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ABSTRACT

A menu description presents a mechanism to player i in two steps. Step (1) uses the reports 
of other players to describe i’s menu: the set of i’s potential outcomes. Step (2) uses i’s report to 
select i’s favorite outcome from her menu. Can menu descriptions better expose 
strategyproofness, without sacrificing simplicity? We propose a new, simple menu description of 
Deferred Acceptance. We prove that—in contrast with other common matching mechanisms—
this menu description must differ substantially from the corresponding traditional description. We 
demonstrate, with a lab experiment on two elementary mechanisms, the promise and challenges 
of menu descriptions.
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1 Introduction

Strategyproof social-choice rules are often considered desirable. Under standard as-

sumptions about players’ preferences, these rules eliminate the need for players to

strategize, since straightforward play is a dominant strategy.1 In practice, however,

real participants in strategyproof mechanisms often do not play these theoretically

dominant strategies, suggesting they may not perceive them as dominant.2

Recent work takes a more refined approach, and suggests that the way a social-

choice rule is implemented can influence straightforward play. This line of work pro-

poses new extensive-form implementations that are dynamic and interactive, helping

players avoid contingent-reasoning failures (Li, 2017), limited foresight (Pycia and

Troyan, 2023), and expectations-based loss aversion (Dreyfuss et al., 2022b; Meisner

and von Wangenheim, 2023). While already making a seminal contribution, this ap-

proach has limitations. For example, it may be theoretically restrictive (i.e., provably

impossible for many desirable social-choice rules3) or impractical (e.g., calling upon

each participant many times, each time halting the market until she makes a choice).

In this paper, we take a different approach: instead of searching for alternative

implementations of a fixed social-choice rule, we investigate different descriptions of a

fixed implementation of a fixed social-choice rule. We consider static, direct-revelation

mechanisms, and propose a general framework—that we call menu descriptions—for

presenting a mechanism to one player at a time in a way that may make strate-

gyproofness easier to see. We motivate this framework with experiments, propose

new descriptions, and prove theorems bounding the simplicity of such descriptions

(according to context-relevant formal notions of simplicity).

Our main application is to Deferred Acceptance (henceforth DA) (Gale and Shap-

ley, 1962). This matching mechanism is widely used in practice (Roth, 2002) to assign

students to schools (Abdulkadiroğlu and Sönmez, 2003), medical residents to hospi-

tals, and beyond. The traditional description of DA to participants is via the deferred

1Throughout this paper, we use the term “straightforward” to describe the strategy an agent
would play under classic economic assumptions. While often referred to in past research as
the “truthtelling” strategy, we avoid this morally laden term. Indeed, from the point of view
of behavioral mechanism design, deviations from this classically optimal strategy should not be
thought of as dishonesty.

2Evidence of such non-straightforward behavior comes both from the field (Hassidim et al.,
2017, 2021; Shorrer and Sóvágó, 2017; Rees-Jones, 2018) and the lab (Kagel and Levin, 1993; Li,
2017; Chen and Sönmez, 2006; Hakimov and Kübler, 2021). It persists (somewhat ameliorated)
even when the participants are explicitly informed of the strategyproofness of the mechanism
(Guillen and Hakimov, 2018; Masuda et al., 2022).

3Of the five canonical social-choice rules we discuss in this introduction, only two have implemen-
tations in the theoretical framework of Li (2017): the second-price auction, and serial dictatorship.

1



acceptance algorithm.4 However, this description may not intuitively expose the

strategyproofness of DA, since showing its strategyproofness conventionally requires

a delicate and technical mathematical proof. We present a novel, simple description of

DA that makes its strategyproofness easy to see. Specifically, in our new description,

strategyproofness holds by a short, one-sentence proof, while the simplicity of the

description itself is comparable to that of the traditional one. Nonetheless, this new

description obscures some properties that the traditional description of DA exposes.

We prove that this is unavoidable by investigating a broad class of simple descriptions

of DA, and proving formal tradeoffs between the different properties they can expose.

Table 1: Two pairs of descriptions of two strategyproof direct-revelation mechanisms.

(a) Median Voting: Two descriptions of the median voting mechanism over an ordered
set of candidates, with three voters with single-peaked preferences.

Traditional Description:
The three votes will be sorted
from lowest to highest, and the
middle vote of the three will
be elected.

Menu Description:
The “obtainable candidates” will be the votes of the
other two players, and all candidates between them.
Out of these “obtainable candidates,” the one closest
to your own vote will be elected.

Notes: For each voter, voting for her favorite candidate is a dominant strategy. Each voter’s menu
consists of all candidates between (and including) the votes of the other two voters.

(b) Second-Price Auction: Two descriptions of a single-item, sealed-bid, second-price
auction.

Traditional Description:
The player who placed the
highest bid will win the item.
She will pay a price equal to
the second highest bid.

Menu Description:
Your “price to win” the item will be set to the highest
bid placed by any other player.
If your bid is higher than this “price to win,” then you
will win the item and pay this price.

Note: Each bidder’s menu consists of exactly two options: winning the item for a price equal to
the highest bid of the other players, or winning nothing and paying nothing.

To make our framework concrete, Table 1 presents, for each of two classic mecha-

nisms, two equivalent descriptions: a commonly used “Traditional Description” and

a novel “Menu Description.” While the former conveys the outcome in a direct way,

the latter attempts to expose and emphasize strategyproofness. It does so by explain-

ing the mechanism to a single player at a time, using the classic notion of a menu

(Hammond, 1979). Formally, a player i’s menu is defined as the set of all outcomes

4While “deferring acceptance” refers to properties of this algorithm, we follow popular usage
and use DA to refer to the mechanism whose outcome is defined by this algorithm, i.e., to the
mechanism that gives the one-side-optimal (e.g., student-optimal) stable matching (regardless of
how this mechanism is described).
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that i might possibly receive, given the reports of all other players. We define a menu

description for player i as a description meeting the following two-step outline, which

both examples from Table 1 follow:

Step (1) uses only the reports of other players to describe the set of outcomes

player i might receive (i’s menu).

Step (2) describes how to award player i her favorite outcome (according to her

report) from her menu.

The first main premise of this paper is that menu descriptions provide a way to expose

strategyproofness. While strategyproofness might be hard to infer from traditional

descriptions of some mechanisms, it always holds for menu descriptions via a one-

sentence proof: player i’s menu in Step (1) cannot be affected by her report, and in

Step (2), straightforward reporting guarantees her favorite outcome from the menu.

To begin the study of menu descriptions, we observe that every strategyproof

mechanism has a menu description (Hammond, 1979). To see this, consider any de-

scription D of (the outcome of) the mechanism, and consider the following “brute

force” menu description for player i:

Step (1): Iterate over all possible reports t′i of player i, and let M denote the set

of all outcomes for player i of the form D(t′i, t−i).

Step (2): Award player i her favorite outcome (according to ti) from M .

However, we suspect such descriptions may be impractical. We speculate that many

participants would find them complicated, implausible, or confusing, precluding their

real-world use.

Given the above, the second main premise of this paper is that simplicity of menu

descriptions is paramount. What counts as a simple description is naturally sub-

jective, multi-faceted, and context-dependent. As a guiding principle, we strive for

menu descriptions that are not dramatically more complex than the corresponding

traditional descriptions (which are typically the simplest known way to describe the

outcome). In the main results of this paper, we first present new menu descriptions

that we view as being nearly as simple as traditional ones. Second, we propose simplic-

ity conditions that traditional descriptions (and our menu descriptions) meet, and use

these conditions to prove theorems that rule out the existence of other possible simple

(according to our conditions) menu descriptions beyond the ones that we present.

To empirically motivate using menu descriptions, we turn to the two elemen-

tary settings (with arguably simple descriptions) from Table 1, and explore how real
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participants respond to the descriptions in that table. We conduct a preregistered

(between-subjects) lab experiment using descriptions similar to those in Table 1. For

the (three player) median-voting mechanism, in a menu-description treatment we

find higher rates of straightforward behavior (80%; N = 100) than in a traditional-

description treatment (70%; N = 100; equality-of-means p = 0.01). Furthermore, we

find that in the menu treatment, straightforward behavior is highly correlated with

participants’ comprehension of the mechanism, while in the traditional treatment it

is not. This may suggest that for the menu description of this mechanism—but not

for its traditional description—understanding how the outcome is calculated helps

understand strategyproofness. In contrast, for the (five player) second-price auction

we find no difference in straightforward behavior between the two treatments. This

in turn may suggest that for some mechanisms, strategyproofness may be equally

apparent from traditional and menu descriptions.

Our paper begins by providing preliminaries in Section 2. Next, we turn our at-

tention to matching mechanisms, a common setting in which complicated mechanisms

are used in practice to match applicants to institutions.5 We start by considering our

main application, DA (i.e., the applicant-optimal stable matching mechanism). In

contrast to the mechanisms in Table 1, it is initially far from clear how to character-

ize the menu in DA.

In Section 3, we present our main positive result: a novel menu description of DA,

summarized in Table 2. We view this description as being nearly as simple as the

corresponding traditional description. In fact, the menu is calculated directly from a

single run of the “flipped-side-proposing” deferred acceptance procedure (among all

participants except some player i, to whom the mechanism is described). In sharp

contrast with the traditional description of DA, strategyproofness can be readily

seen from this menu description in the same way as from the menu descriptions in

Table 1. We emphasize that it was previously unknown that the menu in DA can be

characterized as in Table 2, or, indeed, in any other way that does not require multiple

runs of deferred acceptance while going over different hypothetical reports by player i.

In Section 4, we consider two additional popular matching mechanisms, Serial

Dictatorship (henceforth SD) and Top Trading Cycles (henceforth TTC). For SD,

the traditional description already is a menu description. Namely, for each player i,

the traditional description of SD can be written in the following three steps, the first

5In all matching mechanisms that we consider, the only strategic players are the applicants.
The institutions are not strategic, and thus their preferences over the applicants are by convention
called priorities.
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Table 2: Deferred Acceptance: Two descriptions of the applicant-optimal stable
matching mechanism.

Traditional Descr.:

The applicants will
be matched to insti-
tutions according to
applicant-proposing
deferred acceptance.

Menu Description:
Imagine running institution-proposing deferred acceptance
with all institutions and all applicants except you, to obtain
a hypothetical matching. You “earn admission” at every
institution that ranks you higher than its hypothetically
matched applicant.
You will be matched to the institution that you ranked high-
est out of those at which you will have earned admission.

Notes: Both descriptions use the traditional deferred acceptance procedure as a building block.
We emphasize that in the menu description, the hypothetical match of other applicants is not
necessarily their match in the actual outcome of DA.

two of which are a menu description:

(1) Using only the reports t−i of other players, calculate i’s menu.

(2) Match i to her top-ranked institution on her menu, according to i’s report ti.

(3) Using ti and t−i, proceed to calculate the rest of the matching (for all other

applicants).

We call a description with this outline, i.e., any description of the full matching that

contains a menu description for player i, an individualized dictatorship (see Table 3).

Our main result in Section 4 shows that a simple individualized dictatorship for TTC

exists, and in particular can be constructed via only a slight modification of the

traditional description (namely, by specializing the order of the steps performed by

the traditional description). The existence of this description for TTC is somewhat

remarkable: a small tweak to the traditional description of TTC suffices to produce

an individualized dictatorship, i.e., an alternative description for TTC whose strate-

gyproofness is in principle as easy to see as that of SD.

We find the description presented in Section 3 (for DA) as appealing as that

presented in Section 4 (for TTC). However, it is quite different in character; one

may wonder whether, like with TTC, an alternative menu description of DA exists

embedded within (a small tweak of) its traditional description. To examine this

question, and the limits of simple descriptions more broadly, we define in Section 5

a general formal model of mechanism descriptions, particularly the algorithmic de-

scriptions commonly used for matching mechanisms. While our models are informed

by ideas from computer science, the complexity notions that we reason about are not

standard computer-science complexity notions concerned with running algorithms on
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Table 3: Different outlines for mechanism descriptions.

Menu description:

Definition: Description of one player’s outcome fitting Steps (1) and (2) on page 3.

Application: Describe one player’s outcome while exposing strategyproofness for that player.

Motivation: Strategyproofness holds by a simple proof: the player’s report cannot affect her menu,
and straightforward reporting gets the player her favorite outcome from the menu.

Individualized dictatorship description:

Definition: Description of the full outcome fitting Steps (1), (2), and (3) on page 5.
(the first two of which constitute a menu description).

Application: Describe the full outcome while exposing strategyproofness for one player.

Motivation: Quantify (using simplicity conditions) when traditional descriptions
can or cannot be tweaked to expose strategyproofness through menus.

computers. Rather, they are novel notions specifically tailored to capture attributes

of algorithms that are used in practice to help explain the algorithms to non-experts.

In Section 6, we prove our main impossibility theorem: in contrast to SD and

TTC, no individualized dictatorship for DA is similar to its traditional description.

To formalize this claim, we delineate two fundamental properties of the traditional

description of DA.6 First, it is applicant-proposing (querying applicants’ preferences

in favorite-to-least-favorite order). Second, it describes the outcome by iteratively

modifying a single tentative matching (without performing more complicated book-

keeping or rote memorization; formally, using a roughly linear amount of memory).

We prove that any applicant-proposing individualized dictatorship description of DA

must keep track of vastly more information than a single tentative matching; in fact,

such a description must remember essentially all preferences of all applicants through-

out its run (roughly equivalent to keeping track of n full matchings; formally, requiring

a quadratic amount of memory). We thus interpret this result as showing that no

small tweak of the traditional description of DA has a menu description embedded

within it. This provides a formal sense in which (in contrast to SD and TTC) it is

difficult to recognize that DA “has a menu”—and hence is strategyproof—from its

traditional description.

In Section 7, we examine simple one-side-proposing descriptions of DA more

broadly. We search for three classes of descriptions: First, menu descriptions, which

expose strategyproofness but may obscure the fact that the matching collectively

6These properties are also shared by the descriptions of virtually any other popular matching
mechanism.
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described by all players’ menu descriptions are feasible (i.e., that no two applicants

infeasibly get the same assignment); second, descriptions of the full matching, which

may make feasibility easy to see but may obscure strategyproofness; third, individ-

ualized dictatorships, which in these senses expose both properties. Our findings

are summarized in Table 5 (on page 30). While we uncover certain additional de-

scriptions, our most significant finding is an additional impossibility theorem: any

conceivable description in our classification—other than traditional DA and our new

menu description—must in a formal sense be a delicate and technical algorithm.7 For

simple descriptions of DA in our framework, there is thus a tradeoff between con-

veying feasibility and conveying strategyproofness. All traditional descriptions of DA

have long been at one corner solution of this tradeoff. Our new menu description is

at the other corner solution, exposing perhaps the most relevant consideration for the

applicants: strategyproofness.

Table 4: Classification of main results.

Description Type
Interpretation of Description Type Result

Outline Simplicity Constraint

Menu
description

Informal(*):
comparable in
simplicity to the
traditional description

Alternative, potentially practically
simple description that
exposes strategyproofness

Provide new
descriptions for
both DA (Sec. 3)
& TTC (Sec. 4)

Individualized
dictatorship

Formal:
applicant-proposing
& low-memory

Menu description embedded
in (potentially) small tweak
of the traditional description

Show possible for
TTC (Sec. 4);
Prove impossible for
DA (Sec. 6)

Any outline
type for DA

Formal:
one-side-proposing
& local bookkeeping

Broad class of simple
descriptions exposing
strategyproofness (menu descr.s),
feasibility (outcome descr.s),
or both (individ. dictatorships)

For DA: prove
can convey
strategyproofness
or feasibility, but
not both (Sec. 7)

(*) Note: As we discuss in Section 6 and Section 7, our new descriptions of TTC and DA also
satisfy formal simplicity constraints (one-side-proposing, low-memory, local bookkeeping).

Table 4 summarizes our main results for matching mechanisms. In Section 8 we

briefly consider an extension of our framework to multi-item auctions where bidders

have additive or unit-demand valuations over items. We detail our experiment in

Section 9, review related work in Section 10, and conclude in Section 11, where we

also discuss limitations of our framework.

7Roughly speaking, such a description must update bookkeeping concerning some participants
when making queries that seem unrelated to them, for example, learning that institution a is on
the menu when the most recent preference query concerned institution b.
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2 Preliminaries

2.1 Environments and Mechanisms

This paper studies strategyproof mechanisms, i.e., dominant-strategy direct-revelation

implementations of social-choice rules, in different economic environments. We define

all these terms fully in Appendix B. Briefly, an environment is defined by a set A

of possible outcomes, a number n of players (sometimes referred to as agents), and a

set of possible types ti ∈ Ti for each player i. The type ti of each player i completely

defines her preferences ≻ti
i over the outcomes.

Definition 2.1. A social-choice rule in an environment
(
A, n, (Ti)ni=1

)
is any map-

ping f : T1 × . . . × Tn → A from the types of all players to an outcome. A social

choice function is strategyproof if, for every ti, t
′
i ∈ Ti and8 t−i ∈ T−i, we have

f(ti, t−i) ⪰ti
i f(t′i, t−i).

We study descriptions of mechanisms, which are ways to convey the mechanism ex

ante. To start, we consider outcome descriptions. An outcome description is a precise

and unambiguous way of conveying the function from players’ types to the outcome

of the mechanism. In this paper, we typically consider outcome descriptions that

provide an explicit set of instructions that one could use to calculate the outcome,

i.e., an algorithm.

In matching environments, we call each player an applicant, and outcomes are

matchings between applicants and institutions (such that no applicant is matched to

two institutions, and vice versa). For our main mechanisms of interest, DA and TTC,

we denote applicants by d (mnemonic: doctor), and institutions by h (mnemonic:

hospital); for other mechanisms and environments we denote players (applicants or

otherwise) by i. The type of each applicant is any strict ordinal preference over the

institutions. We denote the type of applicant d as ≻d, and write h1 ≻d h2 if d prefers

institution h1 to institution h2. Applicants may have partial preference lists, indicat-

ing that they prefer to remain unmatched over being matched to any institution not

on their list. Only the applicants are strategic, whereas the institutions have fixed

priorities, which are exogenously given strict ordinal preferences over applicants.

We study the canonical mechanisms of Serial Dictatorship (SD), Top Trading

Cycles (TTC), and Deferred Acceptance (DA), defined as follows:

8As is standard, we write T−i to denote the set T1×. . .×Ti−1×Ti+1 . . . Tn, and for ti ∈ Ti and t−i ∈
T−i, we write (ti, t−i) for the element of T1× . . .×Tn that naturally corresponds to ti along with t−i.
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Definition 2.2. Serial Dictatorship (SD) is defined with priority order π (i.e., π

is any bijection between {1, . . . , n} and the applicants). The matching is produced

as follows. In order i = π(1), π(2), . . . , π(n), applicant i selects and is permanently

matched to her favorite institution that has not already been selected by some pre-

ceding (in the order π) applicant.

Definition 2.3. Top Trading Cycles (TTC) is defined with respect to a profile of

priority orders {≻h}h, one for each institution h, over applicants. The matching

is produced as follows. Repeat the following until everyone is matched (or have

exhausted their preference lists): each remaining (i.e., not-yet-matched/exhausted)

applicant points to her favorite remaining institution, and each remaining institution

points to its highest-priority remaining applicant. There must be some cycle in this

directed graph (as there is only a finite number of vertices).9 Permanently match

each applicant in this cycle to the institution to which she is pointing. (And these

applicants and institutions do not participate in later iterations.)

Definition 2.4. Deferred Acceptance (DA) is defined with respect to a profile of

priority orders {≻h}h, one for each institution h, over applicants. The matching is

produced as follows. Repeat the following until every applicant is matched (or has

exhausted her preference list): A currently unmatched applicant is chosen to pro-

pose to her favorite institution which has not yet rejected her.10 The institution then

rejects every proposal except for the top priority applicant who has proposed to it

thus far. Rejected applicants become (currently) unmatched, while the top priority

applicant is tentatively matched to the institution. This process continues until no

more proposals can be made, at which time the tentative allocations become final.

Note that DA refers to the (direct-revelation) mechanism defined by applicant-

proposing DA (i.e., outputting the applicant-optimal stable matching); when confu-

sion might arise, we use APDA (and for institution-proposing, we use IPDA). For

additional formal discussion on these definitions, see Appendix B.

For each of SD, TTC, and DA, we refer to the algorithm in the above definition as

the traditional description of the mechanism; for one real-world example conveying

this description for DA, see Section 6.1.

In matching environments, applicants are assumed to only care about their own

match, and thus the preferences of applicant d over matchings µ depend only on µ(d).

9The final outcome of TTC is independent of which cycle is chosen at every step.
10The final outcome of DA is independent of which unmatched applicant proposes at every step.
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In many other environments (especially those without externalities), each player simi-

larly does not care about the entire outcome, but only about some part of it. We thus

define the i-relevant outcome sets (or i-outcomes for short) of an environment as the

equivalence classes of outcomes for which i is indifferent between these outcomes for

all possible types of player i. (For a formal definition, see Definition B.2.) We denote

the i-outcome corresponding to an outcome a by [a]i, and the set of i-outcomes by

Ai. For example, in matching environments, [µ]d = {µ′ | µ′(d) = µ(d)}.

2.2 Menu Descriptions

The central notions of our paper are the definition of a player’s menu in a mecha-

nism, and the alternative definition of strategyproofness that the concept of a menu

provides. Briefly, player i’s menu with respect to t−i ∈ T−i is the set of outcomes that

player i might receive when other players have types t−i, and a mechanism is strate-

gyproof if and only if each player always gets her favorite outcome from her menu.11

Definition 2.5. For any social choice rule f , the menu Mt−i
of player i with respect

to types t−i ∈ T−i is the subset of all i-outcomes ai ∈ Ai for which there exists some

ti ∈ Ti such that f(ti, t−i) ∈ ai. That is,

Mt−i
= { [f(ti, t−i)]i | ti ∈ Ti} ⊆ Ai.

Theorem 2.6 (Hammond, 1979). A social choice rule f is strategyproof if and only

if each player i always receives (one of) her favorite i-outcomes from her menu. That

is, for every t−i ∈ T−i and ti ∈ Ti, it holds that f(ti, t−i) ⪰ti
i x for any x ∈Mt−i

.

Proof. Suppose f is strategyproof and fix t−i ∈ T−i. For every ti ∈ Ti, it holds by

definition that player i will always prefer [f(ti, t−i)]i at least as much as any other

i-outcome [f(t′i, t−i)]i on the menu. On the other hand, if player i always receives

her favorite i-outcome from her menu, then she always prefers reporting ti at least as

much as any t′i, so f is strategyproof.

A menu description of f for player i first calculates the menu of player i using t−i,

11Related or equivalent versions of Definition 2.5 have been considered under many different
names in many different contexts (e.g., sets that decentralize the mechanism in Hammond (1979);
option sets in Barberà et al. (1991); proper budget sets in Leshno and Lo (2021); feasible sets in
Katus̆c̆ák and Kittsteiner (2020); and likely others). We follow the “economics and computation”
literature (Hart and Nisan, 2017; Dobzinski, 2016; and follow-ups) in calling these sets “menus.”
This definition is distinct from many other definitions of menus such as those in (Mackenzie and
Zhou, 2022; Bó and Hakimov, 2023, and many others).
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and then selects i’s favorite i-outcome in the menu using ti.
12 The first premise of

this paper is that menu descriptions are one way to expose strategyproofness. This is

because any menu description can be immediately proven strategyproof, by a simple,

one-sentence proof: Player i’s report cannot affect her menu, and straightforward

reporting (“truthtelling”) gets player i’s favorite outcome from the menu.

In matching mechanisms, the menu of an applicant is simply the subset of institu-

tions she can get given other applicants’ preferences (and all institutions’ priorities).

For this domain, there is a formal sense in which menu descriptions are the only way

for strategyproofness to be proven via the simple proof outline above.

Proposition 2.7. Consider some applicant i. Fix t−i, let S denote some set of in-

stitutions, and suppose that for every possible ti, the institution in S that ti ranks

highest is [f(ti, t−i)]i. Then S =Mt−i
.

Proof. Since [f(ti, t−i)]i ∈ S for each ti ∈ Ti, we haveMt−i
⊆ S. Now, if there exists

some institution a ∈ S \ Mt−i
, then for any type ti that ranks a first, ti’s favorite

institution from S cannot possibly be [f(ti, t−i)]i ∈ Mt−i
. So no such a can exist,

and hence S ⊆Mt−i
.

Thus, for any two-step description that calculates a set S of institutions in Step (1)

and matches i to one of these institutions in Step (2), if strategyproofness follows from

the simple proof outline above, then the description must be a menu description. For

domains other than matching, an analogous result holds, except that the set S can

also contain “dominated” i-outcomes that no type prefers to all elements ofMt−i
.

This paper seeks menu descriptions of matching mechanisms that are as simple

as traditional descriptions. To start, we give a non-simple menu description as a

baseline:13

Example 2.8 (A non-simple menu description for any strategyproof matching mech-

anism). Consider any strategyproof matching mechanism f for n applicants and n

institutions, and fix an applicant i. For each institution h, let {h} denote the pref-

erence list of applicant i that ranks only h (indicating that all other institutions

are unacceptable). Let D be any outcome description of f ; for concreteness, suppose

that D is an algorithm for calculating the outcome matching of f given all applicants’

types. Then, the following is a menu description for applicant i:

12In some domains, more than one i-outcome can be tied for i’s favorite according to some ti (for
example, in a single item auction, a bidder is indifferent between not receiving the item and receiving
the item for a price equal to their value). In this case, the menu description must still assign player
i to [f(ti, t−i)]i. In other words, the menu description must follow the same tiebreaking rules as f .

13An equivalent description was independently given by Katus̆c̆ák and Kittsteiner (2020).
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(1) Using ≻−i, evaluate D on each type profile of the form ({h},≻−i) for each insti-

tution h separately. LetM be the set of all institutions h such that i is matched

to h at the end of some evaluation of D.

(2) Using ≻i, match applicant i to her highest-ranked institution inM.

By strategyproofness, h will be included in M in Step (1) if and only if h is on

the menu. Thus, Example 2.8 provides a menu description of f . However, we believe

there are disadvantages to using such a description in practice. Namely, we speculate

that real people would find this description far less natural and plausible than tra-

ditional descriptions, and possibly even confusing. In Example 2.8, any information

about i’s menu is acquired separately for each institution by completely restarting

description D. This stands in contrast to traditional descriptions of DA and TTC,

which (as discussed further in Section 6.1) incorporate each part of the preferences of

each applicant at most once. All in all, we consider a description similar to that in Ex-

ample 2.8 “complex,” and we do not recommend that real-life clearinghouses adopt an

approach as in Example 2.8. Instead, the second main premise of this paper is to look

for simpler menu descriptions, and in particular, menu descriptions that seem nearly

as simple as the corresponding traditional descriptions (which by their nature are typ-

ically the simplest currently known way to describe the mechanism to participants).

3 A Simple Menu Description of DA

We start with our main positive result: a menu description of (applicant-optimal)

Deferred Acceptance (DA), presented in Description 1 (and also in Table 2 in the

introduction). We view Description 1 as being nearly as algorithmically simple as the

traditional description of DA; in fact, it only adds an easy-to-state “menu calculation

and matching” step on top of a traditional description of DA.

Description 1 A menu description of DA for applicant d

(1) Run institution-proposing DA with applicant d removed from the market, to get
a matching µ−d. Let M be the set of institutions h such that d ≻h µ−d(h).

(2) Match d to d’s highest-ranked institution in M .

Crucially, Description 1 uses institution-proposing DA to calculate an applicant’s

menu in the applicant-optimal DA outcome (traditionally described via applicant-

proposing DA). To get some intuition for why this is the case, consider a market with
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three applicants d∗, d1, d2 and two institutions h1, h2. Applicants have preferences

d1 : h1 ≻ h2 and d2 : h2 ≻ h1, and institutions have priorities h1 : d2 ≻ d∗ ≻ d1 and

h2 : d1 ≻ d∗ ≻ d2. Running applicant-proposing DA on these preferences without d∗

gives matching {(d1, h1), (d2, h2)}, and both h1 and h2 prefer d∗ to their match. How-

ever, neither h1 nor h2 are on d∗’s menu, since having d∗ propose to any hi ∈ {h1, h2}
(after running applicant-proposing DA without d∗) causes a “rejection cycle” that

results in hi rejecting d∗. In contrast, institution-proposing DA outputs a matching

that has no potential applicant-proposing rejection cycles (sometimes also referred to

as institution-improving rotations, see Irving and Leather, 1986).

Formally, the following theorem establishes the correctness of Description 1:

Theorem 3.1. Description 1 is a menu description of DA. In particular, if every ap-

plicant is assigned to an institution according to this description, then the result is the

applicant-optimal stable matching (i.e., the matching output by applicant-proposing

DA).

Proof. We denote applicant-proposing (resp., institution-proposing) DA when run

with preferences P by APDA(P ) (resp., IPDA(P )). Fix an applicant d∗, fix prefer-

ences P for applicants, fix priorities for institutions, and let h be an institution. We

denote by P |d∗:∅ the preference profile obtained by altering P so that d∗ reports an

empty preference list (i.e., marking all institutions as unacceptable), and by P |d∗:{h}
the preference profile obtained by altering P so that d∗ reports a preference list con-

sisting only of h (i.e., marking all other institutions as unacceptable). We then observe

the following chain of equivalences:

h is in the menu of d∗ in APDA with respect to the reports P−d∗ of other applicants

⇐⇒
(
By strategyproofness of APDA, see Theorem E.9

)
d∗ is matched to h by APDA(P |d∗:{h})

⇐⇒
(
By the Lone Wolf / Rural Hospitals Theorem, see Theorem E.6

)
d∗ is matched to h by IPDA(P |d∗:{h})

⇐⇒
(
IPDA(P |d∗:{h}) and IPDA(Pd∗:∅) coincide until h proposes to d∗

)
h proposes to d∗ in IPDA(Pd∗:∅)

⇐⇒
(
IPDA(Pd∗:∅) and IPDA(P−d∗) produce the same matching, ignoring d∗;

in IPDA, h proposes in favorite-to-least-favorite order
)

h prefers d∗ to its match in IPDA(P−d∗) (in the market without d∗).
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Theorem 3.1 provides an appealing characterization of the menu of DA. It can

also provide an alternative approach to defining DA, or towards proving the strate-

gyproofness of (traditionally described) DA. To facilitate the latter, in Appendix C

we prove Theorem 3.1 from first principles, without relying on the strategyproofness

of DA as in the above proof.14 One can also consider menu descriptions of DA in

many-to-one markets and markets with contracts. In Remark C.2, we observe that

the same arguments as in the proof of Theorem 3.1 above show that a natural gen-

eralization of Description 1 (provided in Description A.1) characterizes the menu of

DA in many-to-one markets with substitutable priorities, and even in many-to-one

markets with contracts where institutions have substitutable priorities that satisfy

the law of aggregate demand (Hatfield and Milgrom, 2005).

We also remark that—even disregarding the goal of describing DA—Theorem 3.1

can serve as a useful lemma for reasoning about the properties of DA. For example,

if one applicant’s priorities increase at some set of institutions, then (all other things

being equal) the match of that applicant in DA can only improve (Balinski and

Sönmez, 1999); this property is immediate from Description 1. As another example,

a short argument using Description 1, which we provide in Remark C.3, suffices to

show that in a market with n+1 applicants, n institutions, and uniformly random full

length preference lists, applicants receive in DA roughly their n/ log(n)th choice in

expectation—rather lower than in the case with n applicants, where they receive their

log(n)th choice—re-proving results from Ashlagi et al. (2017); Cai and Thomas (2022).

3.1 Practical Considerations Regarding Description 1

While our main focus in the theoretical sections of this paper is searching for simple

menu descriptions, we make some remarks on potential practical applications of De-

scription 1 (and its variant for many-to-one markets, Description A.1). From the point

of view of an applicant, Description 1 is qualitatively different from traditional descrip-

tions. While the traditional description of DA cleanly explains that the matching will

be feasible—i.e., that every applicant will be matched to a different institution (or, in

a many-to-one market, that no institution will exceed its capacity)—its strategyproof-

ness requires a complex mathematical proof (such as that presented in Section E.2).15

14Description 1 could also be used to give an inductive definition of DA that does not reference
the traditional DA algorithm, where the induction base is that if there are no applicants then the
matching is empty. Theorem 3.1 proves that this inductive definition defines a feasible matching
rule (and in particular, that it defines the DA social choice rule).

15While clearinghouses typically encourage straightforward preference reporting, they rarely
try to elucidate precisely why DA is strategyproof. One common approach is to instead rely on
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In Description 1, the situation reverses: strategyproofness is easy to observe, but see-

ing why this procedure will produce a feasible matching (let alone a stable matching)

becomes complex and delicate. (For example, if institution-proposing DA is replaced

with student-proposing DA in Description 1, the resulting mechanism would still be

strategyproof, yet might match many applicants to the same institution.) If a clear-

inghouse adopts Description 1, they could make strategyproofness easier to see but

feasibility harder to see (a tradeoff we investigate formally in Sections 6 and 7). In

real-world settings, applicants’ primary concern may be their own match and the

question which preference list they should report, while feasibility and stability may

be the concerns of only the policymakers. Thus, adopting Description 1 may have

tangible benefits.16

A clearinghouse could adopt Description 1 by changing their internal algorithms

calculating each applicant’s match to work according to Description 1. But, even if the

algorithm used to calculate the matching remains unchanged, Description 1 provides

a complete and accurate description of one’s match in the DA mechanism (regardless

of how that match is calculated). In addition to demonstrating strategyproofness, De-

scription 1 may afford participants a better understanding of what strategyproofness

means. Absent any training in economics or game theory, advice such as “it is always

best to report your true ranking” may be unclear (e.g., what does best mean?).17

Instead, Description 1 exposes strategyproofness as a simple, concrete, and tangi-

ble property: each applicant is matched to their highest-ranked attainable institution

(where the set of attainable institutions cannot be influenced by one’s own ranking).18

appeals to authority. As reported by Dreyfuss et al. (2022b), an informative video published by the
National Resident Matching Program (NRMP) was formerly introduced with the text:

Research on the algorithm was the basis for awarding the 2012 Nobel Prize in
Economic Sciences. To make the matching algorithm work best for you, create your
rank order list in order of your true preferences, not how you think you will match.

16That said, we believe Description 1 is unlikely to mitigate—and may even increase—the
amount of trust applicants must place in any clearinghouse’s descriptions (in contrast to, e.g., the
framework of credible mechanisms, Akbarpour and Li, 2020).

17This advice is sometimes phrased so as to instruct applicants that they “should not strategize,”
an often borderline moral command. Abdulkadiroğlu et al. (2011) report a case of one parent who
wanted to submit the best possible list and, frustrated by the language the school district used to
describe misreporting one’s true preference over the schools, said “you call this strategizing as if
strategizing is a dirty word...”.

18We speculate that there may be additional psychological framing benefits to our description.
First, it may be much harder for an applicant to confuse Description 1 with the non-strategyproof
Boston mechanism, where seats can indeed fill up for one, depending on her own submitted list.
Second, instead of framing DA in terms of applicants getting repeatedly rejected, Description 1
frames DA in terms of choosing the best institution out of a set, which may both sound generally
more positive from the point of view of real-world applicants and have specific benefits from the
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4 SD, TTC, and Individualized Dictatorships

In this section, we consider the mechanisms Serial Dictatorship (SD) and Top Trading

Cycles (TTC) through the lens of menu descriptions.

First, consider SD. Suppose applicants are indexed by i ∈ {1, 2, . . . , n} with a

respective priority order 1, 2, . . . , n. Observe that from the point of view of applicant

i, the traditional description of SD can be divided into three steps as follows:

(1) Each applicant 1, . . . , i − 1, in order, is matched to her top-ranked remaining

institution.

(2) Applicant i is matched to her top-ranked remaining institution.

(3) Each applicant i + 1, . . . , n, in order, is matched to her top-ranked remaining

institution.

Since Steps (1) and (2) above are a menu description for applicant i, the traditional

description of SD already contains a menu description (for each applicant simultane-

ously) embedded within it.

Are menu descriptions embedded in the traditional descriptions of other mecha-

nisms? Inspired by SD, we consider a generalization of the above 3-step description.

Our generalized outline applies to any environment, any strategyproof mechanism,

and any player i. This outline describes the full outcome (e.g., the entire match-

ing or allocation as opposed to only player i’s match or allocation), and emphasizes

strategyproofness for player i by starting with a menu description. This outline is:

(1) Using only t−i ∈ T−i, the menuMt−i
of player i with respect to t−i is calculated.

(2) Using ti ∈ Ti, player i is guaranteed her favorite i-outcome fromMt−i
.

(3) Using both ti and t−i, the full outcome f(ti, t−i) is calculated.

We call such a description an individualized dictatorship description for player i.

Note that being an individualized dictatorship simply means being a description that

contains a menu description for player i while calculating the full outcome.

For SD, we can now state the following observation:

Fact 4.1. For each applicant i, the traditional description of SD is an individualized

dictatorship description for applicant i.

point of view of models of news utility, disappointment aversion, and/or ego utility.
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We now turn to TTC. Perhaps surprisingly, we find that this mechanism has an

individualized dictatorship description that is quite similar to its traditional descrip-

tion. Consider any applicant d in TTC. In contrast with SD, this description only

contains a menu description for d, the applicant reading the description.19 Our in-

dividualized dictatorship for TTC is presented in Description 2. Briefly, this new

description modifies the traditional description (from Definition 2.3) only by delaying

matching applicant d as long as possible.20 This accurately describes the full match-

ing due to the well-known fact that TTC is independent of the order in which cycles

of applicants and institutions are chosen to be matched.

Description 2 An individualized dictatorship description of TTC for applicant d

(1) Using only t−d, iteratively match as many cycles not involving applicant d as
possible. Let M denote the set of remaining institutions.

(2) Using td, match d to her highest-ranked institution in M . Call this institution h.

(3) Match the cycle created when d points to h, then continue to interatively match
cycles until all applicants are matched (or have exhausted their preference lists).

Theorem 4.2. Description 2 is an individualized dictatorship description of TTC.

In particular, the set M in Step (1) is applicant d’s menu, and the matching produced

at the end of Step (3) is the outcome of TTC.

Proof. We use the fact that by Lemma B.4, TTC is independent of the order in which

we choose to match trading cycles, and proceed by showing that Description 2 is a

valid run of the traditional description of TTC (with a specially chosen order for

matching cycles). Description 2 begins in Step (1) by running TTC, and as long as

this is possible, only matching cycles that do not include applicant d. (By definition,

Step (1) uses only t−d, as needed.)

Observe that (by Lemma B.4) any institution matched during this Step (1) of

Description 2 is not on d’s menu. To see that each remaining institution is on d’s

menu, note that when d now points to her favorite remaining institution (whatever

it is), since the next executed cycle must involve d, she gets this institution. (See

19At a technical level, it is easy to see that a menu description for all players at the same time is
strongly OSP (Pycia and Troyan, 2023). Since virtually all mechanisms beyond SD are not strongly
OSP implementable (Pycia and Troyan, 2023), we must specialize the menu description to each
player separately to describe mechanisms such as TTC.

20This can also be thought of as running TTC, with a twist: during the first stage, applicant d
does not point to any institution.
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Figure 1: An illustration of the menu
calculation in Description 2.

Notes: Circles are applicants; squares are insti-
tutions; each participant except applicant i (the
double circle) points to her favorite remaining
institution. When all possible trading cycles not
involving applicant i have been performed, all
remaining institutions directly or indirectly point
at applicant i, who can therefore complete a cycle
by pointing to any remaining institution. Thus,
every remaining institution is on i’s menu.

Figure 1 for an illustration.) Thus, M is exactly applicant d’s menu. Finally, Step (3)

correctly matches the cycle containing applicant d, and then continues running TTC

as usual (matching cycles in any order) using the rest of the applicants’ preferences

to construct the final matching. This entire process constitutes a valid run of TTC,

and thus correctly computes the final matching.

5 Formal Model of Mechanism Descriptions

We now introduce a general framework for reasoning about descriptions of mecha-

nisms. This framework helps capture ways in which traditional descriptions of match-

ing mechanisms, as well as Description 1 and Description 2, may be simple. Most

significantly, we use this framework to prove impossibility results that rule out the

existence of additional types of simple descriptions beyond those we present.

Mechanisms can be described to players in a variety of ways. The present pa-

per alone contains a range of options, including textual descriptions and algorithmic

pseudocode. To abstract over all these possibilities, we introduce the definition of

an extensive-form description. At a technical level, an extensive-form description is

similar to an extensive-form mechanism in which different branches may “merge,” i.e.

an extensive-form mechanism in which the underlying game tree is actually a directed

acyclic graph (DAG).21 However, the semantic interpretation is very different from

that of an extensive-form mechanism: Rather than modeling an interactive process

where the players may act multiple times, an extensive-form description spells out

the steps used to calculate the outcome (or the i-outcome for some player i) as a

function of the (directly reported) types of the players.

21Alternatively, extensive-form descriptions can be viewed as finite automata where state
transitions are given by querying the types of players, or (borrowing terminology from the computer
science literature) as branching programs.
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We are interested in three special cases of extensive-form descriptions: an extensive-

form outcome description models traditional descriptions such as Definitions 2.2, 2.3,

and 2.4. An extensive-form menu description models menu descriptions such as De-

scription 1 and those from Table 1. An extensive-form serial individualized description

models individualized dictatorship descriptions such as Description 2.

Definition 5.1 (Extensive-Form Descriptions).

• An extensive-form description in some social choice environment is defined by

a directed graph on some set of vertices V .22 There is a (single) root vertex

s ∈ V , and the vertices of V are organized into layers j = 1, . . . , L such that

each edge goes between layer j and j + 1 for some j. For a vertex v, let S(v)

denote the edges outgoing from v. Each vertex v with out-degree at least 2

is associated with some player i, whom the vertex is said to query, and some

transition function ℓv : Ti → S(v) from types of player i to edges outgoing from

v. (It will be convenient to also allow vertices with out-degree 1, which are

not associated with any player.) For each type profile (t1, . . . , tn), the evalua-

tion path on (t1, . . . , tn) is defined as follows: Start in the root vertex s, and

whenever reaching any non-terminal vertex v that queries a player i and has

transition function ℓv, follow the edge ℓv(ti).

• An extensive-form outcome description of a social choice function f is an extensive-

form description in which each terminal vertex is labeled by an outcome, such

that for each type profile t ∈ T , the terminal vertex reached by following the

evaluation path on t ∈ T is labeled by the outcome f(t1, . . . , tn).

• An extensive-form menu description of a social choice function f for player i is

an extensive-form description with k+1 layers, such that (a) each vertex preced-

ing layer k queries some player other than i, (b) each vertex v in layer k queries

player i and is labeled by some setM(v) ⊆ Ai, such that if v is on the evalu-

ation path on a type profile t ∈ T , thenM(v) =Mt−i
is the menu of player i

with respect to t−i in f , and (c) each (terminal) vertex v in the final layer k+1

is labeled by an i-outcome, such that if v is reached by following the evaluation

path on a type profile t ∈ T , then v is labeled by the i-outcome [f(ti, t−i)]i.

• An extensive-form individualized dictatorship description of f for player i is

22Formally, a directed graph G on vertices V is some set of ordered pairs G ⊆ V × V . An
element (v, w) ∈ G is called an edge from v to w. A source (resp., sink) vertex is any v where there
exists no vertex w with an edge from w to v (resp., from v to w).
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an extensive-form outcome description of f with some layer k ∈ {1, . . . , L}
such that: (a) each vertex preceding layer k queries some player other than i,

and (b) each vertex v in layer k queries player i and is labeled by some set

M(v) ⊆ Ai, such that if v is on the evaluation path on a type profile t ∈ T ,
thenM(v) =Mt−i

is the menu of player i with respect to t−i in f .

Any precise algorithmic description—whether it is an outcome, menu, or individ-

ualized dictatorship description—induces an extensive-form description in a natural

way: the vertices in layer j are the possible states of the algorithm after querying

the types of different players altogether j times. For example, consider the menu

description of a second price auction given in Table 1(b). This description calculates

the menu of one bidder as a function of (only) the highest bid placed by any other

bidder. This can be made precise via an extensive-form description that queries the

other bidders one-by-one, while keeping track of only the highest bid placed by any

of them. Figure 2 provides an illustration. We sometimes refer to an extensive-form

description simply as a “description” for brevity. For the mechanisms SD, TTC, and

DA, we use the term “traditional description” to refer to an extensive-form outcome

description that formalizes the canonical (algorithmic) description of the mechanism,

as in Definitions 2.2, 2.3, and 2.4.
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$0

$3
$2

$1

$0

$3
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$1

$0

. . .
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$1

$0

︸︷︷︸
Bidder 1 ︸︷︷︸

Bidder 2

︸︷︷︸
Bidder 3

︸︷︷︸
Bidder n

win for $3

win for $2

win for $1

win for $0

lose

Figure 2: An extensive-form
menu description for bidder n in
a second-price auction.

Note: The second-to-last layer is
labeled with bidder n’s menu, abbrevi-
ated in the figure by the price she must
pay to win the item.

6 Main Impossibility Result for DA

6.1 Applicant-Linear Descriptions

We now apply our general framework from Section 5 to matching mechanisms. We

start by identifying two crucial properties that the traditional descriptions of SD,

TTC, and DA (and virtually all other popular matching mechanisms) share. First,
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they only consider the preferences of applicants once, in a specific, natural order—

from favorite to least favorite. Second, they require a small amount of bookkeeping

as they run—little more than the bookkeeping required to remember a single match-

ing. We formalize the latter requirement using a memory requirement: a general

quantitative measure of the amount of bookkeeping a description uses.

Definition 6.1 (Applicant-Linear Descriptions).

• In a matching environment, an extensive-form descriptionD is applicant-proposing

if it satisfies the following: For every applicant i and every possible evalua-

tion path through D, let v1, v2, . . . , vk denote the vertices along the evaluation

path that query applicant i. Then, for j = 1, . . . , k, the transition function

ℓvj : Ti → S(vj) (which determines which edge to follow in the evaluation path)

depends only on the jth institution on applicant i’s preference list (possibly an

“empty institution” if this list consists of fewer than j institutions).23

• The memory requirement of an extensive-form description is the logarithm,

base 2, of the maximum number of vertices in any layer of the graph. (This is

precisely the number of bits required to store the vertex number of the current

vertex within a layer; intuitively, this is the amount of bookkeeping or “scratch

paper” required by the description.)

• In a matching environment with n applicants and n institutions, an extensive-

form description is applicant-linear if it is applicant-proposing and uses at most

Õ(n) memory.24,25

Each of SD, TTC, and DA is traditionally defined using applicant-linear descrip-

tions.

Observation 6.2. Each of SD, TTC, and DA has an applicant-linear outcome de-

scription.

23While we call this property “applicant-proposing,” it also applies to the “applicant-pointing”
TTC description, as well as to any other description that uses applicant preferences (one time only)
in favorite-to-least-favorite order.

24The standard computer-science notation Õ(n) means O(n logα n) for some constant α. That
is, for large enough n, memory is upper-bounded by cn logα n for some constants c, α that do not
depend on n. Using Õ(n) memory means using only nearly constant bookkeeping per applicant.

25We remark that the name “linear” refers to two things in the interest of brevity: the linear order
in which the description reads preferences (i.e., being applicant-proposing), and the nearly-linear

amount of bookkeeping used (i.e., Õ(n)).
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We start by making two technical remarks. First, note also that Õ(n) is exactly
(up to the precise logarithmic factors) the number of bits of memory required to de-

scribe a single matching (or a single applicant’s menu). To see this formally, note that

there are n! = 2O(n logn) distinct matchings involving n applicants and n institutions

(and exactly 2n possible menus). Intuitively, this simply formalizes the fact that the

number of letters it takes to write down a single matching with n applicants and n

institutions (or, a subset of the n institutions) is roughly proportional to n. Thus,

Õ(n) is the minimal possible memory requirement of any description that calculates a

matching (or one applicant’s menu). Another reason that Õ(n)-memory descriptions

are particularly natural for matching mechanisms is that on average only a small

amount of information about each applicant’s type (namely, O
(
logk(n)

)
-many bits)

need be remembered at any point throughout the evaluation.26

Second, note that assuming only that a description is applicant-proposing (with

no bound on the memory) places no restrictions on what the description can compute.

To see this, pick any matching mechanism and consider an extensive-form description

that (a) queries applicants one-by-one for their entire preference list while remember-

ing that list in its entirety (formally, this is done by constructing the directed graph of

the extensive-form description to be a tree), and then (b) outputs the outcome of the

matching rule (formally, each leaf of the tree is labeled with the outcome of the match-

ing mechanism for the types queried on the path to that leaf). This description shows

that the maximum memory requirement for describing any matching mechanism is

Õ(n2), matching the memory required to store all (n!)n = 2O(n2 log(n)) possible prefer-

ence profiles for all applicants. When we prove our main impossibility result (Theo-

rem 6.4) below, we show that a certain class of descriptions requires memory Ω(n2),

matching (up to the precise logarithmic factors) this as-high-as-possible solution.27

To demonstrate why we interpret applicant-linearity also as a simplicity notion

for descriptions of matching mechanisms, consider a description of DA given in one

of its most celebrated applications: matching medical doctors to residencies in the

US National Residency Matching Program (NRMP). This description is in a form of

a video that describes DA by applying it to an example small matching market; see

Figure 3(a). The explanation in the video is aided by two visual elements: crossing off

institutions from applicants’ lists as the description progresses, and keeping track of a

26Moreover, applicant-proposing descriptions have the natural property that they can read each
part of each applicants’ preference list only once, so information that is read but not recorded (in
the small amount of memory available) cannot matter for the rest of the evaluation.

27The standard computer-science notation Ω(n2) means that, for large enough n, memory is
lower-bounded by cn2 for some constant c that does not depend on n.
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“current tentative matching” illustrated by the yellow-highlighted names. We observe

that these two simple visual elements are enabled precisely by the two desiderata of

applicant-linearity.

(a) An illustration of the traditional description of DA.

{ (h1, d3), (h2, d1), (h3, ∅), (h4, d4) }

Linear memory

Quadratic memory

d1 : h1 � h2 � h3 � h4 � ∅

d2 : h1 � h4 � h2 � ∅

d3 : h2 � h1 � h4 � h3 � ∅

d4 : h1 � h4 � h3 � ∅

(b) Different possible
memory requirements.

Figure 3: (a): Screenshot of a video illustrating the traditional description of DA
through an example. (b): A graphical illustration of the contrast between roughly

linear (i.e., Õ(n)) memory and quadratic (i.e., Ω(n2)) memory.

Notes: Screenshot taken from NMS (2020), a video produced by National Matching Services, the
company that provides matching software to the National Residency Matching Program.

First, the fact that the description is applicant-proposing is necessary for the video

to cross off institutions from applicants’ lists as the description progresses. This would

not have been possible for a description that is not applicant-proposing, i.e., a descrip-

tion that reads applicant preferences in an order that is not favorite-to-least-favorite,

or reads these preferences multiple times.

Second, the linear memory requirement of the description is necessary for the yel-

low highlighting in the video, which illustrates one tentative match for each applicant,

to capture the entire required bookkeeping. This would not have been possible for a

description that requires much more than linear memory. For example, any descrip-

tion that requires quadratic memory (i.e., Ω(n2), matching the bound achieved in our

main impossibility result, Theorem 6.4 below) relies on an amount of bookkeeping

roughly equivalent to all of the n preference lists of each applicant simultaneously—

the same bookkeeping requirement as remembering n disjoint matchings, which would

require some much bulkier, more verbose illustration. See Figure 3(b) for an illustra-

tion of the stark difference between linear and quadratic memory.
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While some non-applicant-proposing and/or non-linear-memory algorithms may

or may not be simple in other senses, we contend that such algorithms are not sim-

ple in the same way that traditional descriptions of DA are simple. In particular,

such non-applicant-linear algorithms could not leverage the properties facilitating the

simple description in the video.

We finally note that while applicant-linearity captures a way in which the tradi-

tional descriptions of SD, TTC, and DA are simple, we do not view every applicant-

linear description as simple. Rather, applicant-linearity aims to be a necessary, but

not sufficient, condition for being simple in a particular sense shared by traditional

descriptions. Indeed, we examine a different type of simplicity in Section 7, and

additional notions of simplicity may be investigated by future work.

In the next section, we use applicant-linearity to investigate the relationship be-

tween menu descriptions and and traditional descriptions. Our main result provides

a strong sense in which uncovering a menu description within a small tweak of the

traditional description of DA is impossible, using applicant-linearity to capture (a

necessary condition for being) a small tweak of the traditional description of DA.

6.2 Individualized Dictatorships for DA: A Stark Contrast

to SD and TTC

Recall that for both SD and TTC, we constructed menu descriptions within (small

tweaks of) the traditional descriptions in Section 4. In particular, we constructed

individualized dictatorships, which expose strategyproofness to one applicant while

calculating the entire matching. Like the corresponding traditional descriptions, the

individualized dictatorships in Section 4 are applicant-linear:

Corollary 6.3. For any applicant, SD and TTC each have an applicant-linear indi-

vidualized-dictatorship description.

We now turn to DA, and present our main impossibility result. We prove that

nothing like Corollary 6.3 is possible for DA. That is, under our simplicity condition

from Section 6.1, no simple individualized dictatorship for DA exists. Formally:

Theorem 6.4. For any applicant d, there exist priorities of the institutions such

that no applicant-linear individualized dictatorship description of DA exists. In fact,

any applicant-proposing individualized dictatorship extensive-form description for DA

requires Ω(n2) memory.
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In addition to the literal interpretation of Theorem 6.4—ruling out a class of sim-

ple individualized dictatorships for DA—we view Theorem 6.4 as showing that a menu

description cannot be found within a small tweak of the traditional description of DA.

First, we contend that any small tweak of the traditional (applicant-linear) descrip-

tion should still be applicant-linear, since (as discussed in Section 6.1) any description

that is not applicant-proposing must query preferences in a fundamentally different

way, and any description with dramatically higher memory requirements must have

dramatically different bookkeeping. Second, a small tweak should still calculate the

same overall matching. Combined with the requirement that the menu be calculated

(within the tweaked description) without querying applicant d’s type (as for all menu

descriptions, to expose strategyproofness), this means that the tweaked description

must be an individualized dictatorship (Definition 5.1). Thus, Theorem 6.4 rules out

the possibility that a small tweak of the traditional description of DA can describe

one applicant’s menu in a way that exposes strategyproofness.

Before proving Theorem 6.4 we make one technical remark. Recall that in Sec-

tion 4, we used the fact that the traditional description of TTC is independent

of the execution order that the mechanism chooses (i.e., the order in which cy-

cles/proposals are chosen) to find an appealing individualized dictatorship. Since

applicant-proposing deferred acceptance is independent of execution order as well,

one may wonder why a similar approach does not work for DA (as such a result is

precluded by Theorem 6.4). To see why this is the case, recall that as shown by an ex-

ample in Section 3, in DA allowing all other applicants to propose before applicant d

proposes does not suffice to calculate the menu (because applicant d proposing at that

point to an institution might result in a rejection cycle that leads to the rejection of

d from that institution).

The proof of Theorem 6.4 constructs (for a carefully chosen, fixed set of institution

priorities) a very large set of applicant preferences such that: (a) to learn the menu

of applicant d, a large fraction of every other applicant’s preference list must be read,

and (b) to correctly compute the final matching, all of the information from these

applicants’ lists must be remembered in full. The Ω(n2) lower bound comes from this

large amount of information that must be remembered.

Proof. Fix an applicant d∗ and let D be any applicant-proposing individualized dic-

tatorship extensive-form description of DA for d∗.

We now describe a set S of possible inputs to DA, illustrated in Figure 4. For

simplicity, let n be a multiple of 4. There are n/2 total “2-cycles” containing two

applicants and two institutions each. Cycle i has applicants di and d′i and institutions
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hi and h′
i. The cycles are divided into two classes, “top” cycles (for i = 1, . . . , n/4)

and “bottom” cycles (for i = n/4 + 1, . . . , n/2).

The institutions’ priorities are fixed, and defined as follows:

For top 2-cycles For bottom 2-cycles

(i ∈ {1, . . . , n/4}): (i ∈ {n/4 + 1, . . . , n/2}):

hi : d′i ≻ d∗ ≻ di hi : d′i ≻ d1 ≻ d2 ≻ . . . ≻ dn/4 ≻ di

h′
i : di ≻ d′i h′

i : di ≻ d′i

For the top cycle applicants di with i ∈ {1, . . . , n/4}, the preferences vary (in a way

we will specify momentarily). Other applicant preference are fixed, as follows:

For bottom 2-cycles (i ∈ {n/4 + 1, . . . , n/2}): di : hi ≻ h′
i

For all 2-cycles (i ∈ {1, . . . , n/2}): d′i : h′
i ≻ hi

Figure 4: Illustration of the
set of preferences used in
Theorem 6.4.
Notes: Dark nodes represent di or
hi for some i, and grey nodes repre-
sent d′i or h′

i. The arrows directed
outwards from a top-tier di represent
the sets Ti. We show that these sets
Ti must be fully remembered by any
applicant-proposing individualized
dictatorship for DA.

Let S denote the set of preference profiles where, in addition to all the above, for

all top cycle di with i ∈ {1, . . . , n/4}, we have

di : hi ≻ Ti ≻ h′
i

where Ti is an arbitrary subset of {hj | j ∈ {n/4 + 1, . . . , n/2}} (the set of hi from

bottom cycles) placed in an arbitrary fixed order. Any such collection of {Ti}i=1,...,n/4

uniquely defines a preference profile in S. Note that |S| = 2(n/4)
2
.

We additionally define a set of inputs S ′ ⊇ S. Specifically, let S ′ denote the set

containing every element of S, and additionally any top cycle applicant di may or

may not truncate the final institution h′
i off her list. In other words, in addition

to the sets {Ti}i=1,...,n/4, an element of S ′ is defined by bits {bi}i=1,...,n/4, such that
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whenever bi = 0, we set di’s preference to hi ≻ Ti ≻ h′
i, and whenever bi = 1, we set

di’s preference is hi ≻ Ti.
28

We now proceed with two lemmas formally establishing that each set Ti must be

read during Step (1) of D, and each set Ti must be remembered during Step (3) of D.

Lemma 6.5. In order to correctly calculate the menu of d∗ on S ′, description D must

query the entire preference list of each top cycle applicant di (up to the position of h′
i).

To prove this lemma, consider the rejection chain that occurs when d∗ submits

a list containing only hi. First, di is rejected, then she proposes to every institution

hj ∈ Ti. This “rotates” the bottom cycle containing hj. That is, hj will accept the

proposal from di, then dj will propose to h′
j, then d′j with propose to hj, so di will

then be rejected from hj. This will occur for every hj ∈ Ti, so di will not match to

any hj with j ∈ {n/4 + 1, . . . , n/2}.
Finally, after getting rejected from each institution in Ti, di may or may not pro-

pose to h′
i. If she does not, then hi will be on d∗’s menu. If she does, then h′

i will

reject d′i, who will propose to hi, which will reject d∗, so hi will not be on d∗’s menu.

Thus, any applicant-proposing description must read all of di’s list before being able

to correctly learn the menu of d∗. This proves Lemma 6.5.

Lemma 6.6. For each distinct set of preference profiles t−∗ in S, the induced function

APDA(·, t−∗) : T∗ → A from types of d∗ to matchings is distinct.

To prove this lemma, consider two preference profiles in S, one profile t−∗ defined

by {Ti}i∈{1,...,n/4}, and the other profile t′−∗ defined by {T ′
i}i∈{1,...,n/4}. As these are

distinct collections of sets, without loss of generality there is some i and j such that

hj ∈ Ti \ T ′
i . Suppose now that d∗ proposes just to hi. Then consider the rejection

chain under t−∗ and under t′−∗. Under t−∗, the bottom tier 2-cycle containing hj will

be “rotated,” i.e. hj will match to d′j in the final matching. However, this is not the

case under t′−∗. Thus, t−∗ and t′−∗ produce different final matchings under the same

preference list of d∗, and thus induce distinct functions from T∗ to outcomes. This

proves Lemma 6.6.

We can now prove Theorem 6.4. Together, Lemma 6.5 and Lemma 6.6 show

that at the layer where D presents the menu to d∗, the description must be in a

distinct state for each possible way of assigning Ti ⊆ {hi|i ∈ {n/4 + 1, . . . , n/2}} for
i ∈ {1, . . . , n/4}. There are 2(n/4)2 = 2Ω(n2) possible ways to set the collection {Ti}i, so
the description requires at least this number of states, and thus uses space Ω(n2).

28This collection of preferences can also be constructed with full preference list by adding some
unmatched institution h∅ to represent truncating di’s list.
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Theorem 6.4 is the main impossibility result of our paper: it gives a robust and

precise sense in which it is hard to infer from the traditional description of DA that

DA “has a menu”—i.e., that an applicant gets her highest-ranked institution from a

set that her report cannot influence—a property equivalent to strategyproofness. It

shows that identifying the menu requires vastly more bookkeeping—in fact, nearly

the maximum possible amount of bookkeeping (as discussed in Section 6.1)—than

performed by the traditional description.

Theorem 6.4 rules out a broad class of individualized dictatorship descriptions

resembling traditional ones, namely, all those that are applicant-proposing and use

low memory. The theorem is tight in the sense that none of these three requirements

(individualized dictatorship, applicant-proposing, and low memory) can be dropped.

First, the traditional description is applicant-proposing and uses low memory, but

does not compute the menu (so is thus not an individualized dictatorship). Second,

as discussed in Section 6.1, an applicant-proposing individualized dictatorship that

uses Õ(n2) memory can be constructed for any matching mechanism. Finally, we can

show that an Õ(n) memory individualized dictatorship description of DA exists that

makes just two passes through the preference list of each applicant (one pass before

the menu is computed, and one pass afterward).29

All told, there is a stark three-leveled contrast in our framework between SD,

TTC, and DA. The strategyproofness of SD is already clear, simultaneously for all

applicants, from its traditional description. To expose the strategyproofness of TTC,

the traditional description of the matching must be slightly tweaked and specialized

to each individual applicant. However, once this is done, strategyproofness is easy

to see.30 For DA, in contrast with both other mechanisms, no small tweak of the

traditional description suffices to expose strategyproofness through menus.

29This follows from a result in Section D.2, which we discuss in Section 7 below, that shows that an
applicant-linear menu description of DA exists. A two-pass individualized dictatorship can then use
this description to compute the menu of one applicant, and then “restart” and use the traditional de-
scription of DA to compute the rest of the matching. We informally observe that the use of two passes
significantly obscures the connection and consistency between the menu and the resulting matching.

30Obvious strategyproofness (OSP) can be interpreted as one formal sense in which strategyproof-
ness can be exposed to all players simultaneously. Indeed, it is not hard to see that any description
that is a menu description for all players simultaneously, such as the traditional description of SD,
is OSP-implementable. However, TTC is not OSP-implementable (Li, 2017). This gives a formal
sense in which specializing the description of TTC to different players is necessary.
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7 The Landscape of Descriptions of DA

7.1 Additional Descriptions of DA

Description 1, our positive result from Section 3, is an institution-proposing descrip-

tion of DA (specifically, a menu description).31 In contrast, Theorem 6.4, our impossi-

bility result from Section 6, is for applicant-proposing descriptions of DA (specifically,

for individualized dictatorships). This difference leaves open the question of whether

other types of descriptions are feasible. For example, could there be an appealing

institution-proposing individualized dictatorship? To begin this search, we utilize the

simplicity condition in Theorem 6.4, and ask whether there exist additional descrip-

tions with low (i.e., Õ(n)) memory.

Perhaps surprisingly, in Appendix D we construct low-memory extensive-form de-

scriptions of (applicant-optimal) DA of every type not ruled out by Theorem 6.4.

That is, we construct for DA each of:

• An institution-proposing, Õ(n)-memory outcome description (Section D.1, adapted

from an algorithm used by Ashlagi et al. (2017)).

• An applicant-proposing, Õ(n)-memory menu description (Section D.2).

• An institution-proposing, Õ(n)-memory individualized dictatorship (Section D.3).

Unfortunately, except for the traditional description of DA and for Description 1,

every description we construct is a delicate and technical algorithm; as one can see in

Appendix D, each of these algorithms uses careful, and likely unintuitive, bookkeep-

ing to maintain low-memory, and requires many sub-routines to define. Thus, these

algorithms seem impractical. However, this does not necessarily imply that there are

no other, more attractive, descriptions of these types. We address this (im)possibility

in the next section.

7.2 Local One-Side-Proposing Descriptions of DA

In this section, we give a precise sense in which any descriptions of the types discussed

in Section 7.1 must be convoluted. Briefly, any such description must have a property

we call non-locality : it must update bookkeeping concerning some participants when

31While we have not formally defined institution-proposing descriptions, whenever we use these
terms we mean the analogous definitions to Definition 6.1, in which sides are interchanged (and
in particular, for purposes of analysis, the vertices of the extensive-form description query the
institutions’ priorities).
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Table 5: Full classification of one-side-proposing descriptions of the applicant-optimal
stable matching mechanism.

Menu
Description

Outcome
Description

Individualized
Dictatorship

Applicant
proposing

In Section D.2.
Necessarily non-local

by Theorem 7.2.

Traditional
DA algorithm

Completely
impossible

by Theorem 6.4.

Institution
proposing

Description 1
in Section 3

In Section D.1 /
Ashlagi et al. (2017).
Necessarily non-local

by Theorem 7.3.

In Section D.3.
Necessarily non-local

by Theorem 7.3.

Notes: We look for descriptions of DA that use at most Õ(n) memory. Descriptions either
read preferences in an applicant-proposing manner or read priorities in an institution-proposing
manner. Descriptions either compute the menu (exposing strategyproofness), compute the outcome
matching (exposing feasibility), or compute both the menu and the matching in an individualized
dictatorship (exposing both).

making queries that seem unrelated to them. See Table 5 for an overview all our

descriptions and impossibility results for DA.

Technically, we call an applicant-proposing outcome description (resp., menu de-

scription for applicant d) local if (a) in addition to any global bookkeeping, it also

maintains local bookkeeping for each institution, and this bookeeping is only updated

when that institution is read from any applicant’s list, and (b) the calculated match of

an institution (resp., whether the institution is on applicant d’s menu) only depends

on the final state of the local bookkeeping for this institution. The definition of local

bookkeeping for institution-proposing descriptions interchanges the roles of applicants

and institutions, and locality analogously requires that the calculated part of the out-

put relevant to an applicant d depend only on the local bookkeeping for d. Formally:

Definition 7.1.

• In a matching environment, local bookkeeping for an applicant-proposing extensive-

form description D is a label
(
L1(v), . . . , Ln(v)

)
for each vertex v in D such

that the following holds for every internal vertex v in D. Let i be the appli-

cant queried at v. Since D is applicant-proposing, recall that the transition

function ℓv : Ti → S(v) depends only on the jth institution (possibly an empty

institution ∅) on i’s preference list, for some j. Abusing notation, we therefore
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consider ℓv to be a function from institutions to S(v). Then, for every institu-

tion k, the labels of v and of ℓv(k) may only differ in their kth coordinate, Lk

(and in particular, if k = ∅, the labels of v and ℓv(k) must be the same).

• An applicant-proposing extensive-form outcome description D is local if there

exists local bookkeeping for it such that for every terminal vertex v in D and

institution k, the determination of the match of k at v depends only on Lk(v).

• An applicant-proposing extensive-form menu description D for applicant i is

local if there exists local bookkeeping for it such that for every terminal vertex

v in D and institution k, the determination of whether k is on i’s menu at v

depends only on Lk(v).

• The definition of local bookkeeping for an institution-proposing extensive-form

description is completely analogous to that of an applicant-proposing one, in-

terchanging the roles of applicants and institutions. In particular, each vertex

of such a description queries an institution’s priorities, and if applicant i is read,

only the label Li(v) that concerns applicant i can be updated.

• Accordingly, an institution-proposing extensive-form outcome description D is

local if there exists local bookkeeping for it such that for every terminal vertex

v in D and applicant i, the determination of the match of i at v depends only

on Li(v).

• An institution-proposing extensive-form menu description D for applicant i is

local if there exists local bookkeeping for it such that for every terminal ver-

tex v in D, the determination of i’s menu at v depends only on Li(v) (and in

particular, the labels for other applicants are not used by this definition).

The traditional description of DA is a local applicant-proposing outcome descrip-

tion, and Description 1 is a local institution-proposing menu description. In con-

trast, each of the (convoluted, yet Õ(n) memory) descriptions that we present in

Appendix D (corresponding to the other description types from Table 5) is non-local.

Like applicant-linearity, locality captures one possible sense in which the tradi-

tional description of DA is simple (e.g., the description depicted in Figure 3 is a local

applicant-proposing outcome description). Whereas low-memory restricts the amount

of bookkeeping used, locality restricts the manner in which the the bookkeeping is

updated and used. While low-memory and locality are not formally comparable (for

either applicant- or institution-proposing descriptions), locality seems like a more
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specialized simplicity condition. For example, the applicant-proposing, low-memory

menu description of TTC given in Description 2 is non-local, and yet seems nearly

as simple as the traditional description of TTC.32 For descriptions of DA, however,

non-locality seems to capture one aspect that we find unintuitive in all of the de-

scriptions that we construct in Appendix D. By ruling out local descriptions of the

same types, we believe our impossibility theorems below provide good evidence that

there are no major simplifications to these delicate descriptions. This suggests that

practical descriptions of their types are not likely to exist. Formally, our results are:

Theorem 7.2. If there are at least three applicants and three institutions, then for

every applicant i there exist priorities of the institutions such that any applicant-

proposing menu description of DA for applicant i is non-local.

Theorem 7.3. If there are at least three applicants and two institutions, then there

exist preferences of the applicants such that any institution-proposing outcome de-

scription of DA is non-local.

The proofs are in Appendix C. A direct corollary of these results is that no local

one-side-proposing individualized dictatorship exists for DA, as such a description

contains either an applicant-proposing menu description, or an institution-proposing

outcome description. All told, our results say that simple one-side-proposing descrip-

tions of DA face a formal tradeoff between conveying feasibility (as in the traditional

description) and conveying strategyproofness (as in Description 1).

8 Menu Descriptions of Auctions

As a secondary application of our theoretical framework, we briefly explore the pos-

sibility of simple menu descriptions for multi-item welfare-maximizing auctions, and

draw parallels with our results for matching mechanisms. We study the VCG mech-

anism for different classes of bidder valuations; see Appendix B for exposition and

preliminaries for this environment.

Thinking about VCG through the lens of menus is perhaps particularly natural:

a common way to explain the strategyproofness of VCG is to note that the price that

bidder i pays when winning any bundle of items S is independent of bidder i’s report;

rather, bidder i’s report is used only to determine which bundle bidder i wins. Indeed,

32This also illustrates why, in contrast to applicant-linearity, locality likely does not give a
flexible enough definition to capture all “small tweaks” of the traditional description of a matching
mechanism.
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specifying a bidder’s menu is equivalent to specifying—for each bundle S—the price

that she would pay if she wins S (which might be different from the price paid by a

different bidder who actually wins S).

In this section, we show that for multi-item VCG in some settings, a menu de-

scription can be given via a separate menu description regarding each item separately,

while for other settings this is impossible. We first formalize this.

Definition 8.1.

• Consider an auction environment with n bidders and m items. An extensive-

form description of a mechanism in this environment is item-read-once if along

each evaluation path v1, v2, . . . , vk and for each item j, there exists an interval

vu, vu+1, . . . , vu+p of vertices along the path such that (a) for each vertex v in

this interval, the transition function ℓv (which determines which edge to follow

in the evaluation path) only depends on some bidder’s valuation for item j, and

(b) for each vertex w outside of this interval, the function ℓw does not depend

on any bidder’s valuation for j.

• An item-linear description is an item-read-once description that uses at most

Õ(m) memory.

In close parallel with the discussion in Section 6.1 for matching mechanisms, the

bidder-read-once condition only rules out certain descriptions if complemented with

an additional restriction, such as on the memory used by the algorithm. Moreover,

note that Õ(m) is (up to logarithmic factors) the number of bits required to describe

a “tentative allocation” of the items, or a single price for each item, and therefore is

as low as possible.

We now consider auctions where bidders’ valuations are additive over items. That

is, each bidder’s valuation for a bundle of items is the sum of her valuations for the

individual items in the bundle.

Theorem 8.2. The VCG auction with additive bidders has an item-linear outcome

description. For any bidder i, it also has an item-linear menu description for bidder i.

Proof. The item-linear outcome description of the auction simply goes through the

items one by one, queries each bidder for her valuation, and keeps track of the highest

bidder, her bid, and the second-highest bid. The menu description is even simpler:

it keeps track of only the highest bid on each item; see Figure 2 on Page 20 for an

illustration with a single-item.
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Thus, the situation for additive bidders is similar to that of TTC: there is a menu

description that is a fairly simple modification to the traditional description, special-

izing the order of steps to compute the menu of player i. (Additionally, it is not hard

to construct an individualized dictatorship for player i, provided that Definition 8.1 is

modified to allow player i’s values to be queried after all other players.) Moreover, this

gives some sense in which the mechanism’s strategyproofness can be understood in

terms of the (separate) strategyproofness of m separate single-item auctions. In fact,

this demonstrates a general property of our framework: it allows for the “composition”

of simple menu descriptions when players are additive over the sub-mechanisms.33

When bidders have unit-demand valuations over items, concrete descriptions be-

come harder. This holds both for menu descriptions and for descriptions of the

outcome. In this sense, descriptions of auctions for unit-demand bidders are even

harder than those of DA, even though the structure of any menu is as simple as in

auctions for additive bidders (just a single price for each item). We prove this result

in Appendix C.

Theorem 8.3. No item-linear description of an auction with unit-demand bidders

exists. In fact, any item-read-once description for unit-demand bidders requires mem-

ory Ω(m2). This holds both for outcome descriptions and for menu descriptions.

9 Experiment

When a mechanism is presented using a menu description, strategyproofness is always

easy to formally show; indeed, a proof follows almost immediately from the descrip-

tion. But do mechanism participants intuitively see this—and act on it? In practical

terms, do real people increase straightforward play under menu descriptions? Our

experiment explores this question in two elementary mechanism-design settings.

9.1 Experiment Flow

Our experiment consists of two parts in a fixed order: median voting in an election

with three single-peaked voters (henceforth, Median); and bidding in a single-item

33This attribute is not always shared by other simplicity notions such as OSP, which captures
the simplicity of a single-item (ascending price) auction (Li, 2017), but where no OSP auction
exists with even two bidders who have additive valuations over two items (Bade and Gonczarowski,
2017). In fact, this attribute is not even satisfied by communication-efficient dominant-strategy
mechanisms: Rubinstein et al. (2021) construct a composed mechanism where all dominant-strategy
implementations require exponentially more communication than the sub-mechanisms.
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second-price auction with five bidders (henceforth, Auction). Respondents are ran-

domly assigned, in each part independently, into either a Traditional (T) or a Menu

(M) treatment. The two treatments differ from each other only in the way the mech-

anism is presented to participants.34

After informed-consent and introductory screens, for each mechanism, partici-

pants walk through four “setup” screens: (1) instructions, (2) a practice round, (3)

practice-round results, and (4) further examples and comprehension questions. See

the online experimental materials for screenshots. Respondents who fail to correctly

answer a comprehension question within three attempts are given the answer; they

must enter it to proceed. (We analyze comprehension results below, and provide

additional analysis in Appendix A.)

The setup screens work together to convey, and confirm understanding of, the

workings of the environment (i.e., the way outcomes affect the participant’s earnings)

and the mechanism (i.e., the way that the participant’s vote or bid, and the other

randomized votes/bids, determine the outcome). Because our goal is to test how

changes to the description affect behavior, the materials are careful to not give any

form of strategic advice.

In each of the two parts of the experiment, after completing the setup screens,

participants participate in ten rounds of voting (in Median) or bidding (in Auction).

After completing both parts, respondents fill out an exit questionnaire that includes

demographic questions, an informal numeracy test, and (for each mechanism) open-

ended questions on their understanding, strategies, and thoughts. They are paid the

sum of their earnings in all (twenty) rounds.35 The experiment is programmed on

Otree (Chen et al., 2016).

9.2 Traditional (T) and Menu (M) Treatments

Figure 5 and Figure 6 reproduce, for Median and Auction respectively, the main

screen that participants face in each round. Each figure’s panel (a) shows an entire

screen in T, while panel (b) shows the only changed part of the screen in M. In both

treatments, participants see their private information—their single-peaked value ta-

34Presentation differences include the language describing the mapping from votes or bids
to outcomes, the language used in examples and comprehension questions that accompany the
description, and, in Median, graphic illustrations that accompany the examples. (The examples
themselves depict situations that are identical across the treatments.)

35Participants can lose money in rounds of Auction where they overbid. They are informed that
if their cumulative earnings are negative at the end of all rounds, they will be set to $0.00. (This
happened to two participants, with −$1.46 and −$0.44.)
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ble in Median and a private value in Auction—and have 30 seconds to submit their

vote/bid.36 They are reminded (1) how the mechanism works and (2) that the system

randomly picks the votes of other two voters (in Median) or bids of other four bidders

(in Auction). After submitting their vote or bid, participants see the result of the

round, including their earnings.

(a) T treatment: entire screen

(b) M treatment: changed text

Figure 5: Median Voting Screen. The
participant chose number 2, but has
not yet submitted their vote.

(a) T treatment: entire screen

(b) M treatment: changed text

Figure 6: Second-Price Auction
Screen. The participant entered $3.25,
but has not yet submitted their bid.

As the figures show, in Median participants vote for one of five candidate numbers

(1–5) by clicking on their chosen number. In Auction, participants enter a bid be-

36For both mechanisms, the distribution from which the private information is drawn is tailored
to provide a consistent and reasonably high expected monetary reward for straightforward behavior;
see the online experimental materials for details.
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tween $0.00 and $5.00. In both mechanisms, the only main-screen difference between

T and M is the larger-font text to the right of the thick black vertical line (and the

way the outcome is described in the examples—which participants can see again using

a “click to expand” link).

9.3 Data

The experiment was conducted on February 4–5, 2022. We recruited US 18+ par-

ticipants on the Prolific platform (https://www.prolific.co). 229 participants

clicked on the experiment’s link; 220 progressed beyond the informed-consent and

(pre-treatment) introductory screens; 200 completed the experiment.37 Subjects re-

ceived $2 for participation and earned an additional $6.33 on average through their

voting and bidding. Median respondent age is 29; 51% are female; and median com-

pletion time is 20.6 minutes.

9.4 Results

Table 6 presents our main results. In Median, participants vote for their highest-

earning candidate 70 percent of the time under T, and 80 percent of the time under

M. A two-sided t-test for equality of means yields a p-value of 0.01. This difference

is arguably large: it corresponds to a reduction by one-third in non-straightforward

behavior (from 30 to 20 percent). The difference is larger still when comparing the

fraction of participants who play straightforwardly in every round : 26 percent in T

versus 52 percent in M; p = 0.0003. (Figure 7 shows the full distributions.) Partici-

pants also earn 6 percent more in M ($3.00) than in T ($2.83), however this result is
not statistically strong (p = 0.10).

In Auction, we find essentially no difference across the treatments in either straight-

forward bidding or earning. This (non-)result holds regardless of the distance d be-

tween bids and private values that we consider acceptable.38

In both mechanisms, the data may suggest that respondents play more SF in

37Of the 20 incompletes who progressed beyond these introductory screens, 16 dropped during
Median setup screens (5 in T, 11 in M), 3 during Auction setup screens (2 in T, 1 in M), and
one during Auction rounds (1 in T). Our (preregistered) intention was to recruit a total of 200
participants. Due to miscommunication, our RA kept recruiting until we had 200 completes.
Excluding the additional completes (beyond the first 200 participants who started the experiment)
does not affect our results more than trivially, but the % Straightforward p-value reported in Table 6
below for Median changes from 0.01 to 0.02. See Appendix A for additional analysis of the dropouts.

38Table 6 reports the results for Auction with a stringent definition of straightforward play,
resulting in low straightforward percentages. See Appendix A for more lenient definitions, which
result in straightforward percentages closer to those in Median.
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Table 6: Straightforward Play and Earning by Treatment.

Median Voting Second-Price Auction

Trad. (T) Menu (M) p-value Trad. (T) Menu (M) p-value

% Straightforward 70 (3) 80 (3) 0.01 37 (4) 34 (3) 0.55

% All Straightforward 26 (4) 52 (5) 0.0003 13 (3) 10 (3) 0.66

$ Earning 2.83 (0.07) 3.00 (0.07) 0.10 3.40 (0.26) 3.40 (0.24) 0.98

N Participants 100 100 100 100

Notes: “% Straightforward”: participants’ average fraction of the ten rounds with straightforward
play (in Median, voting for the ideal number; in Auction, bidding within $0.10 of the private value).
“% All Straightforward”: share of participants with straightforward play in all ten rounds. “$ Earn-
ings”: participants’ average dollar amount earned across all rounds. Standard errors are in paren-
theses. p-values for Straightforward and Earnings: two-sample, two-sided equality-of-means t-test
(Welch’s t-test); p-values for All Straightforward: two-sample, two-sided equality-of-proportions test.

last-five than in first-five rounds, perhaps more so in T than in M and in Auction

than in Median, but our main findings remain essentially the same (see Table A.1

on page A.1). We also compare differences in rates of straightforward play in Auc-

tion based on treatment in Median (recall, participants play Median before they play

Auction), and find no effect (see Table A.2 on page A.1).

Figure 7: Median Voting. Distributions of participants’ fraction of rounds
with straightforward play. “No/Some mistakes” patterns divide participants by
performance on the comprehension questions. N = 100 in each of T and M.

To further investigate our strong results in Median, Figure 7 and Table 7 report

on the relationship between straightforward play and participants’ understanding of
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the mechanism’s description, as measured by the comprehension questions. The table

highlights three findings. First, in M, answering all comprehension questions correctly

on first attempt is associated with significantly more straightforward play: 87 percent

in the “No Mistakes” column versus 65 percent in the “Some Mistakes” column, p =

0.002. Further subdividing participants with some mistakes by the number of exam-

ples in which they made mistakes—in the three rightmost columns—similarly suggests

a monotonically decreasing trend (although the subsamples are small). In contrast,

in T we find no such differences, with 70 versus 67 percent straightforward play in the

No versus Some Mistakes columns (p = 0.79). Second, the comprehension questions

seem harder to correctly answer on first attempt in M than in T: N Participants

= 68 versus 88, respectively, in the “No mistakes” column. Third, straightforward

play is rather similar among participants in M with at least one mistake (N = 32, 65

percent straightforward play) and participants in T—either those with mistakes (N

= 12, 67 percent) or those without them (N = 88, 70 percent). Taken together, these

three findings suggest that while comprehension may be more challenging for some in

M than in T, M significantly increases straightforward play for quick comprehenders

while not decreasing it for the others.

Table 7: Median Voting. Straightforward Play by Treatment and Comprehension
Mistakes.

No Some # of examples w/ mistakes:
Mistakes Mistakes p-value 1 2 3

T
% Straightforward

N Participants

70 (3)

88

67 (8)

12

0.79 66 (11)

7

50 (9)

3

100 (NA)

2

M
% Straightforward

N Participants

87 (3)

68

65 (6)

32

0.002 69 (11)

10

67 (8)

17

50 (14)

5

Notes: p-value: two-sided Welch’s test between participants who correctly answer all questions
on first try (“No Mistakes”) and those who do not (“Some Mistakes”). Standard errors are in
parentheses. Those who made at least one mistake in the comprehension questions are further
subdivided by the number of examples (each of which contained two questions) out of three where
they made mistakes.

While we can only speculate why, unlike in Median, in Auction we find no differ-

ence in straightforward play between M and T, one common comprehension-question

mistake in Auction may provide some insight. Several participants appear to mistake

the mechanism for a first-price auction: they mistakenly write their own bid (which

is given to them in the question) as the price they will pay if they win the auction.
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In M versus T, 18 versus 8 participants make this mistake (equality-of-proportions

p = 0.06). Since this misconception about a second-price auction is something we

specifically hoped that a menu description could help dispel, this (ex post) finding may

hint at a fundamental problem with our menu description in Auction—a problem that

future research can explore, but that our theory does not shed light on. For additional

discussion and analysis (and samples of the comprehension pages), see Appendix A.

Overall, the experimental results in this section suggest that while our first-

attempt designs of menu descriptions still need work, they already show promise. On

the one hand, in both Median and Auction, our menu descriptions—which are con-

spicuously longer than traditional descriptions—appear more difficult to grasp. On

the other hand, our menu descriptions do not meaningfully reduce average straight-

forward play in Auction, while significantly increasing it in Median.39 Furthermore,

in Median, our menu description does not on average dramatically decrease straight-

forward play relative to the traditional description even when focusing only on those

who do not easily understand it—but it dramatically increases such play among those

who quickly understand it. We return to these findings in our concluding remarks,

where we also discuss their potential distributional implications, and propose future

directions for needed additional empirical work.

10 Related work

Our paper is most directly inspired by the contemporary “strategic simplicity” pro-

gram in mechanism design. A cornerstone of this literature is Li (2017), which intro-

duces OSP mechanisms as a refinement of strategyproofness that might explain why

certain interactive mechanisms might be easier to recognize as strategyproof. Unfor-

tunately, many desirable mechanism do not have OSP implementations. This is the

case for TTC (Li, 2017) and DA (Ashlagi and Gonczarowski, 2018) (in both of these,

OSP implementations are possible only in rare special cases of institutions’ priorities,

Troyan, 2019; Mandal and Roy, 2021; Thomas, 2021), as well as for Median Voting

and two-item welfare-maximizing auctions for bidders with additive valuations (Bade

and Gonczarowski, 2017; Arribillaga et al., 2020).40

39One hypothesis, yet untested, as to why we find a difference across M and T in Median but
not in Auction is that in Auction, M and T are simply too similar. Indeed, they essentially just
switch the order of two sentences and fix the grammar accordingly. In contrast, in Median there is
a genuine algorithmic change from T to M.

40A different line of work also considers notions of strategic simplicity that are weaker than
strategyproofness (Börgers and Li, 2019; Fernandez, 2020; Troyan and Morrill, 2020; Chen and
Möller, 2021; Mennle and Seuken, 2021).
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The empirical paper by Breitmoser and Schweighofer-Kodritsch (2022) takes a

deeper look at OSP vs. static implementations of second-price auctions. That paper

experiments with describing/framing a static, direct-revelation auction as the result

of an OSP ascending auction that is simulated using participants’ directly-reported

bid. They show that this alternative framing can improve the rate of straightfor-

ward behavior. Our paper can be viewed in this context as observing that once a

direct-revelation mechanism is described as an extensive-form mechanism whose run

is simulated using participants’ reports, one can in fact describe it as a different

extensive-form mechanism to each participant. Explaining strategyproofness to only

one player (the player reading the description) then becomes possible for all strategh-

proof mechanisms; in fact, menu descriptions describe any strategyproof rule to one

player at a time as a mechanism that is OSP, and even strongly OSP (Pycia and

Troyan, 2023), for that player. We note, however, an important conceptual difference

between our framework and earlier ones (discussed as the second premise of our paper

in Section 1). Every OSP mechanism is intended to be simple to play, so the challenge

within that framework is finding any OSP mechanism. In contrast, not every menu

description is simple (e.g., we view the “brute force” approach in Example 2.8 as com-

plex and undesirable), so the challenge lies in finding appealing menu descriptions.

We also contribute to the literature on structural properties of matching mecha-

nisms. Different notions of a player’s budget set have been defined in this literature,

especially in matching markets with a continuum of agents (Azevedo and Leshno,

2016; Leshno and Lo, 2021; Immorlica et al., 2020). In finite markets, budget sets are

different sets from the player’s menu.41 Nonetheless, for some mechanisms, budget

sets coincide with the player’s menu in continuum or limit markets, which makes them

useful tools in such markets to reason about approximate strategyproofness (Azevedo

and Budish, 2019) and to guide information acquisition (Immorlica et al., 2020). With

respect to these papers, our menu characterizations could also be conceptually seen

as showing how to remove large-market assumptions to derive precise rather than

approximate properties of mechanisms in markets of any size. The budget equilibria

41For the specific mechanism of DA, the budget set of applicant i is typically defined as the set
of institutions j such that i has at least as high priority at j as µ(j), where µ is the outcome of DA.
(Note that this set depends on both ti and t−i.) In finite markets, the menu in DA is not given in
a simple way by this budget set or the priorities. For example: Let institutions h1, h2, h3, and h4

have priorities h1 : d1 ≻ d2; h2 : d4 ≻ d3 ≻ d2 ≻ d1; h3 : d3; h4 : d2 ≻ d4. Let applicants d1, d2, d3,
and d4 have preferences d1 : h1 ≻ . . .; d2 : h1 ≻ h2 ≻ h4 ≻ . . .; d3 : h3 ≻ . . .; d4 : h4 ≻ h2 ≻ . . ..
Then DA pairs hi to di for each i = 1, . . . , 4, and h2 is in the budget set of applicants d2, d3 and d4.
However, h2 is in the menu of applicants d1, d2, and d4. So, despite d3 being higher priority than
d2 at h2, h2 is not on d3’s menu; despite d1 being lower priority than d2 at h2, h2 is on d1’s menu.
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defined in Segal (2007) are also different from players’ menus. There is some con-

ceptual connection, though: where menus can explain ex ante why strategyproofness

holds, budget equilibria can help verify ex post that (for example) the matching is

stable. The menu in DA is also a distinct notion from the set of stable partners of an

applicant. Even though each applicant gets her favorite choice out of her set of stable

partners (Gale and Shapley, 1962), this set cannot help to explain strategyproofness in

the way that an applicant’s menu can, because an applicant’s report can affect this set.

Leshno and Lo (2021), in their Proposition 2, give a characterization of the menu of

TTC in finite markets (by embedding such markets in continuum markets), though

this characterization does not seem targeted towards an alternative description of

TTC. That paper mentions that the fact that this menu is independent of an appli-

cant’s type (which, by Hammond, 1979, is true for any strategyproof mechanisms)

could help explain strategyproofness, but does not discuss how or whether the menu

relates to any concrete description. A vast literature develops techniques for analyzing

DA by incrementally modifying submitted preference lists (e.g., Gale and Sotomayor,

1985; Immorlica and Mahdian, 2005; Hatfield and Milgrom, 2005; Gonczarowski, 2014;

Ashlagi et al., 2017; Cai and Thomas, 2022, to name a few)—the direct proof in Ap-

pendix C of Theorem 3.1 builds upon such techniques. We are not aware of any prior

characterizations of the menu in DA.42 We also do not know of any other paper that

analyzes different ways to describe multi-player mechanisms in terms of menus, seeks

simpler menu descriptions, or provides a formalism of the required trade-offs.

Our Section 9 contributes to the experimental literature on behavioral mechanism

design. The most closely related experimental paper to ours is the recent working

paper of Katus̆c̆ák and Kittsteiner (2020), who also, independently, suggest describ-

ing mechanisms via menu descriptions.43 That paper runs an experiment on TTC

using a menu description that is very close to that of Example 2.8, which essentially

calculates the menu by iterating over possible reports and running the standard TTC

description for each report to determine which outcomes are possible.

Additional related experimental papers explore behavior across different social

choice rules (Kagel and Levin, 1993; Chen and Sönmez, 2006; Pais and Pintér, 2008,

42Certain other properties of DA (e.g., in Blum et al., 1997; Adachi, 2000) and of unit-demand
auctions (e.g., in Gul and Stacchetti, 2000; Alaei et al., 2016), despite not being studied with
relation to menus, bear some technical similarity to the menu calculation in Description 1. However,
the proofs seem unrelated.

43There is no intersection between our paper and theirs beyond this suggestion and Example 2.8
(the description we use to illustrate non-simple menu descriptions), both of which we had before
learning of their paper. When we learned of their paper, the only main result of our paper that
was not completed was our experiment.
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among others). Other papers explore advice that explicitly informs participants of the

strategyproofness of the mechanisms, including Masuda et al. (2022) (for auctions)

and Guillen and Hakimov (2018) (for TTC). Somewhat relatedly, Danz et al. (2020)

study the empirical effect of providing or withholding information on the exact work-

ings of belief elicitation mechanisms. There is also a vast literature of empirical papers

studying or guiding real-world implementations of matching mechanisms. Most re-

lated to our paper are those that study how real-world participants understand or

interface with the mechanisms—see Pathak and Sönmez (2008); Arteaga et al. (2022);

Grenet et al. (2022), among others, as well as the review article Pathak (2017).

Our paper is also technically inspired by the literature within computer science

studying menus. These works largely focus on single-player mechanisms, particularly

in the context of the revenue-maximizing monopolist problem with one buyer. The

most common object of study is the structural complexity of the menu, i.e., how many

different entries are offered on the menu (Hart and Nisan, 2019; Daskalakis et al.,

2017; Babaioff et al., 2022; Saxena et al., 2018; Gonczarowski, 2018). Most relatedly

within computer science are Dobzinski (2016); Dobzinski et al. (2022), who consider

the properties of menus in multi-buyer auctions in some detail, largely as a tool for

analyzing mechanisms and bounding communication complexity.44 Because our view-

point lies on defining (rather than analyzing) mechanisms in terms of menus, many

technical distinctions arise. (For instance, our bounds are on the memory require-

ments of algorithms and/or on how many times they can read their input, rather than

on their communication complexity.) We are not aware of prior algorithmic work on

finding the menu in matching mechanisms (be it DA or otherwise), for which we give

multiple optimal (in terms of complexity) algorithms, as well as impossibility results.

11 Conclusion

Strategyproofness has long been proposed as a way to make mechanisms fair by the-

oretically leveling the playing field for players who do not strategize well (Pathak

and Sönmez, 2008). We warmly embrace this agenda. We however observe that if

disparities remain in participants’ understanding of strategyproofness, then the par-

ticipants remain on uneven footing.45 These disparities may be hard to avoid, as

44Brânzei and Procaccia (2015); Golowich and Li (2022) study the computational complexity of
checking whether a mechanism, given its extensive- or normal-form representation, is strategyproof.

45Robertson et al. (2021) report a case of one parent saying “It’s definitely convoluted. It’s
definitely multilayered, it’s complex. And that favors people who have the time and the wherewithal
to figure it out. [. . . T]he complexity invites accusations of [corruption] and does not inspire trust.”
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people appear to differ dramatically in their intuitive grasp of strategyproofness. For

example, many people seemingly fail to realize, even when given carefully constructed

explanations, that a second-price auction is not a real-life haggling process where the

bidder can influence their price, and that Deferred Acceptance is not a real-life job

hunt where one can miss out on otherwise-obtainable satisfactory positions because

of time wasted applying to reach positions. Menu descriptions may help clarify such

distinctions in these and other real-world strategyproof mechanisms.

At present, menu descriptions still have several limitations, both empirical and

theoretical. Empirically, as our experimental results for Second-Price Auction sug-

gest, menu descriptions alone may not be sufficient to convey the crucial distinctions

discussed above. Moreover, our first attempt at writing them for real participants

suggests that menu descriptions too may not always be equally easily understood

by everybody. Eliminating disparities in understanding remains an important chal-

lenge, especially as ease of understanding strongly predicts straightforward play in

our Median Voting data.

Theoretically, a framework for mechanism descriptions is not a concrete behav-

ioral model of how participants make decisions: our theory provides no quantitative

behavioral predictions (e.g., of rates of straightforward behavior) under menu versus

non-menu descriptions. (In this aspect, our paper is analogous to Li (2017), which

also begins by theoretically motivating certain ways of presenting mechanisms that

may make strategyproofness easy to see without predicting how much this could af-

fect behavior; but stands in contrast to Dreyfuss et al. (2022b,a), which begin from

behavioral models, and use quantitative predictions derived from these models to seek

desirable implementations of mechanisms.) Closely related, our theory provides no

guidance on what to do if, e.g., due to issues of trust, the description of the mecha-

nism cannot be personalized for each individual reading it.46 A more general theory

that orders mechanisms by the cognitive difficulty of finding one’s dominant strategy

could provide guidance on which description to use when, for whatever reason, some

descriptions are ruled out.

Menu descriptions provide other avenues for investigation. Since a mechanism is

strategyproof if and only if each player always gets her favorite outcome from her

menu, the menu also provides a natural way to define strategyproofness. Inspired by

this, one could consider a “black box” menu description that simply tells players that

some menu will be calculated using only other players’ types, without specifying any

46However, we remark that traditional descriptions of mechanisms also require trust, e.g., that
the description is accurate (Akbarpour and Li, 2020).
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details. However, beyond conveying strategyproofness, this description conveys no

additional information about the mechanism. Thus, this (partial) description does

not meet the standard to which we hold all descriptions in the present paper: unam-

biguously describing a player’s outcome in a mechanism. Still, it would be interesting

to investigate the behavior of real-world participants under such descriptions. We are

currently developing such experiments, along with an experiment on our new menu

description of Deferred Acceptance.

This paper applies theoretical tools from computer science to social science. Tra-

ditionally, computer science asks whether a given algorithm can be easily run on a

computer, after all inputs are known. In contrast, the simplicity conditions in this

paper are intended to capture whether a given algorithm can be easily conveyed to

humans, before any input is known. Using these simplicity conditions, we approach

the problem of explaining strategyproofness, try to address it by phrasing descriptions

of matching mechanisms in terms of menus, and examine tradeoffs between describing

the matching and describing the menu. As more parts of modern life are affected by

algorithms and mechanisms, their interpretability may be of increasing importance.47

Future work may study other properties one might wish to expose (for example, fair-

ness or optimality), find context-specific methods to expose these properties, and

study sets of available options and tradeoffs in a variety of different settings.
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A Additional Experimental Analysis

In this appendix, we provide additional analysis of our experimental data.

To begin, we check for learning from experience, fatigue, boredom, and other po-

tential behavior changes over time by comparing rates of straightforward play across

the first-five vs. last-five rounds for each Mechanism and Treatment (Table A.1). We

also check for cross-effects of the treatment from Median on outcomes in Auction

(Table A.2).

Table A.1: Straightforward Play by Treatment, First vs. Last Five Rounds.

Median Voting Auction

T M p M+T T M p M+T

Rounds 1-5 (%) 67 79 0.008 73 31 31 0.87 31

Rounds 6-10 (%) 72 81 0.04 76 46 41 0.39 43

p 0.26 0.65 0.27 0.007 0.05 0.0008

N Participants (#) 100 100 200 100 100 200

Notes: “T” (resp., “M”): Traditional (resp., Menu) treatment for the relevant mechanism; “T+M”:
all participants. Table displays the average fraction of rounds with straightforward play, measured
as in Table 6 on page 38. For comparisons between T and M , p values are two-sample, two-sided
equality-of-means t-test between subjects; for comparisons between the first five and last 5 rounds,
the t-tests are within subjects.

Table A.2: Effect of treatment in Median on Straightforward Play in Auction.

Median
Treatment

Auction Treatment

T M p M+T

T (%) 36 32 0.57 34

M (%) 39 37 0.78 38

p 0.60 0.47 0.38

N Participants (#) 100 100 200

Notes: “T” (resp., “M”): Traditional (resp., Menu) treatment for the relevant mechanism; “T+M”:
either treatment in Auction. Table displays the average fraction of rounds with straightforward
play in Auction, measured as in Table 6 on page 38. All p values are two-sample, two-sided
equality-of-means t-test between subjects.
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We also remark on one slight difference between our paper and our preregistra-

tion. Namely, due to a miscommunication with our RA, we did not record the length

of time participants spent on different screens throughout the treatment. (The only

other deviation from our preregistration was mentioned in footnote 37 on page 37).

A.1 Median

What do participants vote for? One can ask: when participants do not play

straightforwardly, what strategies are they following? Table A.3 reports how votes

were placed, conditional on the location of the peak in the earnings table. We ob-

serve that there is a clear trend towards voting for numbers adjacent to the peak. In

T and M respectively, only 12 and 14 percent of all non-peak votes are for a number

more than 1 farther from the peak. If non-peak votes were uniformly distributed

over all non-peak numbers, this statistic should be 60 percent. There may be a slight

trend for non-peak votes for the second-highest valued number.

One might conjecture that participants may be confusing the mechanism with

another. However, if the confused-with mechanism takes the (rounded) average of

the three participants votes, then all of the earnings tables in our distribution with

a peak at 1 or 2 would maximize their utility by voting for 1 (and similarly, all those

with a peak at 4 or 5 would want to vote for 5). Thus, confusion with an averaging

mechanism cannot explain the large fraction of votes that are placed closer to the

middle (i.e., to 3) than the peak.

All told, it is hard to identify systematic non-straightforward behavior beyond the

finding that people generally vote close to their optimal vote.

Table A.3: The marginal tables of voting across all rounds of all participants.

Traditional Treatment

Ideal Total
Percent (%) Voted For:

Num. Count 1 2 3 4 5 2nd

1 234 68 27 4 1 0 –
2 186 16 70 12 2 1 17
3 208 1 14 77 8 0 17
4 190 1 1 13 69 17 19
5 182 0 1 8 27 64 –

Menu Treatment

Ideal Total
Percent (%) Voted For:

Num. Count 1 2 3 4 5 2nd

1 200 72 24 2 1 1 –
2 201 5 84 9 1 0 8
3 208 1 7 84 8 0 11
4 195 1 2 11 85 2 6
5 195 1 1 4 19 75 –

Notes: When the Ideal Number (the peak of the single-peaked earnings table) is not 1 or 5, the
2nd column shows the fraction of rounds where the participant voted for their second -highest valued
number. A single participant in M failed to submit a vote within the 30-second window in one
single round.
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Comprehension questions. Figure A.1 provides samples of the comprehension-

questions page. The comprehension questions in T appear noticeably easier than

those in M—12 of the 100 T participants failed to answer all the comprehension

questions on first attempt;1 the same number is 32 in M.2 While we did not ex-

pect this, in hindsight we speculate that it is due to the increased complexity of the

menu description, namely, the fact that the menu description (and the corresponding

comprehension questions) necessarily compute the menu, an object not found in the

traditional description. (Our menu descriptions are also conspicuously longer than

their traditional counterparts, and their comprehension questions are phrased in a way

that is less self-contained, i.e. they require remembering how the menu is calculated.)

Recall that as Table 7 shows, completing all comprehension questions on the first

try is associated with a sharp increase in the rate of straightforward behavior under M

but not under T. On one hand, in retrospect, this may result from the comprehension

questions being more difficult in M, as they may more accurately classify the par-

ticipants according to their numeracy or how well they understand the mechanism.

(For this reason, we do not investigate the correlation between comprehension and

straightforwardness across treatments, but only within T or within M.) On the other

hand, it may reinforce the natural notion that menu descriptions are only worth using

when participants can understand them well.

Dropouts. 20 participants dropped out of the experiment after the informed con-

sent and introductory screens: 16 during Median, and 4 during Auction. They are

not included in our analysis. Including the 4 Auction dropouts could not effect our

findings and conclusions (for either Auction or Median) more than trivially. While in-

cluding the 16 Median dropouts—5 in T and 11 in M—could affect our findings, under

reasonable assumptions they would not affect our conclusions much.3 For example,

if all dropouts in both T and M play i.i.d. uniformly randomly—yielding straight-

forward play in 20 percent of the rounds, and essentially never in all rounds—then

1Some (arbitrarily chosen) examples of mistakes in T include: not writing a repeated vote
twice; sorting the numbers high-to-low; (seemingly) confusing which bubble corresponded to which
elected number; writing the numbers by their listed order instead of their sorted order; or entering
the elected number in the blank for the sorted numbers.

2Most of the relevant mistakes which occurred in T also sometimes occurred in M. Some of the
most common mistakes specific to M included: thinking that a number is obtainable if it is between
any pair of votes (instead of between the other citizens’ votes); thinking the obtainable numbers
couldn’t include the votes of the other two citizens; or thinking the obtainable numbers were only
the votes of the other two citizens.

3Of the 16, 5 dropped on the first screen describing the mechanism (1 in T, 4 in M), 1 dropped
on the practice round (in T), and 10 dropped on the comprehension screen (3 in T, 7 in M).
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(a) Median, Traditional (T) (b) Median, Menu (M)

(c) Auction, Traditional (T)

(d) Auction, Menu (M)

Figure A.1: Excerpts of the comprehension pages, by mechanism and treatment.

Notes: Each comprehension page starts with a reminder of the mechanism description, followed
by several examples, then comprehension questions. See the online experimental materials.
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the “% Straightforward” row in Table 6 would be 67 in T and 74 in M, p-value =

0.11; and the “% All Straightforward” row would be 25 and 47, p = 0.001. Under

the potentially more plausible assumption that the dropouts play similarly to partic-

ipants who had some comprehension-question mistakes—after all, a large fraction of

the dropouts occur on the comprehension screen—our findings are still less affected.

In particular, if dropouts in T and M, respectively, are assumed to each play straight-

forward in 67 and 65 percent of rounds (see Table 7’s “Some Mistakes” column),

then the “% Straightforward” row in Table 6 would be 69 in T and 79 in M, p =

0.01; if dropouts are assumed to play all rounds straightforward 33 and 34 percent

of the time (matching the data for “% All Straightforward” among those who made

comprehension mistakes), then the “% All Straightforward” row (after rounding to

integer numbers of participants) would be 30 in T and 50 in M, p = 0.004. Indeed,

it would take an extreme—and extremely unrealistic—assumption to make the “%

Straightforward” row (almost) identical across the treatments: if dropouts in T and

M would have played straightforwardly, respectively, 100 and 0 percent of the time,

then the “% Straightforward” row would be 71 in T and 72 in M. However, even

under this unlikely worst-case assumption, the “% All Straightforward” row would

still be very different across the treatments: 30 in T and 47 in M, p = 0.01.

A.2 Auction

Overall, Auction appears more difficult for the participants than Median. Few bids

follow the exact dominant strategy of submitting a bid equal to one’s private value

(or, due to tie-breaking, bidding one cent more). Indeed, only 21 and 19 percent of

bids, respectively in T and M, are within 1 cent of the private value; and only 7 and

1 percent of participants, respectively, bid within 1 cent in every round.

On the other hand, the number of possible strategies is far larger in Auction than

in Median, as any bid (of a whole number of cents) between $0.00 and $5.00 is pos-

sible. Taking a “range of strategies” consisting of 1/5 of all possible bids—the same

overall fraction of possible strategies that constitute straightforward play in Median—

yields results much more in line with Median. Namely, setting d (the distance from

the private value which is considered “straightforward play”) to $0.50 results in 69

and 67 percent straightforward in T and M.

It is not clear which value of d should be interpreted as playing the (approximate)

dominant strategy. However, Table A.4 indicates that many reasonable values of d

produce the (non-)result of no difference across T and M. Other (perhaps more stan-
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dard) measures of how far participants deviate from “bidding their value” also yield

non-results. For example, using mean absolute deviation (MAD), as in Li (2017) and

prior work, yields $0.51 and $0.55 in T and M, p = 0.58. In all of our results reporting

straightforward behavior, we exclude all rounds where the private value is within d

of the maximum or minimum possible bid (because in these rounds, not all possible

bids within plus or minus d of the private value are possible). Including these rounds

has essentially no impact on our (non-)results.

Table A.4: Straightforward rates by d.

d ($) Trad. (T)
(N = 100)

Menu (M)
(N = 100)

p

0.01 0.21 (0.03) 0.19 (0.03) 0.53
0.05 0.32 (0.04) 0.28 (0.03) 0.47
0.10 0.37 (0.04) 0.34 (0.03) 0.55
0.20 0.48 (0.04) 0.44 (0.03) 0.50
0.30 0.56 (0.04) 0.53 (0.03) 0.50
0.40 0.64 (0.03) 0.61 (0.03) 0.56
0.50 0.69 (0.03) 0.67 (0.03) 0.79

Notes: d ($): the distance in dollars from the private value that bidding within which is considered
straightforward play. Standard errors are reported in parentheses. p: two-sided, Welch’s test,
weighted by the number of rounds such that all bids within d of the private value are possible. In
the plot, capped bars show 95% confidence intervals.

Table A.5 considers how straightforward play relates to performance on the com-

prehension questions in Auction. We see that participants who make no mistakes in

the comprehension question play straightforwardly at higher rates. However, we see

no difference in this trend between the Traditional and Menu treatments.

We close this appendix section with some additional, speculative thoughts inspired

by further analysis of the data. Despite our experimental results, we believe that menu

descriptions make strategyproofness mathematically more apparent even for a second

price auction. In our case, this hypothesized mathematical ease did not induce experi-

mental results. While we do not know why, the comprehension questions may suggest

that some participants were simply confused by our menu description. In particular,

one of the main misconceptions we hoped that menu descriptions could help dispel is

that your price to pay if winning the auction = your bid. Indeed, a defining property

of menu descriptions is that one cannot influence the price one will pay. Our menu

description did not achieve this goal. Table A.6 shows that 8 and 18 participants,

respectively in T and M, submitted answers to comprehension questions where they
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Table A.5: Straightforward rates by
comprehension mistakes and d.

No Some
d ($) Mistakes Mistakes p

0.05
T 0.33 0.25 0.33
M 0.31 0.23 0.23

T+M 0.32 0.24 0.11

0.20
T 0.50 0.39 0.18
M 0.47 0.39 0.07

T+M 0.49 0.39 0.05

0.50
T 0.73 0.59 0.10
M 0.70 0.63 0.06

T+M 0.72 0.61 0.04

Notes: 37 of 100 participants make mistakes in
T; 41 of 100 in M. The p-values are two sided
(Welch’s t-test, weighted by the number of
rounds such that all bids within d of the private
value are possible).

Table A.6: Number of participants mak-
ing different categories of comprehension
mistakes in Auction.

T M p

Qs 1, 2, or 3 24 34

Qs 1 or 3 23 30 0.34

Qs 1, 2, or 3,
price = bid

8 18

Qs 1 or 3,
price = bid

8 18 0.06

Qs 4, 5, or 6 21 20 1.00

Any question 37 41

Notes: Each row concerns a subset of the ques-
tions (“Qs”) in which the participant may have
mistakes. Questions 1, 2, and 3 concerned how
the auction worked. Of these, questions 1 and 3
asked for precisely the same information in both
treatments (in question 2, some information was
optional in T). Questions 4, 5, and 6 concerned
how the result of the auction causes the partici-
pant to gain or lose money (and these were pre-
cisely the same in both treatments). The “price
= bid” mistake indicates that (in some relevant
question) the participant wrote their own bid as
their price. In rows where both treatments ask
for the same information, a p-value is reported
(two-sided test for equality of proportions).
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wrote their own bid as their price (p = 0.06). It may be that the added complexity

(in terms of word length and overall conceptual difficulty) in M overshadowed any

emphasis that the menu description was intended to put on how the price was calcu-

lated.4 Future work may refine the menu descriptions we used, or (like Breitmoser and

Schweighofer-Kodritsch (2022)) explore alternative approaches to framing auctions.

B Additional Preliminaries

B.1 Environments

First, we formally define an environment.

Definition B.1. An environment with n players (or agents) consists of a set A of

outcomes, and sets T1, . . . , Tn of types of the n players. For ordinal environments,

each ti ∈ Ti induces a weak order5 ⪰ti
i over the outcomes in A. For cardinal environ-

ments, each ti induces a utility function ui(ti, ·) : A→ R (in these environments, we

additionally define a ⪰ti
i b to mean ui(ti, a) ≥ ui(ti, b)).

6

We remark that all of the mechanisms we consider are direct revelation, in that

the players are simultaneously asked to report their types to the mechanism. For a

strategyproof social choice function, this direct mechanism is dominant-strategy in-

centive compatible (i.e., truthful reporting is always a dominant strategy). Thus, we

sometimes do not notationally distinguish between the social choice function and the

corresponding (direct) mechanism.

Now, we define the i-relevant outcome sets, which partition the outcomes accord-

ing to “what i cares about.”

Definition B.2. We write a ∼i b when both a ⪰ti
i b and b ⪰ti

i a for all ti ∈ Ti. That
is, a ∼i b when all types of player i are indifferent between a and b. The i-relevant

outcome sets (or i-outcomes) in some environment are the equivalence classes of A

under ∼i, that is, the partition of A given by
{
{b ∈ A : a ∼i b}

∣∣ a ∈ A
}
. We let

[a]i = {b ∈ A : a ∼i b}, and denote the collection of i-outcomes by Ai.
7

4This could also stem from fine-grained details of the exact wording of the descriptions. For exam-
ple, in the menu description, if the participants stop reading the first sentence of the description early,
they may come away with the understanding that “Your ‘price to win’ the auction will be set to the
highest bid” (in which case, the mistaken price = bid answer would be correct for questions 1 and 3).

5A weak order ⪰ is a binary relation that is reflexive (i.e. a ⪰ a for all a ∈ A), transitive (i.e.
if a ⪰ b and b ⪰ c, then a ⪰ c), and total (i.e. for all a, b ∈ A, we have either a ⪰ b or b ⪰ a).

6When no confusion can arise, we also write ⪰ti in place of ⪰ti
i . We also write a ≻ti b when

a ⪰ti b, but we do not have b ⪰ti a.
7When no confusion can arise, we sometimes do not distinguish between an outcome a and
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B.2 Matching mechanisms

Our primary domain of interest is (ordinal) matching mechanisms, specifically the

three canonical strategyproof mechanisms of Serial Dictatorship, Top Trading Cy-

cles, and Deferred Acceptance. Each of these mechanisms is common in practice, and

each has its own advantages and disadvantages.

Definition B.3. A matching environment is one in which each outcome is some par-

tial matching (i.e., one-to-one pairing that may leave some players unmatched) of

players (also referred to as applicants) to institutions. A type is some strict ordering

over some subset of the institutions (the subset that the type views as “acceptable”).

We refer to a tuple of types (t1, . . . , tn) for each applicant as a “preference profile.”

Note that for each player i, the i-outcome that corresponds to a matching is com-

pletely determined by i’s partner in that matching. That is, each i-outcome in a

matching environment consists of all matchings µ such that µ(i) = h for some insti-

tution h, and all such matchings are indistinguishable from the point of view of i’s

preferences. When no confusion can arise, we identify each i-outcome in a matching

environment with the institution to which applicant i matches in that i-outcome.

Note that we assume that the preferences of applicants are strict, i.e., that no

applicant type is indifferent between two institutions that it finds acceptable. All of

our results apply equally well in environments with and without “outside options,”

i.e. regardless of whether applicants rank all institutions or just some subset (and

regardless of whether the outcome is always a perfect matching or might only match

a subset of applicants). Note that we do not treat the institutions as strategic in any

matching environment.

Serial Dictatorship (SD, Definition 2.2) is a strategyproof mechanism that always

produces a Pareto-optimal8 matching, and seems simple to understand and play ac-

cording to intuitive notions. In practice, the priority order π is often selected (from

all n! possibilities) uniformly at random; this mechanism is called Random Serial Dic-

tatorship (RSD). SD may be a reasonable choice of mechanism when all institutions

have the same priority order over applicants, and RSD may be a reasonable choice of

mechanism when applicants do not have meaningful priorities at the institutions.

the corresponding i-outcome [a]i. We also let ⪰ti
i denote the natural partial order over i-outcomes

induced by the preference relation over outcomes. For example, in cases such as matching where
types (of the players) are most naturally described as linear orders (i.e., preference lists) over the
institutions, we simply let the type of player i be denoted by ≻i, and write a ≻i b if i prefers
institution a to institution b.

8A matching µ is Pareto-optimal for the applicants if there is no other matching µ′ such that
µ′(a) ⪰ti µ(a) for all applicants a, and µ′(a) ≻ti µ(a) for some applicant a.
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Top Trading Cycles (TTC, Definition 2.3) is also a strategyproof mechanism that

always produces a Pareto-optimal matching. The intuitive rationale behind the TTC

mechanism is as follows: If an applicant a has top priority at some institution h,

then that applicant “has a right” to attend h, and a will never match below h in her

preference list. However, the applicant may trade away her right to match to h. For

example, if another applicant b has top priority at institution h′, and a’s favorite in-

stitution is h′, but b’s favorite institution is h, then a and b may trade their priorities

at h and h′. This trade exactly occurs as a two-applicant (and two-institution) cycle

in TTC. Longer cycles are more elaborate priority trading cycles. Moreover, after the

applicants in such a cycle are matched, further trades can be made in the sub-market

resulting from removing these applicants and institutions, and this process continues

until all applicants are matched.

This rationale can be formalized into a number of remarkable properties of TTC.

First, since preferences are strict in our model, the TTC outcome is independent of

the order in which cycles are chosen to match along:

Lemma B.4 (Follows from Shapley and Scarf, 1974; Roth and Postlewaite, 1977).

The TTC algorithm defines a unique social choice function for each set of (strict)

priority orders {≻p}p.

Second, TTC produces a Pareto-optimal outcome in which each applicant is

matched to an institution at least as good as any institution in which she has top

priority.

The most important mechanism we consider is Deferred Acceptance (DA, Defi-

nition 2.4). Note that we use DA to refer to applicant-proposing DA. One can also

consider institution proposing DA (simply interchanging the two sides, and hence the

rolls of preferences and priorities), to which we refer as IPDA. (And when we need

to clarify, we use APDA to refer to the applicant-proposing version.) When we need

to refer specifically to the algorithm traditionally used to compute DA (the so-called

“Gale–Shapley” algorithm), we call it the “DA algorithm” or similar.

The central objective of DA is stability of the resulting matching. A matching µ

is unstable if there exists an (unmatched) pair a, h of an applicant and an institution

such that h ≻a µ(a) and a ≻h µ(h). A matching is stable if it is not unstable. Intu-

itively, the DA process starts from matching each applicant to her favorite institution,

then performs the minimal amount of adjustments needed to ensure stability. For ex-

ample, if every applicant has a distinct favorite institution, then in the first round

of DA they will all propose to their favorite institutions, and exactly this matching
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will be output. However, if two applicants a1 and a2 propose to the same institution

h, then in order to preserve stability, we can only tentatively assign to h whichever

applicant has higher priority at h. This logic is repeated until every applicant finds

some tentative match, which is then made final.

The matching DA produces is always stable. Moreover, it produces the applicant-

optimal (for all applicants simultaneously) stable matching. (Thus, DA produces a

unique outcome that is independent of the order in which applicants are chosen to

propose.) Finally, DA is the unique stable matching mechanism that is strategyproof

for the applicants. (Moreover, no stable mechanism can be strategyproof for both

applicants and institutions.)

Note that, at a technical level, we use SD, TTC, and DA to refer to the correspond-

ing social choice function (or to the corresponding direct-revelation mechanism), not

any particular description or algorithm used to calculate it. When we need to refer

to a specific algorithmic representation, we use words such as “the traditional DA

algorithm”.

B.3 Auctions

Our secondary domain of theoretical interest is (combinatorial) auction environments.

These are cardinal-preference environments in which some set of items is to be offered

for sale to some set of bidders.

Definition B.5. An auction environment for n players (also referred to as bidders)

and a set of items M is one in which an outcome is an allocation (A1, . . . , An) over

M (i.e., Ai ⊆ M for every i, and Ai ∩ Aj = ∅ for every i ̸= j), along with prices

(p1, . . . , pn) to be paid by the respective bidders. The set of types T1, . . . , Tn are

(arbitrary) sets of valuation functions vi : 2
M → R≥0, which map subsets of M to

a valuation for that set of items. The utility of player i under an outcome with

allocation (A1, . . . , An) and prices (p1, . . . , pn) is vi(Ai)− pi.

Note that the i-outcomes are completely determined by the items allocated to i,

along with the price i pays. That is, all outcomes in which i receives the same set of

items and pays the same price are indistinguishable from the point of view of bidder i.

In all of our different auction environments, we consider the allocation function

that maximizes welfare, i.e., maximizes the sum
∑

i vi(Ai) over all possible allocations

(A1, . . . , An). Furthermore, we consider the price function that charges the canonical

VCG prices, i.e., charges bidder i the externality she exerts on the welfare of the other

bidders (i.e., the loss in welfare that the other bidders incur due to the presence of
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bidder i). That is, when the welfare-maximizing allocation is (A1, . . . , An), player i

is charged

pi(v1, . . . , vn) =

(
max
A′

−i

∑
j ̸=i

vj(A
′
j)

)
−
∑
j ̸=i

vj(Aj)

(where the max is taken over all allocations A′
−i to bidders other than i). The social

choice function defined by these allocation and price functions is strategyproof.

For concreteness, we restrict attention to valuation functions (and thus prices)

that are integers in {0, 1, . . . , K}, for some K that may be a function of m and/or n.

(Note though that the scale of these utility values is arbitrary, so 1 unit can represent

a single cent or even a smaller unit of currency.)

In each of the two auction environments on which we focus, each type set Ti is
defined as the set of all valuation functions with some well-motivated properties. All

valuations we discuss will be monotone (i.e., for any S ⊆ T , we have vi(S) ≤ vi(T ))

and normalized (so that vi(∅) = 0).

Definition B.6. An additive valuation vi : 2M → R≥0 is a valuation such that9

vi(S) =
∑

j∈S vi(j) for each S ⊆ M . We denote the social choice function consisting

of the welfare-maximizing allocation, allong with the VCG prices, with n additive

bidders and m items as AD = ADm,n.

Definition B.7. A unit demand valuation vi : 2
M → R≥0 is a valuation such that

vi(S) = maxj∈S vi(j) for each S ⊆ M . We denote the social choice function consist-

ing of the welfare-maximizing allocation, allong with the VCG prices, with n unit

demand bidders and m items as UD = UDm,n.

B.4 Notation

Following standard computer science notation, we write f(n) = Õ
(
g(n)

)
(resp.

Ω̃
(
g(n)

)
) when there exists an integer k such that f(n) = O

(
g(n) logk g(n)

)
(resp.

Ω
(
g(n) logk g(n)

)
). That is, Õ and Ω̃ ignore logarithmic factors. In matching envi-

ronments, we often use variables like di (mnemonic: doctor) to refer to applicants

and hi (mnemonic: hospital) to refer to institutions.

9We slightly abuse notation by writing vi(j) for vi({j}).
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C Omitted Proofs

For the reader’s convenience, throughout the appendix, we restate each result before

giving the proof. We start by proving Theorem 3.1 without assuming the strate-

gyproofness of DA, thus providing an alternative didactic approach for proving its

strategyproofness. For completeness, known results used in the proof are stated with

full proofs in Appendix E.

Theorem 3.1. Description 1 is a menu description of DA. In particular, if every ap-

plicant is assigned to an institution according to this description, then the result is the

applicant-optimal stable matching (i.e., the matching output by applicant-proposing

DA).

Proof. Fix an applicant d∗. Let P be a preference profile, and let h∗ = APDAd∗(P )

denote the match of d∗ according to applicant-proposing DA. We wish to show that

h∗ is the Pi-favorite institution in the set containing (1) the “outside option” of going

unmatched, and (2) all institutions h such that h prefers d∗ to IPDAh(P−d∗) (the

match of h according to institution-proposing DA in the market without d∗).

Let P |d∗:∅ denote the preference profile obtained by altering P so that d∗ reports

an empty preference list (i.e., marking all institutions as unacceptable). Note that

IPDA(P−d∗) and IPDA(P |d∗:∅) produce the same matching (ignoring d∗), and further-

more, the institutions h that prefer d∗ to IPDAh(P−d∗) are exactly those that propose

to d∗ during (the calculation of) IPDA(P |d∗:∅). We therefore wish to prove:

1. If h∗ ̸= ∅, then then h∗ proposes to d∗ during IPDA(P |d∗:∅).

2. d∗ gets no proposal in IPDA(P |d∗:∅) that is Pi-preferred to h∗.

We start with the first claim. Assume that h∗ ̸= ∅. Let P |d∗:{h∗} denote the

preference profile obtained by altering P so that d∗ reports a preference list consist-

ing only of h∗ (i.e., marking all other institutions as unacceptable). Observe that

APDA(P ), the applicant-proposing DA outcome for preferences P , is stable under

preferences P |d∗:{h∗}. Thus, by the Lone Wolf / Rural Hospitals Theorem (Roth,

1986, see Theorem E.6), since d∗ is matched in APDA(P ), she must be matched in

IPDA(P |d∗:{h∗}) as well. Thus, IPDA(P |d∗:{h∗}) = h∗. Since regardless of the order in

which we choose to make proposals in DA, the same proposals are made and the same

outcome is reached (Dubins and Freedman, 1981, see Corollary E.3), the following is

a valid run of IPDA(P |d∗:∅): first run IPDA(P |d∗:{h∗}), then have d∗ reject h∗, then

continue running (according to P |d∗:∅) until IPDA concludes. Thus, h∗ proposes to
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d∗ during IPDA(P |d∗:∅), proving the first claim.

We move on to the second claim. Let T denote d∗’s preference list, truncated

just above h∗ (i.e., obtained by altering d∗’s list in P by removing any institution she

does not strictly prefer to h∗). Let P |d∗:T denote the preference profile replacing d∗’s

preference list in P by the truncated list T . To prove the second claim, it suffices

to prove that d∗ is not matched in IPDA(P |d∗:T ). To see why this suffices, note that

if this is the case, then d∗ rejects all proposals made to it during IPDA(P |d∗:T ), and
hence this run also constitutes also a valid run of IPDA(P |d∗:∅), and since d∗ gets

no proposals Pi-preferred to h∗ in the former, neither does it receive such proposals

in the latter, proving the second claim. It therefore remains to prove that d∗ is not

matched in IPDA(P |d∗:T ).
Suppose for contradiction that d∗ is matched in µ′ = IPDA(P |d∗:T ). Since DA al-

ways results in a stable matching under the reported preferences (Gale and Shapley,

1962, see Lemma E.1), µ′ is stable for P |d∗:T . But by the fact that APDA results in

the applicant-optimal stable matching (Gale and Shapley, 1962, see Corollary E.3),

and since d∗ prefers her match in µ′ to her match in APDA(P ), µ′ is not stable for P .

Therefore, there is a blocking pair for µ′ under P . Since such a pair must not block

under P |d∗:T (since µ′ is stable under these preferences), it must involve applicant d∗,

as her preference order is the only one that differs between P and P |d∗:T . Let (d∗, h)
be this blocking pair. Therefore, h ≻P

d∗
µ′(d). But µ′(d) is still on d∗’s truncated list

T (used in P |d∗:T ), and thus h is on this list as well. Thus, this pair blocks for µ′

under P |d∗:T as well, and so µ′ is unstable for P |d∗:T , a contradiction.

Remark C.1. As noted in Section 3, Theorem 3.1 extends to many-to-one markets

with substitutable priorities. To quickly see why this extension holds in the special

case in which institutions have responsive preferences (i.e., the special case in which

each institution has a master preference order and a capacity), fix a many-to-one mar-

ket, and following a standard approach, consider a one-to-one market where each insti-

tution from the original market is split into “independent copies.” That is, the number

of copies of each institution equals the capacity of the institution, each “copied” insti-

tution has the same preference list as the original institution, and each applicant ranks

all the copies of the institution (in any order) in the same way she ranked the original

institution. Ignoring the artificial difference between copies of the same institution,

the run of applicant-proposing DA is equivalent under these two markets. Thus, an

applicant’s menu is equivalent under both markets, and so by Theorem 3.1, a menu de-

scription for the many-to-one market can be given through institution-proposing DA

under the corresponding one-to-one market, which in turn is equivalent to institution-
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proposing DA under the original market (where at each step, each institution proposes

to a number of applicants up to its capacity). The only change in Description 1 in

this case would be replacing the condition d ≻h µ−d(h) with ∃d′ ∈ µ−d(h) : d ≻h d′.

Remark C.2. As additionally noted in Section 3, Theorem 3.1 also extends to many-

to-one markets with contracts in which the institutions have substitutable preferences

that satisfy the law of aggregate demand (the conditions under which Hatfield and

Milgrom (2005) prove that the strategyproofness of applicant-proposing DA and the

rural hospitals theorem hold), as shown in Description A.1. This new description

generalizes Description 1 as follows: (1) Description A.1 uses the generalized Gale–

Shapley algorithm of Hatfield and Milgrom (2005) starting from (∅, X) (where X

is the set of all possible contracts) to calculate the institution-optimal stable out-

come without d∗ to get a matching µ−d∗ . (2) A given contract c = (d∗, h, c) (i.e.,

an (applicant, institution, term) tuple) is on d∗’s menu if and only if h would choose

(d∗, h, c) if given a choice from the set containing (d∗, c) and its matches in µ−d∗ (in

the notation of Hatfield and Milgrom (2005), c ∈ Ch(µ−d∗(h)∪{c})). Under this mod-

ification, each step of the proof of Theorem 3.1 in Section 3 holds by a completely

analogous argument for this market.

Description A.1 A menu description of the applicant-optimal stable matching in
a many-to-one market with contracts

(1) Calculate the institution-optimal stable matching with applicant d removed
from the market using the generalized Gale–Shapley algorithm of Hatfield and
Milgrom (2005). Call the resulting matching µ−d. Let M be the set of contracts
c = (d, h, t) involving applicant d such that c ∈ Ch(µ−d(h) ∪ {c}).

(2) Match d to d’s highest-ranked contract in M .

Remark C.3. In this remark, we show how Theorem 3.1, which characterizes the

menu in DA in terms of Description 1, can be used to prove results from Ashlagi et al.

(2017) via arguments similar to Cai and Thomas (2022). Consider a randomized mar-

ket with n+1 applicants and n institutions, where such that each applicant/institution

draws a full-length preference list uniformly at random, and let µ be the result of

(applicant-optimal) DA with these preferences. We prove that the expected rank

each applicant receives on their preference list (formally, the expectation of |{h :

h ⪰d µ(d)}| for any d) is at least (1− ϵ)n/ log(n) for any ϵ > 0 and large enough n.
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Fix an applicant d∗, and consider calculating d∗’s menu using Description 1 in

this market. This is equivalent to considering IPDA in a market where d∗ rejects

all proposals, and setting d∗’s menu to consist of all proposals she receives. By the

principle of deferred decisions, this run of IPDA can be constructed by letting each

institution h proposes to a uniformly random applicant (among those h has not yet

proposed to) each time she proposes. Observe that this run of IPDA will terminate

as soon as each of the n applicants other than d∗ receives a proposal. Thus (much like

the standard case of n applicants and n institutions in APDA Wilson (1972)), the

total number of proposals made in this run of IPDA is stochastically dominated by

a coupon collector random variable. Thus, intuitively, the total number of proposals

will be n log(n), and log(n) of these will go to d∗ in expectation, and d∗’s top choice

out of these log(n) proposals will be their n/ log(n)th ranked choice overall.

Formally, let Y denote the number of proposals d∗ receives, and let Y denote the

same quantity in a market where each institution makes each proposal completely

uniformly at random (without regard to prior proposals); it follows that Y is stochas-

tically dominated by Y . Let Zi denote the total number of proposals between the

(i − 1)th and ith distinct applicant in D \ {d∗} receiving a proposal (in the market

with repeated proposals). The expected value of Zi is exactly (n+ 1)/(n+ 1− i),

and each of these Zi proposals (except for the final one) has a 1/i probability of going

to d∗. Thus, we have

E [Y ] ≤ E
[
Y
]
=

n∑
i=1

1

i

(
n+ 1

n+ 1− i
− 1

)
=

n∑
i=1

1

i

(
i

n+ 1− i

)
= Hn ≤ log(n) + 1.

Now, let R = |{h : h ⪰d h∗}|, where h∗ is d∗’s top-ranked proposal received (i.e., d∗’s

match in APDA). One can show that, conditioned on Y = y, we have the expected

value of R exactly equal to (n+ 1)/(y + 1) (see for example (Cai and Thomas, 2022,

Claim A.1)). Thus, by Jensen’s inequality, we have

E [R] = E
y∼Y

[
n+ 1

y + 1

]
≥ n+ 1

E [Y ] + 1
≥ n+ 1

log(n) + 2
≥
(
1− ϵ

) n

log(n)

for any ϵ > 0 and large enough n, as desired.

Theorem 7.2. If there are at least three applicants and three institutions, then for

every applicant i there exist priorities of the institutions such that any applicant-

proposing menu description of DA for applicant i is non-local.

Proof. Assume for contradiction that D is a local applicant-proposing menu descrip-
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tion for some applicant d∗ in a market with applicants d1, d2, d∗ and institutions

h1, h2, h3. We first define priorities of three institutions as follows:

h1 : d2 ≻ d∗ ≻ d1

h2 : d1 ≻ d∗ ≻ d2

h3 : (any list ranking d1, d2, and d∗)

Next, we consider two possible preference lists for each of d1, d2:

≻1 : h1 ≻ h2 ≻ h3 ≻′
1 : h1 ≻ h3 ≻ h2

≻2 : h2 ≻ h1 ≻ h3 ≻′
2 : h2 ≻ h3 ≻ h1

Consider executingD when preferences are P = (≻1,≻2) (i.e. where d1 has preference

≻1 and d2 has preference ≻2). Consider the final time that the description learns the

difference between ≻i and ≻′
i for some i ∈ {1, 2}, that is, the latest node v along the

execution path of P where the execution diverges from that of some P ′ ∈ {(≻′
1,≻2

), (≻1,≻′
2)}. By the symmetry in the defined set of preferences, it is without loss of

generality to assume that this node queries applicant d1, and thus v has one successor

node consistent with preferences P = (≻1,≻2), and a different successor node con-

sistent with preferences P ′ = (≻′
1,≻2). When preferences are P , applicant d∗’s menu

is {h3}. But when preferences are P ′, applicant d∗’s menu is {h1, h3}. Now, h1 has

already been queried from both d1 and d2’s lists in predecessor nodes of v (for d1, this

is because both ≻1 and ≻′
1 rank h1 first; for d2, this is because ≻2 ranks h1 before h3,

but ≻′
2 does not, and at v we already know d2’s preference is not ≻′

2). Thus, because

D is local, the label Lh1 (which determines whether h1 is or is not on the menu) must

be equal in v and in all successor nodes of v. This is a contradiction, because there

are some successor nodes of v where h1 is on the menu and some where h1 is not on

the menu. Thus, no local applicant-proposing menu description of DA exists.

Theorem 7.3. If there are at least three applicants and two institutions, then there

exist preferences of the applicants such that any institution-proposing outcome de-

scription of DA is non-local.

Proof. Assume for contradiction that D is a local institution-proposing outcome de-

scription in a market with institutions h1, h2 and applicants d1, d2, d3. Recall that

for such a description, we consider the preferences of the applicants to be fixed and

consider descriptions which query the priorities of the institutions. We first define

A.17



preferences of three applicants as follows:

d1 : h2 ≻ h1

d2 : h1 ≻ h2

d3 : (any complete preference list)

Next, we consider two possible preference lists for each of h1, h2:

≻1 : d1 ≻ d2 ≻ d3 ≻′
1 : d1 ≻ d3 ≻ d2

≻2 : d2 ≻ d1 ≻ d3 ≻′
2 : d2 ≻ d3 ≻ d1

Analogously to the previous proof, consider the last vertex v along the execution path

with priorities Q = (≻1,≻2) where the execution diverges from that of some priority

profile in {(≻′
1,≻2), (≻1,≻′

2)}, and without loss of generality suppose that this vertex

v has one successor consistent with Q and another consistent with Q′ = (≻′
1,≻2). In

predecessors of v, the description has queried d1 from each institution’s priority list, so

the label Ld1 (which determines the match of d1) cannot be updated in any successor

nodes of v. Under Q, the matching is {(h1, d2), (h2, d1)}, and under Q′, the matching

is {(h1, d1), (h2, d2)}. But by locality, D must assign d1 to the same match in all

successor nodes of v, a contradiction. Thus, no local institution-proposing outcome

description of DA exists.10

Theorem 8.3. No item-linear description of an auction with unit-demand bidders

exists. In fact, any item-read-once description for unit-demand bidders requires mem-

ory Ω(m2). This holds both for outcome descriptions and for menu descriptions.

Proof. Consider the special case where m = n and every bidder has value either 0

or 1 for each item. In this case, the welfare optimal matching is simply given by

the maximum size matching in the bipartite graph where edges are drawn between a

bidder and an item if and only if the bidder values that item at 1. Computing this

matching requires at least as much memory as the problem of checking whether a per-

fect matching (one of size n) exists. Computing the menu of an additional (n+ 1)th

bidder is also at least as hard as this problem: bidder n+1 will face price 1 on every

item if and only if a perfect matching exists. We show that checking whether a perfect

matching exists requires memory Ω(n2) with a item-read-once algorithm.

Let n = 2k, and consider any item-read-once algorithm. Consider a set of k2

10This construction can also be modified to hold in a market with three applicants and three
institutions by adding an institution which all applicants (including d3) rank last.
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bits xi,j ∈ {0, 1} for i, j ∈ [k]. We adversarially build a collection of inputs, one for

each bitstring {xi,j}i,j, as follows: Start by dividing the n bidders into two classes,

v1, . . . , vk and w1, . . . , wk. For each i ∈ [k], let zi denote the item the which is queried

ith by the algorithm. Without loss of generality, the algorithm learns all bidder’s

values for the item zi at once. We give these values as follows: vi demand zi, but no

other vj wants zi for j ̸= i, and for each j such that xi,j = 1, we let wi demand zj.

Now, consider a pair of indices (p, q) ∈ [k]. For i ∈ {n/2+ 1, . . . , n}, let zi denote
the ith item queried. For the k − 1 such items with i < n, let each zi be demanded

by exactly one bidder in {w1, . . . , wk} \ {wq}. For i = n, let zn be demanded only by

the bidder vp.

Lemma C.4. There exists a perfect matching (of bidders to items which they de-

mand) if and only if xp,q = 1.

Proof. All of the items zi with i ∈ {n/2 + 1, . . . , n} are demanded by exactly one

bidder, and thus must match there if there is a perfect matching. In particular, vp

must be taken by zn and each wj for j ̸= q must be taken by zn/2+j. Each bidder

zi for i ̸= p has the option to match to vi. If xp,q = 1, then zp can match to to wq

to complete the matching. On the other hand, if some perfect matching exists, then

every bidder vi for i ̸= p must be take some item, but this item must of course be bi.

Thus, zp must receive wq, and we must have xp,q = 1.

Lemma C.5. After the first n/2 items are queried in the above process, the descrip-

tion must be in a distinct state for each distinct bitstring {xi,j}i,j.

Proof. Suppose for contradiction that the mechanism was in the same state after read-

ing inputs corresponding to {xi,j}i,j and {x′
i,j}i,j, where (without loss of generality)

xp,q = 1 and x′
p,q = 0. Consider the inputs to the second half of the bidders corre-

sponding to (p, q). Under the inputs corresponding to x, there is a perfect matching,

but under x′, there is not. However, the program was in the same state after reading

x and x′, thus it cannot be correct for both inputs, a contradiction.

Thus, the space required by the program is at least the space needed to store the

full bitstring {xi,j}i,j∈[k]. This is Ω(k2) = Ω(n2) bits.11

11This theorem reduces to proving the desired lower bound for any algorithm which computes
the allocation. This is unlike most of our results (which hold only for individualized dictatorships
descriptions, or otherwise explore novel simplicity conditions). For this reason, it is similar to
results already known in the context of streaming algorithms (for example, Assadi (2020) gives a
lower bound proof for streaming algorithms which is very technically similar to this proof).
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D Delicate Descriptions of Deferred Acceptance

In this section, we present additional descriptions of DA. While technically interesting,

we believe these descriptions are vastly more complicated than traditional descrip-

tions of DA, and quite impractical. For notational convenience, in this appendix, we

refer to the priorities of institutions as “preferences.”

D.1 Institution-proposing outcome description of DA

First, we construct an institution-linear outcome description of DA (i.e., a descrip-

tion of the applicant-optimal stable matching, traditionally described using applicant-

proposing DA). Interestingly, essentially this same algorithm was used as a lemma by

Ashlagi et al. (2017) (henceforth, AKL).12

Theorem D.1 (Adapted from Ashlagi et al., 2017). Description A.2 computes the

applicant-optimal stable outcome. Moreover, Description A.2 is an institution-linear

description (i.e., it is institution-proposing and Õ(n)-memory).

Proof. AKL refer to the sides of the market as “men” and “women”, and define “Al-

gorithm 2 (MOSM to WOSM)”, a men-proposing algorithm for the women-optimal

stable matching. Description A.2 follows the exact same order of proposals as this al-

gorithm from AKL. The only difference apart from rewriting the algorithm in a more

“pseudocode” fashion is that Description A.2 performs bookkeeping in a slightly dif-

ferent way—Algorithm 2 from AKL maintains two matchings, and their list V keeps

track of only women along a rejection chain; our list V keeps track of both applicants

and institutions along the rejection chain (and can thus keep track of the “difference

between” the two matchings which AKL tracks).

Moreover, the algorithm is institution-proposing, by construction. Furthermore,

as it runs it stores only a single matching µ, a set Dterm ⊆ D, and the “rejection

chain” V (which can contain each applicant d ∈ D at most once). Thus, it uses

memory Õ(n).

12For context, Ashlagi et al. (2017) needs such an algorithm to analyze (for a random matching
market) the expected “gap” between the applicant and institution optimal stable matching. Their
algorithm builds on the work of Immorlica and Mahdian (2005), and is also conceptually similar to
algorithms for constructing the “rotation poset” in a stable matching instance Gusfield and Irving
(1989) (see also Cai and Thomas (2019)).
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Description A.2 An institution-proposing outcome description of (applicant-
optimal) DA

Input: Preferences of all applicants D and institutions H
Output: The result of applicant-proposing deferred acceptance

1: ▷ We start from the institution-optimal outcome, and slowly “improve the match for the
applicants” ◁

2: Let µ be the result of institution-proposing DA
3: Let Dterm be all applicants unmatched in µ ▷ Dterm is all applicants at their optimal stable

partner
4: while Dterm ̸= D do
5: Pick any d̂ ∈ D \ Dterm, and set d = d̂
6: Let h = µ(d) and set V = [(d, h)]
7: while V ̸= [] do
8: Let d← NextAcceptingApplicant(µ, h)
9: if d = ∅ or d ∈ Dterm then
10: ▷ In this case, all the applicants in V have reached their optimal stable partner. ◁
11: Add every applicant which currently appears in V to Dterm

12: Set V = []
13: else if d ̸= ∅ and d does not already appear in V then ▷ Record this in the rejection

chain
14: Add (d, µ(d)) to the end of V
15: Set h← µ(d) ▷ The next proposing institution will be the “old match” of d.
16: else if d ̸= ∅ and d appears in V then
17: ▷ A new “rejection rotation” should be written to µ ◁
18: WriteRotation(µ, V , d, h) ▷ Updates the value of µ, V , and (possibly) h
19: Return µ

20: function NextAcceptingApplicant(µ, h)
21: repeat
22: Query h’s preference list to get their next choice d
23: until d = ∅ or h ≻d µ(d)
24: Return d

25: procedure WriteRotation(µ, V , d, h)
26: Let T = (d1, h1), . . . , (dk, hk) be the suffix of V starting with the first occurrence of d = d1
27: Update µ such that µ(hi) = di+1 (for each i = 1, . . . , k, with indices taken mod k)
28: ▷ Now we fix V and h to reflect the new µ ◁
29: Update V by removing T from the end of V
30: if V ̸= ∅ then
31: Let (d0, h0) denote the final entry remaining in V
32: ▷ The next proposing institution will either hk or h0, depending on which d1 prefers ◁
33: if hk ≻d1

h0 then
34: Set h← h0

35: else if h0 ≻d1 hk then
36: Add (d1, hk) to the end of V
37: Set h← h1
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D.2 Applicant-proposing menu description of DA

In this section, we construct an applicant-linear menu description of (applicant-

optimal) DA. On an intuitive level, the algorithm works as per Example 2.8, but

avoiding the need to “restart many times” by using the various properties of DA

and by careful bookkeeping (to intuitively “simulate all of the separate runs of the

brute-force description on top of each other”). On a formal level, we describe the

algorithm as a variant of Description A.2. The proof constructing this algorithm

uses a bijection between one applicant’s menu in DA under some preferences, and

some data concerning the institution-optimal stable matching under a related set of

preferences. Our applicant-linear algorithm is then phrased as a variation of Descrip-

tion A.2, which (reversing the roles of applicants and institutions from the presen-

tation in Description A.2) is able to compute the institution-optimal matching using

an applicant-proposing algorithm.

Fix an applicant d∗ and set P that contains (1) the preferences of all applicants

D \ {d∗} other than d∗ over H and (2) the preferences of all institutions H over all

applicants D (including d∗). We now define the “related set of preferences” mentioned

above. Define the augmented preference list P ′ as follows: For each hi ∈ H, we cre-

ate two additional applicants dtryi , dfaili and two additional institutions htry
i , hfail

i . The

entire preference lists of these additional agents in P ′ are as follows: for each hi ∈ H:

dtryi : htry
i ≻ hi ≻ hfail

i dfaili : hfail
i ≻ htry

i

htry
i : dfaili ≻ dtryi hfail

i : dtryi ≻ dfaili

We need to modify the preference lists of the pre-existing institutions as well. But this

modification is simple: for each hi ∈ H, replace d∗ with dtryi . The institution-optimal

matching for this augmented set of preferences P ′ will encode the menu, as we need.13

Proposition D.2. An institution hi ∈ H is on d∗’s menu in APDA with prefer-

ences P if and only if in the institution-optimal stable matching with the augmented

13For the reader familiar with the rotation poset of stable matchings, the intuition for this con-
struction is the following: having htry

i reject applicant dtryi corresponds to d∗ “trying” to get hi ∈ H,
i.e., “trying to see if hi is on their menu.” If d∗ would be rejected by hi after proposing, either imme-
diately or after some “rejection rotation,” then so will dtryi (because they serve the same role as d∗ at
hi). So if a rotation swapping htry

i and hfail
i exists (e.g., in the institution optimal matching) then hi is

not on d∗’s menu. On the other hand, if d∗ could actually permanently match to hi, then dtryi propos-
ing to hi will result in a rejection chain that ends at some other applicant (either exhausting their
preference list or proposing to an institution in Hterm), which does not result in finding a rotation (or
writing a new set of matches as we “work towards the institution-optimal match”). Thus, if htry

i and
hfail
i do not swap their matches in the institution-optimal stable outcome, then hi is on d∗’s menu.
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preferences P ′, we have htry
i matched to dtryi .

Proof. For both directions of this proof, we use the following lemma, which is a special

case of the main technical lemma in Cai and Thomas (2022):

Lemma D.3. In P ′, each htry
i has a unique stable partner if and only if, when htry

i

rejects dtryi (i.e. if htry
i submitted a list containing only dfaili , and all other preferences

remained the same), htry
i goes unmatched (say, in the applicant-optimal matching).

Note that each htry
i is matched to dtryi in the applicant-optimal matching with

preferences P ′ (and the matching among all original applicants and institutions is the

same as µapp).

(⇐) By the lemma, if htry
i is matched to dtryi in the institution-optimal matching

under P ′, then htry
i must go unmatched when htry

i rejects dtryi . But, after htry
i , we

know dtryi will propose to hi, and some rejection chain may be started. Because dtryi ’s

very next choice is hfail
i (and proposing there would lead directly to htry

i receiving

a proposal from dfaili ), the only way for htry
i to remain unmatched is if dtryi remains

matched to hi. But because (relative to all the original applicants) dtryi is in the same

place as d∗ on hi’s preference list, the resulting set of rejections in P ′ will be precisely

the same as those resulting from d∗ submitting a preference list in P which contains

only hi. In particular, d∗ would remain matched at hi in P if they submitted such a

list. Thus, hi is on d∗’s menu.

(⇒) Suppose htry
i is matched to dfaili in the institution optimal matching under P ′.

Again, htry
i must receive a proposal from dfaili when htry

i rejects dtryi . But this can only

happen if dtryi is rejected by hi (then proposes to hfail
i ). But because the preferences

of the original applicants in P ′ exactly corresponds to those in P , we know that d∗

would get rejected by hi if they proposed to them in µapp under P . But then hi

cannot be on d∗’s menu.

With this lemma in hand, we can now show that there is an applicant-linear menu

description of (applicant-optimal) DA. This description is given in Description A.3.

Description A.3 An applicant-proposing menu description of DA

Input: An applicant d∗ and preferences of all applicants D \{d∗} and institutions H
Output: The menu of d∗ in applicant-optimal DA given these preferences

1: Simulate the flipped-side version of Description A.2 (such that applicants
propose) on preferences P ′ to get a matching µ

2: Return the set of all institutions hi such that htry
i is matched to dtryi in µ
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Theorem D.4. There is an applicant-proposing, Õ(n) memory menu description of

(applicant-optimal) DA.

Proof. The algorithm proceeds by simulating a run of Description A.2 on prefer-

ences P ′ (interchanging the role of applicants and institutions, so that applicants are

proposing). This is easy to do while still maintaining the applicant-proposing and

Õ(n) memory. In particular, P ′ adds only O(n) applicants and institutions, with each

dtryi and dfaili making a predictable set of proposals. Moreover, the modification made

to the preferences lists of the institutions h ∈ H is immaterial—when such institutions

receive a proposal from dtryi , the algorithm can just query their lists for d∗.

D.3 Institution-proposing individualized dictatorship descrip-

tion of DA

In this section, we construct an institution-linear individualized dictatorship descrip-

tion of (applicant-optimal) DA.14 Throughout this section, let P |di:L denote altering

preferences P by having di submit list L.

Unlike our applicant-proposing menu description of DA from Section D.2, our

institution-proposing individualized-dictatorship description cannot be “reduced to”

another algorithm such as Description A.2. However, the algorithm is indeed a modi-

fied version of Description A.2 that “embeds” our simple institution-proposing menu

algorithm Description 1 (i.e., IPDA where an applicant d∗ submits an empty pref-

erence list) as the “first phase.” The key difficulty the algorithm must overcome is

being able to “undo one of the rejections” made in the embedded run of Description 1.

Namely, the algorithm must match d∗ to her top choice from her menu, and “undo”

all the rejections caused by d∗ rejecting her choice.
15 To facilitate this, the description

14For some technical intuition on why such a description might exist, consider the construction
used in Theorem 6.4, and consider an individualized dictatorship for applicant i executed on these
preferences. To find the menu in this construction with an applicant-proposing algorithm, all of the
“top tier rotations” must be “rotated”, but to find the correct final matching after learning ti, some
arbitrary subset of the rotations must be “unrolled” (leaving only the subset of rotations which ti
actually proposes to). Theorem 6.4 shows that all of this information must thus be remembered
in full. Now consider a run of Description A.2 on these preferences (or on a modified form of
these preferences where institutions’ preference lists determine which top tier rotations propose to
bottom tier rotations). Some subset of top-tier institutions will propose to applicant i. To continue
on with a run of Description A.2, it suffices to undo exactly one of these proposals. So, if two or
more top-tier rotations trigger a bottom-tier rotation, then we can be certain that the bottom-tier
rotation will be rotated, and we only have to remember which bottom-tier rotations are triggered
by exactly one top-tier rotation (which takes Õ(n) bits).

15Description A.2 is independent of the order in which proposals are made. Moreover, one can
even show that d∗ receives proposals from all h on her menu in Description A.2. However, this does
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has d∗ reject institutions that propose to d∗“as slowly as possible,” and maintains a

delicate Õ(n)-bit data structure that allows it to undo one of d∗’s rejections.
16 The

way this data structure works is involved, but one simple feature that illustrates how

and why it works is the following: exactly one rejection from d∗ will be undone, so

if some event is caused by more than one (independent) rejection from d∗, then this

event will be caused regardless of what d∗ picks from the menu.

We present our algorithm in Description A.4. For notational convenience, we de-

fine a related set of preferences Phold as follows: For each hi ∈ H, add a “copy of d∗”

called dholdi to Phold. The only acceptable institution for dholdi is hi, and if d∗ is on hi’s

list, replace d∗ with dholdi on hi’s list. Given what we know from Section 3, the proof

that this algorithm calculates the menu is actually fairly simple:

Lemma D.5. The setHmenu output by Description A.4 is the menu of d∗ in (applicant-

proposing) DA.

Proof. Ignoring all bookkeeping, Phase 1 of this algorithm corresponds to a run of

IPDA(P |d∗:∅). The only thing changed is the order in which d∗ performs rejections,

but DA is invariant under the order in which rejections are performed. Moreover,

Hmenu consists of exactly all institutions who propose to d during this process, i.e.

d∗’s menu (according to Section 3).

The correctness of the matching, on the other hand, requires an involved proof.

The main difficulty surrounds the “unroll DAG” ∆, which must be able to “undo some

of the rejections” caused by d∗ rejecting different h. We start by giving some invariants

of the state maintained by the algorithm (namely, the values of ∆, µ, P , and h):

Lemma D.6. At any point outside of the execution of AdjustUnrollDAG:

(1) P contains all nodes in ∆ of the form (d, h) (where h is the “currently proposing”

h ∈ H).

not suffice to construct our individualized dictatorship simply by changing the order of Descrip-
tion A.2. The main reason is this: in Description A.2, the preferences of d∗ are already known, so d∗
can reject low-ranked proposals without remembering the effect that accepting their proposal might
have on the matching. While the “unrolling” approach of Description A.4 is inspired by the way De-
scription A.2 effectively “unrolls rejection chains” (by storing rejections in a list V and only writing
these rejections to µ when it is sure they will not be “unrolled”), the bookkeeping of Description A.4
is far more complicated (in particular, the description maintains a DAG ∆ instead of a list V ).

16Interestingly, this “rolled back state” is not the result of institution-proposing DA on pref-
erences (P, di : {hj}), where hj is di’s favorite institution on her menu. Instead, it is a “partial
state” of Description A.2 (when run on these preferences), which (informally) may perform
additional “applicant-improving rotations” on top of the result, and thus we can continue running
Description A.2 until we find the applicant-optimal outcome.
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Description A.4 An institution-proposing individualized dictatorship description
of DA

Phase 1 input: An applicant d∗ and preferences of applicants D \ {d∗} and institutions H
Phase 1 output: The menu Hmenu presented to d∗ in (applicant-proposing) DA
Phase 2 input: The preference list of applicant d∗
Phase 2 output: The result of (applicant-proposing) DA

1: ▷ Phase 1: ◁
2: Simulate a run of IPDA(Phold) and call the result µ′

3: Let H∗ be all those institutions hi ∈ H matched to dholdi in µ′ ▷ These institutions “currently
sit at d∗”

4: Let µ be µ′, ignoring all matches of the form (dholdi , h)
5: Let Hmenu be a copy of H∗ ▷ We will grow Hmenu

6: Let ∆ be an empty graph ▷ The “unroll DAG”. After Phase 1, we’ll “unroll a chain of
rejections”

7: while H∗ ̸= ∅ do
8: Pick some h ∈ H∗ and remove h from H∗
9: Add (d∗, h) to ∆ as a source node
10: Set P = {(d∗, h)} ▷ This set stores the “predecessors of the next rejection”
11: while h ̸= ∅ do
12: Let d← NextInterestedApplicant(µ,∆, h)

AdjustUnrollDag(µ, ∆, P , d, h) ▷ Updates each of these values
13: Return Hmenu

14: ▷ Phase 2: We now additionally have access to d∗’s preferences ◁
15: Permanently match d∗ to their top pick hpick from Hmenu

16: (µ,Dterm)← UnrollOneChain(µ,∆, hpick)
17: Continue running the Description A.2 until its end, using this µ and Dterm, starting from Line 4
18: Return the matching resulting from Description A.2

19: function NextInterestedApplicant(µ, ∆, h)
20: repeat
21: Query h’s preference list to get their next choice d
22: until d ∈ {∅, d∗} OR (d is in ∆, paired with h′ in ∆, and h ≻d h′) OR (d is not in ∆ and

h ≻d µ(d))
23: Return d

24: procedure UnrollOneChain(µ, ∆, hpick)
25: Let (d0, h0), (d1, h1), . . . , (dk, hk) be the (unique) longest chain in ∆ starting from

(d0, h0) = (d∗, hpick)
26: Set µ(di) = hi for i = 0, . . . , k
27: Set Dterm = {d∗, d1, . . . , dk}
28: return (µ,Dterm)
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1: procedure AdjustUnrollDag(µ, ∆, P, d, h)
2: if d = ∅ then
3: Set h = ∅ ▷ Continue and pick a new h
4: else if d = d∗ then ▷ h proposes to d∗, so we’ve found a new h in the menu
5: Add h to Hmenu

6: Add (d∗, h) to ∆
7: Add (d∗, h) to the set P ▷ h still proposes; the next rejection will have multiple

predecessors
8: else if d does not already appear in ∆ then ▷ Here h ≻d µ(d)
9: Add (d, µ(d)) to ∆ ▷ Record this in the rejection DAG
10: Add an edge from each p ∈ P to (d, µ(d)) in ∆, and set P = {(d, µ(d))}
11: Set h′ ← µ(d), then µ(d)← h, then h← h′

12: ▷ The next proposing institution will be the “old match” of d. ◁
13: else if d appears in ∆ then
14: AdjustUnrollDagCollision(µ, ∆, P , d, h) ▷ Updates each of these values

15: procedure AdjustUnrollDagCollision(µ, ∆, P, d, h)
16: Let p1 = (d1, h1) be the pair where d = d1 appears in ∆ ▷ We know h ≻d1

h1

17: Let P1 be the set of all predecessors of p1 in ∆

18: ▷ First, we drop all rejections from ∆ which we are now sure we won’t have to unroll ◁
19: Let (d1, h1), . . . , (dk, hk) be the (unique) longest possible chain in ∆ starting from (d1, h1)

such that each node (dj , hj) for j > 1 has exactly one predecessor
20: Remove each (di, hi) from ∆, for i = 1, . . . , k, and remove all edges pointing to these nodes

21: ▷ Now, we adjust the nodes to correctly handle d1 (which might have to “unroll to hmin”) ◁
22: Let hmin be the institution among {µ(d1), h} which d1 prefers least
23: Let pnew = (d1, hmin); add pnew to ∆
24: if hmin = h then ▷ We replace p1 with pnew
25: Add an edge from each p ∈ P1 to pnew
26: Add pnew to P ▷ h is still going to propose next
27: else ▷ Here hmin = µ(d1); we add pnew below the predecessors P
28: Add an edge from every p ∈ P to pnew
29: Set P = P1 ∪ {pnew}
30: Set h′ ← µ(d1), then µ(d)← h, then h← h′ ▷ d1’s old match will propose next
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(2) All of the nodes in P have out-degree 0.

(3) The out-degree of every node in ∆ is at most 1.

(4) Every source node in ∆ is of the form (d∗, hi) for some hi ∈ Hmenu.

(5) For every edge (d0, h0) to (d1, h1) in ∆, we have µ(d1) = h0.

(6) For each d ∈ D \ {d∗}, there is at most one node in ∆ of the form (d, hi) for

some hi.

Each of these properties holds trivially at the beginning of the algorithm, and

it is straightforward to verify that each structural property is maintained each time

AdjustUnrollDag runs.

We now begin to model the properties that ∆ needs to maintain as the algorithm

runs.

Definition D.7. At some point during the run of any institution-proposing algorithm

with preferences Q, define the truncated revealed preferences Q as exactly those in-

stitution preferences which have been queried so far, and assuming that all further

queries to all institutions will return ∅ (that is, assume that all institution preference

lists end right after those preferences learned so far).

For some set of preferences Q we say the revealed truncated preferences Q and

the pair (µ′,D′
term) is a partial AKL state for preferences Q if there exists some exe-

cution order of Description A.2 and a point along that execution path such that the

truncated revealed preferences are Q, and µ and Dterm in Description A.2 take the

values µ′ and D′
term

Let Q be a set of preferences which does not include preference of d∗, and let Q

a truncated revealed preferences of Q. Call a pair (µ,∆) unroll-correct for Q at Q

if 1) µ is the result of IPDA(Q), and moreover, for every h ∈ Hmenu, the revealed

preferences Q and pair UnrollOneChain(µ,∆, h) is a valid partial AKL state of

preferences (Q, d∗ : {h}).

The following is the main technical lemma we need, which inducts on the total

number of proposals made in the algorithm, and shows that (µ,∆) remain correct

every time the algorithm changes their value:

Lemma D.8. Consider any moment where we query some institution’s preferences

list withing NextInterestedApplicant in Description A.4. Let h be the just-

queried institution, let d be the returned applicant, and suppose that the truncated

revealed preferences before that query are Q, and fix the current values of µ and ∆.
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Suppose that (µ,∆) are unroll-correct for Q at Q.

Now let Q
′
be the revealed preferences after adding d to h’s list, and let µ′ and ∆′

be the updated version of these values after Description A.4 processes this proposal

(formally, if NextInterestedApplicant returns d, fix µ′ and ∆′ to the values of

µ and ∆ after the algorithm finishes running AdjustUnrollDag; if NextInter-

estedApplicant does not return d, set µ′ = µ and ∆′ = ∆). Then (µ′,∆′) are

unroll-correct for Q at Q
′
.

Proof. First, observe that if h’s next choice is ∅, then the claim is trivially true,

because Q = Q (and AdjustUnrollDAG does not change µ or ∆). Now suppose

h’s next choice is d ̸= ∅, but is not returned by NextInterestedApplicant. This

means that: 1) d ̸= d∗, 2) µ(d) ≻d h, and 3) either d does not appear in ∆, or d

does appear in ∆, in which case d matched to some h′ such that h′ ≻d h. Because

(µ,∆) are unroll-correct for Q at Q, and because Lemma D.6 says that d can appear

at most once in ∆, the only possible match which d could be unrolled to at truncated

revealed preferences Q is h′ (formally, if the true complete preferences were Q, then for

all h∗ ∈ Hmenu, the partial AKL state under preferences (Q, d : {h∗}) to which we we

would unroll would match d to either µ(d) or h′). But d would not reject µ(d) in favor

of h, nor would she reject h′ in favor of h. Thus, (for all choices of h∗ ∈ Hmenu) we

know h will always be rejected by d, and (µ,∆) are already unroll-correct for Q at Q
′
.

Now, consider a case where h’s next proposal d ̸= ∅ is returned by NextInter-

estedApplicant. There are a number of ways in which AdjustUnrollDAG may

change ∆. We go through these cases.

First, suppose d = d∗. In this case, the menu of d∗ in Q
′
contains exactly

one more institution than the menu in Q, namely, institution h. Moreover, for

any h∗ ∈ Hmenu \ {h}, the same partial AKL state is valid under both preferences

(Q, d : {h∗}) and (Q
′
, d : {h∗}) (the only difference in (Q

′
, d : {h∗}) is a single

additional proposal from h to d∗, which is rejected; the correct value of Dterm is

unchanged). For h∗ = h, the current matching µ, modified to match h to d∗, is a

valid partial AKL state for (Q
′
, d : {h}), and this is exactly the result of Unrol-

lOneChain (with Dterm = {d∗}, which is correct for preferences (Q
′
, d : {h})). Thus,

(using also the fact from Lemma D.6 that P contains all nodes in ∆ involving h),

each possible result of UnrollOneChain is a correct partial AKL state for each

(Q
′
, d : {h∗}), so (µ′,∆′) is unroll-correct for Q at Q

′
.

Now suppose d /∈ {∅, d∗} is returned from AdjustUnrollDAG, and d does not

already appear in ∆. In this case, h ≻d µ(d), and for every h∗ ∈ Hmenu, the unrolled

state when preferences (Q, d : {h∗}) will pair d to µ(d). Under preferences (Q
′
, d : ∅),
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a single additional proposal will be made on top of the proposals of (Q, d : ∅), namely,

h will propose to d and d will reject µ(d). However, if h∗ is such that h is “unrolled”

(formally, if h∗ is such that UnrollOneChain(µ,∆, h∗) changes the partner of h)

then h cannot propose to d in (Q, d : ∅) (because all pairs in ∆ can only “unroll” h to

partners before µ(h) on h’s list), nor in (Q
′
, d : ∅) (because Q′

only adds a partner to

h’s list after µ(h)). Thus, for all h∗ such that h is unrolled, the pair (d, µ(d)) should

be unrolled as well. On the other hand, for all h∗ such that h is not unrolled, h will

propose to d (matched to d′), so d will match to h in the unrolled-to state. This is

exactly how µ′ and ∆′ specify unrolling should go, as needed.

(Hardest case: AdjustUnrollDagCollision.) We now proceed to the hard-

est case, where d /∈ {∅, d∗} is returned from AdjustUnrollDag, and d already

appears in ∆. In this case, AdjustUnrollDagCollision modifies ∆. Define p1,

P1, and hmin, following the notation of AdjustUnrollDagCollision. Now con-

sider any h∗ ∈ Hmenu under preferences Q. There are several cases of how h∗ may

interact with the nodes changed AdjustUnrollDagCollision, so we look at these

cases and prove correctness. There are two important considerations which we must

prove correct: first, we consider the way that AdjustUnrollDagCollision re-

moves nodes from ∆ (starting on Line 19), and second, we consider the way that it

creates a new node to handle d (starting on Line 22).

(First part of AdjustUnrollDagCollision.) We first consider the way

AdjustUnrollDagCollision removes nodes from ∆. There are several subcases

based on h∗. First, suppose UnrollOneChain(µ,∆, h∗) does not contain p1. Then,

because AdjustUnrollDagCollision only drops p1 and nodes only descended

through p1, the chain unrolled by UnrollOneChain(µ′,∆′, h∗) is unchanged until

h. (We will prove below that the behavior when this chain reaches h is correct.)

Thus, the initial part of this unrolled chain remains correct for Q at Q
′
.

On the other hand, suppose that UnrollOneChain(µ,∆, h∗) contains p1. There

are two sub-cases based on ∆. First, suppose that there exists a pair p ∈ P in ∆ such

that p is a descendent of p1 (i.e. there exists a p = (dx, h) ∈ P and a path from p1 to p

in ∆). In this case, under preferences Q, UnrollOneChain(µ,∆, h∗) would unroll

to each pair in the path starting at h∗, which includes p1 and all nodes on the path

from p1 to p. Under ∆′, however, none of the nodes from p1 to p will be unrolled in

this case. The reason is this: in Description A.2, the path from p1 to p, including the

proposal of h to d1, form an “improvement rotation” when the true preferences are

Q
′
. Formally, under preferences (Q

′
, d∗ : {h∗}), if d1 rejected h1, the rejections would

follow exactly as in the path in ∆ between p1 and p, and finally h would propose to
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d1. Description A.2 would then call WriteRotation, and the value of µ would be

updated for each d on this path. So deleting these nodes is correct in this subcase.17

For the second subcase, suppose that there is no path between p1 and any p ∈ P

in ∆. In this case, there must be some source (d∗, h) in ∆ which is an ancestor of some

p ∈ P , and such that the path from (d∗, h) to p does not contain any descendent of p1.

(This follows because each p ∈ P must have at least one source as an ancestor, and no

ancestor of any p ∈ P can be descendent of p1.) To complete the proof in this subcase,

it suffices to show that at preferences (Q
′
, d∗ : {h∗}), we “do not need to unroll” the

path in ∆ starting at h∗ after p1 (formally, we want to show that if you unroll from

µ′ the path in ∆ from h∗ to just before p1 (including the new node added by the lines

starting on Line 22), then this is a partial AKL state of Q at Q
′
). The key observation

is this: in contrast to preferences (Q, d∗ : {h∗}), where pair p1 is “unrolled”, under

preferences (Q
′
, d∗ : {h∗}), we know h will propose to d1 anyway, because d∗ will cer-

tainly reject h (and trigger a rejection chain leading from (d∗, h) to h proposing to d1).

(Second part of AdjustUnrollDagCollision.) We now consider the sec-

ond major task of AdjustUnrollDagCollision, namely, creating a new node to

handle d. The analysis will follow in the same way regardless of how the first part

of AdjustUnrollDagCollision executed (i.e., regardless of whether there exists

a path between p1 and P ). The analysis has several cases. First, suppose (d∗, h∗) is

not an ancestor of any node in P1 ∪ P in ∆. This will hold in ∆′ as well, so neither

UnrollOneChain(µ,∆, h∗) nor will UnrollOneChain(µ′,∆′, h∗) will not change

the match of d. Instead, the match of d under UnrollOneChain(µ′,∆′, h∗) will be

µ′(d), which is a correct partial AKL state under (Q
′
, d∗ : {h∗}), as desired.

Second, suppose h∗ is such that (d∗, h∗) is an ancestor of some node in P1 in

∆. There are two subcases. If hmin = h, then we have µ(d1) = µ′(d1), but when

UnrollOneChain(µ′,∆′, h∗) is run, we unroll d1 to h. Correspondingly, in IPDA

with preferences (Q
′
, d∗ : {h∗}), we know d1 will not receive a proposal from µ(d1) (as

this match is unrolled in Q) but d1 will receive a proposal from h (as this additional

proposal happens in Q
′
but not in Q, regardless of whether this happens due to a “re-

jection rotation” of AKL, or simply due to two rejection chains causing this proposal,

as discussed above), which d1 prefers to the unrolled-to match under preferences Q.

Thus, under preferences (Q
′
, d∗ : {h∗}), we know d1 will match to hmin = h in a valid

partial AKL-state. So (µ′,∆′) is correct for Q
′
in this subcase. If, on the other hand,

hmin = µ(d1), then in ∆′,UnrollOneChain(µ′,∆′, h∗) will not contain the new node

17This is the core reason why Description A.4 cannot “unroll” to IPDA(Q, d : {hi})—instead,
it unrolls to a “partial state of AKL”.
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pnew. However, µ′(d1) = h, and we know d would receive a proposal from h (Q
′
, d∗ :

{h∗}), and would accept this proposal. So (µ′,∆′) is correct for Q
′
in this subcase.

Third and finally, suppose h∗ is such that (d∗, h∗) is an ancestor of some node in

P in ∆. The logic is similar to the previous paragraph, simply reversed. Specifically,

there are two subcases. If hmin = h, then when preferences are (Q
′
, d∗ : {h∗}), then

d1 will no longer receive a proposal from h, but will still receive a proposal from

µ(d1). So d1 should remain matched to µ(d1) during UnrollOneChain(µ′,∆′, h∗),

and (µ′,∆′) is correct for Q
′
in this subcase. If hmin = µ(d1), then µ′(d1) = h, and in

∆′, UnrollOneChain(µ′,∆′, h∗) will contain the new node pnew, which unrolls d1 to

their old match µ(d1). This is correct, because in Q, according to ∆, we know h will be

unrolled to some previous match, and correspondingly, in preferences (Q
′
, d∗ : {h∗}),

we know d1 will never receive a proposal from h. So (µ′,∆′) is correct for Q
′
in this

subcase.

Thus, for all cases, (µ′,∆′) are unroll-correct for Q at Q
′
, as required.

To begin to wrap up, we bound the computational resources of the algorithm:

Lemma D.9. Description A.4 is institution-proposing and uses memory Õ(n).

Proof. The institution-proposing property holds by construction. To bound the mem-

ory, the only thing that we need to consider on top of AKL is the “unroll DAG” ∆.

This memory requirement is small, because there are at most O(n) nodes of the form

(d∗, h) for different h ∈ H, and by Lemma D.6, a given applicant d ∈ D \ {d∗} can
appear at most once in ∆. So the memory requirement is Õ(n).

We can now prove our main result:

Theorem D.10. Description A.4 is an institution-proposing, Õ(n) memory individ-

ualized dictatorship for (applicant-proposing) DA.

Proof. We know Description A.4 correctly computes the menu, and that it is institution-

proposing and Õ(n) memory. So we just need to show that it correctly computes the

final matching. To do this, it suffices to show that at the end of Phase 1 of Descrip-

tion A.4, (µ,∆) is unroll-correct for Q at the truncated revealed preferences Q (for

then, by definition, running Description A.2 after UnrollOneChain will correctly

compute the final matching).

To see this, first note that an empty graph is unroll-correct for the truncated re-

vealed preference after running IPDA(Phold), as no further proposals beyond d∗ can

be made in these truncated preferences. Second, each time we pick an h ∈ H∗ on
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Line 8, a single (d∗, h) added to ∆ (with no edges) is unroll-correct for Q at Q
′
, by

construction. Finally, by Lemma D.8, every other query to any institution’s prefer-

ence list keeps (µ,∆) unroll-correct after the new query. So by induction, (µ,∆) is

unroll-correct at the end of Phase 1, as desired.

E Proofs of Known Results

This section is primarily dedicated to reproducing complete proofs from scratch all

lemmas we need related to DA and stable matchings. While this adds completeness

to the paper, the primary purpose of including these proofs is to facilitate a compar-

ison between two approaches to proving the strategyproofness of DA: first, the proof

of Theorem 3.1 given in Appendix C, which shows the correctness of Description 1

without relying on the strategyproofness of DA, and second, a classical, direct proof

presented in Section E.2.

E.1 Lemmas for Proving Theorem 3.1

Here, we supply all lemmas needed for the direct proof of Theorem 3.1 given in

Appendix C.

Lemma E.1 (Gale and Shapley, 1962). The output of DA is a stable matching.

Proof. Consider running the traditional description of DA on some set of preferences,

and let the output matching be µ. Consider a pair d ∈ D, h ∈ H which is unmatched

in µ. Suppose for contradiction h ≻d µ(d) and d ≻h µ(h). In the DA algorithm, d

would propose to h before µ(d). However, it’s easy to observe from the traditional

description of DA that once an institution is proposed to, they remain matched and

can only increase their preference for their match. This contradicts the fact that h

was eventually matched to µ(h).

Note that Lemma E.1 gives a very interesting existence result: it was not at all

clear that stable matching existed before it was proven.

Lemma E.2 (Gale and Shapley, 1962). If an applicant d ∈ D is ever rejected by an

institution h ∈ H during some run of APDA (that is, d proposes to h and h does not

accept) then no stable matching can pair d to h.

Proof. Let µ be any matching, not necessarily stable. We will show that if h rejects

µ(h) at any step of DA, then µ is not stable.
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Consider the first time during in the run of DA where such a rejection occurred.

In particular, let h reject d
def
= µ(h) in favor of d̃ ̸= d (either because d̃ proposed to

h, or because d̃ was already matched to h and d proposed). We have d̃ ≻h d. We

have µ(d̃) ̸= h, simply because µ is a matching. Because this is the first time any

applicant has been rejected by a match from µ, d̃ has not yet proposed to µ(d̃). This

means h ≻d̃ µ(d̃). However, this means µ is not stable.

Thus, no institution can ever reject a stable partner in applicant-proposing DA.

Lemma E.2 immediately implies that the result of applicant-proposing DA is the

optimal stable outcome for each applicant, and that the result is independent of the

order in applicant proposals are made.

Corollary E.3 (Gale and Shapley, 1962). In the matching returned by APDA, every

applicant is matched to her favorite stable partner.

Corollary E.4 (Dubins and Freedman, 1981). The matching output by the DA al-

gorithm is independent of the order in which applicants are selected to propose.

A dual phenomenon occurs for the institutions:

Lemma E.5 (McVitie andWilson, 1971). In the match returned by applicant-proposing

DA, every h ∈ H is paired to their worst stable match in D.

Proof. Let d ∈ D and h ∈ H be paired by applicant-proposing deferred acceptance.

Let µ be any stable matching which does not pair d and h. We must have h ≻d µ(d),

because h is the d’s favorite stable partner. If d ≻h µ(h), then µ is not stable. Thus,

h cannot be stably matched to any applicant they prefer less than d.

Finally, the applicant and institution optimality conditions can be combined to

prove that the set of matched agents must be the same in each stable matching as

the corresponding set in APDA (and thus, the same in every stable matching).

Theorem E.6 (Lone Wolf / Rural Hospitals Theorem, Roth, 1986). The set of un-

matched agents is the same in every stable matching.

Proof. Consider any stable matching µ in which applicants Dµ and institutions Hµ

are matched, and let D0 and H0 be matched in APDA. Each applicant in D \ D0

proposes to all of his acceptable institutions. Thus, by Lemma E.2, no stable match-

ing can possibly pair any applicant in D \ D0 with any institution. Thus, we have

D \D0 ⊆ D \Dµ, and in turn D0 ⊇ Dµ. On the other hand, Lemma E.5 implies that
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each agent in H0 is matched in every stable outcome, so H0 ⊆ Hµ. But then we have

|D0| = |H0| as well as |D0| ≥ |Dµ| = |Hµ| ≥ |H0|, so the same number of agents (on

each side) are matched in in µ as in APDA. Thus, D0 = Dµ and H0 = Hµ.

Remark E.7. One can carefully check that all of our earlier proofs work when we

consider the match of an agent to be ∅—this was intentional in order to make the

proof of Theorem E.6 go through. Thus, these proofs seamlessly handle partial lists

and market imbalance.

E.2 Direct Proof of the Strategyproofness of DA from

its Traditional Description

To contrast between Section E.1 and Theorem 3.1, we also include a direct proof

of the strategyproofness of DA, adapted from Gale and Sotomayor (1985). Note,

however, that the following proof also shows that DA is weakly group strategyproof,

whereas Theorem 3.1 does not.

Lemma E.8 (Attributed to J.S. Hwang by Gale and Sotomayor, 1985). Let µ =

APDA(P ) and µ′ be any other matching. Let T denote the set of all applicants who

strictly prefer their match in µ′ to their match in µ, and suppose T ̸= ∅. Then there

exists a blocking pair (d, h) in µ′ with d /∈ T .

Proof. We consider two cases. Let µ(T ) denote the set of matches of agents in T

under µ (and similarly define µ′(T )).

Case 1: µ(T ) ̸= µ′(T ). Every applicant in T is matched in µ′, so |µ′(T )| ≥ |µ(T )|.
Thus, there exists some h ∈ µ′(T ) but h /∈ µ(T ), that is, h = µ′(d′) with d′ ∈ T but

h = µ(d) with d /∈ T . By the definition of T , we have h = µ(d) ≻d µ′(d). Because

h ≻d′ µ(d
′), we know d′ would propose to h in APDA(P ). So d = µ(h) ≻h d′. Thus,

(d, h) is a blocking pair in µ′ (with d /∈ T ).

Case 2: µ(T ) = µ′(T ). This case is a bit harder. Consider the run of APDA(P ).

First, for any d ∈ T , note that d must have proposed to µ′(d) before proposing to

µ(D), so each institution in µ(T ) receives at least two proposals from applicants in T .

Now, consider the final time in a run of APDA(P ) when an applicant df ∈ T pro-

poses to an institution h in µ(T ). As h receives at least two proposals from applicants

in T , we know h must be tentatively matched, say to d, and h must reject d for df .

However, d cannot herself be in T , as then d would need to make another proposal

to µ(d) ∈ µ(T ) (and we assumed this is the final proposal from an applicant in T to

an institution in µ(T )).
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We claim that (d, h) is a blocking pair in µ′. Proof: As d /∈ T and d proposes to h

during APDA(P ), we have h ≻d µ(d) ⪰d µ
′(d). Now, again consider when h rejects d

in APDA(P ). At this point in time, h has already rejected every agent in T , other than

df = µ(h), who proposes to h during APDA(P ). In particular, h has already rejected

µ′(h) ∈ T (who also proposes to h in APDA(P ), as noted above), so d ≻h µ′(h).

Thus, in either case there exists a blocking pair (d, h) in µ′ with d /∈ T .

Theorem E.9 (Roth, 1982; Dubins and Freedman, 1981). APDA is (weakly group-

)strategyproof for the applicants.

Proof. Suppose a set L of applicants change their preferences, and each of them im-

prove their match. In particular, if µ′ = APDA(P ′), where P ′ is the altered list of

preferences, then L ⊆ T as in Lemma E.8. Thus, there exists a blocking pair (d, h)

for µ′ under preferences P , where we additionally have d /∈ T . In particular, d /∈ L.

Thus, d and h each keep their preferences the same in P ′ as in P . So, (d, h) is also a

blocking pair under preferences P ′, so µ′ cannot possibly be stable under P ′. This is

a contradiction.
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