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Abstract 

Recent research has documented a link between consumer risk preferences over health and the willingness to pay (WTP) for 
medical technologies.  However, the absence of empirical health risk preference estimates so far limits the implementation of this 
generalized risk-adjusted cost-effectiveness (GRACE) theory, which addresses several limitations of traditional cost-
effectiveness analysis (CEA).  To address this gap, we elicit from a nationally representative U.S. sample individual risk 
preference parameters over health-related quality of life (HRQoL) that shed light on health risk attitudes and enable GRACE 
valuation of medical technology.  We find individuals exhibit risk-seeking preferences at low levels of health, switch to risk-
averse preferences at health equal to 0.485 (measured on a zero to one scale), and become most risk-averse when their health is 
perfect (coefficient of relative risk aversion = 4.36). The risk preference estimates imply an empirical premium for disease 
severity:  each unit of health is worth three times more to patients with serious health conditions (health equals 0.5) than those 
who are perfectly healthy. They also imply that traditional CEA overvalues treatments for the mildest diseases by more than a 
factor of two. Use of traditional CEA both overstimulates mild disease treatment innovation and underprovides severe disease 
treatment innovation. 

1. INTRODUCTION 

Orthodox cost-effectiveness analysis (CEA) implies that a “QALY is a QALY is a QALY…” [1].  That 

is, quality-adjusted life-years (QALYs) are equally valuable, regardless of the context in which they are 

added.  Empirical evidence against this implication has accumulated.  In population surveys, respondents 

express a preference for allocating QALYs towards more severe illness states [2, 3].  Studies of health 

technology assessment (HTA) and allocation regimes find a similar pattern of decision makers 

prioritizing health improvements for sicker groups [4, 5].  Revealed preference studies of severely ill 

patients with high cost-sharing plans suggest much higher willingness to pay than what is typically 

assumed by CEA [6]. Theorists and practitioners of cost-effectiveness have acknowledged these concerns 

too.  Expert panels have suggested tempering QALY-based analysis by presenting results alongside 
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evaluations of equity and justice or by conducting sensitivity analysis that allows for alternative 

valuations [7, 8].  Yet, even though HTA decisions often skew towards caring for the severely ill, 

methods for incorporating this feature tend to be qualitative and to depart from microeconomic 

foundations [9].  Meanwhile, quantitative approaches each tend to focus on addressing one or more 

specific limitations of the QALY; for example, the “value flower” enumerates these many deficiencies 

[10], but implementing the range of proposed “fixes” risks introducing double-counting or other errors 

into value assessment. 

To help address these issues, Lakdawalla and Phelps have developed the theory of generalized 

risk-adjusted cost-effectiveness (GRACE) [11-14].  Traditional CEA often models consumers as if they 

are risk-neutral over health-related quality of life (HRQoL) [15].1 GRACE relaxes this restriction and 

allows for arbitrary risk preferences, including risk-averse and risk-seeking behavior.  Risk-aversion, and 

the attendant diminishing returns to health improvement, would explain decision makers’ tendencies to 

place more value on improving health in sick states than traditional CEA implies. At the same time, the 

potential for risk-seeking behavior could reconcile theory with empirical evidence of the “value of hope” 

[17, 18], wherein some patients seem to prefer risky therapies with a chance of upside over risk-free 

alternatives with the same expected value. 

So far, however, GRACE and the implied relationship between risk preferences and the value of 

health improvement has remained theoretical, because key parameters measuring risk preferences over 

HRQoL improvement have been unknown.  In this paper, we provide the first estimates of risk 

preferences designed to parameterize the more general GRACE framework and to reveal the resulting 

variation in the value of health improvement and medical technology.  We also develop the theoretical 

justification for estimating these risk preferences in an expo-power utility framework [19].  To 

demonstrate heterogeneity in preferences, we present individual-level estimates of risk preference 

                                                           
1 In some cases, consumers are modeled as being risk-neutral over utility from HRQoL, but risk-averse over an underlying health index [16]. This 
leads to similar implications for the determinants of willingness to pay for HRQoL. As an aside, however, this approach tends to violate the 
implication that the risk premium on an uncertain health index varies with the probability of health losses, because HRQoL is not generally estimated 
as an arbitrary function of the probability of a poor health state. 



parameters and test for differences in the estimated relative risk coefficient by demographics.  Finally, we 

show how our estimates impact the willingness to pay (WTP) for marginal and inframarginal health 

improvements and discuss implications for CEA and HTA.  The estimates in our paper, coupled with the 

formulae presented in prior theoretical research and the usual parameters needed for a traditional CEA 

[14], enable practitioners to implement GRACE analyses for any medical technology of interest. 

While ours is the first study capable of operationalizing GRACE, it contributes to an established 

literature on empirical risk preferences over health.  Health in these studies is often measured as longevity 

[20-23], but some studies have used alternative measures like HRQoL, QALYs, and pain [24-28].  

Irrespective of the health measure used, individual preferences were generally consistent with nonlinear 

(i.e., non-risk-neutral) utility over health.  Other studies have tested the validity of expected utility theory 

[20, 24, 26, 27] or explored the correlation between risk preferences over HRQoL and longevity [21, 28].  

In the study most similar to ours, Attema et al (2016) estimate risk preferences over HRQoL for a 

representative sample from the Netherlands.  Depending on the question framing, they found 36%-62% of 

responses were consistent with risk-averse preferences, 15%-39% were consistent with risk-seeking 

preferences, and 0-44% were consistent with risk-neutral preferences.2  The authors’ estimated utility 

parameters imply a median coefficient of relative risk aversion ranging from 0.1 to 0.39.  While these 

estimates serve as a starting point for GRACE implementation, they require constant relative risk aversion 

(CRRA), which may not appeal to all practitioners or apply to all populations of interest.3 It is 

nonetheless worth noting that when we adopt their CRRA utility assumption, our estimates are consistent 

with theirs. 

Our expo-power approach allows relative risk-aversion to vary with health:  pooled estimates for 

this coefficient range from -1.14 at very low levels of health (health level of 0.1, measured on a 0 to 1 

scale) to 4.51 at “perfect” health (health equal to 1.0).  More generally, we find individuals are risk-

                                                           
2 Questions varied the reference health value and whether individuals faced a health gain, loss, or mixed prospect relative to the reference health. 
3 The authors assumed a power utility function (𝑈𝑈(𝐻𝐻) = 𝐻𝐻𝛼𝛼). 



seeking (risk-averse) at levels of health below (above) 0.485.  Our findings suggest a willingness to 

gamble on risky therapies among patients in worse health states, consistent with the “value of hope” 

found by prior studies [17, 18].4  They also align with higher WTP for the treatment of moderately severe 

illness and for treatments that provide some chance of major upside for highly severe illness [29].  We 

observe heterogeneity in preferences at the individual level, with larger variance in individual risk 

preference parameters at higher levels of health.  However, we do not find evidence that risk preferences 

are strongly influenced by demographics.  Furthermore, we find limited support for relying on utility 

functions that limit risk preferences to CRRA: only 20% of respondents exhibit CRRA preferences over 

health when we use a utility function that allows for a range of risk preference structures.  Finally, for 

illnesses that result in health greater than 0.79 (i.e., health loss less than 0.21), the risk-adjusted WTP 

threshold for marginal health improvements lies below the corresponding WTP threshold from traditional 

CEA.  Therefore, traditional CEA over-values treatment for mild diseases with quality of life above this 

cutoff. 

The remainder of our paper is structured as follows. Sections 2 and 3 present our experimental 

design and analytical methods. Section 4 presents the pooled and individual estimated utility and risk 

preference parameters.  Section 5 uses the risk preference results to explore the value placed on marginal 

and inframarginal health improvements and the resulting implications for CEA.  Section 6 provides a 

discussion and concludes. 

2. METHODS  

2.1. Experimental design 
The experimental design consisted of two treatments.  In both treatments, subjects were told to 

imagine health as a number ranging from 0 to 100, where 100 corresponds to perfect health and 0 to a 

health state just as bad as being dead.  Respondents were also told to imagine being 40 years old with 
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usual health equal to 100, and to imagine further that their health deteriorates to some specified level X 

(where X is less than 100); here, X is the “reference” level of health.5  Use of a reference point allows us 

to test whether risk preferences systematically vary across HRQoL gains and losses [30].  We set 20 as 

the minimum possible health value in the survey because values close to zero have been shown to cause 

extreme behavior and confusion between health and life expectancy [26, 31, 32].   

Respondents were given thirteen different “scenarios,” each consisting of a prospect and a 

reference health level.  Certainty equivalents were elicited for each scenario.  The first six scenarios 

(“common questions”) were common across all respondents. They consisted of two different prospects, 

((0.5,25;45) and (0.5,55;75)), each of which was presented for three different reference health values.  

Henceforth, the notation (0.5,X;Y) refers to a prospect involving a 50/50 gamble over health levels X and 

Y.  The reference health values were selected such that each prospect was separately framed to each 

respondent as a gain, as a loss, and as a mixed outcome.   

The second treatment followed the design of the reference-dependent treatment used by Attema et 

al (2016) [26].  This treatment consisted of a set of seven scenarios, and respondents were randomly 

assigned to the “gains” arm or the “losses” arm.  The gains arm used a reference health of 20, and the 

losses arm used a reference health of 100.  In sum, thirteen scenarios were presented, all of which are 

reported in Table 1 below. The next section describes how certainty equivalents were elicited for each 

scenario. 

2.2. Subjects and procedure  
The choice experiment was fielded within the Understanding America Study (UAS).  The UAS is 

a nationally representative internet panel of approximately 9,500 respondents aged 18 or older and 

administered by the Center for Economic and Social Research at the University of Southern 

California.[33]  Our survey was reviewed and approved by BRANY IRB (protocol #22-030-1044-

198196). We ran a small pilot (N=115) to test whether the survey worked and generated sensible 
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responses.  For the full survey, N=1,144 subjects participated.  For the second treatment, N=558 subjects 

were assigned to the gains arm, and N=586 to the losses arm.  Subjects were paid $10 each for their 

participation.    

Demographic characteristics for UAS participants are collected regularly and were merged with 

our survey questions.  The survey began with questions related to perceptions of health; this section was 

designed to familiarize respondents with questions about health, before introducing the concept of risk.  

Specifically, respondents were first asked to rate their own health on a scale of 0 to 100.  Next, they were 

asked to rate their expected health in ten years, the health of their spouse/significant other, and the health 

of an average person their age.  Respondents were asked to rate five health values ranging from 25 to 75 

on a scale ranging from “not very bad” to “extremely bad”. 

 For each of the 13 health scenarios, certainty equivalents (CE) were elicited by asking 

respondents to choose between the risky health prospect and a series of certain outcomes.  Participants 

were told to assume the reference health level and presented with the risky treatment option on the right 

side and a series of outcomes associated with the certain treatment option on the left side.  The question 

format for each scenario is illustrated below for a risky treatment with equal chances of having health 

equal to 20 or 40.  

 



For each row in the table, participants chose between the certain option (Treatment A) or the 

risky option (Treatment B).  The range of certain option choices spanned the range of the gamble.  The 

survey forced participants to have one of three possible response patterns: 1) select Treatment A in all 

rows; 2) select Treatment B in all rows; or 3) switch from Treatment B to Treatment A at a single point.  

At most one switching point between Treatment B and Treatment A was allowed per question, which 

ensured the CE fell between the endpoints of the gamble.   

2.3. Stimuli  
 CEs were elicited from 13 different scenarios for all respondents (Table 1).  Prior studies have 

found that respondents understand the choice task more easily when gains are presented first [26, 34].  In 

accordance with this finding, we presented all respondents with the same gains question first: 50/50 

gamble over health levels of 25 and 45, starting from a reference level of 20.  For respondents in the gains 

arm of the second treatment, the remaining questions were asked at random.  Respondents in the losses 

arm of the second treatment were presented the remaining common questions in random order, and then 

given the second treatment, which was accompanied by a different set of instructions to frame the loss 

prospect. 

 All health values were contained in the interval [20,100].  Respondents were told to imagine 

having a hypothetical level of health (which corresponded to the reference health in each question) and 

were asked to choose between two treatments. Both treatments would change their health for one year, 

after which time it would return to 100.  The risky treatment option would change health to one of two 

possible levels, each with a probability of 50%.6  The certain treatment option would change health to a 

given value with 100% probability. 

 The instructions in the common questions asked subjects to imagine that their health is usually 

100 but has deteriorated to some hypothetical level (ranging from 20 to 85).  Doctors have discovered the 

                                                           
6 We considered alternate survey designs such as the one used by Holt and Laury (2002), which hold the outcomes fixed and vary the probabilities 
across prospects [35].  One study has shown that this format is more accurate for eliciting the shape of the probability weighting function than the 
utility function [36].  Moreover, changing probabilities introduces additional complexity in the question and may be better suited toward respondents 
with higher levels of mathematical skill [37]. 



cause of the health deterioration, and two treatments are available.  For the gains (losses) questions, one 

treatment involved a certain health gain (loss).  The other treatment involves risk, producing a larger gain 

(loss) with 50% probability and a smaller gain (loss) with 50% probability.  For the two mixed prospect 

questions, the risky treatment provided a health gain with 50% probability and a health loss with 50% 

probability.7  The gains arm of the second treatment presented the same instructions as the common gains 

questions. 

 For the losses arm of the second treatment, participants were asked to assume their health would 

deteriorate to 10 in the following year, unless they received treatment.  Following Attema et al (2016), 

[26] this feature was necessary to prevent inaction from becoming the optimal decision.8  After one year, 

the disease would disappear naturally, and health would return to 100.  However, two treatments are 

available that would reduce the size of the health loss in the coming year.  One treatment involved a sure 

loss.  The risky treatment gave a small or no loss with 50% probability and a larger loss with 50% 

probability.  The full survey and instructions are available online in the survey codebook 

(https://uasdata.usc.edu/index.php, UAS 462). 

Table 1. List of health prospects 
Question Prospect Reference health 
1  

(0.5,25;45) 
20 

2 35 
3 85 
4 

(0.5,55;75) 
45 

5 65 
6 75 
7 (0.5,20;40) 

Arm 1: 100 
Arm 2: 20 

8 (0.5,20;60) 
9 (0.5,20;100) 
10 (0.5,30;70) 
11 (0.5,50;90) 
12 (0.5,80;100) 
13 (0.5,60;80) 

Note: Prospects are defined as (0.5,𝐻𝐻1;𝐻𝐻2), indicating 50% probabilities assigned 
to each of the health levels, 𝐻𝐻1 and 𝐻𝐻2, respectively. 

                                                           
7 During pilot testing, we used “side effects” as a conceptual way to frame why a treatment could cause health losses. However, some respondents 
felt additional information was needed (i.e., what were the specific side effects) to answer the question.  To avoid respondents imposing their own 
framing about potential side effects, we refrained from using that language as a conceptual framework. 
8 The drop in health described in the losses arm is only conditional on inaction and should not be considered as a possible reference point. 

https://uasdata.usc.edu/index.php


3. ANALYSIS 

3.1. Exclusion criteria 
We excluded N=397 individuals who for questions 7 through 13 (Table 1) either always selected 

the gamble, always selected the certain outcome, or did not respond.9  CEs and thus risk preferences are 

not identified for any of these excluded individuals, who were more likely to fall in the bottom decile of 

total time spent on the 13 health gamble questions.10  We present a comparison of demographics for the 

included and excluded samples in Table 2.    

Table 2. Summary statistics 
 

Included 
sample 

Excluded sample 

 

Always 
picked the 

certain 
treatment 

Always 
picked the 

risky 
treatment 

Mixture of 
always 

certain or 
always risky 

Missing 
values for all 

questions 

Sample size 747 126 54 188 29 

Male 
0.420 

(0.493) 
0.309 

(0.464) 
0.388 

(0.492) 
0.319 

(0.467) 
0.344 

(0.483) 

Age (years) 
52.15 

(16.06) 
53.41 

(17.71) 
56.40 

(14.70) 
47.09 

(15.71) 
45.20 

(19.27) 

Age group: <40 years 
0.259 

(0.438) 
0.261 

(0.441) 
0.148 

(0.358) 
0.377 

(0.486) 
0.482 

(0.508) 

Age group: 40-54 
0.270 

(0.444) 
0.230 

(0.422) 
0.277 

(0.452) 
0.292 

(0.456) 
0.275 

(0.454) 

Age group: 55-64 
0.196 

(0.397) 
0.206 

(0.406) 
0.222 

(0.419) 
0.186 

(0.390) 
0.103 

(0.309) 

Age group: 65+ 
0.273 

(0.445) 
0.301 

(0.460) 
0.351 

(0.482) 
0.143 

(0.351) 
0.137 

(0.350) 

Married 
0.574 

(0.494) 
0.492 

(0.501) 
0.574 

(0.499) 
0.473 

(0.500) 
0.482 

(0.508) 

College graduate 
0.527 

(0.499) 
0.269 

(0.445) 
0.388 

(0.492) 
0.223 

(0.417) 
0.517 

(0.508) 

White, non-Hispanic 
0.709 

(0.454) 
0.5 

(0.501) 
0.574 

(0.499) 
0.478 

(0.500) 
0.379 

(0.493) 

Working 
0.566 

(0.495) 
0.547 

(0.499) 
0.518 

(0.504) 
0.542 

(0.499) 
0.655 

(0.483) 

Income: <60K 
0.389 

(0.487) 
0.515 

(0.501) 
0.611 

(0.492) 
0.643 

(0.480) 
0.413 

(0.501) 

                                                           
9 Because questions 1 through 6 represent a mixture of gains, losses, and mixed prospects, individuals could have feasibly selected all certain 
outcomes or all gambles under prospect theory.  As a result, response patterns for questions 1 through 6 were not used for the exclusion criteria.  
10 24.6% of the excluded individuals fell in the bottom decile of total time spent on the 13 health questions, and 42.4% fell in the bottom two deciles.  
For comparison, only 2.8% and 9.1% of people included in our analysis fell in the bottom decile or bottom two deciles, respectively, of total time 
spent on the 13 health questions. 



Income: 60K-99.9K 
0.293 

(0.455) 
0.277 

(0.449) 
0.166 

(0.376) 
0.196 

(0.398) 
0.241 

(0.435) 

Income: 100K+ 
0.317 

(0.465) 
0.206 

(0.406) 
0.222 

(0.419) 
0.159 

(0.367) 
0.344 

(0.483) 

Insured 
0.716 

(0.451) 
0.579 

(0.495) 
0.611 

(0.492) 
0.478 

(0.500) 
0.517 

(0.508) 

Region: Northwest 
0.133 

(0.340) 
0.079 

(0.271) 
0.111 

(0.317) 
0.111 

(0.315) 
0.068 

(0.257) 

Region: Midwest 
0.231 

(0.422) 
0.150 

(0.359) 
0.148 

(0.358) 
0.180 

(0.385) 
0.068 

(0.257) 

Region: South 
0.269 

(0.443) 
0.301 

(0.460) 
0.259 

(0.442) 
0.265 

(0.443) 
0.379 

(0.493) 

Region: West 
0.364 

(0.481) 
0.468 

(0.500) 
0.481 

(0.504) 
0.441 

(0.497) 
0.482 

(0.508) 

Self-rated health: 0-75 
0.357 

(0.479) 
0.428 

(0.496) 
0.388 

(0.492) 
0.510 

(0.501) 
0.172 

(0.384) 

Self-rated health: 76-85 
0.350 

(0.477) 
0.190 

(0.394) 
0.222 

(0.419) 
0.196 

(0.398) 
0.103 

(0.309) 

Self-rated health: 86-100 
0.291 

(0.454) 
0.380 

(0.487) 
0.388 

(0.492) 
0.292 

(0.456) 
0.724 

(0.454) 
Notes: Standard deviations in parenthesis. 

3.2. Estimating utility 
  CEs were calculated for each scenario as the midpoint of the certain outcomes between the two 

adjacent rows in which a respondent switched from preferring the risky treatment to preferring the 

treatment with a certain outcome.  The table below illustrates using an example. In the table, the 

individual chooses the risky treatment when the certain outcome is 24, but the certain treatment when the 

certain outcome rises to 27.  In this case, the CE would be estimated as 24+27
2

= 25.5.  For individuals 

who selected the gamble in all choice sets for a particular question, the CE was the midpoint of the largest 

gamble endpoint and the largest certain outcome (i.e., the certain outcome in the last choice set).  For 

example, if an individual had preferred Treatment B for all rows in the table below, the CE would be 

computed as 38+40
2

= 39.  Similarly, for individuals who selected the certain outcome in all choice sets 

for a particular question, the CE was the midpoint of the smallest gamble endpoint and the smallest 

certain outcome (i.e., the certain outcome in the first choice set). Continuing with the example below, the 

CE in this case would be 20+21
2

= 20.5. 



 

 Our analysis proceeds under the assumption of expected utility theory that reference health does 

not matter, and it pools data for all respondents and questions.11  We estimated utility over health under 

two different parametric utility structures:  expo-power [19] and constant relative risk-aversion (CRRA).12  

Expo-power nests increasing and decreasing relative risk-aversion, along with constant, increasing, and 

decreasing absolute risk-aversion.  Expo-power also approaches constant relative risk-aversion as its two 

parameters approach zero.  We also employ the commonly used CRRA form to facilitate comparison to 

prior literature [26]. 

 Expo-power utility takes the form: 

𝑊𝑊𝐸𝐸𝐸𝐸(𝑞𝑞) = 𝑐𝑐 − exp {−𝑏𝑏𝑞𝑞𝑎𝑎}      (1a) 

Since utility is equal for the prospect (0.5, 𝑞𝑞1;𝑞𝑞2) and its associated certainty equivalent (𝑞𝑞𝐶𝐶𝐸𝐸), we can 

write: 

𝑐𝑐 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏𝑞𝑞𝐶𝐶𝐸𝐸𝑎𝑎 ) = 0.5�𝑐𝑐 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏𝑞𝑞1𝑎𝑎)�+ 0.5�𝑐𝑐 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑏𝑏𝑞𝑞2𝑎𝑎)�   (1b) 

Solving (1b) for 𝐶𝐶𝐸𝐸𝑖𝑖  yields the expo-power estimating equation for each individual respondent 𝑖𝑖: 

                                                           
11 We estimated EU models separately for the gains and losses arms and found no difference in utility parameters (see Table 4).  Estimation of 
prospect theory models and formal hypothesis testing of whether behavior is better explained by EU or prospect theory are outside the scope of this 
paper. 
12 We also explored the use of Hyperbolic Absolute Risk-Aversion (HARA) utility. However, HARA models did not reliably converge, likely 
because of model misspecification, as we discuss in the appendix (Section 7.6). 
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Two utility parameters (a,b) are simultaneously estimated using nonlinear least squares, with the 

restriction that 𝑎𝑎𝑏𝑏 ≠ 0.  Just as with OLS, the error process, 𝜖𝜖𝑖𝑖 is assumed to be Gaussian in nonlinear 

least squares.  The third parameter (c) is not uniquely identified through estimation; we set it to 1 to 

satisfy the conventional requirement that utility in the state of zero health is zero.13  This is also consistent 

with our instruction to survey respondents that they should imagine the health state of zero being just as 

bad as death.  Uniqueness results and a representation theorem for Equation (1a) is given in the Appendix 

(Section 7.1). 

 CRRA utility takes the form, 𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) =  𝑒𝑒
1−𝜌𝜌

1−𝜌𝜌
.  Analogously, its NLLS estimating equation is: 

𝑞𝑞𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑞𝑞1
1−𝜌𝜌+ 𝑞𝑞2
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2

1−𝜌𝜌
+ 𝜖𝜖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶    (3) 

Estimating risk preferences 

GRACE can be implemented once the HRQoL utility function is recovered.14  Before presenting 

implications for GRACE, we first calculate relative risk-aversion (𝑟𝑟𝐻𝐻∗ = −𝑊𝑊′′(𝐻𝐻)
𝑊𝑊′(𝐻𝐻)

𝐻𝐻), which reveals the 

cost borne by consumers when treatment effects vary [11].  The appendix (Section 7.2) also presents 

estimates for relative prudence, 𝜋𝜋𝐻𝐻∗ = −𝑊𝑊′′′(𝐻𝐻)
𝑊𝑊′′(𝐻𝐻)

𝐻𝐻, which reveals the taste for positive skewness in 

treatment effects [11].15  We calculated empirical estimates for the relative risk parameters over the full 

range of health [0-1].  Mathematical equations as well as parameter estimates for 𝑟𝑟𝐻𝐻∗  and 𝜋𝜋𝐻𝐻∗  are provided 

in the Appendix (Section 7.2).  Standard errors for the risk parameter estimates were clustered at the 

individual-level and bootstrapped using 1,000 replications. 

                                                           
13 Rosen (1988) explained that in models of mortality risk-reduction, the level of utility affects behavior, because the marginal utility of life-
extension depends on the utility level [38].  In the economics literature on cost-effectiveness, it is conventional to assume that health-related utility 
is zero when health is zero [15]. 
14 Taylor-Series approximations can be used to estimate GRACE-based value assessments using relative risk-aversion and relative prudence, even 
without knowledge of the specific utility function.[11] In what follows here, however, we exploit estimates of the utility functions to provide exact 
valuations of health improvement rather than imperfect Taylor-Series approximations [14]. 
15 The latter can be interpreted as the “value of hope,” where patients value risky treatments with the chance of greater upside [17, 18].   



4. RESULTS 

4.1. Pooled estimates of risk preferences 

Table 3 presents results for the entire sample and shows the risk preference parameter estimates 

for select values of health (see Appendix Section 7.2 for variance-covariance matrices for utility 

estimates).  Figure 1 presents the risk preference estimates for expo-power utility across the entire range 

[0,1] of health.  The CRRA utility estimates yield a single value of 𝒓𝒓∗ consistent with risk-aversion, while 

the expo-power utility estimates suggest individuals are risk-seeking (risk-averse) at low (high) levels of 

health.  Under expo-power, preferences switch from risk-seeking to risk-averse at health equal to 0.485.   

Table 3. Utility and risk parameter estimates, pooled sample 
 Expo-power CRRA 
Utility parameters 

ρ - 0.2822 
[0.2170, 0.3492] 

a 2.1760 
[2.0687, 2.2883] - 

b 2.6152 
[2.3936, 2.8609] - 

Relative risk aversion evaluated at select values for HRQoL(H) 

H = 0.1 -1.14 
[-1.267, -1.005] 

0.2822 
[0.217, 0.349] 

 

H = 0.5 -0.08 
[-0.037, 0.198] 

H = 0.9 3.35 
[2.846, 3.917] 

H = 1.0 4.51 
[3.820, 5.332] 

Estimation N 9,710 9,710 
Notes: Estimation sample pooled all 13 health gamble questions for N=747 respondents.  95% confidence intervals for the 
relative risk aversion parameters generated using 1,000 bootstrap replications clustered at the respondent level.  Standards errors 
are similar without clustering.  Utility parameter ρ corresponds to CRRA utility function: 𝑈𝑈(𝐻𝐻) = (𝐻𝐻1−𝜌𝜌)/(1 − 𝜌𝜌); parameters a 
and b correspond to expo-power utility given by equation (1a). 



Figure 1. Estimated utility and relative risk aversion parameters (pooled sample), full range of 
health [0,1] 

 

Notes: Traditional CEA assumes utility that is linear in health-related quality of life, which is provided for reference as the red 
line in the left-hand panel. Relative risk aversion is calculated from utility parameter estimates for the expo-power and CRRA 
utility functions (Table 2).  Expo-power preferences switch from risk-seeking to risk averse at a health value of 0.485.  

 

We estimated expo-power utility parameters separately for the gains and losses arms for all health 

prospects as well for the subset of common questions and treatment questions (Table 4).  We find no 

systematic differences in responses by treatment arm for common questions.  Furthermore, we do not find 

evidence that framing a health prospect as again or a loss impacts the utility estimates; even the point 

estimates are quite similar across the gains and losses arms of the experiment.  

 

Table 4. Expo-power utility parameter estimates by treatment arm 
 All health prospects Treatment questions Common questions 
 Gains arm Losses arm Gains arm Losses arm Gains arm Losses arm 
a 2.217 

[2.05, 2.38] 
2.133 

[1.97, 2.30] 
2.292 

[2.12, 2.46] 
2.180 

[2.01, 2.35] 
1.948 

[1.72, 2.18] 
2.035 

[1.81, 2.26] 
b 2.721 

[2.37, 3.08] 
2.505 

[2.16, 2.85] 
2.837 

[2.47, 3.20] 
2.548 

[2.19, 2.91] 
3.014 

[2.34, 3.69] 
3.758 

[3.01, 4.51] 
N 5,004 4,706 2,694 2,534 2,310 2,172 

Note: Estimation sample (N) pooled all 13 health gamble questions for 747 respondents.   

4.2. Individual estimates of risk preferences 
In principle, cost-effectiveness applies at the level of a representative individual.  Inferences about 

insured populations rest on assumptions about homogeneity of individual preferences. Therefore, we 

quantify the heterogeneity in individual risk preferences and explore its possible determinants. Later, we 



specifically analyze how well pooled risk preferences estimates approximate aggregate willingness to pay 

for health improvements. 

 Table 5 presents the summary statistics for the individual utility estimates.  We first estimated 

individual expo-power utility functions for all respondents using all 13 health gamble questions pooled 

(results provided in Appendix Section 7.4). When either expo-power utility parameter (𝑎𝑎 or 𝑏𝑏) is close to 

zero, relative risk-aversion (𝑟𝑟∗) is approximately constant over the full range of health (i.e., CRRA 

preferences).16  Therefore, among the subsample of respondents (N=145) with at least one estimated 

expo-power parameter “close to zero” (defined as |𝑎𝑎| < 0.0001 or |𝑏𝑏| < 0.0001), we also estimated the 

CRRA utility function and used the utility function (expo-power or CRRA) with the smaller root mean 

squared error (RMSE) to calculate risk preference parameters for these individuals [39].  

Table 5. Individual utility and relative risk aversion estimates, summary statistics 
 Expo-power utility subsample CRRA utility subsample 
 Median 

[IQR] 
Mean  
(SD) 

Median 
[IQR] 

Mean 
(SD) 

Utility parameters 
a 2.23 

[1.39, 3.72] 
3.65 

(5.32) 
1.39 

[0.59, 2.71] 
2.18 

(3.21) 
b 3.68 

[1.74, 8.27] 
12,338 

(160,311) 
3.5e-13 

[3e-14, 2e-10] 
4.1e-6 

(1.6e-5) 
ρ  

 
-0.54 

[-2.09, 0.25] 
-1.15 
(2.22) 

Relative risk aversion evaluated at select values for HRQoL (H) 
H = 0.1 -1.18 

[-2.72,-0.23] 
-2.51 
(5.41) 

-0.54 
[-2.09, 0.25] 

 

-1.15 
(2.22) 

 

H = 0.5 0.40 
[-0.94, 1.34] 

1.82 
(21.17) 

H = 0.9 4.44 
[1.57, 14.1] 

10,193 
(118,188) 

H = 1.0 5.97 
[2.09, 23.6] 

448,111 
(5,989,231) 

Respondents (N) 639 108 
Notes: First, the expo-power utility function was estimated for all individuals using all 13 health gamble questions. If either of the 
estimated utility parameters (a or b) was “close to zero” (defined as <0.0001 in absolute value), we estimated the CRRA utility 
model.  The final model (CRRA or expo-power) for this subgroup (N=145) was selected using the smallest RMSE; CRRA utility 
minimized RMSE for 74% (N=108) respondents with either expo-power parameter close to zero.    

                                                           
16 While the calculated r* values when a or b equal zero exist, marginal utility is undefined. As a result, expo-power utility can be represented as 
linear in health when a or b equal zero.  



Figure 2 provides the distribution of individual estimates for risk aversion over the full range of health.  

At the individual level, parameters consistent with IARA-IRRA preferences are most common (72.6%), 

followed by DARA-CRRA (11.4%) and IARA-CRRA (8%).  Among the 527 individuals who switch 

from risk seeking to risk averse, approximately 50% switch between a health level of 0.4 and 0.6.  The 

distribution of individual estimates for 𝑟𝑟𝐻𝐻∗  has higher variance at higher levels of health.  Moreover, expo-

power utility yields stronger degrees of relative risk aversion (i.e., larger magnitude of 𝑟𝑟𝐻𝐻∗) at higher levels 

of health compared with CRRA utility. For example, risk-averse CRRA individuals have a median 𝑟𝑟𝐻𝐻=1∗  

equal to 0.52 [IQR=0.25, 0.81] compared with median expo-power 𝑟𝑟𝐻𝐻=1∗  equal to 7.18 [IQR=2.76, 27.0] 

for individuals with who are risk averse at perfect health (𝐻𝐻 = 1).   

Figure 2. Individual relative risk aversion parameter estimates for full range of health [0-1] 

 

Notes: Distribution of relative risk aversion parameters over the full range of health. The IQR is represented by the upper and 
lower edges of the rectangles.  The whiskers represent the upper and lower adjacent values, which are calculated as the 75th 
percentile + 1.5*IQR and 25th percentile + 1.5*IQR, respectively.  Individual risk preference parameters were derived from expo-
power utility for the majority of respondents (N=639).  The remaining N=108 respondents had expo-power utility parameter 
estimates that imply CRRA preferences and a smaller RMSE value for the CRRA utility model.  

 We estimated regressions to examine whether demographics were correlated with 1) absolute risk 

preference types; 2) relative risk preference types; and 3) relative risk aversion parameters.  Regressions 

stratified by self-rated health subgroups suggest income and insurance status may be weakly correlated 

with preference type for people with self-rated health greater than 85 (which roughly corresponds to the 

top tercile of self-rated health in our sample).  However, our results suggest relative risk aversion is 

relatively uniform across demographic groups (see Appendix Section 7.4 for results).    



5. IMPLICATIONS FOR COST-EFFECTIVENESS ANALYSIS 

5.1. Overview of GRACE concepts 
The GRACE model extends CEA to explicitly and properly model non-risk-neutral preferences 

over health [11],17 permanent disability [13], and ex ante decision-making [11].  While GRACE theory 

has been laid out elsewhere [11-14, 40], we provide a brief overview of GRACE here to explain how our 

empirical results relate to the conduct of cost-effectiveness analysis.  

Under traditional CEA, the socially efficient WTP for HRQoL is the ex ante WTP for health 

improvement, which satisfies 𝐾𝐾 ≡ 𝑈𝑈(𝐶𝐶)
𝑈𝑈′(𝐶𝐶)𝐻𝐻0

, where 𝑈𝑈(𝐶𝐶) is the utility of non-medical consumption, 𝑈𝑈(𝐶𝐶), 

and 𝐻𝐻0 = 1 the ex ante HRQoL level [15].  In practice, healthcare decision makers may not have access 

to budgets that align with the socially efficient WTP threshold; in this case, 𝐾𝐾 may lie below 𝑈𝑈(𝐶𝐶)
𝑈𝑈′(𝐶𝐶)𝐻𝐻0

 and 

be driven by budget constraints or other considerations.  A technology is adopted if: 

𝛥𝛥(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
𝛥𝛥(𝑄𝑄𝐶𝐶𝑄𝑄𝑄𝑄)

≤ 𝑊𝑊𝑊𝑊𝑊𝑊 ≡ 𝐾𝐾       (4) 

Here, Δ(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) is the incremental cost of the technology, and Δ(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄) is the incremental gain in quality-

adjusted life-years.  To define the QALY, denote HRQoL as 𝐻𝐻𝑇𝑇 and 𝐻𝐻𝑈𝑈 in the treated and untreated 

states, respectively, and denote the probability of survival as 𝑒𝑒𝑇𝑇 and 𝑒𝑒𝑈𝑈 in the treated and untreated states.  

The incremental QALY for a single period then satisfies: Δ(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄) ≡ 𝑒𝑒𝑈𝑈(𝐻𝐻𝑇𝑇 − 𝐻𝐻𝑈𝑈) + 𝐻𝐻𝑇𝑇(𝑒𝑒𝑇𝑇 − 𝑒𝑒𝑈𝑈). For 

simplicity and without sacrificing generality, we present all our results for single-period QALY gains.  

Incremental QALYs gained over multiple periods can be calculated simply as the expected discounted 

sum of single-period gains. 

By allowing for nonlinear utility over health, GRACE generalizes the above expressions.  The 

generalized GRACE decision rule becomes: 

                                                           
17 While some formulations of traditional cost-effectiveness accurately recognize the possibility of a nonlinear relationship between health and 
health-related utility [16], conventional cost-effectiveness analysis cannot be reconciled with basic predictions from expected utility theory.  For 
instance, quality of life weights in conventional cost-effectiveness are assumed independent of the probability of a health loss and of the starting 
health level, even though both of these would obviously affect the risk premium associated with a given health loss. 



Δ(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
Δ(𝐺𝐺𝐶𝐶𝐶𝐶-𝑄𝑄𝐶𝐶𝑄𝑄𝑄𝑄)

≤ 𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸       (5) 

If the utility of health is given by 𝑊𝑊(𝐻𝐻), the generalized risk-adjusted QALY (GRA-QALY) for a single 

period can be written as:  Δ(𝐺𝐺𝐺𝐺𝑄𝑄-𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄) ≡ 𝑒𝑒𝑈𝑈
�𝐸𝐸(𝑊𝑊(𝐻𝐻𝑇𝑇))−𝐸𝐸(𝑊𝑊(𝐻𝐻𝑈𝑈))�

𝑊𝑊′(𝐻𝐻𝑈𝑈) + 𝐸𝐸(𝑊𝑊(𝐻𝐻𝑇𝑇))
𝑊𝑊′(𝐻𝐻𝑈𝑈)

(𝑒𝑒𝑇𝑇 − 𝑒𝑒𝑈𝑈) [14, equation 

22c].18  The first term in the GRA-QALY is the value of HRQoL improvement and the second the value 

of life-extension.  Both allow for uncertainty in health states and associated risk-aversion.  Note that the 

GRA-QALY reduces to the traditional QALY under linear utility [15], 𝑊𝑊(𝐻𝐻) = 𝐻𝐻.19   

Defining 𝐻𝐻𝐷𝐷 as the time zero level of health, inclusive of any permanent disabilities or other pre-

existing conditions, GRACE implies that the WTP for health improvements generalizes as [14, equation 

22c]: 

𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 ≡ 𝐾𝐾𝑊𝑊′�𝐸𝐸(𝐻𝐻𝑈𝑈)�
𝑊𝑊(𝐻𝐻𝐷𝐷) 𝐻𝐻0     (6) 

𝑊𝑊′(𝐸𝐸(𝐻𝐻𝑈𝑈))
𝑊𝑊(𝐻𝐻D) 𝐻𝐻0 is the product of the elasticity of health-related utility with respect to health, 𝜔𝜔𝐻𝐻 ≡

𝑊𝑊′(𝐻𝐻0)𝐻𝐻0
𝑊𝑊(𝐻𝐻0) , 

the “disease severity ratio,” 𝐺𝐺 ≡ 𝑊𝑊′�𝐸𝐸(𝐻𝐻𝑈𝑈)�
𝑊𝑊′(𝐻𝐻0) , and the “disability ratio,” 𝐷𝐷 ≡ 𝑊𝑊(𝐻𝐻0)

𝑊𝑊(𝐻𝐻𝐷𝐷) [11]. The empirical 

estimate for 𝜔𝜔𝐻𝐻 using our pooled expo-power estimates is 0.4491.20 For diseases of negligible severity 

(𝐺𝐺 = 1) afflicting consumers with no pre-existing disability (𝐷𝐷 = 1), WTP estimates should be more 

than halved, because 𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 = 𝐾𝐾𝜔𝜔𝐻𝐻 ≈ 0.4491𝐾𝐾.  Therefore, GRACE implies that conventional cost-

effectiveness overstates WTP whenever disease and/or pre-existing disability are mild enough that 𝐺𝐺𝐷𝐷 <

1
𝜔𝜔𝐻𝐻

≈ 2.227.  Later, we present estimates of 𝐺𝐺 as a function of 𝐻𝐻𝑈𝑈, under the assumption of non-

stochastic disease severity, and we present estimates of 𝐷𝐷 as a function of 𝐻𝐻𝐷𝐷.   

Expanding the expression for 𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 results in the equivalent reformulation: 

                                                           
18 We provide readers with relevant equation numbers in Lakdawalla and Phelps (2023), abbreviated as LP, for reference. Because our paper focuses 
on the impact of risk preferences we assume disability (given by d* in LP (2023) equations), equals zero.  Furthermore, we denote health in the 
treated state as 𝐻𝐻𝑇𝑇 whereas LP denote it as 𝐻𝐻𝑆𝑆 + 𝐵𝐵, which corresponds to health in the untreated state (𝐻𝐻𝑈𝑈 in this manuscript) plus the HRQoL 
gains (B) from treatment. 
19 The GRA-QALY also reduces to the traditional QALY if one defines 𝐾𝐾 as the willingness to pay for marginal changes in health-related utility, 
as some traditional CEA theorists recommend [16]. 
20 The empirical estimate for 𝜔𝜔𝐻𝐻 using the CRRA estimates is 0.7178. 



𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 ≡ 𝐾𝐾𝜔𝜔𝐻𝐻𝐺𝐺𝐷𝐷𝐻𝐻0     (7) 

 Evidently, 𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 is proportional to the conventional cost-effectiveness threshold, 𝐾𝐾.  While the 

socially efficient level of K can be calculated using estimates for income and the elasticity of utility with 

respect to consumption from the literature, we present results in this section assuming 𝐾𝐾 equal to $50,000 

and $150,000, both of which are commonly used in the practice of CEA [41, 42]. 

5.2. Willingness to Pay for Health Improvements 
 Figure 3 presents the 𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 thresholds derived from the pooled expo-power utility estimates 

(Table 3); Appendix 7.5 presents a comparison of 𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 thresholds derived from expo-power and 

CRRA utility.  These thresholds represent the value of marginal gains in health improvement; in practice, 

we use 0.01 unit improvements in HRQoL to measure “marginal” improvements.  Since the WTP for 

health improvement varies with the marginal utility of health improvements, we expect it to rise in 

regions where people are risk-averse but fall where they are risk-seeking.  Not surprisingly, therefore, the 

GRACE WTP threshold rises for HRQoL levels above 0.485 and falls for levels below it. 

 Moreover, for values of health greater than 0.78, the GRACE WTP threshold is less than the 

corresponding traditional CEA WTP threshold; thus, marginal gains for illnesses with untreated health 

between 0.78 and 1 will be overvalued under the risk-neutrality assumption of traditional CEA.  In 

contrast, marginal gains for illnesses that cause untreated health to fall between 0.22 and 0.77 will be 

undervalued by traditional CEA. Finally, the downturn of WTP among the risk-seeking severely ill 

implies that CEA will overvalue marginal gains for illnesses with untreated health between 0 and 0.22. 

The dashed lines in Figure 3 represent the 95% confidence interval obtained from 1,000 bootstrap 

replications for the red and blue curves. 

 



Figure 3. Generalized risk-adjusted WTP thresholds (pooled estimates) 

 

Notes: 95% CIs for GRACE WTP thresholds derived from N=1000 bootstrap replications. For values of health less than 0.235 
and health greater than 0.78, the adjusted WTP threshold is less than the corresponding unadjusted WTP threshold.  This implies 
that CEA will overvalue health technologies that treat illnesses that correspond to a health of 0 to 23.5 and 78 to 100 and 
undervalue health technologies that treat illnesses that correspond to health of 24 to 77.  In other words, using traditional CEA 
WTP thresholds, payers that rely on CEA would over-reimburse for treatments for relatively mild and extremely severe illnesses.  
For people with moderate to severe illness, payers would under-reimburse for treatments.    

Table 6 presents the estimates for the disease severity ratio (R) and disability ratio (D) calculated 

directly from the pooled expo-power utility function estimates.  If people were risk averse over the full 

range of health, we would expect R to increase as untreated health decreases.  However, because people 

are risk seeking at low levels of health and risk averse at high levels of health, R has an inverted u-shape. 

Table 6. Disease severity and disability ratios for selected values of HRQoL 
Untreated health (HU) Disease severity ratio 

(R) 
Untreated health, 

inclusive of disability 
(HD) 

Disability ratio (D) 

1.0 1.00 1.0 1.00 
0.9 1.51 0.9 1.06 
0.75 2.41 0.75 1.23 
0.5 3.39 0.5 2.11 
0.25 2.36 0.25 7.71 
0.1 0.90 0.1 53.61 

Notes: Values are calculated using the pooled expo-power estimates (Table 3). The disease severity ratio is given by 𝑊𝑊
′�𝐸𝐸(𝐻𝐻𝑈𝑈)�
𝑊𝑊′(𝐻𝐻0)  

and the disability ratio is given by 𝑊𝑊(𝐻𝐻0)
𝑊𝑊(𝐻𝐻𝐷𝐷). The calculations here assume 𝐻𝐻0 = 1 and 𝐻𝐻𝑈𝑈 is nonrandom. 

 

Table 6 demonstrates that treating illnesses at a health level of 0.5 generate more than triple the 

value per unit of QoL improvement than treating very mild disease. This contrasts starkly with traditional 

CEA, which implies no differences in the value per unit of QoL improvement.  Similarly, the value of 



health improvement rises with pre-existing disability.  Even moderate disability of around 𝐻𝐻𝐷𝐷 =0.75 

increases the value of QoL improvement by nearly 25%.  At the same time, the results illustrate the extent 

to which traditional CEA overvalues treatments for mild disease.  Recall that 𝐾𝐾𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸 = 𝐾𝐾𝜔𝜔𝐻𝐻𝐺𝐺𝐷𝐷, and 

recall further that 𝜔𝜔𝐻𝐻 = 0.4491 under expo-power utility.  This implies that traditional CEA overvalues 

treatment of negligibly severe illness (𝐻𝐻𝑈𝑈 ≈ 1) by a factor of 2.227. It overvalues mild illness (𝐻𝐻𝑈𝑈 = 0.9) 

by almost 50% ( 1
1.51∗0.4491

≈ 1.475).  The disability adjustment also has meaningful implications for 

value.  For instance, pre-existing peanut allergies (𝐻𝐻𝐷𝐷 = 0.803) would increase the value of all health 

improvements by 15% [43].  

Below 𝐻𝐻𝑈𝑈 = 0.5, Table 6 shows that the disease severity ratio begins to fall. This is due to risk-

seeking behavior, which depresses 𝑊𝑊′(𝐸𝐸(𝐻𝐻𝑈𝑈)) and thus the severity ratio, 𝐺𝐺.  Patients in these highly 

severe health states place less value on marginal improvements in health, but more value on marginal 

increases in the probability of large gains. We pursue the meaning of this distinction later. 

Figure 4 shows the distribution of WTP thresholds based on the individual estimates.  For the 

most part, the interquartile variation in WTP thresholds is relatively modest.  For example, for a health 

level equal to 0.5, the IQR for the generalized adjusted WTP threshold is [$32,892, $76,180] and 

[$98,687, $228,541] corresponding to unadjusted 𝐾𝐾 of $50,000 and $150,000, respectively.  Similarly, at 

a health level equal to 1.0, the generalized adjusted WTP threshold IQR is [$669, $41,978] and [$2,008, 

$125,934].   



Figure 4. Distribution of risk adjusted WTP thresholds (individual estimates) 

 

Notes: Distribution of risk adjusted WTP thresholds across range of health [0.1,1].  The IQR is represented by the upper and 
lower edges of the rectangles.  The whiskers represent the upper and lower adjacent values, which are calculated as the 75th 
percentile + 1.5*IQR and 25th percentile + 1.5*IQR, respectively.  Individual WTP estimates were derived from expo-power 
utility for the majority of respondents (N=639).  The remaining N=108 respondents had expo-power utility parameter estimates 
that imply CRRA preferences and a smaller RMSE value for the CRRA utility model.  Adjusted WTP threshold is undefined at 
health = 0. Y-axis scales for left and right panels are different, and have been truncated.   

 While consumers vary in their risk preferences, cost-effectiveness practitioners will rarely have 

access to individual-specific risk preference data in every population of interest.  In such cases, the pooled 

expo-power estimates appear to be reasonable approximations to the aggregate WTP implied by the 

heterogeneous individual risk preferences across individuals.  Figure 5 presents a comparison of the risk 

adjusted WTP based on the pooled estimates (expo-power and CRRA utility) and the aggregate WTP 

based upon the individual estimates.  The individual risk-adjusted WTP reflects the average WTP across 

individuals; conceptually, this represents the aggregate willingness to pay for health improvement within 

the population, expressed in per capita terms by dividing by the total number of respondents (N=747).  

Since the confidence intervals around the green curve are so large as to extend beyond the axes in the 

figure, this analysis should be thought of as illustrative rather than formal.   

The general shape of the individual WTP curve more closely resembles the WTP generated by 

pooled expo-power utility, which is consistent with the fact that approximately 86% of individuals in our 

sample had either non-CRRA preferences or CRRA preferences but a smaller RMSE for expo power 

utility. However, the figure also suggests the potential role of sensitivity analysis using both the expo-



power and the CRRA estimates to provide bounds on the individual estimates over most of the salient 

HRQoL domain.   

Figure 5. Comparison of pooled and individual risk adjusted WTP 

 

Notes: Individual curve corresponds to the per capita risk adjusted WTP derived from the individual level utility estimates 
summarized in Table 5.  Dashed lines correspond to the 95% confidence intervals (CI); CIs for the individual WTP are wider 
than the y-axis scale and therefore omitted; we present a figure with the individual CIs included in the Appendix Section 7.5.   

 

The results above report the value of marginal gains in HRQoL.  However, the nonlinearity of the 

utility function suggests that marginal gains might not be worth the same as inframarginal gains.  

Meanwhile, the presence of variable risk preferences suggests differences between the value of marginal 

certain gains and of actuarially equivalent risky gains.  Figure 6 explores these two hypotheses, and 

analogous comparisons of pooled and individual utility are presented in the Appendix Section 7.4.   

The righthand panel compares (1) the willingness to pay for marginal gains (i.e., 0.01 unit gains 

in HRQoL), given by the blue curve, (2) the willingness to pay for inframarginal gains (defined here as 

0.2 units of HRQoL), given by the red curve, and (3) the willingness to pay for 50% reductions in the 

HRQoL burden (i.e., HRQoL improvements of 𝐻𝐻0−𝐻𝐻𝑈𝑈
2

), given by the green curve.  All curves report the 

WTP per unit of HRQoL gain, so they are comparable in scale.  Heuristically, “breakthroughs” are more 

valuable on a unit basis for the severely ill, because of their apparent risk-seeking posture.  That is, 

inframarginal gains are relatively more valuable on a per unit basis than marginal ones among the 

severely ill.  The opposite is true among those with mild disease.  



The lefthand panel of Figure 6 illustrates how the value of risky gains departs from that of certain 

gains.  The blue curve reproduces the value of a certain 0.01 unit HRQoL improvement. The red curve 

illustrates the WTP for a risky cure with an expected HRQoL gain of 0.01 units. In other words, the red 

and blue curves compare actuarially equivalent health improvements, but the red curve depicts a 

treatment with a small chance of curing the patient’s condition entirely.  Among the severely ill, the risky 

cure is relatively more valuable than the certain gain. This comports with earlier empirical research on the 

“value of hope” [17, 18].   

Figure 6. Impact of risk and burden reduction on GRACE WTP thresholds 

 

Notes: All WTP thresholds calculated assuming K=$150,000. Values are normalized by the size of the HRQoL gain from 
treatment. Left panel: Risk-adjusted WTP is the same as the blue line in Figure 3. The risky cure is a treatment with an x% 
chance of a cure, where 𝑒𝑒 = 0.01

1−𝐻𝐻𝑈𝑈
, which implies the expected HRQoL gain from treatment equals 0.01.  Right panel: The 

GRACE WTP for a 0.01 HRQoL burden reduction approximates the risk-adjusted WTP (left panel). The 50% QoL burden 
reduction eliminates 50% of the QoL loss from the disease, while the 0.2 QoL burden reduction removes 0.2 units of loss. 

 

6.  DISCUSSION 

Our study presents empirical estimates for risk preference parameters over health in a nationally 

representative U.S. sample.  The pooled estimates indicate relative risk aversion is increasing in health.  

More specifically, individuals in the worst health state exhibit risk seeking preferences (𝑟𝑟0.1
∗  equals -1.01), 

switch to risk-averse preferences at health equal to 0.485, and reach their maximum risk-aversion when 

their health is perfect (𝑟𝑟1.0
∗  equals 4.36).  Although there is a substantial degree of individual heterogeneity 



in risk preferences over health, we find minimal evidence that risk preferences are correlated with 

common demographic covariates.  In contrast, existing literature finds risk-aversion over consumption is 

correlated with gender and race [35, 44-46]. Our estimates have important implications for CEA and 

HTA, and suggest that traditional CEA will undervalue treatments for more severe illnesses and 

overvalue treatments for less severe ones. 

To our knowledge, Attema et al (2016) provides the only published estimate of relative risk 

aversion (range: 0.1 to 0.39) over HRQoL [26].  Our 𝑟𝑟𝐻𝐻∗  under CRRA utility is most directly comparable 

to their results, and our estimate of 0.28 lies near the middle of their range.  While the consistency of our 

estimates suggests that risk preferences over health under the assumption of CRRA utility may be similar 

across different geographic settings and populations, additional studies are needed to further validate this 

finding.  Furthermore, it may not be the case that relative risk preferences over health are non-constant in 

settings outside the U.S.  Understanding the correct preference structure as well as empirical estimates for 

risk preference parameters will be important for obtaining accurate GRACE estimates to guide decision-

making. 

While GRACE addresses a key shortcoming of traditional CEA, it introduces additional elements 

for consideration when developing “best practices” for applied settings.  We have highlighted the 

potential influence of underlying utility function used to derive risk preference parameters.  There are 

other empirical decisions that mirror issues raised by the 2nd Panel on Cost-Effectiveness [47]. For 

example, the 2nd Panel recommended community preferences for health states are most appropriate for 

CEA analysis.  Furthermore, generic preference-based measures such as EQ-5D are recommended to 

enhance comparability across studies.  Analogous concerns are introduced for risk preference parameters 

in GRACE.  Similar considerations must be made for the incorporation of risk preference parameters 

(community vs. patient) and how risk is measured. In our analysis, risk preferences were elicited based on 

a health scale ranging from 0 to 100, which provides a standardized measure. However, whether this 

measure adequately reflects risk preferences related to specific health attributes (e.g., poor vision, pain, or 



mobility) is unknown.  Additional studies that elicit risk preferences based on alternative measures for 

health will provide better insight into this issue.  

Health levels below the switching point (H=0.485) for risk-seeking and risk averse preferences 

correspond to quite severe illnesses such as Alzheimer’s disease, diabetes with end-stage renal disease or 

major amputation, Huntington’s disease, and metastatic lung or colorectal cancer [48]. This result is 

consistent with motivations for patients who participate in Phase I clinical trials [49-51] as well as the 

premise of the Right to Try Act, which allows patients diagnosed with life-threatening illnesses who have 

tried all approved treatments to access investigational treatments [52].  Conversely, high degrees of risk 

aversion at relatively high levels of health could manifest in relatively low tolerance for side effects.  

Statin therapy for primary prevention provides a salient example,[53] since the measurable health loss 

(i.e., symptoms) associated with high cholesterol is negligible except in the most severe cases. 

The medical field continues to shift toward shared decision making between providers and 

patients.  The absence of evidence for risk neutrality over health implies patients would benefit from 

better understanding of uncertainty and risk associated with medical interventions.  For example, a non-

risk-neutral patient would prefer to make decisions based on the distribution of possible outcomes rather 

than median/average ones.  A subtype of interventions, such as adjuvant therapy in cancer,[54] primarily 

serves to modify future risk and require patients to weigh risk structure (rather than a concrete HRQoL 

improvement) against side effects.  Healthcare teams typically do not include personnel whose training is 

more directly focused on risk in medicine.  One exception is genetic counselors, although their current 

scope is limited to areas that rely on genetic testing such as oncology and pediatrics [55, 56].  Introducing 

new providers who specialize in helping patients understand risk may improve patients’ healthcare 

decisions and reduce the burden on physicians. 

The range of individual heterogeneity in risk preferences suggests patients might benefit from a 

“top-up” insurance design that provides coverage for the cost of baseline treatments (selected based on 

some standard WTP threshold) and allows patients the option to pay the incremental cost of more 

expensive treatments[57, 58].  For example, assume baseline treatments are selected based on a WTP 



threshold of $50K, which is currently used for coverage decisions in the U.K.  For illnesses that result in 

health falling to 0.5, 58.6% of our sample has a risk-adjusted WTP greater than 50K and would likely 

select a “top-up” insurance design; because approximately 86% of our sample has expo power utility and 

exhibits risk seeking behavior at low levels of health, the share that would select a “top-up” design 

decreases to 38% for illnesses that cause health to fall to 0.2.  

That said, top-up insurance models for health interventions with very low social marginal costs of 

production – like small-molecule prescription drugs -- may lower efficiency, compared to full and 

generous insurance coverage.  In these contexts, exposing patients to on-patent prices leads to 

underutilization, and welfare can be improved with greater insurance [59].  Here, individual heterogeneity 

might be best addressed by providing more choice in the scope of coverage, where some policies feature 

coverage of technologies with higher costs per unit of health improvement and vice-versa.   

Currently, HTA organizations evaluate efficiency and equity separately and present equity 

considerations in a qualitative manner alongside CEA results [60, 61].  Policy makers then determine the 

importance of elements related to equity such as disease severity or rarity through deliberative processes.  

An alternative approach involves incorporating equity preferences explicitly in CEA.  Solutions that 

explicitly modify CEA include equity-based weighting, extended CEA, and distributional CEA; multi-

criteria decision analysis (MCDA) and mathematical programming incorporate equity in a separate step 

from CEA analysis [62, 63].  Some may prefer these solutions to a deliberative approach because of their 

quantitative nature and the absence of discretion by third-party payers that may have financial incentives 

to limit coverage.  However, each method still requires additional decisions such as which domains of 

equity to include, how they interact, and the relative weights given to equity and efficiency outcomes [64, 

65].  In contrast, GRACE incorporates important health equity considerations without requiring these 

potentially controversial and normative decisions.  Even if decisionmakers continue to rely on 

deliberative processes to consider elements beyond efficiency, GRACE could be used in lieu of CEA in 

the economic component of HTAs to better reflect patient preferences for risk, and the attendant 

implications for disease severity and pre-existing disability. 



Our results were derived under the assumption that individuals behave according to expected 

utility theory.  In contrast, prospect theory represents risky preferences as risk averse for gains and risk 

seeking for losses.  In addition, there are also separate inverse-S shaped probability functions for gains 

and losses. Prospect theory would interpret this switch from risk-aversion to risk-seeking as a switch from 

coding gambles as gains to losses.  While we found no difference in the estimated utility parameters 

across the gains and losses arms, we did not include controls for probability weighting.  As a result, our 

finding cannot be interpreted as a rejection of prospect theory. 

Our results indicate that CEA’s reliance on risk neutral preferences does not align with real world 

preferences for risk over health.  More specifically, a majority of respondents in our sample exhibited 

IRRA preferences over health and have a risk preference pattern that switches from risk seeking to risk 

averse at some point in the health distribution.  From a policy perspective, this implies healthcare 

decisions based on traditional CEA have undervalued interventions for relatively severe illnesses and 

overvalues interventions for mild disease. The utility and relative risk aversion parameter estimates 

provided in this paper can serve as baseline estimates to implement GRACE, which provides a path 

forward to mitigate the misallocation of resources across disease severity that has afflicted cost-

effectiveness analyses in the past.  
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7. APPENDIX 

7.1. Structural Assumptions 
Consumers may have risk preferences over health-related quality of life (HRQoL).  Therefore, we consider 

risky prospects (𝑞𝑞1,𝑝𝑝1; … ; 𝑞𝑞𝑛𝑛,𝑝𝑝𝑛𝑛) yielding health-related quality of life outcome 𝑞𝑞𝑖𝑖 ∈ 𝑄𝑄 with probability 

𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃 = [0,1], where ∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1. Degenerate prospects yield certain health-related quality of life 

outcomes. For simplicity, we will denote binary prospects of the form (𝑞𝑞1,𝑝𝑝1;𝑞𝑞2,𝑝𝑝2), as (𝑞𝑞1 𝑝𝑝1 𝑞𝑞2).  The 

set Q is the interval [0,1] in ℝ+containing 0 (a fixed unit of time in a health state equivalent to death) and 

1 (a fixed unit of time in full health).  The set of all prospects considered is [0, 1]. The relation ≽ denotes 

“at least as preferred as” over prospects, with ≻, ~ as strict preference and equivalence, respectively, derived 

as usual from ≽ . The preference relation satisfies the von Neumann-Morgenstern axioms (1947).[1] Hence, 

there exists a utility function U, assigning to each quality-of-life outcome q the utility U(q), so that the 

expectation of U, (∑ 𝑝𝑝𝑖𝑖𝑈𝑈(𝑞𝑞𝑖𝑖)𝑛𝑛
𝑖𝑖=1  for the above lottery), governs the choices among lotteries over health-

related quality of life outcomes.  An expected utility function is unique up to a positive linear transformation 

𝑈𝑈′ = 𝛽𝛽𝑈𝑈 + 𝜏𝜏, where 𝛽𝛽 > 0. 

Definition 1:  (50-50 Certainty Equivalents). Let (𝑞𝑞1
1
2

 𝑞𝑞2) denote an even-chance prospect between 𝑞𝑞1 

and 𝑞𝑞2 health-related quality of life outcomes. A “50-50 certainty equivalent” is the outcome 𝑞𝑞𝐶𝐶𝐶𝐶 ∈ 𝑄𝑄 

such that the decision-maker is indifferent between 𝑞𝑞𝐶𝐶𝐶𝐶 and (q1 ½ q2), i.e., 𝑞𝑞𝐶𝐶𝐶𝐶~(q1
1
2

 𝑞𝑞2). 

It is worth noting that expected utility assumes invariance among certainty equivalents and other 

equivalent matching exercises (e.g., probability, gain and loss equivalents for the choice 𝑞𝑞𝐶𝐶𝐶𝐶~(q1
1
2

 𝑞𝑞2). 

Definition 2: (Power-Risk Constancy).  A decision-maker will be called power-risk constant if, for 

𝑞𝑞𝐶𝐶𝐶𝐶 ,𝑞𝑞1,𝑞𝑞2 > 0 and probability 𝑝𝑝 = 1
2
, we have the indifference relationship: 

(𝑞𝑞𝐶𝐶𝐶𝐶𝑎𝑎 + 𝑧𝑧𝑎𝑎)−𝑎𝑎~�(qa1 + 𝑧𝑧𝑎𝑎)−𝑎𝑎  1
2

 (𝑞𝑞𝑎𝑎2 + 𝑧𝑧𝑎𝑎)−𝑎𝑎�,   (i) 

where 𝑎𝑎 ≠ 0, and the condition 𝑞𝑞𝐶𝐶𝐶𝐶𝑎𝑎 ,𝑞𝑞𝑎𝑎1 ,𝑞𝑞𝑎𝑎2 , (𝑞𝑞𝐶𝐶𝐶𝐶𝑎𝑎 + 𝑧𝑧𝑎𝑎)−𝑎𝑎, (𝑞𝑞1 + 𝑧𝑧𝑎𝑎)−𝑎𝑎, (𝑞𝑞1 + 𝑧𝑧𝑎𝑎)−𝑎𝑎, (𝑞𝑞1 +

𝑧𝑧𝑎𝑎)−𝑎𝑎, (𝑞𝑞2 + 𝑧𝑧𝑎𝑎)−𝑎𝑎 ∈ 𝑄𝑄 = [0,1] is satisfied uniformly in z. 
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Theorem 1. The expected utility function of a power-risk constant decision-maker (Def. 2) is an expo-power 

function (Eq. 1a). 

Proof:  Aczél showed that for any continuous group arithmetic operation ∘ ,where 𝑞𝑞 ∘ 𝑞𝑞′ is defined on the 

open interval 𝑄𝑄 = (0,1), there exists a scaling function 𝑓𝑓(·) such that 𝑞𝑞 ∘ 𝑞𝑞′ = 𝑓𝑓−1(𝑓𝑓(𝑞𝑞) + 𝑓𝑓(𝑞𝑞′)), with 

𝑓𝑓(·) strictly increasing and continuous on 𝑄𝑄 = (0,1).[2, p. 254] The scaling function translates  ∘ into +. 

Aczél [2, Theorem 3.1.3.2], Harvey [3, Theorem 1b], Miyamoto [4, Lemma 1], Nagumo [5, p. 78 and 

proof] and Pfanzagl [6, Theorem 3, p.290] guarantee that:  𝑞𝑞𝐶𝐶𝐶𝐶~(q1
1
2

 𝑞𝑞2) if and only if 𝑞𝑞𝐶𝐶𝐶𝐶 + 𝑧𝑧~(q1 +

𝑧𝑧 1
2

 𝑞𝑞2 + 𝑧𝑧), implies an exponential utility function, 𝑈𝑈(𝑞𝑞) = 𝑏𝑏𝑒𝑒𝑟𝑟𝑟𝑟 + 𝑐𝑐 where 𝑏𝑏 > 0 and 𝑟𝑟 ≠ 0 and 

𝑈𝑈(𝑞𝑞) = 𝑏𝑏𝑞𝑞 + 𝑐𝑐 where 𝑏𝑏 > 0 and 𝑟𝑟 = 0. From Aczél [2, p. 254], we can define a power-risk constancy 

operation 𝑞𝑞 ∘ z = (𝑞𝑞𝑎𝑎 + 𝑧𝑧𝑎𝑎)−𝑎𝑎. Consider the scaling function of power form 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑎𝑎, where 𝑎𝑎 ≠ 0. 

Since the scaling function f(·) translates  ∘ into +, power-risk constancy implies 𝑈𝑈(𝑞𝑞) = 𝑏𝑏𝑒𝑒𝑟𝑟𝑟𝑟(𝑟𝑟) + 𝑐𝑐 

where 𝑏𝑏 > 0 and 𝑟𝑟 ≠ 0, and 𝑈𝑈(𝑞𝑞) = 𝑏𝑏𝑓𝑓(𝑞𝑞) + 𝑐𝑐 where 𝑏𝑏 > 0 and 𝑟𝑟 = 0 (see [3, p. 1482, Eq. 3]). Since 

𝑓𝑓(𝑞𝑞) is a power scaling function, with power not equal to 0, the utility function is expo-power as given in 

Eq. 1a. It is left to show that the limits of 𝑈𝑈 as 𝑞𝑞 approaches 0 and 1, respectively, are real. lim
𝑟𝑟→0

𝑈𝑈(𝑞𝑞) =

𝑐𝑐 + 1, and lim
𝑟𝑟→1

𝑈𝑈(𝑞𝑞) = 𝑏𝑏𝑒𝑒𝑟𝑟 + 𝑐𝑐, which reduces to 𝑏𝑏 + 𝑐𝑐 for the case where 𝑟𝑟 = 0. Having shown the 

existence of real limits at 0 and 1, we set 𝑈𝑈(0) and 𝑈𝑈(1) equal to their real limits.� 
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7.2. Additional results: pooled utility and risk estimates 

Table 1. Risk preference parameter equations 
 Relative risk aversion 

 
𝑟𝑟𝐻𝐻 = −

𝑊𝑊′′(𝐻𝐻)
𝑊𝑊′(𝐻𝐻)

𝐻𝐻 

Relative risk prudence 
 

𝜋𝜋𝐻𝐻 = −
𝑊𝑊′′′(𝐻𝐻)
𝑊𝑊′′(𝐻𝐻)

𝐻𝐻 

CRRA 𝜌𝜌 𝜌𝜌 + 1 
Expo-power 

𝑎𝑎𝑏𝑏𝐻𝐻𝑎𝑎 − 𝑎𝑎 + 1 (2 − 𝑎𝑎) + 𝑎𝑎𝑏𝑏𝐻𝐻𝑎𝑎 −
𝑎𝑎2𝑏𝑏𝐻𝐻𝑎𝑎

1 − 𝑎𝑎 + 𝑎𝑎𝑏𝑏𝐻𝐻𝑎𝑎 

 

CRRA utility only has one parameter (𝜌𝜌), and its estimated variance equals 0.00166006. The variance-

covariance matrix for expo-power is provided in Table 8.  

Table 2. Pooled expo-power utility estimates, variance covariance matrix 
 a b 

a 0.00223376  

b 0.00378934 0.00835446 

Notes: Variance covariance matrix of estimated expo-power utility estimates (Table 3) from pooled estimation.  

Table 3. Risk preference parameter estimates at selected values of health, pooled estimates 
 Expo-power CRRA 
 𝑟𝑟𝐻𝐻∗  𝜋𝜋𝐻𝐻∗  𝑟𝑟𝐻𝐻∗  𝜋𝜋𝐻𝐻∗  

H = 0.1 -1.14 
[-1.267, -1.005] 

-0.07 
[-0.194, 0.062] 

0.2822 
[0.217, 0.349] 

1.2822 
[1.217, 1.349] 

H = 0.5 -0.08 
[-0.037, 0.198] 

-31.83 
[-179.1, 98.3] 

H = 0.9 3.35 
[2.846, 3.917] 

1.41 
[1.027, 1.835] 

H = 1.0 4.51 
[3.820, 5.332] 

2.77 
[2.239, 3.403] 

Estimation N 9,710 9,710 
Notes: Estimation sample pooled all 13 health gamble questions for N=747 respondents.  95% confidence intervals for the risk 
preference parameters generated using 1,000 bootstrap replications clustered at the respondent level.  Standards errors are similar 
without clustering.  
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Figure 1. Expo-power utility relative risk parameters, pooled estimates 

 
Notes: Relative risk aversion and prudence calculated from utility parameter estimates for the expo-power utility function (Table 
2).  Preferences switch from risk loving to risk averse at a health value of 0.485. This value corresponds to an asymptote for 
prudence, which does not exist when risk aversion equals zero. 
 

7.3. Additional Results: Individual risk estimates and regressions  

Table 4. Respondent summary statistics (self-rated health subgroups) 

 

All 
respondents 
[N=747] 

Self-rated  
health = 
86-100 
[N=218] 

Self-rated  
health = 
76-85 
[N=262] 

Self-rated  
health = 
0-75 
[N=267] 

Male 
0.420 
(0.493) 

0.380 
(0.486) 

0.458 
(0.499) 

0.415 
(0.493) 

Age (years) 
52.15 
(16.06) 

49.29 
(16.79) 

53.42 
(15.78) 

53.24 
(15.48) 

Age group: <40 years 
0.259 
(0.438) 

0.339 
(0.474) 

0.221 
(0.415) 

0.232 
(0.423) 

Age group: 40-54 
0.270 
(0.444) 

0.247 
(0.432) 

0.297 
(0.458) 

0.262 
(0.440) 

Age group: 55-64 
0.196 
(0.397) 

0.183 
(0.387) 

0.183 
(0.387) 

0.220 
(0.415) 

Age group: 65+ 
0.273 
(0.445) 

0.229 
(0.421) 

0.297 
(0.458) 

0.284 
(0.452) 

Married 
0.574 
(0.494) 

0.605 
(0.489) 

0.595 
(0.491) 

0.528 
(0.500) 

College graduate 
0.527 
(0.499) 

0.646 
(0.479) 

0.538 
(0.499) 

0.419 
(0.494) 

White, non-Hispanic 
0.709 
(0.454) 

0.711 
(0.454) 

0.721 
(0.449) 

0.696 
(0.460) 

Working 
0.566 
(0.495) 

0.688 
(0.464) 

0.580 
(0.494) 

0.453 
(0.498) 

Income: <60K 
0.389 
(0.487) 

0.288 
(0.454) 

0.339 
(0.474) 

0.520 
(0.500) 

Income: 60K-99.9K 
0.293 
(0.455) 

0.288 
(0.454) 

0.343 
(0.475) 

0.247 
(0.432) 
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Income: 100K+ 
0.317 
(0.465) 

0.422 
(0.495) 

0.316 
(0.466) 

0.232 
(0.423) 

Insured 
0.716 
(0.451) 

0.688 
(0.464) 

0.755 
(0.430) 

0.700 
(0.458) 

Region: Northwest 
0.133 
(0.340) 

0.165 
(0.372) 

0.083 
(0.277) 

0.157 
(0.364) 

Region: Midwest 
0.231 
(0.422) 

0.206 
(0.405) 

0.293 
(0.456) 

0.191 
(0.393) 

Region: South 
0.269 
(0.443) 

0.302 
(0.460) 

0.232 
(0.423) 

0.277 
(0.448) 

Region: West 
0.364 
(0.481) 

0.325 
(0.469) 

0.389 
(0.488) 

0.370 
(0.483) 

Self-rated health: 0-75 
0.357 
(0.479) 

0.0 
(0.0) 

0.0 
(0.0) 

1.0 
(0.0) 

Self-rated health: 76-85 
0.350 
(0.477) 

0.0 
(0.0) 

1.0 
(0.0) 

0.0 
(0.0) 

Self-rated health: 86-100 
0.291 
(0.454) 

1.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

 

Table 5. Individual expo-power utility and risk parameter estimates, summary statistics 
 Median 

[IQR] 
Mean  
(SD) 

Utility parameters 
a 2.08  

[1.27, 3.65] 
3.44  

(5.10) 
b 2.99 

[0.89, 6.77] 
10,555  

(148,317) 
   
Risk preference parameters evaluated at select values for health (H) 
 𝑟𝑟𝐻𝐻∗  𝜋𝜋𝐻𝐻∗  𝑟𝑟𝐻𝐻∗  𝜋𝜋𝐻𝐻∗  
H = 0.1 -1.00 

[-2.65, -0.10] 
-0.14 

[-1.80, 0.93] 
-2.32  
(5.17) 

-1.39  
(5.98)  

H = 0.5 0.25 
[-1.03, 1.13] 

0.90 
[-1.90, 2.59] 

1.39  
(19.7) 

2.21  
(24.5)  

H = 0.9 3.26 
[0.82, 11.0] 

2.31 
[0.78, 8.75] 

8,719  
(109,357) 

8,715  
(109,355)  

H = 1.0 4.36 
[0.93, 18.7] 

3.49 
[1.24, 16.3] 

383,324  
(5,540,996)  

383,322  
(5,540,996)  

N 747 
Notes: Results generated from estimation of expo-power utility models for each individual using all 13 health gamble questions. 
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Figure 2. Individual relative risk prudence parameter estimates for full range of health [0,1] 

 
Notes: Distribution of risk preference parameters over the full range of health. The IQR is represented by the upper and lower edges 
of the rectangles.  The whiskers represent the upper and lower adjacent values, which are calculated as the 75th percentile + 1.5*IQR 
and 25th percentile + 1.5*IQR, respectively.  Individual prudence parameters were derived from expo-power utility for the majority 
of respondents (N=639).  The remaining N=108 respondents had expo-power utility parameter estimates that imply CRRA 
preferences and a smaller RMSE value for the CRRA utility model. 
 

Table 6. Individual risk preference classifications 
 Risk seeking over full 

range of health 
Switcher Risk averse over full 

range of health 
DARA-DRRA N.F. 0 4 
DARA-CRRA 78 N.F. 7 
DARA-IRRA N.F. N.F. 56 
CARA-IRRA N.F. N.F. 0 
IARA-CRRA 1 N.F. 59 
IARA-IRRA 15 527 N.F. 

Note: N.F.=not feasible. All possible absolute-relative risk structure combinations are included in the table. Switchers can either 
switch from risk seeking to risk averse (feasible for IARA-IRRA) or risk averse to risk seeking (feasible for DARA-DRRA).   
 

Figure 3. Histogram of switch points (risk seeking to risk averse) 
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Table 7. Effect of demographics on risk type, regression results 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 Dep. Variable = 1 if CRRA, 0 if IRRA Dep. Variable = 1 if DARA, 0 if IARA 

Self-rated health: 76-85 
0.0277 

(0.0376) 
0.174 

(0.242) 
   0.0470 

(0.0356) 
0.342 

(0.266) 
   

Self-rated health: 86-100 
-0.000799 
(0.0378) 

-0.0105 
(0.250) 

   0.0396 
(0.0361) 

0.283 
(0.271) 

   

Income: $60K-99.9K 
0.0338 

(0.0393) 
0.224 

(0.257) 
1.079** 
(0.509) 

-0.118 
(0.436) 

-0.213 
(0.461) 

-0.0875** 
(0.0367) 

-0.611** 
(0.264) 

0.394 
(0.496) 

-0.687 
(0.453) 

-1.379*** 
(0.517) 

Income: $100K+ 
0.0490 

(0.0444) 
0.327 

(0.287) 
1.504*** 
(0.564) 

-0.130 
(0.466) 

-0.163 
(0.444) 

-0.0602 
(0.0391) 

-0.378 
(0.264) 

0.735 
(0.545) 

-0.524 
(0.417) 

-1.150*** 
(0.440) 

Insured 
-0.0530 
(0.0347) 

-0.333 
(0.207) 

-0.595 
(0.433) 

-0.249 
(0.353) 

-0.450 
(0.378) 

-0.0238 
(0.0311) 

-0.163 
(0.217) 

-0.360 
(0.444) 

-0.373 
(0.365) 

0.0406 
(0.399) 

Age group: 40-54 
0.0118 

(0.0409) 
0.0741 
(0.262) 

-0.0307 
(0.470) 

0.130 
(0.443) 

0.166 
(0.478) 

-0.00454 
(0.0368) 

-0.0274 
(0.284) 

-0.170 
(0.531) 

-0.362 
(0.487) 

0.480 
(0.573) 

Age group: 55-64 
-0.0283 
(0.0450) 

-0.196 
(0.307) 

-0.724 
(0.636) 

-0.101 
(0.537) 

-0.129 
(0.555) 

0.0224 
(0.0417) 

0.172 
(0.298) 

-0.883 
(0.668) 

0.723 
(0.531) 

0.336 
(0.566) 

Age group: 65+ 
0.0101 

(0.0527) 
0.0622 
(0.333) 

-0.383 
(0.638) 

0.314 
(0.581) 

0.210 
(0.586) 

0.0245 
(0.0444) 

0.158 
(0.329) 

-0.310 
(0.561) 

0.479 
(0.618) 

0.380 
(0.623) 

Male 
0.0275 

(0.0313) 
0.176 

(0.198) 
0.537 

(0.463) 
0.110 

(0.329) 
0.0406 
(0.348) 

0.0198 
(0.0292) 

0.142 
(0.207) 

0.199 
(0.469) 

0.0526 
(0.348) 

0.226 
(0.368) 

Married 
-0.0139 
(0.0321) 

-0.0868 
(0.203) 

0.447 
(0.387) 

-0.875*** 
(0.333) 

0.411 
(0.355) 

-0.0100 
(0.0289) 

-0.0701 
(0.208) 

0.439 
(0.412) 

-0.467 
(0.342) 

0.108 
(0.380) 

College graduate 
0.0262 

(0.0338) 
0.169 

(0.217) 
0.434 

(0.455) 
-0.334 
(0.346) 

0.422 
(0.353) 

0.0527* 
(0.0295) 

0.398* 
(0.226) 

0.438 
(0.490) 

-0.208 
(0.338) 

0.934** 
(0.395) 

Employed 
0.00306 
(0.0385) 

0.0250 
(0.248) 

0.375 
(0.482) 

0.109 
(0.434) 

-0.443 
(0.458) 

0.00122 
(0.0320) 

0.0113 
(0.240) 

0.00296 
(0.465) 

0.518 
(0.427) 

-0.644 
(0.420) 

White, non-Hispanic 
0.0445 

(0.0348) 
0.296 

(0.234) 
0.806 

(0.490) 
0.466 

(0.382) 
-0.121 
(0.416) 

0.0312 
(0.0327) 

0.244 
(0.248) 

0.419 
(0.534) 

0.131 
(0.410) 

0.132 
(0.461) 

Region: Midwest 
-0.0837 
(0.0538) 

-0.503 
(0.314) 

-0.586 
(0.672) 

-0.488 
(0.562) 

-0.237 
(0.516) 

-0.112** 
(0.0496) 

-0.825** 
(0.347) 

-0.717 
(0.663) 

-1.032 
(0.630) 

-0.593 
(0.614) 

Region: South 
-0.0837 
(0.0520) 

-0.507* 
(0.300) 

0.142 
(0.559) 

-0.287 
(0.577) 

-1.059** 
(0.514) 

-0.0695 
(0.0497) 

-0.470 
(0.317) 

-0.581 
(0.609) 

-0.0575 
(0.597) 

-0.576 
(0.546) 

Region: West 
-0.0450 
(0.0514) 

-0.246 
(0.283) 

0.446 
(0.568) 

-0.136 
(0.567) 

-0.811* 
(0.455) 

-0.0328 
(0.0497) 

-0.206 
(0.295) 

0.0299 
(0.583) 

0.0141 
(0.560) 

-0.650 
(0.511) 

Constant 
0.202** 
(0.0790) 

-1.454*** 
(0.486) 

-3.421*** 
(0.998) 

-0.733 
(0.918) 

-0.660 
(0.761) 

0.198*** 
(0.0720) 

-1.533*** 
(0.504) 

-2.231** 
(1.021) 

-0.871 
(0.808) 

-1.044 
(0.861) 

Sample 
All respondents 

Self-rated 
health: 
86-100 

Self-rated 
health: 
76-85 

Self-rated 
health: 0-75 All respondents 

Self-rated 
health: 86-

100 

Self-rated 
health: 76-

85 

Self-rated 
health: 0-75 

N 742 742 216 262 264 746 746 218 262 266 
Estimation  OLS Logit Logit Logit Logit OLS Logit Logit Logit Logit 

Notes: All regressions exclude 1 individual who did not have complete data for demographic variables. Relative risk regressions exclude N=4 people with DRRA preferences.  No individuals had CARA 
preferences.  Clustered standard errors shown in parenthesis. Results are similar if we estimate probit models.  Reference categories: self-rated health 0-75, income <$60K, age less than 40, Northeast 
region. Significance: ***p<0.01; **p<0.05; *p<0.1. 
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Table 8. Regression results: Effect of demographics on relative risk aversion at select values of health, subsample with expo-power utility 
 

Self-rated health = 86-100 
[N=190] 

Self-rated health = 76-85 
[N=220] 

Self-rated health = 0-75 
[N=228] 

 H=0.2 H=0.5 H=1.0 H=0.2 H=0.5 H=1.0 H=0.2 H=0.5 H=1.0 

Income: $60K-99.9K 
0.492 

(0.388) 
0.157 

(0.426) 
0.064 

(2.707) 
-0.407 
(0.413) 

-0.320 
(0.418) 

-0.954 
(2.376) 

-0.909** 
(0.440) 

-0.572 
(0.445) 

3.201 
(4.153) 

Income: $100K+ 
0.743 

(0.456) 
1.022** 
(0.501) 

1.050 
(4.329) 

-0.723 
(0.503) 

-0.404 
(0.491) 

-0.980 
(2.745) 

-0.749* 
(0.389) 

-0.425 
(0.466) 

1.600 
(3.267) 

Insured 
0.153 

(0.476) 
0.493 

(0.490) 
1.360 

(2.834) 
-0.871** 
(0.408) 

-0.328 
(0.407) 

0.829 
(2.534) 

-0.519 
(0.417) 

-0.304 
(0.400) 

0.342 
(3.821) 

Age group: 40-54 
-0.467 
(0.529) 

-0.379 
(0.538) 

2.716 
(2.847) 

-1.764*** 
(0.591) 

-0.411 
(0.499) 

3.051 
(3.548) 

-0.360 
(0.627) 

0.124 
(0.496) 

7.280 
(5.109) 

Age group: 55-64 
-0.525 
(0.581) 

-0.176 
(0.584) 

2.160 
(3.778) 

-0.502 
(0.517) 

-0.488 
(0.592) 

0.447 
(2.922) 

-0.013 
(0.478) 

0.693 
(0.511) 

4.117 
(3.423) 

Age group: 65+ 
-0.289 
(0.663) 

-0.275 
(0.669) 

-1.432 
(5.045) 

-0.297 
(0.668) 

0.181 
(0.662) 

0.587 
(3.839) 

0.087 
(0.465) 

1.138** 
(0.507) 

4.392 
(4.369) 

Male 
0.228 

(0.457) 
-0.305 
(0.383) 

-2.262 
(2.142) 

0.095 
(0.346) 

0.031 
(0.311) 

-2.259 
(1.876) 

0.492 
(0.362) 

-0.242 
(0.335) 

-3.237 
(2.619) 

Married 
0.405 

(0.394) 
0.438 

(0.380) 
-0.208 
(1.916) 

0.504 
(0.371) 

-0.041 
(0.366) 

0.288 
(1.860) 

-0.161 
(0.358) 

0.100 
(0.380) 

-0.186 
(2.659) 

College graduate 
0.652 

(0.520) 
0.315 

(0.489) 
-3.919 
(3.934) 

0.863** 
(0.398) 

0.017 
(0.366) 

-6.850** 
(2.894) 

0.893** 
(0.348) 

0.218 
(0.392) 

-6.010* 
(3.387) 

Currently working 
0.544 

(0.508) 
-0.222 
(0.501) 

-4.194 
(4.455) 

0.061 
(0.539) 

-0.217 
(0.556) 

-0.744 
(3.077) 

-0.237 
(0.354) 

0.039 
(0.450) 

1.163 
(3.240) 

White, non-Hispanic 
0.708 

(0.459) 
0.571 

(0.521) 
-1.958 
(2.962) 

0.337 
(0.525) 

0.454 
(0.413) 

-0.216 
(2.023) 

0.726* 
(0.396) 

-0.660 
(0.472) 

-6.291 
(4.858) 

Region: Midwest 
-0.036 
(0.527) 

-0.118 
(0.502) 

-0.933 
(3.054) 

-0.071 
(0.712) 

-1.569* 
(0.923) 

1.541 
(7.221) 

0.331 
(0.764) 

0.618 
(0.613) 

-2.336 
(7.041) 

Region: South 
-0.513 
(0.566) 

0.066 
(0.581) 

5.581 
(4.612) 

0.508 
(0.767) 

-1.260 
(0.913) 

-1.480 
(7.257) 

0.235 
(0.692) 

0.416 
(0.545) 

0.697 
(7.269) 

Region: West 
-0.158 
(0.491) 

-0.061 
(0.521) 

-0.574 
(3.021) 

0.320 
(0.740) 

-1.008 
(0.922) 

0.746 
(7.048) 

0.281 
(0.633) 

0.456 
(0.549) 

-0.959 
(6.601) 

Constant 
-2.568*** 

(0.841) 
-0.827 
(0.858) 

11.700 
(7.398) 

-0.885 
(1.069) 

1.671 
(1.133) 

11.179 
(9.192) 

-1.208 
(0.870) 

0.615 
(0.878) 

12.831 
(9.856) 

Notes: Results are estimated coefficients from a median regression with the dependent variable equal to 𝑟𝑟𝐻𝐻∗  evaluated at the health level indicated in the 2nd row (0.2, 0.5, or 1.0). Estimation sample includes 
the N=638 respondents with expo-power utility. Clustered standard errors shown in parenthesis.  Reference categories: self-rated health 0-75, income <$60K, age less than 40, Northeast region. 
Significance: ***p<0.01; **p<0.05; *p<0.1 
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Table 9. Regression results: Effect of demographics on relative risk aversion, subsample with 
CRRA utility 

 

Self-rated 
health = 
86-100 
[N=28] 

Self-rated 
health = 76-

85 
[N=42] 

Self-rated 
health = 0-75 

[N=38] 

Income: $60K-99.9K 
1.572 

(4.121) 
-1.325 
(1.577) 

-1.514 
(2.305) 

Income: $100K+ 
2.023 

(3.551) 
0.006 

(1.639) 
-2.513 
(2.681) 

Insured 
0.870 

(3.895) 
-0.750 
(1.337) 

1.558 
(2.194) 

Age group: 40-54 
-1.090 
(5.321) 

-0.879 
(1.591) 

-0.989 
(2.506) 

Age group: 55-64 
-3.428 
(4.602) 

0.108 
(1.642) 

0.082 
(2.969) 

Age group: 65+ 
-1.865 
(7.915) 

-0.004 
(2.162) 

-2.177 
(2.863) 

Male 
-1.546 
(4.404) 

0.125 
(1.085) 

0.955 
(1.844) 

Married 
2.861 

(3.176) 
0.761 

(1.413) 
-0.805 
(2.100) 

College graduate 
0.065 

(2.954) 
0.323 

(1.114) 
0.868 

(2.433) 

Currently working 
-2.883 
(8.165) 

1.238 
(1.734) 

-2.537 
(1.806) 

White, non-Hispanic 
-4.236 
(5.995) 

-0.029 
(1.490) 

0.113 
(1.652) 

Region: Midwest 
-1.024 
(7.831) 

0.191 
(1.825) 

1.077 
(3.132) 

Region: South 
-4.196 
(4.839) 

0.511 
(1.871) 

1.274 
(2.814) 

Region: West 
-5.089 
(5.960) 

-0.155 
(1.707) 

1.448 
(2.574) 

Constant 
5.511 

(13.200) 
-0.698 
(2.885) 

-0.177 
(4.565) 

Notes: Results are estimated coefficients from a median regression with the dependent variable equal to 𝑟𝑟𝐻𝐻∗ . Estimation sample includes the N=108 
respondents with CRRA utility. If we estimate a regression with all self-rated health groups pooled (to increase sample size), all coefficients remain 
statistically insignificant. Clustered standard errors shown in parenthesis.  Reference categories: self-rated health 0-75, income <$60K, age less 
than 40, Northeast region. Significance: ***p<0.01; **p<0.05; *p<0.1 
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7.4. Additional results: implications for cost-effectiveness analysis 

Figure 4. Expected value of two hypothetical treatments 

 

Notes: Expected value calculated using an expo-power utility function.  The certain treatment has B = 0.1 with probability 1.  The 
risky treatment has a 50% chance of B=0.2 and a 50% B=0 (i.e., no HRQoL benefit).  
 

Figure 5. Comparison of pooled and individual WTP (with individual 95% confidence intervals) 

 

Notes: This figure reproduces Figure 5 and adds 95% CIs around the aggregate individual WTP curve. Individual curve 
corresponds to the per capita risk adjusted WTP derived from the individual level utility estimates summarized in Table 5.  
Dashed lines correspond to the 95% confidence intervals (CI). 
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Figure 6. Comparison of pooled and individual WTP corresponding to different treatment benefits 

 

Notes: All WTP values assume an unadjusted K equal to $150,000. Individual curve corresponds to the per capita risk adjusted 
WTP derived from the individual level utility estimates summarized in Table 5.  Dashed lines correspond to the 95% confidence 
intervals (CI); CIs for the individual WTP are wider than the y-axis scale and therefore omitted. Treatment benefit sizes equal 
0.05 QoL burden reduction (top left panel); 0.1 QoL burden reduction (top right panel); 0.2 QoL burden reduction (bottom left 
panel); and a 50% QoL burden reduction (bottom right panel).  

Figure 7. Comparison of pooled and individual WTP corresponding to risky treatments 

 

Notes: All WTP values assume an unadjusted K equal to $150,000. Individual curve corresponds to the per capita risk adjusted 
WTP derived from the individual level utility estimates summarized in Table 5.  Left panel: risky treatment has a 50% chance of 
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no benefit and 50% chance of 0.1 QoL benefit reduction. Right panel: risky treatment has a 50% chance of no benefit and 50% 
chance of 0.5 QoL benefit reduction. 
 

7.5.  Comparison of KGRACE across utility functions 
We now turn to the relevance of functional forms for utility.  𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶 depends on the level of 

utility at perfect health and the curvature of the utility function evaluated at health in the sick state.  

Individuals are risk-averse at perfect health under both expo-power and CRRA utility.  However, the two 

functions differ in both their qualitative and quantitative predictions for risk preferences.  To demonstrate 

the impact of the difference in underlying utility functions on GRACE, Table 16 provides a comparison 

of 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶 thresholds for expo-power and CRRA utility at selected health values, and Figure 10 shows the 

relationship between marginal utility and 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶.  While CRRA and expo-power utility yield similar 

𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶 for an illness associated with relatively high levels of health (0.9), their corresponding 𝐾𝐾𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶 

estimates diverge quickly thereafter.  Under expo-power, traditional CEA would underestimate WTP for 

treatments for illnesses that cause health to fall between 0.24 and 0.77.  The risk-seeking preferences at 

low levels of health for expo-power imply that traditional CEA will overestimate WTP at levels of health 

that are quite severe (0 to 0.23).  If we introduce risk in treatment outcomes (Figure 6, left panel) CEA 

can underestimate WTP for treatments for any illness with health between 0 and 0.55.  In contrast, under 

CRRA utility, traditional CEA would underestimate WTP for treatments for the most severe illnesses 

(i.e., health between 0 and 0.3).   

Table 10. Risk-adjusted WTP thresholds under different utility functions (select health values) 
Untreated health  Unadjusted K = $50K Unadjusted K = $150K 

Expo-power CRRA Expo-power CRRA 
0.90 33,904 36,973 101,711 110,919 
0.75 54,059 38,925 162,178 116,776 
0.50 76,170 43,644 228,509 130,932 
0.25 52,904 53,073 158,711 159,219 
0.10 20,117 68,734 60,350 206,203 
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Figure 8. Marginal utility and risk-adjusted WTP thresholds under different utility functions 

Notes: Marginal utilities and risk-adjusted WTP calculated using the estimated utility parameters for expo power and CRRA (Table 
3). Risk-adjusted WTP calculated assuming unadjusted K = $150,000. 
 

7.6. HARA Utility 
The GRACE theoretical framework was presented using the hyperbolic absolute risk-aversion 

(HARA) utility function, which nests exponential, power, linear, quadratic, and logarithmic utility [7].  

Like expo-power utility, HARA nests constant, increasing, and decreasing relative risk-aversion.  

However, unlike expo power, HARA does not permit risk-seeing behavior.  HARA utility takes the form:  

𝑊𝑊𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺(𝑞𝑞) = 1−𝛾𝛾
𝛾𝛾
� 𝑎𝑎𝑟𝑟
1−𝛾𝛾

+ 𝑏𝑏�
𝛾𝛾
     (ii) 

To ensure monotonicity, we require � 𝑎𝑎𝑟𝑟
1−𝛾𝛾

+ 𝑏𝑏� > 0 and 0 < 𝛾𝛾 < 1.  The first of these two constraints also 

implies concavity, and therefore rules out risk-seeking behavior. Following a similar approach to that 

outlined for expo power utility, we can write the HARA estimating equation as:  

𝑞𝑞𝐶𝐶𝐶𝐶𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺 = 1−𝛾𝛾
𝑎𝑎
�−𝑏𝑏 + �0.5 �𝑎𝑎𝑟𝑟1

1−𝛾𝛾
�
𝛾𝛾

+ 0.5 �𝑎𝑎𝑟𝑟2
1−𝛾𝛾

�
𝛾𝛾𝛾𝛾
�    (iii) 

Because a, b, and 𝛾𝛾 cannot be separately identified, we normalize a=1.1 [8, 9] 

 We could not obtain pooled estimates for the HARA function due to non-convergence.  We 

hypothesize this occurred because HARA rules out risk-seeking behavior and our sample appears to 

                                                           
1 HARA utility requires b=0 to satisfy the Rosen criteria (i.e., U(0)=0).  However, this restriction results in HARA collapsing to the CRRA case.  
To allow other risk preference structures and satisfy the Rosen criteria, one could use the estimated values for b and 𝛾𝛾 to create a “shifted HARA” 
function, defined as 𝑊𝑊𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺(𝑞𝑞) + 1−𝛾𝛾

𝛾𝛾
𝑏𝑏𝛾𝛾. 
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display some risk-seeking preferences.  To test this hypothesis, we first estimated HARA utility on the 

subsample of individuals with estimated utility parameters consistent with risk-aversion over the full 

range of health.  We then incrementally added subsets of people with small degrees of risk seeking 

behavior (i.e., have a switch point from risk seeking to risk averse for health less than 0.05, less than 0.1, 

and so on) to identify the point at which HARA no longer converges. 

HARA estimates converged for the subsample of individuals (N=118) who were risk-averse over 

the full range of health.2  Of note, the estimated value of b was approximately 0 (<0.000001), which 

implies HARA simplifies to the CRRA case.  Furthermore, the estimated value of 𝛾𝛾 equaled 0.0571, 

which would yield implausible WTP values under GRACE [10].  The addition of the subset of people 

with risk seeking behavior for levels of health < 0.05 resulted in non-convergence.  As a result, we 

conclude HARA utility should not be used in our full sample. 
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