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The US spent $800 billion, or $15,621 per student, on public elementary and secondary schools

in 2018-19 according to the National Center for Education Statistics. Spending these funds effi-

ciently to improve educational outcomes is a key focus of policy makers and requires an under-

standing of the effective drivers of academic performance. Much of the economics research iden-

tifying meaningful inputs into the education production function focuses on factors traditionally

thought of as key inputs driving educational outcomes, including school-related inputs, such as

class size, tutoring, and teacher quality (Guryan et al., 2023; Chetty et al., 2011; Krueger, 1999),

and health-related inputs that are directly linked to education, such as free and reduced price school

meals (Ruffini, 2022; Anderson et al., 2018). Much less research has focused on the spillover ef-

fects that other regulations may have on education, even when these regulations do not explicitly

target educational outcomes.

This paper considers whether regulation of public drinking water supplies may have impor-

tant spillover benefits to educational outcomes and provides the first causal estimates of the con-

temporaneous effect of drinking water quality violations on students’ academic achievement. By

exploiting plausibly exogenous variation in the timing of water quality violations, I estimate the

within-student impacts of poor water quality on student test scores using a student fixed effect

specification. To do so, I combine student-level test score data with geocoded student residential

addresses from the North Carolina Research Data Center with detailed geographic information on

community water system service areas and drinking water quality violations.

An estimated 16.4 million cases of acute gastroenteritis are attributed to contamination in com-

munity water systems each year in the US (Messner et al., 2006). Yet, more subtle impacts of

water contamination likely go unmeasured in traditional health data. For example, symptoms such

as nausea and stomach cramps may not be severe enough to warrant a visit to the hospital or ab-
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sence from school, but could still meaningfully reduce concentration or comprehension of material

during school. As exposure to drinking water quality violations is widespread, it is important to

quantify any impacts on student academic achievement. As the Environmental Protection Agency

(EPA) is required by law to conduct economic cost-benefit analysis when updating drinking water

regulation, failing to quantify the impact on academic outcomes, such as test scores, would mean

our current estimates of the damages to human well-being are understated and regulation may be

below the social optimum.

This paper finds that drinking water quality violations for coliform bacteria negatively impact

student test scores. I focus on violations of the Total Coliform Rule, as this is the most commonly

violated drinking water standard and violations have been linked with increased gastrointestinal ill-

ness (Marcus, 2022). Consistent with previous work showing that timely public notification allows

households to respond to water quality violations by purchasing bottled water (Marcus, 2022), I

only find negative impacts of violations when households are not informed immediately and thus

are unable to avoid exposure. I find exposure to a violation during the school year decreases math

scores by about 0.037 standard deviations. The magnitude of this effect is similar to the effect

of about $822 less in school spending per student, an increase in class size of about 4 students,

a reduction in teacher quality of about one third of a standard deviation, or a one standard devi-

ation increase in fine particulate matter (Jackson et al., 2021; Ebenstein et al., 2016; Jepsen and

Rivkin, 2009; Rivkin et al., 2005). Additional results suggest that effects on test scores persist and

are driven to a large degree by reduced retention or comprehension of material presented in the

classroom.

This paper makes a number of contributions to the literature. First, this paper adds to a literature

measuring the impact of environmental factors on educational outcomes. While existing research
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has primarily focused on air pollution and heat, I expand this research to consider the contempo-

raneous effect of drinking water contamination on academic test scores. Research has shown that

early exposure to poor air quality in utero and in early childhood harms later-life academic perfor-

mance (Jacqz, 2022; Hollingsworth et al., 2022; Bharadwaj et al., 2017; Sanders, 2012). Research

has also consistently documented a negative impact of contemporaneous exposure to air pollution

and heat on academic test scores (Duque and Gilraine, 2022; Heissel et al., 2022; Persico and Ve-

nator, 2021; Park et al., 2020; Zivin et al., 2020; Austin et al., 2019; Stafford, 2015). For example,

Ebenstein et al. (2016) find that a one standard deviation increase in fine particulate matter dur-

ing high-stakes exams in Israel reduced student performance by 0.039 standard deviations, which

ultimately lowered post-secondary educational attainment and reduced earnings.

However, very limited work has documented the effect of drinking water quality on educational

outcomes or test scores. Beach et al. (2016) provide historical evidence that eliminating early life

exposure to waterborne diseases in the early 20th century increased later-life earnings and years

of education. Work documenting the effect of lead exposure on test scores and later-life outcomes

consistently finds significant negative impacts, but typically focuses on channels of exposure other

than drinking water, such as through soil, air, or lead paint, or does not distinguish lead exposure

through water from other lead sources (Grönqvist et al., 2020; Sorensen et al., 2019; Aizer et

al., 2018; Rau et al., 2015).1 This paper provides new evidence that student test scores can be

harmed not only by air pollution and heat, but also through contemporaneous public drinking

water contamination.
1Very few papers focus specifically lead in drinking water. From a historical perspective, Ferrie et al. (2012)

find prior exposure to water-borne lead among male World War II U.S. Army enlistees was associated with lower
intelligence scores. Lu et al. (2022) find an association between lead levels in community drinking water systems
and children’s academic performances at the school district level. In ongoing research, Zheng (2022) study early life
exposure to lead in drinking water on later life test scores and graduation rates.
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This paper also contributes to a literature documenting the broader consequences of poor drink-

ing water quality. Much of the existing work studies interventions in low- and middle-income

countries (Bhalotra et al., 2021; Akter, 2019; Cameron et al., 2021; Zhang and Xu, 2016; Brainerd

and Menon, 2014; Gamper-Rabindran et al., 2010) or from a historical perspective in the US (An-

derson et al., 2022; Beach et al., 2016; Cutler and Miller, 2005; Troesken, 2001). For advanced

economies in a modern context, existing evidence is limited (Keiser and Shapiro, 2019), although

some work documents negative impacts of poor drinking water quality on health at birth (Hill and

Ma, 2022; Currie et al., 2013). Focusing on children and adolescents, Marcus (2022) shows drink-

ing water violations for coliform bacteria negatively impact several measures of health, including

emergency room visits for gastrointestinal illness.

However, extreme health measures, such as emergency room visits, are unlikely to capture

more subtle effects on health which may have important impacts on human capital accumulation.

Even if a child is not sick enough to go to the emergency room or stay home from school, poor wa-

ter quality throughout the school year may impact concentration during class and comprehension

of material, potentially leading to worse test scores. Alternatively, exposure at the time of testing

may also negatively impact test performance. Quantifying the effect of water quality on test scores

is especially important given that test scores have been shown to impact long-run outcomes, such

as income, job stability, and social mobility (Chetty et al., 2014, 2011).

Unfortunately, violations of drinking water standards are a regular occurrence. For example,

11,938 of all public water systems, or about 8 percent, violated health-based standards in 2016

(EPA, 2016). Disadvantaged communities tend to have higher exposure to these water quality

violations. This research helps quantify the consequences of failing to maintain public drinking

water quality standards, which can inform policy decisions aimed at improving water infrastructure
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and safeguarding the health and academic performance of all students.

1 Background

1.1 Coliform Bacteria

Coliform bacteria are microorganisms that are typically associated with human and animal fecal

matter. Because testing for each specific harmful organism individually is generally too expensive

and time consuming, the total coliform group of bacteria are often used as “indicator organisms”

that potentially harmful fecal bacteria may be present. Within the total coliform group, E. coli is a

more specific indicator of fecal contamination and is potentially more harmful than other coliform

bacteria.

The presence of coliform bacteria indicates that harmful pathogenic organisms capable of caus-

ing a variety of waterborne or water-based diseases (see Table A1) may be present in water. Com-

mon symptoms of gastroenteric infections and diseases include nausea, vomiting, diarrhea, and

stomach cramps. While severe health impacts may lead to increased visits to the hospital or emer-

gency room, many individuals experience more mild to moderate symptoms that would not be

recorded in hospitalization data. Children typically have higher risk of gastrointestinal illness and

severe health outcomes from contact with contaminated water than adults (Trtanj et al., 2016).

Contamination of water provided by community drinking water systems can occur in a few

different ways. For example, rain can lead to run-off entering the drinking water source, which is

especially problematic for systems reliant on surface water rather than groundwater sources. Fecal

coliforms are typically present in higher concentrations in surface water, especially in areas with
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manure run-off (Cox et al., 2005). Contamination can also occur if the water treatment process is

ineffective at removing all contamination, or a break in the distribution system allows contaminants

to enter the water supply even after treatment. In practice, breaks occur regularly with about

237,000 main breaks per year (Reynolds et al., 2008).

If properly informed, households can avoid exposure to contaminated water by boiling their

tap water for at least one minute before drinking or by finding an alternate water source, such as

bottled water. Both types of avoidance behavior are costly in terms of inconvenience, time, and

money.

1.2 Water Quality Regulation

The US EPA regulates all public drinking water systems through the Safe Drinking Water Act

(SDWA), which sets enforceable standards for over 90 different contaminants.2 About 8 percent

of all public drinking water systems in the US violated a health-based drinking water standard

and 26 percent violated monitoring and reporting requirements in 2016 (EPA, 2016). Although

the SDWA also regulates other types of systems, this study focuses on community water systems,

which supply water to the same population year-round.

In this paper, I focus on the most commonly violated health-based drinking water standard,

the Total Coliforms Rule (TCR).3 To be in compliance, each water system was required to take

routine samples for total coliform bacteria each month, with larger systems required to sample

more frequently. Samples were required to be collected at regular time intervals throughout the

2Public drinking water systems are defined as having at least 15 service connections or serving at least 25 people
per day for 60 days per year.

3Although the Revised Total Coliform Rule (RTCR) came into effect in March 2016, this paper focuses on vio-
lations prior to these revisions. The RTCR eliminated warnings for “Monthly” coliform violations, but maintained
violations for “Acute” coliform (renamed as an “E. coli” violation). The RTCR also introduced new requirements for
systems with coliform contamination to initiate assessments to find sanitary defects and take corrective action.
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month at representative sites throughout the distribution system.4 Samples were then tested for the

presence or absence of total coliforms, rather than the amount or concentration of coliforms. For

positive tests, repeat samples testing for the presence of fecal coliforms or E. coli were required

at additional locations.5 Even with this relatively coarse measure of exposure, existing research

has shown that the presence of coliform bacteria (i.e. TCR violations) in drinking water is suffi-

ciently harmful as to increase hospitalizations for gastrointestinal illness, increase over the counter

purchases of stomach remedies, and increase school absences (Marcus, 2022).

Two types of violations could occur: Acute and Monthly. Acute violations required detection

of fecal coliforms or E. coli, which are found in large quantities in fecal matter and provide strong

evidence that sewage is present. An Acute violation occured when any repeat sample was positive

for fecal coliforms or E. coli, or there was a positive total coliform repeat sample following a

positive fecal coliform or E. coli routine sample (40 CFR 141.63). Monthly coliform violations

occured when a system detected more positive total coliform samples than the allowable monthly

limit. For small systems serving less than 33,000 people, a Monthly violation occured if two or

more samples tested positive for total coliforms. For larger systems, a Monthly violation occurred

when over 5 percent of samples test positive for total coliforms.6

Acute and Monthly violations of the TCR had different public notification requirements under

4Systems were required to provide a sample siting plan which determined sampling locations and was subject to
state review and revision. Groundwater systems serving 4,900 or fewer people could collect their samples on the same
day.

5If a sample tested positive for total coliforms, the system was typically required to take three “repeat” samples:
at the same tap, within five service connections upstream, and within five service connections downstream. If the
“repeat” samples tested positive for total coliforms, another set of samples must be taken, as before, unless a violation
was triggered. In addition, each sample that tested positive for total coliforms must also be tested for the presence of
fecal coliforms or E. coli.

6Larger systems had some incentive for strategic avoidance of regulatory action. Bennear et al. (2009) find evidence
that large systems over-sample to avoid triggering a violation. Although there are no TCR violations for systems
serving over 33,000 people in the sample used for this study, violations at some systems may have gone unrecorded
and the effects estimated in this study may be understated.
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the SDWA’s Public Notification Rule. Acute coliform violations were classified as Tier 1 and

required public notification within 24 hours (through radio, TV, hand delivery, posting, or other

methods), whereas Monthly coliform violations were classified as Tier 2 and required notification

within 30 days. In practice, public notification can often take even longer than 30 days. Figure A1

shows the distribution of weeks between the determination date and public notification date for

Monthly coliform violations in North Carolina between 2007 and 2015.7 The figure shows a long

right tail with about 30 percent of public notifications occurring more than 6 months after the

determination date. Delayed public notification during Monthly coliform violations limited the

ability for individuals to exhibit avoidance behaviors, such as drinking bottled water. Regardless

of the tier, all public notifications had to include a description of the violation and contaminant

levels, the violation date, potential adverse health risks, a description of the population at risk,

whether to seek an alternate water supply, what actions consumers should take, what the system

was doing to correct the violation, and when the system expected to return to compliance.8

While Acute violations were thought to be more harmful, Marcus (2022) shows that Monthly

violations led to negative impacts on direct and indirect measure of health due to differences in

public notification requirements that led to protective avoidance behavior only during Acute vio-

lations. Acute coliform violations (requiring immediate 24-hour public notice) led to increases in

bottled water purchases, whereas Monthly coliform violations (requiring only notification within

30 days) had no detectable impact on bottled water purchases. Appendix B extends these results for

7These data come from the North Carolina Department of Environmental Quality. Thanks to Linda Raynor for
sharing and assisting in the interpretation of these data.

8The notification was also required to include contact information and a statement encouraging individuals to
distribute the notice to others served by the water system. If 30 percent or more of the customers were non-English
speaking, the system had to provide the notification in the appropriate language(s) or provide additional information on
where to get a translated copy or assistance. Example notifications are available on the North Carolina Department of
Environmental Quality website: https://www.deq.nc.gov/about/divisions/water-resources/drinking-water/compliance-
services/public-notification-rule-tier-levels.

9



bottled water purchases by looking at the responsiveness for households with and without school-

aged children, who are the focus of this analysis. Results show that households with school-aged

children also increase bottled water purchases in response to Acute coliform violations, but not

Monthly coliform violations. These results are consistent with existing work and support the hy-

pothesis that any affects on student tests scores are likely to occur during Monthly violations, rather

than Acute violations, due to the differential avoidance behavior in response to public notification.

2 Data

2.1 Water Quality Data

The EPA maintains the Safe Drinking Water Information System (SDWIS), which collects detailed

records on all water quality violations in the US. I use data from 2009 to 2015 on health-based max-

imum contaminant level (MCL) violations and procedural violations, such as testing and reporting

violations. I focus on violations of the Total Coliform Rule, which are classified as either Acute

violations (requiring notification within 24 hours) or Monthly violations (requiring notification

within 30 days). Violations are based on samples collected at regular time intervals throughout the

month at representative sites throughout the CWS distribution system.

Public Community Water Supply service areas comes from the North Carolina Center for Ge-

ographic Information and Analysis, available via NC OneMap.9 Figure 1a shows the community

water supply system service areas for North Carolina and areas with either Acute or Monthly viola-

tions of the Total Coliform Rule. Not all areas of the state are served by community water systems

9Geographic service areas were mapped during 2004-2006 to facilitate planning, siting, and impact analysis. Data
are available here: www.nconemap.com.
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and I exclude students outside community water service areas. Unserved areas tend to be rural and

usually supply their own water for domestic use through fresh groundwater wells, which are not

regulated under the SDWA.10

2.2 School Data

The North Carolina Department of Public Instruction (NCDPI) maintains student-level data from

the North Carolina Education Research Data Center (NCERDC). I use end-of-year math and read-

ing test scores for grades 3-8 from 2009 to 2015. These tests aim to assess whether students have

met grade-level expectations. I focus primarily on math test scores, as math standardized tests are

often thought to better capture learning and are more commonly used in the education literature

Sanders (2012). I standardize each score by year, grade, and local education agency.11 Addi-

tional demographic characteristics include birth month, gender, race, ethnicity, disability status,

and indicators for the economically disadvantaged and those with limited English ability.

The student-level data contain a unique code for each student that can be linked over time,

allowing for the inclusion of student-level fixed effects. Detailed geocoded addresses allow for

a more accurate definition of exposure to poor water quality than exposure based on attendance

boundaries. Students are linked to water quality information based on the intersection of their pre-

cise home locations and community water supply service areas.12 I focus on non-moving house-

10About 14 percent of the US population supplies their own water for domestic use, primarily through privately
owned groundwater wells. There are no federally required monitoring or treatment standards for private wells under
the SDWA.

11All students in North Carolina take the same test conditional on school grade. Grading is done at the local
education agency level by the test coordinator who is chosen by the superintendent of the district.

12Not all households living within a water supply service area necessarily get their water from the CWS. Some
households may supply their own water for domestic use through a privately owned well or through bottled water
purchases. However, the vast majority households (and schools) located within the CWS area get their water from the
CWS.
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holds, to abstract away from the possibility of endogenous moving behavior. In addition, I use

public school location information from NCDPI to separately estimate the effect of water quality

at the home and school. Violations at schools are based on water samples taken at the community

water system serving the area where the school is located. Because children often live near their

school, the same water system may serve children at home and at school. Yet, there are still many

children who are served by different CWS systems at home and at school. Because children spend

substantial time in both locations, it is useful to consider exposure to violations at both locations.

Additional data come from the Common Core of Data (CCD) Public Elementary/Secondary

School Universe Survey Data from 2009 to 2015 and the School Report Card data from 2009 to

2013.13 These school-year level data allow me to test whether violations coincide with changes

in student or school characteristics. These data include information on race/ethnicity, percent

eligible for free and reduced price lunch, average daily attendance rate, percent of Adequate Yearly

Progress targets met, number of library/media center books per 1000 students, percent of classes

taught by high quality teachers (defined as teachers that are fully licensed, have advanced degrees

and/or are National Board Certified), percent of classrooms connected to the internet, crimes in

school per 1000 students, percent in poverty, one year teacher turnover rate, and teacher tenure

(specifically, the percent of teachers with 3 or fewer, 4-10, or 11 or more years of experience).

Other basic information includes school type (e.g. regular, alternative, vocational), type of school

calendar (e.g. traditional, year-round, modified), and school program (e.g. magnet, charter). To

explore whether violations have an impact on behavioral outcomes, I also use School Report Card

data to test for effects on school-level rates of expulsions and suspensions.

13I do not use later years, because variables collected in the School Report Card data changed in 2014.
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2.3 Weather and Air Pollution Data

It is important to control flexibly for weather, as weather may impact both exposure to contam-

inated water and test scores. For example, hot weather may increase intake of contaminated tap

water and has been shown to impact learning and test scores (Park et al., 2020; Zivin et al., 2020).

Daily weather data for each 2.5 by 2.5 mile square in North Carolina come from (Schlenker and

Roberts, 2009) and are based on the PRISM weather data set. I calculate measures of total precipi-

tation, average precipitation, and the percent of days with a maximum temperature that falls within

7 temperature bins in degrees Celsius: below 0, 0-5, 5-10, 10-15, 15-20, 20-25, and over 25. I also

include controls for 7 precipitation bins in millimeters as a robustness check: 0-1, 1-5, 5-10, 10-15,

15-20, 20-25, and over 25. The main specification includes monthly precipitation and temperature

controls for fall, spring, and summer, but the results are robust to including both temperature and

precipitation bins separately for each month.

As a robustness check, I include controls for ozone and particulate matter measured at air qual-

ity monitors throughout North Carolina, as test scores may be driven by exposure to air pollution

(Duque and Gilraine, 2022; Heissel et al., 2022; Persico and Venator, 2021; Austin et al., 2019;

Stafford, 2015). I include the percent of days throughout the year within each of five categories

to allow for nonlinear effects: 0-25%, 25-50%, 50-75%, 75-100%, and over 100% of the relevant

EPA threshold for each criteria pollutant. I use inverse distance weighted measures of air pollution

from monitors within 20 miles of a student’s residence.
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3 Empirical Strategy

The student-level data allows me to define individual-level exposure based on residential and

school latitudes and longitudes. I consider exposure separately for Acute and Monthly violations,

as they result in different public notification requirements. For each type of violation, I measure

exposure as equal to one if a violation occurred within the past school year or equal to one if a vi-

olation occurred within the testing window. The school year is defined as months August through

April, while the testing window is defined as the month of May.14 The main specification is as

follows,

Yi,t =β1Acute SchoolY eari,t + β2Acute Testingi,t+ (1)

β3Monthly SchoolY eari,t + β4Monthly Testingi,t+

ωi,t +Gradei + Y eart + ϕi + εi,t

where i indexes individuals and t indexes school years. Outcomes of interest include the end-

of-year standardized test scores for grades 3-8. Individual fixed effects, ϕi, control for all time-

invariant individual, family, and neighborhood characteristics, and standard errors are clustered at

the individual level. The specification also includes indicators for grade level and year, as well as

time-varying weather controls, ωi,t. The coefficients of interest, β1 through β4, capture the impact

of exposure to poor water quality during the school year and testing window on an individual’s test

14As of 2013, North Carolina law requires that the public school opening date is no earlier than the Monday closest
to August 26th and the end date is no later than the Friday closest to June 11th. From 2005 to 2013, the start date was
no earlier than August 25th and the end date was no later than June 10th. Schools with non-traditional calendars, about
6% of schools, were exempt. The End of Grade testing window in North Carolina public schools was the last 22 days
of the school year from 2009 to 2012, the last 15 days of the school year in 2013, and the last 10 days of the school year
from 2014 to 2015. See General Statute 115C-84.2 and https://www.dpi.nc.gov/images/data/calendar/history-school-
calendar/download.
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score. Estimates would be biased if there are time-varying unobserved factors affecting test scores

that impact students in specific areas with water quality violations during the year of violation.

Results presented in the robustness section show the estimates are not driven by a broad range of

potential confounders, such as changes in employment, procedural violations, other diseases, or air

pollution. Violations are also unrelated to school-level changes in student demographics or school

characteristics.

4 Results

Water quality violations may impact student tests scores through two main channels. First, existing

research has shown that water quality violations increase absences (Marcus, 2022) and absences

decrease test scores (Aucejo and Romano, 2016). Second, even if children are not sick enough to

stay home from school, their concentration and comprehension may be impacted. Exposure to poor

water quality during different parts of the year may impact test scores through different channels.

For example, exposure during the testing window could impact concentration during the test, while

exposure during the school year could impact absences or concentration and comprehension of

material.

It is also important to consider the potential for poor water quality to impact children through

exposure both at home and at school. Children spend significant amounts of time at school and are

likely to consume tap water at lunch, during recess, or at other times throughout the school day.

While much existing work can only observe pollution exposure at one location, the data used in

this study allows us to consider both home and school exposure.

First, Table 2 documents demographic characteristics of students who have been exposed any
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type of coliform water quality violation in the sample. Columns 1 and 2 show mean characteristics

for those students unexposed and exposed to a violation at either home or school, respectively,

while columns 3-4 are based on exposure at home and columns 5-6 are based on exposure at

school. Patterns are similar across both sources of exposure and are consistent with a broader

environmental justice literature documenting higher exposure to pollution among disadvantaged

communities (Banzhaf et al., 2019). While the average sex and grade level are similar across

exposed and unexposed students, economically disadvantaged students are much more likely to

be exposed to a water quality violation at both home and school. About 69 percent of students

exposed to a violation are economically disadvantaged, as compared to 53 percent for unexposed

students when considering exposure at either home or school. Exposed students are also more

likely to be Black, by about 8 percentage points. Test scores are also about 11-12 points lower for

students exposed to water quality violations.

To explore whether these lower tests scores can be explained by the timing of water quality

violations, rather than other student characteristics, Table 3 shows estimates of equation 1 which

includes indicators for grade and year, weather controls, and student fixed effects.15 Student fixed

effects capture all time-invariant student and family characteristics, such as race/ethnicity, house-

hold income, and parental education, such that estimates are based off within-student comparisons

over time rather than comparisons across students. Columns 1-2 in Table 3 show the results for

15Table A2 in the appendix builds up to this fully specified model for both math and reading test scores. Without
accounting for student ability by controlling for student fixed effects, estimates are sensitive to the inclusion of demo-
graphics and weather controls. However, when student fixed effects are included, the estimates are much more stable
and show a negative impact on math scores for Monthly coliform violations during the school year. This can be seen
in column 5 which includes additional weather controls and across a variety of robustness tests shown in Figure 2b
and described in section 4.2. While I find no significant impact on reading test scores, this is consistent with some
existing research on environmental exposures, which often finds smaller effects on reading than math scores (Duque
and Gilraine, 2022; Jacqz, 2022; Hollingsworth et al., 2022). In the remainder of the results, I focus on math tests
scores.
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home exposure to violations during the school-year and during the testing window, and columns

3-4 show the results for school exposure.

I start by focusing on water quality at students’ homes in column 1. There is no statistically

significant impact of exposure to an Acute coliform violation at any time on math scores. This is

perhaps not surprising given previous work and additional evidence in Appendix B showing that

households avoid exposure through purchasing bottled water during Acute coliform violations,

which require immediate public notification (Marcus, 2022). On the other hand, there is a larger

impact of poor water quality on test scores during Monthly violations, when households are not

required to be informed immediately. Exposure to a Monthly coliform violation during the school

year decreases math scores by about 0.037 standard deviations in column 1.16 While the coefficient

for exposure during the testing window is negative, it is not statistically significant. As actual test

dates are unobserved and there are relatively few violations during the testing window, I may lack

power to detect an effect of exposure during testing. In addition, health-related absences on the

test day are not observed. If the students most impacted by the poor water quality are absent on

the test day, the effect on test scores may be understated. When considering exposure based on

school location rather than students’ residential location in column 3, the estimates are similar in

magnitude and direction for both Acute and Monthly violations. Only Monthly violations during

the school year have a statistically significant negative effect on test scores.

The magnitude of the effect of exposure to a Monthly violation during the school year is well

within the range of the effects of other environmental factors on student test scores. Table 4 com-

pares the estimated effect to other studies quantifying the impact of air pollution on math scores.

16The effect of a Monthly coliform violation during the school year remains statistically significant even after
correcting for multiple hypothesis testing. Table A3 shows that the sharpened q-value is 0.067, the Westfall-Young
p-value is 0.050, and the Romono-Wolf p-value is 0.0099.
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Our estimates on water quality are similar to the effect of attending schools downwind of a high-

way or a 1 standard deviation increase in carbon monoxide exposure during the third trimester

(Heissel et al., 2022; Bharadwaj et al., 2017). Our estimates are smaller than the effects of indoor

air quality improvement projects or airborne lead emissions (Stafford, 2015; Hollingsworth et al.,

2022).

While existing research has shown that exposure to Monthly coliform violations also increases

school absences, the effect on test scores cannot be entirely explained by an increase in absences.

Aucejo and Romano (2016) find that it takes about 10 additional absent days to decrease math

scores by 0.055 standard deviations. In the same context, Marcus (2022) finds exposure to a

Monthly coliform violation increases absences by about 0.4 days, which would be expected to

decrease math scores by about 0.0022, or only about 6 percent of the estimated effect on test

scores.17 Instead, it is likely that these effects on test scores are driven in large part through the

impact of Monthly coliform violations on concentration and/or comprehension in the classroom.

Next, I explore whether the physical effects of poor water quality on children’s health and

cognitive ability appear to be either long-lasting or short-lived. If impacts of poor water quality

are long-lasting, effects that degrade health in one period may ultimately impact cognition and test

scores in both current and future periods. In this case, we might expect to see violations in the

summer months having a delayed impact on test scores in the next school year. Alternatively, the

impacts of poor water quality on health may be more short-lived. During the poor water quality

episode, cognition and concentration may decrease, but suppose the effects are temporary. In this

17In Table A4, I also show that including absences as a control does not have a large impact on the estimated effect
of violations on test scores. Although absences have a statistically significant negative impact on student test scores, as
expected, there is little change in the magnitude or significance of the other point estimates, suggesting that increased
absences are not driving the main effects. However, it is important to acknowledge that this is a “bad control” given
that absences are an endogeneous outcome of the treatment.
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case, violations in the summer months are unlikely to have an impact on student test scores, because

school was not in session and the students did not miss learning any material while they were

feeling ill. When violations happen during the school year, students may fall behind or miss out

on key learning goals due to the consequences of poor water quality on their health, cognition, and

ability to concentrate. Table 6 shows that violations occurring either at home or at school during

the summer months have no statistically significant impact on test scores and the coefficients are

small in magnitude. These results suggest that the physical effects of these violations may be

temporary.

Even if these physical effects are short-lived, the impact of exposure to poor water quality on

learning may still have long-lasting effects due to the fact that learning goals tend to be cumulative.

For example, falling behind or doing poorly in one year may leave students further behind in

future years and lower test scores have been linked to worse later-life outcomes, such as earnings.

However, it is uncertain whether the test score impact of exposure to a Monthly coliform violation

during the school year would persist into future years. In columns 2 and 4 of Table 3, I include

lagged exposure to a Monthly coliform violation during the previous school year. The negative

impact of both home and school exposure on math scores seems to persist. The coefficients on

lagged exposure are statistically significant and the magnitude of the effect is almost the same

magnitude as exposure in the current year. These results suggest that the effect of Monthly coliform

violations on test scores and may impact later life outcomes.18

18Given this evidence that the effects on math scores persist, I also estimate specifications that capture the intensity
of exposure and cumulative exposure. Table A5 shows very similar results when exposure is defined as the number
of months in violation in the past school year or the number of cumulative months of exposure since first observed.
In this setting, most exposed children are exposed to only one month of poor water quality so these results are very
similar to the baseline specification.

19



4.1 Additional Results and Heterogeneity

First, I explore heterogeneity in the effects across student demographic characteristics. As doc-

umented in Table 2, disadvantaged students are much more likely to be exposed water quality

violations overall. Consistent with the broader environmental justice literature, students exposed

to a TCR violation are significantly more likely to be Black and more likely to be economically

disadvantaged. Yet, conditional on exposure to a violation, it is unclear whether additional het-

erogeneity in effects may exist across demographic groups. Differences may arise due to different

propensities to consume contaminated tap water across individuals or differences in sensitivity

to poor water quality conditional on exposure. For example, Hispanics and economically disad-

vantaged children tend to consume less tap water (Drewnowski et al., 2013). However, without

individual information on the amount of tap water actually consumed, I am unable to distinguish

between heterogeneity in effects due to differences in the amount of contaminated tap water in-

gested from differences due to sensitivity conditional on amount ingested.

Figure A2a and Table A6 report the results after interacting key demographics with exposure

to Monthly coliform violations during the school year. Point estimates are consistently negative

across a variety of groups, but in most cases effects across different sub-groups are statistically in-

distinguishable. Point estimates are very similar for males and females and by grade level. In a few

cases point estimates are larger among populations that tend to consume more tap water, including

non-Hispanic students and students who are not economically disadvantaged (Drewnowski et al.,

2013). However, we lack sufficient power in this setting to draw strong conclusions from these

results across demographic groups.

Next, I explore heterogeneity in the effects across different types of community drinking water
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systems. Figure A2b and Table A7 report the results after interacting system characteristics with

exposure to Monthly coliform violations during the school year. System characteristics include

water source, whether the system has violated the TCR more than once, ownership type, and size.19

Although results appear to be driven by surface water systems, repeat offenders, publicly owned

water supply systems and larger systems, these differences are not statistically distinguishable

and should be interpreted with caution. It is perhaps not surprising that the estimates show only a

statistically significant impact for water systems supplied by surface waters. This is consistent with

sampling data which reports higher concentrations of fecal coliform in surface water as compared

with groundwater, especially where run-off from manure is likely (Cox et al., 2005).

Finally, it is possible that water quality violations may have an impact on student behavioral

problems, possibly through an incapacitation effect. To test this, I use school-level data on expul-

sions and suspensions. Outcomes are measured as the number of expulsions or suspensions per

100 students. Long suspensions are over 10 days and short suspensions are 10 days or less. Expo-

sure to violations is measured as the percent of students in the school exposed at their residential

location during the school year or the testing window. All specifications include school and year

fixed effects and controls for weather. The results in Table A8 show there is no strong evidence of

an impact of these violations on expulsions or suspensions.

4.2 Robustness

In order for the results to measure the impact of water quality violations on student test scores, it

must be that there are no time-varying unobserved factors affecting test scores that impact students

19I define repeat offenders as water systems with more than one violation of the TCR since 1990 and non-repeat
offenders as systems that violate the TCR for the first time.

21



in specific areas with water quality violations during the year of violation. I provide support for

this assumption in Figure 2.

First, Figure 2a tests whether monthly coliform violations during the school year are sys-

tematically correlated with changes in student demographics or school characteristics, including

race/ethnicity, poverty, crime, school resources, teacher quality, and school quality. The variable of

interest is measured as the percent of students at the school exposed to a monthly coliform violation

at their residential location. All specifications include school fixed effects and controls for year and

weather. Corresponding regression results are included in Table 7. Across all outcomes, there is

no systematic pattern and no statistically significant relationship between violations and changes

in student or school characteristics. This provides support for the assumption that violations are

unrelated to other time-varying factors that impact student test scores.

Next, Figure 2b and Table 8 show the robustness of the main results to a variety of alternative

specifications. The baseline regression model is included in column 1 for reference, and all spec-

ifications include individual fixed effects, grade and year indicators, and weather controls. First,

it is important that other drivers of test scores do not change systematically with violations. For

example, it would be problematic if violations were correlated with a decline in family income or

changes in the composition of peers at school. In columns 2 and 3, I show the robustness of the

results to adding additional controls for the county-month employment rate as a proxy for family

income and controls for student demographic characteristics at the school level, respectively.20

Another concern may be that not all health-based violations are reported in the data. For exam-

ple, measurement error will be introduced if water systems do not fulfill the sampling requirements

20Employment rates at the county-school year level come from the Bureau of Labor Statistics’ Local Area Unem-
ployment Statistics data. Demographic characteristics at the school-year level come from the Common Core Data and
include percent white, percent black, percent Hispanic, and percent free or reduced price lunch.
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necessary to detect violations of the Total Coliform Rule. To account for this possibility, Column 4

adds additional controls for water systems that have any monitoring and reporting violations. The

main coefficient remains very similar to the baseline specification with these additional controls.

Next, it may be important to account for other time-varying health factors that could impact

student test scores. In particular, rates of influenza and asthma tend to be relatively high for the

students in our sample in grades 3 to 8. Column 5 includes controls for the prevalence of other

common diseases affecting children by controlling for the number of emergency room visits for

influenza and asthma.21 Next, column 6 adds controls for air pollution, as air pollution has been

shown to impact test scores (Duque and Gilraine, 2022; Heissel et al., 2022; Persico and Venator,

2021; Austin et al., 2019; Ebenstein et al., 2016; Stafford, 2015). Ozone and particulate matter

are included as the percent of days within each of five categories to allow for nonlinear effects:

0-25%, 25-50%, 50-75%, 75-100%, and over 100% of the relevant EPA threshold. The results

remain significant and very similar to the baseline specification.

Next, I show the results are robust to dropping schools that may be outliers in the data. To

account for the possibility that schools in and around the biggest cities in North Carolina, Charlotte

and Raleigh, represent outliers, I drop Mecklenburg and Wake county schools in column 7. In

addition, it is possible that some schools close in response to water quality violations, which could

reduce learning through a different mechanism. I obtain data on unplanned school closures and

show the results are robust to dropping the two schools that experienced a closure in response to

water quality violations in column 8.22

21I use data from the Cecil G. Sheps Center for Health Services Research at the University of North Carolina on
the number of ER admissions at the zip code level for influenza and pneumonia (ICD-9 codes: 480-488) and asthma
(ICD-9 code: 493) per person.

22Unplanned school closure data was generously provided by CDC/DGMQ/CI-ICU. Please consult Wong et al.
(2014) for data collection and methods.
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Measurement error in the timing of the school year or testing window may also be a concern.

Therefore, columns 9-11 introduce restrictions that focus on schools most likely to adhere to the

standard public school schedule. Columns 9-11 limit the sample to regular schools (excludes

alternative education, exceptional children, and vocational education), regular programs (excludes

cooperative innovative high schools, early college schools, magnet schools, etc.), and schools with

traditional calendars (excludes modified calendars and year-round calendars), respectively.

Although the main estimates already control for temperature and precipitation, columns 12

and 13 include even more flexible weather controls to account for non-linearities and additional

variation throughout the year. Column 12 includes seven flexible bins for precipitation, and column

13 includes temperature and precipitation bins separately for each month. The results remain

statistically significant and similar in magnitude to the baseline specification.

The main results include year fixed effects to account for yearly shocks impacting all students

in the state. However, it may also be possible for regional shocks, such as a hurricane or influenza

outbreak, to impact the test scores of all students in a given region. Any correlation between

regional shocks and violations may bias our estimates. To test the robustness of our results to time-

varying regional shocks, columns 13 and 14 include region-by-year fixed effects. Regions are

defined as either NCDEQ regions in column 13, or the Coastal Plains, Piedmont, and Mountains

geographic regions in column 14. Across all specifications, the coefficients and standard errors

remain very similar.

To ensure that the effects on test scores are driven by coliform bacteria rather than other types

of health-based drinking water quality violations, Table A9 includes controls for other types of

health-based drinking water violations. The main coefficients are robust to these controls.23

23Columns 2 and 4 of Table A9 include controls for the number of months of other types of health-based violations,
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While the main results cluster standard errors at the individual level to account for correlation

in the standard errors across time for the same student, Table A10 in the appendix shows that the

results are robust to clustering at alternate levels, such as at the community water system level, the

school level, and the school-grade level.

Finally, Table 5 provides an additional placebo tests. Water quality violations occurring in the

future should be unrelated to current test scores. The results in Columns 1 and 4 of Table 5 replicate

the baseline specification for violations based on both home and school exposure. Columns 2 and

5 include violations one year in the future and columns 3 and 6 include violations two years in the

future. It is reassuring that these placebo violations are statistically insignificant, as expected.

5 Discussion & Conclusion

This paper quantifies the impact of drinking water violations for coliform bacteria on student test

scores. Results show that violations only harm student test scores when the public is not required

to be notified immediately, consistent with previous research (Marcus, 2022). I find Monthly vio-

lations during the school year decrease math test scores by 0.037 standard deviations. This effect

persists and cannot be explained by student absences alone, suggesting that poor water quality

impacts comprehension or retention of material presented in the classroom.

The magnitude of this effect is very similar to the effect of air pollution on math test scores.

For example, attending schools downwind of a highway reduces math test scores by 0.040 standard

deviations (Heissel et al., 2022). However, indoor air quality improvements, such as mold remedi-

including radionuclides, disinfectants and disinfection by-products, synthetic organic compounds (SOCs), and volatile
organic chemicals (VOCs). The main results are not sensitive to these controls. However, I would hesitate to put too
much emphasis on the magnitude of the coefficients on other types of violations, because this research design is not
well suited to capture the effects of other contaminants that have more complicated sampling requirements.
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ation, tend to have larger effects on test scores (Stafford, 2015). Compared to other policy levers

to improve student test scores, exposure to a monthly coliform bacteria violation is equivalent to

about $822 less in school spending per student, an increase in class size of about 4 students, or a

reduction in teacher quality of about one third of a standard deviation (Jackson et al., 2021; Jepsen

and Rivkin, 2009; Rivkin et al., 2005).

Using estimates from Chetty et al. (2014), the 0.037 standard deviation decrease in test scores

from poor water quality that we estimate is associated with a 0.44 percent decrease in lifetime

earnings. As the present value of expected future earnings at age 12 is $618,705 (2020 dollars)

(Chetty et al., 2014), a 0.44 percent decrease in lifetime earnings is about $2,722. This effect on

earnings is large relative to the cost of avoiding exposure to coliform bacteria violations through

purchasing bottled water. Marcus (2022) finds that when households are informed immediately

of coliform bacteria violations, bottled water purchases increase by 78 percent and households

avoid harmful impacts on health. Estimates from Marcus (2022) suggest that if responsiveness

to Monthly coliform violations yielded similar avoidance behavior, bottled water spending would

have been about $365,000 higher from 2007 to 2015 in North Carolina.24 Over the same time

frame, lost lifetime earnings from the effect of exposure on test scores would be about $241 million

in North Carolina.25

These findings provide evidence that clean drinking water is yet another important input into

the education production function. By estimating the effect on student tests scores, this paper

quantifies an important measure of the subtle, but costly, harms of exposure to poor drinking water.

These estimates contribute to an overall calculation of the damages of poor water quality on human

24Note that this calculation was based on population estimates from the 2010 census. Since estimates for bottled
water purchases were at the household level, this will overstate cost estimates.

25Based on an estimated 88,726 school-aged children exposed to a monthly coliform bacteria violation between
2007 and 2015 in North Carolina.
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well-being, providing needed information to policymakers as they seek to set safe drinking water

regulations at the social optimum.
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6 Figures

Figure 1: Water System and School Locations in North Carolina

(a) Community Water System Service Areas and Violations

(b) Public Schools

Source: NC OneMap, SDWIS, and NCDPI.
Notes: Panel a plots Public Community Water Supply service areas from the North Carolina Center for Geographic Information and Analysis,
available via NC OneMap. Maximum contaminant violations of the Total Coliform Rule come from the Safe Drinking Water Information System
(SDWIS). Panel b plots public school location information from North Carolina Department of Public Instruction (NCDPI).
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Figure 2: Exogeneity of Violations and Robustness of the Effect on Math Scores

(a) Exogeneity of Exposure (b) Robustness

Source: NCERDC school-year level data in panel a and NCERDC student-year level data in panel b.
Notes: Panel a reports results for the effect of monthly coliform violations during the school year on student demographic and school characteristics.
The variable of interest is measured as the percent of students at the school exposed to a monthly coliform violation at their residential location. All
specifications include school fixed effects and controls for year and weather. Standard errors are clustered at the school level. Outcomes include
percent white, percent black, percent Hispanic, percent receiving free or reduced price lunch, average daily attendance percent, percent of Adequate
Yearly Progress targets met, number of library/media center books per 1000 students, percent of classes taught by high-quality teachers (defined
as teachers that are fully licensed, have advanced degrees and/or are National Board Certified), percent of classrooms connected to the internet,
crimes in school per 1000 students, percent in poverty, one year teacher turnover rate, percent of teachers with 3 years or less experience, percent of
teachers with 4-10 years of experience, and percent of teachers with 11 or more years of experience. Panel b reports the robustness of the baseline
results, where the outcome is standardized student math scores for grades 3-8. All specifications include individual fixed effects and controls for
grade, year, and weather. The Baseline specification replicates the main model from the paper. The Employment, M&R Violations, and Flu &
Asthma specifications include controls for the employment rate, monitoring and reporting violations, and influenza and asthma ER admissions,
respectively. The Air Pollution specification includes controls for OZ and PM10 as the percent of days within each of five categories to allow for
nonlinear effects: 0-25%, 25-50%, 50-75%, 75-100%, and over 100% of the relevant EPA threshold. The Drop Wake & Mecklenburg specification
excludes Wake and Mecklenburg county schools. The Drop USCs specification excludes schools with water-related unplanned school closures. The
Regular Schools, Regular Programs, and Traditional Calendars specifications limit the sample to regular schools, regular programs, and schools
with traditional calendars, respectively. The Rain Bins specification includes controls for 7 precipitation bins and the Monthly Weather specification
includes temperature and precipitation bins separately for each month. The DEQ Region-by-year FE adds region-by-year fixed effects, where
regions are based on North Carolina’s Department of Environmental Quality. The Region-by-year FE includes region-by-year fixed effects, where
regions are the coastal plains, piedmont, and mountain regions. Standard errors are clustered at the individual level.
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7 Tables

Table 1: Summary Statistics

Mean Std. Dev. Min Max N
(1) (2) (3) (4) (5)

Math Score 385 44.7 314 478 704,103
Reading Score 382 47.1 304 488 697,584
Grade 5.45 1.72 3 8 704,103
Absent % .0356 .0377 0 1 700,132
Male .507 .5 0 1 700,367
White .496 .5 0 1 700,367
Black .273 .445 0 1 700,367
Hispanic .149 .356 0 1 700,367
Other Race .0819 .274 0 1 700,367
Disability .103 .304 0 1 633,441
Econ. Disadvantaged .528 .499 0 1 633,445
Limited English .124 .329 0 1 633,445
Acute Coliform: School Year .0000923 .00961 0 1 704,103
Acute Coliform: Test Window .000638 .0252 0 1 704,103
Monthly Coliform: School Year .00548 .0738 0 1 704,103
Monthly Coliform: Test Window .000241 .0155 0 1 704,103

Source: NCERDC student-year level data.
Notes: The table reports the mean, standard deviation, minimum value, maximum value, and number of observations for each variable used in the
main estimation sample. The sample includes individuals served by community water systems in grades 3-8.
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Table 2: Student Characteristics by Exposure to Coliform Violations

Either location Home School
Unexposed Exposed Unexposed Exposed Unexposed Exposed
(1) (2) (3) (4) (5) (6)

Male 0.507 0.509 0.507 0.508 0.507 0.509
Grade 5.454 5.500** 5.455 5.449 5.454 5.579***
Econ. Disadvantaged 0.527 0.692*** 0.527 0.690*** 0.527 0.699***
White 0.497 0.494 0.496 0.515** 0.496 0.505
Black 0.272 0.353*** 0.272 0.336*** 0.272 0.346***
Hispanic 0.149 0.107*** 0.149 0.100*** 0.149 0.101***
Other Race 0.082 0.047*** 0.082 0.049*** 0.082 0.048***
Disabled 0.103 0.104 0.103 0.104 0.103 0.102
Limited English 0.124 0.103*** 0.124 0.091*** 0.124 0.099***
Math score 384.914 373.314*** 384.902 371.458*** 384.878 374.748***
Read score 381.667 369.810*** 381.655 367.857*** 381.629 371.269***

Source: NCERDC student-year level data.
Notes: Exposure is measured as any exposure to a violation of the Total Coliform Rule, including both Acute and Monthly violations. Columns 1
and 2 define exposure using either a violation at home or at school, while columns 3-4 and 5-6 define exposure based on violations at home and at
school, respectively. Mean demographic characteristics are reported. Stars indicate the p-value associated with a test of the equality of means
between exposed and unexposed student characteristics. The sample includes individuals served by community water systems in grades 3-8.
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Table 3: Effect on Student-level Math Scores

Home Exposure School Exposure
(1) (2) (3) (4)

Acute Col: SY 0.00890 0.0160 0.0393 0.0126
(0.0794) (0.0896) (0.0648) (0.0687)

Acute Col: Testing 0.0189 0.0645
(0.0323) (0.0394)

Monthly Col: SY -0.0368*** -0.0386** -0.0274** -0.0392**
(0.0128) (0.0159) (0.0124) (0.0158)

Monthly Col: Testing -0.0183 0.0203 -0.00748 0.0252
(0.0439) (0.0518) (0.0301) (0.0372)

Monthly Col: Last SY -0.0347** -0.0410**
(0.0169) (0.0165)

Observations 558,339 337,570 521,201 302,332
R-squared 0.874 0.883 0.878 0.886

Source: NCERDC student-year level data.
Notes: Outcomes include standardized student math scores for grades 3-8. Columns 1-2 report results for exposure measured at the student’s
residential location, while columns 3-4 report results for exposure measured at the school location. All regressions include student and year fixed
effects, and controls for grade and weather. Weather controls include separate measures for the summer, school year, and testing window. Columns
2 and 4 control for lagged exposure to a monthly coliform violation during the previous school year. Standard errors are clustered at the individual
level.

*** p<0.01, ** p<0.05, * p<0.1
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Table 4: Comparison to Other Environmental Impacts on Math Test Scores

Citation Treatment Effect on
Math Score

Stafford (2015) Average mold remediation renovation at school 0.15 sd
Hollingsworth et al. (2022) Distance-adjusted 10kg lifetime lead emissions

by third grade
0.095 sd

Stafford (2015) Average ventilation improvement project at
school

0.07 sd

Sanders (2012) 1 sd of mean TSP in child’s year of birth 0.056 sd
Sorensen et al. (2019) 1 percentage point in lead poisoning in early

childhood
0.045 sd

Heissel et al. (2022) Attending schools downwind of highway 0.040 sd
Marcus (2023) Drinking water quality violation for monthly

coliform bacteria during the school year
0.037 sd

Bharadwaj et al. (2017) 1 sd of CO in third trimester 0.034 sd
Persico and Venator (2021) Attending schools within 1 mile of TRI site 0.025 sd
Jacqz (2022) 1 sd of airborne toxicity in the school catchment

area at birth
0.024 sd

Duque and Gilraine (2022) 1 million megawatt hours of coal-fired power
production within 10km

0.020 sd

Source: See citations.
Notes: Table reports the effect of various environmental exposures on student test scores for math, measured in standard deviations (sd). Note that
Heissel et al. (2022) reports estimates for combined math and reading scores and Jacqz (2022) report estimates for third grade math proficiency.
TSP stands for total suspended particulates, CO stands for carbon monoxide, and TRI stands for Toxic Release Inventory.
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Table 5: Future Violations as a Placebo Test

Home Exposure School Exposure
Violation + 1 + 2 Violation + 1 + 2

(1) (2) (3) (4) (5) (6)

Monthly Col: SY -0.0368** 0.0172 -0.000875 -0.0274** 0.0163 -0.00902
(0.0128) (0.0141) (0.0171) (0.0124) (0.0127) (0.0141)

Monthly Col: Testing -0.0183 0.0500 -0.124 -0.00748 0.0167 0.0733
(0.0439) (0.0548) (0.161) (0.0301) (0.0344) (0.157)

Observations 558,339 391,554 278,194 521,201 360,164 258,077
R-squared 0.874 0.881 0.885 0.878 0.883 0.887

Source: NCERDC student-year level data
Notes: The outcome is standardized student math scores for grades 3-8. All specifications include individual fixed effects and indicators for grade
and year, and weather controls. “SY” measures violations during the school year and “Testing” measures violations during the testing window.
Columns 1-3 report results based on exposure at each student’s residential location, while columns 4-6 are based on exposure at school. Columns 2
and 5 include violations one year in the future and columns 3 and 6 include violations two years in the future. Standard errors are clustered at the
individual level.

*** p<0.01, ** p<0.05, * p<0.1

Table 6: Summer Violations

Home Exposure School Exposure
(1) (2) (3) (4)

Monthly Col: Summer 0.00515 0.00677 -0.00862 -0.00794
(0.0108) (0.0108) (0.0124) (0.0124)

Monthly Col: SY -0.0375*** -0.0273**
(0.0128) (0.0124)

Monthly Col: Testing -0.0190 -0.00792
(0.0439) (0.0301)

Observations 558,339 558,339 521,201 521,201
R-squared 0.874 0.874 0.878 0.878

Source: NCERDC student-year level data
Notes: The outcome is standardized student math scores for grades 3-8. All specifications include individual fixed effects and indicators for grade
and year, and weather controls. “Summer” measures violations during the summer months, “SY” measures violations during the school year, and
“Testing” measures violations during the testing window. Columns 1-2 report results based on exposure at each student’s residential location,
while columns 3-4 are based on exposure at school. Standard errors are clustered at the individual level.

*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Exogeneity of Monthly Coliform Violations

% White % Black % Hisp % Free/Red Avg Daily % AYP Books per % High Qual % Classrooms Crimes per % Poverty Teacher % Experience: % Experience: % Experience:
Lunch Attendance % Targets Met 1000 Students Teacher w/ Internet 1000 Students Turnover 3yrs or less 4-10 yrs 11+ yrs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Monthly Col: SY -0.00406 -0.00120 0.00171 0.0104 -0.000207 0.0136 0.000680 7.41e-05 -0.00443 0.00156 0.00171 -0.00361 0.00480 0.00588 -0.0131
(0.00343) (0.00388) (0.00254) (0.00746) (0.000790) (0.0205) (0.00120) (0.00527) (0.0116) (0.0111) (0.00782) (0.0101) (0.0120) (0.0109) (0.0122)

Monthly Col: Testing -0.0197 0.0226 0.00588 0.00394 -0.00640* 0.117 -0.000514 0.0201 -0.00150 -0.0525 -0.00152 -0.0153 0.0265 -0.000898 -0.0225
(0.0194) (0.0146) (0.00690) (0.0242) (0.00367) (0.0804) (0.00143) (0.0151) (0.00322) (0.0378) (0.00643) (0.0237) (0.0161) (0.00961) (0.0149)

Observations 13,375 13,375 13,375 12,887 9,378 9,351 9,299 9,358 9,288 9,378 9,264 9,087 9,278 9,278 9,278
R-squared 0.989 0.986 0.969 0.900 0.935 0.614 0.347 0.663 0.413 0.715 0.949 0.484 0.729 0.664 0.829

Source: NCERDC and CCD school-year level data.
Notes: Outcomes include percent white, percent black, percent Hispanic, percent receiving free or reduced price lunch, average daily attendance percent, percent of Adequate Yearly Progress targets met,
number of library/media center books per 1000 students, percent of classes taught by high quality teachers (defined as teachers that are fully licensed, have advanced degrees and/or are National Board
Certified), percent of classrooms connected to the internet, crimes in school per 1000 students, percent in poverty, one year teacher turnover rate, percent of teachers with 3 years or less experience,
percent of teachers with 4-10 years experience, and percent of teachers with 11 or more years experience. All specifications include school fixed effects, indicators for year, and weather controls.
Exposure is based on violations at each student’s residential location. “SY” measures violations during the school year and “Testing” measures violations during the testing window. Standard errors
clustered at the school level are shown in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1

Table 8: Robustness of the Effect on Student-level Math Scores

Employment School MR Flu and Air Drop Wake & Drop Regular Regular Traditional Rain Monthly DEQ-Region Region
Baseline rate Demographics Violations Asthma Pollution Mecklenburg USCs Schools Programs Calendars Bins Weather -by-year FE -by-year FE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Monthly Col: SY -0.0368*** -0.0376*** -0.0344*** -0.0417*** -0.0365*** -0.0347*** -0.0386*** -0.0368*** -0.0365*** -0.0368*** -0.0376*** -0.0364*** -0.0336*** -0.0339*** -0.0427***
(0.0128) (0.0128) (0.0132) (0.0129) (0.0128) (0.0128) (0.0128) (0.0128) (0.0131) (0.0132) (0.0131) (0.0128) (0.0130) (0.0128) (0.0128)

Monthly Col: Testing -0.0183 -0.0208 -0.0167 -0.0212 -0.0161 -0.0278 -0.00847 -0.0183 -0.0174 -0.0204 -0.0159 -0.0112 -0.0361 -0.00762 -0.00480
(0.0439) (0.0439) (0.0439) (0.0439) (0.0439) (0.0440) (0.0439) (0.0439) (0.0439) (0.0444) (0.0440) (0.0439) (0.0452) (0.0446) (0.0440)

Observations 558,339 558,267 522,211 558,339 557,831 558,339 367,773 558,339 544,965 475,587 507,358 558,339 558,339 557,831 557,831
R-squared 0.874 0.874 0.875 0.874 0.874 0.874 0.866 0.874 0.874 0.875 0.875 0.874 0.874 0.874 0.874

Source: NCERDC student-year level data.
Notes: Student math scores for grades 3-8 are standardized by year, grade, and local education agency. All specifications include individual fixed effects, indicators for grade and year, and weather
controls. Weather controls include separate measures for the summer, school year, and testing window. Exposure is based on violations at each student’s residential location. “SY” measures violations
during the school year and “Testing” measures violations during the testing window. Columns 2-5 include controls for the employment rate, school-level demographics, monitoring and reporting
violations, and influenza and asthma ER admissions. Column 6 includes controls for OZ and PM10 as the percent of days within each of five categories to allow for nonlinear effects: 0-25%, 25-50%,
50-75%, 75-100%, and over 100% of the relevant EPA threshold. Columns 7 and 8 drop Wake and Mecklenburg county schools and schools with water-related unplanned school closures. Columns 9-11
limit the sample to regular schools, regular programs, and schools with traditional calendars, respectively. Column 12 adds controls for 7 precipitation bins and column 13 includes temperature and
precipitation bins separately for each month. Columns 14 and 15 add region-by-year fixed effects, where regions are based on North Carolina’s Department of Environmental Quality in column 14 and the
coastal plains, piedmont, and mountain regions in column 15. Standard errors clustered at the individual level are shown in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1
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Online Appendix

A Additional Tables and Figures

Table A1: Agents of Waterborne or Water-based Disease

Bacteria Protozoa Viruses
Vibrio cholerae Giardia lamblia Norovirus
Salmonella spp. Cryptosporidium parvum Sapprovirus
Shigella spp. Entamoeba histolitica Poliovirus
Toigenic Escherichia coli Cyclospora cayetanensis Coxsackievirus
Campylobacter spp. Isospora belli Echovirus
Yersinia enterocolitica Microsporidia Paraechovirus
Legionella Ballantidium coli Enteroviruses 69-91
Helicobacter pylori Toxoplasma gondii Reovirus

Naegleria fowleri Adenovirus
Hepatitis A & E
Rotavirus
Astrovirus
Picobirnavirus
Coronavirus

Source: Reynolds et al. (2008)

Figure A1: Weeks Until Public Notification: Monthly Coliform
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Source: NCERDC.
Notes: Figure plots weeks between the determination date and public notification date for Monthly coliform violations in North Carolina between
2007 and 2015. The final bin includes notifications that occurred 24 or more weeks from the time of the violation.
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Table A2: Student-level Math and Reading and the Impact of Water Quality Violations

(1) (2) (3) (4) (5)
Panel A. Math

Acute Col: SY -0.573*** -0.388*** -0.330*** 0.0153 0.00890
(0.0989) (0.0995) (0.0997) (0.0787) (0.0794)

Acute Col: Testing -0.0108 0.124*** 0.119** 0.0258 0.0189
(0.0492) (0.0473) (0.0483) (0.0324) (0.0323)

Monthly Col: SY -0.0459*** 0.0544*** 0.0310* -0.0344*** -0.0368***
(0.0158) (0.0177) (0.0181) (0.0125) (0.0128)

Monthly Col: Testing -0.176** -0.0853 -0.192*** -0.00787 -0.0183
(0.0703) (0.0602) (0.0694) (0.0388) (0.0439)

Observations 720,780 646,332 631,103 572,216 558,339
R-squared 0.001 0.240 0.246 0.874 0.874
Panel B. Read

Acute Col: SY -0.565*** -0.387*** -0.329*** -0.0486 -0.0524
(0.118) (0.116) (0.116) (0.0711) (0.0720)

Acute Col: Testing 0.00239 0.117*** 0.120*** 0.0303 0.0304
(0.0481) (0.0454) (0.0464) (0.0344) (0.0352)

Monthly Col: SY -0.0378** 0.0563*** 0.0368** 0.00514 0.00767
(0.0159) (0.0169) (0.0173) (0.0129) (0.0132)

Monthly Col: Testing -0.103 -0.0346 -0.152** 0.0379 0.0204
(0.0648) (0.0539) (0.0629) (0.0413) (0.0452)

Observations 717,070 643,835 628,657 569,073 555,279
R-squared 0.000 0.264 0.269 0.864 0.864
Grade yes yes yes yes yes
Year yes yes yes yes yes
Demographics yes yes
Weather yes yes
Student FE yes yes
Cluster SE yes yes

Source: NCERDC student-year level data.
Notes: Panels a and b report results for student math and reading scores for grades 3-8, which are standardized by year, grade, and local education
agency. All specifications include indicators for grade and year. Exposure is based on violations at each student’s residential location. “SY”
measures violations during the school year and “Testing” measures violations during the testing window. Columns 2 and 3 include demographic
controls, including gender, birth month, race/ethnicity, disability status, economically disadvantaged status, and limited English status. Columns 3
and 5 add weather controls, including separate measures for the summer, school year, and testing window. Columns 4 and 5 include individual
fixed effects for each student and cluster standard errors at the student level.

*** p<0.01, ** p<0.05, * p<0.1
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Table A3: Adjusting for Multiple Hypothesis Testing

Home Exposure School Exposure
Math Read Math Read
(1) (2) (3) (4)

Acute Col: SY 0.00890 -0.0524 0.0393 -0.0237
P-value (0.911) (0.467) (0.545) (0.654)
Sharpened Q-value [1.00] [1.00] [1.00] [1.00]
Westfall-Young P-value {1.00} {1.00} 1.00} 1.00}
Romano-Wolf P-value {1.00} {0.990} {1.00} {1.00}

Acute Col: Testing 0.0189 0.0304 0.0645 0.0260
P-value (0.559) (0.388) (0.101) (0.508)
Sharpened Q-value [1.00] [1.00] [0.898] [1.00]
Westfall-Young P-value {1.00} {1.00} {0.720} {1.00}
Romano-Wolf P-value {1.00} {0.970} {0.327} {1.00}

Monthly Col: SY -0.0368*** 0.00767 -0.0274** 0.00250
P-value (0.004) (0.560) (0.027) (0.844)
Sharpened Q-value [0.067] [1.00] [0.259] [1.00]
Westfall-Young P-value {0.050} {1.00} {0.370} {1.00}
Romano-Wolf P-value {0.0099} {1.00} {0.0396} {1.00}

Monthly Col: Testing -0.0183 0.0204 -0.00748 0.00872
P-value (0.678) (0.652) (0.804) (0.779)
Sharpened Q-value [1.00] [1.00] [1.00] [1.00]
Westfall-Young P-value {1.00} {1.00} {1.00} {1.00}
Romano-Wolf P-value {1.00} {1.00} {1.00} {1.00}

Observations 558,339 558,339 521,201 521,201
R-squared 0.874 0.874 0.878 0.878

Source: NCERDC student-year level data.
Notes: Outcomes include standardized student math and reading scores for grades 3-8. Exposure is measured at the student’s residential location
in columns 1-2 and at the school location in columns 3-4. All regressions include student and year fixed effects, and controls for grade and
weather. Weather controls include separate measures for the summer, school year, and testing window. Standard errors are clustered at the student
level. P-values are reported in parentheses. Sharpened False Discover Rate q-values from Anderson (2008) are reported in square brackets.
Westfall-Young and Romano-Wolf stepdown adjusted p-values based on 100 bootstrap replications are reported in curly brackets.
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Table A4: Controlling for School Absences

Home Exposure School Exposure
(1) (2) (3) (4)

Acute Col: SY 0.00890 0.0122 0.0393 0.0401
(0.0794) (0.0783) (0.0648) (0.0648)

Acute Col: Testing 0.0189 0.0196 0.0645 0.0607
(0.0323) (0.0326) (0.0394) (0.0396)

Monthly Col: SY -0.0368*** -0.0373*** -0.0274** -0.0273**
(0.0128) (0.0127) (0.0124) (0.0124)

Monthly Col: Testing -0.0183 -0.0129 -0.00748 -0.00145
(0.0439) (0.0439) (0.0301) (0.0299)

Pct Absent -1.244*** -1.214***
(0.0325) (0.0339)

Observations 558,339 555,954 521,201 519,126
R-squared 0.874 0.875 0.878 0.878

Source: NCERDC student-year level data.
Notes: Student math scores for grades 3-8 are standardized by year, grade, and local education agency. All specifications include individual fixed
effects, indicators for grade and year, and weather controls. Exposure is based on violations at each student’s residential location. “SY” measures
violations during the school year and “Testing” measures violations during the testing window. Columns 2 and 4 control for the percent of days a
student was absent. Standard errors clustered at the individual level are shown in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1
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Table A5: Cumulative Exposure

Home Exposure School Exposure
Baseline Num Months Cumulative Baseline Num Months Cumulative

(1) (2) (3) (4) (5) (6)

Acute Col: SY 0.00890 0.00890 0.0393 0.0392
(0.0794) (0.0794) (0.0648) (0.0648)

Acute Col: Testing 0.0189 0.0189 0.0645 0.0643
(0.0323) (0.0323) (0.0394) (0.0394)

Monthly Col: SY -0.0368*** -0.0366*** -0.0274** -0.0264**
(0.0128) (0.0126) (0.0124) (0.0118)

Monthly Col: Testing -0.0183 -0.0183 -0.00748 -0.00748
(0.0439) (0.0439) (0.0301) (0.0301)

Cumulative Acute Col -0.137** -0.0324
(0.0677) (0.0617)

Cumulative Monthly Col -0.0315** -0.0297***
(0.0123) (0.0110)

Observations 558,339 558,339 974,541 521,201 521,201 974,541
R-squared 0.874 0.874 0.871 0.878 0.878 0.871

Source: NCERDC student-year level data.
Notes: Outcomes include standardized student math scores for grades 3-8. Exposure is measured at the student’s residential location in columns
1-3 and at the school location in columns 4-6. All regressions include controls for grade, year, and weather. Weather controls include separate
measures for the summer, school year, and testing window. Columns 1 and 4 show the baseline results. Columns 2 and 5 measure exposure as the
number of months of exposure during either the school year or testing window. Columns 3 and 6 define exposure as the number of months of
cumulative exposure to a violations since they were first observed in the data.

Figure A2: Heterogeneity in the Effect on Math Scores

(a) By Demographics (b) By System Characteristics

Source: NCERDC student-year level data.
Notes: Outcome is standardized student math scores for grades 3-8. All specifications include individual fixed effects and controls for grade, year,
and weather. Results in panel a interact Monthly coliform violations during the school year with student demographic characteristics, including
gender, whether they are economically disadvantaged, whether they have limited English ability, race/ethnicity, and grade level. Results in panel
b interact Monthly coliform violations during the school year with community water system characteristics, including water source, whether the
system has had multiple violations, type of ownership, and size. Standard errors are clustered at the individual level.
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Table A6: Heterogeneity by Demographics

(1) (2) (3) (4) (5)

Monthly Col: Testing -0.0145 -0.0185 -0.0183 -0.0145 -0.0183
(0.0441) (0.0439) (0.0439) (0.0441) (0.0439)

Female × Monthly Col: SY -0.0342*
(0.0177)

Male × Monthly Col: SY -0.0399**
(0.0183)

Non-Disadvantged × Monthly Col: SY -0.0752***
(0.0207)

Disadvantged × Monthly Col: SY -0.0186
(0.0160)

Non-Limited English × Monthly Col: SY -0.0392***
(0.0134)

Limited English × Monthly Col: SY -0.0149
(0.0401)

White × Monthly Col: SY -0.0432**
(0.0172)

Black × Monthly Col: SY -0.0339
(0.0250)

Hispanic × Monthly Col: SY -0.0161
(0.0333)

Other Race × Monthly Col: SY -0.0500
(0.0547)

Grades 3-4 × Monthly Col: SY -0.0415*
(0.0223)

Grades 5-6 × Monthly Col: SY -0.0340*
(0.0190)

Grades 7-8 × Monthly Col: SY -0.0345
(0.0214)

Observations 556,133 558,339 558,339 556,133 558,339
R-squared 0.874 0.874 0.874 0.874 0.874

Source: NCERDC student-year level data.
Notes: Student math scores for grades 3-8 are standardized by year, grade, and local education agency. All specifications include individual fixed
effects, indicators for grade and year, and weather controls. Exposure is based on violations at each student’s residential location. “SY” measures
violations during the school year and “Testing” measures violations during the testing window. Results interact Monthly coliform violations during
the school year with student demographic characteristics, including gender, whether they are economically disadvantaged, whether they have
limited English ability, race/ethnicity, and grade level. Standard errors clustered at the individual level are shown in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1
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Table A7: Heterogeneity by System Characteristics

(1) (2) (3) (4)

Monthly Col: Testing -0.0185 -0.0183 -0.0184 -0.0185
(0.0439) (0.0439) (0.0439) (0.0439)

Groundwater × Monthly Col: SY -0.0409
(0.0517)

Surface Water × Monthly Col: SY -0.0365***
(0.0132)

Non-Repeat × Monthly Col: SY 0.0245
(0.0810)

Repeat × Monthly Col: SY -0.0379***
(0.0129)

Public × Monthly Col: SY -0.0379***
(0.0131)

Private × Monthly Col: SY -0.00452
(0.0540)

Pop. served: 0-3,300 × Monthly Col: SY -0.00805
(0.0385)

Pop. served: 3,301-10,000 × Monthly Col: SY -0.0529***
(0.0194)

Pop. served: 10,001+ × Monthly Col: SY -0.0307*
(0.0185)

Observations 553,748 558,339 558,339 558,339
R-squared 0.874 0.874 0.874 0.874

Source: NCERDC student-year level data.
Notes: Student math scores for grades 3-8 are standardized by year, grade, and local education agency. All specifications include individual fixed
effects, indicators for grade and year, and weather controls. Exposure is based on violations at each student’s residential location. “SY” measures
violations during the school year and “Testing” measures violations during the testing window. Results interact Monthly coliform violations during
the school year with community water system characteristics, including water source, whether the system has had multiple violations, type of
ownership, and size. Standard errors clustered at the individual level are shown in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1
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Table A8: Expulsions and Suspensions

Expelled Suspensions: Suspensions:
Long Short

(1) (2) (3)

Monthly Col: SY -0.000666 -0.0596 -0.117
(0.000780) (0.0713) (2.333)

Monthly Col: Testing 0.00375* 0.651 -4.469
(0.00207) (0.598) (9.632)

Observations 9,318 9,318 9,318
R-squared 0.245 0.677 0.902

Source: NCERDC school-year level data
Notes: Outcomes are the number of expulsions or suspensions per 100 students. Long suspensions are over 10 days and short suspensions are 10
days or less. Exposure to violations is measured as the percent of students in the school exposed during the school year (SY) or the testing window
(Testing). All specifications include school fixed effects, indicators for year, and weather controls. Standard errors clustered at the school level are
shown in parenthesis.

*** p<0.01, ** p<0.05, * p<0.1

Table A9: Robustness to Controlling for Other Violations

Home Exposure School Exposure
(1) (2) (3) (4)

Acute Col: SY 0.00890 0.00863 0.0393 0.0383
(0.0794) (0.0794) (0.0648) (0.0648)

Acute Col: Testing 0.0189 0.0194 0.0645 0.0660*
(0.0323) (0.0323) (0.0394) (0.0394)

Monthly Col: SY -0.0368*** -0.0357*** -0.0274** -0.0235*
(0.0128) (0.0128) (0.0124) (0.0124)

Monthly Col: Testing -0.0183 -0.0183 -0.00748 -0.00763
(0.0439) (0.0439) (0.0301) (0.0301)

Radionuclides -0.00472 -0.000135
(0.00393) (0.00429)

Disinfect 0.000671 0.00263***
(0.000598) (0.000622)

SOCs -0.0135** -0.0143***
(0.00550) (0.00481)

VOCs 0.000542 0.00275
(0.00342) (0.00502)

Observations 558,339 558,339 521,201 521,201
R-squared 0.874 0.874 0.878 0.878

Source: NCERDC student-year level data.
Notes: Outcomes include standardized student math scores for grades 3-8. Exposure is measured at the student’s residential location in columns
1-2 and at the school location in columns 3-4. All specifications include individual fixed effects, indicators for grade and year, and weather
controls. Weather controls include separate measures for the summer, school year, and testing window. Columns 2 and 4 include controls for the
number of months of other types of health-based violations in the past year, including radionuclides, disinfectants and disinfection by-products,
synthetic organic compounds (SOCs), and volatile organic chemicals (VOCs).
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Table A10: Robustness to Clustering

Baseline CWS School School-Grd
(1) (2) (3) (4)

Monthly Col: SY -0.0368*** -0.0368* -0.0368** -0.0368**
(0.0128) (0.0193) (0.0180) (0.0163)

Monthly Col: Testing -0.0183 -0.0183 -0.0183 -0.0183
(0.0439) (0.0198) (0.0273) (0.0249)

Observations 558,339 558,339 558,339 558,339
R-squared 0.874 0.874 0.874 0.874

Source: NCERDC student-year level data.
Notes: Outcomes include standardized student math scores for grades 3-8. Exposure is measured at the student’s residential location. All
specifications include individual fixed effects, indicators for grade and year, and weather controls. Weather controls include separate measures for
the summer, school year, and testing window. Column 1 replicates the baseline results where standard errors are clustered at the student level. In
columns 2-4, standard errors are clustered at the community water system level, the school level, and the school-grade level, respectively.

B Bottled Water Results
One way in which households might avoid exposure to contaminated drinking water is through
switching to an alternate drinking source, such as bottled water. Using the Nielsen household panel
survey data recording grocery purchases, we can observe changes in bottled water purchases in
response to TCR violations. The household-level consumer panel data from 2004 to 2015 include
information about purchases made by a panel of households from all retail outlets. Bottled water
sales each month are based on product module 1487 and record total dollar sales before coupons. I
follow Marcus (2022) to show that Acute coliform violations (requiring immediate 24-hour public
notice) increase bottled water purchases, whereas Monthly coliform violations (requiring only
notification within 30 days) have no detectable impact on bottled water purchases. Specifically, I
estimate the following specification,

Waterh,z,m,y = α1Acutez,m,y + α2Monthlyz,m,y +Xh,z,m,y + ηh+ (2)
ζz × µm + ζz × ψy + ψy × µm + ϵh,z,m,y

where h indexes household, z indexes zip code,m indexes month, and y indexes year. Exposure
to Acute and Monthly coliform violations are measured as the percentage of the zip code exposed
to a violation in each month. Bottled water purchases are measured as the inverse hyperbolic sine
of total dollar sales. The specification includes household (ηh), year-month (ψy × µm), zip code-
year (ζz ×ψy), and zip code-month (ζz ×µm) fixed effects. Controls in Xh,z,m,y include a vector of
weather controls, household size, and employment from the Local Area Unemployment Statistics.
Standard errors are clustered at the zip code level.

Column (1) of Table A11 below replicates the estimates from Marcus (2022) and shows that
Acute coliform violations have a statistically significant positive effect on bottled water purchases
during the month of the violation. However, the coefficient on Monthly coliform violations is
statistically insignificant. These results support the claim that households can and do respond to
immediate notification during Acute violations by avoiding exposure to contaminated drinking
water through purchasing bottled water. On the other hand, Monthly coliform violations have no
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detectable impact on bottled water purchases, suggesting little avoidance response when public
notification is delayed. (See Marcus (2022) for more details and robustness tests.)

Column (2) of Table A11 extends these results to look specifically at the effect for households
with school-aged children, who are the subject of this paper’s analysis. Here, I interact each of the
two TCR violations, Acute and Monthly, with indicators for households with and without school-
aged children. Although splitting the sample reduces power to detect effects in these smaller sub-
groups, we still observe statistically significant increases in bottled water purchases during Acute
coliform violations for both households with and without school aged children. The magnitude of
the estimated effect is even larger for school-aged children, but with wide confidence intervals we
cannot say that the effects are statistically significantly different (p-value of 0.17).

Finally, Figure A3 shows these effects graphically. Estimated effects are shown for the actual
violation month at time zero, and for placebo violations two months before and after the actual
violation. Note that violations in the data almost always last one month before returning to com-
pliance. Any pre-existing trends in bottled water purchases should show up in the months before
the violation, while long-lasting effects on avoidance may show up in months after the violation.
Figure A3 shows results for households with and without school-aged children. Both figures show
a statistically significant increase in bottled water purchases at the time of the violation for Acute
coliform violations only. There is no detectable increase in purchases during Monthly coliform
violations. There are also no significant effects for months before or after either type of viola-
tion. Figure A3 highlights that both households with and without school-aged children increase
purchases of bottled water during Acute but not Monthly coliform violations.

These results provide direct evidence of avoidance behaviors in response to Acute but not
Monthly coliform violations and that these behaviors also hold for households with school-aged
children. So we hypothesize that any negative impacts on test scores will arise through Monthly,
rather than Acute violations.
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Table A11: Effect of violations on household avoidance

Bottled Water
(1) (2)

Pct Acute Col 0.577**
(0.259)

Pct Acute Col × School-age Kids 1.751*
(0.974)

Pct Acute Col × No School-age Kids 0.418*
(0.248)

Pct Monthly Col -0.0525
(0.151)

Pct Monthly Col × School-age Kids -0.111
(0.193)

Pct Monthly Col × No School-age Kids -0.0258
(0.187)

Observations 245,632 245,632
R-squared 0.382 0.382
Household FE yes yes
Year-month FE yes yes
Zip-yr FE yes yes
Zip-month FE yes yes

Notes: The outcome is bottled water purchases, measured as the inverse hyperbolic sine of total dollar sales. Exposure
to Acute and Monthly violations is measured as the percentage of the zip code of residence exposed to a violation in a
given month. Regressions include household, year-month, zip code-year, and zip code-month fixed effects, as well as
controls for weather, employment rate, and household size. Standard errors clustered at the zip code level are shown
in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

51



Figure A3: Effect of violations on avoidance: by presence of school-aged children

Notes: The outcome is bottled water purchases, measured as the inverse hyperbolic sine of total dollar sales. Estimated
effects are shown for the violation month at time zero, and for placebo violations two months before and after the actual
violation. Coefficients are shown for the effects of Acute and Monthly violations for both households with and without
school-aged children. Regressions include household, year-month, zip code-year, and zip code-month fixed effects, as
well as controls for weather, employment rate, and household size. Standard errors are clustered at the zip code level.
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