NBER WORKING PAPER SERIES

STRATEGYPROOFNESS-EXPOSING DESCRIPTIONS OF MATCHING MECHANISMS

Yannai A. Gonczarowski
Ori Heffetz
Clayton Thomas

Working Paper 31506
http://www.nber.org/papers/w31506

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
July 2023, Revised October 2025

An earlier version of this paper circulated under the name *“Strategyproofness-Exposing
Mechanism Descriptions,” a one-page abstract of which appeared in EC 2023. For helpful
comments and discussions, the authors thank Itai Ashlagi, Tilman Borgers, Eric Budish, Robert
Day, Benjamin Enke, Xavier Gabaix, Nicole Immorlica, Guy Ishai, David Laibson, Jacob Leshno,
Irene Lo, Kevin Leyton-Brown, Shengwu Li, Paul Milgrom, Michael Ostrovsky, Assaf Romm, Al
Roth, Fedor Sandomirskiy, Ilya Segal, Ran Shorrer, Pete Troyan, Matt Weinberg, Leeat Yariv,
Huacheng Yu, and seminar participants at HUJI, Cornell, Harvard, Stanford GSB, WALE 2022,
Noam Nisan’s 60th Birthday Conference, the INFORMS Workshop at EC 2022, MATCH-UP
2022, University of Michigan, INFORMS 2022, the 2022 NBER Market Design Meeting,
University of Tokyo, UCI, UCSD, the Bellairs Workshop 2023, EC 2023, the 2023 WZB Matching
Market Design conference, Microsoft Research, University of Kentucky, Northwestern, and RPI.
Zo6e Hitzig provided valuable research assistance. Gonczarowski gratefully acknowledges research
support by the National Science Foun-dation (NSF-BSF grant No. 2343922), Harvard FAS
Inequality in America Initiative, and Harvard FAS Dean’s Competitive Fund for Promising
Scholarship; part of his work was carried out while at Microsoft Research. Heffetz gratefully
acknowledges research support by the Israel Science Foundation (grant No. 2968/21), US-Israel
Binational Science Foundation (NSF-BSF grant No. 2023676), and Cornell’s Johnson School; part
of his work was carried out while visiting Princeton’s School of Public and International Affairs.
Thomas gratefully acknowledges the support of NSF CCF-1955205, a Wallace Memorial
Fellowship in Engineering, and a Siebel Scholar award; parts of his work was carried out while at
Princeton and Microsoft Research. The views expressed herein are those of the authors and do not
necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2023 by Yannai A. Gonczarowski, Ori Heffetz, and Clayton Thomas. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided
that full credit, including © notice, is given to the source.

Strategyproofness-Exposing Descriptions of Matching Mechanisms
Yannai A. Gonczarowski, Ori Heffetz, and Clayton Thomas

NBER Working Paper No. 31506

July 2023, Revised October 2025

JEL No. D47, D82

ABSTRACT

A menu description exposes strategyproofness by presenting a mechanism to player i in two steps.
Step (1) uses others’ reports to describe i’s menu of potential outcomes. Step (2) uses i’s report to
select i’s favorite outcome from her menu. We provide novel menu descriptions of the Deferred
Acceptance (DA) and Top Trading Cycles (TTC) matching mechanisms. For TTC, our description
additionally yields a proof of the strategyproofness of TTC’s traditional description, in a way that
we prove is impossible for DA.

Yannai A. GonczarowskKi Clayton Thomas

Harvard University Microsoft Research
yannai@gonch.name thomas.clay95@gmail.com
Ori Heffetz

Cornell University

Johnson Graduate School of Management
and The Hebrew University of Jerusalem
and also NBER

oh33@cornell.edu

1 Introduction

Strategyproof mechanisms are often considered desirable. Under standard economic
assumptions, these mechanisms eliminate the need for players to strategize, since
straightforward play is a dominant strategy.! In practice, however, real participants
in strategyproof mechanisms often play theoretically dominated strategies, raising
the possibility that they do not perceive the mechanisms as strategyproof (see, e.g.,
Hakimov and Kiibler 2021; Rees-Jones and Shorrer 2023).

In this paper, we posit that the way mechanisms are described can influence the
extent to which participants perceive strategyproofness. In contrast to other recent
works, which have sought to encourage straightforward play by implementing a given
choice rule through different interactive mechanisms,? we propose changing only the
(ex ante) description of a given static, direct-revelation mechanism. We propose a
general outline—called menu descriptions—for describing mechanisms to one player
at a time in a way that makes strategyproofness hold via an elementary, one-sentence
argument. In this sense, menu descriptions expose strategyproofness.

Our focus is on matching, and particularly on two canonical mechanisms: De-
ferred Acceptance (henceforth DA) and Top Trading Cycles (henceforth TTC). These
mechanisms are widely and successfully deployed. They are typically explained to
participants using outcome descriptions—i.e., detailed and explicit algorithms for
calculating the outcome matching. However, the traditional (outcome) descriptions
of these mechanisms do not expose their strategyproofness, in the sense that proving
this property from these descriptions requires technical mathematical arguments.

We present three main results. The first is a new menu description of DA. The
second is a new menu description of TTC, which furthermore yields a new proof of the
strategyproofness of the traditional description of TTC. The third is an impossibility
result showing that such a proof via a menu description cannot work for the traditional
description of DA.

As an initial illustration, consider the canonical Serial Dictatorship (henceforth

SD) mechanism. When matching applicants to institutions,” the traditional descrip-

'We use the term “straightforward” to describe the strategy an agent would play under classic
economic assumptions. While often referred to as the “truthtelling” strategy, we avoid this morally
laden term, since deviations from this strategy should not be thought of as dishonesty.

2Prior works often consider interactive mechanisms designed to reduce non-straightforward play
arising from behavioral factors, such as contingent-reasoning failures (Li, 2017; Pycia and Troyan,
2023) and loss aversion (Dreyfuss et al., 2022; Meisner and von Wangenheim, 2023).

3Throughout this paper, the only strategic players are the applicants. Institutions are non-

tion of SD is as follows: In some priority order, say ¢ = 1, ..., n, applicant 7 is matched
to her highest-ranked not-yet-matched institution. Strategyproofness is exposed by
this description: Applicant ¢ cannot influence the set of not-yet-matched institutions,
and straightforward reporting guarantees ¢ her favorite not-yet-matched institution.
Our paper presents new descriptions of DA and TTC that make strategyproofness as
evident as in the traditional description of SD.

In Section 2, we provide preliminaries. We study descriptions in terms of the clas-
sic notion of a menu (Hammond, 1979)—the set of all institutions an applicant might
match to, given others’ reports. In particular, a menu description for applicant ¢ has

the following two-step outline:
Step (1) uses only the reports of other applicants to describe i’s menu.
Step (2) says that i’s match is her highest-ranked institution from her menu.

For instance, the traditional description of SD is a menu description. In contrast
with some other mechanisms’ traditional descriptions, strategyproofness is exposed
by any menu description in the same way as in SD: In Step (1), applicant i cannot
influence her menu (in SD, the set of not-yet-matched institutions), and in Step (2),
straightforward reporting guarantees ¢ her favorite institution from her menu.

In Section 3, we present our first main result: A novel menu description of DA.
Our description—which is summarized in Table 1—describes applicant i’s menu as
all institutions that prefer ¢ to their outcome in “flipped-side-proposing” Deferred
Acceptance without 7. This directly conveys i’s match in DA, while exposing strate-
gyproofness for ¢. Prior to our work, it was not clear how to construct DA’s menu,

except via a trivial brute-force solution (applicable for any strategyproof mechanism)

Table 1: Two descriptions of DA (the applicant-optimal stable match)

Traditional Descr.: Menu Description:

The applicants and We will run institution-proposing Deferred Acceptance with
institutions will be all applicants except you, to obtain a hypothetical match-
matched using the ing. Your menu consists of every institution that ranks you

applicant-proposing higher than its hypothetically matched applicant.
Deferred Acceptance | You will be matched to the institution that you ranked high-
algorithm. est out of your menu.

Note: In the menu description, others’ hypothetical matches need not be their matches in DA.

strategic, and their preferences over the applicants are by convention called priorities.

2

involving running the traditional description many times to separately check whether
or not each institution is on ¢’s menu.

In Section 4, we present our second main result: A novel menu description of TTC,
which furthermore yields a novel proof of the strategyproofness of TTC’s traditional
description. Our menu description is contained in an outcome description. We call any
such description a menu-in-outcome description; such descriptions have the following
three-step outline:

Step (1) uses only the reports of other applicants to describe i’s menu.
Step (2) says that i’s match is her highest-ranked institution from her menu.

Step (3) describes the rest of the matching (for all other applicants).

Our description of TTC, and our resulting proof of the strategyproofness of the
traditional description, are as follows. TTC’s traditional description works in terms of

Y

“eliminating trading cycles,” and it is well known that these cycles can be eliminated
in any order. Our menu-in-outcome description is a slight tweak of the traditional one:
It differs only by changing the order in which cycles are eliminated (by eliminating
the cycle involving applicant i as late as possible). Thus, for any applicant 4, the
match of 7 in the traditional description equals her match in our menu description—
which (like all menu descriptions) is strategyproof. This proves that TTC’s traditional
description is strategyproof.*

In Section 5, we present our third main result. We ask: Like in our result for
TTC, is there a menu description of DA that yields a proof of the strategyproofness
of its traditional description through a slight tweak of it? We present an impossibility
theorem showing that the answer is no.

To establish a formal notion of a “slight tweak,” we consider three salient proper-
ties of DA’s traditional description:

e [t calculates the entire outcome matching; i.e., it is an outcome description.

e [t looks at applicants’ preferences in favorite-to-least-favorite order; we say that

such descriptions are applicant-proposing.

4 Following the first appearance of our paper, the survey article of Morrill and Roth (2024)
adopted our proof of TTC’s strategyproofness. Regarding the potential real-world adoption of TTC
for public school choice, Morrill and Roth write:

“Our experience [...] taught us that when we worked with school districts, we should
help design not just a mechanism, but also the communication package that explained
that mechanism [...]. Perhaps if we had already known of the proof of [Gonczarowski,

Heffetz, and Thomas| we could have explained [TTC’s strategyproofness] more clearly.”

3

e [t maintains bookkeeping by only tracking and iteratively modifying a single
tentative matching. In particular, it uses only a small amount of bookkeeping

per applicant; in computer science terms, such descriptions are linear-memory.

We formalize our impossibility theorem by treating the satisfaction of these three
properties as a prerequisite for a description to qualify as a slight tweak of DA’s
traditional description. Indeed, not satisfying the first property means reaching a
different final result than the traditional description, and not satisfying the second or
third properties means having step-by-step calculations that are very different from
those of the traditional one.”

Our third main result proves that, in contrast to (SD and) TTC, no slight tweak of
DA’s traditional description contains a menu description. Concretely, we prove that
no menu-in-outcome description of DA is applicant-proposing and linear-memory.
In fact, we prove a strong impossibility: Any applicant-proposing menu-in-outcome
description of DA must use quadratic memory, an amount far greater than any de-
scription tracking only a single tentative matching. Thus, our approach above that
exposes the strategyproofness of TTC’s traditional description cannot work for DA.

Our results reveal a stark trichotomy among SD, TTC, and DA. The traditional
description of SD already has each applicant choosing from her menu (see Figure 1(a)
for an illustration), and thus exposes strategyproofness. For the traditional descrip-
tion of T'T'C, this is not the case, but for each applicant there is a slight tweak in which

she chooses from her menu (see Figure 1(b)), which thus exposes strategyproofness.

Figure 1: Illustration of trichotomy for traditional descriptions of SD, TTC, and DA

T =5

(b) TTC (c) DA

Notes: Each figure depicts an applicant-proposing and linear-memory outcome description, which
progresses from left to right. The outcome matching is depicted as a shaded shape. Step (2) of a
menu description (choice from a menu, which exposes strategyproofness for the chooser) is depicted
as a white shape with an arrow. Other calculations are depicted as wavy arrows. The gray diagram
in Panel (c) depicts the impossibility: DA cannot be described in finer detail as in Panels (a) and (b).

SFor instance, our menu-in-outcome description of TTC (Section 4) is, like its traditional de-
scription, a linear-memory applicant-proposing outcome description. The same is not true for our
menu description of DA (Section 3): It is institution-proposing, and is not an outcome description.

4

For the traditional description of DA, a comparable result is impossible, in the strong
sense discussed above (see Figure 1(c)).

Table 2 summarizes our three main results discussed above. In Section 6, we
review related work, including our empirical companion paper investigating our menu
description of DA, and our work exploring menu descriptions in non-matching settings
such as auctions and voting. We conclude in Section 7, where we also discuss potential

practical concerns.

Table 2: Summary of main results

Main Result Summary Relevant Formal Properties

Description 1 is a novel description of DA
(to one applicant at a time)
that exposes strategyproofness.

Description 1 is a
menu description of DA.

Positive result
for DA (Sec. 3)

Description 2 satisfies the above for TTC, Description 2 of TTC is a

Positive result and additionally yields a novel linear-memory,
for TTC (Sec. 4) proof of the strategyproofness of applicant-proposing
the traditional description of TTC. menu-in-outcome description.
Theorem 5.3 shows it is impossible Theorem 5.3 shows that for DA,
Negative result to prove the strategyproofness of any applicant-proposing
for DA (Sec. 5) the traditional description of DA menu-in-outcome description
in the way we do for TTC (in Sec. 4). requires quadratic memory.

2 Preliminaries

2.1 Mechanisms

This paper studies (static, direct-revelation) matching mechanisms. This environment
consists of n applicants {1,...,n} to be matched to institutions. Applicant i has a
strict ordinal preference >=; over institutions, also called her type. Let 7; denote the
set of types of applicant i, and let A denote the set of matchings.® We focus on one-

to-one matching for concreteness (though our results, particularly for DA, generalize

6 Applicants may go unmatched, and their preference lists may be partial (indicating that they
prefers to going unmatched over institutions not on her preference list). We also let hy >4 ho
indicate that applicant d prefers hq to ho; hi =g ho indicate hy =g ho or h1 = hg; @ =4 h indicate
that d does not rank h; p(d) denote the match of d in p; pu(d) = @ denote d going unmatched; 7_;
denote the set T3 X ... X Ti_1 X Tix1 ... Tn, and for »=,€ T; and =_;€ T_;, we write (>, >_;) for the
naturally corresponding element of 77 X ... X 7.

substantially; see Section 3).

The applicants report their types to a mechanism, which determines the outcome
matching. Formally, a mechanism is any mapping f : 7y X ... x T, — A from the
reported types of all applicants to a matching. We focus on strategyproof mechanisms.
This means that for every applicant i, every >=;, =.€ 7;, and every »=_;€ T_;, we have
fi(=iy =) =i fi(>}, =), where f;(>-1,...,>,) denotes i’s match in f(>1,...,>,).

We study the canonical strategyproof mechanisms SD, TTC, and DA. These
mechanisms are defined with respect to priorities of the institutions over the ap-
plicants. Following much of the matching literature, we assume the institutions are
non-strategic; hence, we treat the priorities as predetermined. SD uses a single pri-
ority order > over all applicants; TTC and DA use a profile of priority orders {>},

one for each institution h.

Definition 2.1 (SD). For a given priority order >, Serial Dictatorship (SD) is defined
as follows. Given the reports, applicants are considered in order of highest-to-lowest
priority, and each applicant is permanently matched to her highest-ranked not-yet-

matched institution.

Definition 2.2 (TTC). For a given profile of institutions’ priorities {>p}n, Top
Trading Cycles (TTC) is defined as follows. Given the reports, repeat the following
until everyone is matched (or has exhausted their preference lists): Every remaining
(i.e., currently unmatched) applicant “points” to her favorite remaining institution,
and every remaining institution points to its highest priority remaining applicant.
There must be some cycle in this directed graph (since there is only a finite number of
vertices). Choose any such cycle and “eliminate” that cycle by permanently matching
each applicant in the cycle to the institution she is pointing to (and removing all

matched agents from consideration for later cycles).

Definition 2.3 (DA). For a given profile of institutions’ priorities {>}, Deferred
Acceptance (DA) is defined as follows. Given the reports, repeat the following un-
til every applicant is matched (or has exhausted her preference list): A currently
unmatched applicant is chosen to “propose” to her favorite institution that has not
yet “rejected” her. The institution then rejects every proposal except for its high-
est priority applicant who has proposed to it thus far. Rejected applicants become
(currently) unmatched, while that highest priority applicant is tentatively matched

to the institution. At the end, the tentative allocation becomes final.

Note that DA, by convention, refers to the above applicant proposing version of the
mechanism. The sides can also be flipped, which results in the institution proposing
variant of DA. When confusion might arise, we use APDA for applicant-proposing
DA and IPDA for institution-proposing DA.

TTC and DA are the two canonical matching mechanisms that are priority-based
and strategyproof. TTC is Pareto-efficient for the applicants, and DA is stable. Note
that the outcomes of TTC is independent of the order in which cycles are eliminated
(see Proposition C.8) and that DA is independent of the order of proposals (see
Corollary C.4).

2.2 Descriptions

This paper studies ex ante descriptions of matching mechanisms, i.e., descriptions
that are given before any concrete inputs are known. When matching markets are
described in detail to participants, this is typically done by specifying a set of ex-
plicit, precise, step-by-step instructions for calculating the result, i.e., by specifying
an algorithm.” Thus, we formally define a description to be any algorithm that uses
as input the preferences of the applicants and the priorities of the institutions, and
calculates some result (e.g., an outcome matching).®

For any mechanism f, an outcome descriptions of f is an algorithms that, using
input >1,..., >, (and the priorities of institutions), outputs the outcome matching
f(>1,...,>n). For instance, the descriptions in Definitions 2.1 through 2.3 are out-
come descriptions for SD, TTC, and DA, respectively. We refer to each of these
outcome descriptions as the traditional description of the corresponding mechanism.

Beyond outcome descriptions, we study two other description outlines: menu de-
scriptions and menu-in-outcome descriptions; these are defined in Sections 2.3 and 2.4,

respectively.

TOf course, the way a description/algorithm is actually conveyed to participants can vary. One
common real-world approach to relaying matching algorithms is an illustrative video using an ex-
ample (see, e.g., Figure 3 in Section 5.1 for such a video for DA). In our paper, we abstract over
exactly how the algorithm is relayed.

8 Algorithms can be defined in full mathematical detail in various ways; any such definition
suffices for our purposes. In the Supplemental Appendix S, we present such a definition from first
principles.

2.3 Menus and Menu Descriptions

The starting point of our framework for changing mechanism descriptions is the fol-

lowing characterization of strategyproofness in terms of applicants’ menus.’

Definition 2.4 (Menu). For any matching mechanism f, applicant ¢, and >=_;€ T_;,
the menu M. _, of i with respect to >_; is the set of all institutions h for which there
exists some ;€ 7T; such that f;(>;, >=_;) = h. That is,

Mo, =1 fil=i,==) | =€ Ti }.

Theorem 2.5 (Hammond, 1979). A matching mechanism f is strategyproof if and
only if each applicant i always receives her favorite institution from her menu. That
is, for every »=_;€ T_; and =;€ T;, it holds that f;(>;,>=_;) =i h for allh € M. _..

Proof. Suppose f is strategyproof and fix »_;& T_;. For every »;€ 7T;, it holds by
definition that for every h = f;(>~;,>_;) € M, _,, we have f;(>;,>_;) =; h. On the
other hand, if applicant ¢ always receives her favorite institution from her menu, then

she always prefers reporting >; at least as much as any >/, so f is strategyproof. [
We use menus to describe mechanisms while exposing their strategyproofness:

Definition 2.6 (Menu Description). A menu description of mechanism f for appli-

cant 7 is a description with the following outline:
Step (1) uses only >_;€ T_; to calculate the menu M, _, of applicant i.
Step (2) uses >;€ 7; to match applicant ¢ to her favorite institution in M, _,.

Formally, a menu description for 7 is thus an algorithm that initially receives only >_;
as input and calculates M, _, as an intermediate result, then additionally receives >;

as input and uses it to calculate i’s favorite choice from M., as the final result.

9Definition 2.4 has been considered under many different names in many different contexts (e.g.,
sets that decentralize the mechanism in Hammond (1979); option sets in Barbera et al. (1991);
proper budget sets in Leshno and Lo (2021); feasible sets in Katuscédk and Kittsteiner (2025); and
likely others). We follow the “economics and computation” literature (e.g., Hart and Nisan, 2017;
Dobzinski, 2016; Babaioff et al., 2022) in calling these sets “menus.” This notion is distinct from
many other definitions of menus (e.g., those of Mackenzie and Zhou, 2022; B6 and Hakimov, 2023,
and many others).

Note that while Step (1)—the calculation of M, _—varies between different mech-
anisms and menu descriptions, Step (2)—’s choice from M. —is essentially the
same across all menu descriptions.

The central premise of our paper is that menu descriptions are one way to expose
strategyproofness. This is because the strategyproofness of any menu description can
immediately be seen via a simple, one-sentence argument: First, applicant ¢’s report
cannot affect her menu, and second, straightforward reporting (“truthtelling”) gets

applicant 7 her favorite institution from the menu.'®

2.4 Menu-in-Outcome Descriptions

Beyond menu descriptions, outcome descriptions that contain menu descriptions also

play a key role in our results. We call these menu-in-outcome descriptions.

Definition 2.7 (Menu-in-Outcome Description). A menu-in-outcome description of
mechanism f for applicant ¢ is an outcome description of f that contains a menu

description for applicant 7. Equivalently, it is a description with the following outline:
Step (1) uses only >_;€ T_; to calculate the menu M. . of applicant 1.
Step (2) uses =;€ T; to match applicant ¢ to her favorite institution from M, _,.
Step (3) uses both >; and >_; to calculate the full outcome matching f(>;, >=_;).

Formally, a menu-in-outcome description for 7 is thus an algorithm that initially
receives >_; as input and calculates M., ., then additionally receives >; as input

and calculates i’s favorite choice from M, _ | and finally proceeds to calculate the

—i

entire outcome matching f(>;, >_;) as the final result.

For example, consider SD (Definition 2.1). This mechanism is easily seen to be
strategyproof, directly from its traditional description (and even for many students

encountering it for the first time). This is reflected by the fact that applicants are

10 There is also a precise sense in which menu descriptions are the only ones for which the above
argument for strategyproofness goes through. In particular, suppose a description calculates the
match of applicant ¢ in some mechanism f, and has the following outline:

Step (1) uses »_; to calculate a set S of institutions.

Step (2) uses >; to match ¢ to her top-ranked institution in S.

Then, it is not hard to show that the set S must be ’s menu.

matched in SD via menu descriptions. In particular, when applicants are prioritized
1> 2> ...> n, the traditional description of SD can be divided into three steps for

any applicant i:

(1) Each applicant j < i is matched, in order, to her top-ranked remaining institution.
(2) Applicant i is matched to her top-ranked remaining institution.

(3) Each applicant j > i is matched, in order, to her top-ranked remaining institution.
Steps (1) and (2) form menu description, but this menu description is contained

within the (traditional) outcome description, and thus Steps (1) through (3) form a

menu-in-outcome description.

2.5 Uses of Menu Descriptions

The positive results of our paper present new menu descriptions of DA and TTC.
Before giving these results, we note that every strategyproof mechanism has a menu

description, given by an argument from Hammond (1979)."

Example 2.8 (A “brute force” menu description). Consider any strategyproof match-
ing mechanism f, and let D be an outcome description of f. For each institution h,
let {h} denote the preference list that ranks only h as acceptable. Then, consider the

following description for applicant ¢:

(1) Start with M = (). For each institution h separately, evaluate D on ({h}, =_;);
if this matches ¢ to h, then add h to M.

(2) Match i to her highest-ranked institution in M.

By strategyproofness, h is included in M in Step (1) if and only if A is on the menu.

Thus, the above provides a menu description of f.

We explore two uses of menu descriptions: as alternative standalone descriptions
for participants, and as a tool to help illustrate the strategyproofness of a traditional

description. A description such as Example 2.8 has drawbacks in both of these uses.

"This menu description was also identified by Katuscdk and Kittsteiner (2025).

10

First, as a standalone description, Example 2.8 might—compared to the tradi-
tional descriptions presented in Section 2.1—be considered cumbersome or convo-
luted, since it repeats D many independent times. Given this, we look for more-direct
new menu descriptions (such as our menu description of DA in Section 3).

Second, since there is no clear relation between the outcomes of Example 2.8 and
those of the description D (absent prior knowledge that D is strategyproof), it is un-
clear how Example 2.8 might aid in conveying the strategyproofness of D. Given this,
we look for menu descriptions that are closely related to the corresponding traditional

description (such as our menu-in-outcome description of TTC in Section 4).

3 A Menu Description of DA

In this section, we present our first main result: A novel menu description of DA.

This is Description 1 (which rephrases Table 1 in the introduction).

Description 1 A menu description of (applicant-proposing) DA for applicant i

(1) Run institution-proposing DA with applicant ¢ removed from the market, to get
a matching pu_;. Let M be the set of institutions h such that i >, pu_;(h).

(2) Match i to i’s highest-ranked institution in M.

Step (1) of Description 1 begins with a modified version of the traditional de-
scription of DA (from Definition 2.3). Then, it calculates i’s menu as an (arguably)
intuitive set of institutions: those that prefer ¢ to their match in this modified version
of DA. We speculate that many real market participants would find such a description
understandable. (In fact, our empirical companion paper Gonczarowski et al. (2024)
gives evidence that many lab participants can learn this description—see Section 6.)

Crucially, Description 1 uses the institution-proposing DA algorithm to describe
DA (traditionally described via the applicant-proposing DA algorithm). To give in-
tuition for why the proposing side is flipped, we show via an example that switching

the proposing sides in Step (1) of Description 1 would not suffice.

Example 3.1. Consider a market with three applicants i,d;,dy; and two institu-
tions hi, ho. Applicants have preferences d; : h; = ho and dy : hy > hy, and in-
stitutions have priorities hy : dy > ¢ = dy and hy : dy > i = dy. Running appli-

11

cant-proposing DA on these preferences without i gives matching {(dy, hy), (da, hs)},
and both h; and hy prefer ¢ to their match. However, neither h; nor hy are on i’s
menu, since having ¢ propose to any h; € {hy, ha} (after running applicant-proposing
DA without i) causes a “rejection cycle” that results in h; rejecting i. Intuitively,
institution-proposing DA fixes this issue by outputting a matching that has no poten-
tial “applicant-proposing rejection cycles.”'? Specifically, institution-proposing DA

gives matching {(dy, hs), (da, h1)}, corresponding to i’s menu in this example being ().
Formally, the following theorem establishes the correctness of Description 1:
Theorem 3.2. Description 1 is a menu description of DA.

Proof. Fix institutions’ priorities, an applicant ¢, and preferences >_; of applicants
other than i. Let {h} denote the preference list of i that reports only institution A
as acceptable, and let () denote the preference list of 7 that reports no institution as
acceptable. For clarity, denote applicant-proposing DA by APDA(-) = DA(:) and
denote institution-proposing DA by IPDA(-).

Since APDA is strategyproof (Theorem C.7), it suffices to prove that the set of
institutions calculated in Step (1) of Description 1 is applicant ¢’s menu. Now, for

any institution A, we observe the following chain of equivalences:

h is in the menu of ¢ in APDA (with respect to > _;)
<~ (By strategyproofness of APDA; Theorem C.7)
i is matched to h by APDA({h},>_;)
= (By the Lone Wolf / Rural Hospitals Theorem; Theorem C.6)
i is matched to h by IPDA({h}, = _;)
<= (IPDA({h}, ~_;) and IPDA((,_;) coincide until i proposes to)
h proposes to i in IPDA(0, > _;)
<= (IPDA(D,_;) and IPDA(>_;) produce the same matching;
in IPDA, h proposes in highest-to-lowest priority order)
i has higher priority at h than h’s match in IPDA(>_;). O

12This intuition regarding “applicant-proposing rejection cycles” is related to the concept of an
institution-improving rotation as in Gusfield and Irving (1989).

12

In addition to giving a arguably-appealing alternative description of DA, Theo-
rem 3.2 provides a characterization of the menu in DA that is useful for reasoning
about DA’s properties. We briefly highlight two applications. First, one can immedi-
ately see from Description 1 that, if one applicant’s priorities increase at some set of
institutions, then (all other things being equal) the match of that applicant in DA can
only improve (Balinski and Sonmez, 1999). Second, a short argument using Descrip-
tion 1, which we provide in Remark B.3, shows that in a market with n+1 applicants,
n institutions, and uniformly random full length preference lists, applicants receive
in DA roughly their n/log(n)th choice in expectation—rather lower than in the case
with n applicants, where they receive their log(n)th choice—re-proving results from
Ashlagi et al. (2017); Cai and Thomas (2022).

Description 1 generalizes to a broader class of stable matching markets. In fact,
in Remark B.2, we observe that the same argument as in the above proof shows that
a natural generalization of Description 1 characterizes the menu of DA in many-to-
one markets, and even in a general class of markets with contracts, namely, those
considered by Hatfield and Milgrom (2005).

Finally, we remark that Description 1 can facilitate a proof from first-principles of
the strategyproofness of (traditionally described) DA (without relying on this fact as
in the proof above). We give such a proof in Appendix B. While we view this proof as
theoretically appealing, and perhaps useful for classroom instruction, we believe this
approach remains far too mathematically involved to convey the strategyproofness of
DA’s traditional description to real-world participants. In contrast, if a clearinghouse
directly adopts Description 1 as a way to describe participants’ matches in explicit

detail, then strategyproofness is exposed via a simple one-sentence argument.

4 A Menu-in-Outcome Description of TTC

In this section, we present our second main result: A novel menu description of TTC.
In fact, we present a menu-in-outcome description that yields a novel proof that the
traditional description of TTC is strategyproof. This is Description 2.

Description 2 modifies the traditional description of TTC (only) by delaying

matching applicant ¢ as long as possible.!® This accurately describes the full out-

13This can also be thought of as running TTC, with a twist: During the first stage, applicant i
does not point to any institutions. This stage lasts until no cycles exist, after which ¢ points as

13

Description 2 A menu-in-outcome description of TTC for applicant ¢

(1) Using »_;, iteratively eliminate as many cycles not involving applicant i as pos-
sible. Let M denote the set of remaining institutions.

(2) Using »;, match ¢ to her highest-ranked institution in M. Call this institution h.

(3) Using (>;, >=_;), eliminate the cycle created when i points to h, then continue to
eliminate cycles until all applicants match (or exhaust their preference lists).

come matching since, as is well known, TTC is independent of the order in which

cycles are chosen to be eliminated and matched. Formally:
Theorem 4.1. Description 2 is a menu-in-outcome description of of TTC.

Proof. Recall that the traditional description of TTC is independent of the order in
which cycles are eliminated (Proposition C.8). Now, consider modifying this tradi-
tional description by delaying matching cycles involving applicant ¢ as long as possible,
and consider the pointing graph of TTC once all remaining cycles involve applicant 7.
Observe that eliminating a cycle now requires matching ¢ to her highest-ranked not-
yet-matched institution; see Figure 2 for an illustration. Thus, Description 2 differs
from the traditional description of TTC only in the order in which cycles are elimi-

nated, and hence calculates the TTC outcome matching.

Figure 2: Menu calculation in Description 2

Notes: Circles represent applicants; squares represent
institutions; each institution (resp. each applicant ex-
) cept ¢) points to her favorite remaining applicant (resp.
(4 institution). Cycles not involving ¢ were already elim-
inated, so wherever i points will form a cycle.

By construction, Step (1) of Description 2 does not use >; to calculate the set M.
Thus, since ¢ is matched to her highest-ranked institution in M in Step (2), it follows
that TTC is strategyproof. Moreover, since ¢ can match to any institution in M (and
only to institutions in M), it follows that M equals i’s menu.'* Hence, Description 2

is a menu-in-outcome description of TTC.]

normal (and immediately matches to the institution she points to).

14By the observation discussed in Footnote 10, the fact that M equals i’s menu also follows from
the fact that Description 2 calculates the outcome matching of TTC as i’s top pick from M (which
is independent of #’s report).

14

In addition to constructing a new menu description of TTC, Theorem 4.1 yields
an (arguably simple and intuitive) proof that the traditional description of TTC is
strategyproof. In particular, Theorem 4.1 demonstrates—given (only) the fact that
TTC is independent of the order in which cycles are eliminated—that in the tradi-
tional description of TTC, any applicant ¢ is matched according to a menu description.
Hence, TTC is strategyproof.

The above simple proof is enabled by two properties of Description 2. First,
it contains a menu description. Second, it only slightly tweaks TTC’s traditional,
outcome description (in a way that clearly maintains the same result). Crucially, a
description cannot satisfy these two properties without being an outcome description
that contains a menu description, i.e., a menu-in-outcome description.

In sum, our description of TTC, and the simple argument for the strategyproofness
it provides, give promising new ways to explain TTC’s strategyproofness, both in the

classroom and for real-world market participants.!’

5 An Impossibility Result for Menu-in-Outcome
Descriptions of DA

In this section, we present our third main result: an impossibility theorem show-
ing that—in contrast to what our menu-in-outcome description of TTC (Section 4)
achieves—no menu description of DA yields a simple proof of the strategyproofness
of DA’s traditional description.

Concretely, we show that no slight tweak of DA’s traditional description contains
a menu description. Here and throughout the paper, by “slight tweak,” we mean that
the same result is reached, and that the step-by-step calculation is similar enough
for this fact to be evident. We formalize this notion of slight tweaks in Section 5.1.
We then present our impossibility theorem in Section 5.2, showing that no such slight
tweak of DA’s traditional description contains a menu description (and hence showing
that slight tweaks cannot expose the strategyproofness of DA’s traditional description

in a way analogous to TTC in Section 4).

15Gee Footnote 4.

15

5.1 Properties of Slight Tweaks of Traditional Descriptions

We now identify two salient properties of the step-by-step calculations used in the
traditional description of DA (and of SD, and of TTC):

e First, the description only considers the preferences of each applicant once, in
a specific, natural order—from favorite to least favorite. We call this property

applicant-proposing.

e Second, the description requires only a small amount of bookkeeping, namely,
that required to track a single tentative matching. We consider a flexible gen-
eralization of this property: that the description uses only a small (nearly con-
stant, formalized below) amount of bookkeeping per applicant. Following stan-

dard terminology from computer science, we call this property linear-memory.

Before formally defining these two properties, Figure 3 illustrates how they are
used to describe DA in one of its most celebrated practical applications: match-
ing medical doctors to residencies in the US National Resident Matching Program
(NRMP). The figure shows a screenshot of a video from the NRMP that relays the
traditional description of DA by applying it to a small example. The explanation in

Figure 3: An illustration of the traditional description of DA through an example

i
Bayview@

1. Kevin
2. Alisha .

3. Carlos

Hillside

1. Alisha

1. Kevin
2. Alisha

3. C?

L [B A

——Bayrew— 1. Mountain 1. Bayview
2. Mountain 2. Bayview 2. Mountain
3. Hillside

Note: Screenshot taken from https://youtu.be/kVTwXNawpbk (NMS, 2020), a video produced by
National Matching Services (the company providing matching software to the NRMP).

16

https://youtu.be/kVTwXNawpbk

the video is aided by two visual elements: sequentially crossing off institutions from
applicants’ lists as the description progresses, and keeping track of a “current tenta-
tive matching” illustrated by the yellow-highlighted names. In order for these two
simple visual elements to illustrate the description, it is necessary that the description
is applicant-proposing and linear-memory. First, the applicant-proposing property is
necessary for the video to sequentially cross off institutions from applicants’ lists as
the description progresses. Second, the linear-memory property is necessary for the

yellow highlighting in the video to capture all required bookkeeping.

Definition 5.1 (Applicant-proposing and Linear-memory Descriptions).

e A description is applicant-proposing if it reads applicants’ preferences by query-
ing a single applicant at a time, such that the 7 query to applicant d returns
the j* institution on d’s preference list. (The priorities of the institutions, on

the other hand, can be accessed by the description in any way.)

Formally, an applicant-proposing description is thus a procedure that maintains
some internal state that is iteratively updated while querying applicants’ prefer-
ence lists (one applicant at a time), with the following property. For any possible
inputs and for any applicant d, suppose the algorithm queries d’s preference list
sequentially in states sq,ss9,..., S, as it runs, and for each j = 1,...,k, let 3;-
denote the updated state that the algorithm reaches immediately after querying
d’s preferences in s;. Then, s depends only on (s; and) the j™ institution on
d’s preference list (which is considered to be the “empty institution” if d’s list

contains fewer than j institutions).

e The memory requirement of a description is the number of bits required to
represent the state of the description. Intuitively, this is the amount of extra
bookkeeping or “scratch paper” required by the description. Formally, it is the

logarithm in base 2 of the number of possible internal states of the algorithm.

In a matching environment with n applicants and n institutions, we say a de-

scription is linear-memory if its memory requirement is at most O(n).'”

16 As discussed in Section 2.2, we formally define descriptions to be algorithms. For completeness,
the Supplemental Appendix S gives a self-contained mathematical definition of algorithms sufficient
for our purposes.

"The standard computer-science notation @(n) means O(nlog®n) for some constant . That
is, for large enough n, memory is upper-bounded by cnlog®n for some constants c,a that do not
depend on n. Using O(n) memory means using only nearly constant bookkeeping per applicant.

17

We note that linear memory is the smallest possible memory requirement for
outcome descriptions (as well as for menu descriptions) of matching mechanisms.
Indeed, (5(n) is exactly (up to the precise logarithmic factors) the number of bits of
memory required to describe a single matching (or a single applicant’s menu).'®

The applicant-proposing and linear-memory properties capture salient properties
of the traditional descriptions of many matching mechanisms. As discussed above,

this includes DA, but also includes SD, and TTC.'? In particular:

e In the traditional description of SD, the linear memory stores a set S of not-yet-
matched institutions. The applicant-proposing property enables the description
to choose an applicant’s highest-ranked institution in S by reading the appli-

cant’s preference list until the first institution in S is found.

e In the traditional description of TTC, the linear memory stores the set S of
not-yet-matched institutions, and a pointing graph in which some applicants
point to their top-ranked institution in S. The applicant-proposing property
enables the description to update an applicant’s pointing edge by reading her

list further down to the highest-ranked institution remaining in S.

Even beyond permitting these diverse traditional descriptions, the applicant-
proposing and linear-memory properties are quite flexible. The linear-memory re-
quirement allows for arbitrary calculations or data structures, so long as a small
amount of bookkeeping per-applicant is used. Additionally, applicant-proposing linear-
memory descriptions permit many variations to the order in which applicant pref-
erences are used by the description; for instance, the description could query and
remember one institution from each applicant’s preference list—or could query and
remember one applicant’s entire preference list.?’

Given the above, any description retaining sufficiently similar step-by-step cal-

culations to the traditional description of DA (or SD or TTC) must, at the very

180 see this formally, note that there are n! = 29("1°87) distinct matchings involving n applicants
and n institutions (and exactly 2™ possible menus). Intuitively, this means that the number of letters
it takes to write down a single matching with n applicants and n institutions (or a single menu, i.e.,
a subset of the n institutions) is roughly proportional to n.

19These properties are additionally satisfied by the popular non-strategyproof Boston mechanism
(see, e.g., Abdulkadiroglu et al., 2011).

20We also note that if no memory requirement is considered, then every algorithm can be imple-
mented as an applicant-proposing description, by reading all applicants’ preference lists and storing
them fully in the bookkeeping, and then finally running any algorithm on these preference lists. See
also the discussion regarding Figure 4 below.

18

least, maintain the applicant-proposing and linear-memory properties. Slight tweaks
of the traditional description of DA should retain similar step-by-step calculations,
and should also calculate the same result as the traditional description, that is, be
outcome descriptions.

Overall, we thus take the view that all slight tweaks of the traditional description
of DA should share three formal properties: applicant-proposing, linear-memory, and

1

being an outcome description.?! For an example for TTC, our menu-in-outcome

description is a slight tweak of the traditional description; as a consequence, we have:

Proposition 5.2. Description 2 is an applicant-proposing linear-memory menu-in-

outcome descriptions of TTC.

5.2 Impossibility Theorem

We now present our main impossibility result. Using the properties discussed in Sec-
tion 5.1—applicant-proposing, linear-memory, and being an outcome description—we
prove that no slight tweak of the traditional description of DA contains a menu de-

scription.

Theorem 5.3. DA has no applicant-proposing, linear-memory, menu-in-outcome de-
sceription. In fact, with n applicants and n institutions, any applicant-proposing menu-

in-outcome description of DA requires Q(n?*) memory.?>

We prove Theorem 5.3 in Appendix A below. The theorem shows a precise sense in
which slight tweaks of DA’s traditional description cannot expose its strategyproofness
via a menu description. This is in sharp contrast to TTC, which (in the same sense)
has a slight tweak that exposes strategyproofness as shown in Section 4, and in
contrast to SD, whose traditional description already exposes strategyproofness.

Theorem 5.3 is a strong impossibility result. Namely, we show that applicant-
proposing menu-in-outcome description of DA require quadratic memory—<(n?) bits.

This nearly matches the memory requirement of simply memorizing all applicants’

2INote that we do not view every description satisfying these properties as a slight tweak of a
traditional one. Instead, we take (only) the stance that these are necessary conditions that all slight
tweaks satisfy.

22The standard computer-science notation 2(n?) means that, for large enough n, memory is
lower-bounded by cn? for some constant ¢ that does not depend on n.

19

preferences—@(nQ) bits.?® If an applicant-proposing description memorizes all ap-
plicants’ preferences, then it can calculate any desired result (formally, by querying
each applicant’s entire preference list in order, with a separate state of the algo-
rithm’s memory for each possible preference profile, and returning a separate desired
result for each such state). This shows that quadratic memory is the highest possible
amount of memory that an algorithm might require. Thus, where applicant-proposing
menu-in-outcome description of (SD and) TTC use memory as low as possible (linear,
see Section 5.1), for DA the memory requirement is as high as possible (quadratic).

See Figure 4 for an illustration of the qualitative gap between these two memory

requirements.
Figure 4: Linear versus quadratic memory
dy : h1>h2>h3>h4%®
ds : h1>-h4>-h2>-h3>-h5>-@
| { (h,ds), (ha,dr), (h3,0), (ha,da), (hs,d2) } | ds: hy>=hy = hy>=hs =0
Linear memory dy: hi = hy = hy = hy = hs =0
dy - h1>-h5>'h3>'®

Quadratic memory

Theorem 5.3 is also tight in the following sense. The theorem shows that descrip-
tions of DA cannot simultaneously satisfy four criteria: being an outcome description,
containing a menu description, being applicant-proposing, and using linear-memory.
The impossibility holds only when all four of these criteria are assumed. We establish
this as follows. First, DA’s traditional description is an applicant-proposing, linear-
memory outcome description. Second, DA has an applicant-proposing quadratic mem-
ory menu-in-outcome description, since (as discussed above) quadratic-memory is as
high as possible. Third and fourth, we show in the Supplemental Appendix T that
DA has an applicant-proposing linear-memory menu description, and a linear-memory
menu-in-outcome description that is not applicant-proposing.?* Hence, Theorem 5.3

captures the complexity of DA in our framework very precisely.

23To see this formally, observe that there are (n!)" = 20(n* log(n)) possible preference profiles for
all applicants. Intuitively, this means that the number of letters it takes to write down n applicants’
preferences over all n institutions is roughly proportional to n2.

24 Appendix T.2 constructs an applicant-proposing linear-memory menu description of DA, and

20

All told, our results establish a stark trichotomy—mentioned in the introduction—
between SD, TTC, and DA. The traditional description of SD is already a menu
description, simultaneously for all applicants, exposing its strategyproofness easily.?’
The traditional description of TTC does not expose strategyproofness; however, once
this description is slightly tweaked and specialized to each individual applicant, strat-
egyproofness is exposed easily.?® For DA, in contrast with both other mechanisms, no
small tweak of the traditional description suffices to expose strategyproofness using

a menu, in the robust and strong sense provided by Theorem 5.3.

6 Related work

Our paper is most directly inspired by the contemporary “strategic simplicity” pro-
gram in mechanism design theory, which largely considers different dynamic imple-
mentations of mechanisms. A cornerstone of this literature is Li (2017), which intro-
duces obviously strategyproof (OSP) mechanisms as a way to expose strategyproof-
ness. Unfortunately, TTC (Li, 2017) and DA (Ashlagi and Gonczarowski, 2018) do
not have OSP mechanisms (except in rare special cases of institutions’ priorities; see
Troyan, 2019; Mandal and Roy, 2021; Thomas, 2021).%7

In contrast to the above literature, we consider different ex ante descriptions
of (static, direct-revelation) mechanisms. Breitmoser and Schweighofer-Kodritsch
(2022) provide empirical evidence that framing a static auction as an OSP (ascending-
clock) auction can be effective towards conveying strategyproofness. Since DA and
TTC do not have OSP implementations, they cannot be framed in this way. Nonethe-
less, by relaying the match of only a single applicant at a time, menu descriptions
frame the mechanism in a way that is OSP for that applicant (and in fact strongly
OSP; Pycia and Troyan 2023).

The experimental paper of Katuscak and Kittsteiner (2025) also suggests describ-

Appendix T.1 constructs an institution-proposing linear-memory menu-in-outcome description of
DA.

258D has an (S)OSP implementation (Li, 2017; Pycia and Troyan, 2023) for a similar reason.

260ne can show that if a mechanism is not OSP-implementable—as is the case for TTC (Li,
2017)—then any description of the mechanism must be specialized to a given applicant 7 in order
to contain a menu description for ¢. In Remark B.4 we give a short direct proof that TTC’s order
requires such specialization.

27A different line of work also considers notions of strategic simplicity that are weaker than
strategyproofness (Borgers and Li, 2019; Fernandez, 2020; Troyan and Morrill, 2020; Chen and
Moller, 2024; Mennle and Seuken, 2021).

21

ing matching mechanisms to participants via menu descriptions, but does not inves-
tigate any menu description beyond that of Example 2.8, which essentially calculates
the menu by iterating over all possible reports and running the traditional mechanism
description each time.

We are not aware of any prior characterizations of the menu in DA. Our char-
acterization builds on a large literature developing techniques for reasoning about
stable matchings.?® The menu in DA is different than other commonly considered
definitions in the theory of stable matching, such as applicant i’s set of stable part-
ners (Gale and Shapley, 1962) or her budget set of institutions h where she is above
h’s cutoff (Segal, 2007; Azevedo and Leshno, 2016; Luflade, 2017; Azevedo and Bud-
ish, 2019; Immorlica et al., 2020). In particular, in finite matching markets, these
other commonly-considered sets depend on applicant i’s report, and hence do not
equal 2’s menu. We provide explicit examples and more discussion in Remark B.5
and Remark B.6.

Proposition 2 in Leshno and Lo (2021) characterizes the menu in TTC in a different
way from our Description 2. Their characterization does not give a menu-in-outcome
description for TTC, and hence cannot be used in the same way as Description 2 to
derive a simple proof of the strategyproofness of TTC’s traditional description.

Our paper is also loosely inspired by the literature within computer science study-
ing menus. These works largely focus on single-player selling mechanisms (e.g., Hart
and Nisan, 2019; Daskalakis et al., 2017; Babaioff et al., 2022; Saxena et al., 2018;
Gonezarowski, 2018).% Papers considering menus in multi-player mechanisms include
Dobzinski (2016) and Dobzinski et al. (2022), who use menus as a tool for bound-
ing communication complexity. We do not know of any prior algorithmic work on
menus of matching mechanisms, nor of any prior work that analyzes different ways
to describe multi-player mechanisms in terms of menus.

The present paper is part of our broader research agenda. In an earlier work-

28In particular, our proof of Theorem 3.2 in Appendix B analyzes DA by incrementally modifying
preference lists. Similar techniques appear in Gale and Sotomayor (1985); Teo et al. (2001); Tmmor-
lica and Mahdian (2005); Hatfield and Milgrom (2005); Gonczarowski (2014); Ashlagi et al. (2017);
Cai and Thomas (2022), for example. Our proof of Theorem 3.2 in Section 3 uses the strategyproof-
ness of DA; to our knowledge, this is a fairly novel technique. Certain other properties of DA (e.g.,
in Blum et al., 1997; Adachi, 2000) and of unit-demand auctions (e.g., in Gul and Stacchetti, 2000;
Alaei et al., 2016), despite not being studied with relation to menus, bear some technical similarity
to the menu calculation in Description 1. However, the proofs seem unrelated.

2Branzei and Procaccia (2015); Golowich and Li (2022) study the computational complexity of
checking whether a mechanism, given its extensive- or normal-form representation, is strategyproof.

22

ing paper version of the present article,® we consider more general environments,
study a basic extension of our theory for auctions, and conduct an experiment for
a second-price auction and median voting. The theoretical computer science paper
Goncezarowski and Thomas (2024) investigates a number of complexity questions re-
lated to our three main results.

Most relevantly, the empirical companion paper Gonczarowski, Heffetz, Ishai, and
Thomas (2024) investigates participants’ responses to different descriptions of DA,
including the traditional one and Description 1 (our menu description). We find
evidence that, while Description 1 is more complex for participants to understand
than the traditional one, many participants can understand Description 1 and calcu-
late its outcomes. Interestingly, while levels of strategyproofness-understanding are
similar under both descriptions of DA, we see very high levels of strategyproofness-
understanding under a less-complex, stripped-down menu description that omits the
details of how the menu is calculated. This stripped-down menu description—which
relays only strategyproofness—yields levels of strategyproofness-understanding well
above a zero-information treatment benchmark, and even higher than a description re-
laying strategyproofness that is inspired by textbook definitions of strategyproofness.
For real-world descriptions of DA, this may suggest complementing Description 1 with
a stripped-down summary focusing on the properties important for strategyproof-

ness.>?!

7 Discussion

Strategyproofness has long been proposed as a way to make mechanisms fair by
leveling the playing field for players who do not strategize well (Pathak and Sonmez,
2008). We warmly embrace this agenda. However, we observe that if participants
do not all understand that the mechanism is strategyproof, then disparities may
remain. Menu descriptions may improve this understanding. They relay ex ante how
participants’ matches will be calculated while ensuring that strategyproofness follows

via a simple argument, offering an alternative to status-quo tactics such as appeals

30For this earlier version, see https://arxiv.org/abs/2209.13148v2.
31Katuscdk and Kittsteiner (2025) show the promise of a description (in their case, the description
in Example 2.8 for TTC) complemented with a stripped-down summary.

23

https://arxiv.org/abs/2209.13148v2

to authority, asserting that the mechanism is strategyproof.*?

While menu descriptions expose strategyproofness, they may obscure other prop-
erties of the mechanism. For example, since Description 1 (our menu description
of DA) relays each applicant’s match separately, it is unclear why this description
always produces a feasible (one-to-one) matching.*® In contrast, in DA’s traditional
description, feasibility of the outcome matching is clear, but strategyproofness is not
exposed. Description 2 (our menu-in-outcome description of TTC) might be used
to simultaneously expose strategyproofness and make feasibility clear. Future em-
pirical work may present TTC to lab participants using our Description 2—or use
this description to explain the strategyproofness of TTC’s traditional description (as
advocated by Morrill and Roth, 2024 for real-world participants)—and measure par-
ticipants’ understanding of both strategyproofness and feasibility.

In this paper and its experimental companion (Gonezarowski, Heffetz, Ishai, and
Thomas, 2024), we suggest that some principled alternative framings of mechanisms
(namely, menu descriptions) might better convey their properties (namely, strate-
gyproofness), and we analyze such framings theoretically and empirically. We view
this general premise—of reasoning about different descriptions (of the same mech-
anism) that expose different properties—as being of potential broader use. Future
theoretical work might consider other properties one may wish to expose (e.g., fair-
ness or optimality) and study opportunities and tradeoffs for exposing these properties

using different descriptions in a variety of mechanisms and settings.

References

A. Abdulkadiroglu, Y.-K. Che, and Y. Yasuda. Resolving conflicting preferences in

school choice: The “Boston mechanism” reconsidered. American Economic Review,

320ne common prior approach taken by clearinghouses is to encourage straightforward reporting
without explaining strategyproofness. For example, Dreyfuss et al. (2022) notes that an informative
video by the National Resident Matching Program (NRMP) was formerly introduced with the text:

Research on the algorithm was the basis for awarding the 2012 Nobel Prize in Economic
Sciences. To make the matching algorithm work best for you, create your rank order
list in order of your true preferences, not how you think you will match.

33While traditional mechanism descriptions require participants to trust the description (as noted
in, e.g., Akbarpour and Li, 2020), the fact that menu descriptions obscure feasibility may influence
some participants’ levels of trust. While our work focuses on understanding, trust may be an
interesting direction for future theoretical or empirical work.

24

101(1):399-410, 2011.

H. Adachi. On a characterization of stable matchings. Fconomics Letters, 68(1):
43-49, 2000.

M. Akbarpour and S. Li. Credible auctions: A trilemma. Econometrica, 88(2):425-
467, 2020. Abstract (“Credible mechanisms”) in Proceedings of the 19th ACM

Conference on Economics and Computation (EC 2018).

S. Alaei, K. Jain, and A. Malekian. Competitive equilibria in two-sided matching
markets with general utility functions. Operations Research, 64(3):638-645, 2016.

I. Ashlagi and Y. A. Gonczarowski. Stable matching mechanisms are not obviously
strategy-proof. Journal of Economic Theory, 177:405-425, 2018.

I. Ashlagi, Y. Kanoria, and J. D. Leshno. Unbalanced random matching markets:
The stark effect of competition. Journal of Political Economy, 125(1):69 — 98, 2017.
Abstract in Proceedings of the 14th ACM Conference on Electronic Commerce (EC
2013).

E. M. Azevedo and E. Budish. Strategy-proofness in the large. The Review of Eco-
nomic Studies, 86(1):81-116, 2019.

E. M. Azevedo and J. D. Leshno. A supply and demand framework for two-sided
matching markets. Journal of Political Economy, 124(5):1235-1268, 2016.

M. Babaioff, Y. A. Gonczarowski, and N. Nisan. The menu-size complexity of revenue
approximation. Games and Fconomic Behavior, 134:281-307, 2022. Extended
abstract in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing (STOC 2017).

M. Balinski and T. Sonmez. A tale of two mechanisms: student placement. Journal
of Economic theory, 84(1):73-94, 1999.

S. Barbera, H. Sonnenschein, and L. Zhou. Voting by committees. Econometrica:
Journal of the Econometric Society, pages 595-609, 1991.

Y. Blum, A. E. Roth, and U. G. Rothblum. Vacancy chains and equilibration in
senior-level labor markets. Journal of Economic theory, 76(2):362-411, 1997.

25

[. B6 and R. Hakimov. Pick-an-object mechanisms. Management Science, 2023.

T. Borgers and J. Li. Strategically simple mechanisms. Econometrica, 87(6):2003—
2035, 2019.

S. Branzei and A. D. Procaccia. Verifiably truthful mechanisms. In Proceedings of
the 6th Conference on Innovations in Theoretical Computer Science (ITCS), page
297-306, 2015.

Y. Breitmoser and S. Schweighofer-Kodritsch. Obviousness around the clock. Ezper-
imental Economics, 25:483-513, 2022.

L. Cai and C. Thomas. Representing all stable matchings by walking a maximal
chain. Mimeo, 2019.

L. Cai and C. Thomas. The short-side advantage in random matching markets.
In Proceedings of the 5th SIAM Symposium on Simplicity in Algorithms (SOSA),
pages 257267, 2022.

G. Carroll. A general equivalence theorem for allocation of indivisible objects. Journal
of Mathematical Economics, 51:163-177, 2014.

Y. Chen and M. Moller. Regret-free truth-telling in school choice with consent.
Theoretical Economics, 19(2), May 2024.

C. Daskalakis, A. Deckelbaum, and C. Tzamos. Strong duality for a multiple-good
monopolist. Econometrica, 85(3):735-767, 2017.

S. Dobzinski. Computational efficiency requires simple taxation. In Proceedings of
the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2016.

S. Dobzinski, S. Ron, and J. Vondrédk. On the hardness of dominant strategy mech-
anism design. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 690-703, 2022.

B. Dreyfuss, O. Heffetz, and M. Rabin. Expectations-based loss aversion may help
explain seemingly dominated choices in strategy-proof mechanisms. American Eco-
nomic Journal: Microeconomics, 14(4):515-555, 2022.

26

E. L. Dubins and A. D. Freedman. Machiavelli and the Gale-Shapley algorithm
American Mathematical Monthly, 88:485-494, 1981.

M. A. Fernandez. Deferred acceptance and regret-free truth-telling. Mimeo, 2020.

D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9-14, 1962.

D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11(3):223-232, 1985.

L. Golowich and S. Li. On the computational properties of obviously strategy-proof
mechanisms. Mimeo, 2022.

Y. A. Gonczarowski. Manipulation of stable matchings using minimal blacklists.

In Proceedings of the 15th ACM Conference on Economics and Computation (EC
2014), page 449, 2014.

Y. A. Gonczarowski. Bounding the menu-size of approximately optimal auctions
via optimal-transport duality. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 123-131, 2018.

Y. A. Gonczarowski and C. Thomas. Structural complexities of matching mecha-

nisms. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing
(STOC), pages 455-466, 2024.

Y. A. Gonczarowski, O. Heffetz, G. Ishai, and C. Thomas. Describing deferred ac-

ceptance and strategyproofness to participants: Experimental analysis. NBER
Working Paper 33020, 2024.

F. Gul and E. Stacchetti. The english auction with differentiated commodities. Jour-
nal of Economic theory, 92(1):66-95, 2000.

D. Gusfield and R. W. Irving. The stable marriage problem: structure and algorithms.
MIT Press, 1989.

R. Hakimov and D. Kiibler. Experiments on centralized school choice and college
admissions: A survey. FEzxperimental Economics, 24:434-488, 2021.

27

P. J. Hammond. Straightforward individual incentive compatibility in large
economies. Review of Economic Studies, 46(2):263-282, 1979.

S. Hart and N. Nisan. Approximate revenue maximization with multiple items. Jour-
nal of Economic Theory, 172:313-347, 2017. Abstract in Proceedings of the 13th
ACM Conference on Electronic Commerce (EC 2012).

S. Hart and N. Nisan. Selling multiple correlated goods: Revenue maximization and
menu-size complexity. Journal of Economic Theory, 183:991-1029, 2019. Abstract
(“The menu-size complexity of auctions”) in Proceedings of the 14th ACM Con-

ference on Electronic Commerce (EC 2013).

J. W. Hatfield and P. R. Milgrom. Matching with contracts. American Economic
Review, 95(4):913-935, 2005.

N. Immorlica and M. Mahdian. Marriage, honesty, and stability. In Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
53-62, 2005.

N. Immorlica, J. Leshno, I. Lo, and B. Lucier. Information acquisition in matching

markets: The role of price discovery. Mimeo, 2020.

P. Katuscak and T. Kittsteiner. Strategy-proofness made simpler. Forthcoming in

Management Science, 2025.

J. D. Leshno and I. Lo. The cutoff structure of top trading cycles in school choice.
Review of Economic Studies, 88(4):1582-1623, 2021.

S. Li. Obviously strategy-proof mechanisms. American Economic Review, 107(11):

3257-87, 2017.

M. Luflade. The value of information in centralized school choice systems. Mimeo,
2017.

A. Mackenzie and Y. Zhou. Menu mechanisms. Journal of Economic Theory, 204:
105511, 2022.

P. Mandal and S. Roy. Obviously strategy-proof implementation of assignment rules:

A new characterization. International Economic Review, 63(1):261-290, 2021.

28

D. G. McVitie and L. B. Wilson. The stable marriage problem. Communications of
the ACM, 14(7), 1971.

V. Meisner and J. von Wangenheim. Loss aversion in strategy-proof school-choice
mechanisms. Journal of Economic Theory, 207:105588, 2023.

T. Mennle and S. Seuken. Partial strategyproofness: Relaxing strategyproofness for

the random assignment problem. Journal of Economic Theory, 191:105144, 2021.

T. Morrill and A. E. Roth. Top trading cycles. Journal of Mathematical Economics,
112:102984, 2024.

NMS. The matching algorithm - explained, 2020. URL https://www.youtube.com/
watch?v=kVTwXNawpbk. Video produced by National Matching Services.

P. A. Pathak and T. Sonmez. Leveling the playing field: Sincere and sophisticated
players in the boston mechanism. American Economic Review, 98(4):1636-52, 2008.

M. Pycia and P. Troyan. A theory of simplicity in games and mechanism design.
Econometrica, 2023. Abstract (“Obvious dominance and random priority”) in Pro-
ceedings of the 20th ACM Conference on Economics and Computation (EC 2019).

A. Rees-Jones and R. Shorrer. Behavioral economics in education market design: A
forward-looking review. Journal of Political Economy Microeconomics, 1(3):557—
613, 2023.

A. E. Roth. The economics of matching: stability and incentives. Mathematics of
Operations Research, 7(4):617-628, 1982.

A. E. Roth. On the allocation of residents to rural hospitals: A general property of
two-sided matching markets. Econometrica, 54(2):425-427, 1986.

A. E. Roth and A. Postlewaite. Weak versus strong domination in a market with
indivisible goods. Journal of Mathematical Economics, 4(2):131-137, 1977.

R. R. Saxena, A. Schvartzman, and S. M. Weinberg. The menu complexity of “one-
and-a-half-dimensional” mechanism design. In Proceedings of the 29th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2026-2035, 2018.

29

https://www.youtube.com/watch?v=kVTwXNawpbk
https://www.youtube.com/watch?v=kVTwXNawpbk

I. Segal. The communication requirements of social choice rules and supporting budget
sets. Journal of Economic Theory, 136(1):341-378, 2007.

L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical Eco-
nomics, 1(1):23-37, 1974.

C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-shapley stable marriage problem
revisited: Strategic issues and applications. Management Science, 47(9):1252-1267,
2001.

C. Thomas. Classification of priorities such that deferred acceptance is OSP imple-
mentable. In Proceedings of the 22nd ACM Conference on Economics and Compu-
tation (EC 2021), page 860, 2021.

P. Troyan. Obviously strategy-proof implementation of top trading cycles. Interna-
tional Economic Review, 60(3):1249-1261, 2019.

P. Troyan and T. Morrill. Obvious manipulations. Journal of Economic Theory, 185:
104970, 2020.

L. B. Wilson. An analysis of the stable marriage assignment algorithm. BIT Numerical
Mathematics, 12(4):569-575, Dec 1972.

30

Appendix

A Proof of Main Impossibility Theorem

In this appendix, we prove Theorem 5.3.

Theorem 5.3 considers applicant-proposing menu-in-outcome descriptions of DA.
Recall that such descriptions must—while reading applicants’ preferences only once
in favorite-to-least-favorite order—calculate i’s menu using > _;, and then proceed to
calculate the full matching using (>;, =_;). The theorem states that such descriptions
require quadratic memory.

To prove the theorem, we construct a large set of applicant preference profiles that,
intuitively speaking, has two properties: (A) to calculate i’s menu given preferences in
this set, essentially the full preference list of every applicant other than ¢ must be read
in its entirety, and (B) to calculate the final matching, essentially all this information
must be remembered in its entirety. These properties ensure that the description must
store the entire preference profile in its memory. There are many preference profiles

in our construction, which implies the description has a high memory requirement.

Proof of Theorem 5.3. Fix an applicant ¢ and let D be any applicant-proposing menu-
in-outcome description of DA for 7.

We now describe a set S C 7_; of possible inputs to DA, illustrated in Figure A.1,
which allows us to establish property (B) discussed above (intuitively, by allowing i’s
possible reports to affect the outcome matching in a different way for each different
—_;€ §). For simplicity, let the number n of non-i applicants and institutions be a
multiple of 4. Other than i, there are applicants and institutions d;, d}, hy, b; for each
Jj € {1,...,n/2}. There are n/2 total “cycles” containing two applicants and two
institutions each. Cycle j has applicants d; and d;- and institutions h; and h;-. The
cycles are divided into two classes, “top” cycles (for j € {1,...,n/4}) and “bottom”
cycles (for j € {n/4+1,...,n/2}).

The institutions’ priorities are fixed, and defined as follows:

For top cycles (j < n/4): For bottom cycles (j > n/4):
hji d;}Z}d] hji d;>d1>-d2>->-dn/4>-d]

Al

For the top cycle applicants (d; with j < n/4), the preferences vary (in a way we will

specify momentarily). Other applicants’ preferences are fixed, as follows:

For bottom cycles (j > n/4): dj: hj=h.
For all cycles (j € {1,...,n/2}): d;: W= hy.
dy dy dy Figure A.1: Illustration of the
B, B, Bs construction used to prove The-
orem 5.3

Notes: Dark nodes represent d; or h;
for some j, and grey nodes represent
dj or h;. The green arrows directed
outwards from a top cycle d; represent
hy hs he the sets B;.

Let S denote the set of preference profiles where we additionally have:
For top cycles (j < n/4): dj hj = B; = hj,

where B; is an arbitrary subset of {hj | K > n/4}, ranked in any fixed order (say,
increasing order of j). Any such collection of (B]);Li i defines a distinct preference
profile in S. Note that |S| = 2(*/4". See Figure A.1 for an illustration.

We additionally define a set of inputs &’ O S, which allow us to establish property
(A) discussed above (intuitively, by making i’s menu depend on the final institution
ranked above () on other applicants’ lists). Specifically, let S’ denote the set containing
every element of S, and additionally any top cycle applicant d; (j < n/4) may or may
not truncate the final institution A off her list, marking it as unacceptable. In other

words, in addition to the sets (BJ)Z Li, an element of &’ is defined by bits (cj);ﬁ,

A2

such that, for each top cycle j (j < n/4):!

When Cj = 0: dj : hj — Bj - h;
When Cj =1: dj : hj — Bj.

We now proceed to prove the two crucial properties of DA, and the description
D, when run on this family of preference profiles. The following lemmas formalize
properties (A) and (B) discussed above, showing (respectively) that D must essen-
tially read all of the preferences in >_;€ &’ in order to calculate i’s menu, and (before
knowing >;) must remember essentially all of this information in order to calculate

the outcome matching DA(>;, >_;).

Lemma A.1. Consider a preference profile in S'. For each top cycle j (with j < n/4),
we have that h; is in applicant i’s menu in DA if and only if d; does not rank I/, (i.e.,
c;j = 1). Hence, to correctly calculate i’s menu, description D must read the entire

preference list of each such d; (up to the position of h’).

To prove this lemma, consider the execution of the APDA algorithm when i sub-
mits a list containing only h;. First, d; is rejected, then she proposes to every insti-
tution hy, € B;. This “rotates” the bottom cycle containing hy; in more detail, hy
will accept the proposal from d;, then dj, will propose to hj, then dj with propose to
hi, and d; will be rejected from hy. This will occur for every hy € B;, so d; will not
match to any hy with k € {n/4+1,...,n/2}.

Finally, after getting rejected from each institution in B;, applicant d; may or
may not propose to h;-, depending on the bit ¢;. If she does not, then d, remains
matched to h; and in this case h; is on ’s menu. If she does, then h; will reject d,
who will propose to h;, which will reject 7. So ¢ will go unmatched, and thus in this
case h; is not on 4’s menu.

The final sentence of the lemma then follows from the fact that D is an applicant-

proposing and must calculate i’s menu. This proves Lemma A.1.

Lemma A.2. Fach distinct preference profile »-_;€ S induces a distinct function

DA(-,=_;) + Ti — A from applicant i’s report to outcome matchings. Hence, to

I This collection of preferences can also be constructed with full preference lists by adding some
unmatched institution hy to represent truncating d;’s list.

A3

correctly calculate the outcome matching, the description D must—across all states

where it finishes calculating i’s menu—have at least one state for each element of S.

To prove this lemma, consider two distinct preference profiles in S, one profile

nﬁ 4, and the other profile =’ 714.
J=1 t J=1

Without loss of generality, there is some j and k such that hy € B; \ Bj. Suppose

>_; corresponding to (Bj) corresponding to (B;)
now that ¢’s report >; lists only h;. Then, consider execution of the APDA algorithm
under (>;,>_;) and under (>;,>",). Under >_;, the bottom tier cycle containing
hi, will be “rotated,” i.e. since hy € Bj, the sequence of rejections will cause hy
to match to dj. However, this is not the case under >’ ;, since hj ¢ B;. Thus,
DA(-,>_;) # DA(-,>",).

We now prove the second sentence of the lemma. As argued in Lemma A.1, D
must have read all top cycle applicants’ preferences in order to calculate ¢’s menu.
Moreover, since D is a menu-in-outcome description, it must do so before learning >;.
Hence, to calculate the outcome matching correctly at the end, D must remember
the entirety of (Bj)ji Zi. This proves Lemma A.2.

We now prove Theorem 5.3. Together, Lemma A.1 and Lemma A.2 show that
when D has just calculated the menu of applicant ¢, the description must be in a
distinct state for each distinct >_;€ §. There is one such >_; for each possible way
of assigning the sets B; C {hy | k > n/4} for all j € {1,...,n/4}. For each such
4, there are 2/* ways to assign Bj, and hence there are (2"/4)n/4 = 2(n/4)? = 99(n*)
possible ways to set this collection (Bj);i A;. Thus, the description requires at least

this many states, and thus requires memory €2(n?). This finishes the proof. O

B Additional Proofs and Remarks

In this appendix, we provide additional supplemental proofs and remarks omitted
from the main text.

We start by proving Theorem 3.2, which shows that Description 1 is a menu
description of DA, without assuming the strategyproofness of DA. This provide an

alternative, potentially-instructive approach for proving DA’s strategyproofness.

Alternative proof of Theorem 3.2. We show that, for any applicant ¢, Description 1
correctly calculates i’s match in DA. To this end, fix the priorities of institutions and
preferences == (>;, =_;) of all applicants. Let h, = APDA;(>) denote the match of

A4

1 according to applicant-proposing DA. Our goal is to show that h, is the outcome
of Description 1. Hence, we must show h, is the »;-favorite institution in the set
containing (1) the “outside option” of going unmatched, and (2) all institutions A such
that h prefers i to IPDA,(>_;) (the match of h according to institution-proposing
DA in the market without 7).

Let () denote the empty preference report of i (i.e., the report marking all institu-
tions as unacceptable). Observe that IPDA(>_;) and IPDA((), > _;) match applicants
(other than i) in exactly the same way, and furthermore, the institutions h that prefer
i to IPDA,(~_;) are exactly those that propose to ¢ during the calculation of IPDA((,

>—_;). Therefore, it suffices to prove:
(I) If h, # 0, then then h, proposes to i during IPDA((), =_;).
(IT) Applicant i gets no proposal in IPDA(), > _;) that is >;-preferred to h.

We start by proving (I). Assume that h, # (). Let {h.} denote the preference list of
i ranking only h, (i.e., marking all other institutions as unacceptable). Observe that
APDA(>;,>_;) is also stable under preferences ({h.}, >_;). Thus, by the Lone Wolf
/ Rural Hospitals Theorem (Theorem C.6), since i is matched in APDA(>;, >=_;), she
must be matched in IPDA({h.}, =_;) as well. Thus, IPDA({h.},>_i;) = hs. Since
IPDA({h.},>_;) and IPDA((, > _;) coincide until h, proposes to i, we conclude that
h, must propose to i during IPDA((, =_;), proving (I).

We now prove (II). Let T" denote i’s preference list, truncated at and below h*, i.e.,
the report listing only institutions that ¢ strictly prefers to A*. Observe that ¢ must
go unmatched in APDA(T, > _;), since every proposal by i before h, was rejected in
APDA(>;,>_;). Hence, by the Lone Wolf / Rural Hospitals Theorem (Theorem C.6),
i goes unmatched in IPDA(T,>_;). Now, since i goes unmatched in IPDA(T, > _;),
we see that i does not receive any proposal that is »;-preferred to h, in IPDA(0, > _;),
proving (II).

We have shown that the outcome calculated at the end of Step (2) of Description 1
is i’s outcome in DA. Moreover, observe that the set calculated in Step (1) of is
independent of i’s report. Hence, DA is strategyproof (by the same proof outline that
applies to every menu description). Moreover, as observed in Footnote 10, the menu
is the only set M of institutions that is independent of i’s report such that ¢ always
receives her favorite institution in M. Hence, the set in Step (1) must be i’s menu,

and Description 1 is a menu description of DA. O

A5

Remark B.1. As noted in Section 3, Theorem 3.2 extends to many-to-one markets
with substitutable priorities. To quickly see why this extension holds in the spe-
cial case in which institutions have responsive preferences (i.e., the special case in
which each institution has a master preference order and a capacity), fix a many-to-
one market, and following a standard approach, consider a one-to-one market where
each institution from the original market is split into “independent copies.” That is,
the number of copies of each institution equals the capacity of the institution, each
“copied” institution has the same preference list as the original institution, and each
applicant ranks all the copies of the institution (in any order) in the same way she
ranked the original institution. Ignoring the artificial difference between copies of the
same institution, the run of applicant-proposing DA is equivalent under these two
markets. Thus, an applicant’s menu is equivalent under both markets, and so by
Theorem 3.2, a menu description for the many-to-one market can be given through
institution-proposing DA under the corresponding one-to-one market, which in turn
is equivalent to institution-proposing DA under the original market (where at each
step, each institution proposes to a number of applicants up to its capacity). The

only change in Description 1 in this case would be replacing the condition i >, u_;(h)
with 3d" € p_;(h) 1 i >, d'.

Remark B.2. As additionally noted in Section 3, Theorem 3.2 also extends to many-
to-one markets with contracts in which the institutions have substitutable preferences
that satisfy the law of aggregate demand (the conditions under which Hatfield and
Milgrom (2005) prove that the strategyproofness of applicant-proposing DA and the
rural hospitals theorem hold). Description A.1 gives a menu description of DA in
this environment, which generalizes Description 1 as follows: (1) Description A.1 uses
the generalized Gale-Shapley algorithm of Hatfield and Milgrom (2005) starting from
(0, X) (where X is the set of all possible contracts) to calculate the institution-optimal
stable outcome without ¢ to get a matching u_;. (2) A given contract ¢ = (i, h,c)
(i.e., an (applicant, institution, term) tuple) is on i’s menu if and only if h would
choose (i, h, ¢) if given a choice from the set containing (i,c) and its matches in p_;
(in the notation of Hatfield and Milgrom (2005), ¢ € C(u_;(h) U{c})). Under this
modification, each step of the proof of Theorem 3.2 in Section 3 holds by a completely

analogous argument for this market.

A6

Description A.1 A menu description for applicant ¢ of the applicant-optimal stable
matching in a many-to-one market with contracts

(1) Calculate the institution-optimal stable matching with applicant i removed from
the market using the generalized Gale-Shapley algorithm of Hatfield and Milgrom
(2005). Call the resulting matching ;. Let M be the set of contracts ¢ = (i, h, t)
involving applicant ¢ such that ¢ € Cp,(u_;(h) U {c}).

(2) Match i to i’s highest-ranked contract in M.

Remark B.3. In this remark, we show how Theorem 3.2, which characterizes the
menu in DA in terms of Description 1, can be used to prove results from Ashlagi
et al. (2017) via arguments similar to Cai and Thomas (2022). Consider a random-
ized market with n 4+ 1 applicants and n institutions, where such that each appli-
cant /institution draws a full-length preference list uniformly at random, and let p be
the result of (applicant-optimal) DA with these preferences. We prove that the ex-
pected rank each applicant receives on their preference list (formally, the expectation
of {h : h =4 u(d)}| for any d) is at least (1 — €)n/log(n) for any € > 0 and large
enough n.

Fix an applicant d,, and consider calculating d,’s menu using Description 1 in
this market. This is equivalent to considering IPDA in a market where d, rejects
all proposals, and setting d,’s menu to consist of all proposals she receives. By the
principle of deferred decisions, this run of IPDA can be constructed by letting each
institution A proposes to a uniformly random applicant (among those h has not yet
proposed to) each time she proposes. Observe that this run of IPDA will terminate
as soon as each of the n applicants other than d, receives a proposal. Thus (much like
the standard case of n applicants and n institutions in APDA Wilson (1972)), the
total number of proposals made in this run of IPDA is stochastically dominated by
a coupon collector random variable. Thus, intuitively, the total number of proposals
will be nlog(n), and log(n) of these will go to d. in expectation, and d,’s top choice
out of these log(n) proposals will be their n/log(n)th ranked choice overall.

Formally, let Y denote the number of proposals d, receives, and let Y denote the
same quantity in a market where each institution makes each proposal completely
uniformly at random (without regard to prior proposals); it follows that Y is stochas-

tically dominated by Y. Let Z; denote the total number of proposals between the

AT

(¢ — 1)th and ith distinct applicant in D \ {d.} receiving a proposal (in the market
with repeated proposals). The expected value of Z; is exactly (n+1)/(n+1—1),
and each of these Z; proposals (except for the final one) has a 1/i probability of going

to d,. Thus, we have

n

_ 1/ n+1 ~ 1 i
EY|<E[Y]= -2 1))=Y (——)=m,<1 1.
V1= B[] ;z’(rH—l—i) ;i(n—i—l—i) < log(n) +

Now, let R = |{h : h =4 h.}|, where h, is d,’s top-ranked proposal received (i.e., d.’s
match in APDA). One can show that, conditioned on Y = y, we have the expected
value of R exactly equal to (n+1)/(y + 1) (see for example (Cai and Thomas, 2022,
Claim A.1)). Thus, by Jensen’s inequality, we have

E[R] = E

y~Y

n+1 n+1 n+1 n
{ }ZE > (1—¢)

vl ZEN]+1° logn) 12 = Tog (1)

for any € > 0 and large enough n, as desired.

Remark B.4. We now formally show that, unlike SD, a description of TTC must be
specialized to individual applicants in order to contain a menu description for them.
Concretely, we show that any outcome description of TTC cannot contain a menu
description for two applicants (where, in contrast, our Description 2 contains a menu
description for exactly one student).

To do this, it suffices to construct an instance containing two applicants d; and
ds such that each of their menus depends on the other. For example, consider an
instance where h; : d; > d3_; and d; : hs_; = h; for i € {1,2}. Under this instance,
for each i € {1,2}, institution hs_; is on d;’s menu, but if applicant d3_; changed her
preference list, this would no longer be true. Hence, a description cannot calculate

either applicant’s menu before the description queries the other applicant’s type.

Remark B.5. We now show that in (finite-market) DA, budget sets and menus are
different sets; moreover, we show that neither set includes the other. For a fixed profile
of preferences and priorities, denote an applicant i’s budget set B(i) = {hli =, u(i)},
where p is the outcome of DA. Let M (i) = M. _. denote i’s menu.

Now, consider the market with institutions hq, ho, hs, and hy, and applicants

A8

dy,ds, d3, and dy. Let the preferences and priorities be as follows:

hi:dy =dy > ... dy:hy = ...
ho:dy>d3>dy>=dy > ... do:hy > hg > hy = ...
hs:ds > ... ds:hg ...
hy:dy>dy > ... dy:hy = he = ...

Then, one can check that DA pairs h; to d; for each ¢ = 1,...,4, and that hy €
B(ds) \ M(ds), and also hy € M(dy) \ B(dy). Thus, neither the menu nor the budget
set contain the other. Moreover, the relationship between the two sets does not seem
to be restricted in a straightforward way based on priorities and the outcome of DA:
despite the fact that ds >p, d2, we have hy ¢ M(d3); despite dy <p, d2, we have
hy € M(dy).

Remark B.6. We now show that in DA, an applicant’s set of stable partners is a
(possibly strict) subset of her menu. For a given profile of preferences and priorities,
let S(i) denote the set of stable partners of applicant i, and let M (i) denote her menu.
We begin by showing that M (i) # S(i). Consider any instance with two institutions
h1, ho which both rank i above all other applicants. Both h; and hs must be in i’s
menu. However, if ¢ ranks h; above all other institutions, then h; is i’s unique stable
partner; thus hy € M () \ S(4).

We now show that S(i) C M (i). Suppose the profile of preferences and priorities
is P. Consider any h € S(i), and let u be a stable matching with u(i) = h. Then, let
P denote modifying P by having ¢ submit a list which ranks only h. Then, observe
that p is also stable under P. Thus, by the Rural Hospital Theorem (Theorem C.6),
1 and h must be matched in every stable matching under }3, in particular, in DA(]B).
Thus, h € M (i), and S(i) C M(1).

C Proofs of Known Results

In this appendix, we recall classically-known lemmas on DA and TTC that are needed
for our paper. We also provide full proofs, making all the arguments in this paper

self-contained.

A9

C.1 Known Results for DA and Stable Matchings

We now provide properties of DA and stable matchings. Let D denote the set of
applicants, and H the set of institutions. Recall that a matching p is stable if p(a) =,
() for all @ € DU H, and moreover there is no pair d € D, h € H such that h =4 u(h)
and d >, u(d).

Lemma C.1 (Gale and Shapley, 1962). The outcome of DA is a stable matching.

Proof. Consider running the traditional description of DA (Definition 2.3) on some
profile of preferences (and priorities), and let the output matching be . Consider a
pair d € D, h € H which is unmatched in p. Suppose for contradiction h >4 u(d)
and d >p p(h). In the DA algorithm, d would propose to h before p(d). However,
it’s easy to observe from the traditional description of DA that once an institution
is proposed to, they remain matched and can only increase their priority for their
match. This contradicts the fact that A was eventually matched to pu(h). O

Note that Lemma C.1 also proves that at least one stable matching always ex-
ists. Next, we show that DA (i.e., the matching output by the APDA algorithm) is

(simultaniously) the best stable matching for all applicants.

Lemma C.2 (Gale and Shapley, 1962). If an applicant d € D is ever rejected by an
institution h € H during some run of the APDA algorithm, then no stable matching

can pair d to h.

Proof. Let p be any matching, not necessarily stable. We will show that if h rejects
w(h) at any step of DA, then p is not stable.

Consider the first time during in the run of APDA where such a rejection occurred.
In particular, let h reject d def p(h) in favor of d # d (either because d proposed to h,
or because d was already matched to h and d proposed). We have d >n d. We have
,u(c?) # h, simply because y is a matching. Because this is the first time an applicant
has been rejected by her match in g, d has not yet proposed to u(c?) This means

h =5 u(d), and p is not stable.

Thus, no institution can ever reject a stable partner in APDA.]
The following corollaries are immediate:

Corollary C.3 (Gale and Shapley, 1962). In the outcome of DA, every applicant is

matched to her favorite stable partner.

A10

Corollary C.4 (Dubins and Freedman, 1981). The matching output by the traditional

DA algorithm is independent of the order in which applicants are selected to propose.
A phenomenon dual to Corollary C.3 occurs for the institutions:

Lemma C.5 (McVitie and Wilson, 1971). In the outcome of DA, every h € H is

paired to her least-favorite stable partner.

Proof. Let d € D and h € H be paired by applicant-proposing deferred acceptance.
Let p be any stable matching which does not pair d and h. We must have h >4 u(d),
because h is the d’s favorite stable partner. If d >, u(h), then p is not stable. Thus,
we must in fact have u(h) =, d. O

Finally, we show that the set of matched agents must be the same in each stable

matching.

Theorem C.6 (Lone Wolf / Rural Hospitals Theorem, Roth, 1986). The set of

unmatched agents is the same in every stable matching.

Proof. Consider any stable matching p in which applicants D* and institutions H*
are matched, and let D° and H® be matched in DA. By Corollary C.3, we know
that for all d € D", the match of d can only improve in DA; in particular, d is still
matched in DA, and thus D* C D°. Similarly, Lemma C.5 implies that each agent in

H? is matched in every stable outcome, so H° C H*. But then, since the matching

is one-to-one, we have |D°| = |H°| as well as |D°| > |D*| = |H*| > |H"|, so the same
number of agents (on each side) are matched in x4 and in DA. Thus, D° = D* and
H° = H*. O

Additionally, DA is strategyproof. This follows from our Theorem 3.2. While
our proof of Theorem 3.2 in Section 3 relies on DA’s strategyproofness, our proof
of Theorem 3.2 in Appendix B only uses properties proven above in this appendix.

Hence, these arguments show that DA is strategyproof from first-principles.

Theorem C.7 (Roth, 1982; Dubins and Freedman, 1981). DA is strategyproof for
the applicants.

A1l

C.2 Known Result for TTC

We now prove that TTC is independent of the order in which the steps are chosen
in the traditional description (analogous to Corollary C.4 for DA). This will follow
from the observation that cycles in the pointing graph of the traditional description
of TTC must always be disjoint, since the pointing graph has out-degree 1. See also
Carroll (2014); Morrill and Roth (2024) for similar contemporary proofs.

Proposition C.8 (Follows from Shapley and Scarf, 1974; Roth and Postlewaite,
1977). The TTC algorithm is independent of the order in which cycles are chosen

and eliminated.

Proof. Fix a profile of priorities and preferences. Define the elimination graph G as
follows. The vertices of G are the set of all partial matchings between applicants
and institutions. There is an edge p; — po in G whenever ps differs from py by
the elimination of exactly one cycle, as defined in Definition 2.2, under the given
preferences and priorities. Formally, this is defined as follows. Fix p;, and consider
the pointing graph B = B,,, given i, to be the bipartite graph formed by applicants
and institutions who are unmatched in p;, where each agent points to her top-ranked
agent on the other side who is unmatched in p; (if any such agents on the other
side remain). Then, we have an edge 1 — s whenever there exists a cycle in B
such that, if py is modified such that every applicant in the cycle is matched to the
institution she points to, then the resulting matching is ps. When p; — ps in G,
and the cycle C'in B, represents the difference between p9 and 1, we say that C'is
avatlable in puy.

Now, define a elimination sequence T to be any sequence T’ = 1 — g — ... — g
of adjacent edges in GG, such that p; is the empty matching which pairs no agents,
and T is of maximal possible length. Observe that the outcome of TTC is defined to
be the final matching pu; of an elimination sequence.

We make the following observations regarding any elimination sequence 7' = u; —

™

e For any fixed pointing graph B,,,, all of the cycles C' in B,,, are disjoint. This

follows because the pointing graph has out-degree 1.

e If C is available in some pu,., then there exists a z > x such that C' is available in

every subsequent p,, for <y < z. This follows from the previous observation,

A2

since for each p, — p,41 with x < y < 2z with y increasing inductively, the
vertices in the cycle C' are not changed as we switch from p, to j,11, unless
the cycle C itself is eliminated. Thus, in particular, u, differs from u, ; by the

elimination of C.

e Suppose that in T, cycle C'; is available in some pu,, but Cy # C) eliminated
in p; to get py.1. Then, there exists another elimination sequence 7" = u; —
Pa —> [y —> ... — [y, which agrees with 7" up until p,, but C) is eliminated
at g, to get pi_,, and which ends in the same final matching pj = j. To
show this, we construct 7" as follows. After eliminating C at p, to get ul,_ q,
follow the same order of eliminating cycles as in 7" until cycle C} is eliminated
in T—i.e., go from p;, ., to ju,,, via the same cycle used to go from p, to fiy41,
for each y > x such that C} is not eliminated in p, — gy in 7. (All such
cycles must be available as needed in 7", since before C'; was eliminated in T,
none of these cycles could have involved agents in C in any way.) At some
point, C| must be eliminated in 7'; say in g, — p,41. After this point, the
elimination sequence 7" will from that point onward agree with T, i.e., f, = .,

for w >z + 1.

Now, suppose for contradiction that there are two elimination orderings 7 and
T, which produce different final matchings, and additionally suppose among all such
pairs, the index j > 1 where T} and T first disagree is as large as possible. Then,
at index j, two cycles (' and C5 are eliminated in 77 and T, respectively. Then,
by final observation listed above, we can consider the elimination sequence 7, that
disagrees with T} at least one step later than j (by eliminated C), but has the same
final matching as T. This contradicts the assumption that j was as large as possible.

This proves that all elimination sequences must produce the same final matching,
which is the outcome of TTC. This proves the result. n

A13

Supplemental Material

S Mathematical Model of Algorithms

In this appendix, we define from first-principles a mathematical model of descriptions
of mechanisms which can express all our results.

We introduce the notion of an extensive-form description. For generality, we
state this definition in terms of a general mechanism design environment with play-
ers 1,...,n, type spaces Tq,...,7T,, and outcome space A. At a technical level, an
extensive-form description is similar to an extensive-form mechanism, except that
different branches may “merge,” i.e., the underlying game tree is actually a directed
acyclic graph (DAG).! Note, however, that the interpretation is different from that
of an extensive-form mechanism: Rather than modeling an interactive process where
the players may act multiple times, an extensive-form description spells out the steps
used to calculate some result by iteratively querying the directly-reported types of
the players.

We formally define three types of extensive-form descriptions, corresponding to
our three description outlines: outcome descriptions, menu descriptions, and menu-

in-outcome descriptions.
Definition S.1 (Extensive-Form Descriptions).

e An extensive-form description in some environment is defined by a directed
graph on some set of vertices V.2 There is a (single) root vertex s € V, and the
vertices of V' are organized into layers j = 1,..., L such that each edge goes
between layer j and j + 1 for some j. For a vertex v, let S(v) denote the edges
outgoing from v. Each vertex v with out-degree at least 2 is associated with
some player 7, whom the vertex is said to query, and some transition function
l, : T; — S(v) from types of player i to edges outgoing from v. (It will be
convenient to also allow vertices with out-degree 1, which are not associated

with any player.) For each type profile (ti,...,t,), the evaluation path on

L Alternatively, extensive-form descriptions can be viewed as finite automata where state transi-
tions are given by querying the types of players.

2Formally, a directed graph G on vertices V is some set of ordered pairs G C V x V. An element
(v,w) € G is called an edge from v to w. A source (resp., sink) vertex is any v where there exists
no vertex w with an edge from w to v (resp., from v to w).

S.1

(t1,...,tn) € T1 X ... x T, is defined as follows: Start in the root vertex s, and
whenever reaching any non-terminal vertex v that queries a player ¢ and has

transition function ¢, follow the edge ¢, (t;).

e An extensive-form outcome description of a mechanism f is an extensive-form
description in which each terminal vertex is labeled by an outcome, such that for
each type profile (¢1,...,t,) € T1 X Tp, the terminal vertex reached by following
the evaluation path on t € T is labeled by the outcome f(t1,...,t,).

e An extensive-form menu description of a social choice function f for player 4
is an extensive-form description with k& + 1 layers, such that (a) each vertex
preceding layer k queries some player other than i, (b) each vertex v in layer k
queries player 7 and is labeled by some set M (v) C A;, such that if v is on the
evaluation path on a type profile (t1,...,t,) € T; X T, then M(v) = M,_, is
the menu of player i with respect to t_; in f, and (c) each (terminal) vertex v
in the final layer k£ + 1 is labeled by an outcome for player i,® such that if v is
reached by following the evaluation path on a type profile (t1,...,t,), then v is
labeled by i’s outcome in f(tq,...,t,).

e An extensive-form menu-in-outcome description of f for player i is an extensive-
form outcome description such that, for some k, the first k£ + 1 layers are an

extensive-form menu description.

For a concrete example of an extensive-form description, we consider a menu
description of a second price auction.* In this mechanism, a bidder’s menu consists
of two options: winning the item and playing the highest bid placed by any other
bidder, or winning nothing and paying nothing. Thus, a menu description can be

given as follows:

(1) Your “price to win” the item will be set to the highest bid placed by any other
player.

3Formally, in a general mechanism design environment, an outcome of player i (or, an i-outcome)
is a maximal set F of outcomes such that all possible types of player i in 7; view each outcome in
FE as equally desirable.

4While we have not formally defined menus or menu descriptions in non-matching environments,
they naturally generalize by considering the menu of ¢ induced by reports t_; to be the set of i’s
outcomes consistent with £_;.

S.2

(2) If your bid is higher than this “price to win,” then you will win the item and pay

this price. Otherwise, you will win nothing and pay nothing.

An extensive-form description can formalize this menu description by querying
the other bidders one-by-one, while keeping track of only the highest bid placed by

any of them. Figure S.1 provides an illustration.

Figure S.1: An extensive-form

menu description for bidder n in
a second-price auction

Note: The second-to-last layer is la-

beled with bidder n’s menu, abbreviated
win for $0 . .
in the figure by the price she must pay
to win the item.

More broadly, any precise algorithm taking players types as inputs induces an

Bidder 1

~~~ ~~~
Bidder 2 Bidder 3 Bidder n

extensive-form description in a natural way: the vertices in layer j are the possi-
ble states of the algorithm after querying the types of different players altogether
j times. In particular, our positive results (Description 1 and Description 2) corre-
spond to extensive-form descriptions. The definitions of all our simplicity desiderata
(Definition 5.1 and Definition T.11 below) also extend naturally to extensive-form
descriptions. Moreover, the proofs of our impossibility theorems (Theorem 5.3 and
Proposition T.12 below) hold, mutatis mutandis, for the relevant class of extensive
form descriptions.

In addition to providing a self-contained mathematical language for expressing
our results, the definition of an extensive-form description allows us to clarify some
ways in which our impossibility results are strong. Namely, while algorithms are
often required to work for any number of players, our impossibility results hold even
if one can use a separate extensive-form description for each number of players n,
and regardless of the computational complexity of such a description. Relatedly, our
impossibility results follow from direct combinatorial arguments and do not depend

on any complexity-theoretic conjectures such as P # N P.

S.3



T On Additional Descriptions of DA

In this appendix, we present additional findings regarding descriptions of DA. We
examine a broad classification of mechanism descriptions. While we uncover addi-
tional descriptions of DA, we find that all such uncovered descriptions (beyond the
traditional one and Description 1) are unintuitive and convoluted algorithms that are
impractical for real-world use.

To motivate our search for additional descriptions of DA, consider the outline
of menu-in-outcome descriptions, which provided our highly-useful Description 2
for TTC. Our description in Description 2 satisfies applicant-proposing and linear-
memory, that may be regarded as certain formal simplicity properties. Our main im-
possibility theorem (Theorem 5.3) shows that applicant-proposing menu-in-outcome
description of DA must, in some formal sense, be complex; formally, they cannot
be linear-memory. However, this theorem does not give any impossibility result for
menu-in-outcome descriptions of DA which—Ilike our menu description of DA, De-
scription 1—are institution-proposing.® Given this, one might still hope for a useful
institution-proposing menu-in-outcome description of DA, which might yield an al-
ternative outcome description of DA together with a simple proof of its strategyproof-
ness.

Perhaps surprisingly, in Appendix T.3 we construct a new institution-proposing
menu-in-outcome description of DA which is, in fact, linear memory. Unfortunately,
this description is ezxceedingly unintuitive and convoluted. Indeed, as one can see
from the details in Appendix T.3, this description is a highly technical algorithm
that requires careful bookkeeping to maintain its linear-memory. Thus, in contrast
to DA’s traditional description and our Description 1, this algorithm is impractical
for describing DA to real-world participants.

Motivated by the intricacies of the description we uncover in Appendix T.3, in Ap-
pendix T.4, we additionally use an established formal simplicity property to demon-
strate a sense in which institution-proposing menu-in-outcome descriptions of DA
must be convoluted and impractical. Our linear-memory property used in Theo-
rem 5.3 does not suffice for this purpose (since our convoluted descriptions in Ap-

pendix T satisfy this flexible property). Instead, we use the pick-an-object simplicity

5We use the term institution-proposing to mean the definition perfectly analogous to applicant-
proposing (Definition 5.1), in which sides of the market are interchanged.

S.4



desideratum of Bo and Hakimov (2023). We prove that institution-proposing menu-
in-outcome descriptions for DA cannot be pick-an-object.® Briefly and informally,
this means that all such descriptions must learn the match of some applicant d when
making queries which seem unrelated to d, showing a precise sense in which such de-
scriptions cannot be simple. Combined with our main impossibility result (Section 5),
this shows that one-side-proposing menu-in-outcome descriptions of DA cannot (in
appropriate senses) be simple.

More broadly, in pursuit of potentially useful descriptions of DA, we consider
a broad classification of matching mechanism descriptions. We consider applicant-
proposing descriptions (like traditional ones), and institution-proposing descriptions
(like Description 1). We consider our three description outlines: menu descriptions,
outcome descriptions, and menu-in-outcome descriptions. Altogether, this gives six
classes of one-side-proposing descriptions with one of these outlines. In this appendix,
we construct linear-memory descriptions of DA of every class that is not ruled out
by our main impossibility result Theorem 5.3. Unfortunately, all of the additional
descriptions are (like our institution-proposing menu-in-outcome description) exceed-
ingly unintuitive and convoluted algorithms. See Table S.1 for an overview of all our

descriptions and results for DA.

Table S.1: Classification of descriptions of DA

Menu Outcome Menu-in-Outcome
Description Description Description
. . " I ibl ithout
Applicant Unintuitive, convoluted Traditional Impossible (withou

quadratic memory)

proposing algorithm in Appendix T.2. DA algorithm. by Theorem 5.3.
Institution Description 1 Unintuitive, convoluted Unlntultlw'e, convoh%ted

. . . . . . (e.g., not pick-an-object)
proposing in Section 3. algorithm in Appendix T.1.

algorithm in Appendix T.3.

Notes: We consider descriptions which either read preferences in an applicant-proposing manner
or read priorities in an institution-proposing manner. We consider three description outlines: menu
descriptions (conveying strategyproofness), outcome descriptions (conveying the fully matching), or
menu-in-outcome descriptions (conveying both).

All told, our results exhaustively consider all classes of descriptions of DA that

6In Appendix T.4, we demonstrate more generally that for DA, institution-proposing outcome
descriptions—and thus menu-in-outcome descriptions as a special case—cannot be pick-an-object.

S.5



are one-side-proposing and fit one of our three description outlines. Within this
classification, we find two simple and practical descriptions of DA: the traditional
one, and our menu description. This suggests that within our framework, simple
descriptions of DA face a trade-off between conveying strategyproofness and conveying
the full outcome matching.

The organization of this appendix is as follows. We present an institution-proposing
outcome description of DA, adapted from Ashlagi et al. (2017), in Appendix T.1. We
present our applicant-proposing menu description in Appendix T.2. We present our
institution-proposing menu-in-outcome description in Appendix T.3. We present our

supplemental impossibility theorem for DA in Appendix T 4.

T.1 Institution-proposing outcome description of DA

First, we construct an institution-proposing linear-memory outcome description of
DA. Interestingly, essentially this same algorithm was used as a lemma by Ashlagi
et al. (2017) (henceforth, AKL).” For notational convenience, throughout the rest
of this appendix, we refer to the priorities of institutions as “preferences.” We also
denote the set of applicants by D, the set of institutions by H, and (when relevant)

we describe the menu to applicant d,.

Theorem T.1 (Adapted from Ashlagi et al.; 2017). Description S.1 computes the
applicant-optimal stable outcome. Moreover, Description S.1 is an institution-proposing

and O(n)-memory description.

Proof. AKL refer to the sides of the market as “men” and “women”, and define “Al-
gorithm 2 (MOSM to WOSM)”, a men-proposing algorithm for the women-optimal
stable matching. Description S.1 follows the exact same order of proposals as this al-
gorithm from AKL. The only difference apart from rewriting the algorithm in a more
“pseudocode” fashion is that Description S.1 performs bookkeeping in a slightly dif-
ferent way—Algorithm 2 from AKL maintains two matchings, and their list V' keeps

track of only women along a rejection chain; our list V' keeps track of both applicants

"For context, Ashlagi et al. (2017) needs such an algorithm to analyze (for a random matching
market) the expected “gap” between the applicant and institution optimal stable matching. Their
algorithm builds on the work of Immorlica and Mahdian (2005), and is also conceptually similar to
algorithms for constructing the “rotation poset” in a stable matching instance Gusfield and Irving
(1989) (see also Cai and Thomas (2019)).

S.6



and institutions along the rejection chain (and can thus keep track of the “difference
between” the two matchings which AKL tracks).

Moreover, the algorithm is institution-proposing, by construction. Furthermore,
as it runs it stores only a single matching u, a set Dion € D, and the “rejection
chain” V' (which can contain each applicant d € D at most once). Thus, it uses

memory O(n). O

T.2 Applicant-proposing menu description of DA

In this section, we construct an applicant-proposing linear-memory menu description
of DA. On an intuitive level, the algorithm works as per the “brute-force” menu
description in Example 2.8, but avoiding the need to “restart many times” by using
the various properties of DA and by careful bookkeeping (to intuitively “simulate all
of the separate runs of the brute-force description on top of each other”).

On a formal level, we describe the algorithm as a variant of Description S.1.
The proof constructing this algorithm uses a bijection between one applicant’s menu
in DA under some preferences, and some data concerning the institution-optimal
stable matching under a related set of preferences. Our applicant-proposing menu
description is then phrased as a variation of Description S.1, which (reversing the
roles of applicants and institutions from the presentation in Description S.1) is able
to compute the institution-optimal matching using an applicant-proposing algorithm.

Fix an applicant d, and set P that contains (1) the preferences of all applicants
D\ {d.} other than d. over H and (2) the preferences of all institutions H over all
applicants D (including d,). We now define the “related set of preferences” mentioned
above. Define the augmented preference list P’ as follows: For each h; € ‘H, we create
two additional applicants d}”,d™! and two additional institutions A} h®1 ~ The

entire preference lists of these additional agents in P’ are as follows: for each h; € H:

N S N e

t i t i t i
R dP - Y Rt A - d

We need to modify the preference lists of the pre-existing institutions as well. But this

modification is simple: for each h; € H, replace d, with dzry. The institution-optimal

S.7



Description S.1 An institution-proposing outcome description of DA

Input: Preferences of all applicants D and institutions H
Output: The result of applicant-proposing deferred acceptance

1: » We start from the institution-optimal outcome, and slowly “improve the match for the ap-

14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24: |

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

plicants” N
Let p be the result of institution-proposing DA
Let Dierm be all applicants unmatched in p > Dyeyy, is all applicants at their optimal stable part-

while Dieym # D do R
Pick any d € D\ Dierm, and set d = d
Let h = p(d) and set V = [(d, h)]
while V # ] do
Let d < NEXTACCEPTINGAPPLICANT(u, h)
if d =0 or d € Dierm then
| > In this case, all the applicants in V' have reached their optimal stable partner. N
| Add every applicant which currently appears in V' to Dierm
- Set V=]
else if d # () and d does not already appear in V' then > Record this in the rejection
“hain
Add (d, p(d)) to the end of V
Set h + p(d) > The next proposing institution will be the “old match” of d.
else if d # () and d appears in V then
L > A new “rejection rotation” should be written to N
L WRITEROTATION(p, V, d, h) > Updates the value of p, V', and (possibly) h
Return p
function NEXTACCEPTINGAPPLICANT(f, h)

repeat

Query h’s preference list to get their next choice d

until d =0 or h =4 pu(d)
Return d

procedure WRITEROTATION(u, V', d, h)

Let T = (dy1, h1), ..., (dg, hx) be the suffix of V starting with the first occurrence of d = d;
Update p such that p(h;) = d;11 (for each i = 1,...,k, with indices taken mod k)

> Now we fiz V and h to reflect the new <
Update V' by removing T from the end of V'

if V#( then

Let (do, ho) denote the final entry remaining in V'
> The next proposing institution will either hy or hg, depending on which dy prefers <
if hy >dy ho then
‘ Set h < hg
else if hg >4, hy then
L Add (dy, hi) to the end of V
Set h + hk

5.8



matching for this augmented set of preferences P’ will encode the menu, as we need.®

Proposition T.2. An institution h; € H is on d,’s menu in APDA with prefer-
ences P if and only if in the institution-optimal stable matching with the augmented

preferences P', we have hy™ matched to di"

Proof. For both directions of this proof, we use the following lemma, which is a special

case of the main technical lemma in Cai and Thomas (2022):

Lemma T.3. In P', each hi"Y has a unique stable partner if and only if, when hi™
rejects di (i.e. if by submitted a list containing only d™", and all other preferences

remained the same), h;"™ goes unmatched (say, in the applicant-optimal matching).

Note that each h."” is matched to di” in the applicant-optimal matching with
preferences P’ (and the matching among all original applicants and institutions is the
same as flapp)-

(<) By the lemma, if Y™ is matched to di” in the institution-optimal matching
under P’, then h{"™ must go unmatched when h\"” rejects di¥. But, after h)”, we
know dzry will propose to h;, and some rejection chain may be started. Because dzry’s
very next choice is h*! (and proposing there would lead directly to A} receiving
a proposal from d'), the only way for A" to remain unmatched is if di"¥ remains
matched to h;. But because (relative to all the original applicants) d; is in the same
place as d, on h;’s preference list, the resulting set of rejections in P’ will be precisely
the same as those resulting from d, submitting a preference list in P which contains
only h;. In particular, d, would remain matched at h; in P if they submitted such a
list. Thus, h; is on d,’s menu.

(=) Suppose k™ is matched to d@! in the institution optimal matching under P
Again, h}” must receive a proposal from d*! when i rejects di”. But this can only

happen if di" is rejected by h; (then proposes to hf*!). But because the preferences

8For the reader familiar with the rotation poset of stable matchings (Gusfield and Irving, 1989),
the intuition for this construction is the following: having h}"™ reject applicant d;* corresponds to
dy “trying” to get h; € H, i.e., “trying to see if h; is on their menu.” If d, would be rejected by
h; after proposing, either immediately or after some “rejection rotation,” then so will d:ry (because
they serve the same role as d. at h;). So if a rotation swapping h¥ and hfl exists (e.g., in
the institution optimal matching) then h; is not on d.’s menu. On the other hand, if d, could
actually permanently match to h;, then d;ry proposing to h; will result in a rejection chain that
ends at some other applicant (either exhausting their preference list or proposing to an institution
in Hterm ), which does not result in finding a rotation (or writing a new set of matches as we “work
towards the institution-optimal match”). Thus, if h;ry and Al do not swap their matches in the
institution-optimal stable outcome, then h; is on d,’s menu.

S.9



of the original applicants in P’ exactly corresponds to those in P, we know that d,
would get rejected by h; if they proposed to them in i, under P. But then h;

cannot be on d,’s menu. ]

With this lemma in hand, we can now show that there is an applicant-proposing
linear-memory menu description of (applicant-optimal) DA. This description is given

in Description S.2.

Description S.2 An applicant-proposing menu description of DA

Input: An applicant d, and preferences of all applicants D \ {d,} and institutions H
Output: The menu of d, in applicant-optimal DA given these preferences

1: Simulate the flipped-side version of Description S.1 (such that applicants propose)
on preferences P’ to get a matching
2: Return the set of all institutions h; such that k™ is matched to di™ in u

Theorem T.4. There is an applicant-proposing, O(n) memory menu description of

(applicant-optimal) DA.

Proof. The algorithm proceeds by simulating a run of Description S.1 on prefer-
ences P’ (interchanging the role of applicants and institutions, so that applicants are
proposing). This is easy to do while still maintaining the applicant-proposing and
5(n) memory. In particular, P’ adds only O(n) applicants and institutions, with
each d;ry and d! making a predictable set of proposals. Moreover, the modification
made to the preferences lists of the institutions h € H is immaterial—when such

institutions receive a proposal from d;ry, the algorithm can just query their lists for

d,. ]

T.3 Institution-proposing menu-in-outcome description of DA

In this section, we construct an institution-proposing linear-memory menu-in-outcome
description of DA.? Throughout this section, let P|y..; denote altering preferences P

by having d; submit list L.

9For some technical intuition on why such a description might exist, consider the construction
used in Theorem 5.3, and consider a menu-in-outcome description for applicant i executed on these
preferences. To find the menu in this construction with an applicant-proposing algorithm, all of the
“top tier rotations” must be “rotated”, but to find the correct final matching after learning ¢;, some
arbitrary subset of the rotations must be “unrolled” (leaving only the subset of rotations which ¢;

S.10



Unlike our applicant-proposing menu description of DA from Appendix T.2, our
institution-proposing menu-in-outcome description cannot be “reduced to” another
algorithm such as Description S.1. However, the algorithm is indeed a modified
version of Description S.1 that “embeds” our simple institution-proposing menu algo-
rithm Description 1 (i.e., IPDA where an applicant d, submits an empty preference
list) as the “first phase.” The key difficulty the algorithm must overcome is being able
to “undo one of the rejections” made in the embedded run of Description 1. Namely,
the algorithm must match d, to her top choice from her menu, and “undo” all the
rejections caused by d, rejecting her choice.' To facilitate this, the description has d,

’ and maintains a delicate

reject institutions that propose to d, “as slowly as possible,’
5(n)—bit data structure that allows it to undo one of d,’s rejections.!’ The way this
data structure works is involved, but one simple feature that illustrates how and why
it works is the following: ezactly one rejection from d, will be undone, so if some
event is caused by more than one (independent) rejection from d,, then this event
will be caused regardless of what d, picks from the menu.

We present our algorithm in Description S.3. For notational convenience, we
define a related set of preferences Poq as follows: For each h; € H, add a “copy of

d,” called d™' to B,,q. The only acceptable institution for ¢4 is h;, and if d, is on

actually proposes to). Theorem 5.3 shows that all of this information must thus be remembered in
full. Now consider a run of Description S.1 on these preferences (or on a modified form of these
preferences where institutions’ preference lists determine which top tier rotations propose to bottom
tier rotations). Some subset of top-tier institutions will propose to applicant i. To continue on with
a run of Description S.1, it suffices to undo exactly one of these proposals. So, if two or more top-tier
rotations trigger a bottom-tier rotation, then we can be certain that the bottom-tier rotation will
be rotated, and we only have to remember which bottom-tier rotations are triggered by exactly one
top-tier rotation (which takes O(n) bits).

0Description S.1 is independent of the order in which proposals are made. Moreover, one can
even show that d, receives proposals from all A on her menu in Description S.1. However, this
does not suffice to construct our menu-in-outcome description simply by changing the order of
Description S.1. The main reason is this: in Description S.1, the preferences of d, are already
known, so d, can reject low-ranked proposals without remembering the effect that accepting their
proposal might have on the matching. While the “unrolling” approach of Description S.3 is inspired
by the way Description S.1 effectively “unrolls rejection chains” (by storing rejections in a list V' and
only writing these rejections to p when it is sure they will not be “unrolled”), the bookkeeping of
Description S.3 is far more complicated (in particular, the description maintains a DAG A instead
of a list V).

Hlnterestingly, this “rolled back state” is not the result of institution-proposing DA on pref-
erences (P,d; : {h;}), where h; is d;’s favorite institution on her menu. Instead, it is a “partial
state” of Description S.1 (when run on these preferences), which (informally) may perform ad-
ditional “applicant-improving rotations” on top of the result, and thus we can continue running
Description S.1 until we find the applicant-optimal outcome.

S.11



hy’s list, replace d, with d4 on h;’s list. Given what we know from Section 3, the

proof that this algorithm calculates the menu is actually fairly simple:

Lemma T.5. The set Huyenu output by Description S.3 is the menu of d. in (applicant-
proposing) DA.

Proof. Ignoring all bookkeeping, Phase 1 of this algorithm corresponds to a run of
IPDA(P|4,.9).- The only thing changed is the order in which d, performs rejections,
but DA is invariant under the order in which rejections are performed. Moreover,
Hmenu consists of exactly all institutions who propose to d during this process, i.e.

d.’s menu (according to Section 3). O

The correctness of the matching, on the other hand, requires an involved proof.
The main difficulty surrounds the “unroll DAG” A, which must be able to “undo
some of the rejections” caused by d, rejecting different h. We start by giving some
invariants of the state maintained by the algorithm (namely, the values of A, p, P,
and h):

Lemma T.6. At any point outside of the execution of ADJUSTUNROLLDAG:

(1) P contains all nodes in A of the form (d,h) (where h is the “currently proposing”
heH).

(2) All of the nodes in P have out-degree 0.

(3) The out-degree of every node in A is at most 1.

(4) Every source node in A is of the form (d., h;) for some h; € Hmenu-

(5) For every edge (do, ho) to (dy, hy) in A, we have u(dy) = hy.

(6) For each d € D\ {d.}, there is at most one node in A of the form (d,h;) for

some h;.

Each of these properties holds trivially at the beginning of the algorithm, and
it is straightforward to verify that each structural property is maintained each time
ADJUSTUNROLLDAG runs.

We now begin to model the properties that A needs to maintain as the algorithm

runs.

S.12



Description S.3 An institution-proposing menu-in-outcome description of DA

Phase 1 input: An applicant d, and preferences of applicants D \ {d.} and institutions H
Phase 1 output: The menu Hyenu presented to d. in (applicant-proposing) DA

Phase 2 input: The preference list of applicant d,

Phase 2 output: The result of (applicant-proposing) DA

1:
2:
3:

13:
14:
15:
16:
17:

18:

19:
20:
21:
22:

23:

24:
25:

26:
27:
28:

> Phase 1: <
Simulate a run of TPDA(Pyoia) and call the result p/

Let H. be all those institutions h; € H matched to ' in y' = These institutions “currently
sit at d,”

Let u be ¢/, ignoring all matches of the form (d'4, h)

Let Henu be a copy of H., > We will grow Hmenu
Let A be an empty graph > The “unroll DAG”. After Phase 1, we’ll “unroll a chain of rejec-
tions”

while H, # 0 do

Pick some h € H, and remove h from H.

Add (ds, h) to A as a source node

Set P = {(d.,h)} > This set stores the “predecessors of the next rejection”

while h# 0 do

Let d < NEXTINTERESTED APPLICANT(, A, h)

L ADpJusTUNROLLDAG(u, A, P, d, h) > Updates each of these values
Return Henu
> Phase 2: We now additionally have access to d.’s preferences N
Permanently match d, to their top pick Apick from Hmenu

(t, Dyerm) < UNROLLONECHAIN(p, A, hpick)

Continue running the Description S.1 until its end, using this g and Diep, starting from
Description 4

Return the matching resulting from Description S.1

function NEXTINTERESTEDAPPLICANT (s, A, h)

repeat

\ Query h’s preference list to get their next choice d

until d € {,d.} OR (d is in A, paired with A’ in A, and h >4 h’) OR (d is not in A and
h=a p(d))

Return d

procedure UNROLLONECHAIN(t, A, Apick)

Let (do, ho), (d1,h1), ..., (dk, hi) be the (unique) longest chain in A starting from (do, ho) =
(d*a hpick)

Set u(d;) = h; for i =0,...,k

Set Dieym = {dx,d1,...,dx}

return (g, Diorm)

S.13



1: procedure ADJUSTUNROLLDAG(u, A, P, d, h)

2: if d =0 then

3 ‘ Set h =10 > Continue and pick a new h

4: else if d =d* then > h proposes to d,, so we’ve found a new h in the menu

5 Add h to Humenu

6 Add (dy, h) to A

7 Add (dy, h) to the set P > h still proposes; the next rejection will have multiple predeces-
sors

8: else if d does not already appear in A then > Here h =4 pu(d)

9: “ Add (d, p(d)) to A > Record this in the rejection DAG

10: | Add an edge from each p € P to (d, u(d)) in A, and set P = {(d, u(d))}

11: | Set h' < u(d), then u(d) < h, then h « b’

12: | > The next proposing institution will be the “old match” of d. N

13: else if d appears in A then

14: | | ApjusTUNROLLDAGCOLLISION(u, A, P, d, h) > Updates each of these values

15: procedure ADJUSTUNROLLDAGCOLLISION(u, A, P, d, h)
16: Let p1 = (di, h1) be the pair where d = d; appears in A > We know h =4, hy
17: Let P; be the set of all predecessors of p; in A

18: > First, we drop all rejections from A which we are now sure we won’t have to unroll N
19: Let (dy,h1), ..., (dk, hi) be the (unique) longest possible chain in A starting from (di, hy)
such that each node (d;, h;) for j > 1 has exactly one predecessor

20: Remove each (d;, h;) from A, for i =1,...,k, and remove all edges pointing to these nodes

21: > Now, we adjust the nodes to correctly handle dy (which might have to “unroll to hpi,”) <
22: Let hmin be the institution among {u(d;), h} which d; prefers least
23: Let ppew = (d1, hmin); add prew to A

24: if hgpi, = h then > We replace p1 with ppew
25: Add an edge from each p € P; t0 ppew

26: Add ppew to P > h is still going to propose next
27: else > Here hyn = p(dy); we add ppew below the predecessors P
28: Add an edge from every p € P t0 ppew

29: Set P = Py U {Pnew}

30: | Set b/ < pu(dy), then u(d) + h, then h < b’/ > dy’s old match will propose next

S.14



Definition T.7. At some point during the run of any institution-proposing algorithm
with preferences @, define the truncated revealed preferences @ as exactly those in-
stitution preferences which have been queried so far, and assuming that all further
queries to all institutions will return () (that is, assume that all institution preference
lists end right after those preferences learned so far).

For some set of preferences () we say the revealed truncated preferences Q and the

orm) 18 @ partial AKL state for preferences @ if there exists some execution

pair (1, Dy
order of Description S.1 and a point along that execution path such that the truncated
revealed preferences are @, and p and Digm in Description S.1 take the values 1/ and
Dl

Let @ be a set of preferences which does not include preference of d,, and let @Q
a truncated revealed preferences of Q. Call a pair (u, A) unroll-correct for Q at Q
if 1) p is the result of IPDA(Q), and moreover, for every h € Hueny, the revealed
preferences @) and pair UNROLLONECHAIN(p, A, h) is a valid partial AKL state of

preferences (Q,d, : {h}).

The following is the main technical lemma we need, which inducts on the total
number of proposals made in the algorithm, and shows that (u, A) remain correct

every time the algorithm changes their value:

Lemma T.8. Consider any moment where we query some institution’s preferences
list withing NEXTINTERESTEDAPPLICANT in Description S.53. Let h be the just-
queried institution, let d be the returned applicant, and suppose that the truncated
revealed preferences before that query are Q, and fix the current values of u and A.
Suppose that (1, A) are unroll-correct for Q at Q.

Now let @/ be the revealed preferences after adding d to h’s list, and let ' and
A’ be the updated version of these values after Description S.3 processes this proposal
(formally, if NEXTINTERESTEDAPPLICANT returns d, fix (' and A’ to the values of
woand A after the algorithm finishes running ADJUSTUNROLLDAG; if NEXTINTER-
ESTEDAPPLICANT does not return d, set ' = p and A" = A). Then (i, A’) are

unroll-correct for Q) at @/.

Proof. First, observe that if h’s next choice is ), then the claim is trivially true,
because @ = Q (and ADJUSTUNROLLDAG does not change p or A). Now suppose
h’s next choice is d # (), but is not returned by NEXTINTERESTEDAPPLICANT. This
means that: 1) d # d,, 2) pu(d) =4 h, and 3) either d does not appear in A, or d

S.15



does appear in A, in which case d matched to some h’ such that A’ =; h. Because
(11, A) are unroll-correct for @ at @, and because Lemma T.6 says that d can appear
at most once in A, the only possible match which d could be unrolled to at truncated
revealed preferences @) is A’ (formally, if the true complete preferences were @, then
for all h, € Humenu, the partial AKL state under preferences (Q,d : {h,}) to which we
we would unroll would match d to either u(d) or h’). But d would not reject p(d) in
favor of h, nor would she reject A’ in favor of h. Thus, (for all choices of h, € Huenu)
we know h will always be rejected by d, and (u, A) are already unroll-correct for @
at @l.

Now, consider a case where h’s next proposal d # () is returned by NEXTINTER-
ESTEDAPPLICANT. There are a number of ways in which ADJUSTUNROLLDAG may
change A. We go through these cases.

First, suppose d = d,. In this case, the menu of d, in @, contains exactly one
more institution than the menu in @, namely, institution h. Moreover, for any h, €
Hmenu \ {1}, the same partial AKL state is valid under both preferences (Q,d : {h.})
and (Q',d : {h.}) (the only difference in (Q',d : {h,}) is a single additional proposal
from h to d,, which is rejected; the correct value of Dieyy, is unchanged). For h, = h,
the current matching p, modified to match h to d,, is a valid partial AKL state for
(@', d : {h}), and this is exactly the result of UNROLLONECHAIN (with Dy =
{d.}, which is correct for preferences (Q,d : {h})). Thus, (using also the fact from
Lemma T.6 that P contains all nodes in A involving h), each possible result of
UNROLLONECHAIN is a correct partial AKL state for each (Q,d : {h.}), so (i, A)
is unroll-correct for @) at @/.

Now suppose d ¢ {0}, d,} is returned from ADJUSTUNROLLDAG, and d does not
already appear in A. In this case, h =4 pu(d), and for every h, € Hyen, the unrolled
state when preferences (Q,d : {h.}) will pair d to p(d). Under preferences (@,, d:0),
a single additional proposal will be made on top of the proposals of (Q, d : (}), namely,
h will propose to d and d will reject pu(d). However, if h, is such that h is “unrolled”
(formally, if h, is such that UNROLLONECHAIN(u, A, h,) changes the partner of h)
then A cannot propose to d in (Q,d : ) (because all pairs in A can only “unroll” A to
partners before y(h) on ks list), nor in (Q,d : §) (because Q only adds a partner to
h’s list after p(h)). Thus, for all h, such that h is unrolled, the pair (d, u(d)) should
be unrolled as well. On the other hand, for all h, such that A is not unrolled, h will
propose to d (matched to d’), so d will match to h in the unrolled-to state. This is

S.16



exactly how g/ and A’ specify unrolling should go, as needed.

(Hardest case: ADJUSTUNROLLDAGCOLLISION.) We now proceed to the hard-
est case, where d ¢ {0, d,} is returned from ADJUSTUNROLLDAG, and d already
appears in A. In this case, ADJUSTUNROLLDAGCOLLISION modifies A. Define py,
Py, and Ay, following the notation of ADJUSTUNROLLDAGCOLLISION. Now con-
sider any hy € Hmenu under preferences (). There are several cases of how h, may
interact with the nodes changed ADJUSTUNROLLDAGCOLLISION, so we look at these
cases and prove correctness. There are two important considerations which we must
prove correct: first, we consider the way that ADJUSTUNROLLDAGCOLLISION re-
moves nodes from A (starting on Description 19), and second, we consider the way
that it creates a new node to handle d (starting on Description 22).

(First part of ADJUSTUNROLLDAGCOLLISION.) We first consider the way
ADJUSTUNROLLDAGCOLLISION removes nodes from A. There are several subcases
based on h,. First, suppose UNROLLONECHAIN(p, A, h,) does not contain p;. Then,
because ADJUSTUNROLLDAGCOLLISION only drops p; and nodes only descended
through p;, the chain unrolled by UNROLLONECHAIN(/, A’ h,) is unchanged until
h. (We will prove below that the behavior when this chain reaches h is correct.)
Thus, the initial part of this unrolled chain remains correct for () at @/.

On the other hand, suppose that UNROLLONECHAIN(u, A, h, ) contains p;. There
are two sub-cases based on A. First, suppose that there exists a pair p € P in A such
that p is a descendent of p; (i.e. there exists a p = (d;, h) € P and a path from p; to p
in A). In this case, under preferences @, UNROLLONECHAIN(u, A, h,.) would unroll
to each pair in the path starting at h,, which includes p; and all nodes on the path
from p; to p. Under A’, however, none of the nodes from p; to p will be unrolled in
this case. The reason is this: in Description S.1, the path from p; to p, including the
proposal of h to di, form an “improvement rotation” when the true preferences are
@,. Formally, under preferences (@/, d, : {h.}), if dy rejected hy, the rejections would
follow exactly as in the path in A between p; and p, and finally A would propose to
dy. Description S.1 would then call WRITEROTATION, and the value of p would be
updated for each d on this path. So deleting these nodes is correct in this subcase.!?

For the second subcase, suppose that there is no path between p; and any p € P

in A. In this case, there must be some source (d,,h) in A which is an ancestor of

12This is the core reason why Description S.3 cannot “unroll” to IPDA(Q,d : {h;})—instead, it
unrolls to a “partial state of AKL”.

S.17



some p € P, and such that the path from (d,, h) to p does not contain any descendent
of p1. (This follows because each p € P must have at least one source as an ancestor,
and no ancestor of any p € P can be descendent of p;.) To complete the proof in
this subcase, it suffices to show that at preferences (@/, d, : {h.}), we “do not need
to unroll” the path in A starting at h, after p; (formally, we want to show that if
you unroll from ' the path in A from h, to just before p; (including the new node
added by the lines starting on Description 22), then this is a partial AKL state of @
at Q). The key observation is this: in contrast to preferences (@Q,d, : {h.}), where
pair p; is “unrolled”, under preferences (@/, d, : {h.}), we know h will propose to dy
anyway, because d, will certainly reject h (and trigger a rejection chain leading from
(d.,h) to h proposing to d).

(Second part of ADJUSTUNROLLDAGCOLLISION.) We now consider the sec-
ond major task of ADJUSTUNROLLDAGCOLLISION, namely, creating a new node to
handle d. The analysis will follow in the same way regardless of how the first part
of ADJUSTUNROLLDAGCOLLISION executed (i.e., regardless of whether there exists
a path between p; and P). The analysis has several cases. First, suppose (d., h,) is
not an ancestor of any node in P, U P in A. This will hold in A’ as well, so neither
UNROLLONECHAIN(p, A, h,) nor will UNROLLONECHAIN(p/, A’, h,) will not change
the match of d. Instead, the match of d under UNROLLONECHAIN(p/, A, h,) will be
1/ (d), which is a correct partial AKL state under (Q', d, : {h.}), as desired.

Second, suppose h, is such that (d.,h,) is an ancestor of some node in P; in
A. There are two subcases. If hpy, = h, then we have u(dy) = p/(dy), but when
UNROLLONECHAIN(/, A’, h,) is run, we unroll d; to h. Correspondingly, in IPDA
with preferences (@l, dy : {h.}), we know d; will not receive a proposal from pu(d;) (as
this match is unrolled in @) but d; will receive a proposal from h (as this additional
proposal happens in @/ but not in Q, regardless of whether this happens due to a “re-
jection rotation” of AKL, or simply due to two rejection chains causing this proposal,
as discussed above), which d; prefers to the unrolled-to match under preferences Q.
Thus, under preferences (@/, dy : {h.}), we know d; will match to hpy, = h in a valid
partial AKL-state. So (1, A') is correct for @ in this subcase. If, on the other hand,
hmin = p(dy), then in A’, UNROLLONECHAIN(i/, A', h,) will not contain the new
node pyew. However, p/(dy) = h, and we know d would receive a proposal from h
(@,, d. : {h.}), and would accept this proposal. So (u’, A’) is correct for @/ in this

subcase.

S.18



Third and finally, suppose h, is such that (d,, h,) is an ancestor of some node in
P in A. The logic is similar to the previous paragraph, simply reversed. Specifically,
there are two subcases. If h,;, = h, then when preferences are (@/, d. : {h.}), then
d; will no longer receive a proposal from h, but will still receive a proposal from
w(dy). So dy should remain matched to u(d;) during UNROLLONECHAIN (', A, h,),
and (i, A') is correct for @ in this subcase. If Ay = p(dy), then z/(di) = h, and in
A’ UNROLLONECHAIN(p/, A’; h,) will contain the new node pyey, which unrolls d; to
their old match yu(d;). This is correct, because in @, according to A, we know h will be
unrolled to some previous match, and correspondingly, in preferences (@/, d, : {h.}),
we know d; will never receive a proposal from h. So (u/, A) is correct for @ in this
subcase.

Thus, for all cases, (¢/, A’) are unroll-correct for @ at @/, as required. n

To begin to wrap up, we bound the computational resources of the algorithm:
Lemma T.9. Description S.3 is institution-proposing and uses memory 6(71)

Proof. The institution-proposing property holds by construction. To bound the mem-
ory, the only thing that we need to consider on top of AKL is the “unroll DAG” A.
This memory requirement is small, because there are at most O(n) nodes of the form
(dy, h) for different h € H, and by Lemma T.6, a given applicant d € D \ {d.} can

appear at most once in A. So the memory requirement is 6(71) O

We can now prove our main result:

Theorem T.10. Description S.3 is an institution-proposing, O(n) memory menu-

in-outcome description for DA.

Proof. We know Description S.3 correctly computes the menu, and that it is institution-
proposing and 6(n) memory. So we just need to show that it correctly computes the
final matching. To do this, it suffices to show that at the end of Phase 1 of Descrip-
tion S.3, (i, A) is unroll-correct for @) at the truncated revealed preferences @ (for
then, by definition, running Description S.1 after UNROLLONECHAIN will correctly
compute the final matching).

To see this, first note that an empty graph is unroll-correct for the truncated
revealed preference after running I PDA(Ppo4), as no further proposals beyond d,

can be made in these truncated preferences. Second, each time we pick an h € H, on

S.19



Description 8, a single (d., h) added to A (with no edges) is unroll-correct for @) at
@/, by construction. Finally, by Lemma T.8, every other query to any institution’s
preference list keeps (p, A) unroll-correct after the new query. So by induction, (u, A)

is unroll-correct at the end of Phase 1, as desired. O

T.4 Supplemental Impossibility Result for DA

In this appendix, we give a supplemental impossibility result for descriptions of DA.
We prove that institution-proposing outcome descriptions—and hence institution-
proposing menu-in-outcome descriptions as a special case—cannot satisfy the pick-
an-object simplicity condition of B6 and Hakimov (2023).

B6 and Hakimov (2023) introduce the pick-an-object condition in the context of
interactive mechanisms, where (informally speaking) agents are iteratively asked to
pick their favorite objects from some set, and whenever the mechanism terminates,
every agent is matched to their most recently picked object. For example, in a dy-
namic mechanism implementing DA, applicants can be iteratively asked to pick their
favorite institution from the set of all institutions they have not yet proposed to. We
consider the pick-an-object condition within the context of one-side-proposing out-
come descriptions. In this context, the condition requires that when the description
terminates, every agent on the proposing side must be matched to whichever agent
they proposed to most recently.

Like the linear-memory condition we use in Section 5, the pick-an-object condi-
tion captures one feature of matching mechanism descriptions used to explain these
mechanisms in practice. Indeed, the description in Figure 3 on page 16 that is used
by the NRMP is pick-an-object, since the yellow highlighting in that figure tracks the
most recent proposal of each applicant and, at the end of the description, relays the
outcome matching. However, where linear-memory is a fairly permissive desidera-
tum concerning the amount of bookkeeping used, pick-an-object is a more restrictive
desideratum concerning the manner in which the bookkeeping is updated and used.
Thus, we do not interpret our pick-an-object impossibility result as strongly as our
linear-memory impossibility result, e.g., we do not argue that all small tweaks of
the traditional description of DA should be pick-an-object. Nevertheless, our pick-
an-object impossibility result is quite useful: It shows a potentially-desirable class of

descriptions cannot satisfy an established and intuitive simplicity condition, and gives

S.20



a specific barrier that hypothetical more-practical alternatives to our unintuitive and
convoluted description in Appendix T would have to circumvent.
We now formally define pick-an-object, adapting the definition from B6 and Haki-

mov (2023) to focus on institution-proposing outcome descriptions.

Definition T.11 (Pick-an-Object). An institution-proposing outcome description is
pick-an-object if, whenever the description terminates and calculates some outcome
matching u, it satisfies the following. For every institution A, let dj, be the most
recently queried applicant from h’s preference list, i.e., if the description made j
queries to h, then d is the j*® applicant on h’s preference list. Then, u(h) = dj, for

every institution h.

Observe that the traditional descriptions of SD, TTC, and DA are applicant-
proposing outcome descriptions that are pick-an-object (according to a definition
perfectly analogous to Definition T.11, but interchanging the roles of the applicants
and institutions). DA (the applicant-optimal stable matching mechanism) has a non-
trivial institution-proposing outcome description as well (Appendix T.1). However,
as we now show, such a description cannot be pick-an-object, giving a sense in which

they cannot be simple. Formally:

Proposition T.12. No institution-proposing outcome description of DA is pick-an-

object.

Proof. Assume for contradiction that D is an institution-proposing outcome descrip-
tion of DA which is pick-an-object. Consider a market with institutions hq, hy and

applicants dy, do, d3. We first define preferences of three applicants as follows:

dy: hy = hy
dy i hy = hoy

ds : (any complete preference list)
Next, we consider two possible preference lists for each of hq, ho:

>‘1Id1>‘d2>—d3 >-23d2>-d1>-d3

>'/1:d1>-d3>-d2 >-/22d2>-d3>-d1

S.21



One can check that DA (the applicant-optimal stable matching) produces outcome
matching 4 that assigns d; to hy and dy to hy when the priorities are (1, =2); on
any other profile of priorities among those defined above, DA has as outcome the
matching o that assigns d; to hy and ds to hy. Thus, our description D can know
the outcome on these inputs only when it has read the second-highest-priority spot
of both hy and hs. However, intuitively, this means that our institution-proposing
description D of DA cannot be pick-an-object, because the highest-priority applicant
for both h; and hs must be read before we can know whether these institutions are
assigned to these applicants.

Formally, consider the execution of D when institutions have priorities (>1,>2).
Consider the final time during this execution when D learns the difference between >;
and >9 for some j € {1,2}; i.e., the latest possible state s during the execution of the
description with priority profile @ = (>1, >2) where the execution diverges from that
of some priority profile in { (>}, >2), (=1, =5)}. (Note that the description must learn
this difference in order to calculate DA.) By the symmetry in the defined preferences,
it is without loss of generality to suppose that in state s, the description queries the
preferences of applicant 1, and thus has one successor state consistent with ) and
another consistent with Q" = (>, >2). However, since D is institution-proposing,
this means that in state s, the description has already read d; off the priority list of
hy (and is proceeding to read either ds or ds next). Since D is pick-an-object, this
means that h; cannot match to d; in any the final outcome matching of any execution
of D consistent with s. But this is a contradiction, since h; must match to d; in DA

when the priority profile is (>, >2). This finishes the proof. ]

Proposition T.12 directly implies that DA has no institution-proposing menu-in-
outcome description satisfying the pick-an-object condition (since such a description
is, in particular, an outcome description). Combined with our robust main impos-
sibility result (Section 5), this establishes precise impossibilities for simple one-side-
proposing menu-in-outcome descriptions of DA: Such applicant-proposing descrip-
tions cannot be linear-memory, and such institution-proposing descriptions cannot

be pick-an-object.

S.22



	Introduction
	Preliminaries
	Mechanisms
	Descriptions
	Menus and Menu Descriptions
	Menu-in-Outcome Descriptions
	Uses of Menu Descriptions

	A Menu Description of DA
	A Menu-in-Outcome Description of TTC
	An Impossibility Result for Menu-in-Outcome Descriptions of DA
	Properties of Slight Tweaks of Traditional Descriptions
	Impossibility Theorem

	Related work
	Discussion
	Proof of Main Impossibility Theorem
	Additional Proofs and Remarks
	Proofs of Known Results
	Known Results for DA and Stable Matchings
	Known Result for TTC

	Mathematical Model of Algorithms
	On Additional Descriptions of DA
	Institution-proposing outcome description of DA
	Applicant-proposing menu description of DA
	Institution-proposing menu-in-outcome description of DA
	Supplemental Impossibility Result for DA


