

sample values fm(v), we compute weighted averages and weighted covariances, with weights

equal to the household’s sampling weight, multiplied by total ounces purchased, and divided

by the quarter’s market size.

By weighting in this way, we are assuming that NielsenIQ Consumer Panel purchase

data are generated as follows. First, a household is selected to be in the dataset based on

its households weights. Second, each purchased ounce of inside beverages is recorded with

probability proportional to the market size of that quarter, which in turn is proportional to

the number of trips made that quarter by Seattle households.

Each purchase n made by a household is associated with a quarter tn, a product jn, and

a group of agent types in with the same observed demographics yintn as the household. Like

in the ACS data, we define a high income household as one with deflated pre-tax household

income above $67,106. We directly use the NielsenIQ variable that measures the presence of

at least one child in the household.

We observe multiple choices per household-quarter, but our model assumes that each

consumer makes a discrete choice per quarter. To bridge this disconnect, we assume that

each “consumer” in the model is a household-ounce choice. When conducting statistical

inference, we set the number of micro observations in the dataset d equal to Nd = 10,455,

the number of trips with a purchase of an inside good j ̸= 0.

If there were only observed demographics yit, this type of assumption would be fairly

innocuous because we always condition on these observables when computing micro moment

134NielsenIQ also provides projection weights, but our understanding is that these are for computing na-
tionally representative statistics, not sub-nationally representative statistics.
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scores. But with unobserved preferences νit, this assumption of many independent purchases

for each household translates to re-drawing νit for each ounce the household purchases.

To use the panel aspect of the data, we would have to extend our likelihood to be the

product of purchase probabilities over many time periods (e.g., Chintagunta and Dubé,

2005), which is beyond the scope of this paper that considers only the static BLP model.

Incorporating multiple time periods would be similar to incorporating second or third choices,

although with enough time periods estimation may run into numerical errors, since there

would be a product of many small probabilities.

Second Choice Survey

To estimate the degree of preference heterogeneity for the outside good and for diet beverages,

we use second choice data and match the probability consumers divert from some of the most

popular non-diet brands to the outside good or a diet beverage, respectively, if their first

choice brand were to be eliminated from their choice set. We could have matched a number

of other similar second choice statistics, but we view these as particularly interpretable and

tightly-connected to the counterfactual of interest, given our focus on substitution from

non-diet beverages to the outside good and diet beverages.

We demonstrate how one can collect second choice data by building the short online

survey in Figure K1 with Qualtrics and recruiting participants from Prolific Academic.135

After providing informed consent, participants were asked questions about their first choice

brand of non-diet soft drink, how much of this brand they purchased during the last 30 days,

and what they would do if it were no longer available. We also collect basic demographic

information.

Our survey design is similar to that used by choice-based conjoint analysis, and we try to

follow recommended practices outlined in Allenby, Hardt, and Rossi (2019). See Stantcheva

(2023), for example, for a more general introduction to collecting data with surveys. To

elicit first choices, we first ask participants which of eight popular non-diet brands of soda

they have purchased the most of during the last 30 days.136 We discard the responses of

about 30% of participants who say they have purchased none of these brands.137 Following

standard practice, we provide brand images to help focus participant attention (Wedel and

Pieters, 2000) and randomly order brands.

135The Harvard University IRB determined the survey to be exempt from full IRB review.
136We select these brands from the top-purchased brands in Seattle near the end of our sample.
137Adding more brands would decrease this share of discarded responses at the cost of having a more

complicated survey.
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Since our demand system is for ounces, we next use a volumetric task similar those in

Howell, Lee, and Allenby (2016). Instead of directly asking for volume in ounces, which

participants are unlikely to be able to estimate very well, we ask participants to record how

many of each common first choice beverage size their household purchased during the last

30 days.138 Again, we provide first choice brand-specific images of bottles and cans to help

focus the attention of participants. Responses seem to be compatible with the aggregate

data. For example, 12-packs of 12-ounce cans (i.e., multiples of 12 entered next to 12-ounce

cans in the survey) seem to account for the most Coke volume both in our survey and in the

NielsenIQ data.

For second choices, we ask respondents what they would have done had their first choice

brand been unavailable. In addition to the diet version of their first choice brand and both

non-diet and diet versions of the other seven popular brands that we presented for first choice

options, we also have options for another non-diet soft drink, another diet soft drink, or the

outside option: no drink or a non-soft drink.139 Again, we expect that explicit choices along

with brand logos help focus participants’ attention. Ideally, having “other” options means

that which brands we put on the page should not matter for measuring substitution from

non-diet to diet or the outside good. However, concern about participants treating these

“other” options differently depending on which brands were shown (and in particular, the

presence of the diet version of the first choice brand) led us to randomly display only half of

the eight brands to each respondent. We discuss results from this randomization below.

Finally, we ask participants demographic questions to mirror ACS and NielsenIQ data:

whether their pre-tax household income was above the previously-mentioned median of

$67,106 in 2023 dollars, and whether their household has at least one child. As we will

discuss shortly, we collect participants from all of Washington State, so we also ask whether

participants live in Seattle to check whether the responses of Seattle residents are particularly

different.

We recruited 139 participants from Prolific Academic to achieve a target sample size of

100 participants who selected a brand in the first choice question. We chose Prolific over

other online survey platforms such as Amazon’s Mechanical Turk because other researchers

have found that Prolific response quality tends to be the best among online platforms with

138We obtain common beverage sizes from the aggregate NielsenIQ scanner data. We use the same sizes
for all first choice brands (16.9-ounce bottles, 1-liter bottles, 3-liter bottles, 12-ounce cans, and 7.5-ounce
cans) except Gatorade and Powerade, which have different common sizes (32-ounce, 20-ounce, and 12-ounce
bottles).
139We describe what we mean by each of these categories in the question text. See Page 5 in Figure K1.

These definitions mirror the definitions that we use when defining our sample of aggregate data.
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large participant pools (Peer et al., 2017; Eyal et al., 2021). To take part in the study, we use

Prolific filters for residents of Washington State,140 and for those using non-mobile devices

because our choice exercises take up a large amount of screen space. We conservatively paid

each participant $1 for taking the survey, which for a median time spent on the survey of

only one and a half minutes ended up being far above the Washington minimum wage of

$15.74 per hour. If we were instead to pay this minimum wage, running the survey would

have cost around $60.
Like our micro moments constructed from NielsenIQ micro data, we adjust for both non-

random sampling by demographic group and by ounces purchased. Weights are the share of

Seattle households in the demographic bin divided by the same share in our survey responses,

multiplied by ounces in the volume task. We compute two weighted averages: the share of

respondents who would substitute to a diet soft drink, and the share who would substitute

to the outside good.

In Table K1 we report these weighted averages both for all survey responses, which is what

we match in Table 9, and also for a number of subsamples of responses. Across subsamples,

both shares are between 0.1 and 0.3, suggesting that, as our demand estimates reflect, there

is substantial unobserved preference heterogeneity for both diet soft drinks and the outside

good.

To check for dataset compatibility and standard survey biases, we also re-compute these

numbers for different subsamples. The one-fourth of responses who live in Seattle tend to

have slightly higher diversion to the outside good, but similar diversion to diet soft drinks.

As discussed above, we can also check whether the diet version of the first choice brand

being visible in the second choice question affects results. It does seem to somewhat increase

diversion to diet soft drinks and decrease diversion to the outside good, but not by much.

Finally, we verify that our results are unlikely to be driven by low-quality, fast-clicking

respondents by re-computing our statistics for those who take little time on the second

choice question, and for those who have taken relatively few surveys on Prolific. Shares are

very similar to those for the full sample.

140We could have also set up a pre-screening survey for Seattle residents, although at this point our pool
of potential respondents would likely have been much less than 200, much less than the recently-active (as
of March 2023) Prolific participants in Washington.
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Figure K1: Second Choice Survey

Study Title: So� Drink Choice

Researcher: Jeff Gortmaker (Harvard University)

Version Date: 3/3/2023

What is the purpose of this research? 
The purpose of this research is to inves�gate how individuals purchase so�
drinks. You will be asked ques�ons about yourself and how you usually
purchase so� drinks.

What can I expect if I take part in this research?

You will be asked ques�ons about yourself and how you usually purchase
so� drinks.
Your responses and choices will be anonymized, will be analyzed by the
research team, and may be used in future research.
Par�cipa�on in this study will take approximately 3-4 minutes and you will
be compensated $1.00.
This is a one-�me online survey. It will begin upon your agreement to the
consent form and end when you finish or exit.

What should I know about a research study?

Whether or not you take part is up to you.
Your par�cipa�on is completely voluntary.
You can choose not to take part.
You can agree to take part and later change your mind.
Your decision will not be held against you.
Your refusal to par�cipate will not result in any consequences or any loss
of benefits that you are otherwise en�tled to receive.
You can ask all the ques�ons you want before you decide.

Who can I talk to?
If you have ques�ons, concerns, or complaints, or think the research has hurt
you, talk to the research team at jgortmaker@g.harvard.edu.

Do you consent to participating in this study?

Yes, I consent to participating

No, I do not consent

What is your Prolific ID?

Please note that this response should auto-fill with the correct ID.

During the last 30 days, which of these non-diet brands of soft
drinks have you purchased the most of?

Coke Powerade Mountain Dew

Pepsi Canada Dry Seven Up

Gatorade Dr Pepper

Have purchased none
of these non-diet
brands during the last
30 days

Page 1: Standard consent form. Page 2: Prolific ID collection.
Prolific IDs can be used to merge
in demographics and past survey
experience provided by Prolific.

Page 3: First choice brand ques-
tion. Brands are randomly or-
dered when shown to partici-
pants.

Continued on the next page.
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Continued from the previous page.

During the last 30 days, how many non-diet Coke drinks did your
household purchase?

If you purchased a package, add the number of drinks in the
package. If a size is missing, use the closest.

16.9-ounce bottles 12-ounce cans

1-liter bottles 7.5-ounce cans

2-liter bottles

If non-diet Coke was not available, what type of drink would you
have purchased instead?

"Diet" means advertised as diet, zero sugar, light, etc.

"Non-soft drink" means juice, milk, plain water, an alcoholic
beverage, etc.

"Soft drink" means soda, sports drink, fruit-flavored drink, flavored
water, energy drink, etc.

Non-diet Pepsi Diet Pepsi

Non-diet Gatorade Gatorade Zero

Non-diet Powerade Powerade Zero

Non-diet Canada Dry Canada Dry Zero

Non-diet Dr Pepper Diet Dr Pepper

Non-diet Mountain Dew Diet Mountain Dew

Non-diet Seven Up Seven Up Zero

No drink or non-soft drink

Diet Coke

Other non-diet soft drink Other diet soft drink

Last year, was the total pre-tax income of your household above
$85,000?

Does your household have at least one child below the age of 18?

Is your household in Seattle?

Yes, above $85,000

No, below $85,000

Yes, household has at least one child

No, household does not have any children

Yes, in Seattle

No, not in Seattle

Page 4: Volume question for re-
spondents who selected Coke on
Page 3. Images depend on the re-
sponse to Page 3. All volumes are
the same except Gatorade and
Powerade, which display stan-
dard 32, 20, and 12 ounce sizes.

Page 5: Second choice ques-
tion for respondents who selected
Coke on Page 3. Only half of the
eight brands are randomly visible
when shown to participants. The
three text options at the bottom
are always visible.

Page 6: Demographic questions.
Choices are randomly ordered
when shown to participants.
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Table K1: Second Choice Survey Subsamples

Weighted

Average Diversion

Diet Outside

All Survey Responses (N = 100) 0.17 0.16
(0.04) (0.04)

Respondent Household Location:

↪→ Seattle (N = 25) 0.15 0.30
(0.07) (0.09)

↪→ Elsewhere in Washington (N = 75) 0.17 0.10
(0.04) (0.03)

Diet Version of First Choice Brand:

↪→ Visible (N = 57) 0.20 0.10
(0.05) (0.04)

↪→ Not Visible (N = 43) 0.12 0.24
(0.05) (0.07)

Time Spent on Second Choice Question:

↪→ At Least 16 Seconds (N = 50) 0.15 0.14
(0.05) (0.05)

↪→ Less than 16 Seconds (N = 50) 0.18 0.18
(0.05) (0.05)

Experience with Taking Other Surveys:

↪→ At Least 1058 Prolific Approvals (N = 50) 0.19 0.18
(0.06) (0.05)

↪→ Less Than 1058 Prolific Approvals (N = 50) 0.15 0.14
(0.05) (0.05)

This table reports the diversion ratios we match computed on
the full sample of survey responses and for different subsam-
ples. Standard errors are in parentheses.
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