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Female inventors appear to face significant obstacles when seeking patents. Women

face significant disparities in the patent approval process (Jensen, Kovács, and Sorenson

(2018)), may face a higher bar for patent grants (Gavrilova and Juranek (2021)), and are

underrepresented among inventors in patent applications more generally (Bell, Chetty,

Jaravel, Petkova, and Van Reenen (2019); Reshef, Aneja, and Subramani (2021)). As a

result, assuming a patent is applied for and granted, we might well expect to observe

a selection effect, whereby the average patent with a female inventor may be of higher

quality than the average male inventor patent, and thus, on average, achieve a higher

forward citation count. Perhaps surprisingly, however, a simple analysis of patent cita-

tions suggests that female-authored patents in fact receive fewer forward citations rela-

tive to male-authored patents (Jensen, Kovács, and Sorenson (2018)), suggesting either

that patents granted to female inventors are of lower quality, or, more concernedly, that

the quality of their patents are not fully recognized in the form of forward citations, a

commonly used measure.

Assessing whether a patent is undercited relative to its actual quality is not a trivial

undertaking. Typically, citations serve as the de facto measure of a patent’s quality, even

though the measure is noisy. To determine whether female inventors face systematic

obstacles to citations of their work, versus simply producing lower-quality patents, the

econometrician must disentangle actual quality from the citation outcome. In an ideal

setting, the econometrician would either randomize underlying quality across genders

or gender across patents. Natural experiments that mimic this ideal, or suitable instru-

mental variables, however, have been elusive.

In this paper, we utilize novel machine learning techniques that allow for the mea-

surement of the causal contribution of gender to the citation of patents of similar quality.

Our methodology builds on a burgeoning set of research in the computer science liter-

ature that studies causal identification using textual data (see e.g. Khetan et al. (2022);

Shao et al. (2021)). The intuition behind these models is straightforward. Our goal is to

identify the expected change in outcome if we apply treatment while holding fixed any

mediating variables affected by the treatment that also might affect the outcome.

Our approach, which we label as Causal Text Analysis, or C-TEXT, estimates causal
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effects from observational text data, adjusting for confounding features of the text, such

as the subject or writing quality. It assumes that the text content suffices for causal

identification but is prohibitively complex for standard analysis. Our C-TEXT approach

utilizes causally sufficient embeddings, relatively low-dimensional document represen-

tations that preserve sufficient information for causal identification, thus enabling ef-

ficient estimation of causal effects. The causal sufficiency reduces dimensionality yet

preserves aspects of the text that predict both the treatment and the outcome while

disposing of linguistically irrelevant information–which is also causally irrelevant. The

identification assumption is that the text contains all unobserved information necessary

to measure the desired effects (quality of the patent and forward citations, conditional

on gender). Our C-TEXT model generalizes embedding-specific approaches such as

Veitch et al. (2020) and allows for various encoder architectures (here, Longformer and

SciBERT) to causally identify treatment effects.

We then use the resulting embeddings to train two neural networks—one per gen-

der of the lead patent author—using the embedding’s numerical representations of the

patents as inputs, and forward citations as outputs. Each neural network represents a

mapping from embedding vectors to citation counts. The first mapping is trained using

the subset of data where the patent is female-authored, while the second mapping is

trained using the data where the patent is male-authored. Unlike the standard OLS ap-

proach, the neural network approach captures complex and often nonlinear relationships

between inputs and outputs, particularly when dealing with high-dimensional inputs.

Having obtained parameters for each gender’s citation-prediction model, we then

take the sample of patent data and run it through the citation model trained on its

own gender’s inputs and outputs and through the citation model trained on the opposite

gender’s inputs and outputs. This produces a set of counterfactual citation counts for

each patent, holding all else equal and changing only the gender of the authors.1

Our main sample covers all utility patents granted by the U.S. Patent Office (USPTO)

from 1976 through 2021. For our main analyses, we focus on the first inventor’s name

1The methodology also incorporates a gender propensity model to ensure a patent’s text is not iden-
tified as male- or female-authored, to ensure a quality counterfactual can be computed. Dropping this
restriction only strengthens our results.
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on the patent (the “lead inventor”), and label patents as female lead inventor if the

first inventor listed on the patent is female, and male lead inventor if the first inventor

listed on the patent is male. Our results are robust to other labeling approaches of

female versus male-authored patents, including restricting to single-authored patents or

majority-gender teams.

We begin by documenting that even with no adjustments for patent quality or char-

acteristics, there is a statistically significant difference in the number of forward citations

for patents with a female first author versus those with a male first author in our matched

data, consistent with Jensen, Kovács, and Sorenson (2018). Patents authored by women

appear to be less likely to receive any citations than male-authored patents. This pattern

persists when we control for factors such as the identity of the patent examiner, the art

unit of the patent, the identity of the attorney who assisted with the patent preparation

and submission, the assignee, and the patent issue year.

Next, we use the C-TEXT methodology to mediate the differences in the quality of

the patents in order to identify the causal effects of gender on forward citations. Our

analysis then proceeds as follows. First, we define two primary datasets upon which

we run our tests. In the extensive margin sample, we define the analysis sample as all

patents, including those that receive zero citations (the modal patent). In the intensive

margin sample, we restrict to those patents that receive at least one forward citation.

Next, we apply the C-TEXT methodology to obtain counterfactuals for the opposite

gender. Using these counterfactuals, we calculate the average treatment effect (ATE), the

difference between the predicted forward citations for the patent out of each gender’s

neural network, averaged over the treated sample. In addition, for each patent, we

then calculate the Delta for each patent, which we define as the difference between the

actual number of forward citations received and the predicted forward citations had the

author(s) been male. Finally, we use Delta as the dependent variable in simple OLS

regressions that allow us to include a variety of controls and fixed effects for added

robustness.

Our baseline estimates suggest that patents with a female first author would have

received more citations if their first author had been male. At the extensive margin, we
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find that the average treatment effect for the sample is -1.95. In other words, for any given

patent, our trained models would estimate nearly 2 fewer forward citations if the first

inventor listed was female than if the first inventor listed was male, holding the patent

content and writing equally. Applying the C-TEXT methodology and comparing actual

citations to those that would be predicted if the patent was authored by a male lead

inventor, we find that patents with a female lead inventor received approximately 13.5%

fewer citations than an equivalent quality patent in the same art unit, evaluated by the

same examiner, would receive had the lead inventor been male. This difference equates

to approximately 1.9 fewer citations per patent. The impact of this undercitation is most

pronounced for the most impactful patents, with female lead-authored patents being less

likely to reach the top decile of citations. At the intensive margin, we find similar effects,

as the ATE is -2.66. In OLS regressions, patents with a female lead inventor received

approximately 8.7% fewer citations than an equivalent patent would receive had the

lead inventor been male, a difference again of approximately 1.86 fewer citations per

patent.

The results are robust to various alternative specifications and are not attributable to

sample selection or model overfitting. The results are also robust to various approaches

to defining a “female-authored” patent. For example, we obtain similar results when

comparing patents with a single female author to those with a single male author or

patents with author teams composed of a majority of female authors versus patents

authored by a majority of male authors.

Our results hold across Cooperative Patent Classification (CPC) major categories and

subcategories of patent technology, with heterogeneity by subcategories. We observe

similar patterns when using the National Bureau of Economics (NBER) classification

system. We observe that the undercitation is particularly large in emerging technology

fields. This undercitation of female-authored patents has grown over time, becoming

pronounced through the year 2000, with it recently shrinking in the 2010s.

Identifying the source of this undercitation is clearly of interest. The citations inven-

tors themselves could drive undercitation of female-authored patents include in their

patent applications, or by citations that are added by patent examiners, and may depend
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on the gender of the examiner or inventor adding the citation. Controlling for art unit,

issue year, examiner, attorney, and assignee, patents with male first authors significantly

undercite patents with a female first author. In contrast, we see little evidence of fe-

male first authors, or either male and female examiners underciting female-led patents.

Overall, the results suggest that the undercitation of female patents is largely due to

patents with male first authors underciting past female-authored patents in their patent

applications.

Finally, we explore whether the economic value of patents, as calculated by the mar-

ket reaction to its issuance, correlates more with actual citations or with the predicted

citations for the same patent if male lead authored based on our methodology. We use

the economic value of a patent as measured by public markets from Kogan, Papaniko-

laou, Seru, and Stoffman (2017), which is generally considered to be forward-looking

and determined at the time of issuance. For all female-authored patents, we regress

these measures of economic value on actual forward citations and the forward citations

that would be predicted for the same patent if male-authored. When horse-raced against

each other, measures of expected economic value load significantly on the predicted for-

ward citation measure, but do not load significantly on actual forward citations. The

results suggest that expected economic value, as measured by market reactions, maybe a

less biased proxy for patent quality than standard measures of realized forward citations.

Our results come with several important considerations. First, causal text analysis

relies on the assumption that the text analyzed captures all the unobserved factors that

should influence the outcome being examined. While it is not possible to test this as-

sumption directly, it is reasonable to assume that the content of the patent is closely

related to its quality or importance, the unobserved factor of interest. Second, assessing

the goodness-of-fit of any given model in computing counterfactual outcomes is chal-

lenging. We utilize a number of approaches to assess model fit. Finally, although our

evidence suggests women receive fewer citations for patents of equal quality, we do not

argue that this represents discrimination, as we cannot observe the intent of examiners

or inventors. Further research will be necessary to establish why patents with female

lead inventors are undercited.
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Our findings have potentially important implications. First, the literature has high-

lighted that innovation is motivated by the expected profits derived from the property

rights granted to patentees, Moser (2005, 2013).2 If women are not equally recognized

for equivalent patents, this may discourage them from entering the innovation economy,

potentially reducing contributions from half of the population, and exacerbating the al-

ready substantial wedge between men and women in science, technology, engineering,

and mathematics (STEM) fields (Beede, Julian, Langdon, McKittrick, Khan, and Doms,

2011), leading to further inefficient allocation of labor. Second, our findings raise con-

cerns regarding the validity of research that relies on forward citations of patents as

a measure of patent quality. To the extent that female-authored patents are systemati-

cally undercited relative to their actual quality, the use of forward citations as a measure

or control for quality may be contraindicated. Given the large literature that relies on

forward citations, a re-examination of prior findings may be warranted.

Our findings contribute to the literature on the impediments that women and mi-

norities face in obtaining patents, with emphasis on the unequal application of laws

(Cook (2014)), unequal opportunities (Cook (2020); Cook and Kongcharoen (2010)), and

discrimination by patent examiners (Desai (2019)). These obstacles result in depressed

levels of applications and lower success rates for females in obtaining patents (Jensen,

Kovács, and Sorenson (2018)). In contrast to this literature, which focuses on identify-

ing differences in patent applications and approvals, our findings focus on a relatively

unexplored question: whether women also face obstacles in citation to their patents.

Our findings also contribute to the broad literature studying obstacles that women

face in various research fields. Recent work by Sherman and Tookes (2022) documents

that women face discrimination in financial economics publishing and job placement.

Sarsons, Gërxhani, Reuben, and Schram (2021) and Sarsons (2017) show women receive

less credit attribution for co-authored work in economics, while Hengel and Moon (2020)

show that, controlling for quality, male economist receive fewer citations for their work

in the “top-five” journals. Related, Card, DellaVigna, Funk, and Iriberri (2020) shows

2In related research, the marginal investor values patents Aghion et al. (2013); Hall et al. (2005);
Hirschey and Richardson (2004); Hirshleifer et al. (2013).
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that female-authored papers receive about 25% more citations than observably similar

male-authored papers, while Koffi (2021b) finds that undercitation in economics is more

likely to be of women-authored papers and that male authors are more likely to cite

male-authored papers. Koffi (2021a) find that female-authored economics papers are

more likely to be cited outside economics, less likely to be cited by top-tier journals, and

less likely to be cited by men. Chawla (2016) and Koffi and Marx (2023) study broader

academic fields. Our work suggests parallels in patent citations as well.

In addition, our paper makes an important methodological contribution. In eco-

nomics, a rapidly growing branch of the big data literature uses natural language pro-

cessing to quantify text (see e.g. Gentzkow, Kelly, and Taddy (2019a)).3 Our paper

introduces new methods, based on recent advances in computer science, that allow the

use of text embedding to mediate and identify causal effects to the economics literature.

To the best of our knowledge, we are among the first researchers to apply deep learning

in economics for causal inference using language.

1 Data

Our main analysis uses data on patent content, citations, and attributes. Our main sam-

ple covers all utility patents the U.S. Patent Office (USPTO) granted from 1976 through

2021.

1.1 Patent Content

Our sample of patents comes from the USPTO’s Patent Examination Research Database

(PatEx) dataset. In our main analyses, We study the quality of the patents through the

lens of patent text, as they should provide a clear summary of the core contribution of

the patent. Importantly, this is the key text input into the C-TEXT model. In robustness

3A partial list of papers in this vein includes the work of Athey and Imbens (2019); Bellstam, Bhagat,
and Cookson (2021); Cong, Liang, and Zhang (2019); Erel, Stern, Tan, and Weisbach (2021); Gentzkow,
Kelly, and Taddy (2019a); Gentzkow, Shapiro, and Taddy (2019b); Hanley and Hoberg (2019); Hansen,
McMahon, and Prat (2018); Li, Mai, Shen, and Yan (2021); Loughran and McDonald (2016); Rouen,
Sachdeva, and Yoon (2022); Routledge, Sacchetto, and Smith (2017).
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tests, however, we also consider SciBERT, a fine-tuned text embedding model specifically

designed for scientific writing. Because SciBERT is only computationally feasible for

shorter texts, we utilize patent abstracts for this analysis. Our results remain qualitatively

similar.

1.2 Gender of Inventors

Our main treatment variable is the gender of the lead inventor (first author).4 The person

who is named first on a patent is usually the primary contributor. Moreover, the first

name listed on the patent may be more salient, similar to how academic papers with

multiple authors are often referred to as “FirstAuthor et al.” We obtain the gender of the

inventors on the patent from PatentView.

One challenge when studying gender and patents is that women are underrepre-

sented as inventors on patents (Hunt et al., 2013). As a result, in order to avoid discrep-

ancies in the predictive power of the male and female-trained neural networks, we must

first balance our sample across patents with lead inventors from each gender. To do this,

we first use all patents with a female lead inventor and extract a random subsample of

patents with male lead inventors of the same size.

In some cases, women and men can differ substantially in writing style. To ensure

there is some level of ambiguity as to whether it was authored by a male or female,

we follow the approach in Veitch, Sridhar, and Blei (2020), and estimate a propensity

model using a one layer logit-linear neural network, where the objective function is the

binary-cross-entropy between the predicted treatment indicator and the true treatment

indicator. Using the text of the patent, the output of this neural network is the predicted

probability that a female lead author writes this patent. We then drop (i) all patents

in the male subsample whose estimated propensity of being female-authored based on

the text is very low (less than 3%) and (ii) all patents in the female subsample whose

estimated propensity of being female-written based on the text is very high (greater

than 97%).5 This step results in the variation in the sample sizes across our subsample

4In further robustness, we consider single-author patents and the gender of the entire team.
5All our results remain qualitatively similar in nature and stronger in magnitude if we do not exclude
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tests.

1.3 Patent Citations

Patent forward citation counts are obtained through the use of data from the USPTO.

While forward citations have historically been used as a proxy for patent quality, the

key point of our analysis is to determine whether this measure is systematically bi-

ased downward for female-authored patents. We therefore distinguish between patent

forward citations (the easily observed outcome for a patent) and quality, which is the

measure of true interest and can be mediated by using the content of the patent.

Patent forward citations are highly skewed in their distribution, with only a few

patents receiving a disproportionately high number of citations. As an alternative to

simple counts of forward citations, we also consider whether a patent receives citations

in the top decile of all patents.

1.4 Examiner Versus Inventor Added Citations

Typically, patent applications include a list of related patents and supporting material.

Citations to patents may be added in two ways. First, inventors cite precedent patents in

their applications. Second, examiners will identify additional citations that are missing

from the patent and request that these be included (Farre-Mensa, Liu, and Nickerson

(2022)). Starting in 2001, and more clearly since 2003, the USPTO discloses whether the

citation originated from the examiner or the inventor. For the purposes of the analysis

studying the source of a citation, we create additional citation counts that only record

citations that examiners and inventors explicitly added.

We consider the gender of the examiner and the propensity to cite the opposite gen-

der in part of our analysis. One problem with this, however, is that patent data does not

disclose the gender of examiners. Because of this, we must infer gender from third-party

sources, (Graham, Marco, and Miller, 2018). To disambiguate the gender of the inventor,

we implement a name disambiguation algorithm similar to that of Desai (2019). We use

patents whose author gender can be clearly identified from the text content alone.
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the first name of the lead examiner to identify their gender (Tzioumis, 2018).

Starting with the PatentView data, we obtain the first names of each examiner of

each patent. We rely on the name of the first lead examiner for patents with multiple

examiners due to their prominence. Next, we classify the gender of the patent examiner

using state-level data on the frequency of names obtained from the Social Security Ad-

ministration (SSA) (Comenetz, 2016). We assign a gender when the percentage of names

in the state belonging to that gender is above 70%.6 If the first name does not match the

SSA dataset, our second step uses a similar process but utilizes a cross-country dataset

from the World Intellectual Property Organization (WIPO) (Martinez, Raffo, Saito, et al.,

2016).

1.5 Other Patent Attributes

When an inventor files a patent application with the USPTO, the application is assigned

a USPC class and subclass based on its field of technology. The application is then

assigned to an “art unit” comprised of several examiners who specialize in that particular

technology class and subclass. We use the art unit to which the patent is assigned as our

proxy for technology-type grouping. Our baseline sample contains 898 art units and

11,953 patent examiners. As an alternative to the art unit, we employ the Cooperative

Patent Classification (CPC) of the patents and the NBER patent category, which is also

reported in the USPTO PatentView database.7

Patents are typically filed with the assistance of a patent attorney, who may file

many of them on behalf of different inventors. Further, the USPTO also reports the

first assignee of the patent as well. We use these identifiers as they help us account

for possible commonalities in writing style across patent attorneys and firms that may

influence the text of the final submission.

Descriptive statistics for our sample are presented in Table 1.

6We take a conservative approach and apply a high confidence interval to reduce Type I errors when
identifying males and females.

7Note, the NBER patent categories are truncated at the end of our sample.
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2 Empirical Strategy

Our analysis presents both methodological and computational challenges. First, we must

represent complex and often subtle differences in the text of the patents in a parsimo-

nious and computationally useful form. Second, we need to relate that text to forward

citations. Finally, we must compute the counterfactual of citations based on the gender

of the inventor.

Below, we outline our empirical strategy. First, we discuss how we create a high-

dimensional representation of text that encapsulates the information necessary to dis-

tinguish patent quality. Second, using this representation, we provide an overview of

the C-TEXT methodology and how we train our model. Finally, we discuss the key

identification assumptions implicit in our approach and their validity.

2.1 High-Dimensional Representation of Patent Text

There are a variety of possible approaches to transform text into numerical form. Many

of these neural embedding models stem from the seminal Bidirectional Encoder Rep-

resentations from Transformers (BERT) model which transform each piece of text into

a high-dimensional numerical vector. Developed by Google (Devlin, Chang, Lee, and

Toutanova, 2018), BERT has become the leading approach in many commercial appli-

cations, including Google’s search platform. BERT uses the attention mechanism to

construct embedding vectors that are numerical representations of the text, which pre-

serve both the meaning of individual words and the underlying context of each word

(Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017)).8

For our main results, we use an encoder, Longformer, which is a special version of a

“Robustly Optimized BERT Pretraining Approach” (RoBERTa) adopted to excel at repre-

senting longer texts using newly developed mechanisms like global and local attention

(Beltagy, Peters, and Cohan, 2020). Its base model, RoBERTa, expands and refines the

BERT architecture. In contrast to BERT, RoBERTa is only trained on masked token pre-

diction, is trained using a larger sample that contains longer texts, and is trained over a

8See Jha, Liu, and Manela (2022) for an excellent discussion of BERT.
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longer period of time. These differences make RoBERTa a popular encoder model that

outperforms BERT in many applications (Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis,

Zettlemoyer, and Stoyanov, 2019). In our application, the encoder model produces a

high-dimensional representation with 768-dimensional embeddings to represent the text

of the patent. We describe the encoder architecture in detail in Appendix B.

2.2 Causal Text Analysis (C-TEXT)

Having created high-dimensional representations of patent text, the second challenge is

establishing the relationship between this data and patent forward citations. To do so,

we introduce a novel leading machine learning technique called Causal Text Analysis

(C-TEXT) that allows us to causally estimate the contribution of language on a binary

treatment variable, using the text of the patent as a mediator for quality.9 C-TEXT comes

from recent advances in computer science, including Khetan, Ramnani, Anand, Sen-

gupta, and Fano (2022); Shao, Li, Gu, Qian, and Zhou (2021); Veitch, Sridhar, and Blei

(2020). Causal text analysis allows us to use the text of patents as a mediator to causally

identify the role of gender on patent citations (Figure 1). To the best of our knowledge,

ours is among the first papers in economics to apply deep learning to causal inference

with language.

C-TEXT is a neural-network-based architecture that estimates counterfactuals of a

binary treatment under the assumption that all of the unobserved information needed

for causal identification is contained within a given text. As shown in Figure IB1, the

input data for training contains three types of information: the text of the patents, gender

indicators of the inventor(s), and the observed number of citations on the patents. There

are four neural networks that need to be trained: a Longformer model for generating

text embeddings, a logit-linear model that maps embeddings to treatment propensities,

and 2 two-layer perceptrons that map from embeddings to male and female predicted

number of citations, respectively. The final loss function is a weighted average of the

losses of these four neural networks.
9See Appendix A for a more indepth discussion.
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The C-TEXT methodology has two key steps. First, it uses a language model. Given

the context of our question, this paper uses Longformer, a transformer-based model to

transform the text of each patent into a high-dimensional numerical vector. The embed-

ding vectors are numerical representations of the text that looks to preserve both the

meaning of individual words and the underlying context of each word. Second, C-TEXT

estimates the number of citations an inventor would have received if that person were

assigned the opposite gender. This is accomplished by training two neural networks,

where each model represents a mapping from embedding vectors to our outcome vari-

able, forward citations, with the first mapping trained using the subset of patents with

a female lead inventor and the second mapping trained using the subset of patents with

a male lead inventor. The two estimated mappings, combined with the high predictive

performance of neural networks, allow us to approximate the true mappings.

Armed with our two mappings, we can then estimate the counterfactual of gender

on citation. That is, we can ask the following: how many citations would a patent whose

lead inventor is female have received if the lead inventor had instead been male, and

vice versa?

The procedure is depicted in Figure 2. First, we run the trained C-TEXT model where

the input data contains the texts of the patents and gender indicators of the author(s).

The texts are first passed through the trained Longformer model to generate a vector

embedding for each patent. Then each embedding-gender pair is passed through a

decision step: if the author(s) are male, the embedding is passed to the female citations

network, and, if the author(s) are female, it is passed to the male citation network. The

counterfactual number of citations is then computed by these two networks. In parallel,

regardless of the gender indicators, each embedding is passed through the propensity

network to estimate the treatment propensity of this patent, which is used to identify

patents that are clearly predicted (97%+ probability) to have been written by one gender

or the other irrespective of quality, which are then dropped (as discussed in section 1).

Finally, the output of the model is a set of counterfactual citation-treatment propensity

pairs that each correspond to one patent.10

10The citations estimates using the true gender network is also saved for computing the ATE and ATT.
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The framework can be expressed more formally in mathematical terms. We denote

the text in the abstract of the ith patent as Wi. We fine-tune the Longformer model f to

map Wi to Zi where Zi is the embedding of the patent text. Then we use a logit-linear

network g to map Zi to a real number, which represents the treatment propensity of this

patent. Here the treatment propensities are the probability that this patent has a female

lead inventor.

g(Zi) = P(Ti = 1|Zi) = (g ◦ f ) (Wi) (1)

In addition, we have two citation networks Q1 and Q0. Q1 maps an embedding

vector to the predicted number of citations if the patent has a female lead inventor, and

Q0 maps an embedding vector to the predicted number of citations if the patent has a

male lead inventor. Mathematically, we define a piecewise mapping Q that represents

the two networks:

Q(Ti, Zi) = E(Yi(Ti)|Zi) = E(Yi(Ti)| f (Wi)) (2)

where Yi(0) and Yi(1) denote the potential outcomes of the ith patent. In our case,

these potential outcomes are the number of forward citations. Given these mappings

represented by neural networks, we can then estimate the average treatment effect (ATE)

and the average treatment effect on the treated (ATT) using the following equations for

a set of N patents.

ATE =
1
N

N

∑
i=1

[E(Yi(1)|Zi)− E(Yi(0)|Zi)] =
1
N

N

∑
i=1

[Qi(1, Zi)− Qi(0, Zi)] (3)

ATT =
1

∑N
i=1 Ti

N

∑
i=1

Ti [E(Yi(1)|Zi)− E(Yi(0)|Zi)] =
1

∑N
i=1 Ti

N

∑
i=1

Ti [Qi(1, Zi)− Qi(0, Zi)]

(4)

While the model mediates for the quality of the patent based on text, forward cita-

tions may also vary with observable characteristics of the patent that are not related to
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quality, such as the art unit or technology class, the attorney who filed the patent, or

assignee, which are also not included in the patent text. As a result, to further refine

the measured ATT. We next pass the difference between actual forward citations and

predicted forward citations in the absence of treatment through OLS regressions with

fixed effects for the above. Our observation for a patent then consists of the actual for-

ward citations for the patent, the number that would be estimated if the lead inventor

was female, the number that would be estimated if the lead inventor was male, and the

actual gender of the leader inventor (treatment 1/0, where 1 is female, and 0 is male),

and other patent characteristics.

2.3 Assessing C-TEXT’s Identification Assumptions

There are three assumptions for C-TEXT that the econometrician must consider. We

discuss each of them and how they are satisfied in our setting.

2.3.1 Text Renders the Effect Identifiable

The first necessary condition is that the text of the documents must render the effect

identifiable. Said differently, the effect that the econometrician is measuring must be

measurable directly from the text. Similar to an exclusion restriction within other iden-

tification strategies, this cannot be formally tested. Instead, this condition must be in-

spected and potentially falsified by considering other channels.

In the context of this paper, the effect we wish to measure is the relationship between

quality and forward citations in the presence or absence of treatment. Our identifying

assumption is that the quality of the patent should be measurable by the content (text)

of the patent itself. Patent examiners read the patent application’s text to evaluate the

patents’ novelty before granting a patent. Further, the text of the patents, by construction,

should contain all relevant information related to a patent and the invention it describes.

As a result, this necessary condition is likely well satisfied in our context.
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2.3.2 Embedding Method Extracts Semantically Meaningful Information

The second necessary condition is that the embedding method extracts semantically

meaningful text information relevant to the prediction of both treatment, T, and out-

come, Y. In our setting, this means that embedding, a lower-dimensional representation

of the text, is sufficient to capture the gender and quality of citations.

In order to evaluate the efficacy of our embedding representations, Longformer, we

utilize synthetic tests to determine the precision of our model. This process begins

with calculating synthetic results for every patent in the comprehensive dataset. To

achieve this, we employ a randomly generated linear transformation. This transforma-

tion utilizes a uniformly random 768-element vector with values ranging from 0 to 1.

Following this, we compute the dot product of this random vector with each patent’s

768-dimensional embedding. The calculated values represent the synthetic outcomes for

both female. The male synthetic outcomes are created by shifting each female synthetic

outcome by a known true treatment effect. As we know the true treatment effect, this

model allows us to evaluate the model’s performance effectively. When the C-TEXT

model is applied, it successfully reveals the known true treatment effect with a high

level of accuracy, suggesting that Longformer is proficient in extracting semantically

significant information from text.

2.3.3 Conditional Outcome and Propensity Score Models are Consistent

Our third and final necessary condition is that the conditional outcome and propen-

sity score models be consistent. That is, the treatment and control groups should have

common support.

To address this, as discussed above, we follow the procedure of Veitch, Sridhar, and

Blei (2020) and drop the patents with either below 3% treatment propensity or above 97%

treatment propensity. In our study, the treatment is the female gender indicator of the

lead inventor. Therefore a treatment propensity of at most 3% implies that this patent, as

defined by the embedding of the text, almost certainly has a male lead inventor. On the

other hand, a treatment propensity of at least 97% implies this patent almost certainly
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has a female lead inventor. This procedure preserves over 80% of our data after dropping

the propensity score outliers. Importantly, our results remain robust, suggesting that the

conditional outcome and propensity score models are consistent.

3 Do Citations to Patents Differ By Gender of Inventor?

Do forward citation counts for patents differ across the gender of the lead inventor?

We begin by examining the differences in actual forward citations between female and

male lead inventor patents, without model adjustment. Next, we calculate the C-TEXT

implied ATE and ATT based on patent text alone. We then utilize the C-TEXT output

to further refine the estimates of causal differences in forward citation counts by gender

using simple regression analysis to account for non-quality-related patent characteristics.

Overall, our evidence points to the undercitation of female lead-authored patents relative

to the citations that would have been received by the same patent had its lead author

been male.

3.1 Comparing Between Genders Without Model Adjustments

We begin by plotting the unconditional differences in citations by gender. The histogram

for citations for male and female lead inventors is plotted in Panel A of Figure 3, and

visually demonstrates that females receive fewer citations than males.11

On average, male lead inventors receive significantly more citations than female lead

inventors (22.6 citations for males, 20 for females, F-stat = 239, Table 1). Testing the

difference in distributions, we find a Kolmogorov-Smirnov statistic of D = 0.034926,

with a p-value of = 2.2× 10−16, further suggesting that male and female forward citation

counts come from different distributions.

We more formally consider the contribution of gender on patent citations by estimat-

11Importantly, we note that the number of observations changes between each table as we first balance
between male and female and use the propensity network to eliminate outliers.
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ing the following OLS model:

Yi = β1 I (FemaleInventori) + δGrantYear + δArtUnit + δExaminer + δAttorney + δAssignee + εi,

(5)

where patent and year are represented by i and t, respectively. Yi is our outcome

of interest, actual forward citations. Our specification includes fixed effects for ex-

aminer (δexaminer), attorney (δattorney), assignee (δassignee), art unit (δArtUnit), and year of

grant (δGrantYear). All standard errors in this paper, unless otherwise noted, are double-

clustered by patent issue year and attorney. β1 is our coefficient of interest, where a

positive value would indicate that women receive more citations than males.

The estimates in Panel A of Table 2 present results for the full sample of patents (ex-

tensive margin), while Panel B presents the estimates for those patents which receive at

least one forward citation (intensive margin).12 The estimates suggest that female lead

investors receive between 0.7 to 2.5 fewer citations than males, depending on specifica-

tions and controls included.

Given that the expected selection effect from prior literature might predict that we

would see higher quality patents–and thus, higher citation counts–for female authored

patents, the patterns from this simple analysis raise questions. Either the female au-

thored patents being approved are of lower quality, on average than those of males,

or, despite the higher bar for approval of female-authored patents, the quality of these

patents is not being appropriately reflected in citation counts, with women experiencing

undercitation of their inventions relative to males.

3.2 Using C-TEXT to Compute the Treatment Effect

To explore this, we turn to our C-TEXT model. As a reminder, C-TEXT first trains

two mappings, one using only patents from male inventors and a second for female

inventors. Armed with our two mappings, we pass the male patents through the female

mapping, and vice versa. From this, we can estimate the counterfactual number of
12Most patents do not receive any forward citations; in general, female lead-authored patents appear

to be less likely to receive any citations than those with a male lead author. Panel A of Figure IC2 in the
Appendix presents a histogram of the natural logarithm of citations for the intensive margin sample.
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citations a patent would have received had its lead author been of the opposite gender,
̂ForwardCitationi. We plot the histogram of predicted citations from C-TEXT by gender

in Panel B of Figure 3.13

The C-TEXT methodology allows us to compute the ATE for treatment with a female

lead author, mediating for patent quality through the textual content of the patent. Using

our neural network mappings, we calculate the average treatment effect (ATE) of being

a female lead author inventor, as defined by (Equation 3), to be -2.66, and the C-TEXT

implied ATT (Equation 4) to be -2.38. This means that, on average, having the first author

on a patent be female is associated with over 2.5 fewer forward citations compared to

having a male lead author for the same patent.

Whiel the ATE and ATT statistics provide us with the overall treatment effect, con-

trolling for the quality/content of the patent, a number of observable characteristics

not included in the patent text may affect forward citations through non-quality-related

channels that the C-TEXT embeddings would not pick up, such as the art unit or tech-

nological classification or the tendencies of the specific patent examiner assigned to the

patent. Thus, we next compare the actual forward citations to the model-implied cita-

tions in the patent level’s absence of treatment (male neural network) in a regression

framework that allows us to control for such characteristics.

Specifically, we calculate the difference in actual versus predicted citations as:

Deltai = ForwardCitationi − ̂ForwardCitationi|Ti=0, (6)

where ForwardCitationi is the actual number of citations to a given patent authored

by a given gender and ̂ForwardCitationi is the number of citations implied by the C-TEXT

model if the lead inventor had been male.

The Delta measure is designed to capture the discrepancies in citation counts of

patents, both overcitation and undercitation, with an application that spans both male

and female-authored works. The measure holds the reference gender constant (in this

13For the intensive margin, we plot the histogram of the natural logarithm of citations in Panel B of
Figure IC2.
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analysis, male) to establish a uniform reference point for evaluating all patents.14 A

negative Delta implies that a given patent has amassed fewer citations than the projection

established by the quality-adjusted standard posited by the C-TEXT model for this patent

if it had a male lead author. As an example, consider a particular patent that has been

cited 12 times in actuality and has a computed Delta of -3. This Delta implies that when

we input the text of this specific patent into a neural network calibrated to predict its

forward citation count assuming a male lead author, the prediction asserts that it should

receive 15 forward citations. This projection rests solely on the content of the patent itself

and negates the influence of the lead author’s gender. It is imperative to underscore that

the Delta value is not necessarily negative, as depicted in Figure 4, and encompasses

broad applicability across patents lead authored by both male and female authors.

We can then relate Delta to various patent attributes unrelated to quality, such as ex-

aminer, art unit, etc. To do so, we re-estimate models of the type described in Equation 5,

replacing the actual number of forward citations for a patent with Delta. The estimates

in Panel A of Table 3 present estimates for the full sample of patents, including those

with zero citations, while Panel B presents the estimates for the subsample of patents

that receive at least one citation (intensive margin). Across both panels, the estimates

suggest that patents with female lead inventors are undercited relative to what would

be expected had the patent remained exactly the same, except that the lead inventor was

instead male.

Interpreting our point estimate for the most restrictive specification for the extensive

margin, we find that patents with female lead inventors receive 1.4 fewer citations than

would be estiamted if they had had a male first author instead, for the same patent,

controlling for other characteristics and mediating for quality using C-TEXT. Interpreting

these results relative to the sample mean of the number of forward citations, this is over

10%. As expected, the magnitudes are relatively unchanged when including patent-year,

art-unit, examiner, attorney, and assignee fixed effects.15

14Note that while Delta is computed relative to the male model as a benchmark, we could alternatively
conduct the same exercise comparing to the female implied model as a benchmark.

15The relative stability in estimates suggests that our analysis does not suffer from a correlated omitted
variable, Oster (2019).
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The results presented up to this point utilize the entire patent text and the Long-

former embedding. A natural concern is that Longformer is not specific to (trained

on) scientific writing, and as a result may not fully pick up patent quality for media-

tion purposes. To address this concern, we repeat our analyses utilizing the SciBERT

embedding. Because the SciBERT embedding, like all BERT models, has computational

difficulties scaling to longer texts, for this exercise, we utilize patent abstracts rather than

full patent text. The estimated ATE using SciBERT, presented in Figure 5, is larger than

that obtained using the Longformer specification. Table IC1 presents estimates of Equa-

tion 5 when using the SciBERT embedding version of C-TEXT for the intensive margin

sample. The estimates suggest that women are undercited by between -3.1 to -3.5 cita-

tions per patent. This is equivalent to roughly 18% relative to the sample mean–an effect

even larger than our baseline results. The advantage of the SciBERT transformer for

interpretation of the results is that it is trained to assess the quality of scientific writing

such as patents; the drawback is that we can only employ it only on patent abstracts due

to computational limitations. Still, the use of a scientific writing-specific embedding, if

anything, suggests that the effects are still quite large.

The combined results represent causal evidence suggesting that female lead inventors

are undercited, on average, relative to what their same patents would have received if the

first name on the patent had been that of a male inventor. These differences in forward

citations cannot be explained by differences in art units, time trends, or differences in

assignees or examiners.16

4 Cross Sectional Heterogeneity

Next, we explore whether these patterns of undercitation are uniform across a variety of

dimensions of heterogeneity in patent characteristics. For computational tractability, we

focus these tests on the sample of patents that receive at least one forward citation.17

16In the Online Appendix, we show qualitatively similar patterns using the probabilities of a patent
being in the top decile of citations. See Table IC2

17This choice was made due to computational complexity and taking into account the similarity be-
tween both the intensive and extensive estimates in the prior section.
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4.1 Patent CPC Section

First, a reasonable question is whether the underciting of female lead inventor patents

uncovered in our main models holds across all technology categories or whether there is

variation across fields. We next explore this heterogeneity. Specifically, we estimate the

following model:

Yi = β1 I (FemaleInventori) + β2 I (FemaleInventori)× (CPCSection) (7)

+δCPCSection + δGrantYear + δArtUnit + δExaminer + δAttorney + δAssignee + εi,

where the subscript and notation match the prior estimating equations. As in the main

analysis, standard errors are double clustered by year and attorney.

First, we interact our female indicators with the seven CPC sections to study differ-

ences by broad field categories. The estimates in Table 4 highlight important hetero-

geneity across patent CPC sections. Column (1) of Table 4 presents the estimates for

the model using the major sections, where the outcome variable is the actual number of

forward citations received by the patent. Column (2) re-estimates the model using the

difference between the actual citations and the number predicted by the C-TEXT model

for the same exact patent when authored by a male, Delta.

To interpret the overall effects of our variable of interest for each section, we need

to add the coefficients of the indicator for female lead inventors with the interaction

term for each major section. In general, we observe some level of undercitation for all

patent sections, with particularly large disparities for the Human Necessities section. Put

differently, if a female lead-inventor patent instead had a male lead inventor, it would

have received significantly more citations, regardless of the technology section, echoing

our baseline results.

As an alternative approach, we break down the technology grouping using the NBER

subcategories. Specifically, we estimate the following.

Yi = β1 I (FemaleInventori) + β2 I (FemaleInventori)× (Subcategory) (8)

+δPatentSubcategory + δGrantYear + δCustomer×Examiner + εi,
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To ease interpretation, Figure 6 presents the linear combination of the female lead

indicator and the interaction coefficients (Female Lead Inventor × Subcategory) graph-

ically. The finer category classification exhibits somewhat more heterogeneity than the

major classes. Importantly, in all specifications, we include patent subcategory fixed ef-

fects to account for the average level of citations in a given subcategory. As can be seen

clearly in Figure 6, for a large portion of the technology subcategories, the estimates

suggest that patents with lead female inventors are cited significantly less than a male

lead inventor instead, and these citation undercounts are often substantial in magnitude.

4.2 Established Versus Emerging Fields

An interesting question is whether the patterns we see across technology fields relate in

some way to whether women are patenting in an established field versus in an emerging

field of technology. It is possible that newer fields may not present as many barriers to

entry or pre-existing biases for female inventors and researchers, given the lack of an

established history of research and researchers, and that we may expect undercitation

patterns to be larger or concentrated in more established fields. It is also possible that

newer fields are smaller and more competitive and clubby, with higher barriers of entry

for female inventors. On the other hand, the underlying forces that lead to undercitation

for patents with female first authors may be unrelated to the nature of the field, and

relate to gender norms or perceptions more generally, in which case we would not expect

to see a difference.

To explore these issues further, we denote a category as an “emerging field” if the art

unit first appeared within three years of the patent being granted. We then re-run our

models, adding an indicator for an emerging field as well as an interaction between that

indicator and the indicator for a female lead inventor. Our coefficient of interest is the

interaction between the indicator for female inventors and emerging fields.

The estimates are presented in Table 5. Panel A presents estimates where the LHS

variable is actual forward citations, and Panel B presents estimates where the LHS vari-

able is Delta. Notably, in Panel A, patents in newer fields appear to receive more citations
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overall, on average, than patents in existing fields, consistent with the evolution of the

novelty of inventions. However, when moving to Panel B, our estimates show that the

main result still holds — patents with female first authors exhibiting an estimated 1.3 to

1.7 fewer citations than would be predicted if the first author had been male, depending

on specification. That said, the estimates also suggest that women receive even fewer

citations in emerging fields relative to their male counterparts. Here, we see that they

receive 2.1 to 2.7 fewer citations, suggesting that new fields exhibit the same general

pattern of undercitation for female inventors, rather than new fields reducing barriers or

bias.

4.3 Time Since Patent Grant

A natural question is whether the undercitation we observe above is present from the

outset or whether it primarily materializes or diminishes later in the life of the patent.

On the one hand, undercitation may be present from the outset but diminishes over time

as inventors and examiners become more familiar with the patent and its quality. Alter-

natively, the bias may increase and become more pronounced over time, potentially in-

dicating a self-reinforcing effect that could be harder to overcome. Examining the timing

of the bias in citations can provide valuable insights into the nature of the undercitation

of female inventors and inform potential interventions to address this issue.

To investigate the timing of undercitation, we create separate samples of forward

citations based on the number of years that have passed since a given patent was granted.

Specifically, we divide the post-grant period into four sub-periods: [0-1) years post-grant,

[1-5) years, [5-10) years, and [10-20] years. For each of these sub-periods, for each patent,

we collect the forward citations the patent receives during this sub-period. For each sub-

period, we then re-run our analysis and calculate the Delta in citations (actual minus

predicted by the male model) after mediating for patent quality.

The estimates are presented in Table 6. Column (1) presents estimates from forward

citations to patents received in the first year after the patent grant, column (2) presents

estimates for forward citations received in years 2 to 5 after patent grant, column (3)
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for citations received in years 6 to 10, and column (4) years 11-20. In each column, the

dependent variable is the Delta estimated from C-TEXT using only forward citations

received during that subperiod (by necessity, the number of observations is smaller in

later sub-periods as fewer of the patents in our sample will yet have histories of that

length. Also, few patents receive citations in their first year, resulting in a smaller sam-

ple). As can be seen from the estimates in the table, the undercitation for patents with

a female first author relative to what would be expected if the first author had been

male increases over time since the patent grant, consistent with undercitation being self-

reinforcing over time. The coefficient for lead female inventors is economically and

statistically insignificant in the first period ([0-1) years), but becomes more pronounced

and strongly statistically significant in the subsequent periods, with estimates of -0.65,

-0.60, and -2.0 for the [1-5) years, [5-10) years, and [10-20] years periods, respectively.

These findings are consistent with the notion that undercitation in later periods may

be further reinforced by prior undercitation, leading to a situation in which overcited

patents continue to be overcited and the Delta becomes larger over time.

4.4 Evolution of Undercitation Over the Sample Period

The estimates we present in the prior analyses suggest that across fields, patents with

female first authors are consistently undercited relative to what would be expected for

the same patent had its first author been male. A natural question is whether these

patterns vary over time, as gender norms, female participation in the workforce, and

in academia has changed over time (Card, DellaVigna, Funk, and Iriberri, 2022, 2023;

Gompers and Wang, 2017).

Of course, for any given quality level, older patents may be more cited mechanically

due to the increased passage of time allowing for citation. Without adjustments to our

initial methodology, our findings may incorrectly suggest a decrease in undercitation

over time, when in reality, it is simply a reflection of the fact that newer patents receive

fewer citations on average. Here, to ensure we are comparing apples to apples, we

restrict the period during which forward citations are received to the first ten years post
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patent grant. This method avoids the right censoring problem of forward citations, at

the cost of excluding forward citations made after ten years out. While undercitation

is larger later in the life of the patent, as we showed above, restricting to ten years

allows us a clearer interpretation of results. Because we need to be able to measure ten

years of forward citations we must exclude patents granted in the last decade of our

sample. We choose ten years in order to avoid excluding more than a decade of the

sample period. We thus create a sample of patents from 1976 to 2011 and measure the

number of forward citations they receive within 10 years. Next, we apply our C-TEXT

methodology to calculate Delta for each patent. Importantly, for this test, we train our

model using forward citation counts for a ten-year period after the patent was granted

to avoid biases in our calculations.

We then estimate models of the following nature:

Yi = β1 I (FemaleInventori)

+
2011

∑
j=1977

β j I (FemaleInventori)× I (GrantYear = j) (9)

+δGrantYear + δArtUnit + δExaminer + δAttorney + δAssignee + εi,

where β1 estimates the average undercitation of females across the entire sample, and

the set of coefficients β j estimate the marginal Delta between actual forward citations

and the number of forward citations that would be predicted had the first author of the

patent has been male in each patent grant year, with 1976 as the year of comparison. The

omitted group is 1976.

To ease interpretation, Figure 7 presents the linear combination of the female lead

indicator and the interaction coefficients (Female Lead Inventor × Grant Year) graph-

ically.18 From the figure, we observe clearly that the average undercitation of patents

with female lead authors has been persistent over time.

18The time-invariant estimate for the coefficient on the female lead inventor variable is -1.18.
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5 Who Undercites Female Inventors?

So far, we have presented causal evidence that patents with female lead inventors receive

fewer citations than the same patents would be estimated to receive with male lead

inventors. Next, we explore the source of the undercitation: whether it is driven by

inventors or examiners, and the role of their gender.

To set the stage for this analysis, we first discuss how a citation is added to a patent.

When applying for a patent, applicants cite supporting patents whose inventions the

current patent is building on top of. If, however, the patent examiner deems that there are

additional relevant citations that have not been included by the inventor, the examiner

will add these to the patent application. As a result, the documented undercitation of

patents with female lead inventors may stem from the original inventor-added citations,

additional examiner-added citations, or a combination of both.

To explore the source of the undercitation, we first need to know which citations

in a patent are attributable to the inventor versus the examiner. Starting in 2001, and

more comprehensively starting in 2003, asterisks were added to the USPTO citation

data to identify examiner-added patents in the data. Using this detail, we construct a

new subsample starting from 2003 aggregating forward citations into four categories: (i)

forward citations added (in a future patent) by male lead inventors, (ii) forward citations

added by female lead inventors, (iii) forward citations added by male-lead examiners,

and (iv) forward citations added by female-lead examiners. Using these groups, we can

then decompose the sources of undercitation of female lead-inventor patents.

We begin our analysis by studying examiner-added citations. For a given patent, we

take all forward citations that occur due to being added to a future patent application

by an examiner. We then break these into forward citations added by female examiners

and forward citations added by male examiners. Following similar logic to our main

tests, we then apply the C-TEXT model, estimating a neural net for male-lead inventor

patents and a neural net for female-lead inventor patents to estimate forward citation

counts added by examiners of each gender based on the gender of the lead inventor

on the patent of interest. We then employ the C-TEXT methodology to mediate for the

27



quality of the patent and calculate the Delta between actual forward citations and what

would have been estimated by the examiner neural net for the same patent if it had a

male lead author.

Table 7 presents the results of the estimation of regression models, using the C-TEXT

derived Delta as the dependent variable. Panel A presents estimates for female examiner

added forward citations, and Panel B presents the estimates for male examiner added

citations. The estimates in Panel A suggest that female examiners, when adding citations

to patents, do not appear to undercite female lead inventor patents. Put differently, we

cannot reject the hypothesis that patents with a lead female inventor receive similar

citation “add” from female examiners as they would be expected to had their first author

instead been male. The coefficient estimates are economically small, ranging from -0.06

to 0.01 citations, with no statistical significance. Panel B repeats the analysis for male

examiners. Altogether, the estimates suggest that patents with a lead female inventor

also receive similar citation “adds” from male examiners as they would be expected

to had their first author instead been male. Here, some coefficients attain statistical

significance, but the coefficients are small, and economic magnitudes are negligible. The

coefficient estimates range from -0.075 citations to -0.03, with the economic magnitudes

being less than 2% of the sample mean. Overall, the estimates suggest minimal, if any,

undercitation of female lead inventor patents by male examiners. Taken together, the

estimates suggest that the undercitation we observe for female lead inventor patents is

not driven primarily by examiner patents.

Having established this fact, we next turn to citations added by future inventors to

their patent applications. We conduct a similar analysis to that conducted above with

examiners, focusing this time on the difference between the actual forward citations that

stem from inclusion in a patent by male and female inventors and that which would be

predicted for the same patents if their lead inventor had instead been male. The esti-

mates from the C-TEXT Delta regressions are presented in Table 8. Panel A presents the

results for female inventor added forward citations, and Panel B presents the estimates

for male inventor added forward citations. The estimates across both panels suggest a

clear pattern. First, as can be seen in Panel A, undercitation of female lead inventor
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patents does not appear to be due to other female lead inventors citing such patents

less than they would have had the patents have been male authored. The estimates in

columns (1) through (4) are statistically insignificantly different from zero and of minus-

cule economic magnitude. In contrast, however, in Panel B, we observe a clear pattern

of statistically significant negative coefficients of interest. Put differently, male inventors

are significantly less likely to include a citation to a female lead authored patent than

they would be predicted to have that same exact patent had a male lead inventor. The

estimates in Panel B suggest undercitation of female lead inventor patents by male in-

ventors by 1.4 citations, or 11% of the sample mean. This is large, both economically and

statistically, and comparable in overall magnitude to the overall effect of -1.76 citations

documented in Table 3.

To further study this pattern we present the ATE for each of the four subgroups.

Presenting the treatment effects in Figure 8 we again see a similar pattern. That is,

the ATE for male inventors the largest of the subgroups, estimates to be -1.73. These

are followed by female lead inventors with an estimate of -0.52. Again, we see that

examiners tend to be more even-handed, with female and male lead inventors having an

ATE of -0.17 and -0.06.

Taken together, the results strongly suggest that the undercitation of female lead

patents (relative to what would be expected had their lead inventor been a male instead)

is primarily driven by male lead inventors underciting patents with female lead inventors

in their patent applications. Of course, such undercitation does not necessarily imply

discrimination on the part of male inventors. Alternative explanations could include

men having more and stronger connections to, or familiarity with, other male inventors

and, as a result, being more familiar with patents filed by other male lead inventors.

Future research will be necessary to fully distinguish the reason for the undercitation.
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6 Robustness

6.1 Definition of “Female Authored Patent”

A potential concern is that the manner in which we classify patents by gender using

solely the lead inventor on the patent in some unknown way produces spurious results.

Understanding the effect of different classifications for a “female” patent is useful in

shedding light on whether in fact our estimates are due to a gender treatment effect, or

some other mechanism. In the analysis up to now, we use the name of the first inventor

to assign author gender to patents with multiple inventors. The first name on the patent

is likely the most salient, as it is the first name observed when reading the patent. Of

course, it is possible that examiners and inventors may consider all inventors, and not

just the first author, when attributing the gender of authors to the patent.

Importantly, our estimates are robust to a number of alternative approaches to at-

tributing author gender to a patent. First, we limit our sample to patents with only

one author, comparing female sole-authored patents to male sole-authored patents. This

shuts down concerns that the gender of additional authors other than the lead author

may be driving the baseline results.19 The single-author sample also exhibits consistent

undercitation of female inventor patents, as can be seen from Panel A of Table IC3. The

estimates suggest that women are undercited by over 2 patents per citation in this sam-

ple, nearly 11% of the sample mean. These results are highly significant and in line with

the baseline results.

Second, we construct a new sample that includes only patents with a majority of

inventors of the same gender, both single authors and teams. Here, again, we find

similar patterns of undercitation of female authored patents, as can be seen in Panel B

of Table IC3. Estimates from this test suggest that patents with a majority of female

inventors receive 0.4 to 0.8 fewer citations than they would have had they instead been a

majority male inventor. Although statistically significant, the economic magnitudes are

smaller than those estimated in our main models. The smaller coefficient sizes would be
19Importantly, the neural network that measures the propensity for a given patent to have been written

by a male versus a female assures that what we are picking up in the C-TEXT Delta is quality as indicated
by text content, as opposed to writing style.
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consistent with a world in which the gender of the lead inventor is particularly salient.

6.2 Placebo Test

To further strengthen our conclusions, we further run a placebo test. We adopt a ran-

domized methodology, where a random sample of the dataset is selected and then seg-

regated into two halves, one of which is randomly assigned to be “male” authored and

the other to be “female” authored. We then apply the C-TEXT analytical procedure to

ascertain the role, if any, that may be played by the methodology in shaping our results,

rather than the data. As expected, Table IC4 shows clearly that, regardless of the model

specification, there appears to be no statistical correlation between the assignment to a

“female” patent and the resulting Delta. All in all, the placebo tests suggest that the

C-TEXT methodology itself is not likely to be driving our results.

6.3 Training Period

A second concern is that some of the patents in the earliest part of the sample may

have been particularly important or influential and that this happens in a period where

perhaps females are patenting less, and this in some way influences the results, produc-

ing spurious estimates of undercitation. To address this concern, we split the sample

into two sub-parts: one for patents issued pre-2000, and another set for those issued

post-2000.

We then re-estimate our baseline specification on each of the subsamples and present

our results in Table IC5. Panel A, which presents estimates for the pre-period, suggests

an average effect of -1.82, similar to our baseline effect estimated in Table 3. Similarly,

in the post-2000 sample estimates, presented in Panel B, we again find similar estimates,

with a slightly smaller but still significant main effect of -1.16 citations for a female lead

authored patent relative to what it would be predicted to have received had the lead

inventor instead had a male name. Thus, it appears that our estimates are not a spurious

result of our choice of the longer sample period.
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6.4 Overfitting of Model

A standard concern with these types of models is overfitting the training data. In our

setting, we train two different models by completing multiple passes of our training

dataset through our algorithm. Each pass of the data in these settings is referred to as

an epoch. We estimate our neural networks using 20 epochs. While numerous epochs

help improve the predictive probability of the neural networks, they run the risk of

overfitting our model to the data. Such overfitting would then result in relatively poor

out-of-sample performance. In the context of our paper, this would result in incorrect or

biased out-of-sample estimates of the number of citations.

We address this concern by studying the loss function, as presented in Figure IC3, to

ensure a reasonable number of training iterations without overfitting the model. Plotting

the mean square error (MSE) per batch against the number of passes of the training

dataset, we find two key pieces of evidence that suggest we have not overfit the model.

First, as we increase the number of epochs, the MSE tends to decrease, indicating that

each additional pass adds information to the estimation. Second, we find diminishing

improvements to the error rate as we approach 20 epochs, the number of passes utilized

in our estimations. Taken together, these findings suggest that our model is unlikely to

be overfitted and, as a result, that reasonable counterfactual citations are estimated from

our neural networks.

7 Economic Value of Patent and Citation Bias

We next consider the relationship between the economic importance of a patent, as eval-

uated by public markets at the time of issue, and forward citations. As we have pre-

viously discussed, undercitation of female-authored patents tends to persist over time.

In contrast, the expected economic value of a patent, as assessed by public markets, is

forward-looking and can be determined at the time of issuance. An interesting question

is then whether these forward looking market estimates of a patent’s economic value

relate more closely to actual forward citations, or to the estimated number of forward
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citations we obtain out of C-TEXT.

To test this, we employ the subsample of female lead-authored patents and employ

the patent-level measure of economic value proposed in Kogan et al. (2017). This mea-

sure is computed for patent issues for publicly-traded U.S. firms and utilizes the stock

market’s response to news about patent grants. Specifically, we use the log value of in-

novation, deflated to 1982 (million) dollars using the CPI. We then examine whether this

measure, when regressed on actual forward citations and the predicted counter-factual

forward citations if the first author had been male, loads on one of these measures in

particular versus the other. Specifically, we estimate:

log(Dollari) = β1ForwardCitationi + β2 ̂ForwardCitationi|Ti=0 (10)

+δGrantYear + δArtUnit + δExaminer + δAttorney + δAssignee + εi

The estimates are presented in Panel A of Table 9. Across all specifications,the co-

efficient on ̂ForwardCitationi loads significantly, while the coefficient on actual forward

citations does not have statistical significance. The estimates suggest that the market

does not appear to undervalue female-authored patents relative to what it would have

had that same patent been authored by a male lead inventor. The estimates provide

support to the notion that actual forward citations for female lead authored are biased

downwards due to the gender of the lead inventor on the patent.

8 Discussion and Conclusion

We provide causal evidence that patents with female lead inventors are undercited rel-

ative to what they would have received if their patent had a male lead inventor. Our

approach uses new tools in machine learning to disentangle quality from forward cita-

tions, allowing us to show that the most commonly used measure for patent quality in

fact under-recognizes the quality of female-authored patents, relative to what that same

patent would have received had the first author been male.

Our findings have important economic implications. First, prior literature has high-
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lighted that innovative activity is motivated by expected profits derived from the prop-

erty rights granted to the patentee (Moser (2005, 2013)). If female authored patents

are undercited, and as a result, female compensation innovative labor is accordingly

harmed, this may discourage women from entering the innovation economy. Such ef-

fects may further exacerbate the gender gap in STEM fields (Beede et al., 2011).

A second important implication of our findings concerns the validity of research that

relies on forward citations as a measure of patent quality. The existence of systematic

gender-related biases in citations may lead to incorrect or misleading conclusions for

research that relies on forward citations as a measure of patent quality. Given the large

literature in economics, finance, and innovation that relies on forward citations as a

proxy for quality, these findings suggest that a re-examination of relevant prior findings

may be warranted.

Our paper also makes an important methodological contribution to the economic

literature by introducing the C-TEXT methodology for causal inference. Economics is

steeped in the tradition of borrowing methodological innovations from adjacent fields.

Big data, machine learning, and AI are new approaches that are poised to revolution-

ize empirical research in this field. Causal inference using text can help researchers in

answering key open economic questions. Our paper provides an initial roadmap for

scholars to apply similar approaches in their own spheres.

34



References

Aghion, Philippe, John Van Reenen, and Luigi Zingales, 2013, Innovation and institu-
tional ownership, American Economic Review 103, 277–304.

Athey, Susan, and Guido W Imbens, 2019, Machine learning methods that economists
should know about, Annual Review of Economics 11, 685–725.

Beede, David N, Tiffany A Julian, David Langdon, George McKittrick, Beethika Khan,
and Mark E Doms, 2011, Women in stem: A gender gap to innovation, Economics and
Statistics Administration Issue Brief .

Bell, Alex, Raj Chetty, Xavier Jaravel, Neviana Petkova, and John Van Reenen, 2019, Who
becomes an inventor in america? the importance of exposure to innovation, Quarterly
Journal of Economics 134, 647–713.

Bellstam, Gustaf, Sanjai Bhagat, and J Anthony Cookson, 2021, A text-based analysis of
corporate innovation, Management Science 67, 4004–4031.

Beltagy, Iz, Matthew E. Peters, and Arman Cohan, 2020, Longformer: The long-
document transformer, arXiv preprint arXiv:2004.05150 .

Card, David, Stefano DellaVigna, Patricia Funk, and Nagore Iriberri, 2020, Are referees
and editors in economics gender neutral?, Quarterly Journal of Economics 135, 269–327.

Card, David, Stefano DellaVigna, Patricia Funk, and Nagore Iriberri, 2022, Gender dif-
ferences in peer recognition by economists, Econometrica 90, 1937–1971.

Card, David, Stefano DellaVigna, Patricia Funk, and Nagore Iriberri, 2023, Gender gaps
at the academies, Proceedings of the National Academy of Sciences 120, e2212421120.

Chawla, Dalmeet Singh, 2016, Men cite themselves more than women do, Nature 535,
212.

Comenetz, Joshua, 2016, Frequently occurring surnames in the 2010 census, United States
Census Bureau 1–8.

Cong, Lin William, Tengyuan Liang, and Xiao Zhang, 2019, Textual factors: A scalable,
interpretable, and data-driven approach to analyzing unstructured information, In-
terpretable, and Data-driven Approach to Analyzing Unstructured Information (September 1,
2019) .

Cook, Lisa, 2020, Policies to broaden participation in the innovation process, Policy Pro-
posal, The Hamilton Project, Brookings Institution, Washington, DC .

Cook, Lisa D, 2014, Violence and economic activity: evidence from african american
patents, 1870–1940, Journal of Economic Growth 19, 221–257.

Cook, Lisa D, and Chaleampong Kongcharoen, 2010, The idea gap in pink and black,
Technical report, National Bureau of Economic Research.

35



Desai, Pranav, 2019, Biased regulators: Evidence from patent examiners, Working paper.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, 2018, Bert: Pre-
training of deep bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805 .

Erel, Isil, Léa H Stern, Chenhao Tan, and Michael S Weisbach, 2021, Selecting directors
using machine learning, Review of Financial Studies 34, 3226–3264.

Farre-Mensa, Joan, Zack Liu, and Jordan Nickerson, 2022, Do startup patent acquisitions
affect inventor productivity?, Working paper.

Gavrilova, Evelina, and Steffen Juranek, 2021, Female inventors: The drivers of the gen-
der patenting gap, Working paper.

Gentzkow, Matthew, Bryan Kelly, and Matt Taddy, 2019a, Text as data, Journal of Economic
Literature 57, 535–74.

Gentzkow, Matthew, Jesse M Shapiro, and Matt Taddy, 2019b, Measuring group differ-
ences in high-dimensional choices: method and application to congressional speech,
Econometrica 87, 1307–1340.

Gompers, Paul A, and Sophie Q Wang, 2017, Diversity in innovation, Technical report,
National Bureau of Economic Research.

Graham, Stuart JH, Alan C Marco, and Richard Miller, 2018, The uspto patent examina-
tion research dataset: A window on patent processing, Journal of Economics & Manage-
ment Strategy 27, 554–578.

Hall, Bronwyn H, Adam Jaffe, and Manuel Trajtenberg, 2005, Market value and patent
citations, RAND Journal of Economics 16–38.

Hanley, Kathleen Weiss, and Gerard Hoberg, 2019, Dynamic interpretation of emerging
risks in the financial sector, Review of Financial Studies 32, 4543–4603.

Hansen, Stephen, Michael McMahon, and Andrea Prat, 2018, Transparency and delib-
eration within the fomc: a computational linguistics approach, Quarterly Journal of
Economics 133, 801–870.

Hengel, Erin, and Euyoung Moon, 2020, Gender and equality at top economics journals,
Working paper.

Hirschey, Mark, and Vernon J Richardson, 2004, Are scientific indicators of patent quality
useful to investors?, Journal of Empirical Finance 11, 91–107.

Hirshleifer, David, Po-Hsuan Hsu, and Dongmei Li, 2013, Innovative efficiency and stock
returns, Journal of Financial Economics 107, 632–654.

Hunt, Jennifer, Jean-Philippe Garant, Hannah Herman, and David J Munroe, 2013, Why
are women underrepresented amongst patentees?, Research Policy 42, 831–843.

36



Jensen, Kyle, Balázs Kovács, and Olav Sorenson, 2018, Gender differences in obtaining
and maintaining patent rights, Nature Biotechnology 36, 307–309.

Jha, Manish, Hongyi Liu, and Asaf Manela, 2022, Does finance benefit society? a lan-
guage embedding approach, Working paper.

Khetan, Vivek, Roshni Ramnani, Mayuresh Anand, Subhashis Sengupta, and Andrew E
Fano, 2022, Causal bert: Language models for causality detection between events ex-
pressed in text, in Intelligent Computing, 965–980 (Springer).

Koffi, Marlène, 2021a, Gendered citations at top economic journals, in AEA Papers and
Proceedings, volume 111, 60–64, American Economic Association.

Koffi, Marlène, 2021b, Innovative ideas and gender inequality, Working paper.

Koffi, Marlène, and Matt Marx, 2023, Cassatts in the attic, Technical report, National
Bureau of Economic Research.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman, 2017, Techno-
logical innovation, resource allocation, and growth, Quarterly Journal of Economics 132,
665–712.

Li, Kai, Feng Mai, Rui Shen, and Xinyan Yan, 2021, Measuring corporate culture using
machine learning, Review of Financial Studies 34, 3265–3315.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov, 2019, Roberta: A robustly
optimized bert pretraining approach, arXiv preprint arXiv:1907.11692 .

Loughran, Tim, and Bill McDonald, 2016, Textual analysis in accounting and finance: A
survey, Journal of Accounting Research 54, 1187–1230.

Martinez, Gema Lax, Julio Raffo, Kaori Saito, et al., 2016, Identifying the gender of PCT
inventors, volume 33 (WIPO).

Moser, Petra, 2005, How do patent laws influence innovation? evidence from nineteenth-
century world’s fairs, American Economic Review 95, 1214–1236.

Moser, Petra, 2013, Patents and innovation: evidence from economic history, Journal of
Economic Perspectives 27, 23–44.

Oster, Emily, 2019, Unobservable selection and coefficient stability: Theory and evidence,
Journal of Business & Economic Statistics 37, 187–204.

Reshef, Oren, Abhay Aneja, and Gauri Subramani, 2021, Persistence and the gender
innovation gap: evidence from the us patent and trademark office, in Academy of Man-
agement Proceedings, volume 2021, 11626, Academy of Management Briarcliff Manor,
NY 10510.

37



Rouen, Ethan, Kunal Sachdeva, and Aaron Yoon, 2022, The evolution of esg reports and
the role of voluntary standards, Technical report.

Routledge, Bryan R, Stefano Sacchetto, and Noah A Smith, 2017, Predicting merger
targets and acquirers from text, Working paper.

Sarsons, Heather, 2017, Recognition for group work: Gender differences in academia,
American Economic Review 107, 141–45.

Sarsons, Heather, Klarita Gërxhani, Ernesto Reuben, and Arthur Schram, 2021, Gender
differences in recognition for group work, Journal of Political Economy 129, 101–147.

Shao, Yifan, Haoru Li, Jinghang Gu, Longhua Qian, and Guodong Zhou, 2021, Extraction
of causal relations based on sbel and bert model, Database 2021.

Sherman, Mila Getmansky, and Heather E Tookes, 2022, Female representation in the
academic finance profession, Journal of Finance 77, 317–365.

Tzioumis, Konstantinos, 2018, Demographic aspects of first names, Scientific Data 5, 1–9.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin, 2017, Attention is all you need, Advances
in Neural Information Processing Systems 30.

Veitch, Victor, Dhanya Sridhar, and David Blei, 2020, Adapting text embeddings for
causal inference, in Conference on Uncertainty in Artificial Intelligence, 919–928, PMLR.

38



(a) Panel A: Model for ATT, Confounding

(b) Panel B: Model for NDE, Mediating

FIGURE 1: TEXT, GENDER, CITATIONS

Citation is the outcome of interest, Gender is the treatment, and Text are the sequence of words. Panel A
depicts the average treatment effect, with the assumption that Text carries sufficient information to adjust
for confounding (common cause) between outcome and treatment. Panel B depicts the natural direct effect
(NDE), where the text is a mediator of the treatment on outcome.
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Text Encoder

FIGURE 2: C-TEXT ESTIMATION PROCEDURE

The figure illustrates the estimation procedure of C-TEXT once the neural networks are trained. The light
blue block at the top describes the input used for estimation. The green blocks are the four neural net-
works trained using the patent data. The blue block describes the decision rule used for counterfactual
estimation. Finally, the red block is the output that combines the outputs of the citation estimation net-
works and the propensity score estimation network.
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(a) Panel A: Observed Forward Citations
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(b) Panel B: C-TEXT Implied Forward Citations

FIGURE 3: DISTRIBUTION OF FORWARD CITATIONS

This figure illustrates the distribution of forward citations. Panel A uses forward citations observed in the
data, while Panel B uses the expected number of forward citations as implied by C-TEXT. The horizontal
axis counts the number of citations while the vertical axis measures the percent of the distribution. The
red line corresponds to females, the blue line corresponds to males. The distribution is truncated at 100
for ease of interpretation. The natural logarithm transformation of these distributions is presented in
Figure IC2. 41



0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

−10 −5 0 5 10

Delta

D
en

si
ty

Gender Female Male

FIGURE 4: DISTRIBUTION OF DELTA

This figure illustrates the difference between forward citations and expected forward citations for male lead authored patents, as defined by
Equation 6. The red line corresponds to females, the blue line corresponds to males. The distribution is truncated between -10 to 10.
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FIGURE 5: AVERAGE TREATMENT EFFECT FOR DIFFERENT SAMPLES

This figure plots the average treatment effect (ATE), as defined by Equation 3. Each bar represents a
different sample and estimate. The first bar corresponds to all patents. The second bar corresponds to
patents with a positive number of citations. The third bar corresponds to patents with a single author.
The fourth bar corresponds to teams with a majority of a given gender. The fifth bar uses applies SciBERT
on the abstracts of patent text. The sixth bar is the placebo test.
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FIGURE 6: DELTA IN CITATIONS BY PATENT SUB CATEGORIES

This figure illustrates the coefficients of Equation 9. For ease of interpretation, each point corresponds to
the linear combination of the baseline result for females and the interaction terms. Whiskers correspond
to a 95% confidence interval. Coefficients are sorted by patent category and then by the magnitude of the
estimate. Colors correspond to the patent category as defined by the NBER, where blue observations cor-
respond to mechanical (Mech), light blue corresponds to electrical (Elec), green observations correspond
to drugs and medical (Drgs&Med), yellow observations correspond to computers and communication
(Cmp&Comm), red observations correspond to chemical (Chemical), pink observations correspond to
other (Other) categories. The red dotted line is plotted at the zero intercept, representing no effect.
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FIGURE 7: EVOLUTION OF DELTA OVER TIME

This figure illustrates the evolution of citations over time. The horizontal axis corresponds to the year a
patent was granted. The vertical axis corresponds to the delta in forward citations, with negative numbers
corresponding to undercitation. Forward citations are computed within the first ten years the patent was
granted. Each point represents an estimate from a separate estimate, with error bars corresponding to a
95% confidence interval. All estimates include customer, examiner, and examiner art unit fixed effects.
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FIGURE 8: AVERAGE TREATMENT EFFECT, EXAMINER AND INVENTOR ADDED
CITATIONS

This figure illustrates the delta by examiner and inventor added citations and by gender. The red columns
correspond to female-added citations, and the blue columns correspond to male-added citations.
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TABLE 1: SUMMARY STATISTICS

This table provides summary statistics on patents and citations. The sample covers patents issued from
1976-01-01 through 2021-12-31. Panel A presents a two-way table of forward citations by gender. Panel
B presents a two-way table of patents in the top decile by gender. Panel C presents a two-way table of
patents by their cooperative patent classification (CPC). ***, **, *, + denote significance at the .1%, 1%, 5%,
and 10% level, respectively. Data Source: USPTO.

Gender of Lead Inventor Male Female
N Mean SD N Mean SD Test

Panel A: Difference in Forward Citations

Forward Citation 294004 22.58 60.55 240993 20.07 57.23 F= 239.299∗∗∗

Panel B: Difference By Top Decile Innovations

Breakthrough 294004 240993 χ2 = 421.368∗∗∗

→ No 262513 89% 219250 91%
→ Yes 31491 11% 21743 9%

Panel C: Difference by Cooperative Patent Classification

CPC Section 293965 240955 χ2 = 2268.912∗∗∗

→ Chemistry 30171 10% 29724 12%
→ Electricity 67709 23% 61192 25%
→ Fixed Constructions 9315 3% 5783 2%
→ Human Necessities 37546 13% 32667 14%
→ Mechanical Engineering 24915 8% 15649 6%
→ Performing Operations 48795 17% 34626 14%
→ Physics 72321 25% 58868 24%
→ Textiles 3193 1% 2446 1%
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TABLE 2: LEAD FEMALE INVENTORS, NO C-TEXT ADJUSTMENT

This table reports estimates of Equation 5 and studies the number of forward citations by the gender of
the lead inventor. The dependent variable is the forward citation for each patent. Panel A uses the sample
of all patents while Panel B uses patents with a positive number of forward citations. The sample covers
patents issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at the patent attorney
and patent issue year level. ***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively.
Data source: USPTO.

Panel A: Extensive Margin

Forward Citations

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -3.248*** -1.695*** -1.019*** -1.056*** -0.781*** -0.2817**
(0.169) (0.135) (0.122) (0.117) (0.114) (0.0967)

Intercept 15.70***
(0.48)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 22.9% 11.9% 7.2% 7.4% 5.5% 2%

Observations 1039516 1039516 1039516 1039516 1039516 1039516
R2 0.001 0.096 0.125 0.179 0.266 0.451

Panel B: Intensive Margin

Forward Citation

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -2.511*** -2.018*** -1.87*** -1.833*** -1.373*** -0.722**
(0.405) (0.334) (0.35) (0.345) (0.324) (0.253)

Intercept 22.58***
(1.47)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 11.7% 9.4% 8.7% 8.5% 6.4% 3.4%

Observations 534997 534997 534997 534997 534997 534997
R2 0.000 0.088 0.099 0.157 0.256 0.460
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TABLE 3: LEAD FEMALE INVENTORS, C-TEXT (LONGFORMER)

This table reports estimates of Equation 5 and studies the number of forward citations by the gender of the
lead inventor. The dependent variable is Delta, the difference in the observed number and the expected
number of citations for a patent if the lead author was male, as defined by Equation 6. Panel A uses the
sample of all patents while Panel B uses patents with a positive number of forward citations. The sample
covers patents issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at the patent
attorney and patent issue year level. ***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level,
respectively. Data source: USPTO.

Panel A: Extensive Margin

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -1.0937*** -1.2513*** -1.3569*** -1.3677*** -1.4286*** -1.436***
(0.0912) (0.0977) (0.0926) (0.0937) (0.0891) (0.105)

Intercept -1.4126***
(0.0783)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 7.7% 8.8% 9.6% 9.6% 10.1% 10.1%

Observations 1039516 1039516 1039516 1039516 1039516 1039516
R2 0.001 0.017 0.023 0.055 0.127 0.257

Panel B: Intensive Margin

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -1.316*** -1.504*** -1.521*** -1.61*** -1.729*** -1.759***
(0.243) (0.236) (0.237) (0.24) (0.219) (0.207)

Intercept -1.265***
(0.135)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 6.1% 7% 7.1% 7.5% 8.1% 8.2%

Observations 534997 534997 534997 534997 534997 534997
R2 0.001 0.025 0.025 0.068 0.154 0.305
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TABLE 4: CITATION BY CPC SECTION

This table estimates the difference in citations by CPC Section. Column (1) uses the number of forward
citations as its dependent variable, while Column (2) uses Delta, the difference in the observed number
and the expected number of citations for a patent if the lead author was male, as defined by Equation 6.
Estimates include interactions for the patent category based on CPC Section. The sample covers patents
issued from 1976-01-01 through 2021-12-31. Standard errors are clustered at the patent attorney and patent
issue year level. ***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source:
USPTO.

Dependent variable:
Forward Citations Delta

(1) (2)

Lead Female Inventor -0.678 -1.278***
(0.456) (0.278)

Electricity × Lead Female Inventor 0.267 -0.123
(0.540) (0.347)

Fixed Constructions × Lead Female Inventor -0.881 0.269
(0.888) (0.414)

Human Necessities × Lead Female Inventor -2.17* -3.266***
(0.83) (0.736)

Mechanical Engineering × Lead Female Inventor 0.856 0.496
(0.525) (0.339)

Performing Operations × Lead Female Inventor 0.643 0.217
(0.514) (0.272)

Physics × Lead Female Inventor -0.102 -0.546+
(0.496) (0.306)

Textiles × Lead Female Inventor -2.33+ 0.669
(1.36) (0.475)

CPC Section FE Yes Yes
Art Group FE Yes Yes
Patent Issue Year FE Yes Yes
Examiner FE Yes Yes
Attorney FE Yes Yes
Assignee FE Yes Yes

Observations 534920 534920
R2 0.460 0.305
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TABLE 5: EMERGING FIELDS

This table studies the citations to new fields of innovation. Emerging Field takes the value of one if the
art unit first appeared within three years of the patent being granted. Panel A uses the forward citation
for each patent as its dependent variable. Panel B uses C-TEXT with Longformer, with the dependent
variable being the difference in the observed number and the expected number of citations for a patent
if the lead author was male, as defined by Equation 6. The sample covers patents issued from 1976-01-01
through 2021-12-31. Standard errors are clustered at the patent attorney and patent issue year level. ***,
**, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source: USPTO.

Panel A: No C-TEXT Adjustment

Forward Citation

(1) (2) (3) (4) (5) (6)

Emerging Field 13.16*** 14.22*** 6.18*** 4.24** 3.94** 2.48*
(3.54) (1.73) (1.23) (1.34) (1.23) (1.13)

Lead Female Inventor -2.605*** -2.120*** -1.972*** -1.933*** -1.486*** -0.796**
(0.415) (0.336) (0.355) (0.348) (0.326) (0.253)

Emerging Field × Lead Female Inventor 0.836 1.09 0.816 1.06 2.46 2.09
(1.717) (1.43) (1.454) (1.61) (1.75) (1.53)

Intercept 22.57***
(1.48)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 3.9% 5% 3.8% 4.9% 11.3% 9.6%

Observations 514675 514675 514675 514675 514675 514675
R2 0.002 0.089 0.099 0.158 0.257 0.462

Panel B: C-TEXT (LONGFORMER)

Delta

(1) (2) (3) (4) (5) (6)

Emerging Field -2.17*** -1.072* -0.286 0.581 0.714 0.972
(0.58) (0.531) (0.556) (0.664) (0.657) (0.650)

Lead Female Inventor -1.302*** -1.489*** -1.506*** -1.589*** -1.710*** -1.73***
(0.243) (0.234) (0.235) (0.236) (0.212) (0.20)

Emerging Field × Lead Female Inventor -2.135** -2.210** -2.176** -2.49** -2.640** -2.77**
(0.752) (0.772) (0.776) (0.85) (0.951) (1.00)

Intercept -1.268***
(0.133)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 9.8% 10.2% 10% 11.5% 12.2% 12.8%

Observations 514675 514675 514675 514675 514675 514675
R2 0.001 0.025 0.025 0.069 0.154 0.306
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TABLE 6: YEARS AFTER PATENT IS GRANTED

This table estimates Equation 5 and studies the difference in forward citations by the number of years
after the patent was granted. The dependent variable is Delta, the difference in the observed number
and the expected number of citations for a patent if the lead author was male, as defined by Equation 6.
Column (1) – (4), study the difference in forward citations 0-1, 2-5, 6-10, and 11-20 years after they are
granted, respectively. All specifications use Art Unit, Patent Grant Year, Examiner, Attorney, and Assignee
fixed effects. The sample covers patents issued from 1976-01-01 through 2021-12-31. Standard errors are
clustered at the patent attorney and patent issue year level.***, **, *, + denote significance at the .1%, 1%,
5%, and 10% level, respectively. Data source: USPTO.

Delta
0-1 Years 2-5 Years 6-10 Years 11-20 Years

(1) (2) (3) (4)

Lead Female Inventor 0.22 -0.647*** -0.602*** -2.00***
(0.26) (0.085) (0.084) (0.26)

Art Group FE Yes Yes Yes Yes
Patent Issue Year FE Yes Yes Yes Yes
Examiner FE Yes Yes Yes Yes
Attorney FE Yes Yes Yes Yes
Assignee FE Yes Yes Yes Yes

Relative to Sample Mean 11.9% 14.4% 8.8% 10.3%

Observations 14510 286787 265095 213540
R2 0.637 0.270 0.235 0.516
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TABLE 7: EXAMINER-ADDED CITATIONS

This table studies the source of examiner-added citations for male inventors. The dependent variable is
the difference in forward citations. The dependent variable is Delta, the difference in the observed number
and the expected number of citations for a patent if the lead author was male, as defined by Equation 6.
Panel A uses the difference in forward citations that were added by female lead examiners as its dependent
variable. Panel B uses the difference in forward citations that were added by male lead examiners as its
dependent variable. The sample covers patents issued from 1976-01-01 through 2021-12-31. Note, the
source of citations is only available following the start of 2001. The sample covers patents issued from
1976-01-01 through 2021-12-31. Standard errors are clustered at the patent attorney and patent issue year
level. ***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source: USPTO.

Panel A: Citation Added by Female Lead Examiner

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor 0.0096 0.0066 0.0151 0.0118 -0.0478 -0.0685
(0.0263) (0.0277) (0.0287) (0.0382) (0.0572) (0.0850)

Intercept 0.1674***
(0.0288)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 0.5% 0.3% 0.7% 0.6% 2.3% 3.3%

Observations 12584 12584 12584 12584 12584 12584
R2 0.000 0.169 0.173 0.521 0.791 0.928

Panel B: Citation Added by Male Lead Examiner

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -0.071** -0.0740** -0.0609* -0.0688** -0.0599* -0.0254
(0.023) (0.0227) (0.0240) (0.0248) (0.0246) (0.0301)

Intercept 0.2347***
(0.0266)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 2% 2% 1.7% 1.9% 1.7% 0.7%

Observations 127719 127719 127719 127719 127719 127719
R2 0.000 0.014 0.019 0.131 0.284 0.516
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TABLE 8: INVENTOR-ADDED CITATIONS

This table studies the source of inventor-added citations. The dependent variable is the difference in
forward citations. The dependent variable is Delta, the difference in the observed number and the expected
number of citations for a patent if the lead author was male, as defined by Equation 6. Panel A uses the
difference in forward citations that were added by female lead inventors as its dependent variable. Panel B
uses the difference in forward citations that were added by male lead inventors as its dependent variable.
The sample covers patents issued from 1976-01-01 through 2021-12-31. Note, the source of citations is only
available following the start of 2001. Standard errors are clustered at the patent attorney and patent issue
year level. ***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source:
USPTO.

Panel A: Citation Added by Female Lead Inventors

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor 0.186 -0.045 0.0245 0.135 0.258 -0.0535
(0.236) (0.208) (0.2021) (0.367) (0.446) (1.9293)

Intercept 0.390*
(0.156)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 1.9% 0.5% 0.3% 1.4% 2.7% 0.6%

Observations 7209 7209 7209 7209 7209 7209
R2 0.000 0.258 0.269 0.671 0.856 0.900

Panel B: Citation Added by Male Lead Inventors

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -1.427*** -1.47*** -1.474*** -1.453*** -1.539*** -1.390***
(0.227) (0.22) (0.219) (0.224) (0.199) (0.194)

Intercept -0.0732
(0.0711)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 11.1% 11.4% 11.4% 11.3% 11.9% 10.8%

Observations 333673 333673 333673 333673 333673 333673
R2 0.001 0.012 0.013 0.072 0.188 0.306
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TABLE 9: FORWARD CITATIONS AND VALUE OF PATENT

This table studies the relationship between the measures of citations and the market-implied value of
patents. The dependent variable for both panels use the log value of innovation, deflated to 1982 (million)
dollars using the CPI, as calculated in Kogan et al. (2017). The sample covers patents issued from 1976-
01-01 through 2021-12-31. Standard errors are clustered at the patent attorney and patent issue year level.
***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source: USPTO.

log(dollar)

(1) (2) (3) (4) (5) (6)

log(ForwardCitation) -0.084 -0.027 0.0073 0.0075 0.027 0.0111+
(0.059) (0.039) (0.0322) (0.0333) (0.016) (0.0056)

log( ̂ForwardCitation)i|Ti=0 0.324*** 0.257*** 0.25*** 0.241*** 0.080*** 0.0012
(0.042) (0.032) (0.03) (0.031) (0.017) (0.0057)

Intercept 0.18
(0.18)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Observations 87806 87806 87806 87806 87806 87806
R2 0.021 0.160 0.179 0.315 0.749 0.932
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Appendix A Explanation of Causal Text Analysis (C-TEXT)

C-TEXT is a neural network-based architecture that estimates counterfactuals of a bi-
nary treatment where all of the covariates needed for causal identification are contained
within a given text. To use C-TEXT to identify the effect of gender on the impact of
patents, we first need to train the model. As shown in Figure IB1, the input data for
training contains three types of information: the texts of patents, gender indicators of
the author(s), and the observed number of citations on the patents. There are four neu-
ral networks that need to be trained: an encoder model for generating text embeddings,
a logit-linear model that maps embeddings to treatment propensities, and two 2-layer
perceptrons that map from embeddings to male and female predicted number of cita-
tions, respectively. The final loss function is a weighted average of the losses of these
four neural networks. After the model is trained, we can use it to estimate the coun-
terfactual number of citations of male written patents if they were written by females
and vice versa. As shown in Figure 2, to estimate these counterfactuals, we run the
trained C-TEXT model where the input data contains the texts of the patents and gender
indicators of the author(s). The texts are first passed through the encoder model to gen-
erate a vector embedding for each patent. Then each embedding-gender pair is passed
through a decision step: if the author(s) are male, the embedding is passed to the female
citations network and if it is written by female(s), the embedding is passed to the male
citation network. The counterfactual number of citations is then computed by these two
networks. In parallel, regardless of the gender indicators, each embedding is passed
through the propensity network to estimate the treatment propensity of this patent. Fi-
nally, the output of the model is a set of counterfactual citation-treatment propensity
pairs that each correspond to one patent.
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Appendix B Encoder Architecture

The encoder architecture works as follows. Let W denote the original input sentence in
words. As shown in Figure IB2, before entering the encoder, W is broken down into
three parts: a token embedding ET

W , which represents the content of the sentence; a
segmentation embedding ES

W , which labels tokens with the sentence they belong to; and
a positional embedding EP

W , which represents the relative distances between each pair of
tokens (a “token” is a word or a part of a word if the word is long). A linear combination
of these three embeddings then goes into the encoder.

The first step of the encoder is a multi-headed attention layer. Its mechanism can be
described as follows. Let EW denote the input embedding of the encoder. For a given
token Wi in sentence W, the embedding is denoted EW

i . The attention layer calculates
the projection of EW

i onto all token embeddings, including itself, using a dot product.
The final output of the single-headed attention layer for each token embedding is a
weighted average of all token embeddings, where the weights are the cosine projection
coefficient of the current token embedding onto each token embedding. A multi-headed
attention layer is analogous to a forest of single-headed attention layers. To construct a k-
headed attention layer using a pk dimensional token embedding, we randomly split the
pk dimensional embedding of each token into k groups of p dimensional embeddings.
We then build a single-headed attention layer with one subset of the token embeddings.
Finally, we take a weighted average of all of the output of the k heads.

The output of this multi-headed attention layer is then passed through a normaliza-
tion layer with a residual connection. Residual connection is achieved by passing the
input of the multi-headed attention layer directly to the normalization layer along with
the output of the multi-headed attention layer. This residual connection allows gradients
to directly flow from the input of the multi-headed attention layer to the next layer while
not going through the multi-headed attention layer. After the normalization layer, the
output is passed through a feed-forward layer, which converts the output of the normal-
ization layer to the same format as the input of the encoder module. This allows us to
stack multiple encoder modules together, where the previous encoder’s output can be
used as the input for the next encoder. The reason we stack encoders is that the first
encoder learns the contextual relationship between pairs of tokens, the second encoder
learns the relationship between pairs of tokens, and so forth. For the following discus-
sions in this paper, we use the word “embedding” to mean the output embedding of the
encoder at the text level.

The pre-trained Longformer model is based on RoBERTa which uses the encoder
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architecture to train for masked language modeling (MLM). To train the MLM task,
a random subset of tokens in the input sentence is masked with a trivial embedding
vector. Then, after this sentence goes through the encoder, the output goes through a
fully connected linear layer and a softmax layer to predict what the masked tokens in
the original sentence are. This loss is computed using cross-entropy. The final trained
RoBERTa model can output embeddings of sentences or entire texts that represent not
only the meaning of the tokens but also the contextual relationship between tokens and
sentences.
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Encoder Masked Token 
Prediction

FIGURE IB1: C-TEXT TRAINING PROCEDURE

The figure illustrates the training procedure of C-TEXT once the neural networks are trained. The light
blue block at the top describes the input used for estimation. The green blocks are the four neural networks
that are trained using the patent data. The purple block denotes the loss function of the model which is a
weighted average of the loss of all four networks. Finally, the red block denotes the optimization algorithm
that allows the model to get a step toward fitting the training data.
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Output

FIGURE IB2: ENCODER MODULE

This figure illustrates the structure of the encoder module. The light blue block at the bottom describes
the input. The yellow blocks are the layers within the encoder, and the red block is the output.
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Appendix C Additional Figures and Tables
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FIGURE IC1: SYNTHETIC DATA TESTS

The figure evaluates the quality of fit of our neural network. The black dashed line is centered at the mean
difference in the data (-0.008). We are unable to reject the null that the true difference in means is equal to
zero (p=0.2693).
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FIGURE IC2: DISTRIBUTION OF FORWARD CITATIONS

This figure illustrates the transformation from forward citations to expected forward citations. Panel A
uses the natural logarithm of forward citations while Panel B uses the natural logarithm of forward cita-
tions expected from our model. The vertical axis in both panels measures the percent of the distribution.
The red line corresponds to females, and the blue corresponds to males.
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FIGURE IC3: LOSS FUNCTION

This figure illustrates the loss function of the C-TEXT model. The horizontal axis corresponds to the
number of complete passes of the training dataset through the algorithm or epoch. The vertical axis
corresponds to the loss function and is the mean square error per batch.
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TABLE IC1: ROBUSTNESS TO LANGUAGE MODEL

This table replaces the Longformer model with alternative language Models. The sample covers patents
issued from 1976-01-01 through 2021-12-31. The dependent variable is Delta, the difference in the observed
number and the expected number of citations for a patent if the lead author was male, as defined by
Equation 6. Standard errors are clustered at the patent attorney and patent issue year level. ***, **, *, +
denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source: USPTO.

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -3.142*** -3.312*** -3.459*** -3.469*** -3.520*** -3.477***
(0.158) (0.157) (0.148) (0.143) (0.135) (0.139)

Intercept -3.011***
(0.126)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 16.6% 17.4% 18.2% 18.3% 18.5% 18.3%

Observations 774315 774315 774315 774315 774315 774315
R2 0.002 0.041 0.048 0.093 0.177 0.331
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TABLE IC2: CITATIONS IN TOP DECILE

This table studies patents that receive forward citations in the top decile. Panel A documents the rela-
tionship between a patent’s lead inventor’s gender and the propensity to receive citations placing them
in the top decile. Panel B documents the relationship between a patent’s lead inventor’s gender and the
model’s prediction a patent would be in the top decile of citations. The sample covers patents issued from
1976-01-01 through 2021-12-31. Standard errors are clustered at the patent attorney and patent issue year
level. ***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source: USPTO.

Panel A: Forward Citation

Top Decile Patent

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -0.0169*** -0.0156*** -0.0147*** -0.0140*** -0.0104*** -0.0062***
(0.0021) (0.0018) (0.0019) (0.0017) (0.0015) (0.0015)

Intercept 0.1071***
(0.0087)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 17% 15.6% 14.8% 14.1% 10.5% 6.2%

Observations 534997 534997 534997 534997 534997 534997
R2 0.001 0.088 0.104 0.153 0.245 0.407

Panel B: C-TEXT (Longformer)

Flipped to Top Decile

(1) (2) (3) (4) (5) (6)

Lead Female Inventor 0.00972*** 0.00985*** 0.00996*** 0.01016*** 0.01054*** 0.01077***
(0.00061) (0.00058) (0.00056) (0.00056) (0.00052) (0.00057)

Intercept 0.00895***
(0.00057)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 9.8% 9.9% 10% 10.2% 10.6% 10.8%

Observations 534997 534997 534997 534997 534997 534997
R2 0.002 0.006 0.008 0.038 0.114 0.246
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TABLE IC3: ROBUSTNESS TO SAMPLE SELECTION

This table establishes the robustness of our baseline specification of Panel B of Table 3. The dependent
variable is Delta, the difference in the observed number and the expected number of citations for a patent
if the lead author was male, as defined by Equation 6. Panel A uses a single-author patent. Panel B
uses the majority of genders of the inventors. The sample covers patents issued from 1976-01-01 through
2021-12-31. Standard errors are clustered at the patent attorney and patent issue year level. ***, **, *, +
denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source: USPTO.

Panel A: Single Author

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -2.030*** -2.074*** -2.083*** -2.204*** -2.301*** -2.00***
(0.275) (0.258) (0.259) (0.259) (0.248) (0.26)

Intercept -0.200
(0.134)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 10.5% 10.7% 10.7% 11.4% 11.9% 10.3%

Observations 213540 213540 213540 213540 213540 213540
R2 0.001 0.022 0.023 0.132 0.272 0.516

Panel B: Majority Same Gender

Delta

(1) (2) (3) (4) (5) (6)

Majority Female Inventors -0.438* -0.517** -0.516** -0.637** -0.752*** -0.871***
(0.186) (0.183) (0.183) (0.188) (0.194) (0.185)

Intercept -0.935***
(0.177)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 2.1% 2.5% 2.5% 3.1% 3.6% 4.2%

Observations 211931 211931 211931 211931 211931 211931
R2 0.000 0.017 0.018 0.107 0.262 0.486
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TABLE IC4: PLACEBO TEST

This table presents a placebo test by randomizing the gender of patents and re-running our C-TEXT ap-
proach to establish the effects are not an artifact of C-TEXT. The dependent variable is Delta, the difference
in the observed number and the expected number of citations for a patent if the lead author was male,
as defined by Equation 6. The sample covers patents with a positive number of citations, granted from
1976-01-01 through 2021-12-31. Standard errors are clustered at the patent attorney and patent issue year
level. ***, **, *, + denote significance at the .1%, 1%, 5%, and 10% level, respectively. Data source: USPTO.

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -0.0916 -0.0919 -0.0923 -0.1148 -0.0922 -0.0835
(0.0870) (0.0878) (0.0879) (0.0956) (0.0892) (0.1140)

Intercept 0.919***
(0.142)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 0.5% 0.5% 0.5% 0.6% 0.5% 0.4%

Observations 238081 238081 238081 238081 238081 238081
R2 0.000 0.007 0.008 0.089 0.219 0.415

68



TABLE IC5: ROBUSTNESS TO TRAINING SAMPLE

This table presents robustness tests for the time-period of the sample. The dependent variable is Delta, the
difference in the observed number and the expected number of citations for a patent if the lead author was
male, as defined by Equation 6. Panel A is trained and tested on the sample from 1976-01-01 through 1999-
12-31, while Panel B uses the sample from 2000-01-01 through 2021-12-31. Standard errors are clustered
at the patent attorney and patent issue year level. ***, **, *, + denote significance at the .1%, 1%, 5%, and
10% level, respectively. Data source: USPTO.

Panel A: Pre-2000 Sample

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -2.116*** -2.012*** -2.001*** -2.035*** -2.051*** -1.824***
(0.274) (0.238) (0.241) (0.236) (0.225) (0.179)

Intercept 0.931***
(0.107)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 7.6% 7.2% 7.1% 7.3% 7.3% 6.5%

Observations 177898 177898 177898 177898 177898 177898
R2 0.001 0.010 0.010 0.089 0.213 0.460

Panel B: Post-2000 Sample

Delta

(1) (2) (3) (4) (5) (6)

Lead Female Inventor -0.757*** -0.972*** -1.06*** -1.07*** -1.161*** -1.16***
(0.189) (0.191) (0.19) (0.20) (0.199) (0.19)

Intercept -1.075***
(0.261)

Art Group FE No Yes Yes Yes Yes Yes
Patent Issue Year FE No No Yes Yes Yes Yes
Examiner FE No No No Yes Yes Yes
Attorney FE No No No No Yes Yes
Assignee FE No No No No No Yes

Relative to Sample Mean 4.9% 6.3% 6.9% 6.9% 7.5% 7.5%

Observations 429994 429994 429994 429994 429994 429994
R2 0.000 0.021 0.023 0.072 0.157 0.315
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