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1 Introduction

Strategyproof mechanisms are often considered desirable. Under standard economic

assumptions, these mechanisms eliminate the need for players to strategize, since

straightforward play is a dominant strategy.1 In practice, however, real participants

in strategyproof mechanisms often play theoretically dominated strategies, raising

the possibility that they do not perceive the mechanisms as strategyproof (see, e.g.,

Hakimov and Kübler 2021; Rees-Jones and Shorrer 2023).

In this paper, we posit that the way mechanisms are described can influence the

extent to which participants perceive strategyproofness. In contrast to other recent

works, which have sought to encourage straightforward play by implementing a given

choice rule through different interactive mechanisms,2 we propose changing only the

(ex ante) description of a given static, direct-revelation mechanism. We propose a

general outline—called menu descriptions—for describing mechanisms to one player

at a time in a way that makes strategyproofness hold via an elementary, one-sentence

argument. In this sense, menu descriptions expose strategyproofness.

Our focus is on matching, and particularly on two canonical mechanisms: De-

ferred Acceptance (henceforth DA) and Top Trading Cycles (henceforth TTC). These

mechanisms are widely and successfully deployed. They are typically explained to

participants using outcome descriptions—i.e., detailed and explicit algorithms for

calculating the outcome matching. However, the traditional (outcome) descriptions

of these mechanisms do not expose their strategyproofness, in the sense that proving

this property from these descriptions requires technical mathematical arguments.

We present three main results. The first is a new menu description of DA. The

second is a new menu description of TTC, which furthermore yields a new proof of the

strategyproofness of the traditional description of TTC. The third is an impossibility

result showing that such a proof via a menu description cannot work for the traditional

description of DA.

As an initial illustration, consider the canonical Serial Dictatorship (henceforth

SD) mechanism. When matching applicants to institutions,3 the traditional descrip-

1We use the term “straightforward” to describe the strategy an agent would play under classic
economic assumptions. While often referred to as the “truthtelling” strategy, we avoid this morally
laden term, since deviations from this strategy should not be thought of as dishonesty.

2Prior works often consider interactive mechanisms designed to reduce non-straightforward play
arising from behavioral factors, such as contingent-reasoning failures (Li, 2017; Pycia and Troyan,
2023) and loss aversion (Dreyfuss et al., 2022; Meisner and von Wangenheim, 2023).

3Throughout this paper, the only strategic players are the applicants. Institutions are non-
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tion of SD is as follows: In some priority order, say i = 1, . . . , n, applicant i is matched

to her highest-ranked not-yet-matched institution. Strategyproofness is exposed by

this description: Applicant i cannot influence the set of not-yet-matched institutions,

and straightforward reporting guarantees i her favorite not-yet-matched institution.

Our paper presents new descriptions of DA and TTC that make strategyproofness as

evident as in the traditional description of SD.

In Section 2, we provide preliminaries. We study descriptions in terms of the clas-

sic notion of a menu (Hammond, 1979)—the set of all institutions an applicant might

match to, given others’ reports. In particular, a menu description for applicant i has

the following two-step outline:

Step (1) uses only the reports of other applicants to describe i’s menu.

Step (2) says that i’s match is her highest-ranked institution from her menu.

For instance, the traditional description of SD is a menu description. In contrast

with some other mechanisms’ traditional descriptions, strategyproofness is exposed

by any menu description in the same way as in SD: In Step (1), applicant i cannot

influence her menu (in SD, the set of not-yet-matched institutions), and in Step (2),

straightforward reporting guarantees i her favorite institution from her menu.

In Section 3, we present our first main result: A novel menu description of DA.

Our description—which is summarized in Table 1—describes applicant i’s menu as

all institutions that prefer i to their outcome in “flipped-side-proposing” Deferred

Acceptance without i. This directly conveys i’s match in DA, while exposing strate-

gyproofness for i. Prior to our work, it was not clear how to construct DA’s menu,

except via a trivial brute-force solution (applicable for any strategyproof mechanism)

Table 1: Two descriptions of DA (the applicant-optimal stable match)

Traditional Descr.:
The applicants and
institutions will be
matched using the
applicant-proposing
Deferred Acceptance
algorithm.

Menu Description:
We will run institution-proposing Deferred Acceptance with
all applicants except you, to obtain a hypothetical match-
ing. Your menu consists of every institution that ranks you
higher than its hypothetically matched applicant.
You will be matched to the institution that you ranked high-
est out of your menu.

Note: In the menu description, others’ hypothetical matches need not be their matches in DA.

strategic, and their preferences over the applicants are by convention called priorities.
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involving running the traditional description many times to separately check whether

or not each institution is on i’s menu.

In Section 4, we present our second main result: A novel menu description of TTC,

which furthermore yields a novel proof of the strategyproofness of TTC’s traditional

description. Our menu description is contained in an outcome description. We call any

such description a menu-in-outcome description; such descriptions have the following

three-step outline:

Step (1) uses only the reports of other applicants to describe i’s menu.

Step (2) says that i’s match is her highest-ranked institution from her menu.

Step (3) describes the rest of the matching (for all other applicants).

Our description of TTC, and our resulting proof of the strategyproofness of the

traditional description, are as follows. TTC’s traditional description works in terms of

“eliminating trading cycles,” and it is well known that these cycles can be eliminated

in any order. Our menu-in-outcome description is a slight tweak of the traditional one:

It differs only by changing the order in which cycles are eliminated (by eliminating

the cycle involving applicant i as late as possible). Thus, for any applicant i, the

match of i in the traditional description equals her match in our menu description—

which (like all menu descriptions) is strategyproof. This proves that TTC’s traditional

description is strategyproof.4

In Section 5, we present our third main result. We ask: Like in our result for

TTC, is there a menu description of DA that yields a proof of the strategyproofness

of its traditional description through a slight tweak of it? We present an impossibility

theorem showing that the answer is no.

To establish a formal notion of a “slight tweak,” we consider three salient proper-

ties of DA’s traditional description:

• It calculates the entire outcome matching; i.e., it is an outcome description.

• It looks at applicants’ preferences in favorite-to-least-favorite order; we say that

such descriptions are applicant-proposing.

4 Following the first appearance of our paper, the survey article of Morrill and Roth (2024)
adopted our proof of TTC’s strategyproofness. Regarding the potential real-world adoption of TTC
for public school choice, Morrill and Roth write:

“Our experience [. . . ] taught us that when we worked with school districts, we should
help design not just a mechanism, but also the communication package that explained
that mechanism [. . . ]. Perhaps if we had already known of the proof of [Gonczarowski,
Heffetz, and Thomas] we could have explained [TTC’s strategyproofness] more clearly.”

3



• It maintains bookkeeping by only tracking and iteratively modifying a single

tentative matching. In particular, it uses only a small amount of bookkeeping

per applicant; in computer science terms, such descriptions are linear-memory.

We formalize our impossibility theorem by treating the satisfaction of these three

properties as a prerequisite for a description to qualify as a slight tweak of DA’s

traditional description. Indeed, not satisfying the first property means reaching a

different final result than the traditional description, and not satisfying the second or

third properties means having step-by-step calculations that are very different from

those of the traditional one.5

Our third main result proves that, in contrast to (SD and) TTC, no slight tweak of

DA’s traditional description contains a menu description. Concretely, we prove that

no menu-in-outcome description of DA is applicant-proposing and linear-memory.

In fact, we prove a strong impossibility: Any applicant-proposing menu-in-outcome

description of DA must use quadratic memory, an amount far greater than any de-

scription tracking only a single tentative matching. Thus, our approach above that

exposes the strategyproofness of TTC’s traditional description cannot work for DA.

Our results reveal a stark trichotomy among SD, TTC, and DA. The traditional

description of SD already has each applicant choosing from her menu (see Figure 1(a)

for an illustration), and thus exposes strategyproofness. For the traditional descrip-

tion of TTC, this is not the case, but for each applicant there is a slight tweak in which

she chooses from her menu (see Figure 1(b)), which thus exposes strategyproofness.

Figure 1: Illustration of trichotomy for traditional descriptions of SD, TTC, and DA

(a) SD (b) TTC (c) DA

Notes: Each figure depicts an applicant-proposing and linear-memory outcome description, which
progresses from left to right. The outcome matching is depicted as a shaded shape. Step (2) of a
menu description (choice from a menu, which exposes strategyproofness for the chooser) is depicted
as a white shape with an arrow. Other calculations are depicted as wavy arrows. The gray diagram
in Panel (c) depicts the impossibility: DA cannot be described in finer detail as in Panels (a) and (b).

5For instance, our menu-in-outcome description of TTC (Section 4) is, like its traditional de-
scription, a linear-memory applicant-proposing outcome description. The same is not true for our
menu description of DA (Section 3): It is institution-proposing, and is not an outcome description.
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For the traditional description of DA, a comparable result is impossible, in the strong

sense discussed above (see Figure 1(c)).

Table 2 summarizes our three main results discussed above. In Section 6, we

review related work, including our empirical companion paper investigating our menu

description of DA, and our work exploring menu descriptions in non-matching settings

such as auctions and voting. We conclude in Section 7, where we also discuss potential

practical concerns.

Table 2: Summary of main results

Main Result Summary Relevant Formal Properties

Positive result
for DA (Sec. 3)

Description 1 is a novel description of DA
(to one applicant at a time)
that exposes strategyproofness.

Description 1 is a
menu description of DA.

Positive result
for TTC (Sec. 4)

Description 2 satisfies the above for TTC,
and additionally yields a novel
proof of the strategyproofness of
the traditional description of TTC.

Description 2 of TTC is a
linear-memory,
applicant-proposing
menu-in-outcome description.

Negative result
for DA (Sec. 5)

Theorem 5.3 shows it is impossible
to prove the strategyproofness of
the traditional description of DA
in the way we do for TTC (in Sec. 4).

Theorem 5.3 shows that for DA,
any applicant-proposing
menu-in-outcome description
requires quadratic memory.

2 Preliminaries

2.1 Mechanisms

This paper studies (static, direct-revelation) matching mechanisms. This environment

consists of n applicants {1, . . . , n} to be matched to institutions. Applicant i has a

strict ordinal preference ≻i over institutions, also called her type. Let Ti denote the

set of types of applicant i, and let A denote the set of matchings.6 We focus on one-

to-one matching for concreteness (though our results, particularly for DA, generalize

6Applicants may go unmatched, and their preference lists may be partial (indicating that they
prefers to going unmatched over institutions not on her preference list). We also let h1 ≻d h2

indicate that applicant d prefers h1 to h2; h1 ⪰d h2 indicate h1 ≻d h2 or h1 = h2; ∅ ≻d h indicate
that d does not rank h; µ(d) denote the match of d in µ; µ(d) = ∅ denote d going unmatched; T−i

denote the set T1× . . .×Ti−1×Ti+1 . . . Tn, and for ≻i∈ Ti and ≻−i∈ T−i, we write (≻i,≻−i) for the
naturally corresponding element of T1 × . . .× Tn.
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substantially; see Section 3).

The applicants report their types to a mechanism, which determines the outcome

matching. Formally, a mechanism is any mapping f : T1 × . . . × Tn → A from the

reported types of all applicants to a matching. We focus on strategyproof mechanisms.

This means that for every applicant i, every ≻i,≻′
i∈ Ti, and every ≻−i∈ T−i, we have

fi(≻i,≻−i) ⪰i fi(≻′
i,≻−i), where fi(≻1, . . . ,≻n) denotes i’s match in f(≻1, . . . ,≻n).

We study the canonical strategyproof mechanisms SD, TTC, and DA. These

mechanisms are defined with respect to priorities of the institutions over the ap-

plicants. Following much of the matching literature, we assume the institutions are

non-strategic; hence, we treat the priorities as predetermined. SD uses a single pri-

ority order ≻ over all applicants; TTC and DA use a profile of priority orders {≻h}h,
one for each institution h.

Definition 2.1 (SD). For a given priority order ≻, Serial Dictatorship (SD) is defined

as follows. Given the reports, applicants are considered in order of highest-to-lowest

priority, and each applicant is permanently matched to her highest-ranked not-yet-

matched institution.

Definition 2.2 (TTC). For a given profile of institutions’ priorities {≻h}h, Top

Trading Cycles (TTC) is defined as follows. Given the reports, repeat the following

until everyone is matched (or has exhausted their preference lists): Every remaining

(i.e., currently unmatched) applicant “points” to her favorite remaining institution,

and every remaining institution points to its highest priority remaining applicant.

There must be some cycle in this directed graph (since there is only a finite number of

vertices). Choose any such cycle and “eliminate” that cycle by permanently matching

each applicant in the cycle to the institution she is pointing to (and removing all

matched agents from consideration for later cycles).

Definition 2.3 (DA). For a given profile of institutions’ priorities {≻h}h, Deferred
Acceptance (DA) is defined as follows. Given the reports, repeat the following un-

til every applicant is matched (or has exhausted her preference list): A currently

unmatched applicant is chosen to “propose” to her favorite institution that has not

yet “rejected” her. The institution then rejects every proposal except for its high-

est priority applicant who has proposed to it thus far. Rejected applicants become

(currently) unmatched, while that highest priority applicant is tentatively matched

to the institution. At the end, the tentative allocation becomes final.
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Note that DA, by convention, refers to the above applicant proposing version of the

mechanism. The sides can also be flipped, which results in the institution proposing

variant of DA. When confusion might arise, we use APDA for applicant-proposing

DA and IPDA for institution-proposing DA.

TTC and DA are the two canonical matching mechanisms that are priority-based

and strategyproof. TTC is Pareto-efficient for the applicants, and DA is stable. Note

that the outcomes of TTC is independent of the order in which cycles are eliminated

(see Proposition C.8) and that DA is independent of the order of proposals (see

Corollary C.4).

2.2 Descriptions

This paper studies ex ante descriptions of matching mechanisms, i.e., descriptions

that are given before any concrete inputs are known. When matching markets are

described in detail to participants, this is typically done by specifying a set of ex-

plicit, precise, step-by-step instructions for calculating the result, i.e., by specifying

an algorithm.7 Thus, we formally define a description to be any algorithm that uses

as input the preferences of the applicants and the priorities of the institutions, and

calculates some result (e.g., an outcome matching).8

For any mechanism f , an outcome descriptions of f is an algorithms that, using

input ≻1, . . . ,≻n (and the priorities of institutions), outputs the outcome matching

f(≻1, . . . ,≻n). For instance, the descriptions in Definitions 2.1 through 2.3 are out-

come descriptions for SD, TTC, and DA, respectively. We refer to each of these

outcome descriptions as the traditional description of the corresponding mechanism.

Beyond outcome descriptions, we study two other description outlines: menu de-

scriptions and menu-in-outcome descriptions; these are defined in Sections 2.3 and 2.4,

respectively.

7Of course, the way a description/algorithm is actually conveyed to participants can vary. One
common real-world approach to relaying matching algorithms is an illustrative video using an ex-
ample (see, e.g., Figure 3 in Section 5.1 for such a video for DA). In our paper, we abstract over
exactly how the algorithm is relayed.

8Algorithms can be defined in full mathematical detail in various ways; any such definition
suffices for our purposes. In the Supplemental Appendix S, we present such a definition from first
principles.
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2.3 Menus and Menu Descriptions

The starting point of our framework for changing mechanism descriptions is the fol-

lowing characterization of strategyproofness in terms of applicants’ menus.9

Definition 2.4 (Menu). For any matching mechanism f , applicant i, and ≻−i∈ T−i,

the menuM≻−i
of i with respect to ≻−i is the set of all institutions h for which there

exists some ≻i∈ Ti such that fi(≻i,≻−i) = h. That is,

M≻−i
= { fi(≻i,≻−i) | ≻i∈ Ti } .

Theorem 2.5 (Hammond, 1979). A matching mechanism f is strategyproof if and

only if each applicant i always receives her favorite institution from her menu. That

is, for every ≻−i∈ T−i and ≻i∈ Ti, it holds that fi(≻i,≻−i) ⪰i h for all h ∈M≻−i
.

Proof. Suppose f is strategyproof and fix ≻−i∈ T−i. For every ≻i∈ Ti, it holds by

definition that for every h = fi(≻′
i,≻−i) ∈ M≻−i

, we have fi(≻i,≻−i) ⪰i h. On the

other hand, if applicant i always receives her favorite institution from her menu, then

she always prefers reporting ≻i at least as much as any ≻′
i, so f is strategyproof.

We use menus to describe mechanisms while exposing their strategyproofness:

Definition 2.6 (Menu Description). A menu description of mechanism f for appli-

cant i is a description with the following outline:

Step (1) uses only ≻−i∈ T−i to calculate the menuM≻−i
of applicant i.

Step (2) uses ≻i∈ Ti to match applicant i to her favorite institution inM≻−i
.

Formally, a menu description for i is thus an algorithm that initially receives only ≻−i

as input and calculatesM≻−i
as an intermediate result, then additionally receives ≻i

as input and uses it to calculate i’s favorite choice fromM≻−i
as the final result.

9Definition 2.4 has been considered under many different names in many different contexts (e.g.,
sets that decentralize the mechanism in Hammond (1979); option sets in Barberà et al. (1991);
proper budget sets in Leshno and Lo (2021); feasible sets in Katus̆c̆ák and Kittsteiner (2025); and
likely others). We follow the “economics and computation” literature (e.g., Hart and Nisan, 2017;
Dobzinski, 2016; Babaioff et al., 2022) in calling these sets “menus.” This notion is distinct from
many other definitions of menus (e.g., those of Mackenzie and Zhou, 2022; Bó and Hakimov, 2023,
and many others).

8



Note that while Step (1)—the calculation ofM≻−i
—varies between different mech-

anisms and menu descriptions, Step (2)—i’s choice from M≻−i
—is essentially the

same across all menu descriptions.

The central premise of our paper is that menu descriptions are one way to expose

strategyproofness. This is because the strategyproofness of any menu description can

immediately be seen via a simple, one-sentence argument: First, applicant i’s report

cannot affect her menu, and second, straightforward reporting (“truthtelling”) gets

applicant i her favorite institution from the menu.10

2.4 Menu-in-Outcome Descriptions

Beyond menu descriptions, outcome descriptions that contain menu descriptions also

play a key role in our results. We call these menu-in-outcome descriptions.

Definition 2.7 (Menu-in-Outcome Description). A menu-in-outcome description of

mechanism f for applicant i is an outcome description of f that contains a menu

description for applicant i. Equivalently, it is a description with the following outline:

Step (1) uses only ≻−i∈ T−i to calculate the menuM≻−i
of applicant i.

Step (2) uses ≻i∈ Ti to match applicant i to her favorite institution fromM≻−i
.

Step (3) uses both ≻i and ≻−i to calculate the full outcome matching f(≻i,≻−i).

Formally, a menu-in-outcome description for i is thus an algorithm that initially

receives ≻−i as input and calculates M≻−i
, then additionally receives ≻i as input

and calculates i’s favorite choice from M≻−i
, and finally proceeds to calculate the

entire outcome matching f(≻i,≻−i) as the final result.

For example, consider SD (Definition 2.1). This mechanism is easily seen to be

strategyproof, directly from its traditional description (and even for many students

encountering it for the first time). This is reflected by the fact that applicants are

10 There is also a precise sense in which menu descriptions are the only ones for which the above
argument for strategyproofness goes through. In particular, suppose a description calculates the
match of applicant i in some mechanism f , and has the following outline:

Step (1) uses ≻−i to calculate a set S of institutions.

Step (2) uses ≻i to match i to her top-ranked institution in S.

Then, it is not hard to show that the set S must be i’s menu.

9



matched in SD via menu descriptions. In particular, when applicants are prioritized

1 ≻ 2 ≻ . . . ≻ n, the traditional description of SD can be divided into three steps for

any applicant i:

(1) Each applicant j < i is matched, in order, to her top-ranked remaining institution.

(2) Applicant i is matched to her top-ranked remaining institution.

(3) Each applicant j > i is matched, in order, to her top-ranked remaining institution.

Steps (1) and (2) form menu description, but this menu description is contained

within the (traditional) outcome description, and thus Steps (1) through (3) form a

menu-in-outcome description.

2.5 Uses of Menu Descriptions

The positive results of our paper present new menu descriptions of DA and TTC.

Before giving these results, we note that every strategyproof mechanism has a menu

description, given by an argument from Hammond (1979).11

Example 2.8 (A “brute force” menu description). Consider any strategyproof match-

ing mechanism f , and let D be an outcome description of f . For each institution h,

let {h} denote the preference list that ranks only h as acceptable. Then, consider the

following description for applicant i:

(1) Start with M = ∅. For each institution h separately, evaluate D on ({h},≻−i);

if this matches i to h, then add h to M .

(2) Match i to her highest-ranked institution in M .

By strategyproofness, h is included in M in Step (1) if and only if h is on the menu.

Thus, the above provides a menu description of f .

We explore two uses of menu descriptions: as alternative standalone descriptions

for participants, and as a tool to help illustrate the strategyproofness of a traditional

description. A description such as Example 2.8 has drawbacks in both of these uses.

11This menu description was also identified by Katus̆c̆ák and Kittsteiner (2025).
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First, as a standalone description, Example 2.8 might—compared to the tradi-

tional descriptions presented in Section 2.1—be considered cumbersome or convo-

luted, since it repeats D many independent times. Given this, we look for more-direct

new menu descriptions (such as our menu description of DA in Section 3).

Second, since there is no clear relation between the outcomes of Example 2.8 and

those of the description D (absent prior knowledge that D is strategyproof), it is un-

clear how Example 2.8 might aid in conveying the strategyproofness of D. Given this,

we look for menu descriptions that are closely related to the corresponding traditional

description (such as our menu-in-outcome description of TTC in Section 4).

3 A Menu Description of DA

In this section, we present our first main result: A novel menu description of DA.

This is Description 1 (which rephrases Table 1 in the introduction).

Description 1 A menu description of (applicant-proposing) DA for applicant i

(1) Run institution-proposing DA with applicant i removed from the market, to get
a matching µ−i. Let M be the set of institutions h such that i ≻h µ−i(h).

(2) Match i to i’s highest-ranked institution in M .

Step (1) of Description 1 begins with a modified version of the traditional de-

scription of DA (from Definition 2.3). Then, it calculates i’s menu as an (arguably)

intuitive set of institutions: those that prefer i to their match in this modified version

of DA. We speculate that many real market participants would find such a description

understandable. (In fact, our empirical companion paper Gonczarowski et al. (2024)

gives evidence that many lab participants can learn this description—see Section 6.)

Crucially, Description 1 uses the institution-proposing DA algorithm to describe

DA (traditionally described via the applicant-proposing DA algorithm). To give in-

tuition for why the proposing side is flipped, we show via an example that switching

the proposing sides in Step (1) of Description 1 would not suffice.

Example 3.1. Consider a market with three applicants i, d1, d2 and two institu-

tions h1, h2. Applicants have preferences d1 : h1 ≻ h2 and d2 : h2 ≻ h1, and in-

stitutions have priorities h1 : d2 ≻ i ≻ d1 and h2 : d1 ≻ i ≻ d2. Running appli-
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cant-proposing DA on these preferences without i gives matching {(d1, h1), (d2, h2)},
and both h1 and h2 prefer i to their match. However, neither h1 nor h2 are on i’s

menu, since having i propose to any hi ∈ {h1, h2} (after running applicant-proposing

DA without i) causes a “rejection cycle” that results in hi rejecting i. Intuitively,

institution-proposing DA fixes this issue by outputting a matching that has no poten-

tial “applicant-proposing rejection cycles.”12 Specifically, institution-proposing DA

gives matching {(d1, h2), (d2, h1)}, corresponding to i’s menu in this example being ∅.

Formally, the following theorem establishes the correctness of Description 1:

Theorem 3.2. Description 1 is a menu description of DA.

Proof. Fix institutions’ priorities, an applicant i, and preferences ≻−i of applicants

other than i. Let {h} denote the preference list of i that reports only institution h

as acceptable, and let ∅ denote the preference list of i that reports no institution as

acceptable. For clarity, denote applicant-proposing DA by APDA(·) = DA(·) and

denote institution-proposing DA by IPDA(·).
Since APDA is strategyproof (Theorem C.7), it suffices to prove that the set of

institutions calculated in Step (1) of Description 1 is applicant i’s menu. Now, for

any institution h, we observe the following chain of equivalences:

h is in the menu of i in APDA (with respect to ≻−i)

⇐⇒
(
By strategyproofness of APDA; Theorem C.7

)
i is matched to h by APDA({h},≻−i)

⇐⇒
(
By the Lone Wolf / Rural Hospitals Theorem; Theorem C.6

)
i is matched to h by IPDA({h},≻−i)

⇐⇒
(
IPDA({h},≻−i) and IPDA(∅,≻−i) coincide until h proposes to i

)
h proposes to i in IPDA(∅,≻−i)

⇐⇒
(
IPDA(∅,≻−i) and IPDA(≻−i) produce the same matching;

in IPDA, h proposes in highest-to-lowest priority order
)

i has higher priority at h than h’s match in IPDA(≻−i).

12This intuition regarding “applicant-proposing rejection cycles” is related to the concept of an
institution-improving rotation as in Gusfield and Irving (1989).
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In addition to giving a arguably-appealing alternative description of DA, Theo-

rem 3.2 provides a characterization of the menu in DA that is useful for reasoning

about DA’s properties. We briefly highlight two applications. First, one can immedi-

ately see from Description 1 that, if one applicant’s priorities increase at some set of

institutions, then (all other things being equal) the match of that applicant in DA can

only improve (Balinski and Sönmez, 1999). Second, a short argument using Descrip-

tion 1, which we provide in Remark B.3, shows that in a market with n+1 applicants,

n institutions, and uniformly random full length preference lists, applicants receive

in DA roughly their n/ log(n)th choice in expectation—rather lower than in the case

with n applicants, where they receive their log(n)th choice—re-proving results from

Ashlagi et al. (2017); Cai and Thomas (2022).

Description 1 generalizes to a broader class of stable matching markets. In fact,

in Remark B.2, we observe that the same argument as in the above proof shows that

a natural generalization of Description 1 characterizes the menu of DA in many-to-

one markets, and even in a general class of markets with contracts, namely, those

considered by Hatfield and Milgrom (2005).

Finally, we remark that Description 1 can facilitate a proof from first-principles of

the strategyproofness of (traditionally described) DA (without relying on this fact as

in the proof above). We give such a proof in Appendix B. While we view this proof as

theoretically appealing, and perhaps useful for classroom instruction, we believe this

approach remains far too mathematically involved to convey the strategyproofness of

DA’s traditional description to real-world participants. In contrast, if a clearinghouse

directly adopts Description 1 as a way to describe participants’ matches in explicit

detail, then strategyproofness is exposed via a simple one-sentence argument.

4 A Menu-in-Outcome Description of TTC

In this section, we present our second main result: A novel menu description of TTC.

In fact, we present a menu-in-outcome description that yields a novel proof that the

traditional description of TTC is strategyproof. This is Description 2.

Description 2 modifies the traditional description of TTC (only) by delaying

matching applicant i as long as possible.13 This accurately describes the full out-

13This can also be thought of as running TTC, with a twist: During the first stage, applicant i
does not point to any institutions. This stage lasts until no cycles exist, after which i points as
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Description 2 A menu-in-outcome description of TTC for applicant i

(1) Using ≻−i, iteratively eliminate as many cycles not involving applicant i as pos-
sible. Let M denote the set of remaining institutions.

(2) Using ≻i, match i to her highest-ranked institution in M . Call this institution h.

(3) Using (≻i,≻−i), eliminate the cycle created when i points to h, then continue to
eliminate cycles until all applicants match (or exhaust their preference lists).

come matching since, as is well known, TTC is independent of the order in which

cycles are chosen to be eliminated and matched. Formally:

Theorem 4.1. Description 2 is a menu-in-outcome description of of TTC.

Proof. Recall that the traditional description of TTC is independent of the order in

which cycles are eliminated (Proposition C.8). Now, consider modifying this tradi-

tional description by delaying matching cycles involving applicant i as long as possible,

and consider the pointing graph of TTC once all remaining cycles involve applicant i.

Observe that eliminating a cycle now requires matching i to her highest-ranked not-

yet-matched institution; see Figure 2 for an illustration. Thus, Description 2 differs

from the traditional description of TTC only in the order in which cycles are elimi-

nated, and hence calculates the TTC outcome matching.

i

Figure 2: Menu calculation in Description 2

Notes: Circles represent applicants; squares represent
institutions; each institution (resp. each applicant ex-
cept i) points to her favorite remaining applicant (resp.
institution). Cycles not involving i were already elim-
inated, so wherever i points will form a cycle.

By construction, Step (1) of Description 2 does not use ≻i to calculate the set M .

Thus, since i is matched to her highest-ranked institution in M in Step (2), it follows

that TTC is strategyproof. Moreover, since i can match to any institution in M (and

only to institutions in M), it follows that M equals i’s menu.14 Hence, Description 2

is a menu-in-outcome description of TTC.

normal (and immediately matches to the institution she points to).
14By the observation discussed in Footnote 10, the fact that M equals i’s menu also follows from

the fact that Description 2 calculates the outcome matching of TTC as i’s top pick from M (which
is independent of i’s report).
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In addition to constructing a new menu description of TTC, Theorem 4.1 yields

an (arguably simple and intuitive) proof that the traditional description of TTC is

strategyproof. In particular, Theorem 4.1 demonstrates—given (only) the fact that

TTC is independent of the order in which cycles are eliminated—that in the tradi-

tional description of TTC, any applicant i is matched according to a menu description.

Hence, TTC is strategyproof.

The above simple proof is enabled by two properties of Description 2. First,

it contains a menu description. Second, it only slightly tweaks TTC’s traditional,

outcome description (in a way that clearly maintains the same result). Crucially, a

description cannot satisfy these two properties without being an outcome description

that contains a menu description, i.e., a menu-in-outcome description.

In sum, our description of TTC, and the simple argument for the strategyproofness

it provides, give promising new ways to explain TTC’s strategyproofness, both in the

classroom and for real-world market participants.15

5 An Impossibility Result for Menu-in-Outcome

Descriptions of DA

In this section, we present our third main result: an impossibility theorem show-

ing that—in contrast to what our menu-in-outcome description of TTC (Section 4)

achieves—no menu description of DA yields a simple proof of the strategyproofness

of DA’s traditional description.

Concretely, we show that no slight tweak of DA’s traditional description contains

a menu description. Here and throughout the paper, by “slight tweak,” we mean that

the same result is reached, and that the step-by-step calculation is similar enough

for this fact to be evident. We formalize this notion of slight tweaks in Section 5.1.

We then present our impossibility theorem in Section 5.2, showing that no such slight

tweak of DA’s traditional description contains a menu description (and hence showing

that slight tweaks cannot expose the strategyproofness of DA’s traditional description

in a way analogous to TTC in Section 4).

15See Footnote 4.
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5.1 Properties of Slight Tweaks of Traditional Descriptions

We now identify two salient properties of the step-by-step calculations used in the

traditional description of DA (and of SD, and of TTC):

• First, the description only considers the preferences of each applicant once, in

a specific, natural order—from favorite to least favorite. We call this property

applicant-proposing.

• Second, the description requires only a small amount of bookkeeping, namely,

that required to track a single tentative matching. We consider a flexible gen-

eralization of this property: that the description uses only a small (nearly con-

stant, formalized below) amount of bookkeeping per applicant. Following stan-

dard terminology from computer science, we call this property linear-memory.

Before formally defining these two properties, Figure 3 illustrates how they are

used to describe DA in one of its most celebrated practical applications: match-

ing medical doctors to residencies in the US National Resident Matching Program

(NRMP). The figure shows a screenshot of a video from the NRMP that relays the

traditional description of DA by applying it to a small example. The explanation in

Figure 3: An illustration of the traditional description of DA through an example

Note: Screenshot taken from https://youtu.be/kVTwXNawpbk (NMS, 2020), a video produced by
National Matching Services (the company providing matching software to the NRMP).
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the video is aided by two visual elements: sequentially crossing off institutions from

applicants’ lists as the description progresses, and keeping track of a “current tenta-

tive matching” illustrated by the yellow-highlighted names. In order for these two

simple visual elements to illustrate the description, it is necessary that the description

is applicant-proposing and linear-memory. First, the applicant-proposing property is

necessary for the video to sequentially cross off institutions from applicants’ lists as

the description progresses. Second, the linear-memory property is necessary for the

yellow highlighting in the video to capture all required bookkeeping.

Definition 5.1 (Applicant-proposing and Linear-memory Descriptions).16

• A description is applicant-proposing if it reads applicants’ preferences by query-

ing a single applicant at a time, such that the jth query to applicant d returns

the jth institution on d’s preference list. (The priorities of the institutions, on

the other hand, can be accessed by the description in any way.)

Formally, an applicant-proposing description is thus a procedure that maintains

some internal state that is iteratively updated while querying applicants’ prefer-

ence lists (one applicant at a time), with the following property. For any possible

inputs and for any applicant d, suppose the algorithm queries d’s preference list

sequentially in states s1, s2, . . . , sk as it runs, and for each j = 1, . . . , k, let s′j

denote the updated state that the algorithm reaches immediately after querying

d’s preferences in sj. Then, s′j depends only on (sj and) the jth institution on

d’s preference list (which is considered to be the “empty institution” if d’s list

contains fewer than j institutions).

• The memory requirement of a description is the number of bits required to

represent the state of the description. Intuitively, this is the amount of extra

bookkeeping or “scratch paper” required by the description. Formally, it is the

logarithm in base 2 of the number of possible internal states of the algorithm.

In a matching environment with n applicants and n institutions, we say a de-

scription is linear-memory if its memory requirement is at most Õ(n).17
16As discussed in Section 2.2, we formally define descriptions to be algorithms. For completeness,

the Supplemental Appendix S gives a self-contained mathematical definition of algorithms sufficient
for our purposes.

17The standard computer-science notation Õ(n) means O(n logα n) for some constant α. That
is, for large enough n, memory is upper-bounded by cn logα n for some constants c, α that do not
depend on n. Using Õ(n) memory means using only nearly constant bookkeeping per applicant.
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We note that linear memory is the smallest possible memory requirement for

outcome descriptions (as well as for menu descriptions) of matching mechanisms.

Indeed, Õ(n) is exactly (up to the precise logarithmic factors) the number of bits of

memory required to describe a single matching (or a single applicant’s menu).18

The applicant-proposing and linear-memory properties capture salient properties

of the traditional descriptions of many matching mechanisms. As discussed above,

this includes DA, but also includes SD, and TTC.19 In particular:

• In the traditional description of SD, the linear memory stores a set S of not-yet-

matched institutions. The applicant-proposing property enables the description

to choose an applicant’s highest-ranked institution in S by reading the appli-

cant’s preference list until the first institution in S is found.

• In the traditional description of TTC, the linear memory stores the set S of

not-yet-matched institutions, and a pointing graph in which some applicants

point to their top-ranked institution in S. The applicant-proposing property

enables the description to update an applicant’s pointing edge by reading her

list further down to the highest-ranked institution remaining in S.

Even beyond permitting these diverse traditional descriptions, the applicant-

proposing and linear-memory properties are quite flexible. The linear-memory re-

quirement allows for arbitrary calculations or data structures, so long as a small

amount of bookkeeping per-applicant is used. Additionally, applicant-proposing linear-

memory descriptions permit many variations to the order in which applicant pref-

erences are used by the description; for instance, the description could query and

remember one institution from each applicant’s preference list—or could query and

remember one applicant’s entire preference list.20

Given the above, any description retaining sufficiently similar step-by-step cal-

culations to the traditional description of DA (or SD or TTC) must, at the very

18To see this formally, note that there are n! = 2O(n logn) distinct matchings involving n applicants
and n institutions (and exactly 2n possible menus). Intuitively, this means that the number of letters
it takes to write down a single matching with n applicants and n institutions (or a single menu, i.e.,
a subset of the n institutions) is roughly proportional to n.

19These properties are additionally satisfied by the popular non-strategyproof Boston mechanism
(see, e.g., Abdulkadiroğlu et al., 2011).

20We also note that if no memory requirement is considered, then every algorithm can be imple-
mented as an applicant-proposing description, by reading all applicants’ preference lists and storing
them fully in the bookkeeping, and then finally running any algorithm on these preference lists. See
also the discussion regarding Figure 4 below.
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least, maintain the applicant-proposing and linear-memory properties. Slight tweaks

of the traditional description of DA should retain similar step-by-step calculations,

and should also calculate the same result as the traditional description, that is, be

outcome descriptions.

Overall, we thus take the view that all slight tweaks of the traditional description

of DA should share three formal properties: applicant-proposing, linear-memory, and

being an outcome description.21 For an example for TTC, our menu-in-outcome

description is a slight tweak of the traditional description; as a consequence, we have:

Proposition 5.2. Description 2 is an applicant-proposing linear-memory menu-in-

outcome descriptions of TTC.

5.2 Impossibility Theorem

We now present our main impossibility result. Using the properties discussed in Sec-

tion 5.1—applicant-proposing, linear-memory, and being an outcome description—we

prove that no slight tweak of the traditional description of DA contains a menu de-

scription.

Theorem 5.3. DA has no applicant-proposing, linear-memory, menu-in-outcome de-

scription. In fact, with n applicants and n institutions, any applicant-proposing menu-

in-outcome description of DA requires Ω(n2) memory.22

We prove Theorem 5.3 in Appendix A below. The theorem shows a precise sense in

which slight tweaks of DA’s traditional description cannot expose its strategyproofness

via a menu description. This is in sharp contrast to TTC, which (in the same sense)

has a slight tweak that exposes strategyproofness as shown in Section 4, and in

contrast to SD, whose traditional description already exposes strategyproofness.

Theorem 5.3 is a strong impossibility result. Namely, we show that applicant-

proposing menu-in-outcome description of DA require quadratic memory—Ω(n2) bits.

This nearly matches the memory requirement of simply memorizing all applicants’

21Note that we do not view every description satisfying these properties as a slight tweak of a
traditional one. Instead, we take (only) the stance that these are necessary conditions that all slight
tweaks satisfy.

22The standard computer-science notation Ω(n2) means that, for large enough n, memory is
lower-bounded by cn2 for some constant c that does not depend on n.
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preferences—Õ(n2) bits.23 If an applicant-proposing description memorizes all ap-

plicants’ preferences, then it can calculate any desired result (formally, by querying

each applicant’s entire preference list in order, with a separate state of the algo-

rithm’s memory for each possible preference profile, and returning a separate desired

result for each such state). This shows that quadratic memory is the highest possible

amount of memory that an algorithm might require. Thus, where applicant-proposing

menu-in-outcome description of (SD and) TTC use memory as low as possible (linear,

see Section 5.1), for DA the memory requirement is as high as possible (quadratic).

See Figure 4 for an illustration of the qualitative gap between these two memory

requirements.

Figure 4: Linear versus quadratic memory

{ (h1, d3), (h2, d1), (h3, ∅), (h4, d4), (h5, d2) }

Linear memory

Quadratic memory

d1 : h1 ≻ h2 ≻ h3 ≻ h4 ≻ ∅

d2 : h1 ≻ h4 ≻ h2 ≻ h3 ≻ h5 ≻ ∅

d3 : h2 ≻ h1 ≻ h4 ≻ h3 ≻ ∅

d4 : h1 ≻ h2 ≻ h4 ≻ h3 ≻ h5 ≻ ∅

d4 : h1 ≻ h5 ≻ h3 ≻ ∅

Theorem 5.3 is also tight in the following sense. The theorem shows that descrip-

tions of DA cannot simultaneously satisfy four criteria: being an outcome description,

containing a menu description, being applicant-proposing, and using linear-memory.

The impossibility holds only when all four of these criteria are assumed. We establish

this as follows. First, DA’s traditional description is an applicant-proposing, linear-

memory outcome description. Second, DA has an applicant-proposing quadratic mem-

ory menu-in-outcome description, since (as discussed above) quadratic-memory is as

high as possible. Third and fourth, we show in the Supplemental Appendix T that

DA has an applicant-proposing linear-memory menu description, and a linear-memory

menu-in-outcome description that is not applicant-proposing.24 Hence, Theorem 5.3

captures the complexity of DA in our framework very precisely.

23To see this formally, observe that there are (n!)n = 2O(n2 log(n)) possible preference profiles for
all applicants. Intuitively, this means that the number of letters it takes to write down n applicants’
preferences over all n institutions is roughly proportional to n2.

24Appendix T.2 constructs an applicant-proposing linear-memory menu description of DA, and
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All told, our results establish a stark trichotomy—mentioned in the introduction—

between SD, TTC, and DA. The traditional description of SD is already a menu

description, simultaneously for all applicants, exposing its strategyproofness easily.25

The traditional description of TTC does not expose strategyproofness; however, once

this description is slightly tweaked and specialized to each individual applicant, strat-

egyproofness is exposed easily.26 For DA, in contrast with both other mechanisms, no

small tweak of the traditional description suffices to expose strategyproofness using

a menu, in the robust and strong sense provided by Theorem 5.3.

6 Related work

Our paper is most directly inspired by the contemporary “strategic simplicity” pro-

gram in mechanism design theory, which largely considers different dynamic imple-

mentations of mechanisms. A cornerstone of this literature is Li (2017), which intro-

duces obviously strategyproof (OSP) mechanisms as a way to expose strategyproof-

ness. Unfortunately, TTC (Li, 2017) and DA (Ashlagi and Gonczarowski, 2018) do

not have OSP mechanisms (except in rare special cases of institutions’ priorities; see

Troyan, 2019; Mandal and Roy, 2021; Thomas, 2021).27

In contrast to the above literature, we consider different ex ante descriptions

of (static, direct-revelation) mechanisms. Breitmoser and Schweighofer-Kodritsch

(2022) provide empirical evidence that framing a static auction as an OSP (ascending-

clock) auction can be effective towards conveying strategyproofness. Since DA and

TTC do not have OSP implementations, they cannot be framed in this way. Nonethe-

less, by relaying the match of only a single applicant at a time, menu descriptions

frame the mechanism in a way that is OSP for that applicant (and in fact strongly

OSP; Pycia and Troyan 2023).

The experimental paper of Katus̆c̆ák and Kittsteiner (2025) also suggests describ-

Appendix T.1 constructs an institution-proposing linear-memory menu-in-outcome description of
DA.

25SD has an (S)OSP implementation (Li, 2017; Pycia and Troyan, 2023) for a similar reason.
26One can show that if a mechanism is not OSP-implementable—as is the case for TTC (Li,

2017)—then any description of the mechanism must be specialized to a given applicant i in order
to contain a menu description for i. In Remark B.4 we give a short direct proof that TTC’s order
requires such specialization.

27A different line of work also considers notions of strategic simplicity that are weaker than
strategyproofness (Börgers and Li, 2019; Fernandez, 2020; Troyan and Morrill, 2020; Chen and
Möller, 2024; Mennle and Seuken, 2021).
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ing matching mechanisms to participants via menu descriptions, but does not inves-

tigate any menu description beyond that of Example 2.8, which essentially calculates

the menu by iterating over all possible reports and running the traditional mechanism

description each time.

We are not aware of any prior characterizations of the menu in DA. Our char-

acterization builds on a large literature developing techniques for reasoning about

stable matchings.28 The menu in DA is different than other commonly considered

definitions in the theory of stable matching, such as applicant i’s set of stable part-

ners (Gale and Shapley, 1962) or her budget set of institutions h where she is above

h’s cutoff (Segal, 2007; Azevedo and Leshno, 2016; Luflade, 2017; Azevedo and Bud-

ish, 2019; Immorlica et al., 2020). In particular, in finite matching markets, these

other commonly-considered sets depend on applicant i’s report, and hence do not

equal i’s menu. We provide explicit examples and more discussion in Remark B.5

and Remark B.6.

Proposition 2 in Leshno and Lo (2021) characterizes the menu in TTC in a different

way from our Description 2. Their characterization does not give a menu-in-outcome

description for TTC, and hence cannot be used in the same way as Description 2 to

derive a simple proof of the strategyproofness of TTC’s traditional description.

Our paper is also loosely inspired by the literature within computer science study-

ing menus. These works largely focus on single-player selling mechanisms (e.g., Hart

and Nisan, 2019; Daskalakis et al., 2017; Babaioff et al., 2022; Saxena et al., 2018;

Gonczarowski, 2018).29 Papers considering menus in multi-player mechanisms include

Dobzinski (2016) and Dobzinski et al. (2022), who use menus as a tool for bound-

ing communication complexity. We do not know of any prior algorithmic work on

menus of matching mechanisms, nor of any prior work that analyzes different ways

to describe multi-player mechanisms in terms of menus.

The present paper is part of our broader research agenda. In an earlier work-

28In particular, our proof of Theorem 3.2 in Appendix B analyzes DA by incrementally modifying
preference lists. Similar techniques appear in Gale and Sotomayor (1985); Teo et al. (2001); Immor-
lica and Mahdian (2005); Hatfield and Milgrom (2005); Gonczarowski (2014); Ashlagi et al. (2017);
Cai and Thomas (2022), for example. Our proof of Theorem 3.2 in Section 3 uses the strategyproof-
ness of DA; to our knowledge, this is a fairly novel technique. Certain other properties of DA (e.g.,
in Blum et al., 1997; Adachi, 2000) and of unit-demand auctions (e.g., in Gul and Stacchetti, 2000;
Alaei et al., 2016), despite not being studied with relation to menus, bear some technical similarity
to the menu calculation in Description 1. However, the proofs seem unrelated.

29Brânzei and Procaccia (2015); Golowich and Li (2022) study the computational complexity of
checking whether a mechanism, given its extensive- or normal-form representation, is strategyproof.
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ing paper version of the present article,30 we consider more general environments,

study a basic extension of our theory for auctions, and conduct an experiment for

a second-price auction and median voting. The theoretical computer science paper

Gonczarowski and Thomas (2024) investigates a number of complexity questions re-

lated to our three main results.

Most relevantly, the empirical companion paper Gonczarowski, Heffetz, Ishai, and

Thomas (2024) investigates participants’ responses to different descriptions of DA,

including the traditional one and Description 1 (our menu description). We find

evidence that, while Description 1 is more complex for participants to understand

than the traditional one, many participants can understand Description 1 and calcu-

late its outcomes. Interestingly, while levels of strategyproofness-understanding are

similar under both descriptions of DA, we see very high levels of strategyproofness-

understanding under a less-complex, stripped-down menu description that omits the

details of how the menu is calculated. This stripped-down menu description—which

relays only strategyproofness—yields levels of strategyproofness-understanding well

above a zero-information treatment benchmark, and even higher than a description re-

laying strategyproofness that is inspired by textbook definitions of strategyproofness.

For real-world descriptions of DA, this may suggest complementing Description 1 with

a stripped-down summary focusing on the properties important for strategyproof-

ness.31

7 Discussion

Strategyproofness has long been proposed as a way to make mechanisms fair by

leveling the playing field for players who do not strategize well (Pathak and Sönmez,

2008). We warmly embrace this agenda. However, we observe that if participants

do not all understand that the mechanism is strategyproof, then disparities may

remain. Menu descriptions may improve this understanding. They relay ex ante how

participants’ matches will be calculated while ensuring that strategyproofness follows

via a simple argument, offering an alternative to status-quo tactics such as appeals

30For this earlier version, see https://arxiv.org/abs/2209.13148v2.
31Katus̆c̆ák and Kittsteiner (2025) show the promise of a description (in their case, the description

in Example 2.8 for TTC) complemented with a stripped-down summary.
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to authority, asserting that the mechanism is strategyproof.32

While menu descriptions expose strategyproofness, they may obscure other prop-

erties of the mechanism. For example, since Description 1 (our menu description

of DA) relays each applicant’s match separately, it is unclear why this description

always produces a feasible (one-to-one) matching.33 In contrast, in DA’s traditional

description, feasibility of the outcome matching is clear, but strategyproofness is not

exposed. Description 2 (our menu-in-outcome description of TTC) might be used

to simultaneously expose strategyproofness and make feasibility clear. Future em-

pirical work may present TTC to lab participants using our Description 2—or use

this description to explain the strategyproofness of TTC’s traditional description (as

advocated by Morrill and Roth, 2024 for real-world participants)—and measure par-

ticipants’ understanding of both strategyproofness and feasibility.

In this paper and its experimental companion (Gonczarowski, Heffetz, Ishai, and

Thomas, 2024), we suggest that some principled alternative framings of mechanisms

(namely, menu descriptions) might better convey their properties (namely, strate-

gyproofness), and we analyze such framings theoretically and empirically. We view

this general premise—of reasoning about different descriptions (of the same mech-

anism) that expose different properties—as being of potential broader use. Future

theoretical work might consider other properties one may wish to expose (e.g., fair-

ness or optimality) and study opportunities and tradeoffs for exposing these properties

using different descriptions in a variety of mechanisms and settings.
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R. Hakimov and D. Kübler. Experiments on centralized school choice and college

admissions: A survey. Experimental Economics, 24:434–488, 2021.

27



P. J. Hammond. Straightforward individual incentive compatibility in large

economies. Review of Economic Studies, 46(2):263–282, 1979.

S. Hart and N. Nisan. Approximate revenue maximization with multiple items. Jour-

nal of Economic Theory, 172:313–347, 2017. Abstract in Proceedings of the 13th

ACM Conference on Electronic Commerce (EC 2012).

S. Hart and N. Nisan. Selling multiple correlated goods: Revenue maximization and

menu-size complexity. Journal of Economic Theory, 183:991–1029, 2019. Abstract

(“The menu-size complexity of auctions”) in Proceedings of the 14th ACM Con-

ference on Electronic Commerce (EC 2013).

J. W. Hatfield and P. R. Milgrom. Matching with contracts. American Economic

Review, 95(4):913–935, 2005.

N. Immorlica and M. Mahdian. Marriage, honesty, and stability. In Proceedings of

the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

53–62, 2005.

N. Immorlica, J. Leshno, I. Lo, and B. Lucier. Information acquisition in matching

markets: The role of price discovery. Mimeo, 2020.

P. Katus̆c̆ák and T. Kittsteiner. Strategy-proofness made simpler. Forthcoming in

Management Science, 2025.

J. D. Leshno and I. Lo. The cutoff structure of top trading cycles in school choice.

Review of Economic Studies, 88(4):1582–1623, 2021.

S. Li. Obviously strategy-proof mechanisms. American Economic Review, 107(11):

3257–87, 2017.

M. Luflade. The value of information in centralized school choice systems. Mimeo,

2017.

A. Mackenzie and Y. Zhou. Menu mechanisms. Journal of Economic Theory, 204:

105511, 2022.

P. Mandal and S. Roy. Obviously strategy-proof implementation of assignment rules:

A new characterization. International Economic Review, 63(1):261–290, 2021.

28



D. G. McVitie and L. B. Wilson. The stable marriage problem. Communications of

the ACM, 14(7), 1971.

V. Meisner and J. von Wangenheim. Loss aversion in strategy-proof school-choice

mechanisms. Journal of Economic Theory, 207:105588, 2023.

T. Mennle and S. Seuken. Partial strategyproofness: Relaxing strategyproofness for

the random assignment problem. Journal of Economic Theory, 191:105144, 2021.

T. Morrill and A. E. Roth. Top trading cycles. Journal of Mathematical Economics,

112:102984, 2024.

NMS. The matching algorithm - explained, 2020. URL https://www.youtube.com/

watch?v=kVTwXNawpbk. Video produced by National Matching Services.

P. A. Pathak and T. Sönmez. Leveling the playing field: Sincere and sophisticated

players in the boston mechanism. American Economic Review, 98(4):1636–52, 2008.

M. Pycia and P. Troyan. A theory of simplicity in games and mechanism design.

Econometrica, 2023. Abstract (“Obvious dominance and random priority”) in Pro-

ceedings of the 20th ACM Conference on Economics and Computation (EC 2019).

A. Rees-Jones and R. Shorrer. Behavioral economics in education market design: A

forward-looking review. Journal of Political Economy Microeconomics, 1(3):557–

613, 2023.

A. E. Roth. The economics of matching: stability and incentives. Mathematics of

Operations Research, 7(4):617–628, 1982.

A. E. Roth. On the allocation of residents to rural hospitals: A general property of

two-sided matching markets. Econometrica, 54(2):425–427, 1986.

A. E. Roth and A. Postlewaite. Weak versus strong domination in a market with

indivisible goods. Journal of Mathematical Economics, 4(2):131–137, 1977.

R. R. Saxena, A. Schvartzman, and S. M. Weinberg. The menu complexity of “one-

and-a-half-dimensional” mechanism design. In Proceedings of the 29th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2026–2035, 2018.

29

https://www.youtube.com/watch?v=kVTwXNawpbk
https://www.youtube.com/watch?v=kVTwXNawpbk


I. Segal. The communication requirements of social choice rules and supporting budget

sets. Journal of Economic Theory, 136(1):341–378, 2007.

L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical Eco-

nomics, 1(1):23–37, 1974.

C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-shapley stable marriage problem

revisited: Strategic issues and applications. Management Science, 47(9):1252–1267,

2001.

C. Thomas. Classification of priorities such that deferred acceptance is OSP imple-

mentable. In Proceedings of the 22nd ACM Conference on Economics and Compu-

tation (EC 2021), page 860, 2021.

P. Troyan. Obviously strategy-proof implementation of top trading cycles. Interna-

tional Economic Review, 60(3):1249–1261, 2019.

P. Troyan and T. Morrill. Obvious manipulations. Journal of Economic Theory, 185:

104970, 2020.

L. B. Wilson. An analysis of the stable marriage assignment algorithm. BIT Numerical

Mathematics, 12(4):569–575, Dec 1972.

30



Appendix

A Proof of Main Impossibility Theorem

In this appendix, we prove Theorem 5.3.

Theorem 5.3 considers applicant-proposing menu-in-outcome descriptions of DA.

Recall that such descriptions must—while reading applicants’ preferences only once

in favorite-to-least-favorite order—calculate i’s menu using ≻−i, and then proceed to

calculate the full matching using (≻i,≻−i). The theorem states that such descriptions

require quadratic memory.

To prove the theorem, we construct a large set of applicant preference profiles that,

intuitively speaking, has two properties: (A) to calculate i’s menu given preferences in

this set, essentially the full preference list of every applicant other than i must be read

in its entirety, and (B) to calculate the final matching, essentially all this information

must be remembered in its entirety. These properties ensure that the description must

store the entire preference profile in its memory. There are many preference profiles

in our construction, which implies the description has a high memory requirement.

Proof of Theorem 5.3. Fix an applicant i and letD be any applicant-proposing menu-

in-outcome description of DA for i.

We now describe a set S ⊆ T−i of possible inputs to DA, illustrated in Figure A.1,

which allows us to establish property (B) discussed above (intuitively, by allowing i’s

possible reports to affect the outcome matching in a different way for each different

≻−i∈ S). For simplicity, let the number n of non-i applicants and institutions be a

multiple of 4. Other than i, there are applicants and institutions dj, d
′
j, hj, h

′
j for each

j ∈ {1, . . . , n/2}. There are n/2 total “cycles” containing two applicants and two

institutions each. Cycle j has applicants dj and d′j and institutions hj and h′
j. The

cycles are divided into two classes, “top” cycles (for j ∈ {1, . . . , n/4}) and “bottom”

cycles (for j ∈ {n/4 + 1, . . . , n/2}).
The institutions’ priorities are fixed, and defined as follows:

For top cycles (j ≤ n/4): For bottom cycles (j > n/4):

hj : d′j ≻ i ≻ dj hj : d′j ≻ d1 ≻ d2 ≻ . . . ≻ dn/4 ≻ dj

h′
j : dj ≻ d′j. h′

j : dj ≻ d′j.
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For the top cycle applicants (dj with j ≤ n/4), the preferences vary (in a way we will

specify momentarily). Other applicants’ preferences are fixed, as follows:

For bottom cycles (j > n/4): dj : hj ≻ h′
j.

For all cycles (j ∈ {1, . . . , n/2}): d′j : h′
j ≻ hj.

B1

h4

B2 B3

h5 h6

d1 d2 d2 Figure A.1: Illustration of the
construction used to prove The-
orem 5.3

Notes: Dark nodes represent dj or hj

for some j, and grey nodes represent
d′j or h′

j . The green arrows directed
outwards from a top cycle dj represent
the sets Bj .

Let S denote the set of preference profiles where we additionally have:

For top cycles (j ≤ n/4): dj : hj ≻ Bj ≻ h′
j,

where Bj is an arbitrary subset of {hk | k > n/4}, ranked in any fixed order (say,

increasing order of j). Any such collection of
(
Bj

)n/4
j=1

defines a distinct preference

profile in S. Note that |S| = 2(n/4)
2
. See Figure A.1 for an illustration.

We additionally define a set of inputs S ′ ⊇ S, which allow us to establish property

(A) discussed above (intuitively, by making i’s menu depend on the final institution

ranked above ∅ on other applicants’ lists). Specifically, let S ′ denote the set containing

every element of S, and additionally any top cycle applicant dj (j ≤ n/4) may or may

not truncate the final institution h′
i off her list, marking it as unacceptable. In other

words, in addition to the sets
(
Bj

)n/4
j=1

, an element of S ′ is defined by bits (cj)
n/4
j=1,
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such that, for each top cycle j (j ≤ n/4):1

When cj = 0: dj : hj ≻ Bj ≻ h′
j.

When cj = 1: dj : hj ≻ Bj.

We now proceed to prove the two crucial properties of DA, and the description

D, when run on this family of preference profiles. The following lemmas formalize

properties (A) and (B) discussed above, showing (respectively) that D must essen-

tially read all of the preferences in ≻−i∈ S ′ in order to calculate i’s menu, and (before

knowing ≻i) must remember essentially all of this information in order to calculate

the outcome matching DA(≻i,≻−i).

Lemma A.1. Consider a preference profile in S ′. For each top cycle j (with j ≤ n/4),

we have that hj is in applicant i’s menu in DA if and only if dj does not rank h′
j (i.e.,

cj = 1). Hence, to correctly calculate i’s menu, description D must read the entire

preference list of each such dj (up to the position of h′
j).

To prove this lemma, consider the execution of the APDA algorithm when i sub-

mits a list containing only hj. First, dj is rejected, then she proposes to every insti-

tution hk ∈ Bj. This “rotates” the bottom cycle containing hk; in more detail, hk

will accept the proposal from dj, then dk will propose to h′
k, then d′k with propose to

hk, and dj will be rejected from hk. This will occur for every hk ∈ Bj, so dj will not

match to any hk with k ∈ {n/4 + 1, . . . , n/2}.
Finally, after getting rejected from each institution in Bj, applicant dj may or

may not propose to h′
j, depending on the bit cj. If she does not, then d∗ remains

matched to hj and in this case hj is on i’s menu. If she does, then h′
j will reject d′j,

who will propose to hj, which will reject i. So i will go unmatched, and thus in this

case hj is not on i’s menu.

The final sentence of the lemma then follows from the fact that D is an applicant-

proposing and must calculate i’s menu. This proves Lemma A.1.

Lemma A.2. Each distinct preference profile ≻−i∈ S induces a distinct function

DA(·,≻−i) : Ti → A from applicant i’s report to outcome matchings. Hence, to

1This collection of preferences can also be constructed with full preference lists by adding some
unmatched institution h∅ to represent truncating di’s list.
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correctly calculate the outcome matching, the description D must—across all states

where it finishes calculating i’s menu—have at least one state for each element of S.

To prove this lemma, consider two distinct preference profiles in S, one profile

≻−i corresponding to
(
Bj

)n/4
j=1

, and the other profile ≻′
−i corresponding to

(
B′

j

)n/4
j=1

.

Without loss of generality, there is some j and k such that hk ∈ Bj \ B′
j. Suppose

now that i’s report ≻i lists only hj. Then, consider execution of the APDA algorithm

under (≻i,≻−i) and under (≻i,≻′
−i). Under ≻−i, the bottom tier cycle containing

hk will be “rotated,” i.e. since hk ∈ Bj, the sequence of rejections will cause hk

to match to d′k. However, this is not the case under ≻′
−i, since hk /∈ Bj. Thus,

DA(·,≻−i) ̸= DA(·,≻′
−i).

We now prove the second sentence of the lemma. As argued in Lemma A.1, D

must have read all top cycle applicants’ preferences in order to calculate i’s menu.

Moreover, since D is a menu-in-outcome description, it must do so before learning ≻i.

Hence, to calculate the outcome matching correctly at the end, D must remember

the entirety of
(
Bj

)n/4
j=1

. This proves Lemma A.2.

We now prove Theorem 5.3. Together, Lemma A.1 and Lemma A.2 show that

when D has just calculated the menu of applicant i, the description must be in a

distinct state for each distinct ≻−i∈ S. There is one such ≻−i for each possible way

of assigning the sets Bj ⊆ {hk | k > n/4} for all j ∈ {1, . . . , n/4}. For each such

j, there are 2n/4 ways to assign Bj, and hence there are
(
2n/4

)n/4
= 2(n/4)

2
= 2Ω(n2)

possible ways to set this collection
(
Bj

)n/4
j=1

. Thus, the description requires at least

this many states, and thus requires memory Ω(n2). This finishes the proof.

B Additional Proofs and Remarks

In this appendix, we provide additional supplemental proofs and remarks omitted

from the main text.

We start by proving Theorem 3.2, which shows that Description 1 is a menu

description of DA, without assuming the strategyproofness of DA. This provide an

alternative, potentially-instructive approach for proving DA’s strategyproofness.

Alternative proof of Theorem 3.2. We show that, for any applicant i, Description 1

correctly calculates i’s match in DA. To this end, fix the priorities of institutions and

preferences ≻= (≻i,≻−i) of all applicants. Let h∗ = APDAi(≻) denote the match of
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i according to applicant-proposing DA. Our goal is to show that h∗ is the outcome

of Description 1. Hence, we must show h∗ is the ≻i-favorite institution in the set

containing (1) the “outside option” of going unmatched, and (2) all institutions h such

that h prefers i to IPDAh(≻−i) (the match of h according to institution-proposing

DA in the market without i).

Let ∅ denote the empty preference report of i (i.e., the report marking all institu-

tions as unacceptable). Observe that IPDA(≻−i) and IPDA(∅,≻−i) match applicants

(other than i) in exactly the same way, and furthermore, the institutions h that prefer

i to IPDAh(≻−i) are exactly those that propose to i during the calculation of IPDA(∅,
≻−i). Therefore, it suffices to prove:

(I) If h∗ ̸= ∅, then then h∗ proposes to i during IPDA(∅,≻−i).

(II) Applicant i gets no proposal in IPDA(∅,≻−i) that is ≻i-preferred to h∗.

We start by proving (I). Assume that h∗ ̸= ∅. Let {h∗} denote the preference list of
i ranking only h∗ (i.e., marking all other institutions as unacceptable). Observe that

APDA(≻i,≻−i) is also stable under preferences ({h∗},≻−i). Thus, by the Lone Wolf

/ Rural Hospitals Theorem (Theorem C.6), since i is matched in APDA(≻i,≻−i), she

must be matched in IPDA({h∗},≻−i) as well. Thus, IPDA({h∗},≻−i) = h∗. Since

IPDA({h∗},≻−i) and IPDA(∅,≻−i) coincide until h∗ proposes to i, we conclude that

h∗ must propose to i during IPDA(∅,≻−i), proving (I).

We now prove (II). Let T denote i’s preference list, truncated at and below h∗, i.e.,

the report listing only institutions that i strictly prefers to h∗. Observe that i must

go unmatched in APDA(T,≻−i), since every proposal by i before h∗ was rejected in

APDA(≻i,≻−i). Hence, by the Lone Wolf / Rural Hospitals Theorem (Theorem C.6),

i goes unmatched in IPDA(T,≻−i). Now, since i goes unmatched in IPDA(T,≻−i),

we see that i does not receive any proposal that is ≻i-preferred to h∗ in IPDA(∅,≻−i),

proving (II).

We have shown that the outcome calculated at the end of Step (2) of Description 1

is i’s outcome in DA. Moreover, observe that the set calculated in Step (1) of is

independent of i’s report. Hence, DA is strategyproof (by the same proof outline that

applies to every menu description). Moreover, as observed in Footnote 10, the menu

is the only set M of institutions that is independent of i’s report such that i always

receives her favorite institution in M . Hence, the set in Step (1) must be i’s menu,

and Description 1 is a menu description of DA.
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Remark B.1. As noted in Section 3, Theorem 3.2 extends to many-to-one markets

with substitutable priorities. To quickly see why this extension holds in the spe-

cial case in which institutions have responsive preferences (i.e., the special case in

which each institution has a master preference order and a capacity), fix a many-to-

one market, and following a standard approach, consider a one-to-one market where

each institution from the original market is split into “independent copies.” That is,

the number of copies of each institution equals the capacity of the institution, each

“copied” institution has the same preference list as the original institution, and each

applicant ranks all the copies of the institution (in any order) in the same way she

ranked the original institution. Ignoring the artificial difference between copies of the

same institution, the run of applicant-proposing DA is equivalent under these two

markets. Thus, an applicant’s menu is equivalent under both markets, and so by

Theorem 3.2, a menu description for the many-to-one market can be given through

institution-proposing DA under the corresponding one-to-one market, which in turn

is equivalent to institution-proposing DA under the original market (where at each

step, each institution proposes to a number of applicants up to its capacity). The

only change in Description 1 in this case would be replacing the condition i ≻h µ−i(h)

with ∃d′ ∈ µ−i(h) : i ≻h d′.

Remark B.2. As additionally noted in Section 3, Theorem 3.2 also extends to many-

to-one markets with contracts in which the institutions have substitutable preferences

that satisfy the law of aggregate demand (the conditions under which Hatfield and

Milgrom (2005) prove that the strategyproofness of applicant-proposing DA and the

rural hospitals theorem hold). Description A.1 gives a menu description of DA in

this environment, which generalizes Description 1 as follows: (1) Description A.1 uses

the generalized Gale–Shapley algorithm of Hatfield and Milgrom (2005) starting from

(∅, X) (whereX is the set of all possible contracts) to calculate the institution-optimal

stable outcome without i to get a matching µ−i. (2) A given contract c = (i, h, c)

(i.e., an (applicant, institution, term) tuple) is on i’s menu if and only if h would

choose (i, h, c) if given a choice from the set containing (i, c) and its matches in µ−i

(in the notation of Hatfield and Milgrom (2005), c ∈ Ch(µ−i(h) ∪ {c})). Under this

modification, each step of the proof of Theorem 3.2 in Section 3 holds by a completely

analogous argument for this market.
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Description A.1 A menu description for applicant i of the applicant-optimal stable
matching in a many-to-one market with contracts

(1) Calculate the institution-optimal stable matching with applicant i removed from
the market using the generalized Gale–Shapley algorithm of Hatfield and Milgrom
(2005). Call the resulting matching µ−i. Let M be the set of contracts c = (i, h, t)
involving applicant i such that c ∈ Ch(µ−i(h) ∪ {c}).

(2) Match i to i’s highest-ranked contract in M .

Remark B.3. In this remark, we show how Theorem 3.2, which characterizes the

menu in DA in terms of Description 1, can be used to prove results from Ashlagi

et al. (2017) via arguments similar to Cai and Thomas (2022). Consider a random-

ized market with n + 1 applicants and n institutions, where such that each appli-

cant/institution draws a full-length preference list uniformly at random, and let µ be

the result of (applicant-optimal) DA with these preferences. We prove that the ex-

pected rank each applicant receives on their preference list (formally, the expectation

of |{h : h ⪰d µ(d)}| for any d) is at least (1 − ϵ)n/ log(n) for any ϵ > 0 and large

enough n.

Fix an applicant d∗, and consider calculating d∗’s menu using Description 1 in

this market. This is equivalent to considering IPDA in a market where d∗ rejects

all proposals, and setting d∗’s menu to consist of all proposals she receives. By the

principle of deferred decisions, this run of IPDA can be constructed by letting each

institution h proposes to a uniformly random applicant (among those h has not yet

proposed to) each time she proposes. Observe that this run of IPDA will terminate

as soon as each of the n applicants other than d∗ receives a proposal. Thus (much like

the standard case of n applicants and n institutions in APDA Wilson (1972)), the

total number of proposals made in this run of IPDA is stochastically dominated by

a coupon collector random variable. Thus, intuitively, the total number of proposals

will be n log(n), and log(n) of these will go to d∗ in expectation, and d∗’s top choice

out of these log(n) proposals will be their n/ log(n)th ranked choice overall.

Formally, let Y denote the number of proposals d∗ receives, and let Y denote the

same quantity in a market where each institution makes each proposal completely

uniformly at random (without regard to prior proposals); it follows that Y is stochas-

tically dominated by Y . Let Zi denote the total number of proposals between the
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(i − 1)th and ith distinct applicant in D \ {d∗} receiving a proposal (in the market

with repeated proposals). The expected value of Zi is exactly (n+ 1)/(n+ 1− i),

and each of these Zi proposals (except for the final one) has a 1/i probability of going

to d∗. Thus, we have

E [Y ] ≤ E
[
Y
]
=

n∑
i=1

1

i

(
n+ 1

n+ 1− i
− 1

)
=

n∑
i=1

1

i

(
i

n+ 1− i

)
= Hn ≤ log(n) + 1.

Now, let R = |{h : h ⪰d h∗}|, where h∗ is d∗’s top-ranked proposal received (i.e., d∗’s

match in APDA). One can show that, conditioned on Y = y, we have the expected

value of R exactly equal to (n+ 1)/(y + 1) (see for example (Cai and Thomas, 2022,

Claim A.1)). Thus, by Jensen’s inequality, we have

E [R] = E
y∼Y

[
n+ 1

y + 1

]
≥ n+ 1

E [Y ] + 1
≥ n+ 1

log(n) + 2
≥

(
1− ϵ

) n

log(n)

for any ϵ > 0 and large enough n, as desired.

Remark B.4. We now formally show that, unlike SD, a description of TTC must be

specialized to individual applicants in order to contain a menu description for them.

Concretely, we show that any outcome description of TTC cannot contain a menu

description for two applicants (where, in contrast, our Description 2 contains a menu

description for exactly one student).

To do this, it suffices to construct an instance containing two applicants d1 and

d2 such that each of their menus depends on the other. For example, consider an

instance where hi : di ≻ d3−i and di : h3−i ≻ hi for i ∈ {1, 2}. Under this instance,

for each i ∈ {1, 2}, institution h3−i is on di’s menu, but if applicant d3−i changed her

preference list, this would no longer be true. Hence, a description cannot calculate

either applicant’s menu before the description queries the other applicant’s type.

Remark B.5. We now show that in (finite-market) DA, budget sets and menus are

different sets; moreover, we show that neither set includes the other. For a fixed profile

of preferences and priorities, denote an applicant i’s budget set B(i) = {h|i ⪰h µ(i)},
where µ is the outcome of DA. Let M(i) =M≻−i

denote i’s menu.

Now, consider the market with institutions h1, h2, h3, and h4, and applicants
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d1, d2, d3, and d4. Let the preferences and priorities be as follows:

h1 : d1 ≻ d2 ≻ . . . d1 : h1 ≻ . . .

h2 : d4 ≻ d3 ≻ d2 ≻ d1 ≻ . . . d2 : h1 ≻ h2 ≻ h4 ≻ . . .

h3 : d3 ≻ . . . d3 : h3 ≻ . . .

h4 : d2 ≻ d4 ≻ . . . d4 : h4 ≻ h2 ≻ . . .

Then, one can check that DA pairs hi to di for each i = 1, . . . , 4, and that h2 ∈
B(d3) \M(d3), and also h2 ∈M(d1) \B(d1). Thus, neither the menu nor the budget

set contain the other. Moreover, the relationship between the two sets does not seem

to be restricted in a straightforward way based on priorities and the outcome of DA:

despite the fact that d3 ≻h2 d2, we have h2 /∈ M(d3); despite d1 ≺h2 d2, we have

h2 ∈M(d1).

Remark B.6. We now show that in DA, an applicant’s set of stable partners is a

(possibly strict) subset of her menu. For a given profile of preferences and priorities,

let S(i) denote the set of stable partners of applicant i, and let M(i) denote her menu.

We begin by showing that M(i) ̸= S(i). Consider any instance with two institutions

h1, h2 which both rank i above all other applicants. Both h1 and h2 must be in i’s

menu. However, if i ranks h1 above all other institutions, then h1 is i’s unique stable

partner; thus h2 ∈M(i) \ S(i).
We now show that S(i) ⊆M(i). Suppose the profile of preferences and priorities

is P . Consider any h ∈ S(i), and let µ be a stable matching with µ(i) = h. Then, let

P̃ denote modifying P by having i submit a list which ranks only h. Then, observe

that µ is also stable under P̃ . Thus, by the Rural Hospital Theorem (Theorem C.6),

i and h must be matched in every stable matching under P̃ , in particular, in DA(P̃ ).

Thus, h ∈M(i), and S(i) ⊆M(i).

C Proofs of Known Results

In this appendix, we recall classically-known lemmas on DA and TTC that are needed

for our paper. We also provide full proofs, making all the arguments in this paper

self-contained.
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C.1 Known Results for DA and Stable Matchings

We now provide properties of DA and stable matchings. Let D denote the set of

applicants, and H the set of institutions. Recall that a matching µ is stable if µ(a) ≻a

∅ for all a ∈ D ∪H, and moreover there is no pair d ∈ D, h ∈ H such that h ≻d µ(h)

and d ≻h µ(d).

Lemma C.1 (Gale and Shapley, 1962). The outcome of DA is a stable matching.

Proof. Consider running the traditional description of DA (Definition 2.3) on some

profile of preferences (and priorities), and let the output matching be µ. Consider a

pair d ∈ D, h ∈ H which is unmatched in µ. Suppose for contradiction h ≻d µ(d)

and d ≻h µ(h). In the DA algorithm, d would propose to h before µ(d). However,

it’s easy to observe from the traditional description of DA that once an institution

is proposed to, they remain matched and can only increase their priority for their

match. This contradicts the fact that h was eventually matched to µ(h).

Note that Lemma C.1 also proves that at least one stable matching always ex-

ists. Next, we show that DA (i.e., the matching output by the APDA algorithm) is

(simultaniously) the best stable matching for all applicants.

Lemma C.2 (Gale and Shapley, 1962). If an applicant d ∈ D is ever rejected by an

institution h ∈ H during some run of the APDA algorithm, then no stable matching

can pair d to h.

Proof. Let µ be any matching, not necessarily stable. We will show that if h rejects

µ(h) at any step of DA, then µ is not stable.

Consider the first time during in the run of APDA where such a rejection occurred.

In particular, let h reject d
def
= µ(h) in favor of d̃ ̸= d (either because d̃ proposed to h,

or because d̃ was already matched to h and d proposed). We have d̃ ≻h d. We have

µ(d̃) ̸= h, simply because µ is a matching. Because this is the first time an applicant

has been rejected by her match in µ, d̃ has not yet proposed to µ(d̃). This means

h ≻d̃ µ(d̃), and µ is not stable.

Thus, no institution can ever reject a stable partner in APDA.

The following corollaries are immediate:

Corollary C.3 (Gale and Shapley, 1962). In the outcome of DA, every applicant is

matched to her favorite stable partner.
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Corollary C.4 (Dubins and Freedman, 1981). The matching output by the traditional

DA algorithm is independent of the order in which applicants are selected to propose.

A phenomenon dual to Corollary C.3 occurs for the institutions:

Lemma C.5 (McVitie and Wilson, 1971). In the outcome of DA, every h ∈ H is

paired to her least-favorite stable partner.

Proof. Let d ∈ D and h ∈ H be paired by applicant-proposing deferred acceptance.

Let µ be any stable matching which does not pair d and h. We must have h ≻d µ(d),

because h is the d’s favorite stable partner. If d ≻h µ(h), then µ is not stable. Thus,

we must in fact have µ(h) ≻h d.

Finally, we show that the set of matched agents must be the same in each stable

matching.

Theorem C.6 (Lone Wolf / Rural Hospitals Theorem, Roth, 1986). The set of

unmatched agents is the same in every stable matching.

Proof. Consider any stable matching µ in which applicants Dµ and institutions Hµ

are matched, and let D0 and H0 be matched in DA. By Corollary C.3, we know

that for all d ∈ Dµ, the match of d can only improve in DA; in particular, d is still

matched in DA, and thus Dµ ⊆ D0. Similarly, Lemma C.5 implies that each agent in

H0 is matched in every stable outcome, so H0 ⊆ Hµ. But then, since the matching

is one-to-one, we have |D0| = |H0| as well as |D0| ≥ |Dµ| = |Hµ| ≥ |H0|, so the same

number of agents (on each side) are matched in µ and in DA. Thus, D0 = Dµ and

H0 = Hµ.

Additionally, DA is strategyproof. This follows from our Theorem 3.2. While

our proof of Theorem 3.2 in Section 3 relies on DA’s strategyproofness, our proof

of Theorem 3.2 in Appendix B only uses properties proven above in this appendix.

Hence, these arguments show that DA is strategyproof from first-principles.

Theorem C.7 (Roth, 1982; Dubins and Freedman, 1981). DA is strategyproof for

the applicants.

A.11



C.2 Known Result for TTC

We now prove that TTC is independent of the order in which the steps are chosen

in the traditional description (analogous to Corollary C.4 for DA). This will follow

from the observation that cycles in the pointing graph of the traditional description

of TTC must always be disjoint, since the pointing graph has out-degree 1. See also

Carroll (2014); Morrill and Roth (2024) for similar contemporary proofs.

Proposition C.8 (Follows from Shapley and Scarf, 1974; Roth and Postlewaite,

1977). The TTC algorithm is independent of the order in which cycles are chosen

and eliminated.

Proof. Fix a profile of priorities and preferences. Define the elimination graph G as

follows. The vertices of G are the set of all partial matchings between applicants

and institutions. There is an edge µ1 → µ2 in G whenever µ2 differs from µ1 by

the elimination of exactly one cycle, as defined in Definition 2.2, under the given

preferences and priorities. Formally, this is defined as follows. Fix µ1, and consider

the pointing graph B = Bµ1 given µ1 to be the bipartite graph formed by applicants

and institutions who are unmatched in µ1, where each agent points to her top-ranked

agent on the other side who is unmatched in µ1 (if any such agents on the other

side remain). Then, we have an edge µ1 → µ2 whenever there exists a cycle in B

such that, if µ1 is modified such that every applicant in the cycle is matched to the

institution she points to, then the resulting matching is µ2. When µ1 → µ2 in G,

and the cycle C in Bµ1 represents the difference between µ2 and µ1, we say that C is

available in µ1.

Now, define a elimination sequence T to be any sequence T = µ1 → µ2 → . . .→ µk

of adjacent edges in G, such that µ1 is the empty matching which pairs no agents,

and T is of maximal possible length. Observe that the outcome of TTC is defined to

be the final matching µk of an elimination sequence.

We make the following observations regarding any elimination sequence T = µ1 →
. . .→ µk:

• For any fixed pointing graph Bµi
, all of the cycles C in Bµi

are disjoint. This

follows because the pointing graph has out-degree 1.

• If C is available in some µx, then there exists a z > x such that C is available in

every subsequent µy for x ≤ y < z. This follows from the previous observation,
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since for each µy → µy+1 with x ≤ y < z with y increasing inductively, the

vertices in the cycle C are not changed as we switch from µy to µy+1, unless

the cycle C itself is eliminated. Thus, in particular, µz differs from µz−1 by the

elimination of C.

• Suppose that in T , cycle C1 is available in some µx, but C2 ̸= C1 eliminated

in µx to get µx+1. Then, there exists another elimination sequence T ′ = µ1 →
µx → µ′

x+1 → . . . → µ′
k which agrees with T up until µx, but C1 is eliminated

at µx to get µ′
x+1, and which ends in the same final matching µ′

k = µk. To

show this, we construct T ′ as follows. After eliminating C1 at µx to get µ′
x+1,

follow the same order of eliminating cycles as in T until cycle C1 is eliminated

in T—i.e., go from µ′
y+1 to µ′

y+2 via the same cycle used to go from µy to µy+1,

for each y ≥ x such that C1 is not eliminated in µy → µy+1 in T . (All such

cycles must be available as needed in T ′, since before C1 was eliminated in T ,

none of these cycles could have involved agents in C1 in any way.) At some

point, C1 must be eliminated in T , say in µz → µz+1. After this point, the

elimination sequence T ′ will from that point onward agree with T , i.e., µw = µ′
w

for w ≥ z + 1.

Now, suppose for contradiction that there are two elimination orderings T1 and

T2 which produce different final matchings, and additionally suppose among all such

pairs, the index j > 1 where T1 and T2 first disagree is as large as possible. Then,

at index j, two cycles C1 and C2 are eliminated in T1 and T2, respectively. Then,

by final observation listed above, we can consider the elimination sequence T ′
2 that

disagrees with T1 at least one step later than j (by eliminated C1), but has the same

final matching as T2. This contradicts the assumption that j was as large as possible.

This proves that all elimination sequences must produce the same final matching,

which is the outcome of TTC. This proves the result.
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Supplemental Material

S Mathematical Model of Algorithms

In this appendix, we define from first-principles a mathematical model of descriptions

of mechanisms which can express all our results.

We introduce the notion of an extensive-form description. For generality, we

state this definition in terms of a general mechanism design environment with play-

ers 1, . . . , n, type spaces T1, . . . , Tn, and outcome space A. At a technical level, an

extensive-form description is similar to an extensive-form mechanism, except that

different branches may “merge,” i.e., the underlying game tree is actually a directed

acyclic graph (DAG).1 Note, however, that the interpretation is different from that

of an extensive-form mechanism: Rather than modeling an interactive process where

the players may act multiple times, an extensive-form description spells out the steps

used to calculate some result by iteratively querying the directly-reported types of

the players.

We formally define three types of extensive-form descriptions, corresponding to

our three description outlines: outcome descriptions, menu descriptions, and menu-

in-outcome descriptions.

Definition S.1 (Extensive-Form Descriptions).

• An extensive-form description in some environment is defined by a directed

graph on some set of vertices V .2 There is a (single) root vertex s ∈ V , and the

vertices of V are organized into layers j = 1, . . . , L such that each edge goes

between layer j and j + 1 for some j. For a vertex v, let S(v) denote the edges

outgoing from v. Each vertex v with out-degree at least 2 is associated with

some player i, whom the vertex is said to query, and some transition function

ℓv : Ti → S(v) from types of player i to edges outgoing from v. (It will be

convenient to also allow vertices with out-degree 1, which are not associated

with any player.) For each type profile (t1, . . . , tn), the evaluation path on

1Alternatively, extensive-form descriptions can be viewed as finite automata where state transi-
tions are given by querying the types of players.

2Formally, a directed graph G on vertices V is some set of ordered pairs G ⊆ V ×V . An element
(v, w) ∈ G is called an edge from v to w. A source (resp., sink) vertex is any v where there exists
no vertex w with an edge from w to v (resp., from v to w).
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(t1, . . . , tn) ∈ T1 × . . .× Tn is defined as follows: Start in the root vertex s, and

whenever reaching any non-terminal vertex v that queries a player i and has

transition function ℓv, follow the edge ℓv(ti).

• An extensive-form outcome description of a mechanism f is an extensive-form

description in which each terminal vertex is labeled by an outcome, such that for

each type profile (t1, . . . , tn) ∈ T1×Tn, the terminal vertex reached by following

the evaluation path on t ∈ T is labeled by the outcome f(t1, . . . , tn).

• An extensive-form menu description of a social choice function f for player i

is an extensive-form description with k + 1 layers, such that (a) each vertex

preceding layer k queries some player other than i, (b) each vertex v in layer k

queries player i and is labeled by some set M(v) ⊆ Ai, such that if v is on the

evaluation path on a type profile (t1, . . . , tn) ∈ T1 × Tn, then M(v) =Mt−i
is

the menu of player i with respect to t−i in f , and (c) each (terminal) vertex v

in the final layer k + 1 is labeled by an outcome for player i,3 such that if v is

reached by following the evaluation path on a type profile (t1, . . . , tn), then v is

labeled by i’s outcome in f(t1, . . . , tn).

• An extensive-form menu-in-outcome description of f for player i is an extensive-

form outcome description such that, for some k, the first k + 1 layers are an

extensive-form menu description.

For a concrete example of an extensive-form description, we consider a menu

description of a second price auction.4 In this mechanism, a bidder’s menu consists

of two options: winning the item and playing the highest bid placed by any other

bidder, or winning nothing and paying nothing. Thus, a menu description can be

given as follows:

(1) Your “price to win” the item will be set to the highest bid placed by any other

player.

3Formally, in a general mechanism design environment, an outcome of player i (or, an i-outcome)
is a maximal set E of outcomes such that all possible types of player i in Ti view each outcome in
E as equally desirable.

4While we have not formally defined menus or menu descriptions in non-matching environments,
they naturally generalize by considering the menu of i induced by reports t−i to be the set of i’s
outcomes consistent with t−i.
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(2) If your bid is higher than this “price to win,” then you will win the item and pay

this price. Otherwise, you will win nothing and pay nothing.

An extensive-form description can formalize this menu description by querying

the other bidders one-by-one, while keeping track of only the highest bid placed by

any of them. Figure S.1 provides an illustration.

$3

$2

$1

$0

$3
$2

$1

$0

$3

$2

$1

$0

. . .

$3

$2

$1

$0

︸︷︷︸
Bidder 1 ︸︷︷︸

Bidder 2

︸︷︷︸
Bidder 3

︸︷︷︸
Bidder n

win for $3

win for $2

win for $1

win for $0

lose

Figure S.1: An extensive-form
menu description for bidder n in
a second-price auction

Note: The second-to-last layer is la-
beled with bidder n’s menu, abbreviated
in the figure by the price she must pay
to win the item.

More broadly, any precise algorithm taking players types as inputs induces an

extensive-form description in a natural way: the vertices in layer j are the possi-

ble states of the algorithm after querying the types of different players altogether

j times. In particular, our positive results (Description 1 and Description 2) corre-

spond to extensive-form descriptions. The definitions of all our simplicity desiderata

(Definition 5.1 and Definition T.11 below) also extend naturally to extensive-form

descriptions. Moreover, the proofs of our impossibility theorems (Theorem 5.3 and

Proposition T.12 below) hold, mutatis mutandis, for the relevant class of extensive

form descriptions.

In addition to providing a self-contained mathematical language for expressing

our results, the definition of an extensive-form description allows us to clarify some

ways in which our impossibility results are strong. Namely, while algorithms are

often required to work for any number of players, our impossibility results hold even

if one can use a separate extensive-form description for each number of players n,

and regardless of the computational complexity of such a description. Relatedly, our

impossibility results follow from direct combinatorial arguments and do not depend

on any complexity-theoretic conjectures such as P ̸= NP .
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T On Additional Descriptions of DA

In this appendix, we present additional findings regarding descriptions of DA. We

examine a broad classification of mechanism descriptions. While we uncover addi-

tional descriptions of DA, we find that all such uncovered descriptions (beyond the

traditional one and Description 1) are unintuitive and convoluted algorithms that are

impractical for real-world use.

To motivate our search for additional descriptions of DA, consider the outline

of menu-in-outcome descriptions, which provided our highly-useful Description 2

for TTC. Our description in Description 2 satisfies applicant-proposing and linear-

memory, that may be regarded as certain formal simplicity properties. Our main im-

possibility theorem (Theorem 5.3) shows that applicant-proposing menu-in-outcome

description of DA must, in some formal sense, be complex; formally, they cannot

be linear-memory. However, this theorem does not give any impossibility result for

menu-in-outcome descriptions of DA which—like our menu description of DA, De-

scription 1—are institution-proposing.5 Given this, one might still hope for a useful

institution-proposing menu-in-outcome description of DA, which might yield an al-

ternative outcome description of DA together with a simple proof of its strategyproof-

ness.

Perhaps surprisingly, in Appendix T.3 we construct a new institution-proposing

menu-in-outcome description of DA which is, in fact, linear memory. Unfortunately,

this description is exceedingly unintuitive and convoluted. Indeed, as one can see

from the details in Appendix T.3, this description is a highly technical algorithm

that requires careful bookkeeping to maintain its linear-memory. Thus, in contrast

to DA’s traditional description and our Description 1, this algorithm is impractical

for describing DA to real-world participants.

Motivated by the intricacies of the description we uncover in Appendix T.3, in Ap-

pendix T.4, we additionally use an established formal simplicity property to demon-

strate a sense in which institution-proposing menu-in-outcome descriptions of DA

must be convoluted and impractical. Our linear-memory property used in Theo-

rem 5.3 does not suffice for this purpose (since our convoluted descriptions in Ap-

pendix T satisfy this flexible property). Instead, we use the pick-an-object simplicity

5We use the term institution-proposing to mean the definition perfectly analogous to applicant-
proposing (Definition 5.1), in which sides of the market are interchanged.
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desideratum of Bó and Hakimov (2023). We prove that institution-proposing menu-

in-outcome descriptions for DA cannot be pick-an-object.6 Briefly and informally,

this means that all such descriptions must learn the match of some applicant d when

making queries which seem unrelated to d, showing a precise sense in which such de-

scriptions cannot be simple. Combined with our main impossibility result (Section 5),

this shows that one-side-proposing menu-in-outcome descriptions of DA cannot (in

appropriate senses) be simple.

More broadly, in pursuit of potentially useful descriptions of DA, we consider

a broad classification of matching mechanism descriptions. We consider applicant-

proposing descriptions (like traditional ones), and institution-proposing descriptions

(like Description 1). We consider our three description outlines: menu descriptions,

outcome descriptions, and menu-in-outcome descriptions. Altogether, this gives six

classes of one-side-proposing descriptions with one of these outlines. In this appendix,

we construct linear-memory descriptions of DA of every class that is not ruled out

by our main impossibility result Theorem 5.3. Unfortunately, all of the additional

descriptions are (like our institution-proposing menu-in-outcome description) exceed-

ingly unintuitive and convoluted algorithms. See Table S.1 for an overview of all our

descriptions and results for DA.

Table S.1: Classification of descriptions of DA

Menu
Description

Outcome
Description

Menu-in-Outcome
Description

Applicant
proposing

Unintuitive, convoluted
algorithm in Appendix T.2.

Traditional
DA algorithm.

Impossible (without
quadratic memory)
by Theorem 5.3.

Institution
proposing

Description 1
in Section 3.

Unintuitive, convoluted
algorithm in Appendix T.1.

Unintuitive, convoluted
(e.g., not pick-an-object)

algorithm in Appendix T.3.

Notes: We consider descriptions which either read preferences in an applicant-proposing manner
or read priorities in an institution-proposing manner. We consider three description outlines: menu
descriptions (conveying strategyproofness), outcome descriptions (conveying the fully matching), or
menu-in-outcome descriptions (conveying both).

All told, our results exhaustively consider all classes of descriptions of DA that

6In Appendix T.4, we demonstrate more generally that for DA, institution-proposing outcome
descriptions—and thus menu-in-outcome descriptions as a special case—cannot be pick-an-object.
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are one-side-proposing and fit one of our three description outlines. Within this

classification, we find two simple and practical descriptions of DA: the traditional

one, and our menu description. This suggests that within our framework, simple

descriptions of DA face a trade-off between conveying strategyproofness and conveying

the full outcome matching.

The organization of this appendix is as follows. We present an institution-proposing

outcome description of DA, adapted from Ashlagi et al. (2017), in Appendix T.1. We

present our applicant-proposing menu description in Appendix T.2. We present our

institution-proposing menu-in-outcome description in Appendix T.3. We present our

supplemental impossibility theorem for DA in Appendix T.4.

T.1 Institution-proposing outcome description of DA

First, we construct an institution-proposing linear-memory outcome description of

DA. Interestingly, essentially this same algorithm was used as a lemma by Ashlagi

et al. (2017) (henceforth, AKL).7 For notational convenience, throughout the rest

of this appendix, we refer to the priorities of institutions as “preferences.” We also

denote the set of applicants by D, the set of institutions by H, and (when relevant)

we describe the menu to applicant d∗.

Theorem T.1 (Adapted from Ashlagi et al., 2017). Description S.1 computes the

applicant-optimal stable outcome. Moreover, Description S.1 is an institution-proposing

and Õ(n)-memory description.

Proof. AKL refer to the sides of the market as “men” and “women”, and define “Al-

gorithm 2 (MOSM to WOSM)”, a men-proposing algorithm for the women-optimal

stable matching. Description S.1 follows the exact same order of proposals as this al-

gorithm from AKL. The only difference apart from rewriting the algorithm in a more

“pseudocode” fashion is that Description S.1 performs bookkeeping in a slightly dif-

ferent way—Algorithm 2 from AKL maintains two matchings, and their list V keeps

track of only women along a rejection chain; our list V keeps track of both applicants

7For context, Ashlagi et al. (2017) needs such an algorithm to analyze (for a random matching
market) the expected “gap” between the applicant and institution optimal stable matching. Their
algorithm builds on the work of Immorlica and Mahdian (2005), and is also conceptually similar to
algorithms for constructing the “rotation poset” in a stable matching instance Gusfield and Irving
(1989) (see also Cai and Thomas (2019)).
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and institutions along the rejection chain (and can thus keep track of the “difference

between” the two matchings which AKL tracks).

Moreover, the algorithm is institution-proposing, by construction. Furthermore,

as it runs it stores only a single matching µ, a set Dterm ⊆ D, and the “rejection

chain” V (which can contain each applicant d ∈ D at most once). Thus, it uses

memory Õ(n).

T.2 Applicant-proposing menu description of DA

In this section, we construct an applicant-proposing linear-memory menu description

of DA. On an intuitive level, the algorithm works as per the “brute-force” menu

description in Example 2.8, but avoiding the need to “restart many times” by using

the various properties of DA and by careful bookkeeping (to intuitively “simulate all

of the separate runs of the brute-force description on top of each other”).

On a formal level, we describe the algorithm as a variant of Description S.1.

The proof constructing this algorithm uses a bijection between one applicant’s menu

in DA under some preferences, and some data concerning the institution-optimal

stable matching under a related set of preferences. Our applicant-proposing menu

description is then phrased as a variation of Description S.1, which (reversing the

roles of applicants and institutions from the presentation in Description S.1) is able

to compute the institution-optimal matching using an applicant-proposing algorithm.

Fix an applicant d∗ and set P that contains (1) the preferences of all applicants

D \ {d∗} other than d∗ over H and (2) the preferences of all institutions H over all

applicants D (including d∗). We now define the “related set of preferences” mentioned

above. Define the augmented preference list P ′ as follows: For each hi ∈ H, we create
two additional applicants dtryi , dfaili and two additional institutions htry

i , hfail
i . The

entire preference lists of these additional agents in P ′ are as follows: for each hi ∈ H:

dtryi : htry
i ≻ hi ≻ hfail

i dfaili : hfail
i ≻ htry

i

htry
i : dfaili ≻ dtryi hfail

i : dtryi ≻ dfaili

We need to modify the preference lists of the pre-existing institutions as well. But this

modification is simple: for each hi ∈ H, replace d∗ with dtryi . The institution-optimal
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Description S.1 An institution-proposing outcome description of DA

Input: Preferences of all applicants D and institutions H
Output: The result of applicant-proposing deferred acceptance

1: ▷ We start from the institution-optimal outcome, and slowly “improve the match for the ap-
plicants” ◁

2: Let µ be the result of institution-proposing DA
3: Let Dterm be all applicants unmatched in µ ▷ Dterm is all applicants at their optimal stable part-

ner
4: while Dterm ̸= D do
5: Pick any d̂ ∈ D \ Dterm, and set d = d̂
6: Let h = µ(d) and set V = [(d, h)]
7: while V ̸= [] do
8: Let d← NextAcceptingApplicant(µ, h)
9: if d = ∅ or d ∈ Dterm then
10: ▷ In this case, all the applicants in V have reached their optimal stable partner. ◁
11: Add every applicant which currently appears in V to Dterm

12: Set V = []
13: else if d ̸= ∅ and d does not already appear in V then ▷ Record this in the rejection

chain
14: Add (d, µ(d)) to the end of V
15: Set h← µ(d) ▷ The next proposing institution will be the “old match” of d.
16: else if d ̸= ∅ and d appears in V then
17: ▷ A new “rejection rotation” should be written to µ ◁
18: WriteRotation(µ, V , d, h) ▷ Updates the value of µ, V , and (possibly) h
19: Return µ

20: function NextAcceptingApplicant(µ, h)
21: repeat
22: Query h’s preference list to get their next choice d
23: until d = ∅ or h ≻d µ(d)
24: Return d

25: procedure WriteRotation(µ, V , d, h)
26: Let T = (d1, h1), . . . , (dk, hk) be the suffix of V starting with the first occurrence of d = d1
27: Update µ such that µ(hi) = di+1 (for each i = 1, . . . , k, with indices taken mod k)
28: ▷ Now we fix V and h to reflect the new µ ◁
29: Update V by removing T from the end of V
30: if V ̸= ∅ then
31: Let (d0, h0) denote the final entry remaining in V
32: ▷ The next proposing institution will either hk or h0, depending on which d1 prefers ◁
33: if hk ≻d1

h0 then
34: Set h← h0

35: else if h0 ≻d1 hk then
36: Add (d1, hk) to the end of V
37: Set h← hk
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matching for this augmented set of preferences P ′ will encode the menu, as we need.8

Proposition T.2. An institution hi ∈ H is on d∗’s menu in APDA with prefer-

ences P if and only if in the institution-optimal stable matching with the augmented

preferences P ′, we have htry
i matched to dtryi .

Proof. For both directions of this proof, we use the following lemma, which is a special

case of the main technical lemma in Cai and Thomas (2022):

Lemma T.3. In P ′, each htry
i has a unique stable partner if and only if, when htry

i

rejects dtryi (i.e. if htry
i submitted a list containing only dfaili , and all other preferences

remained the same), htry
i goes unmatched (say, in the applicant-optimal matching).

Note that each htry
i is matched to dtryi in the applicant-optimal matching with

preferences P ′ (and the matching among all original applicants and institutions is the

same as µapp).

(⇐) By the lemma, if htry
i is matched to dtryi in the institution-optimal matching

under P ′, then htry
i must go unmatched when htry

i rejects dtryi . But, after htry
i , we

know dtryi will propose to hi, and some rejection chain may be started. Because dtryi ’s

very next choice is hfail
i (and proposing there would lead directly to htry

i receiving

a proposal from dfaili ), the only way for htry
i to remain unmatched is if dtryi remains

matched to hi. But because (relative to all the original applicants) dtryi is in the same

place as d∗ on hi’s preference list, the resulting set of rejections in P ′ will be precisely

the same as those resulting from d∗ submitting a preference list in P which contains

only hi. In particular, d∗ would remain matched at hi in P if they submitted such a

list. Thus, hi is on d∗’s menu.

(⇒) Suppose htry
i is matched to dfaili in the institution optimal matching under P ′.

Again, htry
i must receive a proposal from dfaili when htry

i rejects dtryi . But this can only

happen if dtryi is rejected by hi (then proposes to hfail
i ). But because the preferences

8For the reader familiar with the rotation poset of stable matchings (Gusfield and Irving, 1989),
the intuition for this construction is the following: having htry

i reject applicant dtryi corresponds to
d∗ “trying” to get hi ∈ H, i.e., “trying to see if hi is on their menu.” If d∗ would be rejected by
hi after proposing, either immediately or after some “rejection rotation,” then so will dtryi (because
they serve the same role as d∗ at hi). So if a rotation swapping htry

i and hfail
i exists (e.g., in

the institution optimal matching) then hi is not on d∗’s menu. On the other hand, if d∗ could
actually permanently match to hi, then dtryi proposing to hi will result in a rejection chain that
ends at some other applicant (either exhausting their preference list or proposing to an institution
in Hterm), which does not result in finding a rotation (or writing a new set of matches as we “work
towards the institution-optimal match”). Thus, if htry

i and hfail
i do not swap their matches in the

institution-optimal stable outcome, then hi is on d∗’s menu.
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of the original applicants in P ′ exactly corresponds to those in P , we know that d∗

would get rejected by hi if they proposed to them in µapp under P . But then hi

cannot be on d∗’s menu.

With this lemma in hand, we can now show that there is an applicant-proposing

linear-memory menu description of (applicant-optimal) DA. This description is given

in Description S.2.

Description S.2 An applicant-proposing menu description of DA

Input: An applicant d∗ and preferences of all applicants D \{d∗} and institutions H
Output: The menu of d∗ in applicant-optimal DA given these preferences

1: Simulate the flipped-side version of Description S.1 (such that applicants propose)
on preferences P ′ to get a matching µ

2: Return the set of all institutions hi such that htry
i is matched to dtryi in µ

Theorem T.4. There is an applicant-proposing, Õ(n) memory menu description of

(applicant-optimal) DA.

Proof. The algorithm proceeds by simulating a run of Description S.1 on prefer-

ences P ′ (interchanging the role of applicants and institutions, so that applicants are

proposing). This is easy to do while still maintaining the applicant-proposing and

Õ(n) memory. In particular, P ′ adds only O(n) applicants and institutions, with

each dtryi and dfaili making a predictable set of proposals. Moreover, the modification

made to the preferences lists of the institutions h ∈ H is immaterial—when such

institutions receive a proposal from dtryi , the algorithm can just query their lists for

d∗.

T.3 Institution-proposing menu-in-outcome description of DA

In this section, we construct an institution-proposing linear-memory menu-in-outcome

description of DA.9 Throughout this section, let P |di:L denote altering preferences P

by having di submit list L.

9For some technical intuition on why such a description might exist, consider the construction
used in Theorem 5.3, and consider a menu-in-outcome description for applicant i executed on these
preferences. To find the menu in this construction with an applicant-proposing algorithm, all of the
“top tier rotations” must be “rotated”, but to find the correct final matching after learning ti, some
arbitrary subset of the rotations must be “unrolled” (leaving only the subset of rotations which ti
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Unlike our applicant-proposing menu description of DA from Appendix T.2, our

institution-proposing menu-in-outcome description cannot be “reduced to” another

algorithm such as Description S.1. However, the algorithm is indeed a modified

version of Description S.1 that “embeds” our simple institution-proposing menu algo-

rithm Description 1 (i.e., IPDA where an applicant d∗ submits an empty preference

list) as the “first phase.” The key difficulty the algorithm must overcome is being able

to “undo one of the rejections” made in the embedded run of Description 1. Namely,

the algorithm must match d∗ to her top choice from her menu, and “undo” all the

rejections caused by d∗ rejecting her choice.10 To facilitate this, the description has d∗

reject institutions that propose to d∗“as slowly as possible,” and maintains a delicate

Õ(n)-bit data structure that allows it to undo one of d∗’s rejections.
11 The way this

data structure works is involved, but one simple feature that illustrates how and why

it works is the following: exactly one rejection from d∗ will be undone, so if some

event is caused by more than one (independent) rejection from d∗, then this event

will be caused regardless of what d∗ picks from the menu.

We present our algorithm in Description S.3. For notational convenience, we

define a related set of preferences Phold as follows: For each hi ∈ H, add a “copy of

d∗” called dholdi to Phold. The only acceptable institution for dholdi is hi, and if d∗ is on

actually proposes to). Theorem 5.3 shows that all of this information must thus be remembered in
full. Now consider a run of Description S.1 on these preferences (or on a modified form of these
preferences where institutions’ preference lists determine which top tier rotations propose to bottom
tier rotations). Some subset of top-tier institutions will propose to applicant i. To continue on with
a run of Description S.1, it suffices to undo exactly one of these proposals. So, if two or more top-tier
rotations trigger a bottom-tier rotation, then we can be certain that the bottom-tier rotation will
be rotated, and we only have to remember which bottom-tier rotations are triggered by exactly one
top-tier rotation (which takes Õ(n) bits).

10Description S.1 is independent of the order in which proposals are made. Moreover, one can
even show that d∗ receives proposals from all h on her menu in Description S.1. However, this
does not suffice to construct our menu-in-outcome description simply by changing the order of
Description S.1. The main reason is this: in Description S.1, the preferences of d∗ are already
known, so d∗ can reject low-ranked proposals without remembering the effect that accepting their
proposal might have on the matching. While the “unrolling” approach of Description S.3 is inspired
by the way Description S.1 effectively “unrolls rejection chains” (by storing rejections in a list V and
only writing these rejections to µ when it is sure they will not be “unrolled”), the bookkeeping of
Description S.3 is far more complicated (in particular, the description maintains a DAG ∆ instead
of a list V ).

11Interestingly, this “rolled back state” is not the result of institution-proposing DA on pref-
erences (P, di : {hj}), where hj is di’s favorite institution on her menu. Instead, it is a “partial
state” of Description S.1 (when run on these preferences), which (informally) may perform ad-
ditional “applicant-improving rotations” on top of the result, and thus we can continue running
Description S.1 until we find the applicant-optimal outcome.
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hi’s list, replace d∗ with dholdi on hi’s list. Given what we know from Section 3, the

proof that this algorithm calculates the menu is actually fairly simple:

Lemma T.5. The setHmenu output by Description S.3 is the menu of d∗ in (applicant-

proposing) DA.

Proof. Ignoring all bookkeeping, Phase 1 of this algorithm corresponds to a run of

IPDA(P |d∗:∅). The only thing changed is the order in which d∗ performs rejections,

but DA is invariant under the order in which rejections are performed. Moreover,

Hmenu consists of exactly all institutions who propose to d during this process, i.e.

d∗’s menu (according to Section 3).

The correctness of the matching, on the other hand, requires an involved proof.

The main difficulty surrounds the “unroll DAG” ∆, which must be able to “undo

some of the rejections” caused by d∗ rejecting different h. We start by giving some

invariants of the state maintained by the algorithm (namely, the values of ∆, µ, P ,

and h):

Lemma T.6. At any point outside of the execution of AdjustUnrollDAG:

(1) P contains all nodes in ∆ of the form (d, h) (where h is the “currently proposing”

h ∈ H).

(2) All of the nodes in P have out-degree 0.

(3) The out-degree of every node in ∆ is at most 1.

(4) Every source node in ∆ is of the form (d∗, hi) for some hi ∈ Hmenu.

(5) For every edge (d0, h0) to (d1, h1) in ∆, we have µ(d1) = h0.

(6) For each d ∈ D \ {d∗}, there is at most one node in ∆ of the form (d, hi) for

some hi.

Each of these properties holds trivially at the beginning of the algorithm, and

it is straightforward to verify that each structural property is maintained each time

AdjustUnrollDag runs.

We now begin to model the properties that ∆ needs to maintain as the algorithm

runs.
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Description S.3 An institution-proposing menu-in-outcome description of DA

Phase 1 input: An applicant d∗ and preferences of applicants D \ {d∗} and institutions H
Phase 1 output: The menu Hmenu presented to d∗ in (applicant-proposing) DA
Phase 2 input: The preference list of applicant d∗
Phase 2 output: The result of (applicant-proposing) DA

1: ▷ Phase 1: ◁
2: Simulate a run of IPDA(Phold) and call the result µ′

3: Let H∗ be all those institutions hi ∈ H matched to dholdi in µ′ ▷ These institutions “currently
sit at d∗”

4: Let µ be µ′, ignoring all matches of the form (dholdi , h)
5: Let Hmenu be a copy of H∗ ▷ We will grow Hmenu

6: Let ∆ be an empty graph ▷ The “unroll DAG”. After Phase 1, we’ll “unroll a chain of rejec-
tions”

7: while H∗ ̸= ∅ do
8: Pick some h ∈ H∗ and remove h from H∗
9: Add (d∗, h) to ∆ as a source node
10: Set P = {(d∗, h)} ▷ This set stores the “predecessors of the next rejection”
11: while h ̸= ∅ do
12: Let d← NextInterestedApplicant(µ,∆, h)

AdjustUnrollDag(µ, ∆, P , d, h) ▷ Updates each of these values
13: Return Hmenu

14: ▷ Phase 2: We now additionally have access to d∗’s preferences ◁
15: Permanently match d∗ to their top pick hpick from Hmenu

16: (µ,Dterm)← UnrollOneChain(µ,∆, hpick)
17: Continue running the Description S.1 until its end, using this µ and Dterm, starting from

Description 4
18: Return the matching resulting from Description S.1

19: function NextInterestedApplicant(µ, ∆, h)
20: repeat
21: Query h’s preference list to get their next choice d
22: until d ∈ {∅, d∗} OR (d is in ∆, paired with h′ in ∆, and h ≻d h′) OR (d is not in ∆ and

h ≻d µ(d))
23: Return d

24: procedure UnrollOneChain(µ, ∆, hpick)
25: Let (d0, h0), (d1, h1), . . . , (dk, hk) be the (unique) longest chain in ∆ starting from (d0, h0) =

(d∗, hpick)
26: Set µ(di) = hi for i = 0, . . . , k
27: Set Dterm = {d∗, d1, . . . , dk}
28: return (µ,Dterm)
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1: procedure AdjustUnrollDag(µ, ∆, P, d, h)
2: if d = ∅ then
3: Set h = ∅ ▷ Continue and pick a new h
4: else if d = d∗ then ▷ h proposes to d∗, so we’ve found a new h in the menu
5: Add h to Hmenu

6: Add (d∗, h) to ∆
7: Add (d∗, h) to the set P ▷ h still proposes; the next rejection will have multiple predeces-

sors
8: else if d does not already appear in ∆ then ▷ Here h ≻d µ(d)
9: Add (d, µ(d)) to ∆ ▷ Record this in the rejection DAG
10: Add an edge from each p ∈ P to (d, µ(d)) in ∆, and set P = {(d, µ(d))}
11: Set h′ ← µ(d), then µ(d)← h, then h← h′

12: ▷ The next proposing institution will be the “old match” of d. ◁
13: else if d appears in ∆ then
14: AdjustUnrollDagCollision(µ, ∆, P , d, h) ▷ Updates each of these values

15: procedure AdjustUnrollDagCollision(µ, ∆, P, d, h)
16: Let p1 = (d1, h1) be the pair where d = d1 appears in ∆ ▷ We know h ≻d1

h1

17: Let P1 be the set of all predecessors of p1 in ∆

18: ▷ First, we drop all rejections from ∆ which we are now sure we won’t have to unroll ◁
19: Let (d1, h1), . . . , (dk, hk) be the (unique) longest possible chain in ∆ starting from (d1, h1)

such that each node (dj , hj) for j > 1 has exactly one predecessor
20: Remove each (di, hi) from ∆, for i = 1, . . . , k, and remove all edges pointing to these nodes

21: ▷ Now, we adjust the nodes to correctly handle d1 (which might have to “unroll to hmin”) ◁
22: Let hmin be the institution among {µ(d1), h} which d1 prefers least
23: Let pnew = (d1, hmin); add pnew to ∆
24: if hmin = h then ▷ We replace p1 with pnew
25: Add an edge from each p ∈ P1 to pnew
26: Add pnew to P ▷ h is still going to propose next
27: else ▷ Here hmin = µ(d1); we add pnew below the predecessors P
28: Add an edge from every p ∈ P to pnew
29: Set P = P1 ∪ {pnew}
30: Set h′ ← µ(d1), then µ(d)← h, then h← h′ ▷ d1’s old match will propose next
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Definition T.7. At some point during the run of any institution-proposing algorithm

with preferences Q, define the truncated revealed preferences Q as exactly those in-

stitution preferences which have been queried so far, and assuming that all further

queries to all institutions will return ∅ (that is, assume that all institution preference

lists end right after those preferences learned so far).

For some set of preferences Q we say the revealed truncated preferences Q and the

pair (µ′,D′
term) is a partial AKL state for preferences Q if there exists some execution

order of Description S.1 and a point along that execution path such that the truncated

revealed preferences are Q, and µ and Dterm in Description S.1 take the values µ′ and

D′
term

Let Q be a set of preferences which does not include preference of d∗, and let Q

a truncated revealed preferences of Q. Call a pair (µ,∆) unroll-correct for Q at Q

if 1) µ is the result of IPDA(Q), and moreover, for every h ∈ Hmenu, the revealed

preferences Q and pair UnrollOneChain(µ,∆, h) is a valid partial AKL state of

preferences (Q, d∗ : {h}).

The following is the main technical lemma we need, which inducts on the total

number of proposals made in the algorithm, and shows that (µ,∆) remain correct

every time the algorithm changes their value:

Lemma T.8. Consider any moment where we query some institution’s preferences

list withing NextInterestedApplicant in Description S.3. Let h be the just-

queried institution, let d be the returned applicant, and suppose that the truncated

revealed preferences before that query are Q, and fix the current values of µ and ∆.

Suppose that (µ,∆) are unroll-correct for Q at Q.

Now let Q
′
be the revealed preferences after adding d to h’s list, and let µ′ and

∆′ be the updated version of these values after Description S.3 processes this proposal

(formally, if NextInterestedApplicant returns d, fix µ′ and ∆′ to the values of

µ and ∆ after the algorithm finishes running AdjustUnrollDag; if NextInter-

estedApplicant does not return d, set µ′ = µ and ∆′ = ∆). Then (µ′,∆′) are

unroll-correct for Q at Q
′
.

Proof. First, observe that if h’s next choice is ∅, then the claim is trivially true,

because Q = Q (and AdjustUnrollDAG does not change µ or ∆). Now suppose

h’s next choice is d ̸= ∅, but is not returned by NextInterestedApplicant. This

means that: 1) d ̸= d∗, 2) µ(d) ≻d h, and 3) either d does not appear in ∆, or d
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does appear in ∆, in which case d matched to some h′ such that h′ ≻d h. Because

(µ,∆) are unroll-correct for Q at Q, and because Lemma T.6 says that d can appear

at most once in ∆, the only possible match which d could be unrolled to at truncated

revealed preferences Q is h′ (formally, if the true complete preferences were Q, then

for all h∗ ∈ Hmenu, the partial AKL state under preferences (Q, d : {h∗}) to which we

we would unroll would match d to either µ(d) or h′). But d would not reject µ(d) in

favor of h, nor would she reject h′ in favor of h. Thus, (for all choices of h∗ ∈ Hmenu)

we know h will always be rejected by d, and (µ,∆) are already unroll-correct for Q

at Q
′
.

Now, consider a case where h’s next proposal d ̸= ∅ is returned by NextInter-

estedApplicant. There are a number of ways in which AdjustUnrollDAG may

change ∆. We go through these cases.

First, suppose d = d∗. In this case, the menu of d∗ in Q
′
contains exactly one

more institution than the menu in Q, namely, institution h. Moreover, for any h∗ ∈
Hmenu \ {h}, the same partial AKL state is valid under both preferences (Q, d : {h∗})
and (Q

′
, d : {h∗}) (the only difference in (Q

′
, d : {h∗}) is a single additional proposal

from h to d∗, which is rejected; the correct value of Dterm is unchanged). For h∗ = h,

the current matching µ, modified to match h to d∗, is a valid partial AKL state for

(Q
′
, d : {h}), and this is exactly the result of UnrollOneChain (with Dterm =

{d∗}, which is correct for preferences (Q
′
, d : {h})). Thus, (using also the fact from

Lemma T.6 that P contains all nodes in ∆ involving h), each possible result of

UnrollOneChain is a correct partial AKL state for each (Q
′
, d : {h∗}), so (µ′,∆′)

is unroll-correct for Q at Q
′
.

Now suppose d /∈ {∅, d∗} is returned from AdjustUnrollDAG, and d does not

already appear in ∆. In this case, h ≻d µ(d), and for every h∗ ∈ Hmenu, the unrolled

state when preferences (Q, d : {h∗}) will pair d to µ(d). Under preferences (Q
′
, d : ∅),

a single additional proposal will be made on top of the proposals of (Q, d : ∅), namely,

h will propose to d and d will reject µ(d). However, if h∗ is such that h is “unrolled”

(formally, if h∗ is such that UnrollOneChain(µ,∆, h∗) changes the partner of h)

then h cannot propose to d in (Q, d : ∅) (because all pairs in ∆ can only “unroll” h to

partners before µ(h) on h’s list), nor in (Q
′
, d : ∅) (because Q′

only adds a partner to

h’s list after µ(h)). Thus, for all h∗ such that h is unrolled, the pair (d, µ(d)) should

be unrolled as well. On the other hand, for all h∗ such that h is not unrolled, h will

propose to d (matched to d′), so d will match to h in the unrolled-to state. This is
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exactly how µ′ and ∆′ specify unrolling should go, as needed.

(Hardest case: AdjustUnrollDagCollision.) We now proceed to the hard-

est case, where d /∈ {∅, d∗} is returned from AdjustUnrollDag, and d already

appears in ∆. In this case, AdjustUnrollDagCollision modifies ∆. Define p1,

P1, and hmin, following the notation of AdjustUnrollDagCollision. Now con-

sider any h∗ ∈ Hmenu under preferences Q. There are several cases of how h∗ may

interact with the nodes changed AdjustUnrollDagCollision, so we look at these

cases and prove correctness. There are two important considerations which we must

prove correct: first, we consider the way that AdjustUnrollDagCollision re-

moves nodes from ∆ (starting on Description 19), and second, we consider the way

that it creates a new node to handle d (starting on Description 22).

(First part of AdjustUnrollDagCollision.) We first consider the way

AdjustUnrollDagCollision removes nodes from ∆. There are several subcases

based on h∗. First, suppose UnrollOneChain(µ,∆, h∗) does not contain p1. Then,

because AdjustUnrollDagCollision only drops p1 and nodes only descended

through p1, the chain unrolled by UnrollOneChain(µ′,∆′, h∗) is unchanged until

h. (We will prove below that the behavior when this chain reaches h is correct.)

Thus, the initial part of this unrolled chain remains correct for Q at Q
′
.

On the other hand, suppose that UnrollOneChain(µ,∆, h∗) contains p1. There

are two sub-cases based on ∆. First, suppose that there exists a pair p ∈ P in ∆ such

that p is a descendent of p1 (i.e. there exists a p = (dx, h) ∈ P and a path from p1 to p

in ∆). In this case, under preferences Q, UnrollOneChain(µ,∆, h∗) would unroll

to each pair in the path starting at h∗, which includes p1 and all nodes on the path

from p1 to p. Under ∆′, however, none of the nodes from p1 to p will be unrolled in

this case. The reason is this: in Description S.1, the path from p1 to p, including the

proposal of h to d1, form an “improvement rotation” when the true preferences are

Q
′
. Formally, under preferences (Q

′
, d∗ : {h∗}), if d1 rejected h1, the rejections would

follow exactly as in the path in ∆ between p1 and p, and finally h would propose to

d1. Description S.1 would then call WriteRotation, and the value of µ would be

updated for each d on this path. So deleting these nodes is correct in this subcase.12

For the second subcase, suppose that there is no path between p1 and any p ∈ P

in ∆. In this case, there must be some source (d∗, h) in ∆ which is an ancestor of

12This is the core reason why Description S.3 cannot “unroll” to IPDA(Q, d : {hi})—instead, it
unrolls to a “partial state of AKL”.
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some p ∈ P , and such that the path from (d∗, h) to p does not contain any descendent

of p1. (This follows because each p ∈ P must have at least one source as an ancestor,

and no ancestor of any p ∈ P can be descendent of p1.) To complete the proof in

this subcase, it suffices to show that at preferences (Q
′
, d∗ : {h∗}), we “do not need

to unroll” the path in ∆ starting at h∗ after p1 (formally, we want to show that if

you unroll from µ′ the path in ∆ from h∗ to just before p1 (including the new node

added by the lines starting on Description 22), then this is a partial AKL state of Q

at Q
′
). The key observation is this: in contrast to preferences (Q, d∗ : {h∗}), where

pair p1 is “unrolled”, under preferences (Q
′
, d∗ : {h∗}), we know h will propose to d1

anyway, because d∗ will certainly reject h (and trigger a rejection chain leading from

(d∗, h) to h proposing to d1).

(Second part of AdjustUnrollDagCollision.) We now consider the sec-

ond major task of AdjustUnrollDagCollision, namely, creating a new node to

handle d. The analysis will follow in the same way regardless of how the first part

of AdjustUnrollDagCollision executed (i.e., regardless of whether there exists

a path between p1 and P ). The analysis has several cases. First, suppose (d∗, h∗) is

not an ancestor of any node in P1 ∪ P in ∆. This will hold in ∆′ as well, so neither

UnrollOneChain(µ,∆, h∗) nor will UnrollOneChain(µ′,∆′, h∗) will not change

the match of d. Instead, the match of d under UnrollOneChain(µ′,∆′, h∗) will be

µ′(d), which is a correct partial AKL state under (Q
′
, d∗ : {h∗}), as desired.

Second, suppose h∗ is such that (d∗, h∗) is an ancestor of some node in P1 in

∆. There are two subcases. If hmin = h, then we have µ(d1) = µ′(d1), but when

UnrollOneChain(µ′,∆′, h∗) is run, we unroll d1 to h. Correspondingly, in IPDA

with preferences (Q
′
, d∗ : {h∗}), we know d1 will not receive a proposal from µ(d1) (as

this match is unrolled in Q) but d1 will receive a proposal from h (as this additional

proposal happens in Q
′
but not in Q, regardless of whether this happens due to a “re-

jection rotation” of AKL, or simply due to two rejection chains causing this proposal,

as discussed above), which d1 prefers to the unrolled-to match under preferences Q.

Thus, under preferences (Q
′
, d∗ : {h∗}), we know d1 will match to hmin = h in a valid

partial AKL-state. So (µ′,∆′) is correct for Q
′
in this subcase. If, on the other hand,

hmin = µ(d1), then in ∆′, UnrollOneChain(µ′,∆′, h∗) will not contain the new

node pnew. However, µ′(d1) = h, and we know d would receive a proposal from h

(Q
′
, d∗ : {h∗}), and would accept this proposal. So (µ′,∆′) is correct for Q

′
in this

subcase.
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Third and finally, suppose h∗ is such that (d∗, h∗) is an ancestor of some node in

P in ∆. The logic is similar to the previous paragraph, simply reversed. Specifically,

there are two subcases. If hmin = h, then when preferences are (Q
′
, d∗ : {h∗}), then

d1 will no longer receive a proposal from h, but will still receive a proposal from

µ(d1). So d1 should remain matched to µ(d1) during UnrollOneChain(µ′,∆′, h∗),

and (µ′,∆′) is correct for Q
′
in this subcase. If hmin = µ(d1), then µ′(d1) = h, and in

∆′, UnrollOneChain(µ′,∆′, h∗) will contain the new node pnew, which unrolls d1 to

their old match µ(d1). This is correct, because in Q, according to ∆, we know h will be

unrolled to some previous match, and correspondingly, in preferences (Q
′
, d∗ : {h∗}),

we know d1 will never receive a proposal from h. So (µ′,∆′) is correct for Q
′
in this

subcase.

Thus, for all cases, (µ′,∆′) are unroll-correct for Q at Q
′
, as required.

To begin to wrap up, we bound the computational resources of the algorithm:

Lemma T.9. Description S.3 is institution-proposing and uses memory Õ(n).

Proof. The institution-proposing property holds by construction. To bound the mem-

ory, the only thing that we need to consider on top of AKL is the “unroll DAG” ∆.

This memory requirement is small, because there are at most O(n) nodes of the form

(d∗, h) for different h ∈ H, and by Lemma T.6, a given applicant d ∈ D \ {d∗} can
appear at most once in ∆. So the memory requirement is Õ(n).

We can now prove our main result:

Theorem T.10. Description S.3 is an institution-proposing, Õ(n) memory menu-

in-outcome description for DA.

Proof. We know Description S.3 correctly computes the menu, and that it is institution-

proposing and Õ(n) memory. So we just need to show that it correctly computes the

final matching. To do this, it suffices to show that at the end of Phase 1 of Descrip-

tion S.3, (µ,∆) is unroll-correct for Q at the truncated revealed preferences Q (for

then, by definition, running Description S.1 after UnrollOneChain will correctly

compute the final matching).

To see this, first note that an empty graph is unroll-correct for the truncated

revealed preference after running IPDA(Phold), as no further proposals beyond d∗

can be made in these truncated preferences. Second, each time we pick an h ∈ H∗ on
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Description 8, a single (d∗, h) added to ∆ (with no edges) is unroll-correct for Q at

Q
′
, by construction. Finally, by Lemma T.8, every other query to any institution’s

preference list keeps (µ,∆) unroll-correct after the new query. So by induction, (µ,∆)

is unroll-correct at the end of Phase 1, as desired.

T.4 Supplemental Impossibility Result for DA

In this appendix, we give a supplemental impossibility result for descriptions of DA.

We prove that institution-proposing outcome descriptions—and hence institution-

proposing menu-in-outcome descriptions as a special case—cannot satisfy the pick-

an-object simplicity condition of Bó and Hakimov (2023).

Bó and Hakimov (2023) introduce the pick-an-object condition in the context of

interactive mechanisms, where (informally speaking) agents are iteratively asked to

pick their favorite objects from some set, and whenever the mechanism terminates,

every agent is matched to their most recently picked object. For example, in a dy-

namic mechanism implementing DA, applicants can be iteratively asked to pick their

favorite institution from the set of all institutions they have not yet proposed to. We

consider the pick-an-object condition within the context of one-side-proposing out-

come descriptions. In this context, the condition requires that when the description

terminates, every agent on the proposing side must be matched to whichever agent

they proposed to most recently.

Like the linear-memory condition we use in Section 5, the pick-an-object condi-

tion captures one feature of matching mechanism descriptions used to explain these

mechanisms in practice. Indeed, the description in Figure 3 on page 16 that is used

by the NRMP is pick-an-object, since the yellow highlighting in that figure tracks the

most recent proposal of each applicant and, at the end of the description, relays the

outcome matching. However, where linear-memory is a fairly permissive desidera-

tum concerning the amount of bookkeeping used, pick-an-object is a more restrictive

desideratum concerning the manner in which the bookkeeping is updated and used.

Thus, we do not interpret our pick-an-object impossibility result as strongly as our

linear-memory impossibility result, e.g., we do not argue that all small tweaks of

the traditional description of DA should be pick-an-object. Nevertheless, our pick-

an-object impossibility result is quite useful: It shows a potentially-desirable class of

descriptions cannot satisfy an established and intuitive simplicity condition, and gives
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a specific barrier that hypothetical more-practical alternatives to our unintuitive and

convoluted description in Appendix T would have to circumvent.

We now formally define pick-an-object, adapting the definition from Bó and Haki-

mov (2023) to focus on institution-proposing outcome descriptions.

Definition T.11 (Pick-an-Object). An institution-proposing outcome description is

pick-an-object if, whenever the description terminates and calculates some outcome

matching µ, it satisfies the following. For every institution h, let dh be the most

recently queried applicant from h’s preference list, i.e., if the description made j

queries to h, then d is the jth applicant on h’s preference list. Then, µ(h) = dh for

every institution h.

Observe that the traditional descriptions of SD, TTC, and DA are applicant-

proposing outcome descriptions that are pick-an-object (according to a definition

perfectly analogous to Definition T.11, but interchanging the roles of the applicants

and institutions). DA (the applicant-optimal stable matching mechanism) has a non-

trivial institution-proposing outcome description as well (Appendix T.1). However,

as we now show, such a description cannot be pick-an-object, giving a sense in which

they cannot be simple. Formally:

Proposition T.12. No institution-proposing outcome description of DA is pick-an-

object.

Proof. Assume for contradiction that D is an institution-proposing outcome descrip-

tion of DA which is pick-an-object. Consider a market with institutions h1, h2 and

applicants d1, d2, d3. We first define preferences of three applicants as follows:

d1 : h2 ≻ h1

d2 : h1 ≻ h2

d3 : (any complete preference list)

Next, we consider two possible preference lists for each of h1, h2:

≻1 : d1 ≻ d2 ≻ d3 ≻2 : d2 ≻ d1 ≻ d3

≻′
1 : d1 ≻ d3 ≻ d2 ≻′

2 : d2 ≻ d3 ≻ d1

S.21



One can check that DA (the applicant-optimal stable matching) produces outcome

matching µ1 that assigns d1 to h2 and d2 to h1 when the priorities are (≻1,≻2); on

any other profile of priorities among those defined above, DA has as outcome the

matching µ2 that assigns d1 to h1 and d2 to h2. Thus, our description D can know

the outcome on these inputs only when it has read the second-highest-priority spot

of both h1 and h2. However, intuitively, this means that our institution-proposing

description D of DA cannot be pick-an-object, because the highest-priority applicant

for both h1 and h2 must be read before we can know whether these institutions are

assigned to these applicants.

Formally, consider the execution of D when institutions have priorities (≻1,≻2).

Consider the final time during this execution when D learns the difference between ≻j

and ≻′
j for some j ∈ {1, 2}; i.e., the latest possible state s during the execution of the

description with priority profile Q = (≻1,≻2) where the execution diverges from that

of some priority profile in
{
(≻′

1,≻2), (≻1,≻′
2)
}
. (Note that the description must learn

this difference in order to calculate DA.) By the symmetry in the defined preferences,

it is without loss of generality to suppose that in state s, the description queries the

preferences of applicant 1, and thus has one successor state consistent with Q and

another consistent with Q′ = (≻′
1,≻2). However, since D is institution-proposing,

this means that in state s, the description has already read d1 off the priority list of

h1 (and is proceeding to read either d2 or d3 next). Since D is pick-an-object, this

means that h1 cannot match to d1 in any the final outcome matching of any execution

of D consistent with s. But this is a contradiction, since h1 must match to d1 in DA

when the priority profile is (≻′
1,≻2). This finishes the proof.

Proposition T.12 directly implies that DA has no institution-proposing menu-in-

outcome description satisfying the pick-an-object condition (since such a description

is, in particular, an outcome description). Combined with our robust main impos-

sibility result (Section 5), this establishes precise impossibilities for simple one-side-

proposing menu-in-outcome descriptions of DA: Such applicant-proposing descrip-

tions cannot be linear-memory, and such institution-proposing descriptions cannot

be pick-an-object.
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