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1 Introduction

Classic theories of education markets predict that school choice can improve the allocative
efficiency of sorting students to schools (Hoxby, 2003). By improving match quality, choice
policies hold the potential to engineer improved student outcomes. Yet, existing research in
the U.S. fails to find meaningful evidence that student-school match effects exist at all (Ab-
dulkadiroğlu et al., 2020, Mountjoy and Hickman, 2020). Moreover, even substantial changes to
the choice environment can fail to produce meaningful improvements in student-school match
quality (Campos and Kearns, 2024).1

Imperfect information is a leading hypothesis that can rationalize the gap between theory
and data. Families may not know their match quality when choosing schools and only learn
gradually through trial and error (Arcidiacono et al., 2016, Larroucau and Rios, 2020). The
coronavirus disease (COVID-19) pandemic provides an unusual and unique setting in which
families were compelled to assess their relative suitability for a particular schooling option:
remote learning. Although mounting evidence shows that remote learning contributed to sizable
learning losses during the pandemic (Goldhaber et al., 2022, Jack et al., 2022, Singh et al.,
2022), school districts across the country are now planning to offer permanent, expanded remote
options to satisfy ongoing parental demand (Musaddiq et al., 2022). Recent data from the
National Center for Education Statistics (NCES) shows that current enrollment in exclusively
virtual schools has increased by roughly 65 percent nationwide relative to enrollment just prior
to the onset of the pandemic and 11 years ahead of the pre-pandemic trend. The continued
demand for remote learning underscores the need for a deeper understanding of which students
are best suited for this schooling option.

This paper studies remote learning and the allocative efficiency of students to instructional
modes in the post-pandemic environment. We focus on the second-largest school district in the
United States, the Los Angeles Unified School District (LAUSD). At the onset of the pandemic,
every student in the district had to participate in virtual learning and experienced a cycle of in-
person and remote experiences in the following year. This unusual experience allowed families
to assess their students’ relative suitability for remote learning over an extended period and
across a large spectrum of K-12 ages.2 In 2022, LAUSD returned to in-person learning as the
dominant mode of instruction but continued to offer a remote learning option that was chosen
by 14,000 students. Why did so many families continue to prefer the remote option? Evidence
on this question is scarce. Bacher-Hicks et al. (2022) find decreases in bullying during the
remote era, implying demand for safety may play a role. In a higher education context, Aucejo
et al. (2020) find substantial heterogeneity in students’ perceived remote-learning experiences,
suggesting academic success may also be a factor.

Our analysis relies on a novel survey that we designed to learn about family experiences
and preferences for remote learning. Following previous research using choice experiments to
understand preferences for workplace characteristics and flexibility (Mas and Pallais, 2017,

1Bau (2022) is an exception, providing evidence from Pakistan on the importance of match quality. Bruhn
(2019) finds substantial match effects in terms of sorting between districts.

2This cycle of remote to in-person learning in L.A. is similar to the experience of other school districts across
the U.S. (Jack et al., 2022), with perhaps a longer duration relative to other school districts in Southern California.
Our setting provides a natural context for studying ongoing selection into remote learning.
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Wiswall and Zafar, 2018), we use a series of medium-stakes hypothetical choices to experimen-
tally identify families’ preferences for the remote option. The hypothetical choices provide rich
information about how families trade off academic quality, travel time, and remote offerings
while holding remaining school attributes fixed.3

The data on parental preferences serve a dual empirical purpose. First, our main empirical
exercise leverages the preferences identified via the choice experiment to account for selection
into remote learning. Intuitively, parents with similar preferences plausibly have a similar
propensity to choose the remote option. More concretely, this strategy relies on the notion that
preference heterogeneity identified by the choice experiments is driving the selection into remote
learning. Under this assumption, we can draw from existing literature on selection corrections
built from revealed preferences to recover unbiased estimates of the causal effect of remote
learning on student outcomes (e.g., Dale and Krueger, 2002, Einav et al., 2022, Heckman, 1979,
Kline and Walters, 2016, Mountjoy and Hickman, 2020, Otero et al., 2021, Rosembaum and
Rubin, 1983). Our approach differs in that our preference estimates come from experimental
data rather than observed choices. In other words, existing approaches use observed choices to
characterize selection, while we use an experimental approach that predict choices and char-
acterizes selection. The experimental nature of our approach proves to be theoretically and
empirically important, with the intuition being that observational approaches are unable to
adequately identify agents’ implicit marginal rates of substitution that govern choices. This
approach also relies on slightly less stringent parametric assumptions. The preference estimates
also serve as an important measure of demand. This allows us to explore the nature of selection
on levels versus gains in the spirit of Roy (1951) by asking if families with stronger preferences
for the remote option experience greater causal benefits.

Our analysis of the remote-learning survey data begins with a basic descriptive analysis of
parental experiences and demand for remote learning. Although most respondents report having
a negative experience with remote learning during the pandemic, one-third want expanded
remote offerings, and a quarter expect to enroll their children in remote learning in the future.
Moreover, 20 percent feel their children excelled in remote learning relative to traditional,
in-person instruction. These findings suggest there is substantial scope for permanent, post-
pandemic remote offerings to generate improvements in match quality.

Hypothetical choice data allow us to move beyond descriptive facts and experimentally iden-
tify family-specific preference estimates. Consistent with previous literature spanning several
countries, we find that families have tastes for academic quality and distaste for distance (Ab-
dulkadiroğlu et al., 2020, Ainsworth et al., 2023, Allende, 2019, Beuermann et al., 2022, Burgess
et al., 2015, Campos and Kearns, 2024, Neilson, 2021). Unsurprisingly, the average family has
a strong distaste for remote learning: they would need to be compensated with a 40 percentage
point increase in academic standards to be indifferent between remote and in-person offerings.
Reassuringly, we do not find a distaste for remote learning among families currently enrolled
in remote offerings or among those who indicated they anticipate doing so in the future. We
find modest evidence of remote learning preference heterogeneity in terms of race and baseline

3Prior work finds that preference estimates from similar experiments contain a high degree of external validity
(Wiswall and Zafar, 2018).
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achievement. Baseline bullying outcomes—measured in a separate, annual school experience
survey that we link to our conjoint data—are suggestively most predictive of higher demand for
remote learning, with heavily bullied students requiring less compensation to switch to remote
schooling. Overall, our survey analysis provides the first rigorous evidence of families’ varying
tastes for remote learning in the post-pandemic landscape.

Next, we use our experimentally derived preference estimates to explore selection into re-
mote learning and the subsequent impact on outcomes. The conceptual framework that we
propose considers selection bias governed by students’ preferences for remote learning that we
estimate directly using our choice experiments. Our preferred approach follows the spirit of
Rosembaum and Rubin (1983) and accounts for selection bias in the impact of remote learning
by conditioning on propensity scores implied by the experimental preference estimates. This
strategy balances baseline measures of achievement, non-cognitive outcomes (i.e., grit and bul-
lying), and a summary index of student characteristics. We show that simply conditioning on
a rich set of covariates alone does not achieve balance on baseline measures.

In terms of causal impacts, we estimate important impacts on both cognitive and non-
cognitive outcomes on average. For reading and math, we find average remote-learning effects
of −0.13σ and −0.14σ, respectively. These estimates differ substantively from the results from
simple models: regression adjustment with lagged achievement and standard covariates gen-
erates estimates ranging between −0.23σ and −0.26σ. For an index measure of bullying, the
average treatment effect is 0.17σ, which represents a substantial improvement in a non-cognitive
domain.

Our results provide the first comprehensive evidence regarding the causal impacts of remote
learning on both cognitive and non-cognitive domains in the post-pandemic landscape. The
pattern of results suggests that non-cognitive benefits may serve as a compensating differential
for negative learning effects and thereby explain (in part) why parental demand for remote
instruction remains high despite mounting evidence that it causes test scores to decline for the
average student (Bueno, 2020, Goldhaber et al., 2022, Jack et al., 2022, Singh et al., 2022).

To further assess the scope for compensating differentials in remote schooling choices, we
estimate models that identify heterogeneous treatment effects with respect to our experimentally
identified preferences. We find evidence of negative selection on achievement levels, indicating
that students with high demand for remote learning perform poorly regardless of the school
in which they enroll. In contrast, our analysis also finds evidence of positive selection on
gains, suggesting families choose remote learning, at least partly, using factors that correlate
with their child’s suitability for remote instruction. This has important policy implications
for understanding the efficiency of ongoing efforts to expand remote offerings. Taking our
extrapolation at face value implies that students above the 90th percentile of remote-learning
proclivity fared no worse in remote instruction, while those at the 95th percentile and above-
experienced improvements of at least 0.04 − 0.07σ. As for bullying, we also find a negative
selection on levels, indicating that those with the strongest preferences for remote learning
tend to have the worst bullying-related outcomes at any school they attend, corroborating the
experimental preference estimates shown in Appendix Figure A.4. Selection on gains is modest
for bullying, revealing an across-the-board improvement in bullying outcomes for students who
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select into remote learning modality. These improvements exist for both in-person and online
bullying, revealing that schooling environment affects students’ well-being both at school and
at home.

In sum, the heterogeneity analysis underscores the tradeoff families face when choosing
between remote and in-person modalities. Some families appear willing to forego short-run
achievement gains in exchange for guaranteed improvements in bullying-related outcomes. Fam-
ilies with the largest tastes for remote learning experience improvements along both margins.
These findings suggest that prior estimates of the impact of remote learning during the pan-
demic may not accurately predict the future effects that expanded remote offerings could have
on the students who opt in and show that bullying-related considerations are an important
factor that families consider.

We provide several key pieces of evidence supporting the causal interpretation of our results
that also add credibility to our new empirical framework. First, we replicate our analysis using
observational preference estimates and are unable to balance lagged achievement. This empha-
sizes that the balancing nature of our approach is not a spurious consequence of linking any
choice data to the reduced-form approach and underscores the importance of choice experiments
as a method to learn about unobservable preference heterogeneity. Second, we show that our
estimates are robust to alternative parameterizations of the underlying choice model. Third, we
adopt empirical approaches that account for selection on unobserved preference heterogeneity
(Abdulkadiroğlu et al., 2020) and find qualitatively similar evidence, assuaging concerns about
selection on unobserved dimensions. Fourth, and most importantly, we validate our empirical
approach with quasi-experimental lottery variation available for numerous choice program of-
ferings in LAUSD. We fail to reject that our estimates are forecast unbiased, which is reassuring
evidence that choice experiments adequately characterize selection into learning modality.

This paper contributes to four broad literature. First, a nascent but growing literature has
focused on estimating the effects of remote or virtual learning. Bueno (2020) finds substantial
negative effects of remote learning in the pre-pandemic era but also documents negative trends
before the switch to remote. More recent evidence estimates remote-learning effects during
the pandemic, reaching a consensus that the pandemic caused sizable learning loss (Goldhaber
et al., 2022, Jack et al., 2022, Singh et al., 2022). Jack et al. (2022) and Goldhaber et al.
(2022) emphasize that remote-learning offerings exacerbated learning loss relative to in-person
schools and districts. Our paper looks ahead and considers the post-pandemic landscape and
the implications of expanded remote offerings on the selected group of families freely opting into
remote schooling. To that end, we provide evidence about how the expansion and persistence
of remote learning can affect educational inequality and efficiency.

The second strand of literature we contribute to studies match effects in the context of K-12
schooling and higher education. The notion of academic mismatch has received considerable
attention in the related affirmative action literature, with some evidence pointing to potential
efficiency losses (Arcidiacono et al., 2016, Dillon and Smith, 2020) and more recent evidence
pointing to the opposite (Bleemer, 2021, 2022, Otero et al., 2021). Student-school match qual-
ity has been more elusive in the K-12 space, with some evidence suggesting the importance of
match quality based on observables (Bau, 2022, Bruhn, 2019) and some suggesting the contrary
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(Campos and Kearns, 2024). Other papers focus on match effects after accounting for prefer-
ences and tend to find weak evidence of match quality (Abdulkadiroğlu et al., 2020, Mountjoy
and Hickman, 2020). We complement this literature by collecting preference data and link-
ing preference estimates to reduced-form approaches to assess the empirical relevance of match
quality and add to the growing body of evidence.

Our third contribution is to an emerging literature demonstrating the educational production
function is multidimensional (Beuermann et al., 2022, Campos and Kearns, 2024, Jackson,
2018, Jackson et al., 2020, Rose et al., 2022). These papers find that schools and teachers
impact both cognitive and non-cognitive domains. We contribute to this literature by providing
additional evidence demonstrating that learning modality, implicitly a schooling choice, affects
achievement, bullying, and measures of student-level grit. Our holistic approach to evaluating
the effects of remote learning demonstrates that students sort along these various dimensions
in anticipation of gains, evidence consistent with multivariate Roy-style selection.

Fourth, an extensive literature has linked choice models to treatment effect estimation
(Heckman, 1979, Heckman et al., 2006), and more recent advances leverage information on
rank-ordered lists to account for selection bias (Abdulkadiroğlu et al., 2020, Einav et al., 2022,
Otero et al., 2021). Our approach is similar but uses preferences derived from choice exper-
iments instead of observed choices to characterize selection into program participation. This
extends to canonical work in economics that has used hypothetical choice surveys to learn
about preferences for workplace characteristics and flexibility (Mas and Pallais, 2017, Wiswall
and Zafar, 2018). In that sense, we create an avenue for future work by bridging these two
seemingly disconnected literatures and providing a validated empirical tool for general program
evaluation.

The rest of this paper is organized as follows. In Section 2 we provide evidence highlighting
the policy relevance of remote learning, institutional details and describe our administrative
data. Section 3 discusses the survey data we collect along with experimental evidence regarding
the demand for remote learning in the post-pandemic landscape. Sections 4 and 5 discuss our
novel empirical strategy and provide details of estimation, respectively. Section 6 presents the
main results and Section 7 concludes.

2 Background and Data

The pandemic compelled all families to at least temporarily adopt remote schooling. Existing
studies have shown that the disruption in learning modality has produced long-lasting changes
to enrollment trends with increases in private and homeschooling (Bacher-Hicks et al., 2023,
Musaddiq et al., 2022). A simultaneous and less-documented change in enrollment relates to
remote schooling. In this section, we discuss national remote schooling trends, then zoom in on
Los Angeles, and conclude with a discussion of the administrative data that we use.

2.1 Remote Schooling from a National Perspective

The pandemic allows us to separate remote schooling into three distinct periods. The first
corresponds to the pre-pandemic years, which have been the subject of numerous studies. These
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studies focus on the effectiveness of virtual schools, all mostly finding negative selection into
remote schooling and evidence of negative causal effects (Bueno, 2020, Cordes, 2023, Erickson
and Scriber, 2023, Kingsbury et al., 2022, Paul and Wolf, 2020). The second period corresponds
to the pandemic years when families were compelled to adopt virtual schooling over varying
durations. The research on this period emphasizes the learning losses induced by extended
periods of remote instruction (Goldhaber et al., 2022, Jack et al., 2022). Although this period
led to substantial learning loss with dire implications, it also compelled families to learn about
their relative suitability for a learning modality they may not have otherwise tried. This forced
learning may partly explain the sharp rise in virtual schooling in the post-pandemic landscape
that we now turn to.

Remote enrollment was on the rise in the years leading into the pandemic, increasing by
roughly 51 percent between 2015 and 2019. The pandemic accelerated the growth substantially.
Figure 1 shows that the number of students enrolled in exclusively virtual schools has more than
doubled relative to 2015, a clear break from the pre-pandemic trend. The most recent enrollment
numbers are 11 years higher than what a linear extrapolation based on the pre-pandemic trend
would predict.

The national trends show a sizable disruption to remote-schooling trends but also mask
substantial heterogeneity. Appendix Figure B.1 demonstrates that ten percent of states have
remote enrollment shares greater than 3.5 percent in 2023. Oklahoma, Idaho, and Oregon
are states with the largest remote schooling shares, with enrollment shares of 5, 5, and 3.5
percent, respectively. This is slightly below these states’ overall private school shares of 5,
6, and 7 percent, respectively (National Center for Education Statistics, 2024). The recent
enrollment numbers are a product of sizable shifts in enrollment patterns (Bacher-Hicks et
al., 2023, Musaddiq et al., 2022). States such as Nebraska, Tennessee, Florida, Alabama, and
North Carolina stand out as states with at least 150% increases in remote enrollment shares (see
Appendix Figure B.2). These magnitudes are much larger than recent documented increases in
homeschooling rates around the United States, which appear to be less correlated with changes
in remote schooling trends (see Appendix Figure B.3 and Appendix Figure B.4).

In terms of our setting of California, the data show that 2.1 percent of students in the public
sector enrolled in remote schooling in 2023. This places California as the state with the 9th
largest virtual schooling share. Families in Los Angeles have expressed and continue to express
persistent demand for remote learning above state-level averages.

2.2 Remote Schooling in Los Angeles

As in most U.S. school districts at the onset of the pandemic, the LAUSD closed their schools
and transitioned to remote learning on March 19, 2020. To buffer the shock, swift actions
were taken by creating online videos, coordinating meal distribution, distributing laptops and
tablets, and using private donations to provide broadband access and equipment for students.
Students remained at home for the rest of the academic year.

The following academic year (2020–2021) started virtually, with a schedule that included
daily interactions between teachers and students. While in-person tutoring services were offered,
their provision ebbed and flowed with each COVID wave. LAUSD schools remained closed until
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the week of April 19, when a staggered reopening commenced, and students slowly returned to
in-person schooling, with some caveats. Elementary schools offered classes in three-hour blocks
and adult supervision when students were not in classes. Middle and high school students
reported to campus on alternating days, with similar adult supervision provided. Families had
the option to continue with remote learning.

The LAUSD’s response to the pandemic meant that, for roughly one year, students in
the district remained at home and received instruction virtually. Anecdotal evidence suggests
most families disliked the online experience, and mounting evidence suggests this contributed
negatively to student learning.4 However, there is also evidence that suggests some subset of
families may have preferred remote learning. For example, bullied students may excel without
the mental health costs incurred from in-person schooling (Bacher-Hicks et al., 2022), and others
may benefit from learning at their own pace and reduced disruption (Armstrong-Mensah et al.,
2020).5 This unusual experience provided families and students ample time to assess their
relative suitability for remote learning.

LAUSD returned to full in-person learning for the 2021–2022 academic year.6 To accom-
modate a sizable share of families who continued to prefer remote learning, the district did not
make in-person learning mandatory and created a new online option called the City of Angels.
This option offered self-paced learning with regular interactions with virtual instructors and the
opportunity to receive in-person tutoring. Remote students could transition to in-person learn-
ing at any time. We focus on the cohort 2021–2022 students who could self-select into remote
offerings. These students had at least one year to adapt to remote instruction and assess their
own relative suitability for remote learning.

2.3 Data

Our analysis uses two sources of administrative LAUSD data linked to survey data that we col-
lect. The first source of administrative data is standard, containing student-level demographics,
test scores, and residential addresses. Our analysis uses 2018–2019 test scores as baseline mea-
sures of lagged achievement and relies on 2021–2022 scores as outcomes.7 The second source of
administrative data comes from the School Experience Survey (SES) that LAUSD has adminis-
tered to all students in the district since 2010. These data contain rich information on students’
non-cognitive and socio-emotional outcomes related to bullying and standard measures such as
grit (Jackson et al., 2020). We use these data to create index outcomes for our analysis where
the definition of the non-cognitive outcomes follows Jackson et al. (2020) and Campos (2023).8

Table 1 provides summary statistics for in-person and remote students in 2022 in Columns 1
and 2. Remote students performed significantly worse on standardized exams in 2019, ranging

4For example, Williams (2022) discusses student and parental frustration with remote schooling.
5Media accounts also testified to remote-learning benefits for some students (Harris, 2020).
6California mandated that all school districts had to offer a remote option during 2021–2022 due to COVID-

19-related concerns.
7The district did not administer standardized tests during the 2019-2020 pandemic year or the subsequent

year.
8Our analysis focuses on index measures of bullying and grit. Using the Student Experience Survey data, the

bullying and grit indices are based on 8 and 13 questions, respectively. We standardize each question associated
with the respective indices and sum the normalized values. Higher values of the indices indicate that students
are bullied less or have more grit. See Campos (2023) for additional details related to the index creation.
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between 0.24−0.32σ lower baseline test scores (see Column 3). Remote students also have worse
measured socio-emotional index outcomes at baseline, including school connectedness, grit, and
bullying. Bacher-Hicks et al. (2022) argue that changes in bullying during the pandemic partly
explain the mixed evidence surrounding the pandemic’s effect on students’ mental health and
well-being. In our setting, it seems that students who were bullied at higher rates pre-pandemic
are more likely to stay in remote schooling post-pandemic. Remote students are also more likely
to be female, under-represented minorities, and more likely to have a special education status.
They are less likely to be classified as English learners, while their low-income status is similar
to that of in-person students in the district.

Our key data innovation is a survey of a sample of parents with LAUSD students enrolled in
grades 3–8 and grade 11 in April 2022. Appendix Section A.1 reproduces the survey instrument.
Invitations for the survey were distributed to a random sample of 100,000 families through
LAUSD’s internal communications system. Because messaging was on behalf of the district,
incentives were forbidden; however, families were informed that their responses could affect
future policy decisions by the district.

The survey had two primary sections. The first section quantified experiences and percep-
tions about remote learning through basic descriptive questions. The second section measured
preferences through a series of hypothetical choice experiments that were similar to those used
in other settings (Mas and Pallais, 2017, Moshary et al., 2022, Wiswall and Zafar, 2018). In
the hypothetical choices, parents trade off between preferences for academic quality, distance,
and remote learning while holding all other attributes fixed. Section 3 provides further details
on the preference measures, and Section 4 discusses how we use the estimated preferences as an
input for our empirical strategy. A sample of 3,539 parents completed the basic descriptive sur-
vey questions, and 1,171 parents completed the hypothetical choice component. Respondents
consented to have their responses linked to administrative records.

3 Survey Evidence

3.1 Characteristics of Survey and Conjoint Respondents

Columns 4 and 5 of Table 1 report average student characteristics of all survey and conjoint
respondents, respectively. Survey respondents noticeably differ from the typical student in
LAUSD in several important dimensions.9 Families who initiated the survey have students
performing above district averages, roughly 17–19 percent of a standard deviation. Notably, the
academic differences are larger for the subset of families who completed the hypothetical choice
questions. These respondents are also less likely to be classified as URM, special education, or
English Learner students.

3.1.1 External Validity and the Conjoint Sample

The discrepancy between our survey sample and the average LAUSD student documented in
Table 1 suggests that the interpretation of any analysis based on our survey may lack a broad

9These differences do not appear to be driven by geographic differences in response rates. Appendix Figure
A.1 shows that respondents represent all school district regions.
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claim to external validity. For example, it could be that the students whose families were
more likely to complete the survey were also the types of students who benefit from remote
instruction. In that case, using empirical findings from the highly selected conjoint sample to
make general claims about the nature of remote learning could be misleading.

We address this key issue in four ways. First, as we will discuss in Section 5, our preferred
econometric model uses covariates to extrapolate preferences from the conjoint sample to a
more representative sample of LAUSD students. This kind of extrapolation is common across
a large body of work in the school choice literature (Fack et al., 2019, Otero et al., 2021).
Thus, our preferred causal analysis is based on a much broader, more representative sample.
Second, we show in Section 6.4.5 that the estimates from our preferred model accurately predict
the real-world remote learning take-up behavior of the students not contained in our conjoint
sample. This suggests that the estimates from our preferred model are externally valid predictors
for treatment take-up. Third and finally, Section 6.4.1 provides results based on school choice
lotteries that verify that the predicted causal effects of remote learning from our preferred model
are forecast unbiased for lottery-based causal effects on the larger, more representative sample
of students that were not contained in the conjoint. This suggests that the estimates from our
preferred model are also externally valid predictors of treatment effects on the non-conjoint
sample. Thus, while the summary statistics discussed earlier suggest that external validity
is a potential issue, the data provide strong evidence that this issue is not severe enough to
undermine the key conclusions of our paper.

3.2 Descriptive Evidence

Our descriptive analysis focuses on responses to four statements on experiences and future
demand for remote learning. Figure 2 illustrates the results by reporting the mean rates of
disagreement (maroon) and agreement (black) for each statement. The results reveal two main
findings. First, most respondents had negative experiences with remote learning during the
2021 academic year when LAUSD was fully remote. For example, 62 percent disagreed with
the statement that their child enjoyed remote learning. These results are broadly consistent
with other research that suggests students struggled with virtual schooling during the pandemic
(Goldhaber et al., 2022, Jack et al., 2022, Loades et al., 2020). Second, a substantial fraction
of respondents reported having positive experiences with remote learning. Most notably, 22
percent reported that their child excelled in remote learning. Among the survey respondents
whose children are currently in remote learning, many cited academic factors as their reasons for
selecting this modality (see Appendix Figure A.2). These findings highlight the possibility that
the remote learning experience may have improved families’ knowledge of their match quality.

3.3 Experimental Preference Estimates

We experimentally identify preferences using hypothetical choices. Each respondent is sequen-
tially presented with K = 10 hypothetical choices, each involving three schooling options.
Within each option, we randomized three school attributes: distance, peer achievement, and in-
struction mode (remote versus in person). As is standard with this approach, the survey stated
that respondents should believe that the schooling options in each hypothetical were identical
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in terms of remaining (unspecified) schooling characteristics. The survey also attempted to
shape respondent beliefs over safety by instructing them to make choices while assuming that
pandemic-related safety conditions were at levels observed before the pandemic in 2019. Con-
sistent with parents following this instruction, Appendix Section E shows that survey responses
do not vary with local Covid-related conditions, outcomes, and predictors.

Our survey allows us to estimate a standard discrete choice model of schools using exper-
imental data. Formally, our estimates are based on a model that assumes student i’s indirect
utility of enrolling in schooling option j is:

Uij = Vij + εij ,

where Vij is the observable component of indirect utility and the term εij captures any remain-
ing unobserved preference heterogeneity. Informed by a robust empirical school choice literature
(Abdulkadiroğlu et al., 2020, Allende, 2019, Beuermann et al., 2022, Burgess et al., 2015, Cam-
pos and Kearns, 2024, Hastings et al., 2005, Neilson, 2021), we let the observable component of
indirect utility be given by:

Vij = ωQQj + ωRRemotej + ωddij , (1)

where Qj is academic quality of school option j, Remotej is a remote schooling indicator, dij

is travel time (set to 0 for remote learning), and εij are idiosyncratic preferences for schooling
option j. A logit distributional assumption on εij allows us to estimate the preference parameters
using an exploded logit framework (Hastings et al., 2005).

Figure 3a reports estimated mean willingness to travel estimates inferred from the choice
experiments (i.e., -ωQ/ωd). The average family is willing to travel an additional 13 minutes to
enroll their children in a school with a 10 percentage point higher achievement rate. We find
limited heterogeneity based on student grade level. Reassuringly, families currently in remote
offerings or with plans to enroll in them have a lower willingness to travel for higher academic
quality.

Figure 3b extends our analysis by showing the estimated achievement compensation needed
to be indifferent between in-person and remote schooling (i.e., -ωR/ωQ). The average family
would need to be compensated with a 42 percentage point higher achievement rate to be indif-
ferent between in person and remote, implying that the average family has a strong distaste for
remote learning. Importantly, we find that families currently in remote learning or those with
plans to enroll in the future do not need such compensation, suggesting the survey responses
contain an informative signal about preferences for remote instruction.

Appendix Figure A.3 and Appendix Figure A.4 shed further light on preference heterogene-
ity. Focusing on Appendix Figure A.3, Panel (a) demonstrates that families with lower-achieving
students are willing to travel twice as long as families with higher-achieving students for higher-
quality schools. We also find some evidence that Black families have stronger preferences for
academic quality. This mirrors findings in Jacob and Lefgren (2007) that lower-income families
have stronger tastes for academic quality. Panel (b) demonstrates similar preference hetero-
geneity for remote learning modality. A family with a lower-achieving student or a Black family
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needs to be compensated with a 20 percentage point increase in academic proficiency to switch
to remote, while the average family in the district needs a 42 percentage point compensation.
White families require an approximately 60 percentage point compensation to switch. The
preference heterogeneity motivates our parameterization of demand in subsequent sections.

Finally, Appendix Figure A.4 demonstrates that families with students whose baseline bul-
lying outcomes are worse (i.e., in the bottom two quartiles of the index measure) have stronger
tastes for remote learning. The compensation that they require to be indifferent between in-
person and remote schooling is roughly two-thirds that of families with students in the top two
quartiles of the baseline bullying distribution.

4 Conceptual Framework

Our focus is estimating heterogeneous remote-learning effects and studying how selection pat-
terns map to them. The analytic framework is based on linking a discrete choice model to
a potential outcomes model. Below we detail this framework by beginning with a potential
outcome model.

We index a population of students by i, each of whom either attends school in person or
remotely, which we denote using an indicator as Di = 0 and Di = 1, respectively. We project
an outcome Yi onto a vector of observable characteristics, Xi, and the remote indicator using
the following specification:

Yi = α+X ′
iγ + βDi + ui,

where ui is an error term that captures family inputs and other unobserved determinants of
achievement. Of course, a key concern is that observational estimates of β may be biased because
remote-learning participation is correlated with unobservable factors (i.e., E[ui|Di] ̸= 0). We
now discuss an approach that allows us to move toward the causal parameters of interest and
to study patterns of selection into remote learning.

Our primary empirical strategy leverages rich preference information from the survey to
account for selection into remote schooling. Intuitively, conditioning on the experimentally
identified preferences allows us to compare two families who have a similar propensity to take
up the remote option, with causal identification following from the logic of Rosembaum and
Rubin (1983). Formally, our approach builds on Equation 1 and the associated distributional
assumptions by assuming there are two schooling options, in-person j = 0 or remote schooling
j = 1, and making the normalization Vi0 = 0. Therefore, the indirect utility of remote learning
relative to in-person schooling can be compactly represented as:

ui = vi + εi,

where ui = Ui1 − Ui0, vi = Vi1 − Vi0, and εi = εi1 − εi0. With this framework, we can state our
first key assumption:

Assumption 1. Given that selection into treatment is governed by vi, we assume that:

ui ⊥ Di | vi.
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In general, observing the latent systematic component of indirect utility that governs selec-
tion into treatment is not possible. The choice experiments allow us to characterize this utility
in flexible ways. The most flexible approach is to randomly vary a numeraire across choice trials
with a remote and in-person option, which would identify vi flexibly. Such an approach would
require dozens of choice trials and induce survey fatigue, so an alternative approach is to use
theoretically guided decisions to characterize vi.

In the context of school choice, there is a robust literature documenting the importance of
distance and academic quality for schooling decisions (e.g., Agarwal and Somaini, 2020, Allende,
2019, Hastings et al., 2005, Neilson, 2021, Park and Hahm, 2023). To a first approximation,
these attributes are sufficient statistics for numerous other attributes that may be important
for schooling decisions. Therefore, projecting vi onto academic quality, distance, and a remote
shifter is the first step in characterizing vi. The second step, which underscores the importance
of the choice experiments, is identifying the right balancing weights that pin down vi for each
respondent i. Failure to identify the right balancing weights implicitly recovers an estimate of
vi that misspecifies the implicit marginal rates of substitution between the numerous attributes
individuals consider when making decisions. This misspecification will be unable to produce an
estimate of vi that can satisfy the balance condition in Assumption 1. The choice experiments
allow us to learn about a fundamental unobservable that characterizes selection. This intuition
is formalized into the following assumption.

Assumption 2. Let zj correspond to a vector of school option covariates, and let ωi correspond
to the causal vector governing the marginal rates of substitution implicit in choices. Formally,
we assume:

ui ⊥ Di | vi = v(zj , ωi)

Assumption 2 allows us to map observable choice-level attributes zj to an unobservable vi

with the aid of choice experiments that identify the right balancing weights implicit in choices,
ωi. Note that observational estimates of ωi or simply conditioning on zj would be insufficient
as that does not adequately characterize behavior. For example, two individuals may have
identical values zj but have different marginal rates of substitution between them, so holding
zj constant is not enough to characterize selection into treatment, determined by the composite
vi = v(zj , ωi). Similarly, observational estimates of ωi could be confounded, and combining
these measures with zj would not be sufficient characterize vi.

With experimentally identified ωi, we can summarize individual’s proclivity to self-select
into treatment with the implied propensity score:

P (vi) = exp(vi)
1 + exp(vi)

.

For our analysis of student achievement and non-cognitive outcomes, the propensity score
summarizing parental preferences serves two purposes. First, as Assumption 2 states, condi-
tioning on the systematic component of preferences accounts for selection into remote-schooling.
Second, the propensity score serves as a measure of “preference intensity” that allows us to char-
acterize how selection into remote learning governs treatment effect heterogeneity. Specifically,
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we assume the following model of achievement that allows for heterogeneous effects:

E[Yi|Xi, Di, P (vi)] = α+X ′
iγ + βDi + θP (vi) + ψP (vi) ×Di. (2)

This approach has connections to the causal framework proposed by Rosembaum and Rubin
(1983). If the experimentally identified preferences govern selection into treatment, then causal
estimates follow from conditioning on the implied propensity score. Equation 2 assumes a linear
relationship between the observable preference heterogeneity and potential outcomes, enabling
an analysis of selection patterns in a similar spirit as Kline and Walters (2016), Abdulkadiroğlu
et al. (2020), Otero et al. (2021), and Einav et al. (2022). For example, θ governs selection on
levels, and ψ governs selection on gains, where θ > 0 indicates that students with high tastes
for remote learning do well regardless of the school they enroll in, while ψ > 0 indicates that
those enrolling in remote options do better remotely rather than in person.

5 Empirical Methods

Our goal is to use choice experiments to help characterize selection into treatment. Therefore,
we must first estimate preferences derived from the hypothetical choice experiments and use
these estimates to construct estimates of vi and P (vi). Given the selected response rates we
observe, we adopt an extrapolation procedure to ensure coverage for the entire sample. We
conduct a series of validation exercises and robustness checks to provide reassuring evidence
supporting our empirical approach.

5.1 Estimating Preferences

As described above, we use choice experiments to obtain credible preference estimates for the
subset of students with parents who completed our survey. To maximize statistical power,
we use the full sample of LAUSD students in our analysis. As highlighted by Table 1, one
challenge with this approach is that our sample of LAUSD respondents differs from the general
population of LAUSD students. To ensure that the preference estimates are representative,
we use an extrapolation approach that assumes preferences vary flexibly with baseline student
characteristics.10

Formally, our extrapolation approach assumes that a student’s indirect utility over schooling
choices takes the form:

Uij = ωQc(Xi)Qj + ωRc(Xi)Remotej + ωdc(Xi)dij︸ ︷︷ ︸
Vij

+εij , (3)

where the parameters ωQc(Xi), ωRc(Xi), and ωdc(Xi) are allowed to vary flexibly by covariate
cells, c(Xi), defined by a combination of baseline achievement, poverty status, URM status, and

10The results based on only students who participated in the survey are qualitatively similar to our headline
estimates but are not estimated precisely. Appendix Figure C.4 shows that our preferred estimates based on
the extrapolation method lie within the confidence intervals of estimates using only the conjoint sample. Our
preferred estimates are more conservative in magnitude and qualitatively similar across the propensity score
distribution.
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district code. This approach to modeling preference heterogeneity is similar to Abdulkadiroğlu
et al. (2020) but is more limited due to the cell structure we assume. Preference extrapolation
is common in the empirical school choice literature. For example, estimation procedures that
rely on stability properties of centralized matches (Fack et al., 2019) require an extrapolation
of preferences of individuals with larger feasible choice sets to those with smaller choice sets
(Agarwal and Somaini, 2020). Equipped with these extrapolated preferences, there is precedent
in using these within-cell extrapolated preferences inferred from observed choices to construct
control functions to characterize selection into treatment (Abdulkadiroğlu et al., 2020, Otero
et al., 2021). Our approach is similar but instead uses choice experiments to help predict
choices that subsequently characterize selection into treatment, bridging literature using choice
experiments to better understand demand (Mas and Pallais, 2017, Wiswall and Zafar, 2018)
and literature using observed choices to characterize selection (Abdulkadiroğlu et al., 2020,
Heckman, 1979).

Our estimation procedure aggregates across many hypothetical choices for each decision
maker, so we now establish some notation. For each respondent i, we observe ten rank-ordered
lists (ROLs) with three options. We denote the ROLs as Rik = (Ri1k, Ri2k, Ri3k) and collec-
tion of ROLs for individual i as Ri = (Ri1, · · · , Ri10). Similarly, let the vectors of attributes
associated with each option across individual i’s choices be denoted as Qi = (Qi1, · · · , Qi10),
di = (di1, · · · , di10), and Remotei = (Remotei1, · · · , Remotei10), where Qik = (Qi1k, Qi2k, Qi3k)
corresponds to the random vector of quality attributes associated with each option that partic-
ipant i observed in hypothetical choice k; dik and Remoteik are defined similarly.

Given the maintained assumption that εij is a Type I extreme value, independent across op-
tions, and independent across choice experiments, the likelihood function for a given individual
i can be written as:

L(Ri|Qi, Remotei, di, Xi) =
10∏

k=1

exp(ViRi1k
)∑

m∈{Ri1k,Ri2k,Ri3k} exp(Vim)
exp(ViRi2k

)∑
m∈{Ri2k,Ri3k} exp(Vim) .

We aggregate across individuals and estimate preference models separately for each covariate
cell, c(Xi), via maximum likelihood and obtain a vector of coefficients, (ωQc(Xi), ωRc(Xi), ωdc(Xi))
for each cell c. The estimated vector of coefficients is instrumental in characterizing vi and P (vi)
that we discuss next.

5.2 Propensity Score Estimates

To obtain propensity scores, we use estimates of ωQc(Xi), ωRc(Xi), and ωdc(Xi) to compute an
implied student-specific vi. To do this, we posit a choice each student makes between enrolling
in their neighborhood school and enrolling in the remote option. Viewed from this perspective,
we have the following model:

vi = ωRc(Xi) + ωQc(Xi)Qj(i) − ωdc(Xi)dj(i),

where Qj(i) is achievement at the remote option relative to student i’s neighborhood school and
dj(i) is the travel time to student i’s neighborhood school. Equipped with experimental esti-
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mates of the preference parameters and student-specific relative choice attributes, the implied
propensity score is P̂ (vi). Appendix Table A.1 reports summary statistics for the preference
estimates.

How accurate are the estimated propensity scores? Later in Section 6.4.5, we provide a
number of robustness checks meant to probe their validity. Intuitively, if the propensity score
estimates are correct, then they should replicate the observed average likelihood that individual
students in our data, even those not contained in our conjoint sample, actually take up the
remote option. Reassuringly, we find that the estimated propensity scores are, in fact, highly
predictive of real-world choice behavior.

5.3 Empirical Specification

Our causal analysis focuses on the following empirical specification for a cognitive or non-
cognitive outcome Yi:

Yi = αc + γ′Xi + βDi + θP̂ (vi) + ψP̂ (vi) ×Di + ei, (4)

which augments Equation 2 by including covariate cell fixed effects αc and a vector of remaining
mean zero baseline characteristic controls Xi. The covariate cell fixed effects are necessary to
ensure that the variation in the propensity score leveraged for identification is driven entirely by
the way students trade-off academic achievement and travel time as implied by the preferences
estimated in the conjoint, and not from differences in the estimated preferences across students
with different characteristics. The latter source of variation will be mechanically related to
the student level characteristics used for extrapolation and hence could create an avenue for
confounding, which we avoid by including cell fixed effects. We report robust standard errors
clustered at the school level to account for correlation within schools.

A key component of our analysis centers on β, the average causal effect of remote learning.
To interpret estimates from Equation 4 as causal, identification relies on the idea that students
who do and do not enroll in remote learning have similar unobservables after controlling for
factors that drive selection into this learning mode using our propensity scores.

5.4 Balance Tests and Validity

This section provides an initial test of the validity of our empirical approach by assessing the bal-
ance on baseline student characteristics using our propensity-score based method.11 Specifically,
we use measures of lagged academic achievement as dependent variables in specifications based
on Equation 4. Panel (a) of Figure 4 reports estimates of the coefficient on a remote-learning
indicator from these balance tests.

As a benchmark, our balance assessment begins with results on the first three black bars,
which show that conditioning on a rich set of covariates commonly used in the teacher and
school value-added literature (Koedel and Rockoff, 2015) does not balance lagged ELA or math
achievement. We also construct a covariate index by projecting math scores onto a vector of
student characteristics including lagged test scores and grade indicators. The differences are

11We defer discussion of additional exercises to test the validity of our empirical approach to Section 6.4.
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sizable and range between 14 and 20 percent of a standard deviation. We also consider two
non-cognitive outcomes, bullying and grit, both summarized by the indices we constructed from
student survey data. Baseline balance tests that do not condition on our experimental preference
estimates also fail for the two non-cognitive outcomes, showing that students self-selecting into
the remote sector tend to have worse bullying outcomes and lower measures of grit.

In contrast, the results in the gray bars show that the propensity score strategy strongly
eliminates differences in baseline achievement between students who do and do not enroll in
remote learning. In addition to lagged achievement, tests for balance using the index discussed
above are also strongly balanced using the propensity score approach. We also show that our
experimental preference estimates balance bullying and grit. The ability to balance lagged
achievement, a rich covariate index, and two unrelated non-cognitive outcomes is reassuring
from a causal perspective (Rosembaum and Rubin, 1983).

Notably, the ability to achieve balance appears to be unique to the experimental estimates.
In Appendix Figure C.3, we show results that rely on propensity scores estimated using an
observational approach rather than our survey data. When using the observationally estimated
propensity scores, the resulting balance tests fail. This lack of balance using observational
methods emphasizes the importance of the experimental preference estimates in our empirical
strategy, formally outlined in Assumption 2. The economic intuition for these contrasting
findings is that the experimental estimates allow us to effectively pin down the marginal rates
of substitution that govern choice behavior and more effectively characterize or learn about vi

through the experimentally identified ωi.

6 Main Results

We provide a comprehensive assessment of remote learning’s impacts on cognitive and non-
cognitive outcomes measured in 2022. We consider cognitive outcomes from standardized test
scores measured in 2022 and non-cognitive outcomes from the School Experience Survey, also
measured in 2022. We further leverage our experimental preference estimates to assess treatment
effect heterogeneity with respect to preference intensity and to more adequately characterize
selection into the learning modality in terms of cognitive and non-cognitive outcomes. The latter
set of exercises allows us to answer important empirical questions related to match quality and
general sorting patterns.

6.1 Mean Test Score Impacts

We begin by examining the average effects of remote learning on academic outcomes. Panel (b)
of Figure 4 reports average effects for our primary outcome, 2021–2022 academic achievement.
On the left, the typical value-added estimates that condition on student attributes and lagged
achievement show remote-learning negative effects ranging from 23 to 26 percent of a standard
deviation, consistent with other studies employing alternative quasi-experimental methods that
also find negative selection into remote learning (Bueno, 2020). In contrast to these large effects,
our estimates based on Equation 4 are more modestly negative for the average student. ELA
and math effects for the average student are −0.13σ and −0.14σ, respectively. These results
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corroborate recent evidence suggesting that remote learning tends to produce adverse outcomes
for the average student during the pandemic (Bueno, 2020, Goldhaber et al., 2022, Jack et al.,
2022, Singh et al., 2022). Column 1 of Panel A in Table 2 reports the mean effects displayed in
Figure 4, along with other selection parameter estimates, which we will discuss shortly.

6.2 Mean Non-Cognitive Impacts

Impacts on academic outcomes shed light on one side of the story but potentially paint an
incomplete picture. Bacher-Hicks et al. (2022) find that reductions in bullying during the
pandemic-induced remote learning experience contributed to mixed evidence on students’ men-
tal health and well-being, suggesting that students who were bullied pre-pandemic may have
benefited from the remote experience along non-academic margins. The existing evidence mo-
tivates our focus on bullying and other non-cognitive outcomes of interest, such as grit, which
has also been shown to be affected by schools (Jackson et al., 2020).

The rightmost two bars in Panel (b) of Figure 4 show a substantial mean improvement,
roughly 0.17σ, in the bullying index and a precise mean null impact on the grit index. The
bullying index contains physical (in-person) and non-physical (online) bullying questions. The
reduction in physical bullying is partly mechanical, as remote students have less frequent encoun-
ters with their peers. Non-physical bullying materializes online through social media channels,
which has also been linked to recent increases in adolescent depression (Twenge, 2017, Twenge
et al., 2022, 2020).

Column 1 of Panel B in Table 2 reports mean impacts separately for physical and non-
physical bullying. We find improvements in both physical and online bullying, with online
bullying mean impacts of roughly half the magnitude of physical bullying, amounting to 0.15σ
and 0.31σ improvements, respectively. This suggests that the reduction in bullying operated in
ways that potentially improved the overall mental well-being of students and that potentially
have complementary roles for academic outcomes.

6.3 Selection and Treatment Effect Heterogeneity

Our measures of preference intensity allow us to characterize the selection of remote students
and treatment effect heterogeneity. For models with academic achievement as an outcome, the
parameter θ governs selection on levels, a summary measure of the academic preparedness of
students with varying degrees of remote learning preference. For models with bullying as the
outcome, θ is a summary measure of students’ proclivity to be bullied independent of the school
in which they enroll. These summary measures governing sorting patterns allow us to paint
a more complete picture of the factors governing sorting into the remote sector in the post-
pandemic landscape. We begin by characterizing students sorting into remote schooling based
on their academic and non-cognitive potential.

Starting with academic potential, Column 2 of Table 2 demonstrates that students with
larger estimated tastes for remote learning perform more poorly on standardized exams than
students with lower estimated tastes regardless of the school in which they enroll. Similarly,
the results show that students with larger estimated tastes for remote learning have worse
bullying-related outcomes regardless of their enrolled school. The difference between a student
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at the 90th and 10th percentile of the remote taste distribution is roughly −0.11σ, a strong
indication that students with worse bullying-related outcomes are substantially more likely to
sort into virtual schooling. This is consistent with the evidence in Table 1 showing that remote-
learning students have worse baseline test scores and bullying outcomes, but the results using
the experimental-based measure of demand reveal more specific sorting patterns directly related
to preferences for remote learning.

Next, we turn to our main analysis of the heterogeneous effects of remote learning. As
motivated in our framework, the preference data allow us to assess how remote-learning selection
patterns interact with treatment effect heterogeneity. The parameter ψ summarizes match
effects, where ψ > 0 is an indication of positive sorting on gains. Table 2 reports point estimates
from our preferred specification, while Figure 5 summarizes these results by plotting the mean
treatment effects (i.e., β + ψ̂p̂), calculated separately for 12 bins of the demeaned propensity
score. The upward slope shown in Figure 5 reflects that the interaction coefficient ψ̂ is positive
at around 0.073 and 0.082 for ELA and math, respectively. The match effects are sizable,
generating positive remote effects for a small share of students with large estimated remote-
learning tastes.

For bullying outcomes, Panel B of Table 2 reports more nuanced results depending on the
type of bullying interaction. The omnibus bullying index, including both online and physical
bullying and reported in the first row, reveals mild negative selection on gains relative to a
sizable 0.165σ main effect of remote learning. In other words, the difference in the remote effect
between a student at the 90th and 10th percentile of the taste distribution is roughly 0.03σ. The
subsequent two rows differentiate between physical and online bullying. As reported earlier, the
treatment effects for physical bullying are twice as large as the effects on online bullying, but
the match effects differ in sign. We find negative match effects for physical bullying and positive
match effects for online bullying, but both are modest in size relative to sizable positive mean
improvements on both. In summary, the match effects on bullying outcomes are sufficiently
small that the overall treatment effects on bullying outcomes remain positive for all students
across the taste distribution.

Turning to another non-cognitive outcome, grit, we do not find meaningful mean impacts
of remote learning. This mean impact masks heterogeneity. The difference in treatment effects
between the 90th and 10th percentile students is 0.05σ. This evidence is consistent with prior
evidence showing grit is malleable in schools (Alan et al., 2019, Jackson et al., 2020). Match
effects are positive, pointing to another margin families are sorting on that likely complements
learning gains.

How do we interpret this collection of results? Taking the estimates for math achievement
in Figure 5 literally suggests that students in the top decile of the estimated propensity score
distribution do no worse than they would in person and some have positive treatment effects.
The typical student at the 95th percentile who enroll in remote learning experiences a 0.04σ
increase in achievement in math. These may be students for whom self-paced learning is more
adequate (Armstrong-Mensah et al., 2020) or those who potentially benefit from reduced social
pressure or bullying (Bacher-Hicks et al., 2022). More generally, there are across-the-board
improvements in bullying-related outcomes, both physical and online, for students with both
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low and high estimated demand for remote learning. This suggests that many students are
willing to forego some relative academic improvements at their in-person neighborhood school
to obtain positive returns along other non-cognitive dimensions such as bullying. The students
with the largest estimated tastes for remote schooling benefit along both margins.12

6.4 Robustness and Additional Validation Exercises

This section extends our analysis of validity by presenting results from several additional exer-
cises. We begin by using lottery variation to experimentally validate the heterogeneous treat-
ment effect estimates generated from our conjoint-based model of achievement. We find that
our main estimates are forecast unbiased and that the predictive validity of each lottery is
uniformly good based on overidentification tests (Angrist et al., 2017, Deming, 2014). Next,
we show that our estimates are robust to alternative approaches to inference, parameterization
of utilities, and identifying assumptions. Finally, we show that our extrapolated preferences
generate propensity scores that are forecast unbiased using a split sample procedure, providing
reassuring evidence of the underlying extrapolation from the conjoint sample to the full sample.

6.4.1 Lottery Validation

LAUSD has a large portfolio of offerings beyond neighborhood schools such as magnet programs,
affiliated charter schools, and schools with selective criteria. Oversubscribed schools use lot-
teries to determine offers, and we use this lottery variation to validate our empirical approach.
Intuitively, some students may hold remote learning as their most preferred alternative to a
given oversubscribed school. For these students, randomly failing to receive an offer at their
most preferred school exogenously increases the likelihood they attend remotely. Intuitively, if
we find that our conjoint-based estimates of the student level heterogeneous effects from our
main analysis predict the lottery-based causal effect for students, then this constitutes strong
evidence in favor of the validity of our main approach.

For the 2022 academic year, there were 32 oversubscribed programs where students listed the
remote option as a fallback option. The random variation induced by losing the lottery allows us
to assess both the average predictive validity of our approach and whether each lottery generates
test score gains that are proportional to the predictions implied by our empirical approach. Let
Yi correspond to the observed outcome of individual i and Ŷi be the predicted outcome based
on our results using Equation 4 and the observed decision to go remote. Formally, we estimate
the following model via two-stage least-squares:

Ŷi = π0 +
∑

ℓ

πℓZiℓ + π′
2Wi + ϵi (5)

Yi = ϕ0 + ϕ1Ŷi + β′
2Wi + ui, (6)

where Wi is a vector of to school-by-grade lottery strata so that lottery offers (denoted by Ziℓ

for each of the ℓ lotteries) are random conditional on Wi.
12Appendix Table C.3 reports qualitatively similar impacts on 2023 outcomes, showing that remote enrollment

in 2022 has persistent effects.
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The parameter of interest from Equation 5 is ϕ1 where a coefficient estimate of unity indicates
that the estimated treatment effect heterogeneity from our preferred model is forecast unbiased.
To interpret this, consider the case of standardized math scores. The finding of ϕ̂1 = 1 shows
that variation in conjoint-based predicted math achievement based on the lottery variation from
Ziℓ modeled in the first-stage accurately predicts the observed variation in test scores in the
second-stage. Tests of this nature are common in the education literature (e.g. Angrist et al.,
2017).

Appendix Table C.1 reports the results. For both math and ELA, the first stage is well-
powered, with the F -stats in excess of 10. For math, the coefficient of forecast coefficient is
1.03, which suggests that the estimated heterogeneous effects are near perfect predictors of the
actual change in test scores implied by the lottery variation. For ELA, the forecast coefficient
is 0.67; however, the 95% confidence interval for this estimate also includes 1. In fact, for
both math and ELA, we fail to reject the hypothesis that the coefficients are forecast unbiased
(individually and jointly) using a formal over-identification test. More generally, we interpret
the validation results as reassuring evidence that our empirical approach can be successful in
a variety of other settings outside the remote learning context. At a minimum, we do not find
concerning evidence regarding our empirical approach in this remote learning context.

6.4.2 Accounting for Additional Variability from “First-stage” Estimation Error

Our main estimates and inference do not account for estimation error introduced in the pref-
erence estimation stage. To account for this, we sample from the asymptotic joint distribution
of the preference estimates 250 times. Equipped with these estimates, we construct the implied
propensity score for each iteration and estimate Equation 4. We then report the mean estimate
across iterations along with the 95 percent confidence region. Appendix Table D.1 and Ap-
pendix Figures D.1 and D.2 show that accounting for estimation error in the propensity scores
does not qualitatively affect our estimates or inference.

6.4.3 Robustness to Varying the Functional Form of Preferences

We use linear parameterizations of preferences for travel time and academic quality and assume
no interactions with preferences over remote learning in our main approach. As robustness
checks, we estimate alternative specifications that allow for non-linear travel costs and various
interaction terms with the remote schooling indicator. Panels (a)–(c) of Appendix Table C.2
report estimates that are remarkably similar to our preferred estimates from the most parsimo-
nious model.

6.4.4 Alternative Identifying Assumptions

Despite the balance results in Figure 4, one may remain concerned with the distributional
assumptions necessary for our model to accurately map experimentally identified preferences
to propensity scores. To provide further robustness to our findings, we use the experimentally
identified preferences in a control function framework, in line with existing work leveraging
revealed preferences to estimate causal effects (e.g., Abdulkadiroğlu et al., 2020). Specifically,
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we assume:

E[Yi|Xi, Di, vi] = α+X ′
iγ + βDi + θλ(Xi, Xj(i)) + ψλ(Xi, Xj(i)) ×Di. (7)

where λ(Xi, Di, Xj(i)) = E[εi − µε|Xi, Xj(i)] is an estimate of the unobserved preference het-
erogeneity implied by our choice model (Abdulkadiroğlu et al., 2020, Dubin and McFadden,
1984) and µε is Euler’s constant. While conceptually similar to our preferred model, Equa-
tion 7 imposes a linear relationship between potential outcomes and the unobserved preference
heterogeneity implied by the choice model. Both models capture selection driven by preference
heterogeneity but from different sources. The estimates based on Equation 7 are similar to our
preferred approach and are reported in Appendix Figure C.5. Overall, the choice experiments
allow us to robustly identify treatment effects under various assumptions regarding how pref-
erence heterogeneity relates to potential outcomes. In each approach, experimentally identified
preferences are crucial for identification of treatment effects.

6.4.5 Propensity Score Validation

To address concerns regarding the fact that our preferred model uses preferences that are
extrapolated from the conjoint sample to all of LAUSD, we perform two exercises. The first
exercise addresses the concern that there may not be sufficient overlap between the distribution
of covariates of the subset of students whose parents completed the choice experiment survey and
all students. Appendix Figure C.1 summarizes baseline characteristics for each student using
an index measure and plots the distribution for the survey and general LAUSD samples.13 The
figure shows substantial overlap, indicating there is ample support to estimate preferences and
extrapolate to non-survey respondents.

Another key concern is the possibility that the extrapolation procedure may not accurately
characterize the preferences of students who were not included in the estimation sample. To
address this issue, we employ an out-of-sample validation procedure. Intuitively, the procedure
“mimics” the extrapolation exercise within the sample of students where we can actually es-
timate preferences. This allows us to validate the extrapolated preferences against the actual
estimated preferences of students who were not used in the act of extrapolation. In other words,
it will allow us to directly compare extrapolated preferences to actual preference estimates for
a subsample where we can observe both.

Formally, the algorithm works as follows. We begin by creating an estimation sample through
stratified random sampling of one-third of the sample of choice respondents. Our stratification
ensures the resulting estimation sample matches baseline characteristics of the average student
in LAUSD as a whole. Using the estimation sample, we estimate preference parameters and
construct propensity scores. Next, we return to the original survey respondent sample and use
the residual set of respondents who were not included in the estimation sample. In this residual
sample, we use our covariate cell approach to create a second set of preference estimates that
we extrapolate to the estimation sample. Our test compares the two propensity scores to assess

13The index is the predicted ELA test score based on a model that includes student covariates such as URM
status, sex, socioeconomic status, English-learner status, special education status, and lagged achievement in
math and English language arts (ELA).
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extrapolation quality.
Appendix Figure C.2 plots the extrapolated propensity scores against the true propensity

scores. The associated slope is 0.96 and the intercept is near zero—a pattern of findings that
indicates the extrapolation is approximately forecast unbiased.14

7 Conclusion: Policy Implications and Future Research

The COVID-19 pandemic accelerated national growth in remote-learning enrollment substan-
tially (see Figure 1). As of the 2021-2022 academic year, roughly 800,000 U.S. students were
engaged in remote instruction, rivaling both the Catholic and charter school total enrollments
of 1.7 and 3.7 million, respectively. School districts are currently planning to expand remote
options to satisfy continued parental demand (Musaddiq et al., 2022).

At first glance, it may seem puzzling why parents and students would willingly select into
remote learning schooling options. Before the pandemic, a near consensus suggested that vir-
tual schools negatively affect learning (Bueno, 2020, Fitzpatrick et al., 2020, Raymond et al.,
2023). More recent studies on pandemic-era remote schooling similarly document learning losses
(Goldhaber et al., 2022, Jack et al., 2022, Singh et al., 2022).

In this paper, we shed light on the drivers of growth in remote learning by studying selection
and the heterogeneous causal impacts of this learning modality. Our evidence is based on original
survey data that we combine with a novel empirical framework that uses choice experiment
data to characterize selection into remote schooling. The survey was conducted after schools
in Los Angeles returned to offering both traditional in-person and remote schooling options.
When responding to our survey, parents and students were uniquely able to draw on their past
experience with remote learning and firsthand understanding of this mode of instruction. The
results from our survey allow us to control for selection into remote learning while also allowing
us to explore how remote learning effects vary with preferences. We validate the new approach
using school choice lotteries and demonstrate robustness on several margins.

Our analysis provides important evidence of heterogeneous impacts of remote learning that
suggest this form of learning can indeed be a preferred schooling modality for two main reasons.
First, we demonstrate that, while remote-learning reduces achievement on average, there are
positive match effects that are sufficiently strong to imply that the subset of students with the
highest demand for remote-learning will experience gains in academic outcomes. Second, re-
mote learning delivers an across-the-board improvement in bullying outcomes, including online
bullying, relative to in-person learning. Importantly, this finding suggests that the substan-
tial improvements in bullying outcomes could serve as a compensating differential for worse
achievement for the students with weaker academic match effects.

The combined findings underscore the nuanced nature of parental preferences. While much
of the existing literature has focused on parental preferences for different dimensions of academic
quality (Abdulkadiroğlu et al., 2020, Ainsworth et al., 2023, Campos, 2023, Hastings and Wein-
stein, 2008, Rothstein, 2006), an emerging consensus emphasizes the multi-dimensional nature
of schools and teachers production function (Beuermann et al., 2022, Jackson, 2018, Jackson et

14The mean difference between the extrapolated and true propensity score is −0.007, and the distribution is
centered around 0 with standard deviation 0.08.
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al., 2020). In this paper, we draw a link to an understudied but increasingly important aspect of
the broader schooling environment, bullying (Bacher-Hicks et al., 2022). Increases in adolescent
depression are linked to social media and online harassment (Twenge, 2017, Twenge et al., 2022,
2020), which naturally connect to in-person schooling environments. The remote schooling con-
text allows us to demonstrate a previously undocumented tradeoff parents may face if their
children experience substantial bullying. Our findings show that families are potentially willing
to forego short-run human capital gains for this understudied but increasingly policy-relevant
outcome. More work is needed to better understand how parents trade-off academic quality
and bullying outcomes.
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Figure 1: Remote Schooling Enrollment Trends, NCES 2015-2023

200

400

600

800

1,000

2014 2016 2018 2020 2022 2024
Year

Raw Data Imputed Linear Trend

Enrollment in Exclusively Virtual Schools (1000s)

Notes: This figure reports enrollment trends in exclusively virtual schools as reported in the Common Core data
provided by the National Center for Education Statistics (NCES). The figure reports three time-series plots. The
first (solid black) corresponds to one derived by plotting the raw data in the Common Core data. Many school
districts, however, under- or misreport their remote schooling numbers. The second (dashed gray) accounts for
this measurement error by imputing additional enrollment for the fifteen largest school districts in the country.
The third (dotted black) is a prediction-based series from a regression of enrollment on a linear time trend for
the period 2015 to 2020.

24



Figure 2: Experiences and Demand for Remote Learning
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Notes: This figure reports survey results on the share of respondents (N = 3, 539) who agree with four statements
on their experiences and demand for remote learning. Individual responses are weighted to produce means
that correspond to the average family in LAUSD. Specifically, we define the weight for each observation as
wi ≡ P (Survey = 1)/p(Survey = 1|Xi), where p(Survey = 1|Xi) is the estimated propensity to respond to
the survey based on student characteristics Xi using the full sample of LAUSD students, and P (Survey = 1) is
the share of all LAUSD families with survey responses. Appendix Section A.1 reports the complete text for the
survey questions (see question 5).
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Figure 3: Experimental Preference Estimates
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Notes: This figure reports willingness to travel estimates for achievement in Panel (a) and the estimated achieve-
ment necessary to make families indifferent between in-person and remote learning in Panel (b). Preference
estimates are from a rank-ordered logit model relating indirect utilities of hypothetical choices to randomized
school attributes, including academic quality, travel time, and remote status. Options that are designated as
remote have travel time equal to zero. Each bar corresponds to estimates from a different sample. For example,
the “All” bar in both panels corresponds to estimates for the complete sample with hypothetical choice responses.
The next three bars estimate preferences separately for students in different grade levels. The “Currently remote”
estimates are for the sample of families who have students enrolled in the remote option at the time of the survey.
The “Plans to enroll in future” sample is the subsample of families who indicate they plan on enrolling their
children in remote-learning options in the future. Standard errors are robust and clustered at the respondent
level.
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Figure 4: Baseline Balance and the Average Effects of Remote Learning
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(b) Average effects on post-pandemic (2022) ELA and math achievement
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Notes: This figure reports estimates of the average effect of remote learning. Panel (a) reports balance test
results where the dependent variable is set to measures of lagged (2019) achievement scores in ELA and math,
a summary index of baseline covariates, and index measures for bullying and grit. To construct the summary
index, we regress 2022 math achievement on a vector of baseline covariates including race, sex, socioeconomic
status, English learner status, and special education status as well as lagged (2019) achievement in ELA and
math. The index is defined as the predicted values from this regression. The black bars on the left correspond
to models where the independent variables are a remote indicator, grade-level indicators, and baseline student
characteristics. The gray bars correspond to results from models based on Equation 4, which controls for estimated
propensity scores. Panel (b) reports corresponding results where the dependent variable is set to a measure of
post-pandemic achievement in ELA and math as well as bullying and grit outcomes. Standard errors are robust
and clustered at the school level. Gray bars are estimates of the 95 percent confidence intervals.
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Figure 5: Estimated Match Effects on Post-Pandemic Math Achievement
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Notes: This figure reports estimates of treatment effects on post-pandemic (2022) math and
ELA test scores for 12 bins of estimated propensity scores. The points in black are means
for each bin based on Equation 4 and are constructed by summing the coefficient on the
remote-learning indicator (representing the average effect) with the product of the estimated
match effect and (demeaned) propensity score (i.e., θ + ψ ∗ p). The points in maroon are
means for each bin constructed by summing the coefficient on the remote-learning indicator
with non-linear (quadratic) match effects (i.e., θ1 +ψ1 ∗p+ψ2 ∗p2). Note that the propensity
score is demeaned so that the estimate at zero corresponds to the average treatment effect for
the average student. The three dashed, gray vertical lines correspond to the 10th, 50th, and
90th percentiles of the propensity score distribution. Standard errors are robust and clustered
at the school level. Bars surrounding the mean estimate for each bin are estimates of the 95
percent confidence intervals.
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Table 1: Summary Statistics for LAUSD Students

(1) (2) (3) (4) (5)
In-Person Remote Survey Conjoint
in 2022 in 2022 Mean Diff. Respondents Respondents

Baseline ELA Scores 0.008 -0.234 -0.243*** 0.191 0.471
(0.992) (0.955) (0.028) (1.045) (1.045)

Baseline Math Scores 0.012 -0.311 -0.323*** 0.170 0.445
(0.992) (0.923) (0.028) (1.011) (1.011)

Baseline Bullying Index 0.007 -0.013 -0.020*** 0.011 -0.006
(0.647) (0.677) (0.003) (0.608) (0.667)

Baseline Connectedness Index 0.014 -0.071 -0.085*** -0.016 -0.044
(0.568) (0.596) (0.004) (0.576) (0.580)

Baseline Grit Index 0.009 -0.054 -0.062*** 0.047 0.089
(0.664) (0.679) (0.006) (0.667) (0.649)

Female 0.484 0.505 0.021*** 0.494 0.508
(0.500) (0.500) (0.002) (0.500) (0.500)

Special Education 0.139 0.153 0.014*** 0.108 0.101
(0.346) (0.360) (0.002) (0.311) (0.301)

URM 0.817 0.842 0.025** 0.756 0.651
(0.386) (0.365) (0.011) (0.429) (0.477)

English Learner 0.381 0.324 -0.057*** 0.315 0.167
(0.486) (0.468) (0.009) (0.465) (0.373)

Poverty 0.828 0.812 -0.016 0.740 0.598
(0.377) (0.390) (0.010) (0.439) (0.491)

Students 276,553 12,326 3,539 1,171

Notes: This table provides summary statistics for LAUSD students. Columns 1 and 2 report averages for in-person
and remote students, respectively. Column 3 reports the corresponding difference in average characteristics. We
recruited a sample of survey respondents by randomly contacting 100,000 families through the LAUSD’s internal
communication system in April 2022. Column 4 reports averages for every family who completed at least one
question on our survey. Column 5 reports averages for every student who completed the hypothetical choice
experiment questions within the survey. Baseline test scores are measured in the 2018–2019 school year, and
baseline non-cognitive outcomes are measured in the 2020-2021 school year. In Columns 1, 2, 4, and 5, standard
deviations for each measure are reported in parentheses. In Column 3, standard errors clustered at the school
level from a regression of each measure on a remote indicator are reported in parentheses.
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Table 2: Causal Effects of Remote Learning on Key Outcomes

(1) (2) (3)
Main

Effect (β)
Selection

on Levels (θ)
Selection

on Gains (ψ)

Panel A: Cognitive Outcomes

ELA -0.126 -0.194 0.073
(0.018) (0.020) (0.006)

Math -0.14 -0.201 0.082
(0.018) (0.021) (0.005)

Panel B: Non-Cognitive Outcomes

Bullying Index 0.165 -0.03 -0.009
(0.008) (0.007) (0.002)

No Physical Bullying 0.308 -0.032 -0.031
(0.008) (0.008) (0.003)

No Online Bullying 0.149 -0.02 0.013
(0.008) (0.007) (0.003)

Grit Index -0.004 -0.024 0.014
(0.009) (0.009) (0.003)

Notes: This table reports estimates on the effects on cognitive and non-cognitive outcomes
measured in the post-pandemic period (2022) based on the model specified in Equation 4.
Panel (a) provides results on ELA and math achievement, and Panel (b) provides results on
bullying-related outcomes and a grit index. Columns 1, 2, and 3 report estimates of the main
effect of remote learning (β), which represent the average effect, the selection on levels effect
(θ), and the selection on gains coefficient (ψ), respectively. Propensity scores are in units equal
to 10 percent for interpretation reasons. Standard errors are robust and clustered at the school
level.
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A Data Appendix

A.1 Remote-Learning Survey

A.1.1 Instrument

LAUSD Remote Learning Survey

(untitled)

Kindergarten
1
2
3
4
5
6
7
8
9
10
11
12

1. Are you a mother, father, or guardian of a K-12 student? *

Mother

Father

Guardian

2. In what grade is your oldest child currently enrolled? *

3. Is your oldest child currently enrolled in a virtual schooling option?

Yes

No
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(untitled)

Agree Disagree

My child excelled academically
with the virtual experience
compared to in-person
instruction.

I would like the district to expand
its virtual offerings in the future.

I am likely to opt for virtual
schooling in the future.

I enjoyed the virtual schooling
experience during the pandemic.

(untitled)

4. Did you choose a remote option mostly for academic or safety (COVID)
reasons? *

Mostly academic reasons

Mostly safety reasons

Academics and safety were equally important

5. For the following, please tell us if you agree or disagree. *
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Type of
Instruction In Person In Person In Person

Percent of
students

meeting state
academic
standards

50 30 90

Travel time to
school

(minutes)
15 30 45

Best    

Worst    

(untitled)

6. You will now see a sequence of scenarios, each with three school options
that the school district could offer you in Fall 2022. For each set of three,
indicate the one you prefer the most (Best) and the one you prefer the least
(Worst). 

Recall that a fully remote option is entirely virtual (100% remote) and
traditional in-person instruction is 0% remote. 

Travel time corresponds to the commute time in minutes from your home to
the school. For traditional in-person instruction, students make the trip to
school every day. 

Assume pandemic-related safety issues are as they were in 2019 before
COVID. 

Besides the characteristics shown, assume that these schools are
otherwise identical in terms of their academic instruction and quality.

There are no right or wrong answers to these questions. We only want to
know which of the options you would most prefer.
  *
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(untitled)

(untitled)

Agree Disagree

I am likely to opt for virtual
schooling in the future.

I excelled academically with the
virtual experience compared to
in-person instruction.

I would like the district to expand
its virtual offerings in the future.

(untitled)

7. Do you think your choices will be similar in Fall 2023? *

Yes

No

8. Thank you for taking the time to answer these questions! We now ask that
you let your student in grade 8 through 11 answer the remaining questions, so
we can learn more about their experience with remote learning.

Will your child be answering the remaining questions? *

Yes

No

9. For the following, please tell us if you agree or disagree. *
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Type of
Instruction In Person In Person In Person

Percent of
students

meeting state
academic
standards

90 60 30

Travel time to
school

(minutes)
75 30 15

Best    

Worst    

10. You will now see a sequence of scenarios, each with three school options
that the school district could offer you in Fall 2022. For each set of three,
indicate the one you prefer the most (Best) and the one you prefer the least
(Worst). 

Recall that a fully remote option is entirely virtual (100% remote) and
traditional in-person instruction is 0% remote. 

Travel time corresponds to the commute time in minutes from your home to
the school. For traditional in-person instruction, students make the trip to
school every day. 

Assume pandemic-related safety issues are as they were in 2019 before
COVID. 

Besides the characteristics shown, assume that these schools are
otherwise identical in terms of their academic instruction and quality.

There are no right or wrong answers to these questions. We only want to
know which of the options you would most prefer.

  *
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(untitled)

11. Do you think your choices will be similar in Fall 2023?  *

Yes

No

7



A.1.2 Descriptive Statistics

Figure A.1: Spatial Distribution of Remote-Learning Survey Respondents

79 − 109
61 − 79
39 − 61
19 − 39
6 − 19
1 − 6
No data

Notes: This figure is a map illustrating the spatial distribution of survey respondents. Each shaded polygon
corresponds to a zip code and is shaded according to the number of remote-learning respondents residing in the
zip code. Most of the gray areas in the figure are outside the purview of LAUSD. The cuts correspond to the
25th, 50th, 75th, 90th, and 95th percentiles of the zip code-level distribution
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Figure A.2: Reasons for Enrolling in Remote Learning
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Notes: This figure reports various statistics relating to respondents’ current remote learning status and their
reasons for enrollment. The first red bar reports the share of respondents with students currently enrolled
in remote learning. The next three bars report shares of respondents’ reason for selecting remote learning,
conditional on current remote status. Observations are weighted to produce means that correspond to the average
family in LAUSD. In particular, we predict whether we observe a survey response and obtain a propensity score
pi = p(Xi). We weight each observation by wi = P (Survey=1)

pi
, where P (Survey = 1) corresponds to the share of

families with survey responses. Appendix Section A.1 reports the actual survey questions, all part of Question 5.
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A.2 Demand for Remote Learning

Table A.1: Summary Statistics for Preference Estimates

(1) (2) (3) (4)
Mean SD P5 P95

Academic Quality (ωQ) 0.04 0.01 0.02 0.08

Remote (ωR) -2.08 0.64 -3.74 -0.36

Travel Time (ωd) -0.03 0.01 -0.06 -0.01

(-ωQ/ωd) 1.41 0.55 0.65 2.75

(ωr/ωQ) 49.14 19.34 17.14 84.62

Number of Cells 32
Notes: This table reports summary statistics for preference parame-
ters that were estimated separately for each covariate cell. Columns
1–4 report the mean, standard deviation, and the 5th percentile and
95th percentiles of the respective row variable, respectively. The
last two rows report the willingness to travel for an extra percentage
point in academic proficiency and the amount of compensation in
achievement units necessary to make respondents choose the remote
option. We omit two outlier observations in the statistics presented
for the final row as they skew the mean and standard deviation.
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Figure A.3: Experimental Preference Estimates

(a) Minutes willing to travel for a 10 percentage point increase in achieve-
ment rate
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(b) Increase in achievement rate necessary to switch to remote
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Notes: This figure reports willingness to travel estimates for achievement in Panel (a) and the estimated achieve-
ment necessary to make families indifferent between in-person and remote learning in Panel (b). Preference
estimates are from a rank-ordered logit model relating indirect utilities of hypothetical choices to randomized
school attributes, including academic quality, travel time, and remote status. Options that are designated as
remote have travel time equal to zero. Each bar corresponds to estimates from a different sample. For example,
the “All” bar in both panels corresponds to estimates for the complete sample with hypothetical choice responses.
The next three bars estimate preferences separately for students with different achievement levels based on their
ELA and Math scores. The last five bars correspond to estimates for students with different demographic char-
acteristics. Standard errors are robust and clustered at the respondent level.
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Figure A.4: Experimental Preference Heterogeneity by Baseline Bullying

(a) Minutes willing to travel for a 10 percentage point increase in achieve-
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(b) Increase in achievement rate necessary to switch to remote
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Notes: This figure reports willingness to travel estimates for achievement in Panel (a) and the estimated achieve-
ment necessary to make families indifferent between in-person and remote learning in Panel (b). Preference
estimates are from a rank-ordered logit model relating indirect utilities of hypothetical choices to randomized
school attributes, including academic quality, travel time, and remote status. Options that are designated as re-
mote have travel time equal to zero. Each bar corresponds to estimates from a different sample of students based
on their baseline bullying quartile. For example, the “Quartile 1” bar in both panels corresponds to estimates for
the subset of students in the bottom quartile of the bullying index defined in Campos (2023). A positive value of
the index indicates better bullying-related outcomes. Standard errors are robust and clustered at the respondent
level.
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B Remote-Learning National Trends

Figure B.1: Remote Schooling Enrollment Shares by State, NCES 2023

4.94 − 4.98
3.46 − 4.94
2.07 − 3.46
1.08 − 2.07
0.49 − 1.08
0.00 − 0.49
No data

2023 percent of remote schooling

Notes: This figure reports exclusively virtual enrollment shares by state reported in the Common Core data
provided by the National Center for Education Statistics (NCES). The cuts correspond to the 25th, 50th, 75th,
90th, and 95th percentiles of the state-level distribution.

Figure B.2: Remote Schooling Enrollment Percentage Change by State, NCES 2019-2023

219.0 − 803.4
167.1 − 219.0
109.6 − 167.1
60.9 − 109.6
18.3 − 60.9
-100.0 − 18.3
No data

2023-2019 Pct Change in Share

Notes: This figure reports 2019-2023 percent changes in exclusively virtual enrollment shares by state reported in
the Common Core data provided by the National Center for Education Statistics (NCES). The cuts correspond
to the 25th, 50th, 75th, 90th, and 95th percentiles of the state-level distribution.
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Figure B.3: Remote and Homeschooling Shares by State, NCES 2023
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Notes: This figure reports the state-level bivariate relationship between remote and homeschooling shares. The
remote enrollment share is reported in the Common Core data provided by the National Center for Education
Statistics (NCES) and the homeschooling share is reported by the Washington Post. Observations are labeled
with their state identifier.

Figure B.4: Remote and Homeschooling Percentage Change by State, NCES 2019-2023
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Notes: This figure reports the state-level bivariate relationship between 2019-2023 percent changes in remote
and homeschooling shares. The remote enrollment share is reported in the Common Core data provided by the
National Center for Education Statistics (NCES) and the homeschooling share is reported by the Washington
Post. Observations are labeled with their state identifier.
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C Validation Exercises and Robustness Checks

In this appendix section, we discuss two validation exercises. The first relates to the extrapola-
tion procedure that is implicit in our main empirical results. The second validates our empirical
estimates using lottery variation that is available for the various choice programs offered by
LAUSD.

C.1 Overlap and Extrapolation

Figure C.1: Distributions of an Index of Baseline Characteristics
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Notes: This figure reports the distribution of a summary index measure for the baseline covariates for students
in the hypothetical choice and the general student samples. The summary index is constructed by regressing
2022 ELA test scores on an array of student characteristics including lagged (2019) achievement. The summary
index corresponds to the predicted values from this regression. The histogram shows there is sufficient overlap
between the hypothetical choice and the full LAUSD samples used in the empirical analysis.
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Figure C.2: Correlation Between True Estimated Propensity and Extrapolated Propensity
Scores
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Notes: This figure compares two propensity scores that we construct to test the validity of our extrapolation
approach. The two scores are estimated as follows. First, we create an estimation sample through stratified
random sampling of one-third of the sample of hypothetical choice survey respondents. Our stratification ensures
that the resulting estimation sample matches the average student’s baseline characteristics. Using this estimation
sample, we estimate preference parameters and construct propensity scores. Second, we return to the original
survey hypothetical choice sample and use the residual set of respondents who were not included in the estimation
sample. In this residual sample, we use our covariate cell approach to create a second set of preference estimates
that we extrapolate to the estimation sample. The x-axis of the figure shows the “true” propensity scores that we
estimate in the first step using the estimation sample. The y-axis of the figure shows the “predicted” propensity
scores that we estimate for the estimation sample created by extrapolating the preference estimates from the
residual sample.
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C.2 Lottery-Based Validation

Table C.1: Lottery-Based Tests for Bias in Remote Learning Estimates

(1) (2)
Math ELA

Forecast Coefficient 1.03 0.67
(0.20) (0.22)
[0.89] [0.13]

First Stage F -statistic 16.60 24.67
Overidentification p-value 0.29 0.13

Observations 1,246 1,247

Notes: This table reports estimates of the lottery-based tests for bias in remote learning estimates discussed in
Section 6.4.1. Specifically, it reports the parameter of interest ϕ1 from Equation 5 for both Math and ELA 2022
achievement. A coefficient estimate of unity indicates that the estimated treatment effect heterogeneity from
our preferred model is forecast unbiased. The table also reports F -stats from the first stage and p-values from a
formal overidentification test. For both math and ELA, we fail to reject the hypothesis that the coefficients are
forecast unbiased
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C.3 Robustness Checks

Figure C.3: Balance Results Using Observational Logit Model

-.2

-.15

-.1

-.05

0

EL
A

Math
Ind

ex

Bull
yin

g
Grit EL

A
Math

Ind
ex

Bull
yin

g
Grit

Unconditional Observational Propensity Score

Difference in baseline measures (std. dev.)

Notes: This figure reports the baseline balance of 2019 achievement (math and ELA) for both a conventional
covariate-controlled and a propensity-controlled model derived from preferences estimated using observational
data. The covariate-controlled model estimates correspond to regressions of 2019 achievement on remote indica-
tors, baseline covariates, and grade indicators. The “Observational Propensity Score” estimates are derived from
a model that augments the model with the implied propensity score from the observational data. Propensity
scores are demeaned so that remote coefficients correspond to average differences.
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Figure C.4: Robustness to estimates using only the conjoint sample

(a) ELA
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(b) Math
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Notes: This figure reports treatment effects for 12 bins of estimated propensity scores for our main estimates and
estimates that use only the conjoint sample. The confidence interval is from estimates using only the conjoint
sample. Panel (a) reports treatment effects on 2022 ELA and Panel (b) reports treatment effects on 2022 Math.
Standard errors are robust and clustered at the school level.
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Table C.2: Effects of Remote Learning on Cognitive and Non-Cognitive Outcomes

(1) (2) (3)
Main

Effect (β)
Selection

on Levels (θ)
Selection

on Gains (ψ)

Panel A: Non-linear Quality Preferences

ELA -0.131 -0.142 0.051
(0.017) (0.015) (0.005)

Math -0.145 -0.15 0.059
(0.017) (0.016) (0.005)

No Bullying Index 2022 0.186 -0.024 -0.021
(0.007) (0.005) (0.002)

Grit Index 2022 -0.036 -0.019 0.033
(0.009) (0.006) (0.002)

Panel B: Non-linear Distance Costs

ELA -0.109 -0.188 0.056
(0.019) (0.019) (0.005)

Math -0.127 -0.195 0.066
(0.019) (0.02) (0.004)

No Bullying Index 2022 0.158 -0.029 -0.002
(0.008) (0.006) (0.002)

Grit Index 2022 0.015 -0.025 -0.001
(0.009) (0.008) (0.002)

Panel C: Non-linear Quality Preferences and Distance Costs

ELA -0.118 -0.141 0.04
(0.018) (0.015) (0.005)

Math -0.136 -0.148 0.052
(0.018) (0.016) (0.004)

No Bullying Index 2022 0.174 -0.023 -0.012
(0.007) (0.005) (0.002)

Grit Index 2022 -0.01 -0.02 0.014
(0.009) (0.006) (0.002)

Notes: This table reports estimates of the effects on cognitive and noncognitive outcomes based on
versions of the model specified in Equation 4. Each panel reports estimates from models that differ in
the underlying model of preferences used to construct propensity scores. Panel (a) provides results from
a model that allows for interaction between preferences for academic quality and remote learning. Panel
(b) provides results from a model with non-linear (quadratic) distance costs, and Panel (c) provides
results from a model that allows for both non-linear preferences for distance costs and interaction
between preferences for academic quality and remote learning. Columns 1, 2, and 3 report estimates of
the main effect of remote learning (β), which represent the average effect, the selection on levels effect
(θ), and the selection on gains coefficient (ψ), respectively. Propensity scores are in units equal to 10
percent for interpretation reasons. Standard errors are robust and clustered at the school level.
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Figure C.5: Baseline Balance and the Average Effects of Remote Learning Using Control Func-
tions

(a) Student baseline characteristics
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(b) Average effects on post-pandemic (2022) ELA and math achievement

-.3

-.2

-.1

0

.1

.2

ELA Math Bullying Grit ELA Math Bullying Grit

Canonical VAM Control Function

Treatment Effect Estimate (std. dev)

Notes: This figure reports estimates of the average effect of remote learning. Panel (a) reports balance test
results where the dependent variable is set to measures of lagged (2019) achievement scores in ELA and math
as well as a summary index of baseline covariates. To construct the index, we regress 2022 math achievement
on a vector of baseline covariates including race, sex, socioeconomic status, English learner status, and special
education status as well as lagged (2019) achievement in ELA and math. The index is defined as the predicted
values from this regression. The black bars on the left correspond to models where the independent variables
are a remote indicator, grade-level indicators, and baseline student characteristics. The gray bars correspond to
results from models based on Equation 7, using the estimated control functions. Panel (b) reports corresponding
results where the dependent variable is set to a measure of post-pandemic (2022) achievement in ELA and math.
Standard errors are robust and clustered at the school level. Gray bars are estimates of the 95 percent confidence
intervals.
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C.4 Additional Results

Table C.3: Effects of Remote Learning on 2023 Outcomes

(1) (2) (3)
Main

Effect (β)
Selection

on Levels (θ)
Selection

on Gains (ψ)

Panel A: Cognitive Outcomes

ELA 2023 -0.026 -0.203 0.063
(0.017) (0.019) (0.006)

Math 2023 -0.119 -0.204 0.074
(0.017) (0.021) (0.005)

Panel B: Non-Cognitive Outcomes

Bullying Index 2023 0.055 -0.017 0.008
(0.005) (0.006) (0.002)

No Physical Bullying 2023 0.104 -0.019 0.007
(0.006) (0.007) (0.002)

No Online Bullying 2023 0.023 -0.017 0.02
(0.006) (0.006) (0.003)

Grit Index 2023 -0.029 -0.021 0.021
(0.005) (0.005) (0.002)

Notes: This table reports estimates of the effects on cognitive and noncognitive outcomes ob-
served in 2022-2023 based on versions of the model specified in Equation 4. The remote en-
rollment treatment indicator is based on 2022 enrollment, as elsewhere in the paper. Panel (a)
provides results on ELA and math achievement, and Panel (b) provides results on bullying-
related outcomes and a grit index measured in 2023. Columns 1, 2, and 3 report estimates of
the main effect of remote learning (β), which represent the average effect, the selection on levels
effect (θ), and the selection on gains coefficient (ψ), respectively. Propensity scores are in units
equal to 10 percent for interpretation reasons. Standard errors are robust and clustered at the
school level.
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D Bootstrapped Estimates

Figure D.1: Baseline Balance and the Average Effects of Remote Learning (Bootstrap Version)

(a) Student baseline characteristics
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(b) Average effects on post-pandemic (2022) ELA and math achievement
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Notes: This figure reports estimates similar to those in Figure 4 but instead provides estimates and confidence
intervals obtained through a bootstrapping procedure. To address estimation error in the propensity score
estimation, we use a parametric bootstrap. We draw 250 sets of utility weight estimates for each covariate cell
from the joint normal distribution with the mean and variance-covariance matrix obtained in the initial estimation
step. We then estimate the corresponding regressions 250 times. Finally, we report the mean parameter estimates
and the 95 percent confidence region obtained in the bootstrapping procedure.
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Figure D.2: Estimated Match Effects on Post-Pandemic Math Achievement (Bootstrap Version)
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Notes: This figure reports estimates similar to those in Figure 5 but instead provides estimates and confidence
intervals obtained through a bootstrapping procedure. To address estimation error in the propensity score esti-
mation, we use the parametric bootstrap. We draw 250 sets of utility weight estimates for each covariate cell from
the joint normal distribution with the mean and variance-covariance matrix obtained in the initial estimation
step. We then estimate the corresponding regressions and associated linear combination of the parameter esti-
mates 250 times. Finally, we report the mean parameter estimates and the 95 percent confidence region obtained
in the bootstrapping procedure.
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Table D.1: Effects of Remote Learning (Bootstrap Version)

(1) (2) (3)
Main

Effect (β)
Selection

on Levels (θ)
Selection

on Gains (ψ)

Panel A: Cognitive Outcomes

ELA -0.132 -0.182 0.068
(0.017) (0.019) (0.006)

Math -0.145 -0.189 0.075
(0.017) (0.02) (0.005)

Panel B: Non-Cognitive Outcomes

No Bullying Index 2022 0.159 -0.028 -0.005
(0.007) (0.006) (0.002)

No Physical Bullying 2022 0.298 -0.03 -0.023
(0.008) (0.007) (0.002)

No Online Bullying 2022 0.147 -0.019 0.014
(0.008) (0.007) (0.003)

Grit Index 2022 -0.003 -0.023 0.012
(0.008) (0.008) (0.003)

Notes: This table reports estimates similar to those in Table 2 but instead provides estimates
and standard errors obtained through a bootstrapping procedure. To account for estimation
error in the propensity score estimation, we use a parametric bootstrap. We draw 250 sets
of utility weight estimates for each covariate cell from the joint normal distribution with the
mean and variance-covariance matrix obtained in the initial estimation step. We then estimate
the corresponding regressions and associated linear combination of the parameter estimates 250
times. Last, we report the mean parameter estimates and the standard errors (in parentheses)
obtained in the bootstrapping procedure.
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E Survey Responses and Covid Experience Heterogeneity

Although we asked survey respondents to remove the influence of Covid-related concerns from
their stated choices, our preference estimates could still partly reflect residual COVID-19-related
concerns. To assess this possibility, we generated new preference estimates by splitting the
sample of choice survey respondents at the zip code level and generating geographic-specific
estimates of willingness to pay measures. We correlate these zip-code-level preference estimates
with measures from the COVID-19 Vulnerability and Recovery Index produced by Los Angeles
County. For each area, the three index measures are intended to measure the risk, severity, and
recovery need due to COVID-19.15 In addition, we correlate the zip-code-level preferences with
measures of local area case counts and deaths due to COVID-19.16

Appendix Figure E.1, Panels (a), (b), and (c) provide scatterplots of each zip code’s esti-
mated willingness to travel for academic quality and the three COVID-19 index measures. Each
point’s size is proportional to the number of respondents used to estimate preference parameters.
To supplement these results, Panels (a) and (b) of Appendix Figure E.2 report similar plots
for willingness to travel and measures of cases and deaths due to Covid. We report analogous
results for estimated measures of preferences for remote schooling (i.e., the amount by which
achievement would need to change to make a respondent indifferent between the remote and in-
person options) in Appendix Figures E.3 and Figure E.4. Overall, there is little visual evidence
of a systematic relationship between preference parameters and either the Covid-related index
measures or health outcomes at the zip code level. This provides reassuring evidence against
the possibility that Covid-related concerns influence respondent choices in our survey.

15These measures were defined as follows. The risk measure is based on American Community Survey data from
the U.S. Census Bureau on the share of individuals without U.S. citizenship, the share of the population below 200
percent of the federal poverty line, the share of overcrowded housing units, and the share of essential workers. The
severity index is based on asthma hospitalization rates, the share of the population below 200 percent of the federal
poverty line, the share of seniors aged 75 and over in poverty, the share of the population who is uninsured, heart
disease hospitalization rates, and diabetes hospitalization rates. The recovery need index is based on the share of
single-parent households, gun injury rates, the share of the population below 200 percent of the federal poverty
line, the share of essential workers, the unemployment rate, and the share of the population who is uninsured.
The data used for these analyses were downloaded from https://geohub.lacity.org/datasets/lacounty::covid-19-
vulnerability-and-recovery-index/about.

16The data used for these analyses were downloaded from http://publichealth.lacounty.gov/media/coronavirus/data.
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Figure E.1: Preferences for Academic Quality and Covid Index Measures for Risk, Severity, and
Recovery Need

(a) Covid risk index
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Notes: This figure presents scatterplots of zip-code-level mean willingness to travel for academic achievement
(y-axis) and three measures from the COVID-19 Vulnerability and Recovery Index produced by Los Angeles
County (x-axis). Panels (a), (b), and (c) present indices for the risk, severity, and recovery need due to COVID-
19, respectively. Each point’s size is proportional to the number of respondents used to estimate preference
parameters.
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Figure E.2: Preferences for Academic Quality and Covid-Related Health Outcomes

(a) Covid cases
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Notes: This figure presents scatterplots of zip-code-level mean willingness to travel for academic achievement
(y-axis) and two measures of the severity of the COVID-19 pandemic on health outcomes in an area (x-axis).
Panels (a) and (b) measure Covid health impact severity using case count and death measures, respectively. Each
point’s size is proportional to the number of respondents used to estimate preference parameters.
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Figure E.3: Preferences for Remote Learning and Covid Index Measures for Risk, Severity, and
Recovery Need

(a) Covid risk index
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Notes: This figure presents scatterplots of zip-code-level measures of mean preferences for remote learning (y-
axis) and three measures from the COVID-19 Vulnerability and Recovery Index produced by Los Angeles County
(x-axis). Panels (a), (b), and (c) present indices for the risk, severity, and recovery need due to COVID-19,
respectively. Preferences for remote learning are measured as the change in achievement needed to make a family
indifferent between the remote and in-person schooling options. Each point’s size is proportional to the number
of respondents used to estimate preference parameters.
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Figure E.4: Preferences for Remote and Covid-Related Health Outcomes
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Notes: This figure presents scatterplots of zip-code-level measures of mean preferences for remote learning (y-axis)
and two measures of the severity of the COVID-19 pandemic on health outcomes in an area (x-axis). Preferences
for remote learning are measured as the change in achievement needed to make a family indifferent between the
remote and in-person schooling options. Panels (a) and (b) measure Covid health impact severity using case
count and death measures, respectively. Each point’s size is proportional to the number of respondents used to
estimate preference parameters.
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