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1. Introduction

Incomplete asset markets play a key role in major strands of the international macroeco-

nomics literature (e.g., business cycles, sovereign default, sudden stops, global imbalances,

macroprudential regulation, currency carry trade, etc.). Since the dynamics of external wealth

(or net foreign assets, NFA) generally lack analytic solutions, researchers rely on numerical

methods. However, choosing the appropriate method is difficult for several reasons. First,

deterministic models yield stationary equilibria dependent on initial conditions. Second, in

stochastic models, the evolution of wealth is state-contingent and driven by precautionary sav-

ings (i.e., certainty equivalence fails). Third, with standard preferences, if the interest rate

equals the rate of time preference, precautionary savings make NFA diverge to infinity.

The literature follows two approaches to address these issues. The first, based on the sem-

inal work of Schmitt-Grohé and Uribe (2003), modifies the models by inducing stationarity

with one of three assumptions: a debt-elastic interest-rate (DEIR) function, preferences with

endogenous discounting (ED), or asset holding costs (AHC).1 These assumptions support a

well-defined deterministic steady state of NFA independent of initial conditions. The mod-

els are then solved with a first-order approximation (1OA) around that steady state, recover-

ing certainty equivalence. Innovations to local methods have occurred since then, including

higher-order methods (e.g., Schmitt-Grohé and Uribe, 2004; Devereux and Sutherland, 2010;

Fernández-Villaverde et al., 2011), the risky steady state (RSS) method (Coeurdacier et al.

(2011)), and quasi-linear methods for handling occasionally binding constraints (QLOBC),

including OccBin by Guerrieri and Iacoviello (2015) and DynareOBC byHolden (2016, 2021).2

Table 1 summarizes the numerical methods used in a set of research papers and policy ap-

plications. Among local methods, 1OA is the most common in research papers and ubiquitous

in policy applications. Among stationarity inducing assumptions, DEIR is the most common.

Of these, the majority set the value of the debt elasticity parameter, ψ, to an arbitrary small

number (ranging from 0.00001 to 0.01, with the value of 0.001 used by Schmitt-Grohé and

1They show business cycle moments and impulse response functions of an RBC small open-economy model
obtained with any of these assumptions are very similar.

2Boehl and Strobel (2022) and Kulish et al. (2017) have also produced similar algorithms.
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Uribe (2003) the most common), with the aim of preventing the DEIR function from playing

a role other than inducing stationarity.3 In other cases, ψ is calibrated or estimated.

The second approach, introduced to solve an RBC small open-economymodel byMendoza

(1991), uses global approximation (GA) methods to solve for the nonlinear decision rules and

long-run distribution of external wealth of the models in their original form. These methods

are similar to those used in closed-economy models of heterogeneous agents with incomplete

markets. The existence of awell-defined stochastic steady state follows from the same condition

as in those models (see Ch. 18 of Ljungqvist and Sargent, 2018): the interest rate must be lower

than the rate of time preference.

This condition is a general equilibrium result in multicountry models, because if the in-

terest rate equals the rate of time preference, all countries desire infinitely large NFA for self-

insurance, which is inconsistent with market clearing (see Mendoza et al., 2009). Hence, as-

suming the interest rate is lower than the rate of time preference in small open-economymodels

is an implication of the assumption that the interest rate is a world-determined price. With local

methods, the stationarity inducing assumption is constructed so that, at a chosen deterministic

steady state, the interest rate equals the rate of time preference.

While global methods solve the models in their original form and capture NFA dynamics

more accurately, they suffer from the curse of dimensionality—becoming exponentially inef-

ficient with the number of endogenous state variables. In contrast, local methods can solve

larger-scale models efficiently but require a stationarity-inducing assumption that is not part

of the original model. This tradeoff poses four key questions: Are local solutions accurate? If

not, why not? Are the inaccuracies economically meaningful? Can they be reduced?

This paper answers these questions by analytically and numerically comparing global and

local solutions for two small open-economy models: 1) An endowment model and 2) a model

of sudden stops (SS),which is anRBCmodelwith an occasionally-binding collateral constraint.

3Garcia-Cicco et al. (2010) explain that, following Schmitt-Grohé and Uribe (2003), it is standard to set ψ to a
small value because the DEIR function aims to obtain independence of the deterministic steady state from initial
conditionswithout affecting cyclical dynamics. Garcia-Cicco et al. (2010) also study amodel inwhichψ represents
a financial friction and is estimated. More broadly in the literature, DEIR functional forms vary and some papers
use quarterly frequency while others use annual frequency, and hence ψ values are not directly comparable.
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In Appendix C of de Groot et al. (2019) we also compared solutions for a standard RBCmodel

with similar findings as those reported here.

For the global solution, we use an accurate fixed-point iteration approach and calibrate the

model toMexican data.4 For the local methods, we consider 1OA, second-order approximation

(2OA), RSS, and QLOBC.5 RSS and QLOBC can be used with or without stationarity-inducing

assumptions, and we study both cases.

Given the prevalence of the DEIR function in the literature, we focus on this stationarity

inducing assumption in most of our analysis. We solve “baseline calibrations” with ψ = 0.001

and “targeted calibrations” with ψ calibrated to match the ratio of the standard deviations

of consumption and output in the GA solution, which is the same as in the data.6 In both

instances, the reference value of NFA in the DEIR function is calibrated to match the mean

NFA position in the GA solution (also the same as in the data). In addition, we study the

implications of using AHC and ED instead of DEIR to induce stationarity, and, for RSS and

QLOBC, compare variants without DEIR in which the interest rate is lower than the rate of

time preference. We compare across solutions statistical moments, impulse response functions

(IRFs), spectral densities (in Appendix B.3.4), Euler-equation errors, and solution run times.

The results show that global and local solutions differ significantly due to the near-unit root

nature of the NFA equilibrium process, one of the main endogenous state variables in open-

economy analysis. This is a typical property of incomplete-markets models caused by the per-

sistence of precautionary savings behavior. NFA is a near-unit-root process in our global and

local calibrated solutions (theNFA autocorrelation always exceeds 0.96). In the local solutions,

we show formally how this autocorrelation is determined by ψ and the center of approxima-

tion, whereas in the global solution it is a moment of the endogenous ergodic distribution of

4We use the FiPIt algorithm developed by Mendoza and Villalvazo (2020). This algorithm modifies the
standard iteration-on-Euler-equation approach to avoid both solving simultaneous non-linear equations (as
with standard time iteration methods) and irregular interpolation (as with endogenous grid methods). For
comparison, Appendix B.1.2 solves the model with value function iteration.

5In Appendix B.3.7 of de Groot et al. (2019), we presented third-order-approximation (3OA) results, and
found that 3OA is unnecessary unless stochastic volatility is introduced (see de Groot, 2016). For QLOBC, we
use the DynareOBC algorithm. DynareOBC and OccBin give the same solution when the equilibrium is unique.
DynareOBC, however, has the advantage that it converges in finite time and can test for equilibium multiplicity.

6In de Groot et al. (2019), we study targeted calibrations set to match the first-order autocorrelation of NFA
instead. The qualitative features of our findings are unchanged.
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NFA. Because they are near-unit-roots, slight differences in these NFA autocorrelations cause

large differences in unconditional moments, IRFs and spectral densities.

The effect on two key moments is particularly striking. First, small differences in the NFA

autocorrelations of 2OA and RSS relative to GA solutions yield large differences in precaution-

ary savings (i.e., the unconditional mean of NFA). This problem is also particularly acute for

QLOBC when the collateral constraint binds at the deterministic steady state but not at the

ergodic mean of the global solution.

Second, small differences inNFAautocorrelations yield large differences in net exports (nx)

autocorrelations, because nx is a quasi first-difference of the near-unit-root NFA process. For

example, in the endowment model with the baseline calibration, the global solution predicts

that raising the persistence of income from 0.5 to 0.95 increases the autocorrelation ofNFA from

0.957 to 0.997 and that of net exports from 0.444 to 0.983. In contrast, 2OA and RSS predict that

the autocorrelation of NFA always exceeds 0.99 over the same interval of income persistence,

while that of nx increases from 0.874 to above 0.999. The local solutions always overstate the

autocorrelations of NFA and nx and, as a result, overstate also consumption and nx volatility

and understate their income correlations.

Comparing across local methods, 2OA and RSS yield similar second- and higher-order mo-

ments, IRFs and spectral densities for all endogenous variables. To explain these results, we

analytically solve the endowment model and show that i) the coefficient on lagged NFA in the

NFA decision rule is nearly the same when ψ is small (less than 0.1), unless the deterministic

and risky steady state of NFA differ by a large margin (at least 40 percentage points of GDP);

ii) the coefficients in the square and interaction terms of 2OA decision rules are small.

The local solutions with the “targeted calibrations” better match the global solution, which

in turn yields a reasonable approximation to the data moments. However, this approach has

two drawbacks. One, it requires obtaining the mean NFA and consumption standard devia-

tion from the global solution to calibrate ψ and the center of approximation, and re-doing this

for any parametric change that alters those two moments. Two, targeted calibrations require

increasing ψ from 0.001 to 0.042. This sharp increase in the elasticity of the DEIR function

makes NFA “sticky,” because it is analogous to making deviations of NFA from steady state
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too costly. As a result, all the results, even the first moments, of the 2OA and RSS methods be-

come similar to the 1OA solution (i.e., precautionary savings vanish and certainty equivalence

approximately holds).

The QLOBC method that we used to solve the SS model with its occasionally binding col-

lateral constraint, DynareOBC, retains some of the benefits of local methods while handling

such discontinuities. DynareOBC works by introducing news shocks that hit every time the

constraint is violated to push the relevant variables back to the constraint. For consistency

with rational expectations, these news shocks are constructed as if they were expected along

a perfect-foresight path and so are akin to being endogenous. This method, however, ignores

precautionary savings; the possibility of alternative future paths in which the constraint may

or may not bind; and the equity risk premium.

Findings from the endowment model extend to the SS model. In addition, QLOBC yields

large differences relative to the global solution in the amount of precautionary savings induced

by the collateral constraint, the tightness of the constraint, the probability of hitting it, and its

effect on financial premia. Lower equity returns imply higher equity prices and investment

when the constraint binds, and hence higher borrowing capacity. As a result, QLOBC both

with the constraint binding or not-binding at steady state does not match the macroeconomic

effects of sudden stops found in the GA solution.

In terms of computational performance, the global algorithm is slower than 2OA methods

for solving the endowment model. The trade-off is that the local methods yield less accurate

results in terms of Euler equation errors and differences in decision rules. However, once an

occasionally binding constraint is introduced, QLOBC methods lose much of their speed ad-

vantage relative to the FiPIt global method. This is because, with the near-unit-root nature

of NFA, QLOBC methods require multiple, long perfect-foresight paths and long time-series

simulations to attain convergence of long-run moments.

In summary, we find that the choice and parameterization of stationarity-inducing assump-

tions when using local methods are not innocuous, as is often assumed in the literature. Our

results serve as a cautionary guide as to why and when these stationarity inducing assump-

tions have meaningful economic implications. And, while advances in local methods such as
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RSS and QLOBC methods provide ways to dispense with stationarity-inducing assumptions,

their considerable additional computational cost relative to standard local methodsmeans that

the benefits of not using a global method becomes less clear.

Related literature This paper is related to several recent studies comparing global and local

solutions. Rabitsch et al. (2015) compares the local method proposed by Devereux and Suther-

land (2010) for solving portfolio allocations in a two-country incomplete-markets model, with

a global solution. Devereux and Sutherland use ED preferences to induce stationarity. The

paper finds that this method is accurate when the countries are symmetric with zero long-run

NFA, but not when the countries are asymmetric and the center of approximation differs from

the ergodic mean of the global solution.

Global and local solutions with occasionally binding constraints have been compared in the

closed-economy New-Keynesian literature on the zero-lower-bound (ZLB) on interest rates.

These models typically formulate a Taylor rule with the ZLB constraint (rather than studying

constraints on the agents’ optimization problems); assume complete markets; private bonds in

zero net supply; and a rate of time preference equal to the steady-state interest rate. Hence, the

effects of precautionary savings on the dynamics of bond positions and the center of approxi-

mation of local solutions, which are essential to our findings, are not at issue in this literature.

Fernández-Villaverde et al. (2015) solve a ZLB model using a global (projection) method with

one endogenous state (price dispersion).7 They found that the ZLB yields important nonlin-

earities that local methods miss. Gust et al. (2017) also solved a ZLB model with projection

methods and compared the results with a QLOBC method (using OccBin). They found the

latter poorly approximates the global solution and that the differences have implications for

the propagation of shocks and estimation results.8 Atkinson et al. (2020) examined model

estimation in a ZLB model but, in contrast, conclude there are more accuracy gains from es-

7In their model, the ergodic mean and deterministic steady state are nearly identical, whereas a key finding of
our analysis is that precautionary savings causes large differences in the ergodic mean and steady state of NFA.

8Solving our SS model using projection methods is difficult because the global basis functions are not defined
in points of the state space where it is infeasible to satisfy the collateral constraint with positive consumption. The
boundary varies as capital, NFA and the capital pricing function vary. This problem can be avoided using uneven
grids but this is also difficult because the debt limit imposed by the collateral constraint is not a pre-determined
value. These hurdles do not arise in ZLB models and models with constant, uni-dimensional debt limits.
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timating a richer (less misspecified) model using QLOBC methods than estimating a stylized

model using global methods.

In the literature on financial frictions, Dou et al. (2019) compared global, 1OA, 2OA and

QLOBC (usingOccBin)methods for closed-economymodels and found that the local solutions

poorly approximated the nonlinear dynamics and yield biased IRFs. Holden (2016) shows that

DynareOBC yields similar results as a global solution for a small open-economy endowment

model with quadratic utility (which rules out precautionary savings) and NFA adjustment

costs to ensure stationarity. In contrast, we find the global and DynareOBC solutions of our

endowment model with an ad-hoc debt limit and CRRA utility (which allows for precaution-

ary savings) differ sharply. We also used DynareOBC to solve the SS model, which has two

endogenous states (capital and NFA) and a collateral constraint that depends on both states

and endogenous asset prices, and find the results again differ markedly from the global so-

lution. Benigno et al. (2020) propose an alternative perturbation method for solving models

with an occasionally binding constraint and applied it to a similar SSmodel. Theirmethod uses

the DEIR function to induce stationarity and models constraint regime-switching as driven by

draws of regime realizations and regime-transition probabilities determined by parameterized

logistic functions that depend on the slack in the credit constraint and the constraintmultiplier.9

The rest of the paper is organized as follows. Section 2 presents the endowment model and

compares solution methods, providing both analytic and numerical results. Section 3 presents

the SS model and compares solution methods. Section 4 concludes. The Appendix provides

further details on the solution methods, analytic derivations and additional results.

2. Endowment model

2.1. Model structure and equilibrium

We first consider a small open-economymodel with stochastic endowment income and use

it to derive analytical results and characterize NFA dynamics under incomplete markets. The

9Other promising approaches that attempt to adopt the benefits of the global approach while maintaining
computational feasibility include Ajevskis (2017) and Mennuni and Stepanchuk (2022).
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economy is inhabited by a representative agent with preferences given by

E0

{

∞
∑

t=0

βtu(ct)

}

, u(ct) =
c1−σt

1− σ
, (1)

where β is the subjective discount factor, ct is consumption and σ is the CRRA coefficient. The

economy’s resource constraint is given by

ct = yt − A+ bt −
bt+1

R
, (2)

where yt = ezt ȳ denotes income, zt = ρzzt−1 + εz,t, and εz,t is i.i.d. from N(0, σ2
ε).

10 Hence,

the variance and autocorrelation of (loged, demeaned) income are σ2
z = σ2

ε/(1 − ρ2z) and ρz,

respectively; bt denotes NFA in one-period, non-state-contingent discount bonds traded in a

global market where R is the gross world interest rate; and A represents constant investment

and government spending, necessary for model calibration.11

The agent chooses the sequences of bonds and consumption to maximize (1) subject to (2).

This optimization problem is analogous to the one solved by a single agent in heterogeneous-

agents models (e.g., Aiyagari, 1994). Since the marginal utility of consumption, uc(ct), tends

to infinity as ct tends to zero from above, the economy faces a Natural Debt Limit (NDL), by

which net foreign debt never exceeds the annuity value of the worst realization of net income

bt+1 ≥ bNDL ≡ − R
R−1

min(ezt ȳ − A), otherwise agents are exposed to the possibility of non-

positive consumption with positive probability. Following Aiyagari (1994), we also impose a

tighter ad-hoc debt limit, ϕ, such that bt+1 ≥ ϕ ≥ bNDL, which is useful for model calibration.

Using the resource constraint, we can express the Euler equation for bonds as

uc

(

ezt ȳ − A+ bt −
bt+1

R

)

= βREt

[

uc

(

ezt+1 ȳ − A+ bt+1 −
bt+2

R

)]

+ µt, (3)

10ȳ is normalized to 1. Technically, we require zt to be truncated below. However, even if we assume zt is
truncated such that ymin = 0.5, the probability of this bound binding is essentially zero and thus it has no affect
on the solution to local approximations. It also ensures the ad hoc debt limit is always tighter than the natural
limit for the global approximation.

11Later, we allow R to be stochastic.
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where µt is the Lagrange multiplier of the debt limit.

Under complete markets of contingent claims, and assuming income shocks are idiosyn-

cratic to the small open economy, the economy diversifies away all of its income risk. Con-

sumption is constant and the economy’s wealth is time- and state-invariant. The solution is

akin to that of a perfect-foresight model with βR = 1 and wealth (the present value of income

plus initial NFA) scaled to represent the same wealth as in the complete-markets economy.

With incomplete markets, the equilibrium differs because wealth becomes state-contingent

and consumption is not perfectly smoothed. Equation (3) implies thatMt ≡ βtRtuc(ct) forms

a supermartingale, which converges almost surely to a non-negative random variable because

of the Supermartingale Convergence Theorem (see Ljungqvist and Sargent, 2018, Chap. 18).

If βR ≥ 1, consumption and NFA diverge to infinity because marginal utility converges to zero

almost surely, causing the non-stationarity problem that necessitated the DEIR function for

local methods. The economy builds an infinitely large stock of precautionary savings and self-

insurance sustains a consumption process for which Mt converges and uc(ct) ≥ βREtuc(ct+1)

holds. In contrast, if βR < 1, the economy has a well-defined stochastic steady state with finite

unconditional means of assets and consumption. Intuitively, the opposing forces of the pro-

saving incentive for self-insurance and the pro-borrowing incentive due to βR < 1 keep NFA

moving within an ergodic set. If NFA falls (rises) too much the first (second) force prevails.

2.2. Global methods

For the global solution, we solve the model in recursive form over a discrete state space of

(b, z) pairs using the FiPItmethod ofMendoza andVillalvazo (2020).12 TheAR(1) income pro-

cess is approximated with a discrete Markov chain with transition probability matrix π(z′, z).

We solve for the NFA decision rule, b′(b, z), which together with the shockMarkov process pro-

duces a joint ergodic distribution of NFA and income λ(b, z). The method solves for b′(b, z) by

iterating on a recursive representation of the Euler equation.

12This method is in the class of global methods that iterate on Euler equations, including endogenous grids,
time iteration and projection methods (see Rendahl, 2015, for an overview). FiPIt performs better than time itera-
tion and endogenous grids for models with two endogenous states and occasionally binding constraints because
time iteration requires solving nonlinear Euler equation systems and endogenous grids require interpolation tech-
niques for irregular grids. FiPIt solves Euler equations directly using linear interpolation.
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The global method solves the model without imposing assumptions to induce stationarity.

If βR = 1, NFA diverges to infinity, which is undesirable but is the equilibrium solution. How-

ever, βR < 1 is the relevant case because, as discussed above, it is implied by world general

equilibrium. Note that with βR < 1 the deterministic stationary state converges to the debt

limit, ϕ, with consumption falling at gross rate (βR)1/σ. Hence, theory predicts that the un-

conditional mean of NFA in the stochastic, incomplete-markets model can differ significantly

from the deterministic steady state and that the difference is due to precautionary savings.

2.3. Local methods

The local methods solve a local approximation of the optimality conditions (2)–(3) around

the deterministic steady state, bdss, for 1OA and 2OAor the risky steady state, brss, for RSS. Since

assuming βR = 1 implies that bdss depends on initial conditions and under uncertainty NFA

diverges to infinity, 1OA and 2OA require a stationarity-inducing assumption. As documented

earlier, the most common assumption is to introduce the DEIR function

Rt = R + ψ
[

eb
∗
−Bt+1 − 1

]

, (4)

where b∗ and ψ are parameters, with ψ determining the elasticity of Rt with respect to NFA,

and Bt+1 is the aggregate NFA position (i.e., treated as exogenous by agents). At equilibrium,

bt+1 = Bt+1. Since DEIR applications assume βR = 1, (3) implies bdss = b∗.

We implement 1OA, 2OA, and 3OA using Dynare 5.3 and RSS following Coeurdacier et al.

(2011).13 1OA/2OA yield local approximations around bdss by solving a first- or second-order

approximation to the decision rules with same-order approximations to themodel’s optimality

conditions. In contrast, RSS solves a linear approximation around brss and assumes βR < 1.

RSS takes into account future risk, so the center of approximation may better capture pre-

cautionary savings. The value brss is obtained from a second-order approximation to the con-

ditional expectation of the steady-state Euler equation, solved jointly with the coefficients of a

first-order approximation to the decision rules. This requires a conditional second-order ap-

13A detailed description of all the global and local methods we used is given in Appendix B.
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proximation of the full equilibrium conditions’ Jacobian, which implies third derivatives of

those conditions. de Groot (2014) explains why the third derivatives are necessary to obtain

stationaryNFAdynamics. We also consider a variant of RSS inwhich brss is computed as above

but is combined with the DEIR function and standard first-order approximations to the deci-

sion rules and equilibrium conditions to obtain stationarity. We denote the original as full and

the DEIR alternative as partial RSS.

2.4. Calibration

Table 2 lists the parameter values of the baseline calibration, which is based on the calibra-

tion constructed by Mendoza (2010) using quarterly Mexican data at annualized rates for the

1993-2005 period. We use the same values of σ = 2 and R = 1.086. For the income process,

we set σz = 0.0272 and ρz = 0.749 to match Mendoza’s estimates of the standard deviation and

first-order autocorrelation of the cyclical component of Mexico’s GDP. The implied standard

deviation of income innovations is σε = 0.01802. The local methods use this income process

directly. In theGA solution, we approximate it as a five-pointMarkov chain using the improved

Tauchen and Hussey (1991) quadrature method developed by Flodén (2008).14

The mean NFA-GDP and consumption-GDP ratios in the Mexican data are also taken from

Mendoza’s calibration (E(b/y) = −0.363, E(c/y) = 0.65). Given the value of R and the re-

source constraint, the value of the autonomous spending share that captures investment and

government absorption is A = 0.32.

In the global calibration, ϕ = −0.435 and β = 0.917 are set so as to match Mexico’s mean

NFA-GDP ratio of −0.363 and standard deviation of private consumption of 3.397%. Two pa-

rameters are required to identify this calibration, because while the mean NFA-GDP ratio can

be matched by adjusting ϕ, this can result in a stochastic steady state in which the distribution

of NFA is clustered near the debt limit and consumption fluctuates too much, or NFA has a

high variance and consumption fluctuates too little.

14The Markov process is discrete with bounded support whereas the AR(1) is normally-distributed with un-
bounded support. However, Flodén (2008) showed that for other than highly-persistent shocks,Markov processes
using quadrature methods match closely the unconditional moments of the AR(1) even with few nodes. In Ap-
pendix B.3.9 of de Groot et al. (2019), we showed that increasing the nodes to 11 gives near-identical results.

11



In the baseline calibration for the 2OA and partial RSS local solution (which use the DEIR

function), we follow the standard practice of setting β = 1/R so bdss = b∗ and we use the

inessential interest-rate elasticity ψ = 0.001. We set b∗ so that the local solutions yield the same

E(b/y) = −0.363 as in the GA solution and theMexican data, this yields bdss = −0.724 (−0.552)

for the 2OA (partial RSS) solution. The full RSS solution uses the same β value as the GA so-

lution and does not need a b∗ value because it does not use the DEIR function. In the targeted

calibrations, we set ψ so that the solutions match the standard deviation of consumption in the

Mexican data. This yields ψ = 0.042 for both 2OA and partial RSS. As we show below, these

targeted calibrations yield moments closer to those of the GA solution, which also approxi-

mate well the untargeted data moments. We also find, however, that once parametric changes

are introduced (e.g., policy or counterfactual experiments), the results start to differ from the

comparable GA solution.

2.5. Results

NFA decision rule and net exports Two key moments of open-economy models are the au-

tocorrelations of NFA and net exports. The former because it is a key driver of the dynamics

of capital flows and their cyclical co-movements with other macro variables, and the latter

because of its relevance in the international RBC literature (e.g., Garcia-Cicco et al. (2010)).

Hence, we start our comparison of solution methods by exploring their implications for these

two key moments.

Assume for now that bt+1 follows an AR(1) process with autocorrelation coefficient ρb (as

will turn out to be the case in the GA and local solutions). Since nx is a quasi first-difference

of NFA (nxt =
bt+1

R
− bt), the autocorrelation of net exports, ρnx, can be expressed as

ρnx (ρb) =
ρb (1 +R2)−R (1 + ρ2b)

R2 − 2Rρb + 1
. (5)

In Appendix B.3.2, we prove that ρnx is increasing and convex in ρb. To get a sense of what the

convexity implies, note that ρnx ≈ −0.5when ρb = 0 (sinceR is close to 1), turns positive when

ρb = 1/R, and reaches +1 when ρb = 1. For R = 1.06, increasing ρb from 0.94 to 0.995 causes
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ρnx to rise from 0 to 0.65. If ρb is close to 1, as is typical in incomplete-markets models, small

differences in ρb induce large differences in ρnx. Thus, small errors in the local solutions for ρb

can yield large errors in ρnx (and in the moments of other variables that depend on b).

The GA solution determines ρb as a moment of the joint stationary distribution λ(b, z). The

local solutions determine ρb by solving for the coefficients of the NFA local decision rule, and

ψ and b∗ are key determinants of these coefficients, as we show next.

The 2OA decision rule is given by

b̃t+1 = hbb̃t + hzzt +
1

2

(

hbbb̃
2
t + hzzz

2
t

)

+ hbz b̃tzt +
1

2
hσzσz , (6)

where b̃t ≡ bt − bdss. The 1OA decision rule contains only the first two right-hand-side terms,

with the exact same values of hb and hz. The RSS decision rules are of the same form as 1OA

but with brss replacing bdss and RSS-specific values of hb and hz. The coefficient of interest is

hb because it is the main determinant of ρb. This is the case even for 2OA solutions because in

all our experiments the nonlinear terms—hbb, hzz and hbz—are small.15 The term hσzσz matters

because it isolates the effect of income risk on mean NFA and thus captures precautionary sav-

ings in the 2OA solution. Since hσzσz is the only quantitatively relevant term that distinguishes

2OA from 1OA, their second- and higher-order moments are very similar.

For the RSS method, de Groot (2014) showed that income risk matters for determining brss

because the coefficient of variation of consumption (relative to its risky steady state) is con-

stant and depends on β, r and σ.16 Intuitively, this captures precautionary savings because, if

income risk rises and the shares of income allocated to savings remains unchanged, the volatil-

ity of consumption would rise. But, by increasing NFA relative to endowment income, more

disposable income comes from interest income, so that the coefficient of variation of consump-

tion can remain constant. However, since the RSS decision rule has a linear form, ρb differs

from the 1OA solution only to the extent that bdss and brss differ. As we show below, this re-

15Appendix B.3.3 shows the robustness of this result. In particular, hbb, hbz , and hzz are irrelevant for the
variance and autocorrelation of NFA for a range of ψ, σ and ρz values. For mean NFA, these terms are only
important if ρz is high or ψ is very small.

16Corollary 5 in de Groot (2014) gives var(c)
(crss)2 = 2

σ(1+σ)
1−βR
βR .
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quires larger differences than those implied by our calibrations. Hence, 1OA, 2OA and partial

RSS moments are likely to be very similar, except for their first moments.

Next, we show how ψ and b∗ determine hb. Assuming log-utility, an i.i.d income process,

and Rt = Rψeb
∗
−Bt+1 for tractability, we obtain the following solution for hb:

hb(ψ, b
∗) =

R + eb
∗ψ(1− b∗ψ + ψ)−

√

R2 + 2eb∗ψ(b∗ψ + ψ − 1)R + e2b∗ψ (1− b∗ψ + ψ)2

2eb∗ψ
, (7)

where b∗ = bdss for 1OA/2OA and b∗ = brss for RSS. Since we find that hbb, hzz and hbz are

quantitatively irrelevant, it follows that ρb(ψ, b∗) ≈ hb(ψ, b
∗) for 1OA, 2OA and RSS. Hence, (7)

describes how ψ and b∗ determine the autocorrelation of NFA in local solutions. It also shows

that the hb obtained with 1OA/2OA differs from RSS only to the extent that bdss and brss differ.

Moreover, (7) shows that calibrating ψ implicitly imposes the value of ρb. In particular, given

b∗ and R, choosing a low ψ implies a ρb close to 1.17 Finally, (7) illustrates the non-stationarity

of the local solutions without a stationarity-inducing assumption. If ψ = 0, the solution of

hb(ψ, b
∗) has two roots, 1 and R (> 1). In contrast (and assuming b∗ = 0 for tractability), if

ψ > 0 the smaller of the two roots is less than unity, and thus yields a stationary solution.18

To numerically study howvariations inψ and b∗ alter ρb, we solve the calibrated endowment

economy model with the 2OA and RSS methods to determine the value of ρb for ψ ∈ [0, 0.5]

and three values of b∗: 0, −0.552 (brss) and−0.724 (bdss). The results, plotted in Figure 1, show

that ρb is nearly identical across 2OA and RSS for any 0 ≤ ψ ≤ 0.15, which includes both the

baseline and targeted calibrations and the values used in all but one of the 76 articles using local

solutions included in Table 1.19 This is a key result, because it means that, for ψ values used in

the literature, approximating around bdss or brss or solvingwith 1OA, 2OA or partial RSSmakes

little difference. For ψ ≤ 0.03, even solving with b∗ = 0 makes little difference. Non-negligible

differences between RSS and 2OA require ψ > 0.15 and/or large differences between bdss and

17For RSS, the mapping is non-trivial since brss is solved jointly with the coefficients of the decision rule for
bt+1, which also depend on ψ.

18Schmitt-Grohé and Uribe (2003) show the same for an endowment model with ED preferences.
19The highest ψ was 2.8 from Garcia-Cicco et al. (2010), which they estimated for a model with financial fric-

tions. We study later the implications of local solutions with higher ψ values.
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brss. Moreover, since under the baseline and targeted calibrations the nonlinear terms of the

NFA 2OA decision rule are small, we can expect the 2OA and RSS solutions to produce similar

variances and correlations for all endogenous variables (as we show below).20

The above findings indicate that the implications of ρb for ρnx conjectured in (5) by assuming

NFA follows an AR(1) apply to the equilibrium processes produced by the local methods. As

we document next, the DEIR function with small ψ imposes values of ρb near 1, and small

differences between them and the global solution result in large differences in ρnx. In contrast,

in the global solution, ρb and ρnx are moments implied by the endogenous limiting distribution

of NFA (λ(b, z)), the NFA decision rule (b′(b, z)), and the definition of nx.

Table 3 compares the global and local solutions of ρb and ρnx as ρz increases from 0 to 0.0.95.21

In general, 2OA and (partial) RSS always yield similar results for ρb and ρnx, because the gap

between bdss and brss, and the nonlinear terms in the 2OA decision rules, are too small to yield

large differences.22 Panel i) shows that for the GA solution, as ρz rises from 0.5 to 0.95, ρb rises

from 0.957 to 0.997 while ρnx rises from 0.444 to 0.983. Thus, as (5) predicts, small variations

in ρb near 1 cause large changes in ρnx. Panel ii), in contrast, shows that for the baseline local

solutions (ψ = 0.001), ρb exceeds 0.999 and ρnx rises from about 0.87 to near 1. The GA results

are always smaller and the differences are sizable. Panel iii) shows that the local solutions

perform better with the targeted calibrations (ψ = 0.042, b∗ = −0.374), particularly for ρz

larger than the calibrated value of 0.75. For ρz ≤ 0.7, they still yield higher values of ρb and ρnx

than the GA solution. Panel iv) shows that the local solutions yield values of ρb and ρnx closer

to those of the GA solutions if we re-calibrate ψ and b∗ to match the mean NFA and standard

deviation of consumption generated by the GA solution for each value of ρz. The required ψ

values are, however, in the 0.047 − 0.126 interval, far exceeding the 0.001 value that keeps the

DEIR inessential and making deviations of NFA from steady state very costly, as we explain

later. As a result, b∗ needs to rise with ρz so as to track the increase in E(b) produced by the GA

20While the analytic solution for hb(ψ, b∗) is for log-utility and i.i.d. shocks, the implications of the analysis
hold quantitatively in solutions with AR(1) shocks.

21For the analysis in this table, we use Rouwenhorst (1995) method to create the Markov chain that approxi-
mates the income process, which is more accurate than the quadrature methods when persistence is high.

22The 1OA and 2OA solutions are near-identical, hence we omit 1OA from the table.
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solution (see panel i)). Moreover, the problem arises that re-calibrating the model for each ρz

value requires solving the model globally first.

Long-run moments. Table 4 compares unconditional cyclical moments, including also the

moments from the Mexican data.23 The GA solution yields moments that approximate well

the data cylical moments, except for the countercyclical trade balance. This is a well-known

limitation of endowmentmodels that is corrected inmodelswith investment and/or credit con-

straints (see Mendoza (1991, 2010)). With the baseline calibration, the local solutions poorly

match both the GA and data moments.

The GA, 2OA and partial RSS solutions have the samemean NFA-GDP ratio of the Mexican

data (−36.3%) by construction, since they were calibrated to match it. In contrast, the full RSS

solution (which has the same βR < 1 condition as GA and does not use DEIR) has a much

lower mean NFA-GDP ratio of −704.1%. This is because it lacks the debt-limit, ϕ, of the global

solution.24 As a result, it also overstates the variability of consumption.

As predicted by our analysis of the relationship between ρb and ρnx, and since NFA is a

near-unit root process, the baseline local solutions have a slightly higher NFA autocorrelation

than the GA solution but they yield a sharply higher autocorrelation of net exports. They also

overstate the volatility of net exports and the volatility and persistence of consumption, and

understate their GDP correlations.25 Notably, given the literature’s emphasis on explaining

consumption volatility in emerging markets, all the baseline local solutions significantly over-

state consumption volatility relative to GDP.

The local methods perform better at approximatingmost of the GA and datamoments with

the targeted calibration. They yield the same variability of consumption and mean NFA-GDP

ratio by construction (ψ and b∗ are set to match them), but most of the standard deviations,

GDP-correlations, and autocorrelations are also much closer to their GA counterparts. The

23Since a key aspect of the model are its low frequency properties (e.g., precautionary savings), we report
unfilteredmoments. We also study spectral densities and show that the solutionmethods yield different volatility
at both mid and low frequencies (see Appendix B.3.4).

24The GA solution without an ad-hoc debt limit (i.e., ϕ = NDL) has a mean NFA-GDP ratio of−650%, similar
order of magnitude as in the full RSS solution, but yields much larger consumption variability than in the data.

25Since ρb ≈ hb and the nonlinear terms are small, the volatility of bt riseswith ρb because σb = hzσ(z)/
√

1− h2b
and the correlation with GDP falls because ρb,z = (ρz/(1− hbρz))

√

1− h2b .
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autocorrelation of consumption, however, still overstates the GA and data moments.

2OA and partial RSS yield near-identical results for all moments under baseline or targeted

calibrations. This is in line with our previous finding showing that the difference between bdss

and brss and the higher-order terms in the 2OA decision rules are quantitatively irrelevant.

Now we compare the solution methods in terms of their implications for precautionary

savings. We examine their predictions for the value of E(b/y) as the variance of the income

process σz changes, keeping all other parameter values unchanged. Figure 2 shows that the lo-

cal methods yield significantly different results compared with the GA solution. For 1OA (not

shown), certainty equivalence implies no precautionary savings with the E(b/y) remaining at

bdss for all values of σz (and of ψ). The solid-blue curve for the GA solution shows that increas-

ing σz from 1% to 8% increases the mean NFA-GDP ratio from −42% to near 30%. In contrast,

under the baseline calibration in Panel a., both 2OA (green-dot-dash curve) and partial RSS

(red-dash curve) overstate the increase in precautionary savings, with a gap that widens as σz

rises.26 Note that, even though second- and higher-order moments of 2OA and RSS solutions

are similar, E(b/y) differs because brss is significantly smaller than bdss.

The local methods with targeted calibrations in Panel b. yield almost no precautionary

savings, with the mean NFA-GDP ratio barely rising above bdssor brss as σz rises. Thus, while

the targeted calibrations bring most second- and higher-order moments of the local solutions

closer to theGA solution, they also remove precautionary savings, which then renders 2OAand

RSS solutions approximately consistent with certainty equivalence and the 1OA solution.27

Table 3 shows that increases in ρz also alter mean NFA, indicating again that precautionary

savings differ sharply across global and local solutions, and that this is due again to differences

in the values of ρb they produce. As ρz rises from 0 to 0.95, the standard deviation of income

rises from 1.8% to 5.8%. The GA solution predicts an increase in E(b) from −0.41 to −0.26

compared with an increase from −0.69 (−0.53) to 1.36 (0.87) with the 2OA (RSS) baseline

solution (see panels i) and ii)). Panel iv) shows that again the E(b) stays close to b∗ as ψ and

26The curves intersect at the calibrated value of σz = 0.0272 because the baseline and targeted calibrations are
designed so that 2OA, RSS and GA solutions have the same mean NFA.

27Appendix B.3.3 shows this analytically for log-utility and i.i.d. shocks.
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b∗ are re-calibrated (E(b) is the same as in panel i) because of the re-calibration of b∗).

The intuition for why mean NFA stays close to b∗ in targeted calibrations follows from

Schmitt-Grohé and Uribe (2003) who show that the DEIR setup is similar to a setup that uses

instead quadratic costs, ψ̃(bt+1− bdss)2/2, for deviating from bdss. The log-linear Euler equation

of the setups are equivalent if ψ̃ = ψ/R.28 Moreover, by rewriting bt+1 as E(b) + (bt+1 − E(b))

and hence the cost function as ψ̃((bt+1 − E(b))+
(

E(b)− bdss
)

)2/2, it is clear the cost has variable

and fixed components. If the fixed cost is larger than the benefit derived from precautionary

savings, it is suboptimal to let meanNFAdeviate from bdss. Thus, local solutions using targeted

calibrations have the shortcoming that a modest increase in ψ makes precautionary savings

vanish and render 1OA, 2OA and RSS solutions near-identical.

Table 4 also shows execution times and Euler equation errors. The full RSS solves in 0.3

seconds because, given the simplicity of the endowment model, we can split the algorithm

into a step that derives the non-linear system of equations in Mathematica and a step that

solves it using Matlab. Partial RSS takes longer (3.1 seconds) because it does both steps within

Matlab, building on a toolkit developed by Schmitt-Grohé and Uribe (2004). The Dynare 2OA

solutions run in 0.6 seconds and the FiPItGAsolution in 1.46 seconds. Hence, the localmethods

are faster. However, the GA solution is more accurate, inasmuch as it yields much smaller

maximum and mean Euler equation errors. Relaxing the FiPIt convergence criterion to yield

Euler equation errors of similar magnitude as the local solutions lowers its execution time to

0.75 seconds, closer to the 2OA execution time.

Impulse response functions Figure 3 compares IRFs for a negative, one-standard-deviation

income shock starting at the unconditional means. Consumption and output are shown in per-

cent deviations from those means, while b/y and nx/y are in absolute deviations. The IRFs for

1OA (not shown), 2OA and RSS are near-identical, in line with the results that the hb coeffi-

cients of NFA decision rules are similar and nonlinear terms of 2OA solutions are small.

The local solutions with the baseline calibration and the GA solution yield very different

IRFs. GA predicts a smaller initial decline in the NFA-GDP ratio (i.e., less borrowing) and

28With DEIR, for bt+1 < bdss (bt+1 > bdss) agents pay more (get less) for borrowing (saving) more.
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much faster mean reversion (in about 50 periods instead of about 650). As a result, consump-

tion falls nearly twice as much initially in the GA solution and also displays faster mean re-

version. This also implies smaller trade deficits earlier on and faster convergence with smaller

surpluses. Local solutions with targeted calibrations yield IRFs that are closer to the GA IRFs,

but overstate the fall in consumption on impact and without a J-shaped response.

In Appendix B.3.4 we compared the global and local solutions in the frequency domain

using nonparametric periodograms of simulated data. The local methods under the baseline

calibration overstate the contribution of low frequency movements of b, c and nx relative to the

GA solution, in linewith the earlier findings of slowmean-reversion and higher ρb. For targeted

calibrations, GA and local periodograms of b are more similar, but the local solutions still un-

derstate the relative contribution of consumption fluctuations at the business cycle frequencies

to overall consumption variance.

Interest-rate shocks Next, we add interest-rate shocks to facilitate comparison with the Sud-

den Stops model of the next Section. It is also important because Coeurdacier et al. (2011) and

de Groot (2014) show the RSS method yields higher precautionary savings with these shocks.

The gross interest rate is Rt = eνtR, where νt is an exogenous shock and R is the mean

interest rate. The endowment and interest-rate shocks have a diagonal VAR representation







zt

νt






=







ρz 0

0 ρr






·







zt−1

νt−1






+







εz,t

εr,t






, Σ =







σ2
εz σεz ,εr

σεz ,εr σ2
εr






, (8)

where Σ is the innovation variance-covariance matrix. The DEIR function takes the form

Rt = eνtR + ψ
[

eb
dss

−Bt+1 − 1
]

. (9)

As in the original calibration, ρz = 0.749. To minimize the size of the state space in the

GA solution, we use a bi-variate, two-point Markov chain defined by the simple persistence rule,

which imposes the same autocorrelation on both shocks (see Appendix B.3.5 in de Groot et al.

(2019)). Hence, ρr = 0.749. We also keep σz = 0.0272 (σεz = 0.018), as in the baseline calibra-

tion. For the interest-rate process, we solve the model with values of σεr and σεz ,εr such that σν
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takes values ranging from 0 to 2.5% and the correlation between income and the interest rate

is ρz,R = −0.669, which matches the interest rate-TFP correlation in Mendoza (2010).

A well-defined limiting distribution of NFA requires βR < 1, otherwise βtΠt
j=1Rj diverges

to infinity (see Chamberlain and Wilson, 2000). In addition, there are long histories of real-

izations with Rt lower (higher) than R, which imply much weaker (stronger) precautionary

savings incentives than with a constant interest rate. For example, histories with βRt > 1 pro-

duce sequenceswhere bt+1 can growvery large, since there is no pro-borrowing effect offsetting

the precautionary savings incentive.29 At some point, each of these histories shifts to histories

with sufficiently low Rt to induce NFA mean-reversion. Note the NDL is computed with the

highest realization of Rt, and so is tighter than when computed with R. Importantly, these

effects are at work only in the GA solution, because they result from expectations of histories

of future shocks that take the economy far from E(b/y) and bdss.

Table 5 shows keymoments given by the various solutionmethods for σν ∈ {0, 0.5, . . . , 2.5}.

The baseline and targeted calibrations are as in Table 2. For the GA solution, we show results

with both the calibrated ad-hoc debt limit (ϕ = −0.435) and the NDL, with the aim of com-

paring the roles of debt limits and interest-rate shocks in inducing higher mean NFA.

For the partial RSS and 2OAbaseline calibration, wefind the local solutions overstate sharply

the increase in meanNFA in response to increased interest-rate risk relative to the GA solution.

E(b/y) increases by 58 (189) percentage points (pp.) for the partial RSS (2OA) solution and

turns from negative to positive, while in GA it increases by 10pp. High interest-rate risk also al-

ters the result that the RSS and 2OA solutions have similar second- and higher-order moments.

These findings suggest that interest-rate shocks in the local solutions with baseline ψ could

be helpful for matching mean NFA, playing the role of ϕ in the GA model. This strategy, how-

ever, results in too much consumption volatility. The baseline local solutions (2OA and full

and partial RSS) overstate consumption volatility relative to the baseline GA solutions for each

value of σν by wide margins.

For the targeted calibrations, the adjustment-cost-like effect of higher ψ keeping NFA close

29Reducing R while keeping σν constant accentuates these effects, because histories with larger gaps between
β and Rt are possible and with higher probability.
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to bdss dominates. The local solutions yield only small increases in E(b/y) and second- and

higher-order moments for RSS and 2OA are very similar. Hence, the result that higher ψ re-

moves precautionary savings and yields very similar 1OA, 2OA and RSS local solutions is ro-

bust to adding interest-rate shocks.

Table 5 also shows that, with interest-rate shocks, full andpartial (baseline) RSS do not yield

similar second- and higher-order moments. Full RSS generates higher (lower) consumption

(NFA) volatility, generally higher autocorrelation of nx, andmuch lowermeanNFA-GDP ratio.

In fact, full RSS is closer to the GA solution with the NDL than to the baseline or targeted

partial RSS solutions. However, both full RSS and the GA solution with the NDL have the

shortcoming of producing mean NFA-GDP ratios of -2 to -7. Moreover, if R is higher than the

calibrated value of 1.086 such that βR is almost 1, full RSS yields a much lower mean NFA-

GDP ratio than the GA solution with either the ad-hoc debt limit or NDL. Conversely, for low

R, the RSS solution frequently violates the NDL. Hence, although at the calibrated R full RSS

gets close to the mean NFA-GDP ratio of the GA solution with NDL, in general full RSS poorly

approximates this model moment.

Endogenous discounting As shown in Table 1, ED preferences and AHC specifications of

asset holding costs are alternatives to DEIR used to induce stationarity in local solutions. We

showed earlier that AHC andDEIR are similar, because a higher ψ is akin tomaking NFA devi-

ations from b∗ costlier. Hence, we examine next the robustness of our findings to using the ED

approach (Appendix B.3.5 provides full details). The ED approach assumes that the discount

factor depends on aggregate consumption (i.e., private agents ignore this dependency).

First, we compare analytically DEIR and ED local decision rules assuming log-utility and

i.i.d. shocks. In line with Schmitt-Grohé and Uribe (2003), DEIR and ED are equivalent to

first-order: A nonlinear mapping determines the elasticity of the discount factor with respect

to consumption (ψED) for a given ψ such that the decision rules are the same. 2OA solutions,

however, are not equivalent.30 Varying ψ while adjusting ψED so that the hb coefficients using

DEIR and ED are equal, yields a hbb coefficient for DEIR that is increasing and concave in ψ

30Seoane (2015) compares approaches to induce stationarity using 3OAmethods and, in line with our results,
finds that different approaches generate large differences when calibrated to Argentina.
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while that for ED is slightly decreasing and near-linear. The hσσ coefficient is nearly invariant

to r and ψ using DEIR, yet is decreasing and convex in ψ and sensitive to r using ED. These

differences are due to a key difference between the two approaches: When consumption rises

as the economy borrows, rt rises using DEIR but βt falls using ED. Hence, the marginal benefit

of savings, βt(1 + rt)u
′(ct+1), rises in the DEIR solution but falls in the ED solution. The latter

weakens the precautionary savings incentive in the ED solution relative to the GA solution

with standard preferences and βR < 1, as Durdu et al. (2009) show.

Second, we compare quantitative results for the ED model using 2OA and GA methods

(see Table 3 of Appendix B.3.5). We consider two GA cases. Case I is the baseline from Table

4, in which the ”true model” is one with standard time-separable preferences and βR < 1.

Case II corresponds to the global solution for a “true model” with ED preferences (GA-ED).

In contrast with local ED solutions, in this global solution agents internalize the dependency

of the discount factor on consumption. This introduces an “impatience effect,” by which all

future utility flows are discounted more heavily as today’s consumption rises. These two cases

are compared with two 2OA solutions: the baseline DEIR solution from Table 4 and an ED

solution in which ψED is calibrated to match the same E(b/y) data target as the DEIR solution.

2OA-ED yields moments similar to those of the GA-ED solution because in this case the

“true model” has preferences that support a well-defined deterministic steady state indepen-

dent of initial conditions. It does not need a stationary-inducing transformation because it is

stationary in its original form. A second-order approximation is enough to get close to the

GA-ED solution because the impatience effect that is present in GA-ED but not in 2OA-ED is

quantitatively small, in line with results obtained by Schmitt-Grohé and Uribe (2003).

In contrast, comparing local solutions vis-a-vis the GA solution for themodel with standard

preferences (i.e., using ED to induce stationarity), we find that 2OA-ED still yields different

results although it is closer to the GA moments than the 2OA-DEIR solution. The variability

of consumption, net exports and NFA still exceeds those of the GA solution but by smaller

margins, and their autocorrelations andGDP-correlations are also closer to the GA outcomes.31

31The means are the same because the calibration of the three solutions targets the same data moments.
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Examining how precautionary savings respond to higher income risk, however, the 2OA-ED

solution yields much smaller increases in E(b/y) than the GA solution (because of the self-

correcting effect of the discount factor explained earlier). Thus, 2OA-DEIR overstates sharply

precautionary savings while 2OA-DE does the opposite.

Exact-solution model Both local and global solutions are approximations, although we have

showed that the latter is more accurate inasmuch as Euler equation errors are much smaller.

Still, it is worth exploring how both solutions compare relative to an exact solution. For this

purpose, consider two assumptions that allow us to solve the model in closed form: i) income

is a multiplicative return on a risky asset with a log-normal i.i.d process; ii) consumption is

chosen before the return is observed (see Appendix B.3.7 for details).32 The analytic solutions

are ct = λ(σε)bt and bt+1 = (1− λ(σε))Rtbt, where the savings rate is given by

1− λ(σε) = β1/σE(R)
1−σ
σ exp

(

−(1− σ)
σ2
ε

2

)

. (10)

If σ > 1, the precautionary savings effect is evident since a mean-preserving increase in the

volatility ofRt (i.e., higher σε keepingE(R) constant) increases the savings rate. NFA (in logs)

follow a random walk with drift, ln(bt+1) = ln(1 − λ(σε)) + ln(bt) + ln(Rt), and hence so does

consumption. However, consumption growth is a log-i.i.d. process: ct+1/ct = (1− λ(σε))Rt.

Appendix B.3.7 implements GA, the local solutions up to fourth-order (4OA), and RSS by

expressing the model in ratios of bt. We set β = 0.94, E(R) = 1.7 (in line with the assumption

that b is a risky asset that provides all the economy’s income), and vary σε from 0 to 0.45 while

keepingE(R) constant.33 The exact, GA, and 4OA solutions are virtually identical for all values

of σε. The accuracy of RSS and 2OA deteriorates for σε > 0.3, understimating the savings rate

by up to 15% and 5%, respectively. Moreover, for σε > 0.45, 2OA and RSS predict feasible

saving rates when the true solution is unfeasible.

Since this model is non-stationary, ρb and the center of approximation of NFA do not con-

32The resource constraint becomes bt+1 = Rt+1 (bt − ct), where log (Rt) = µ + σεεt+1, εt+1 ∼ N (0, 1). Note
that b is now a risky asset.

33For σε > 0.45 the equilibrium is infeasible with λ(σε) < 0.
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tribute to the inaccuraccies of the local solutions. In this model, the inaccuracies of 2OA and

RSS are only a result of expanding the Euler equation. Hence, a higher-order approximation

such as 4OA improves accuracy in this case. However, for the canonical endowment model we

studied earlier this is not the case because the problems result from pinning down ρb and the

center of approximation, which continue to be a problem even at higher-order approximations.

3. Sudden Stops model

This section compares global and local solutions of the model of Sudden Stops in a small

open economy proposed by Mendoza (2010). This is an RBC model augmented with an oc-

casionally binding collateral constraint. We compared solutions of the RBC model itself in an

earlier version of this paper (see deGroot et al. (2019)) and found that local solutions have sim-

ilar problems with regard to NFA, net exports, and consumption as in the endowment model.

Supply-side variables are similar in local and global solutions because there is no wealth effect

on labor supply and the equity premium is small.34

3.1. Model structure

Themodel’s competitive equilibrium is represented as the solution to a representative firm-

household problem. Gross output is produced with a Cobb-Douglas technology using capital,

kt, labor, Lt, and imported inputs, υt.

eztF (kt, Lt, υt) = eztkγt L
α
t υ

η
t , 0 ≤ α, γ ≤ 1, η = 1− α− γ. (11)

Gross output is a tradable good sold at a world-determined price which is the numeraire and

set to 1. The relative price of imported inputs is also world-determined and given by pt = eut p̄,

where p̄ is the mean price and ut is a terms-of-trade shock. The model also includes TFP (zt)

and interest-rate (νt) shocks. A standard working capital constraint requires a fraction φ of

the cost of Lt and υt to be paid in advance of sales. Working capital loans are obtained from

34As Mendoza (1991) noted, these features render the capital decision rule similar to that implied by the risk-
neutral arbitrage of returns on capital and NFA, which implies the Fisherian separation of investment from con-
sumption and savings decisions nearly holds. Hence, in the capital decision rule, the coefficient on lagged NFA
in the local solutions and the elasticities of k′ with respect to b in the GA solution are negligible.
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foreign lenders at the beginning of each period and repaid at the end, so the financing cost of

inputs is the net interest rate, Rt − 1. Capital is costly to adjust, with adjustment costs per unit

of net investment, kt+1− kt, given byΨ(kt+1−kt
kt

) = a
2

(

kt+1−kt
kt

)

, with a ≥ 0. This functional form

satisfies Hayashi’s conditions so average and marginal Tobin’s Q are equal in equilibrium.

The representative firm-household chooses [ct, Lt, it, υt, bt+1, kt+1]
∞

t=0 to maximize

E0











∞
∑

t=0

βt

(

ct −
Lω
t

ω

)1−σ

1− σ











, (12)

subject to

ct(1 + τ) + it = eztF (kt, Lt, υt)− ptυt − φ(Rt − 1)(wtLt + ptυt)−
bt+1

Rt

+ bt, (13)

bt+1

Rt

− φRt(wtLt + ptυt) ≥ −κqtkt+1. (14)

The utility function is of Greenwood-Hercowitz-Huffman (GHH) form, which removes the

wealth effect on labor supply. The market prices of labor and capital, denoted wt and qt, are

taken as given by the agent. The left-hand-side of the resource constraint (13) is the sum of

consumption, inclusive of an ad-valorem tax τ used to calibrate the ratio of government ex-

penditures to GDP, plus gross investment, it, where it = δkt + (kt+1 − kt)
[

1 + Ψ
(

kt+1−kt
kt

)]

and δ is the depreciation rate. The right-hand-side equals total supply, which consists of GDP,

yt ≡ eztF (kt, Lt, υt) − ptυt, net of foreign interest payments on working capital loans, φ(Rt −

1)(wtLt + ptυt), minus net resources lent abroad, bt+1

Rt
− bt. Net exports is given by nxt =

bt+1

Rt
− bt + φ(Rt − 1)(wtLt + ptυt) = yt − ct(1 + τ) − it. The Fisherian collateral constraint (14)

prevents debt and working capital credit exceeding a fraction κ of the market value of capital.

The competitive equilibrium is defined by sequences of allocations [ct, Lt, kt+1, bt+1, υt, it]
∞

0

and prices [wt, qt]
∞

0 such that (a) the representative firm-household solves its optimization

problemgiven [wt, qt]
∞

0 and initial conditions (k0, b0), and (b) [wt, qt]∞0 satisfy the corresponding

market equilibrium conditions.
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3.2. Solution methods

Solutions of this model involve an occasionally binding constraint and an additional en-

dogenous state variable, kt. For the global solution, we use FiPIt defining grids of k and bwith

30 and 80 nodes, respectively.35 For the quasi-local (QLOBC) method, we use the DynareOBC

toolkit. This toolkit treats the occasionally binding constraint as a source of endogenous news

about the future along perfect-foresight paths (see Appendix B.3.6 for details). If the constraint

is (is not) binding at the deterministic steady state, the algorithm uses news shocks to solve for

unconstrained (constrained) periods along those paths by solving a mixed-integer linear pro-

gramming problem. Suppose the constraint does not bind at steady state. If agents anticipate

the constraint will bind at t + j conditional on the date-t state variables, this provides “news”

that bt+1 will follow a path higher than otherwise. This approach is akin to assuming that there

is no constraint, but whenever agents are on a path that would lead them to borrowmore than

the constraint allows, a series of news shocks hit that makes them borrow only what is allowed

and moderates their borrowing before that happens.36

Themain output ofDynareOBC is a time-series simulation constructed by stitching together

the date-t values of perfect-foresight paths conditional on (kt, bt, zt, ut, νt). Each path is ob-

tained using an extended path algorithm that traces equilibrium dynamics up to period t+ T .

The extended path can be obtained using first- or higher-order approximations, but we report

only results based on the former.37 The path computed for a given starting date t determines

the values of (kt+1, bt+1). The rest of the path is discarded and the process is repeated at t + 1

to generate the values of the time-series simulation for that period.

The efficiency of this method depends on three factors: (a) T : This parameter needs to be

large enough so that after T no further news shocks are needed (if the constraint does (does

not) bind in steady state, after T the constraint must always (never) bind). A model with

35See Mendoza and Villalvazo (2020) for details, including User Guide and Matlab code.
36The model is similar to the model without the constraint but with sequences of news shocks chosen to yield

the same equilibrium as the model with the constraint. This equivalence holds exactly if the model is linear and
shock variances are zero, such that the news shocks are unanticipated.

37Holden (2016) shows that using 2OA and integrating over future uncertainty can approximate precautionary
savings in an endowmentmodel with a simple constraint. However, this method is slower than the global method
and for our SS model produced results that deviate sharply from the GA and first-order DynareOBC solutions. In
particular, investment and net exports had negative serial autocorrelation andNFAhad near-zero autocorrelation.
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persistent dynamics requires a larger T and a larger T increases the search time for the sequence

of shocks that supports the equilibrium; (b) Frequency of binding constraint: In each period for

which the perfect foresight path requires news shocks, the search for the equilibrium sequence

of news shocks needs to be repeated. Amodel inwhich the constraint binds frequently requires

more time-costly searches; and (c) Time-series simulation length, N : This parameter needs to

be large enough for long-runmoments of the endogenous variables to converge. The algorithm

is therefore less efficient in models with persistent dynamics (requiring a large T and N), and

models in which the news shocks are needed frequently.

Figure 4 illustrates the DynareOBC method using the endowment model, with bt+1 ≥ ϕ

as an occasionally binding constraint.38 Panels (a)-(b) show a stochastic simulation for ct and

bt+1 for t = 90 to 250 (black-solid lines) and eleven of the perfect-foresight paths (red-dash

lines) with the corresponding date-t solution (red circle). In Panel (b), the constraint binds in

four of the perfect-foresight paths (the shaded area corresponds to bt+1 < ϕ). Panels (c)-(d)

isolate the path that defines the equilibrium in t = 141. The comparable path of bt+1 without

the collateral constraint is the black-dot line in (d). The constraint first binds along the perfect-

foresight path at t = 144. Relative to the model without the constraint, agents choose higher

bt+1 (less debt) earlier, in anticipation of the constraint becoming bindingwith perfect foresight

(i.e., the red-dashed curve is above the black-dotted curve at t = 142, 143). Since income rises

gradually back to steady state, the constraint continues to bind for several periods, until income

is high enough for bt+1 to also rise back towards steady state (after t = 170).

Quasi-linear methods ignore the risk of moving between regions of the state space where

the constraints binds or not. In particular, at each t, DynareOBC only considers the perfect-

foresight path conditional on the date-t state and ignores the histories of future shocks and

associated allocations and prices that can occur. Hence, wealth and precautionary-saving ef-

fects of the constraint are ignored, and forward-looking objects like asset prices and excess

returns also abstract from them. These effects are central to SS models, because when the col-

lateral constraint binds, a sudden stop with a deep recession and collapsing prices can occur.

38DEIR is used since the constraint does not bind in the steady state (see Appendix B.3.6 for details).
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The risk of a sudden stop strengthens precautionary savings and is priced in asset markets.

(see Mendoza, 2010; Durdu et al., 2009).

3.3. Calibration

Table 6 shows the calibration parameters, most of which were taken fromMendoza (2010).

The main difference is that ϕ and β in the GA solution are set following a strategy similar

to that used in the endowment model, by targeting them so the RBC version of the model

approximates the mean NFA-GDP ratio and the volatility of consumption in Mexican data.39

The three shocks have a diagonal VAR representation given by


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




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. (15)

Following empirical evidence inMendoza (2010), the co-movement between TFP and interest-

rate shocks is driven only by the covariance of their innovations and the price shock is indepen-

dent of the other two. The calibration of the autocorrelation and variance-covariance matrices

also followsMendoza (2010). The discrete approximation to the VAR in theGA solution is con-

structed using the Simple Persistence Rule, requiring ρz = ρr (see Appendix C.2 in de Groot

et al. (2019) for details).

For the quasi-linear method, the steady-state equilibrium is well-defined without the DEIR

function when the constraint binds at the deterministic steady state. The bonds Euler equation

becomes 1 = βR+ µdss/u′(cdss), where µ is the multiplier on the constraint. Since βR < 1 ⇐⇒

µdss > 0, having the constraint bind at steady state requires βR < 1. When the constraint does

not bind at the deterministic steady state, the DEIR function is used to induce stationarity.

We studyDynareOBC solutionswith µdss > 0 (labeled “DynareOBC-βR < 1”) and µdss = 0

(labeled “DynareOBC-DEIR”). For the former, β is the same as in the GA solution, and hence

the DynareOBC-βR < 1 and GA calibrations are identical. For the latter, β = 1/R by construc-

39This was necessary because we use standard preferences with βR < 1 while Mendoza (2010) used ED
preferences allowing agents to consider the dependency of the discount factor on the history of consumption.
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tion and we calibrate ψ and (b/y)∗ in two steps. First, we set them so as to match the data mo-

ments for themeanNFA-GDP ratio and the standard deviation of consumption (relative to that

of GDP) in a 1OA solution of an RBCvariant of themodelwithout the credit constraint.40 These

samemoments are alsomatched by the calibration of theGA-RBC solution used in theGA solu-

tion of the Sudden Stopsmodel. Second, in line with the “targeted” approach to calibrate DEIR

solutions, we adjust b∗ so that the DynareOBC-DEIR solution yields the sameE(b/y) as the GA

solution of the Sudden Stops model. This procedure yields (b/y)∗ = −0.008 and ψ = 0.0044.

The rationale for looking at DynareOBC-DEIR is that in the GA solution the constraint rarely

binds and E(b/y) > bdss/ydss. Hence, a local approximation around an unconstrained steady

state is in line with the unconstrained long-run equilibrium of the GA solution.

3.4. Results

Long-run moments Table 7 shows that several moments of the DynareOBC solutions differ

sharply from their GA counterparts, with smaller differences for supply-side variables.41 The

latter occurs because, around the stochastic steady state, the model is still close to Fisherian

separation of savings and investment, as is the case for the RBC version of the model.

The collateral constraint causes a large increase in precautionary savings that DynareOBC-

βR < 1 understates significantly. Relative to a mean NFA-GDP ratio of -37% in the RBCmodel,

the GA solution of the Sudden Stops model yields 1.5% and DynareOBC-βR < 1 yields -13.5%

(DynareOBC-DEIR has the same mean NFA as GA because it was calibrated to match it). This

has implications for both research and policy. For example, quantifying optimal macropru-

dential regulation or foreign reserves to manage Sudden Stop risk first requires determining

howNFA responds to this risk without policy intervention (see Durdu et al., 2009; Bianchi and

Mendoza, 2018). By underestimating precautionary savings without policy intervention, the

DynareOBC solution would result in excessive accumulation of reserves and macroprudential

regulation that is too tight.

Certainty equivalence does not hold in the quasi-linear solutions even though the perfect-

40We used 1OA to be consistent with the first-order DynareOBC algortihm we used.
41GA and DynareOBC-DEIR yield the same means by construction, because the latter was calibrated to yield

the same E(b/y) as the former.
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foresight paths are first-order approximations. In theDynareOBC-βR < 1 (DynareOBC-DEIR)

solution, bdss/ydss = −0.192 (−0.008)while E(b/y) = −0.135 (0.015). This is due to asymmetric

responses to shocks induced by the constraint, not precautionary savings. This asymmetry is

illustrated in Figure 4 (see also Appendix B.3.6). A negative shock that causes the constraint

to bind along the perfect-foresight path determining the date-t value of the solution reduces

bt+1 by less than the increase in bt+1 in response to the same size positive shock. Hence, the

quasi-linear time-series is “biased” above bdss, implying a mean above bdss/ydss.42 The global

solution has a similar asymmetry but it also has precautionary savings effects due to the risk

of future shocks causing the constraint to bind.

Performancemetrics Table 7 also reports performancemetrics of the different solutionmeth-

ods. In the model with the occasionally binding collateral constraint, there is no longer a clear

speed advantage to using local methods. Relative to the FiPIt global solution, DynareOBC-

βR < 1 is about 9% faster but DynareOBC-DEIR is 24% slower. This is due to the three deter-

minants of the efficiency of DynareOBC noted earlier and the near-unit-root nature of the NFA

process. Each extended path required at least 60 periods and the full simulation needed 106

periods to converge to invariant moments.43

Speed comparisons need to be made carefully. Global methods suffer from the curse of di-

mensionality and solutions are slower in models that require a root-finder when the constraint

binds.44 But, once the decision rules are solved, generating time-series simulations is fast. In

contrast, the number of state variables is not an issue for QLOBC methods, but execution time

rises with the length of perfect-foresight paths; the iterations needed to compute news-shocks

sequences that implement the constraint; and the length of the time-series simulation needed

for convergence of unconditional moments. In Appendix C.2.2, we show DynareOBC-βR < 1

becomes slower than FiPIt with a simulation length of 1.5 × 106 periods (350 v. 268 seconds),

TFP shocks only (230 v. 42), or κ = 0.3 (228 v. 137). Using DynareOBC with a second-order

42The constraint in this example is a fixed debt limit while in the SS model it depends on qtkt+1.
43The estimators of the mean and autocorrelation of an AR(1) process are consistent but biased in finite sam-

ples. The bias is higher the closer the true autocorrelation is to 1 but falls as the sample size rises. A near-unit-root
process needs a long sample to ensure negligible estimation bias.

44In the SS model without working capital in the constraint, this is not needed, reducing the FiPIt run time by
57% (see Mendoza and Villalvazo, 2020).
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approximation and/or integrating over future uncertainty would further increase run times.

In terms of accuracy, the global solution produces small maximum errors in the bonds and

capital Euler equations. Since QLOBC solutions only produce time-series simulations, we fol-

low Holden (2016) to evaluate their accuracy by constructing consumption simulations of the

GA solution for the same initial conditions and sequence of shocks as in the DynareOBC so-

lutions, and compute the maximum absolute values of the differences across them. The maxi-

mum differences are about 0.19% for both DynareOBC-βR < 1 and DynareOBC-DEIR, much

larger than Holden’s 0.0038% estimate from the solution of an endowment model with debt

limit without integrating over future uncertainty (see Fig. 2 in Holden (2016).

Impulse responses & periodograms Figure 5 shows IRFs for a one-standard deviation, neg-

ative TFP shock conditional on starting at the unconditional means. The DynareOBC IRFs

differ significantly from the GA ones. With DynareOBC-βR < 1, the NFA-GDP ratio hardly

moves and the NX-GDP ratio moves into a surplus on impact, reflecting reduced demand for

imported inputs. This occurs because the constraint binds at date-0 and the TFP shock tight-

ens the constraint more. For DynareOBC-DEIR, the NFA-GDP ratio falls, offsetting the fall in

imported inputs, leaving the NX-GDP ratio almost unchanged. In contrast, in the GA solution,

the NX-GDP ratio jumps on impact nearly twice as much as under DynareOBC-βR < 1 and

the NFA-GDP ratio rises gradually to peak roughly 1.5 pp. above its mean. For capital, in both

quasi-linear solutions it falls on impact and falls slightly further before recovering. In contrast,

capital in the GA solution is nearly unchanged on impact before falling around three times as

much, reaching 1.5% below its mean before recovering. Qualitatively, the responses of c, i, L,

υ and y are similar in all solutions, but the declines on impact are larger in the GA solution.45

Appendix C.2.1 compares periodograms for the DynareOBC and GA solutions and shows

that they differ sharply. DynareOBC assigns significantly less consumption variability to busi-

ness cycle and lower frequencies than the GA solution. Net exports show higher persistence

45For the GA solution, the IRFs of the RBC and SS models are very similar, because the constraint binds only
in the left tail of the ergodic distribution (see Appendix C.2.3). Hence, IRFs, which are triggered by shocks of
standard magnitudes and start from long-run means, are nearly unaffected by the credit friction. In contrast,
the IRFs for the SS model obtained with DynareOBC-βR < 1 are different from the IRFs that the local methods
produce for the RBC model.
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in the DynareOBC-DEIR solution while DynareOBC-βR < 1 and GA have similar persistence.

The GA solution has less variability at all frequencies. Investment has higher persistence in the

GA than in the local solutions, and it has uniformly higher variability at all frequencies.

Collateral constraint multipliers, Sudden Stops, and risk effects The DynareOBC-βR < 1

and GA solutions also differ sharply in that the collateral constraint binds much more fre-

quently in the former (20% instead of 2.6% of the time).46 This is partly because QLOBCmeth-

ods disregard precautionary savings. Moreover, these methods yield smaller credit-constraint

multipliers and financial premia than theGA solution, and the sudden-stop responses ofmacro

variables differ sharply. To demonstrate these results, we compare the multipliers and the

shadow interest-rate premium (SIP), the equity premium (EP), its components due to un-

pledgeable capital ((1− κ)SIP) and risk premium (RP), and the Sharpe ratio (S). For macro

responses in sudden-stop episodes, we compare deviations from unconditional means in c,

nx/y, i, y, L and υ.

SIPt is the amount by which the intertemporal marginal rate of substitution, uc,t/βEtuc,t+1,

exceeds Rt. The bonds Euler equation gives

SIPt =
Rtµt(1 + τ)

uc,t − µt(1 + τ)
. (16)

SIPt is only relevant when µt > 0 and rises as the constraint becomes more binding, because

µt rises and Etuc,t+1 falls, since the constraint forces agents to defer consumption.

The equity premium is EPt ≡ Et[R
q
t+1]− Rt, where Rq

t+1 ≡ (dt+1 + qt+1)/qt is the return on

equity and dt+1 is the dividend payment, where dt ≡ exp(ǫAt )Fk,t − δ + a
2
(kt+1−kt)2

k2t
. Using the

Euler equations for bonds and capital it follows that

EPt = (1− κ)SIPt +RPt, RPt ≡ −
COVt[uc,t+1, R

q
t+1]

Etuc,t+1

. (17)

EPt has two components: the standard risk premium (RPt) driven by COVt[uc,t+1, R
q
t+1] and

46DynareOBC-DEIR has a similar frequency of binding constraint as the GA solution because it was calibrated
to the seam mean NFA and with µdss = 0.

32



the fraction of SIPt pertaining to the share of kt+1 that cannot be pledged as collateral (1− κ).

EPt rises when µt > 0 for two reasons: First, SIPt rises, as explained above. Second, RPt

rises, because COVt[uc,t+1, R
q
t+1] becomes more negative as consumption is harder to smooth

and Etuc,t+1 falls as the collateral constraint forces consumption into the future. Thus, EPt

reflects both the tightness of the constraint via SIPt and the larger risk premium that the

constraint induces. The Sharpe ratio measures the compensation for risk-taking, defined as

St = E[EP ]/σ(Rq). Following standard practice, we computeSt using unconditionalmoments.

For the GA solution, the financial premia are computed for each triple (b, k, ε) in the state

space (see Appendix C.2.3). Means are then computed using the conditional and uncondi-

tional distributions of (b, k, ε). For QLOBC, SIPt is computed using the time-series simulations

that DynareOBC produces. Since RPt = 0 by construction, because each date-t solution is de-

termined by a perfect-foresight path, the equity premium isEPt = (1−κ)SIPt (theDynareOBC

simulations also produce very small values for COV [uc(·), R
q]).

Table 8 reports quintile distributions of µ conditional on µ > 0, the associated within-

quintile averages of financial and macro variables, their overall means and medians, and the

Sharpe ratios.47 Consider first the multipliers and financial premia. Results are similar across

DynareOBC-DEIR and DynareOBC-βR < 1. Relative to the GA solution, however, the mul-

tipliers and financial premia are markedly smaller in the quasi-local solutions, and the dif-

ferences grow larger for higher µ (i.e., in the fourth and fifth quintiles). Overall, the mean

(median) of µ across all quintiles is about 35.6% (24.6%) larger in the GA solution. For GA, the

overall means of SIP , EP , (1−κ)SIP andRP are 2.59, 2.17, 2.07, and 0.1%, respectively, while

DynareOBC-βR < 1 (DynareOBC-DEIR) yields 1.54, 1.23, 1.23, 0 (1.42, 1.14, 1.14, 0). In the GA

solution,RP is about 0.1% on average in each of the five quintiles of µ, butEP increases sharply

with µ because (1 − κ)SIP rises sharply. In the fifth quintile, GA yields means for SIP , EP ,

and (1− κ)SIP of 6.59, 5.38, and 5.27%, respectively, while DynareOBC-βR < 1 (DynareOBC-

47Variables are assigned into quintiles according to the quintile distribution of µ. If a given µi belongs to a
particular quintile of µ, then the corresponding values of the other variables are assigned to the same quintile. µ
is small in general because it is in units of marginal utility with CRRA preferences and σ = 2. For instance, at the
unconditional means of c and L, marginal utility is -4.688 in log base 10. But small µ values do not imply that the
constraint is irrelevant for financial and macro outcomes, as Table 8 shows.
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DEIR) yields 3.52, 2.82, 2.82 (2.94, 2.36, 2.36). Thus, the quasi-local solutions understate SIP

and EP . They also miss the risk premium, but this accounts for a small fraction of the gap in

EP . Since RP is small in the GA solution and zero in the local solutions, the differences in

S are due to SIP . The compensation for risk-taking is also much higher in the GA solution,

which yields a Sharpe ratio of 1.16, compared with 0.08 and 0.72 for DynareOBC-βR < 1 and

DynareOBC-DEIR, respectively.

The sizable differences in SIP andEP result in different sudden-stop responses. To explain

why, we follow Mendoza and Smith (2006) in expressing the price of capital as

qt = Et

(

∞
∑

i=1

[

i
∏

j=0

1

EtR
q
t+1+j

]

dt+1+i

)

. (18)

Since (17) implies EtR
q
t+1 = (1 − κ)SIPt + RPt + Rt, lower financial premia with QLOBC

implies higher qt when µt > 0, which in turn implies weaker Fisherian deflation effects of the

binding collateral constraint. Moreover, since qt is a monotonic function of investment due

to the Tobin-Q investment setup, kt+1 is higher and so is borrowing capacity (κqtkt+1), which

is key for determining allocations when µt > 0. This also affects future dividends, creating

feedback effects into qt and borrowing capacity.

The differences in sudden-stop responses reported in Table 8 reflect the above arguments.

In the GA solution, the responses are in line with standard Sudden Stop features (i.e., large

recessions and sharp reversals in the external accounts). Themean percent declines in c, i, y, L,

and υ (relative to their unconditional means) are−3.6,−4.1,−1.0,−0.7, and−1.8, respectively

while nx/y rises 2.6 pp. on average. The responses are generally larger when the constraint

binds more, reaching means of −4.9 for c and −13.5 for i and a trade balance reversal of 5.1

pp. in the fifth quintile of µ. DynareOBC-βR < 1 yields smaller mean declines in consumption

(−1.03), investment (−0.53), GDP (−0.48), labor (−0.29) and inputs (−1.00) and a smaller

mean increase in net exports (0.40). It also fails tomatch the property that the responses should

be larger when the constraint binds more, displaying instead the largest responses in the first

quintile of µ. DynareOBC-DEIR performs worse, producing positive mean responses for i, y,

L and v and smaller mean decline in c. Moreover, these counterfactual responses grow larger
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when the constraint binds more, in the fourth and fifth quintiles of µ.

There are tradeoffs in choosing between DynareOBC-βR < 1 and DynareOBC-DEIR. Both

yield solutions that differ sharply from the GA solution, but Dynare-βR < 1 does better at ap-

proximating the effects of the collateral constraint, uses the same calibration as the GA solution

anddoes not require extra assumptions to impose stationarity. On the other hand, DynareOBC-

DEIR yields unconditionalmoments and a frequency of hitting the collateral constraint that are

closer to the GA solution. The inability to produce Sudden Stops when the constraint binds,

however, is an important shortcoming of DynareOBC-DEIR.

4. Conclusions

In this paper, we compared global and local solutions of open-economymodelswith incom-

plete markets using an endowment model and a model of Sudden Stops with an occasionally

binding collateral constraint (de Groot et al. (2019) examined also an RBC model with similar

qualitative findings as those reported here). Local solutions were produced using 1OA, 2OA,

3OA, RSS and DynareOBC algorithms and global solutions were generated using the FiPIt al-

gorithm. Most local methods need a stationarity-inducing assumption, for which we chose the

widely-used DEIR function that makes the interest rate a decreasing function of NFA.

We found large differences between global and local solutions relative to untargeted data

moments and when we examined parametric changes. In particular, local methods approxi-

mate poorly the effects of precautionary savings on NFA, net exports and consumption, even

when using higher-order methods such as 2OA and RSS. For the Sudden Stops model, quasi-

linear methods have two additional disadvantages: they understate the magnitude of the mul-

tipliers of the collateral constraint and its effects on financial premia and macro variables, and

they do not capture risk effects of the collateral constraint and their implications for precau-

tionary savings and forward-looking variables like asset prices.

Standard local methods (such as 2OA) are faster than FiPIt for the endowment and RBC

models, but the variation of the RSS method with the DEIR function is slower. FiPIt yields

significantly smaller Euler equation errors, but the curse of dimensionality remains a limita-

tion. For the Sudden Stops model, FiPIt and first-order DynareOBC are of comparable speed.
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Hence, some of the recent advances in local methods that do not require stationarity-inducing

assumptions, such as RSS and QLOBC, come with a large increase in solution times relative to

both standard local methods and global methods.

The differences across local and global solutions originate in the near-unit-root nature of

the equilibrium stochastic process of NFA, a typical feature of incomplete-marketsmodels with

non-state-contingent assets because of the persistence induced by precautionary savings. We

provide analytic and quantitative results showing that small errors in approximating the NFA

autocorrelation cause sizable differences in the unconditional means of NFA, consumption and

net exports and in business cycle moments, impulse responses and spectral densities. Interest-

ingly, 1OA, 2OA, and RSS produce very similar second- and higher-order moments, impulse

responses and periodograms, because they yield decision rules with similar first-order terms

and small higher-order terms. Local solutions that target mean NFA and the variability of con-

sumption perform better but require knowing the global solution. Moreover, these targeted

calibrations require higher DEIR elasticities that make moving NFA from its steady state so

costly as to neutralize the precautionary savings motive. In this case, even the first moments

of 1OA, 2OA, and RSS solutions are similar.

These findings suggest caution in assessing results obtained with local solutions, especially

when dynamics of non-state-contingent assets are the key variable of interest (e.g., studies

examining global imbalances, sovereign default, optimal foreign reserves, or macroprudential

policy) or when assessing the frequency and magnitude of Sudden Stops. Good practice in

studies inducing stationarity with, for example, a DEIR function, is to examine the robustness

of the results to the value of the debt-elasticity parameter. Alternatively, quasi-linear or RSS

methods can be used without inducing stationarity.

Our results are robust to several modifications, including setting the DEIR elasticity to its

inessential low value versus targeting it to the global solution; replacing DEIR with an interest

rate lower than the rate of time preference, with an endogenous discount factor or with costs of

holding foreign assets; introducing different shocks and changing their variability; and exam-

ining a model with an exact solution. We did find, however, that inducing stationarity using

endogenous discounting is relatively more accurate than using DEIR or asset holding costs.
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For the DynareOBC solutions of the Sudden Stops model, the results are robust to whether the

credit constraint is binding or non-binding at the steady state.

We see our findings as suggesting that local and global methods are best seen as comple-

ments. For parsimonious models, a global solution is feasible and desirable, and innovations

in hardware and algorithm design are making global solutions of larger models more feasi-

ble. But for larger models that cannot be solved globally, it is best to use local methods while

being mindful of their limitations. Complementing them with global solutions for simplified

versions of large models would shed light on the size and direction of those limitations. Our

results also show that calibrating the DEIR elasticity and the center of approximation to match

the observed mean of NFA and variability of consumption yields results closer to a global so-

lution calibrated to the same targets, but the local solutions would still approximate poorly the

effects of parametric changes (e.g., counterfactual and policy experiments).

Our findings also have useful policy implications. For instance, in the case of the Sudden

Stops model, we found that local solutions underestimate the effects of credit constraints on

precautionary savings and would thus lead to excessive accumulation of foreign reserves or

macroprudential regulation that is too tight.
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Table 1: Summary of Numerical Methods used in Open-Economy Models

Global Local Total
Research papers 33 68 101

Stationarity Assumption Approximation
AHC DEIR ED Other 1OA Higher
16 32 8 12 62 6

Policy models 0 8 8
Stationarity Assumption Approximation

AHC DEIR ED Other 1OA Higher
0 5 1 2 8 0

Note: This table presents a survey of 101 research papers and 8 policy models. The stationarity inducing assump-
tions are asset holding costs (AHC), debt-elastic interest-rate (DEIR), endogenous discounting (ED), and Other.
The local approximation are first-order approximation (1OA) and Higher, which includes higher-order perturba-
tion methods and RSS. Appendix A explains the survey methodology and includes comprehensive details of all
the papers and models surveyed.
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Table 2: Calibration of the Endowment Model

Notation Description Value

Common parameters

σ Coefficient of relative risk aversion 2
y Mean endowment income 1
A Absorption constant 0.321
R Gross world interest rate 1.086
σz St. dev. of income 0.0272
ρz Autocorrelation of income 0.749

Global solution parameters

β Discount factor 0.917
ϕ Ad-hoc debt limit −0.435

Local solution parameters

β Discount factor (1/R) 0.921
ψ DEIR elasticity coefficient 0.001
b∗ DEIR steady-state NFA (2OA) −0.724
b∗ DEIR steady-state NFA (RSS) −0.552
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Table 3: Autocorrelations of NFA, Net Exports, and Income in the Endowment Model

ρz 0 0.1 0.3 0.5 0.7 0.9 0.95

i) Global
ρnx -0.102 -0.007 0.195 0.444 0.688 0.945 0.983
ρb 0.801 0.845 0.912 0.957 0.985 0.997 0.997
E(b) -0.409 -0.407 -0.402 -0.392 -0.370 -0.288 -0.259

ii) Local: Baseline calibration
2OA

ρnx 0.497 0.593 0.753 0.874 0.955 0.995 0.999
ρb 0.997 0.997 0.998 0.999 0.999 1.000 1.000
E(b) -0.688 -0.681 -0.656 -0.602 -0.445 0.433 1.362

RSS
ρnx 0.493 0.590 0.752 0.875 0.957 0.997 1.000
ρb 0.997 0.997 0.998 0.999 0.999 1.000 1.000
E(b) -0.534 -0.530 -0.518 -0.490 -0.409 0.116 0.870

iii) Local: Targeted calibration (ψ = 0.042, b∗ = −0.374)
2OA

ρnx 0.022 0.123 0.327 0.529 0.729 0.920 0.963
ρb 0.927 0.940 0.960 0.975 0.987 0.996 0.998
E(b) -0.372 -0.372 -0.371 -0.369 -0.364 -0.348 -0.340

RSS
ρnx 0.022 0.123 0.327 0.529 0.728 0.919 0.962
ρb 0.927 0.940 0.960 0.975 0.987 0.996 0.998
E(b) -0.373 -0.372 -0.371 -0.370 -0.365 -0.348 -0.336

iv) Local: Targeted calibration for each ρz
2OA

ρnx -0.019 0.081 0.283 0.493 0.729 0.916 0.968
ρb 0.835 0.869 0.923 0.960 0.987 0.996 0.998
b∗ -0.410 -0.408 -0.404 -0.395 -0.380 -0.309 -0.298
ψ 0.191 0.172 0.133 0.094 0.042 0.043 0.030

RSS
ρnx -0.019 0.080 0.282 0.491 0.721 0.929 0.968
ρb 0.834 0.869 0.922 0.959 0.985 0.997 0.998
b∗ -0.410 -0.409 -0.404 -0.396 -0.379 -0.320 -0.308
ψ 0.192 0.173 0.135 0.096 0.048 0.030 0.030

Note: 2OA and RSS denote the second-order and partial risky-steady state solutions, respectively. Targeted cal-

ibrations for each ρz in panel iv) set (ψ, b∗) so as to match the value of E(b) in the corresponding GA solution,

shown in Panel i), and the standard deviation of consumption (not shown).
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Table 4: Long-run Moments: Endowment Model

Data Global Local
Baseline calibration Targeted calibration

2OA RSS RSS 2OA RSS

DEIR βR < 1 DEIR DEIR DEIR

DEIR parameters

ψ · · 0.001 · 0.001 0.042 0.042

b∗ · · -0.724 · -0.552 -0.374 -0.374

Calibration targets from Mexican data in Mendoza (2010)

sd(c)/sd(y) 1.247 1.352 · · · 1.363 1.358
E[b/y] -0.363 -0.363 -0.363 · -0.363 -0.363 -0.363

Cyclical moments

Standard deviation relative to GDP

c 1.247 1.352 3.326 15.080 3.469 1.363 1.358
nx/y 0.775 0.540 2.168 1.799 2.268 0.649 0.650
b/y · 9.766 71.159 3.274 74.774 11.457 11.499

Correlation with GDP

c 0.895 0.834 0.213 0.250 0.202 0.759 0.758
nx/y -0.688 0.431 0.223 -0.072 0.227 0.458 0.464
b/y · 0.531 0.150 0.364 0.130 0.585 0.582

First-order autocorrelation

c 0.701 0.849 0.997 0.995 0.997 0.947 0.947
nx/y 0.797 0.768 0.972 0.999 0.973 0.788 0.787
b/y · 0.971 0.999 0.984 0.999 0.984 0.984

Performance metrics

Run time (sec) · 1.46 0.6 0.3 3.1 0.6 3.1
rel. to GA · · 0.41 0.21 2.12 0.21 2.12

EE errors · 9.46E-11 6.05e-05 1.64e-02 1.81e-04 4.11e-05 8.50e-05
· (1.28E-04) (2.56e-04) (3.11e-02) (1.03e-03) (1.74e-04) (3.80e-04)

Decision rule diff b · · 0.036 1.066 0.036 0.029 0.029
· · (0.110) (2.302) (0.111) (0.071) (0.075)

Decision rule diff c · · 0.015 0.716 0.015 0.009 0.009
· · (0.074) (1.347) (0.073) (0.047) (0.047)

Note: 2OA and RSS refer to second-order and risky steady state, respectively. Results were obtained using Mat-

lab2022a in a Linux cluster with 128GB of RAM, 2×16-core Intel Xeon(R) Gold 6142 CPU @ 2.6GHz processors,

and a Samsung SSD 840 512GB hard drive. The number of CPUs called by the parallel computing toolbox was

set to minimize run time. Run times include elapsed time up to the solution of decision rules. Mean and max-

imum (in brackets) Euler equation (EE) errors and decision rule differences are computed for all (b, z) pairs in

the state space of the Global solution. Decision rule differences in the last two rows are differences between the

local and GA solutions in percent of the latter conditional on bond values with positive probability in the ergodic

distribution of the GA solution.
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Table 5: Endowment Model with Income and Interest-Rate Shocks

Interest Rate Standard Deviation (%)
0.0 0.5 1.0 1.5 2.0 2.5

Global calibrated
E(b/y) -0.358 -0.355 -0.345 -0.326 -0.296 -0.256
σ(c)/σ(y) 1.321 1.342 1.407 1.527 1.706 1.922
σ(b)/σ(y) 8.565 9.156 11.082 14.946 21.703 31.889
ρ(y, nx/y) 0.469 0.452 0.411 0.362 0.317 0.283
ρnx/y 0.738 0.740 0.748 0.763 0.780 0.791
ρb/y 0.961 0.964 0.972 0.981 0.987 0.989

Global with NDL
E(b/y) -6.523 -5.428 -4.227 -3.314 -2.602 -2.027
σ(c)/σ(y) 9.710 10.797 8.968 7.498 6.256 5.175
σ(b)/σ(y) 2.487 5.719 8.157 10.121 11.634 12.690
ρ(y, nx/y) -0.022 0.040 0.065 0.086 0.109 0.136
ρnx/y 0.999 0.999 0.999 0.992 0.980 0.959
ρb/y 0.999 0.999 0.999 0.999 0.999 0.999

Full RSS (βR < 1)
E(b/y) -7.041 -6.232 -4.996 -3.887 -2.937 -2.124
σ(c)/σ(y) 15.080 13.454 11.171 8.982 6.935 5.150
σ(b/y)/σ(y) 3.274 4.838 7.441 9.856 11.743 13.071
ρ(y, nx/y) -0.072 -0.033 -0.003 0.017 0.037 0.062
ρnx/y 0.999 0.995 0.991 0.986 0.975 0.952
ρb/y 0.984 0.992 0.996 0.997 0.998 0.998

2OA DEIR Baseline calibration
E(b/y) -0.363 -0.287 -0.060 0.318 0.847 1.527
σ(c)/σ(y) 3.326 3.360 3.454 3.593 3.758 3.932
σ(b/y)/σ(y) 71.263 91.542 457.581 93.541 38.613 23.901
ρ(y, nx/y) 0.223 0.218 0.207 0.190 0.172 0.153
ρnx/y 0.972 0.971 0.969 0.965 0.962 0.961
ρb/y 0.999 0.999 0.999 0.999 0.999 0.999

Partial RSS (DEIR) Baseline calibration
E(b/y) -0.363 -0.340 -0.270 -0.154 0.007 0.213
σ(c)/σ(y) 3.469 3.490 3.555 3.672 3.863 4.179
σ(b/y)/σ(y) 74.774 80.658 104.452 192.309 4369.169 167.436
ρ(y, nx/y) 0.227 0.226 0.223 0.217 0.208 0.194
ρnx/y 0.973 0.972 0.972 0.971 0.970 0.971
ρb/y 0.999 0.999 1.000 1.000 1.000 1.000

2OA DEIR Targeted calibration
E(b/y) -0.363 -0.362 -0.358 -0.351 -0.342 -0.331
σ(c)/σ(y) 1.363 1.384 1.445 1.541 1.667 1.814
σ(b/y)/σ(y) 11.458 11.659 12.257 13.249 14.636 16.439
ρ(y, nx/y) 0.458 0.445 0.412 0.371 0.329 0.291
ρnx/y 0.788 0.784 0.772 0.759 0.747 0.738
ρb/y 0.984 0.984 0.984 0.985 0.985 0.986

Partial RSS (DEIR) Targeted calibration
E(b/y) -0.363 -0.363 -0.361 -0.359 -0.355 -0.351
σ(c)/σ(y) 1.358 1.361 1.369 1.383 1.402 1.427
σ(b/y)/σ(y) 11.499 11.516 11.566 11.650 11.770 11.928
ρ(y, nx/y) 0.464 0.463 0.458 0.450 0.439 0.427
ρnx/y 0.787 0.780 0.761 0.731 0.692 0.648
ρb/y 0.984 0.984 0.984 0.984 0.984 0.985

Note: The volatility and persistence of endowment shocks are kept as in Table 2. GA, 2OA and RSS refer to the

global, second-order and risky-steady state solutions, respectively.
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Table 6: Calibration of the Sudden Stops Model

Notation Description Value

Common parameters
σ Coefficient of relative risk aversion 2
R Gross world interest rate 1.0857
α Labor share in gross output 0.592
γ Capital share in gross output 0.306
η Imported inputs share in gross output 0.102
δ Depreciation rate of capital 0.088
ω Labor exponent in the utility function 1.846
φ Working capital constraint coefficient 0.258
a Investment adjustment cost parameter 2.750
τ Consumption tax 0.168
κ Collateral constraint coefficient 0.2
ρA TFP autocorrelation 0.555
ρR Interest rate autocorrelation 0.555
ρp Input price autocorrelation 0.737
σ2
uA

Variance of TFP innovations 1.0273e-04
σ2
uR

Variance of interest rate innovations 2.4387e-04
σ2up Variance of input price innovations 5.1097e-04
σuA,uR Covariance of TFP and interest rate innovations -0.0047

Global solution parameters
β Discount factor 0.920
ϕ Ad-hoc debt limit as a share of ydss −0.505

Local solutions parameters
DynareOBC with DEIR
β Discount factor (1/R) 0.9211
ψ DEIR elasticity coefficient 0.0044
(b/y)∗ DEIR steady-state NFA -0.008

Note: For the Sudden Stops model, the GA solution has two credit constraints, namely ϕ and the collateral con-

straint. Credit is constrained at the deterministic steady state, since βR < 1, but ϕ is set low enough so that the

collateral constraint binds first.
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Table 7: Long-run Moments: Sudden Stops Model

Global DynareOBC

GA βR < 1 DEIR

Mean relative to GDP

c 0.696 0.686 0.695
i 0.171 0.171 0.172
nx/y 0.015 0.027 0.015
b/y 0.015 -0.135 0.015
lev.ratio -0.102 -0.173 -0.101
υ 0.108 0.108 0.108

Standard deviation relative to GDP

σ(c)/σ(y) 1.023 0.971 0.938
σ(i)/σ(y) 3.383 3.224 3.419
σ(nx/y)/σ(y) 0.746 0.582 0.687
σ(b/y)/σ(y) 4.980 2.100 3.384
σ(lev.ratio)/σ(y) 2.340 0.979 1.570
σ(υ)/σ(y) 1.495 1.513 1.510
σ(L)/σ(y) 0.599 0.598 0.599

Correlations with GDP

ρ(y, c) 0.842 0.951 0.901
ρ(y, i) 0.641 0.685 0.641
ρ(y, nx/y) -0.117 -0.257 -0.118
ρ(y, b/y) -0.120 -0.044 -0.200
ρ(y, lev.rat.) -0.111 0.0085 -0.168
ρ(y, υ) 0.832 0.832 0.830
ρ(y, L) 0.994 0.995 0.995

First-order autocorrelations

ρ(y) 0.825 0.816 0.817
ρ(c) 0.829 0.797 0.795
ρ(i) 0.500 0.474 0.500
ρ(nx/y) 0.601 0.407 0.520
ρ(b/y) 0.990 0.978 0.985
ρ(lev.rat.) 0.992 0.986 0.990
ρ(υ) 0.777 0.769 0.772
ρ(L) 0.801 0.785 0.795

Credit constraint

Prob.(µ>0) 2.58 20.05 2.80

Performance metrics

Run time (sec) 268 244 332

Note: See note to Table 4. For theDEIR solution, we setψ = 0.004 (which ensures themodelmatches the σ(c)/σ(y)

ratio in the data when the constraint is not binding) and b∗ = −0.008 (which ensures we match E(b/y) value that

is consistent with the global approximation).
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Table 8: Collateral Constraint Multiplier, Macro & Financial Variables Conditional on µ > 0

log(µ) Financial Premia Macro variables
upper means means of deviations from long-run averages
limit mean SIP EP (1− κ)SIP RP c nx/y i y L υ

Panel a. GLB
Quintiles of µ
First -6.563 -6.941 0.32 0.37 0.26 0.10 -2.76 1.98 -1.76 -0.60 -0.26 0.35
Second -6.320 -6.428 1.07 0.96 0.85 0.11 -2.17 1.37 2.70 0.08 0.15 -1.25
Third -6.088 -6.187 1.82 1.56 1.46 0.10 -3.80 2.30 -3.00 -1.35 -0.82 -1.29
Fourth -5.843 -5.968 2.98 2.48 2.38 0.09 -4.72 2.58 -5.46 -2.26 -1.42 -3.35
Fifth -3.374 -5.636 6.59 5.38 5.27 0.10 -4.86 5.10 -13.45 -1.21 -1.37 -2.98

Overall mean -6.038 2.59 2.17 2.07 0.10 -3.64 2.64 -4.05 -1.04 -0.73 -1.78
Overall median -6.198 1.79 1.52 1.43 0.11 -3.22 1.60 -1.64 -1.02 -0.57 -2.15

Ex-post Sharpe ratio = 1.16

Panel b. DynareOBC-BetaR < 1
Quintiles of µ
First -6.930 -7.352 0.15 0.12 0.12 0.00 -3.39 1.00 -6.90 -3.00 -1.75 -3.68
Second -6.538 -6.691 0.69 0.55 0.55 0.00 -0.22 0.20 1.85 0.32 0.25 0.20
Third -6.318 -6.415 1.30 1.04 1.04 0.00 -0.44 0.20 1.33 0.09 0.08 -0.28
Fourth -6.128 -6.219 2.05 1.64 1.64 0.00 -0.45 0.30 0.96 0.15 0.06 -0.33
Fifth -5.603 -5.987 3.52 2.82 2.82 0.00 -0.65 0.50 0.13 0.04 -0.11 -0.89

Overall mean -6.343 1.54 1.23 1.23 0.00 -1.03 0.40 -0.53 -0.48 -0.29 -1.00
Overall median -6.418 1.29 1.03 1.03 0.00 -0.74 0.40 0.28 -0.19 -0.12 -0.83

Ex-post Sharpe ratio = 0.08

Panel c. DynareOBC DEIR
Quintiles of µ
First -6.818 -7.105 0.27 0.21 0.21 0.00 -1.39 1.30 2.77 0.67 0.48 0.42
Second -6.531 -6.650 0.76 0.61 0.61 0.00 -1.13 1.27 3.71 1.01 0.66 0.65
Third -6.350 -6.434 1.26 1.01 1.01 0.00 -0.92 1.23 4.51 1.28 0.80 0.87
Fourth -6.190 -6.268 1.86 1.49 1.49 0.00 -0.82 1.18 5.15 1.42 0.87 0.82
Fifth -5.785 -6.073 2.94 2.36 2.36 0.00 -0.24 1.12 6.97 2.16 1.27 2.03

Overall mean -6.386 1.42 1.14 1.14 0.00 -0.90 1.22 4.62 1.31 0.81 0.96
Overall median -6.437 1.26 1.01 1.01 0.00 -1.04 1.26 4.52 1.20 0.75 0.92

Ex-post Sharpe ratio = 0.72

Note: SIP is the Shadow interest premium, EP is the equity premium, and RP is the risk premium component of EP . The quintile distribution of µ is

conditional on µ > 0. Means for other variables are computed using the distribution of µ within each quantile and the overall distribution of µ conditional on

µ > 0. log(µ) is the base-10 logarithm of the multiplier on the collateral constraint. The moments for GA are computed using the recursive equilibrium decision

rules and ergodic distribution of the model. For EP , we compute the equity premium conditional on all date-t states (b, k, s) and then calculate the mean

from the ergodic distribution. The Sharpe ratio is computed using the conditional ergodic distribution for µ > 0. The moments for DynareOBC are ex-post

moments, computed using time-series simulation output of DynareOBC. RP is set to zero because the covariance between future equity returns and marginal

utility is zero along the perfect-foresight paths that determine each date-t solution in DynareOBC.
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Figure 1: First-order coefficient of 2OA NFA decision rule

Figure 2: Income Risk and Mean NFA in the Endowment Model
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Note: GA refers to global solution, 2OA refers to second-order solution, RSS refers to risky-steady state solution.
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Figure 3: Endowment Model Impulse Responses to a Negative Income Shock
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Note: GA, 2OA and RSS denote global, second-order and risky-steady state solutions, respectively. GA impulse
responses are forecast functions of the equilibrium Markov processes of the endogenous variables with initial
conditions set to E[b] and a value of z equal to a one-standard-deviation shock.
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