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1. Introduction 
 
The analysis of inequality across groups and nations has become an important research 
area in economics (Piketty, 2022). Concerns about distributional issues, such as those 
related to race and income, are also becoming a political issue that national leaders are 
addressing (The White House, 2021). One of the ways suggested by economists for 
measuring the impact of policies on different groups is to introduce distributional weights 
(Finkelstein and Hendren, 2020). For example, with standard assumptions about how 
utility varies with income, a low-income group could have a higher weight than a high-
income group. One might want to then employ such weights in doing a benefit-cost 
analysis. The U.S. Office of Management and Budget has suggested that benefit-cost 
analyses done for regulations and projects may want to assign distributional weights that 
are based on income (The White House, 2023). 
 
This paper extends the theoretical literature on distributional weights with the goal of 
informing the practice of policy evaluation. It makes two contributions. First, we present a 
tractable model with distributional weights that allows for marginal benefits and costs to 
differ across regions and individual characteristics, such as income or race. The first order 
conditions for maximizing welfare are derived and compared with the case where 
distributional weights are unity, which is the typical case used in benefit-cost analysis. We 
show that Samuelson’s analysis of pure public goods is a special case in our framework 
(Samuelson, 1954), as are other settings in which marginal benefits and costs may differ 
by region, but where distributional weights are unity (Muller and Mendelsohn, 2009).  Our 
result demonstrates that whether distributional weights induce more or less public good 
provision depends on the marginal benefit function, the specification of the distributional 
weights, and the policy cost shares, but not the marginal cost function itself. 
 
Second, we analyze the use of distributional weights in conjunction with the value of a 
statistical life (VSL). The VSL is a key statistic used in analyses of government policy that 
calculate the benefits of policies where mortality risks are affected (Robinson, 2007; 
USEPA, 1999; 2011; Viscusi, 2018). This value measures the tradeoff between fatality 
risk and income, and it has been shown to vary systematically with income levels (Viscusi, 
2017). We compare the use of an average VSL, often used in the design of government 
policy, with the use of differentiated (in our case, income-specific) VSLs. We show how 
to determine when using an average VSL will increase or decrease optimal public goods 
provision relative to the case of income-specific VSLs for a given set of distributional 
weights. Much of the motivation for distributional analyses stems from concern about 
whether policies reflect the preferences of low-income groups. Given this concern and 
the frequent use of average VSLs in practice, we identify conditions under which a low-
income group would prefer using an average VSL to true VSLs in a setting in which their 
mortality risks are valued less than the mortality risks faced by a high-income group. Our 
result depends critically on the fraction of the costs that the low-income group bears in 
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the provision of the public good. This analysis of the VSL is also applicable to any 
willingness-to-pay based determinant of the benefits of public good provision, provided 
the willingness-to-pay varies with race, income, or other drivers of equity concerns. More 
generally, our analysis highlights the importance of considering costs as well as benefits 
in attempting to address equity concerns. We suggest that this may have implications for 
how decisionmakers and analysts frame equity issues, including concerns about 
environmental equity. 
 
The theory we present builds on three key areas of research. First, we extend a model by 
Montgomery (1972), which used a general equilibrium framework to assess the cost-
effectiveness of different policy instruments. Montgomery demonstrated that, in principle, 
pollution licenses could be cost-effective. His model includes a mapping between 
emission sources and environmental quality receptors, which we also use in developing 
our theory. In contrast to Montgomery, we introduce distributional weights and focus on 
social welfare maximization rather than cost-effectiveness.  
 
A second literature that we build on highlights the importance of distributional weights. 
Adler (2016) summarizes many of the theoretical contributions in this area. Early research 
that discussed distributional weights includes Meade (1955), Dasgupta and Pearce 
(1972) and Dasgupta, Sen, and Marglin (1972). The UK Green Book explains how 
distributional weights could be used in analyzing government projects, programs, and 
regulations. It notes that, “in principle, each monetary cost and benefit should be weighted 
according to the relative prosperity of those receiving the benefit or bearing the cost.” (HM 
Treasury, 2003, p. 92). In addition, there is a line of research that examines how tax policy 
affects the use of distributional weights (e.g., Harberger, 1978; Hylland and Zeckhauser, 
1979; Christiansen, 1981). 
 
A final literature we address attempts to link discussions of different VSLs with welfare. 
Closest to the spirit of our analysis of the VSL is Banzhaf (2011; 2023). Banzhaf compares 
the use of an average VSL with the true VSL using unitary distributional weights. He finds 
that the preferences for specific policies may shift depending on which set of weights are 
used. Hemel (2022) analyzes a regulation that would require new vehicles to have 
rearview cameras. He examines the welfare implications of using different VSLs for low 
and high-income groups, as well as the possibility of using different distributional weights. 
Sunstein (2023) also analyzes the welfare implications of using a VSL and argues that 
knowing the benefit and cost incidence is important. In contrast to these authors, we 
present a formal model of optimizing choice, we apply distributional weights to both 
benefits and costs, and we allow the distributional weights and the benefit and cost 
functions to vary. Our flexible modeling approach facilitates an analysis of how consumer 
choices would vary with different distributional weights and different VSL choices. 
 
The paper proceeds as follows: Section 2 presents the theoretical framework and 
discusses how it relates to global and local public goods. Section 3 provides an 
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application to the VSL, and considers when a low-income group would prefer using an 
average VSL to its true VSL. Section 4 concludes and identifies areas for future research. 
  
2. Theoretical model 
 
We first present a general model with distributional weights. These weights are allowed 
to vary by group. A group may refer to an income group, a racial group, or a regional 
group. For the purposes of the theory, it does not matter, so long as the groups cover all 
agents -- in particular, groups are mutually exclusive and exhaustive. Two special cases 
of the general model are derived in which distributional weights are unity; one in which 
marginal costs and marginal benefits can vary by region (Muller and Mendelsohn, 2009), 
and one in which there is a pure public good (Samuelson, 1954).  
 
In this formulation, a planner is assumed to maximize the difference between the 
weighted sum of benefits and the weighted sum of costs to different groups of consumers 
across all regions. We first consider the weighted benefits to groups and then the 
weighted costs to groups. There are assumed to be 𝑜𝑜 groups, indexed by 𝑘𝑘, and 𝑚𝑚 
regions, index by 𝑗𝑗. Group 𝑘𝑘 is assigned a distributional weight, 𝑤𝑤𝑘𝑘, which is assumed to 
be constant and positive.1 In the standard benefit-cost evaluation, the distributional 
weights are set to one for all groups. Each group in each region has a benefit function 
𝐵𝐵𝑗𝑗𝑘𝑘 �𝑞𝑞𝑗𝑗� where 𝑞𝑞𝑗𝑗 represents the level of the local public good in region 𝑗𝑗 (e.g., 
environmental quality), and 𝐵𝐵𝑗𝑗𝑘𝑘  represents the benefits to group 𝑘𝑘 in region 𝑗𝑗. Marginal 
benefit functions are assumed to be positive and non-increasing (𝐵𝐵𝑗𝑗𝑘𝑘′ > 0,𝐵𝐵𝑗𝑗′′ ≤ 0 for all 
groups and regions). The weighted benefits for a group 𝑘𝑘 in region 𝑗𝑗 are given by 
𝑤𝑤𝑘𝑘𝐵𝐵𝑗𝑗𝑘𝑘 (𝑞𝑞𝑗𝑗). Summing over all groups and regions gives aggregate weighted benefits of a 
given level of the public good in region 𝑗𝑗: ∑  𝑚𝑚

𝑗𝑗=1 ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑗𝑗𝑘𝑘 �𝑞𝑞𝑗𝑗�. 

 
To identify the weighted costs to different groups, we need to introduce the costs to firms 
and translate that into costs to groups of consumers in different regions. For 
concreteness, assume 𝑛𝑛 firms produce emissions as a byproduct of their production. The 
cost function for emissions reductions for firm 𝑖𝑖 is given by 𝐶𝐶𝑖𝑖(𝑟𝑟𝑖𝑖), where 𝑟𝑟𝑖𝑖 represents 
emission reductions. The cost function could be associated with a multi-product or single 
product firm. The marginal cost of emission reductions is assumed to be greater than zero 
and non-decreasing in 𝑟𝑟𝑖𝑖, (𝐶𝐶𝑖𝑖  

′ > 0,𝐶𝐶𝑖𝑖  
′′ ≥ 0 for all 𝑖𝑖). Firms are assumed to be profit 

maximizers in a perfectly competitive market. When a firm reduces emissions by 𝑟𝑟𝑖𝑖, the 
impact of its reduction on region 𝑗𝑗 is given by 𝑟𝑟𝑖𝑖ℎ𝑖𝑖𝑗𝑗. ℎ𝑖𝑖𝑗𝑗 is a transfer coefficient that defines 
the impact of one unit of a reduction in emissions from firm 𝑖𝑖 on environmental quality in 
region 𝑗𝑗.  
 

                                            
1 The distributional weight needs to be greater than or equal to zero. One economic interpretation for this 
weight could be the marginal utility of income. Note that in the interest of simplicity we assume that the 
weights are constant. To the extent that weights vary with income, and income changes with the introduction 
of the public good, this would induce variation in the weights and could be taken into account. 
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A critical issue in the subsequent analysis is the economic incidence of costs: how the 
cost of emission reductions by firms is allocated across different consumer groups. This 
factor is often not given adequate attention in policy discussions as they pertain to 
distributional outcomes (Banzhaf, 2023; Cecot and Hahn, 2022; and Hemel, 2022). We 
define 𝑝𝑝𝑗𝑗𝑘𝑘 as the fraction of total costs borne by group 𝑘𝑘 in region 𝑗𝑗. Furthermore, we 
assume these abatement costs are fully allocated, so that ∑  𝑗𝑗 ∑ 𝑝𝑝𝑗𝑗𝑘𝑘 = 1𝑘𝑘 .2 
 
We can now derive the costs of a particular policy. The costs to group 𝑘𝑘 in region 𝑗𝑗 are 
𝑝𝑝𝑗𝑗𝑘𝑘 ∑ 𝐶𝐶𝑖𝑖  (𝑟𝑟𝑖𝑖)

𝑛𝑛
𝑖𝑖=1 , which is the fraction of cost incurred by group 𝑘𝑘 multiplied by the total 

costs, across polluting firms. In order to derive the total weighted cost, we aggregate over 
all regions and groups and multiply by the distributional weight for each group, yielding: 
∑  𝑚𝑚
𝑗𝑗=1 ∑ 𝑤𝑤𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘 ∑ 𝐶𝐶𝑖𝑖  (𝑟𝑟𝑖𝑖)

𝑛𝑛
𝑖𝑖=1

𝑜𝑜
𝑘𝑘=1 . 

 
Subtracting costs from benefits and simplifying yields the weighted sum of net benefits 
over regions and groups: 
 
∑  𝑚𝑚
𝑗𝑗=1 ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘{𝐵𝐵𝑗𝑗𝑘𝑘 (𝑞𝑞𝑗𝑗)− 𝑝𝑝𝑗𝑗𝑘𝑘 ∑ 𝐶𝐶𝑖𝑖  (𝑟𝑟𝑖𝑖)
𝑛𝑛
𝑖𝑖=1 }  (1) 

 
The planner in this model chooses the level of emissions reduction, 𝑟𝑟𝑖𝑖, for each firm, to 
maximize this weighted sum. The local public good can be connected to the level of 
emission reduction by noting that 𝑞𝑞𝑗𝑗 = ∑ 𝑟𝑟𝑖𝑖ℎ𝑖𝑖𝑗𝑗𝑛𝑛

𝑖𝑖=1 . This says that the concentration level in 
region 𝑗𝑗 is determined by the emission reductions by each firm 𝑖𝑖, multiplied by the 
corresponding transfer coefficient ℎ𝑖𝑖𝑗𝑗, and summed over all firms. Substitution into (1) 
yields the following maximization problem: 
 
Maximize

𝑟𝑟1,…,𝑟𝑟𝑛𝑛
∑  𝑚𝑚
𝑗𝑗=1 ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘{𝐵𝐵𝑗𝑗𝑘𝑘 �∑ 𝑟𝑟𝑖𝑖ℎ𝑖𝑖𝑗𝑗𝑛𝑛
𝑖𝑖=1 � − 𝑝𝑝𝑗𝑗𝑘𝑘 ∑ 𝐶𝐶𝑖𝑖  (𝑟𝑟𝑖𝑖)

𝑛𝑛
𝑖𝑖=1 }  (2) 

 
for 𝑖𝑖 = 1, … ,𝑛𝑛.  
 
Differentiating the preceding expression with respect to 𝑟𝑟𝑖𝑖 yields: 
 
∑  𝑚𝑚
𝑗𝑗=1 ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘�𝐵𝐵𝑗𝑗𝑘𝑘′ ℎ𝑖𝑖𝑗𝑗 − 𝑝𝑝𝑗𝑗𝑘𝑘𝐶𝐶𝑖𝑖′� = 0    (3) 
 
for 𝑖𝑖 = 1, … ,𝑛𝑛.  
 
Equation (3) says the weighted sum of marginal net benefits must equal zero (from 
reducing a unit of emissions at the 𝑖𝑖 th firm). Alternatively, the weighted sum of marginal 
benefits over regions and groups equals the weighted sum of marginal costs borne by 
different individuals (again for reducing a unit of emissions at the 𝑖𝑖 th firm).3 

                                            
2 In order to focus on the issue of cost allocation across groups, we do not consider the inefficiencies 
associated with raising revenue from various groups. See, for example, Mirrlees (1971) and more recently 
Hendren and Sprung-Keyser (2020). 
3 In what follows, we assume that the second order condition for an interior maximum are satisfied, which 
will be the case given our assumptions about marginal benefit and marginal cost curves. 
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2.1 Local public goods 
 
Consider the local pubic goods case where environmental quality can differ across 
regions. We allow regional benefits and costs to have different distributional weights. This 
is a generalization of Muller and Mendelsohn (2009) and Mendelsohn (1986). In the 
context of our model, this is equivalent to assuming that each region corresponds to only 
one group. Assume for region 𝑗𝑗 the distributional weight is 𝑤𝑤𝑗𝑗. Furthermore, there are only 
benefits for group 𝑘𝑘 in region 𝑗𝑗 (i.e., 𝐵𝐵𝑗𝑗𝑘𝑘 = 0 for 𝑗𝑗 ≠ 𝑘𝑘). 
 
Equation (3) then becomes: 
 
∑  𝑚𝑚
𝑗𝑗=1 𝑤𝑤𝑗𝑗{𝐵𝐵𝑗𝑗𝑗𝑗′ ℎ𝑖𝑖𝑗𝑗 − 𝑝𝑝𝑗𝑗𝑗𝑗𝐶𝐶𝑖𝑖′} = 0.   (4) 

 
for 𝑖𝑖 = 1, … ,𝑛𝑛.  
 
Equation (4) is a special case of equation (3). The term in parenthesis is the unweighted 
net marginal benefit for group 𝑗𝑗 (in region 𝑗𝑗) from a unit of emission reduction by firm 𝑖𝑖. 
The equation says that firm 𝑖𝑖 chooses its emission reduction so that the weighted sum of 
marginal benefits equals a weighted sum of its own marginal costs (𝐶𝐶𝑖𝑖′). The case that 
Muller and Mendelsohn (2009) explore assumes that the distributional weights are one 
for all 𝑗𝑗. Even in this case, the marginal cost of emissions reduction will, in general, not 
be equal across all 𝑛𝑛 firms because the ℎ𝑖𝑖𝑗𝑗 vector for a given firm 𝑖𝑖 can differ across the 
𝑛𝑛 firms.  
 
2.2 Pure public goods 
 
In our framing, the pure public good case can be modeled as a single region with an 
arbitrary number of groups. Samuelson considered the case where 𝑤𝑤𝑘𝑘 = 1 for all 𝑘𝑘 
(weights are unity across income classes) and ℎ𝑖𝑖𝑗𝑗 = 1 for all 𝑖𝑖, 𝑗𝑗 (the transport coefficients 
are set equal to 1). 
 
Rewriting (3) with these assumptions, and allowing region 1 to be the region of interest 
yields ∑  𝑜𝑜

𝑘𝑘=1 {𝐵𝐵1𝑘𝑘′ − 𝑝𝑝1𝑘𝑘𝐶𝐶𝑖𝑖′} = 0 for 𝑖𝑖 = 1, … ,𝑛𝑛. In the remainder of our discussion of the 
pure public good case, we drop the region subscript because there is only one region. 
Doing so simplifies the notation. This yields ∑  𝑜𝑜

𝑘𝑘=1 {𝐵𝐵𝑘𝑘′ − 𝑝𝑝𝑘𝑘𝐶𝐶𝑖𝑖′} = 0, and simplification 
yields:  
 
∑  𝑜𝑜
𝑘𝑘=1 𝐵𝐵𝑘𝑘′ = 𝐶𝐶𝑖𝑖′ = 𝐶𝐶′ for 𝑖𝑖 = 1, … ,𝑛𝑛.         (5) 

 
We will refer to this as the “unit weight” case which assumes that distributional weights 
are unity.4 Equation (5) is the familiar first order condition for a pure public good derived 
by Samuelson. The vertical summation of marginal benefit curves must equal the 
                                            
4 The weights only need to be constant to be constant and positive to get the same result here in terms of 
public good provision.  
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marginal cost curve when the optimal quantity of the public good is selected. Equation (5) 
can be derived by first noting that ∑  𝑜𝑜

𝑘𝑘=1 𝑝𝑝𝑘𝑘 = 1, which says all groups cover the full costs 
of emission reductions from each firm. In addition, the marginal costs of each firm will be 
equal across all firms and equal to a point on the industry marginal cost schedule defined 
as 𝐶𝐶′(∑𝑟𝑟𝑖𝑖). To see this last point, note that the term on the left-hand side of equation (5) 
is the same for each 𝑖𝑖 because this case focuses on a pure public good. That implies 
𝐶𝐶1′ = 𝐶𝐶2′ = ⋯ = 𝐶𝐶𝑛𝑛′ when evaluated at the optimal 𝑟𝑟𝑖𝑖 for each 𝑖𝑖. But that implies by 
construction  𝐶𝐶′(∑𝑟𝑟𝑖𝑖) = 𝐶𝐶′(𝑞𝑞) = 𝐶𝐶𝑖𝑖′(𝑟𝑟𝑖𝑖). 4F

5 That follows from the horizontal aggregation 
across the marginal cost functions for all firms,.  
 
The generalization with arbitrary welfare weights is given by: 
 
∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘{𝐵𝐵𝑘𝑘′ − 𝑝𝑝𝑘𝑘𝐶𝐶𝑖𝑖′} = 0 for 𝑖𝑖 = 1, … ,𝑛𝑛.       (6) 

 
We will refer to this as the “general” case because weights can vary, whereas in the 
original Samuelson formulation, the weights are (implicitly) restricted to unity. Equation 
(6) says that a weighted sum of marginal benefit curves equals a weighted sum of 
marginal cost curve curves. It reduces to the Samuelson condition for a pure public good 
when all the weights are constant and equal.6 However, in general the optimal provision 
of the public good will not be the same when different distributional weights are used 
across groups (compared to when the weights are the same). We will use equation (6) to 
explore this difference and to highlight some of the welfare implications of using different 
values of the VSL for different groups. One such example is allowing the VSL to vary 
across income groups. 
 
2.2.1 Distributional weights and provision of pure public goods 
 
We wish to understand how provision of the public good (e.g., abatement) will vary when 
distributional weights vary for different consumer groups.  
 
It will be useful to solve for 𝐶𝐶𝑖𝑖′ and compare the case when weights are 1 versus the case 
of arbitrary weights. We can solve equation (6) for 𝐶𝐶𝑖𝑖′ to obtain:7 
 
𝐶𝐶′(∑𝑟𝑟𝑖𝑖) = 𝐶𝐶𝑖𝑖′(𝑟𝑟𝑖𝑖) =

∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘 𝐵𝐵𝑘𝑘

′

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

 .  (7) 
 
Equation (7) says that the 𝐶𝐶𝑖𝑖′ are equal for all 𝑖𝑖, which means that the marginal cost of 
reducing emissions is equal across all sources, and hence equal to 𝐶𝐶′. This point is worth 
noting. Efficiency requires that firms have the same marginal cost of emissions reductions  

                                            
5 In the pure public good case, ∑𝑟𝑟𝑖𝑖 = 𝑞𝑞. That is the emission reductions from each firm are treated as 
homogeneous and sum to the total level of abatement, 𝑞𝑞, also called the public good. 
6 In this case the constant for the distributional weight can be divided on both sides of equation (6) and 
equation (6) becomes equation (5).  
7 We introduce the “𝑙𝑙” subscript to note that the groups comprising the sum in the denominator may be 
different from those in the sum in the numerator. 
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even in the case where distributional weights differ from unity. Note, however, that the 
level of the marginal cost in (7) will likely differ from that in (5). 
 
Equation (7) also says that whether abatement goes up or down when incorporating 
nonunitary weights depends on whether a weighted average of the sum of the marginal 
benefit curves goes up or down compared to the unitary case. This direction of change 
does not depend on the marginal cost function. Rather it depends on how the  marginal 
benefit functions adjusted by their weights compare (for the case of unit weights and the 
general case) and it depends on the cost shares.8 To see this, consider that the weights 
for the 𝑘𝑘th group in the general case are 𝑤𝑤𝑘𝑘 

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

, and thus both the distributional weights 
and the cost shares are important considerations in determining optimality.9 
 
Another way of interpreting the equilibrium condition represented by equation (7) is to 
note that 𝐶𝐶′ ∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 = 𝑜𝑜

𝑙𝑙=1 ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘  𝐵𝐵𝑘𝑘

′ . Viewed in this way the equilibrium is determined by 
the intersection of a weighted marginal cost curve, where the weight is ∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙𝑜𝑜

𝑙𝑙=1 , and a 
weighted sum of marginal benefit curves, where the weight on the 𝑘𝑘 th curve is 𝑤𝑤𝑘𝑘  . Both 
interpretations of the equilibrium can be illustrated graphically.10  
 
Leveraging the equilibrium condition in (7), we wish to compare the optimal provision of 
the pure public good when distributional weights are arbitrary with optimal provision when 
distributional weights are set to one. Let 𝑞𝑞𝑤𝑤∗  be the optimal abatement with arbitrary 
distributional weights, 𝑤𝑤𝑘𝑘; and 𝑞𝑞 

∗ be the optimal abatement with unit weights.  
 
Suppose  
∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘  𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

>
∑  𝑜𝑜
𝑘𝑘=1 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

= �𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )
𝑜𝑜

𝑘𝑘=1

 

 
where the equality follows because ∑ 𝑝𝑝𝑘𝑘 𝑜𝑜

𝑘𝑘=1 = 1. The above expression says the 
weighted marginal benefit at 𝑞𝑞𝑤𝑤∗  exceeds the unit weight marginal benefit at 𝑞𝑞𝑤𝑤∗ . Reducing 
𝑞𝑞 from 𝑞𝑞𝑤𝑤∗  will decrease 𝐶𝐶′ (if the marginal cost curve is upward sloping) or increase the 
sum of marginal benefits (if that curve is downward sloping). Thus, 𝑞𝑞 must be reduced 
from 𝑞𝑞𝑤𝑤∗  to satisfy the unit weights first order condition, and it follows that 𝑞𝑞𝑤𝑤∗ > 𝑞𝑞∗.  
 
This yields the following result:  
 
Proposition 1: Assume the marginal cost curve is upward sloping and/or the sum of 
marginal benefits curve for all groups is downward sloping.11 Then: 
 
                                            
8 The marginal benefit function in the unit case is the vertical summation of the marginal benefit functions 
across groups, following Samuelson. In the weighted case, the vertical summation must be weighted in 
accord with the weights on the right-hand side of equation (7). 
9 This makes sense because the cost share is weighted by the distributional weight. See equation (6).  
10 Figure 1 in the next section illustrates this graphical approach using an application to the VSL. 
11 We also assume a unique interior equilibrium exists, which will be satisfied for reasonable choices of the 
parameters, given the assumed shapes of the marginal benefit and marginal cost functions. 
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𝑞𝑞𝑤𝑤∗  (>)(=)(<)𝑞𝑞∗ 𝑖𝑖𝑖𝑖𝑖𝑖  ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

(>)(=)(<)∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1   (8) 

 
Proof: See appendix. 
 
This proposition shows that the distributional weights and the cost shares are both crucial 
for determining whether abatement goes up or down with the introduction of non-unit 
distributional weights. Further, this comparison does not depend on the marginal cost 
function. 
 
3. Model application to the VSL 
 
In this section we demonstrate the policy relevance of the machinery we developed in the 
previous section by applying it to  the VSL.12 The following analysis of the VSL is, in fact, 
applicable to any willingness-to-pay based determinant of the benefits of public good 
provision, provided the willingness to pay varies with race, income, or other drivers of 
equity concerns. Examples include ecosystem services, endangered species 
preservation, or willingness-to-pay based measures of morbidity risk reductions. 
   
This section presents a simplified version of the pure public good model to explore one 
issue: how the government’s use of an average VSL affects overall welfare and the 
welfare of specific groups. At the outset, we note that use of an average VSL (prevalent 
in government policy analyses) with true welfare weights will typically reduce social 
welfare relative to the use of true welfare weights with a true VSL. This is because the 
true welfare weights and true distributional weights are used in the maximization problem 
solved by the planner.13  
 
Of perhaps greater interest is that use of an average VSL may be preferred by a group 
that we refer to as low-income (this group is defined below), even when use of the average 
VSL is not preferred by society. This result depends on the share of the costs for the 
public good paid by the low-income group. The intuition is that the application of the 
average VSL to the mortality risk incurred by the low-income group attributes a higher 
value to such risks than their true VSL. Provided costs borne by the low-income group 
are sufficiently small, this group enjoys higher net benefits. We underscore the 
importance of economic cost incidence in driving this result. 
 
Because government agencies often use a VSL that does not differ by income, it is 
instructive to consider how this might affect welfare. To model this, we consider two 
population groups: group 1 is the low-income group and group 2 is the high-income group. 
Each group has a constant marginal benefit curve which incorporate different VSLs. For 
group 1, the marginal benefit curve is given by 𝐵𝐵1′ = 𝑛𝑛1𝑐𝑐, where 𝑛𝑛1 represents the number 
of people in group 1 and 𝑐𝑐 > 0 represents the per capita marginal benefits for that group 

                                            
12 Note that we choose to focus here on the VSL because of its importance in federal benefit-cost analyses 
and because the VSL varies systematically with income. Our analysis in this section is sufficiently general 
to be applied to any such parameter. 
13 This result on reducing welfare will be true when 𝑤𝑤1  ≠ 𝑤𝑤2  , and both weights are positive. 
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associated with each unit of the public good. For group 2, the marginal benefit curve is 
given by 𝐵𝐵2′ = 𝑛𝑛2𝑑𝑑, where 𝑛𝑛2 represents the number of people in group 2 and 𝑑𝑑 > 𝑐𝑐 
represents the per capita marginal benefits associated for that group associated with each 
unit of the public good. The high-income group thus has higher per capita marginal 
benefits than the low-income group for each unit of the public good that is provided. The 
motivation for this specification lies in the positive VSL-income elasticity (Viscusi, 2018). 
The marginal cost curve is given by a linear upward sloping curve through the origin, 
which implies 𝐶𝐶 

′(𝑞𝑞) = 𝑏𝑏𝑞𝑞 and 𝑏𝑏 > 0. We assume for simplicity there is a single firm.14 The 
cost share for group 1 is given by 𝑛𝑛1𝑝𝑝1 = 𝑝𝑝 and for group 2 is given by 𝑛𝑛2𝑝𝑝2 = 1 − 𝑝𝑝, so 
that costs are fully allocated. In this case 𝑝𝑝1 and 𝑝𝑝2 can be interpreted as the per capita 
cost share for a member of group 1 and group 2, respectively. 
 
We can link this formally to the use of VSLs by assuming there is a constant relationship 
between provision of the public good, 𝑞𝑞, and the number of statistical lives saved in each 
group.15 The benefits for a unit reduction in emissions can be expressed as the product 
of some constant and the specific VSL for that group. As above, the distributional weights 
are assumed to be positive. In this context, the social planner maximizes social welfare 
as shown below:16  
 

Maximize
𝑞𝑞

 𝑤𝑤1 �𝑛𝑛1𝑐𝑐𝑞𝑞 − 𝑝𝑝
𝑏𝑏𝑞𝑞2

2
� + 𝑤𝑤2 �𝑛𝑛2𝑑𝑑𝑞𝑞 − (1 − 𝑝𝑝)

𝑏𝑏𝑞𝑞2

2
� 

 
We begin by considering the first order conditions for a maximum. Substitution of the 
linear functional forms and the true marginal benefit values (𝑐𝑐,𝑑𝑑) into equation (6) yields: 
 
𝑤𝑤1(𝑛𝑛1𝑐𝑐 − 𝑝𝑝𝑏𝑏𝑞𝑞) + 𝑤𝑤2(𝑛𝑛2𝑑𝑑 − (1 − 𝑝𝑝)𝑏𝑏𝑞𝑞) = 0 
 
This first order condition is a linear equation in 𝑞𝑞. We define the solution to this problem 
as 𝑞𝑞𝑡𝑡∗, where “𝑡𝑡” denotes using true values for the VSL for both groups. Solving for 𝑞𝑞𝑡𝑡∗ 
yields: 
 
𝑞𝑞𝑡𝑡∗ = 𝑤𝑤1𝑛𝑛1𝑐𝑐 +𝑤𝑤2𝑛𝑛2𝑑𝑑

𝑤𝑤1𝑝𝑝 𝑏𝑏+𝑤𝑤2(1−𝑝𝑝)𝑏𝑏 
    (9) 

 
Note that 𝑞𝑞𝑡𝑡∗ is a function of both the weighted sum of marginal benefits and costs. 
 
We next define the average per capita marginal benefit as 𝑐𝑐+𝑑𝑑

2
, which is a constant 

proportion of the average VSL. If we substitute the average VSL for the true per capita 
VSL for both groups, then the first order conditions for a maximum become:  
                                            
14 As noted above, this assumption is easily relaxed to allow for multiple firms. See the discussion around 
equation (7). 
15 The benefits functions also allow for a formulation in which the VSLs differ by group, and the risk per unit 
of the public good differs by group. 
16 This formulation assumes total costs are 𝐶𝐶(𝑞𝑞) = 𝑏𝑏𝑞𝑞2

2
,𝐵𝐵1(𝑞𝑞) = 𝑐𝑐𝑞𝑞 and 𝐵𝐵2(𝑞𝑞) = 𝑑𝑑𝑞𝑞. This follows from 

integrating the marginal benefit functions and the marginal cost function from 0 to 𝑞𝑞. 
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𝑤𝑤1 �𝑛𝑛1 �
𝑐𝑐 + 𝑑𝑑

2
� − 𝑝𝑝𝑏𝑏𝑞𝑞� + 𝑤𝑤2 �𝑛𝑛2 �

𝑐𝑐 + 𝑑𝑑
2

� − (1 − 𝑝𝑝)𝑏𝑏𝑞𝑞� = 0 
 
The equation using the average VSL is also a linear equation in 𝑞𝑞. We define the solution 
to this problem as 𝑞𝑞𝑎𝑎∗ , where the “𝑎𝑎” denotes using average values for the VSL for both 
groups. Solving for 𝑞𝑞𝑎𝑎∗  yields: 
 

𝑞𝑞𝑎𝑎∗ =
(𝑤𝑤1𝑛𝑛1 +𝑤𝑤2𝑛𝑛2)(𝑐𝑐+𝑑𝑑2 )

𝑤𝑤1𝑝𝑝 𝑏𝑏+𝑤𝑤2(1−𝑝𝑝)𝑏𝑏 
   (10) 

 
The denominators in equation (9) and equation (10) are the same and positive, but the 
numerators will, in general be, different. Under the special case when the distributional 
weights multiplied by population are equal (i.e., 𝑤𝑤1𝑛𝑛1 = 𝑤𝑤2𝑛𝑛2), then 𝑞𝑞𝑡𝑡∗ = 𝑞𝑞𝑎𝑎∗ . To see this 
result let 𝑤𝑤� = 𝑤𝑤1𝑛𝑛1 = 𝑤𝑤2𝑛𝑛2. Then the numerator in (9) is 𝑤𝑤�𝑐𝑐 + 𝑤𝑤�𝑑𝑑 and the numerator in 
(10) is 𝑤𝑤� �𝑐𝑐+𝑑𝑑

2
� + 𝑤𝑤� �𝑐𝑐+𝑑𝑑

2
�. These terms are clearly equal.17 If, however, weighted marginal 

benefits are higher (lower) using the true value versus the average, then 𝑞𝑞𝑡𝑡∗ > (<)𝑞𝑞𝑎𝑎∗ . 
 
In the more general case where 𝑛𝑛1 ≠ 𝑛𝑛2, we have the following proposition: 
 
Proposition 2: 𝑞𝑞𝑡𝑡∗(<)(=)(>)𝑞𝑞𝑎𝑎∗  iff  𝑤𝑤1𝑛𝑛1(>)(=)(<)𝑤𝑤2𝑛𝑛2.18  
 
Proof: See appendix.  
 
This proposition says that for the case of linear marginal benefit and marginal cost curves, 
the distributional weights and the size of the groups determine how the optimal public 
good provision changes with the introduction of an average VSL. Note that these results 
do not depend on the fraction of costs borne by group 1. As can be seen from the 
expression for 𝑞𝑞𝑡𝑡∗ and 𝑞𝑞𝑎𝑎∗ , these quantities are affected by changes in 𝑝𝑝, but the 
relationship between these two values is not (that is, whether one is greater than the other 
or they are equal).   
 
In summary, this model provides a transparent way of determining the welfare 
implications of substituting an average VSL for a true VSL for low-income and high-
income groups. We have assumed, in this particular analysis, that the distributional 
weights are true. However, the model also enables analyses comparing the case with 
distributional weights set to unity and an average VSL with distributional weights set to 
their true value with true VSLs. 
 
                                            
17In the example where 𝑛𝑛1 = 𝑛𝑛2 = 1, the term for weighed marginal benefits is 𝑤𝑤1𝑐𝑐 +𝑤𝑤2𝑑𝑑

𝑤𝑤1𝑝𝑝 +𝑤𝑤2(1−𝑝𝑝) 
 in the true case 

and  
(𝑤𝑤1 +𝑤𝑤2)(𝑐𝑐+𝑑𝑑2 )

𝑤𝑤1𝑝𝑝 +𝑤𝑤2(1−𝑝𝑝) 
 in the average VSL case (see equation (7) which is the first order condition). Viewing the 

numerator of those two terms reveals they will be equal if and only if 𝑤𝑤1  = 𝑤𝑤2. In this case (7) requires they 
have the same optimal level of the public good.   
18 We use the assumptions on the linear marginal benefit function and cost functions defined above.  
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3.1 Low-income group preferences and the average VSL 
 
In this subsection, we raise the possibility that certain population groups may prefer policy 
calibrated to the population average VSL rather than their true VSL. We do so both 
because environmental policymakers often employ the average VSL in policy design and 
evaluation and because this exercise highlights the importance of economic cost 
incidence in determining welfare outcomes. In particular, we wish to show that there may 
be situations in which the low-group group prefers an average VSL to the true VSL. This 
situation can arise, for example, when a low-income group shoulders a sufficiently low 
fraction of the costs. In this case, that group may prefer an average VSL that results in a 
higher level of abatement to using a true VSL that results in a lower level of abatement. 
In contrast, with a sufficiently high cost share, the high-income group may prefer a lower 
level of abatement. We present this example below along with a graphical illustration.  
 
We begin by defining the optimal level of the public good from group 1’s point of view, 
(𝑞𝑞 

∗). We then construct an example in which  𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗ < 𝑞𝑞∗. If this is the case, we will show 
that group 1 prefers 𝑞𝑞𝑎𝑎∗  to 𝑞𝑞𝑡𝑡∗, that society prefers 𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗ , and that group two prefers 𝑞𝑞𝑡𝑡∗ to 
𝑞𝑞𝑎𝑎∗ . For simplicity, assume the low-income group and the high-income group each consist 
of one agent so that 𝑛𝑛1 = 𝑛𝑛2 = 1.19  
 
Group 1’s maximization problem is: 
 
Maximize

𝑞𝑞
 𝑤𝑤1(𝐵𝐵1(𝑞𝑞) − 𝑝𝑝𝐶𝐶(𝑞𝑞)).  

 
Substituting the functional forms for the benefit and cost functions and differentiating 
yields 𝑐𝑐 − 𝑝𝑝𝑏𝑏𝑞𝑞 = 0 for the first order condition, which yields 𝑞𝑞 

∗ = 𝑐𝑐
𝑝𝑝𝑏𝑏

. From (10), we have 

𝑞𝑞𝑎𝑎∗ =
(𝑤𝑤1+𝑤𝑤2)[12(𝑐𝑐 +𝑑𝑑)]

𝑤𝑤1𝑝𝑝 𝑏𝑏+𝑤𝑤2(1−𝑝𝑝)𝑏𝑏 
. We wish to see if there is a 𝑞𝑞𝑎𝑎∗ < 𝑞𝑞∗. From the formula for 𝑞𝑞 

∗ and 𝑞𝑞𝑎𝑎∗ , 
it follows that 
 

𝑞𝑞𝑎𝑎∗ < 𝑞𝑞∗ iff  
(𝑤𝑤1+𝑤𝑤2)[12(𝑐𝑐 +𝑑𝑑)]

𝑤𝑤1𝑝𝑝 +𝑤𝑤2(1−𝑝𝑝) 
< 𝑐𝑐

𝑝𝑝
.  (11) 

 
The key insight is that for 𝑝𝑝 “sufficiently” small in (11), the right-hand side goes to infinity, 
while the left-hand side remains finite. The numerator stays constant and the denominator 
tends to 𝑤𝑤2 as  𝑝𝑝 → 0. This shows that for 𝑝𝑝 sufficiently small, we have 𝑞𝑞𝑎𝑎∗ < 𝑞𝑞∗. To 
establish  𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗ , we assume 𝑤𝑤1 > 𝑤𝑤2 and 𝑛𝑛1 = 𝑛𝑛2 = 1, and apply Proposition 2.20  
 

                                            
19 The example can easily be extended to an arbitrary number of members in each group, but we assume 
one member in each group to avoid notational clutter. 
20 More generally, for 𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗  to hold, we require conditions related to both the weights and the population 
group sizes. First, we require that w1 > w2 which, if the weights reflect group-specific marginal utility of 
income, should hold for concave utility functions. Second, if n1 >= n2, then 𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗ . This is likely to hold writ 
large in societies with right-skewed income distributions. Finally, the only case in which 𝑞𝑞𝑡𝑡∗ > 𝑞𝑞𝑎𝑎∗  occurs if 
n2/n1 > w1/w2.  
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The intuition for this result is straightforward. Think of the limiting case in which 𝑝𝑝 is zero, 
so that group 1 does not pay for the public good. In this case, group 1 prefers an infinite 
amount of the public good. Thus, it is possible to move group 1’s preferred level of the 
public good beyond an arbitrary 𝑞𝑞𝑎𝑎∗ , for p sufficiently small. Stated another way, as the 
public good becomes cheaper from the standpoint of group 1, it wishes to have more of 
it.  
 
We are now in a position to demonstrate the three claims noted above. First, under the 
conditions laid out above, group 1 prefers 𝑞𝑞𝑎𝑎∗  to 𝑞𝑞𝑡𝑡∗ because 𝑞𝑞𝑎𝑎∗  is closer in distance to 𝑞𝑞∗, 
and group 1’s objective function is a parabola that achieves its maximum at 𝑞𝑞∗. Second, 
society, or the social planner, prefers 𝑞𝑞𝑡𝑡∗ to 𝑞𝑞𝑎𝑎∗  for the same reason—that is, society’s 
objective function is a parabola that achieves its maximum at 𝑞𝑞𝑡𝑡∗ and 𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗  by 
construction. Finally, at 𝑞𝑞𝑎𝑎∗ , we know that group 1’s welfare is higher than at 𝑞𝑞𝑡𝑡∗. Because 
total social welfare is lower at 𝑞𝑞𝑎𝑎∗  than at 𝑞𝑞𝑡𝑡∗, this implies group 2’s welfare is lower at 𝑞𝑞𝑎𝑎∗  
than at 𝑞𝑞𝑡𝑡∗. This demonstrates the third claim. 
 
A graphical representation of this result is shown in Figure 1. Figure 1a shows the 
optimum values for the average and true levels of abatement when group 1 and group 2 
are both included. The weighted marginal benefit function for the average VSL case is 
given by 𝑀𝑀𝐵𝐵𝑎𝑎 and the weighted marginal benefit function for the true VSL case is given 
by 𝑀𝑀𝐵𝐵𝑡𝑡 (with 𝑀𝑀𝐵𝐵𝑡𝑡 < 𝑀𝑀𝐵𝐵𝑎𝑎). The weighted marginal cost curve is given by 𝑀𝑀𝐶𝐶𝑤𝑤. The weights 
are given by the first order condition for a pure public good (Equation (6)) for the linear 
functions defined in this VSL example.21  
 
The optimum for the true value case, 𝑞𝑞𝑡𝑡∗, occurs at the intersection of 𝑀𝑀𝐵𝐵𝑡𝑡 and 𝑀𝑀𝐶𝐶𝑤𝑤; and 
the optimum for the average VSL value case, 𝑞𝑞𝑎𝑎∗ , occurs at the intersection of 𝑀𝑀𝐵𝐵𝑎𝑎 and 
𝑀𝑀𝐶𝐶. Note that 𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗ . The social loss in moving from 𝑞𝑞𝑡𝑡∗ to 𝑞𝑞𝑎𝑎∗  is given by triangle A.22 
 
Figure 1b shows why group 1 is better off with the optimum, 𝑞𝑞𝑎𝑎∗ , which uses the average 
VSL, rather than the true optimum, 𝑞𝑞𝑡𝑡∗, which uses the true VSL The optimum value for 
group 1, 𝑞𝑞∗ is defined by the intersection of its weighted marginal cost curve 𝑀𝑀𝐶𝐶1, and its 
weighted marginal benefit curve 𝑀𝑀𝐵𝐵1. Note that that 𝑞𝑞𝑡𝑡∗ < 𝑞𝑞𝑎𝑎∗ < 𝑞𝑞∗. The increase in 
weighted welfare for group 1 in moving from 𝑞𝑞𝑡𝑡∗ to 𝑞𝑞𝑎𝑎∗  is given by trapezoid B.23  
 
This framework for comparing an average VSL with a true VSL (or willingness to pay) can 
be extended in a number of different ways. To illustrate, we consider three extensions. 
First, we consider the case of a pure public good in which the low-income group and the 
high-income group face different risk reductions per unit of abatement. This may stem 
                                            
21 The specific values for the objective function are 𝑤𝑤1 = 2, 𝑤𝑤2 = .5, 𝑏𝑏 = 1, 𝑐𝑐 = 1, 𝑑𝑑 = 2, 𝑛𝑛1 = 1, 𝑛𝑛2 = 1, and 
𝑝𝑝 = .15.  
22 This social loss is measured in weighted dollars because we are using the distributional weights. 
23 Sunstein (2023) explores the case when a low-income group could be better off, but does not use a 
formal model. He argues that costs are important, which this model supports. He also argues that a subsidy 
would likely make this group better off. His subsidy appears to be an in-kind transfer used to provide more 
abatement. If the subsidy reduced the price of the public good for the low-income group by reducing p 
instead, then Proposition 2 would apply.  
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from differential baseline risks that interact with pollution exposure (Spiller et al., 2021). 
Suppose, for the sake of illustration, that the risk reduction per person for the low-income 
group from a unit reduction in abatement were higher than the risk reduction per person 
for the high-income group. In this case, we can no longer assume that the marginal benefit 
per person for a unit of abatement was higher for the high-income group than the low-
income group (i.e., 𝑑𝑑 > 𝑐𝑐). If, in fact, it were the case that 𝑑𝑑 < 𝑐𝑐, then the signs in 
Proposition 2 would be reversed, but the machinery we have developed would still apply. 
 
A second extension is to consider the case in which the transfer coefficients are different 
for the low-income group and the high-income group. This could arise if the two groups 
live in different neighborhoods. This is the case of local public goods. The analysis in this 
case is very similar to the first case presented in the preceding paragraph, except risk 
now varies by income class per unit of emission reduction because of the location of the 
groups rather than differences in health status. The same type of analysis would apply 
and would be dependent on whether the marginal benefit per person per unit of emission 
reduction would be higher for the low-income group than the high-income group. 
 
Finally, consider a case in which we have two local public goods, one for the low-income 
group and one for the high-income group, both of which are provided separately by 
different firms (so the costs and benefits are separate). In this case we make the following 
two observations. First, if both groups are paying the full costs, each will always weakly 
prefer the true value of the VSL to the average value. The reason is that costs are fully 
internalized in these cases, so a group cannot do better, and may do worse, if it does not 
use its true benefit function (or VSL in this case). Second, if one group, say the low-
income group, is not paying its full cost, then it may prefer an average VSL to a true VSL. 
The reasoning is similar to the reasoning provided in Proposition 2. As the price the group 
faces for the public good declines (e.g., measured in terms of its cost share), the group 
will want more of the public good to increase its welfare. Fundamentally, this is because 
the costs to that group are not fully internalized. 
 
3.2 Modelling framework strengths and limitations 
 
The modeling framework developed here is quite flexible, and allows for many 
formulations that allow operationalization of various concepts of equity. For example, an 
important issue for policy makers is how to address “environmental equity.” A full 
treatment of this issue is beyond the scope of this paper, but we wish to make two points. 
Recent efforts by the federal government to address environmental justice considerations 
focus exclusively on benefits (The White House, 2021). However, our work demonstrates 
the importance of considering costs borne by the low-income group as well as benefits. 
First, as the previous example illustrates consideration of costs has fundamental 
implications for group welfare related to the use of an average or true VSL. Second, the 
model demonstrates that not considering cost could result in corner solutions where the 
optimum allocation including costs is not achieved. For example, without considering 
costs, the optimum quantity demanded by group one in the example would be infinite.  
Our joint inclusion of distributional weights and cost shares brings these two insights to 
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light in a manner that facilitates operationalizing a broader definition of equity in economic 
analysis.  
 
The model also has some limitations as well. We consider two here. The first relates to 
the fact that it is developed in a partial setting, and a second relates to the inclusion of 
uncertainty. One limitation of the model is that it relies on a partial equilibrium framework 
that does not consider tradeoffs with other goods and leisure. In principle, this could be 
added to our model, but would add complexity. A second limitation is that prices are 
assumed to be given, and do not change with the level of the public good that is provided. 
While a general equilibrium framing may be more realistic for some public goods 
problems, we decided to opt for model simplicity using a partial equilibrium setting that is 
applied in many real-world applications.  
 
A second issue relates to the inclusion of uncertainty. The basic problem is that the 
decision maker may have very limited information over the key parameters in the model. 
Uncertainty in benefits and costs has been analyzed by several scholars (Weitzman, 
1974), and we do not have much to add to that discussion because we are not considering 
different policy instruments. Uncertainty in other key parameters, such as the 
distributional weights and the cost allocation shares, could be quite important. Under 
plausible independence assumptions, one can show that uncertainty over the weights 
and the cost shares would still lead to using a framework in which expected net benefits 
are maximized.  The basic insight in this case would be a familiar one. As uncertainty in 
parameter estimates increase, the value of obtaining better (or perfect) information would 
tend to increase.  
 
4. Conclusion 
 
This paper examines the use of distributional weights in economic analysis. We develop 
a formal model that allows us to derive some comparative statics and welfare results. We 
show how our model is a generalization of work by scholars on pure public goods and 
local public goods. We also show how the provision of a pure public good varies with the 
introduction of distributional weights different from unity.  
 
Our model also sheds light on an important policy issue: the welfare impacts of using a 
single average VSL versus separate values that may differ by income. We show how to 
determine when using an average VSL will increase or decrease optimal public goods 
provision relative to the case of differentiated VSLs for given distributional weights. We 
also identify conditions under which a low-income group would prefer using an average 
VSL to true VSLs in which their mortality risks are valued less than the mortality risks 
faced by a high-income group.  
 
Our analysis highlights the importance of considering costs as well as benefits in 
attempting to address equity concerns. It also underscores the need for rigorous empirical 
analysis to determine the incidence of costs when government make decisions about the 
provision of public goods.  
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Figure 1: Social welfare loss and low-income group gain with average VSL 
 

 
 
Notes: 𝑀𝑀𝐶𝐶𝑤𝑤 = weighted marginal cost; 𝑀𝑀𝐵𝐵𝑎𝑎 = weighted marginal benefit using average VSL; 𝑀𝑀𝐵𝐵𝑡𝑡 =  
weighted marginal benefit using true VSL; 𝑀𝑀𝐶𝐶1 = low-income group marginal cost; 𝑀𝑀𝐵𝐵1 = low-income 
group marginal benefit; 𝐴𝐴 = social welfare loss associated with 𝑞𝑞𝑎𝑎∗  rather than 𝑞𝑞𝑡𝑡∗; and 𝐵𝐵 = welfare gain to 
low-income group associated with 𝑞𝑞𝑎𝑎∗  rather than 𝑞𝑞𝑡𝑡∗. 𝑞𝑞 refers to quantity of the public good. 
 
 
 
  



19 
 

 
 

Appendix 
 

This appendix contains the proofs of Proposition 1 and Proposition 2.  
 
Proposition 1: Assume the industry marginal curve is upward sloping and/or the sum of 
marginal benefits curve for all groups is downward sloping. 
 
Then: 
𝑞𝑞𝑤𝑤∗  (>)(=)(<)𝑞𝑞∗ 𝑖𝑖𝑖𝑖𝑖𝑖  ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

(>)(=)(<)∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1   (12) 

 
 
Proof: Consider the case of equality. Assume that 𝑞𝑞𝑤𝑤∗ = 𝑞𝑞∗. From equation (5), 
∑  𝑜𝑜
𝑘𝑘=1 𝐵𝐵𝑘𝑘′ (𝑞𝑞 

∗) = 𝐶𝐶′(𝑞𝑞 
∗), and from equation (7), 𝐶𝐶′(𝑞𝑞𝑤𝑤∗ ) =

∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘 𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

. Because 𝑞𝑞𝑤𝑤∗ = 𝑞𝑞∗, it 

follows that ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

= ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 . Now, assume that ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

= ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 . 

We wish to show that this implies 𝑞𝑞𝑤𝑤∗ = 𝑞𝑞∗. 𝑞𝑞𝑤𝑤∗  is optimal in the general case. But it is also 
optimal in the unit weight case because 𝐶𝐶′(𝑞𝑞𝑤𝑤∗ ) = ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

= ∑  𝑜𝑜
𝑘𝑘=1 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ ). Thus, 

𝑞𝑞𝑤𝑤∗ = 𝑞𝑞∗.  This shows 𝑞𝑞𝑤𝑤∗  = 𝑞𝑞∗ iff 

  
∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

= �𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )
𝑜𝑜

𝑘𝑘=1

. 

 
Consider the greater-than case, and assume that 𝑞𝑞𝑤𝑤∗ > 𝑞𝑞∗. We wish to show that this 
implies that  ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

> ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 . We use a proof by contradiction. That is, assume 

that ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

≤ ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 , and arrive at a contradiction. Consider the cases of 

equal-to and less-than separately. We know that if  ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

= ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1  then 𝑞𝑞𝑤𝑤∗ =

𝑞𝑞∗, which violates the assumption that 𝑞𝑞𝑤𝑤∗ > 𝑞𝑞∗. Now, consider the case where we assume 
∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

< ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 .  Given 𝑞𝑞𝑤𝑤∗  is optimal for the general case, 𝐶𝐶′(𝑞𝑞𝑤𝑤∗ ) =

∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

. But this implies under this assumption that 𝐶𝐶′(𝑞𝑞𝑤𝑤∗ ) < ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 . This 

inequality implies that 𝑞𝑞 must be increased from 𝑞𝑞𝑤𝑤∗  to satisfy the unit weight case first 
order condition, which means that 𝑞𝑞∗ > 𝑞𝑞𝑤𝑤∗ . But this contradicts the assumption that  𝑞𝑞𝑤𝑤∗ >
𝑞𝑞∗. This shows that 𝑞𝑞𝑤𝑤∗ > 𝑞𝑞∗ implies ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

> ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 .  

 
Now, consider the greater-than case and assume that ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

> ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 . We 

wish to show this implies 𝑞𝑞𝑤𝑤∗ > 𝑞𝑞∗. We use a proof by contradiction. That is, assume that 
𝑞𝑞𝑤𝑤∗ ≤ 𝑞𝑞∗ and arrive at a contradiction. Consider the cases of equal-to and less-than 
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separately. We know that if 𝑞𝑞𝑤𝑤∗ = 𝑞𝑞∗, ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

= ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1  which violates the 

assumption that ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

> ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 .  

 
Consider the case where 𝑞𝑞𝑤𝑤∗ < 𝑞𝑞∗. Given 𝑞𝑞𝑤𝑤∗  is optimal for the general case, 𝐶𝐶′(𝑞𝑞𝑤𝑤∗ ) =
∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

 which implies, under the assumption that 𝑞𝑞𝑤𝑤∗ < 𝑞𝑞∗, that 𝐶𝐶′(𝑞𝑞𝑤𝑤∗ ) <

∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 ,24 which in turn implies that ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

< ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 . This contradicts our 

assumption. This shows that ∑  𝑜𝑜
𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘

′ (𝑞𝑞𝑤𝑤∗ )
∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

> ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1  implies 𝑞𝑞𝑤𝑤∗ > 𝑞𝑞∗. Taking the 

results on the less-than case together, we have shown that  
𝑞𝑞𝑤𝑤∗  > 𝑞𝑞∗ iff   ∑  𝑜𝑜

𝑘𝑘=1 𝑤𝑤𝑘𝑘𝐵𝐵𝑘𝑘
′ (𝑞𝑞𝑤𝑤∗ )

∑ 𝑤𝑤𝑙𝑙𝑝𝑝𝑙𝑙 𝑜𝑜
𝑙𝑙=1

> ∑ 𝐵𝐵𝑘𝑘′ (𝑞𝑞𝑤𝑤∗ )𝑜𝑜
𝑘𝑘=1 . 

 
The same proof holds, mutatis mutandis, for the less-than case.  
 
Proposition 2: 𝑞𝑞𝑡𝑡∗(<)(=)(>)𝑞𝑞𝑎𝑎∗  iff  𝑤𝑤1𝑛𝑛1(>)(=)(<)𝑤𝑤2𝑛𝑛2, with the assumption on the linear 
marginal benefit function and cost functions defined above.  
 
Proof: Because the denominator is positive and equal, we form the difference between 
the numerators in equation (9) and equation (10). This difference is (<)(=)(>)0 iff (𝑞𝑞𝑡𝑡∗ −
𝑞𝑞𝑎𝑎∗) (<)(=)(>)0.   
 
This yields: (𝑞𝑞𝑡𝑡∗ − 𝑞𝑞𝑎𝑎∗) (<)(=)(>)0   
 
iff 

[(𝑤𝑤1𝑛𝑛1𝑐𝑐 + 𝑤𝑤2𝑛𝑛2𝑑𝑑) − (𝑤𝑤1𝑛𝑛1 + 𝑤𝑤2𝑛𝑛2)(
𝑐𝑐 + 𝑑𝑑

2
)] (<)(=)(>)0 

 
iff 

(𝑤𝑤1𝑛𝑛1𝑐𝑐 + 𝑤𝑤2𝑛𝑛2𝑑𝑑) − (𝑤𝑤1𝑛𝑛1 + 𝑤𝑤2𝑛𝑛2)(
𝑐𝑐 + 𝑑𝑑

2
) (<)(=)(>)0 

 
iff 

𝑤𝑤1𝑛𝑛1(𝑐𝑐 − (
𝑐𝑐 + 𝑑𝑑

2
)) + 𝑤𝑤2𝑛𝑛2(𝑑𝑑 − (

𝑐𝑐 + 𝑑𝑑
2

)) (<)(=)(>)0 
 
iff 
 
. 5[𝑤𝑤1𝑛𝑛1(𝑐𝑐 − 𝑑𝑑) + 𝑤𝑤2𝑛𝑛2(𝑑𝑑 − 𝑐𝑐)] (<)(=)(>)0 
 
iff 
 
                                            
24 This follows directly from the assumption that the marginal benefit function is non-decreasing and the 
marginal cost function is increasing. 
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𝑤𝑤1𝑛𝑛1(𝑐𝑐 − 𝑑𝑑) + 𝑤𝑤2𝑛𝑛2(𝑑𝑑 − 𝑐𝑐) (<)(=)(>)0 
 
Letting 𝑘𝑘 = 𝑑𝑑 − 𝑐𝑐, and substituting yields 
 
iff 
𝑘𝑘 (𝑤𝑤2𝑛𝑛2 − 𝑤𝑤1𝑛𝑛1)  (<)(=)(>) 0 
 
iff 
𝑤𝑤2𝑛𝑛2 − 𝑤𝑤1𝑛𝑛1  (<)(=)(>) 0 
 
iff 𝑤𝑤1𝑛𝑛1(>)(=)(<)𝑤𝑤2𝑛𝑛2 
 
Each of the if-and-only-if steps represent standard algebraic operations. This proves 
Proposition 2.  
  




