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1 Introduction

Recent breakneck advances in (generative) artificial intelligence have simultaneously raised

hopes of productivity gains in many sectors and fears that this technology will be used for

nefarious purposes, even posing an existential risk comparable to nuclear war.1 One reaction

from some experts and commentators has been a call to slow down or pause the development

and adoption of AI technologies,2 partly because a slower rollout might provide greater room

for identifying danger areas and crafting appropriate regulations. There is little economic anal-

ysis of these issues, however, and it is unclear whether slowing the development and adoption

of a promising, transformative technology would ever make sense.

In this paper, we develop a framework to provide a first set of insights on these questions.

We consider a multi-sector economy that initially uses an old technology and can switch to a

new, transformative technology. This technology is transformative both because it enables a

higher growth rate of output and because it is general-purpose and can be adopted across all

sectors of the economy. Partly because of its transformative nature, it also poses new risks.

We model these by assuming that there is a positive probability of a disaster, meaning that the

technology will turn out to have many harmful uses across a number of sectors. If a disaster

is realized, some of the sectors that had previously started using the new technology may not

be able to switch away from it, despite the social damages. Whether there will be a disaster or

not is initially unknown, and society can learn about it over time. Critically, we also assume

that the greater are the capabilities enabled by the new technology, the more damaging it will

be when it is used for harmful purposes.3

In this environment, we study (socially) optimal and equilibrium adoption decisions. We

first show that it is optimal to have a gradual adoption path, because this enables greater

learning. If all sectors immediately adopted the new technology and the disaster transpired,

many of them would not be able to switch back and avoid the negative social consequences.

Gradual adoption instead allows society to update its knowledge and beliefs about whether

this transformative technology will have socially damaging uses. Specifically, we assume that

as more time passes without the disaster, the belief that there will be a disaster declines (“no

news is good news”). As society thus becomes more optimistic, it is optimal to adopt the new

1https://www.nytimes.com/2023/05/30/technology/ai-threat-warning.html
2https://futureoflife.org/open-letter/pause-giant-ai-experiments/
3Both of these assumptions can be motivated with generative AI applications. For irreversibility, once large

language models like ChatGPT are deployed in secondary education, it may be impossible to roll back their use,
even after it becomes clear that they harm student learning. For the damages rising with productivity, many
experts’ fears are centered on these technologies either posing existential risks because of their capabilities or
being misused, which would be more damaging when they have greater productivity (e.g., Shevlane, Farquhar,
Garfinkel, Phuong, et al., 2023).
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technology across a larger number of sectors. We show that under reasonable conditions this

adoption path is slow and convex, accelerating only after society is fairly certain that a disaster

will not occur. A simple quantitative example indicates that, for reasonable parameters on the

new technology’s growth advantage and disaster risk, optimal adoption can be very slow.

Perhaps surprisingly, we also show that adoption should be slower when the new technol-

ogy has a higher growth rate (and damages from a disaster are large). This is for two reasons.

First, since damages after a potential disaster increase with the capabilities of the new tech-

nology, a higher growth rate means that these damages also grow more quickly. Second, with

a higher growth rate the effective discount rate for future output declines, so that short delays

in adoption are not very consequential for discounted utility.

When compared to optimal adoption, equilibrium adoption can be inefficiently fast because

private firms internalize only part of the social damages from a disaster. Even the order in

which sectors adopt the new technology can differ systematically between the equilibrium and

the optimum—sectors that have high social damages are not necessarily those that have high

private damages for adopters.4

Finally, we discuss how regulatory schemes can help to close the gap between optimal and

equilibrium adoption decisions. Pigovian taxes, use taxes, or adoption taxes that are sector-

specific can fully implement the optimal adoption decisions. When sector-specific policies are

not feasible, it is generally not possible to implement optimal technology choices, but regula-

tory actions may still be useful. In particular, it may improve welfare to prohibit use of the new

technology in the sectors with the largest potential for harm until the risk of a disaster is low

enough to justify broader use.

We view this paper as a first attempt to think about the consquences and regulation of

transformative technologies that can be used for good or bad objectives. There are three im-

portant literatures on which we build. The first is a growing literature on economic disasters

and their consequences (e.g., Rietz, 1988; Barro, 2006, 2009; Weitzman, 2009, 2011; Martin

and Pindyck, 2015, 2021). This literature explores how the risk of rare economic disasters

affects asset prices and cost-benefit analysis, but it typically does not focus on questions of

technology adoption.

The second is a literature on technology adoption under a variety of market structures

and institutional settings (e.g., Katz and Shapiro, 1986; Parente and Prescott, 1994; Foster

and Rosenzweig, 1995, 2010; Acemoglu, Aghion, and Zilibotti, 2006; Acemoglu, Antràs, and

Helpman, 2007; Comin and Hobijn, 2010; Comin and Mestieri, 2014). Early work touching on

AI and regulation includes papers by Galasso and Luo (2018) and Agrawal, Gans, and Goldfarb

4For example, if AI is used to create pervasive disinformation on social media, this may be disastrous for
democracy but profitable for social media platforms.
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(2019), which discuss implications of privacy, trade, and liability policies for the adoption of

AI. These models are similar to our framework, but they do not focus on issues of learning

about social damages from new technologies.

Third, there is a nascent literature focusing on negative consequences from certain types

of technologies, including environmental damages (e.g., Bovenberg and Smulders, 1995; Ace-

moglu, Aghion, Bursztyn, and Hemous, 2012). Most closely related to our paper are a few

works that discuss the dilemma between growth and existential risk from new technologies,

including AI. Jones (2023) develops a one-sector growth model in which AI can be used to

raise the aggregate growth rate, but with small probability causes human extinction. Whether

it is optimal to use AI depends crucially on the coefficient of relative risk aversion and whether

consumption utility is bounded. Similarly, Aschenbrenner (2020) incorporates existential risk

into Jones’s (2016) model of growth and mortality, and argues that existential risk rises with

consumption unless new mitigation technologies are developed. His model thus exhibits an

“existential risk Kuznets curve” in which existential risk optimally increases until sufficient R&D

resources are shifted toward mitigation. These two papers share our focus on the costs and

benefits of transformative technologies, but do not address the speed of adoption across sectors

and do not feature learning about risks over time. We are not aware of any other papers that

incorporate these critical aspects of our work.

The rest of the paper is organized as follows. Section 2 presents our benchmark model.

Sections 3 and 4 characterize optimal and equilibrium technology choices. Section 5 discusses

the conditions under which optimal technology choices can be restored through regulatory

taxes, and Section 6 concludes. Omitted proofs and extensions are in the Appendix.

2 Setup

We consider a continuous-time economy that linearly produces a unique final good from a

continuum of sectors i ∈ [0,1]:

Y =

∫ 1

0

Yidi.

A representative household has risk-neutral preferences defined over this final good and dis-

counts the future at the rate ρ > 0.

Each sector can use an old technology O or a new, transformative technology N . We let

Q j (t) > 0 denote the time t quality of technology j ∈ {O, N}, and we let x i (t) = 1 if sector

i switches its production process to technology N , while otherwise we let x i (t) = 0. Sectoral

output can then be written Yi = (1− x i)QO + x iαiQN , where αi designates the comparative
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advantage of the new technology, which may vary if the new technology is better-suited for

some sectors than others. Given technology choices x = (x i)i∈[0,1] and qualities Q = (QO,QN ),
final output is

Y (x ,Q) =

∫ 1

0

(1− x i)QO + x iαiQN di.

The new technology is transformative in three senses. First, it is general-purpose and can

be applied across all of the sectors of the economy. Second, it enables not just the production

of more output, but a higher growth rate:

gN > gO ≥ 0.

Third, because of its restructuring impact on the economy, it poses new risks. We model these

by assuming that there may be a disaster whereby the new technology’s greater productive

capacity also generates negative effects. If a disaster happens, then there will be damages of

δiQN > 0 (in units of the final good) in the sectors that are using the technology. Because of

possible irreversibilities, with probability ηi ∈ (0,1) sector i cannot switch to technology O if

it is using technology N when the disaster strikes. The realization of this reversibility event

is independent across sectors. We assume that damages are proportional to QN because the

negative effects correspond to misusing the better capabilities of the new technology.

In what follows, we reorder sectors so that δi is increasing and assume that i denotes the

quantiles of the δ distribution, so that we can take this distribution to be uniform over some

interval [δ,δ]. Overall damages then become

D (x ,Q) =

�

∫ 1

0

δi x idi

�

QN .

The common prior probability that there will be a disaster is µ (0) ∈ (0, 1). If there is a

disaster, we assume that the distribution of its arrival time T is exponential with rate λ. The

posterior belief that there will be a disaster µ (t) evolves according to Bayes’s rule:

µ̇ (t) = −λµ (t) (1−µ (t)) .

A few comments are in order. First, we model damages in each sector i by the reduced-

form function δiQN to capture a broad range of potential harms from the new technology. In

the context of AI, these include the spread of disinformation that harms democracy; mass un-

employment; and the disruption of production in many sectors from AI-aided cyberattacks.5

5Our functional form assumptions also impose that the rate of substitution between gross consumption and
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Second, as suggested above, the assumption that damages are proportional to QN is related

to the transformative nature of this new technology. For example, if AI capabilities are used

to produce disinformation, the costs will be proportional to how good these capabilities are.

Third, we assume that the arrival rate of the disaster—and hence learning about the negative

effects of the new technology—is independent of how many sectors switch to the new technol-

ogy. This is mostly for simplicity, but is not unreasonable since many of the potential misuses

of a new technology can be gradually recognized, even when this technology is not fully rolled

out.6

3 Socially Optimal Technology Choice

In this section, we set up, solve, and provide comparative statics for the social planner’s prob-

lem.

3.1 Social Planner’s Problem

Given risk neutrality, the (social) planner’s objective is

V (0) = Eµ(0)

�∫ ∞

0

exp (−ρt) [Y ((t)− D (t)] d t

�

, (1)

where Y (t) and D(t) denote output and damages at time t and the expectation Eµ(0) is with

respect to the prior belief µ (0) over the disaster’s arrival time T . To ensure that the objective

is well-defined, we assume

ρ > gN , (2)

which rules out the case in which the new technology grows so quickly that discounted utility

becomes infinite.

It is more convenient to work with the recursive formulation of (1), which has three state

variables: the posterior belief of disaster, µ; the time-varying qualities of the old and new

technologies, Q; and, after the disaster (if any), the set of sectors that were already using the

new technology and for which this use is irreversible. We track these sectors using the vector

x̄ = ( x̄ i)i∈[0,1], where x̄ i = 1 if sector i uses technology N irreversibly and x̄ i = 0 otherwise. Let

V (µ,Q) denote pre-disaster household welfare, and let W ( x̄ ,Q) denote post-disaster welfare.

damages in utility is constant and equal to one. Jones (2023) points out that this may not hold in the case of
existential risk and explores the implications for optimal use of a life-threatening new technology.

6Alternative assumptions are discussed in Section 6.
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Then the Hamilton-Jacobi-Bellman (HJB) equations for the planner are

ρV (µ,Q) = max
x i∈{0,1}

{Y (x ,Q) +µλ (E [W ( x̄ ,Q)| x]− V (µ,Q))}+ V̇ (µ,Q) , (3)

ρW ( x̄ ,Q) = max
x i∈{ x̄ i ,1}

{Y (x ,Q)− D (x ,Q)}+ Ẇ (x ,Q) . (4)

Equation (4) imposes that x i cannot be less than x̄ i, since if x̄ i = 1 sector i’s use of the new tech-

nology has turned out to be irreversible. Given this, V depends on the conditional expectation

of welfare after a disaster given the current technology choices x , denoted by E [W ( x̄ ,Q)| x].7

In (3) we also use the fact that the arrival rate of the disaster, given the posterior µ, is µλ.

To characterize the planner’s technology choices, suppose first that the disaster has oc-

curred. The planner’s problem in (4) is linear, so the solution is

x i =







1 if x̄ i = 1 or (αi −δi)QN >QO,

0 else.

This expression imposes, without loss of generality, that the planner sticks with the old technol-

ogy if indifferent. It also incorporates the fact that the planner is constrained to choose x i = 1

if x̄ i = 1. Even when unconstrained, it may be optimal to set x i = 1 if the output produced

by technology N exceeds its damages plus the output that can be produced by technology O.

In the remainder of the text we assume that damages are sufficiently large that, whenever

possible, the planner chooses technology O after a disaster:

αi ≤ δi. (5)

This enables us to focus on the most interesting case where damages exceed the benefits of the

new technology. The general case is studied in Appendix B.

Integrating the HJB equation (4) and taking expectations with respect to x̄ , we have

E [W ( x̄ ,Q)| x] =
∫ 1

0

�

�

1− x iηi

� 1
ρ − gO

QO + x iηi
αi −δi

ρ − gN
QN

�

di.

Then, before the disaster, it is optimal from (3) to use technology N in sector i iff

αiQN −QO > µληi

�

1
ρ − gO

QO −
αi −δi

ρ − gN
QN

�

. (6)

Intuitively, the left-hand side is the flow gain from using technology N in sector i, while the

7To determine this conditional expectation, we use P ( x̄ i = 1| x i = 1) = ηi and P ( x̄ i = 1| x i = 0) = 0.
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right-hand side is the expected loss due to the disaster, including both the discounted value of

lost output and the irreversible damages. These losses are multiplied by the posterior arrival

rate of the disaster µλ and the probability of irreversibility ηi. Since µ is decreasing and

QN/QO is nondecreasing, for any initial state (µ (0) ,Q (0)) there exists a time t i <∞ such

that technology O is used in sector before t i and technology N is used thereafter.

3.2 Socially Optimal Technology Adoption

To determine how (socially) optimal use of technology N changes over time, denote the fraction

of sectors that use technology N , or total adoption, by

X (µ, q) =

∫ 1

0

x i (µ, q) di,

where q = log (QN/QO) is the quality gap between the technologies, and x i (µ, q) = 1 iff it is

optimal to use technology N in sector i in state (µ, q). For simplicity, also assume that αi and

ηi are constant across sectors, and denote the cumulative distribution function of the uniform

distribution over [δ, δ̄] by F . These assumptions imply that there exists a damage threshold

L (µ, q) such that it is optimal to adopt the new technology in sector i iff δi < L (µ, q). Total

adoption of the new technology is then just the fraction of sectors below the damage threshold:

X (µ, q) = F (L (µ, q)) .

The following proposition is immediate from (6), and we omit its proof:

Proposition 1. It is socially optimal to use technology N in sector i iff δi < L (µ, q), where

L (µ, q)−α
ρ − gN

=
α− exp (−q)
µλη

−
exp (−q)
ρ − gO

. (7)

L (µ, q) (and thus X (µ, q)) is strictly increasing in α and q; strictly decreasing in gO, λ, and µ;

and strictly decreasing in gN , provided that L (µ, q)> α.

In light of our assumption (5), the condition L (µ, q) > α is satisfied as soon as there is

any adoption of the new technology. Proposition 1 then implies that when the new technology

enables faster growth, its adoption should be slower. This is because of a precautionary chan-

nel—even though the planner is risk neutral, she would like to avoid the risk of irreversible

damages from the new technology, and this introduces a precautionary motive. The faster the

new technology grows, the greater are its potential damages as well, and this strengthens the
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precautionary motive.8

The comparative statics in Proposition 1 are partial, because they hold the state (µ, q) fixed.

Full comparative statics must account for how parameter changes affect the evolution of the

state (µ(t), q(t)). The belief µ(t) does not depend on the growth rates gO and gN , but the

quality gap q(t) does, since q (t) = q (0) + (gN − gO) t. Because the damage threshold L (µ, q)
is increasing in the quality gap, any change in the growth rates affects adoption at each time

t > 0 through both the direct effects described in Proposition 1 and the indirect effects through

changes in the quality gap q (t). The next proposition characterizes the total effect of a change

in technology growth rates.

Proposition 2. For all t > 0:

1. X (µ (t) , q (t)) is decreasing in gO.

2. There exists an earliest time t̄ <∞ such that X (µ (t) , q (t)) is decreasing in gN if t > t̄ .

The time t̄ is decreasing in gN .

3. Adoption falls to zero as gN approaches ρ, i.e., limgN↑ρ X (µ (t) , q (t)) = 0.

The proof of this proposition and other results in the text are presented in Appendix A,

unless otherwise stated.

The first part of Proposition 2 establishes that the comparative static for gO from Proposi-

tion 1 generalizes in the presence of the indirect effects through q(t)—the quality gap q(t) is

declining in gO, reinforcing the direct effect. The second part shows that the new technology’s

growth rate has more nuanced implications: Adoption is not always decreasing in gN , but is

after some critical time t̄, and this time itself is a decreasing function of gN . In this case, the

precautionary channel highlighted above must compete with the fact that the quality gap q(t)
is increasing in gN , but this indirect effect can dominate only at short time horizons.

The third part of proposition establishes that as gN increases towards the discount rate,

adoption almost stops. This might appear paradoxical initially, but it is also intuitive. When

gN is approximately equal to ρ, the benefits from the new technology are very high, leading to

nearly infinite discounted utility provided no disaster arrives. Delay in initiating the adoption

of the technology has little effect on these benefits. However, a disaster will have huge negative

consequences, and avoiding this disaster now takes precedence.

8This holds because, under (5), post-disaster net output is decreasing in QN in each sector using the new
technology. In Appendix B, we show that when this assumption is relaxed, so that post-disaster net output can
be increasing in QN for some sectors i with δi < α, the damage threshold L (µ,Q) and adoption X (µ,Q) may be
increasing in gN .
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The next proposition further characterizes the shape of the adoption curve. Since F is

uniform, Ẋ (µ, q) = f L̇ (µ, q), where f is the constant density of F . Hence, the curvature of

technology adoption can be written

Ẍ (µ, q)
Ẋ (µ, q)

=
L̈ (µ, q)
L̇ (µ, q)

.

We therefore have:

Proposition 3.

1. L̇ (µ, q) is strictly decreasing in gO, and it is strictly decreasing in gN iff the quality gap is

sufficiently large, i.e.,

αexp (q)− 1>
(ρ − gN )− (gN − gO)

1−µ

�

1
λ
+
µη

ρ − gO

�

.

2. There exists a positive constant G (µ, q) such that if αexp (q) > 1, L̈ (µ, q) is positive iff

gN − gO > G (µ, q). G (µ, q) is independent of gN and increases to infinity over time.

The intuition for the first part of the proposition is the same as for Proposition 2: The

damage threshold increases as the posterior belief µ falls and the quality gap q grows. When

technology O grows more quickly, it slows the rate of increase in the quality gap and raises the

opportunity cost of using technology N after the disaster for a fixed quality gap. As a result, the

damage threshold grows less quickly in each state. When technology N grows more quickly, it

raises both the rate of increase in the quality gap and the net output losses from technology N

after the disaster. The latter effect dominates when the quality gap is sufficiently large because

additional improvements in technology N relative to O have only a negligible impact on the

planner’s technology choice.9

The second part of the proposition proves that when the new technology’s growth advan-

tage is sufficiently large, its adoption will eventually have a major convex segment in which its

adoption accelerates. This result holds despite the fact that the learning rate |µ̇| is declining

at a greater than exponential rate when µ < 1
2 (in particular, d

d t |µ̇| = −λ |µ̇| (1− 2µ)). This is

because expected damages from technology N in sector i are proportional to the posterior µ,

and as µ declines, larger increases in the damage threshold L (µ, q) are needed to balance the

expected damages and benefits in the “marginal” sector.10

9The latter effect also dominates regardless of the quality gap whenever L (µ, z)> 0 and gN − gO ≥ ρ − gN .
10In Appendix C, we verify this intuition by showing that learning dynamics favor concave adoption when sectors

are heterogeneous according to αi instead of δi .
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Figure 1: Adoption curves X (t) ≡ X (µ (t) , q (t)) for different values of gN . The remaining
parameter values are ρ = 0.04, λ = 0.05, η = 0.5, α = 1, gO = 0.02, δ = 1, and δ̄ = 5. The
initial state is µ (0) = 0.2 and q (0) = 0.

We end this section by depicting the time path of adoption in a couple of parameterized

cases in Figure 1. We set gO = 2% in line with trend GDP growth in developed economies and

ρ = 0.04 to produce a risk-free interest rate of 4%. We choose two values for gN based on Chui,

Roberts, Yee, Hazan, et al. (2023), who forecast an increase in the growth rate of 0.6-3.6%

in the United States between 2023 and 2040 from AI and other automation technologies. We

take the lower end of this range, gN − gO = 0.6%, and a higher but still conservative estimate

from the middle of the range: gN − gO = 1.8% (while still satisfying (2)). We take the two

technologies to have the same quality in year t = 0, thus q(0) = 0. We suppose that the

range of damages is from one to five times gross sectoral output (δ = 1, δ̄ = 5), and we

set η = 0.5 so that half of all sectors using the new technology cannot switch back after a

disaster. We set the expected arrival time of a disaster (if one exists) to be 20 years, which

gives λ = 0.05. Finally, a recent survey of AI experts reports a median estimate of existential

risk of about 10%,11 and since we are interested in non-existential misuses of AI as well, we

choose the initial disaster probability to be twice as large, µ(0) = 20%. Figure 1 shows that

optimal adoption is slow, taking about 40 years until full adoption when gN = 2.6% and almost

60 years when gN = 3.8%.

In summary, this section has established that the optimal adoption of a new, transformative

11https://aiimpacts.org/2022-expert-survey-on-progress-in-ai
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technology should be slow and gradual, particularly when its superior capabilities also make

its potential damages greater and there is learning about the likelihood of misuse (a “disas-

ter”). Notably, a higher growth rate for a transformative technology can lead to slower optimal

adoption.

4 Equilibrium Technology Choice

We now turn to a characterization of equilibrium technology adoption, assuming that private

firms do not internalize all social damages after a disaster.

4.1 The Firm’s Problem

Suppose now that in each sector, the choice of technology is made by a private (representative)

firm that seeks to maximize expected discounted profits. To simplify, we assume that the firm

in sector i appropriates all output of its intermediate as profits, but only internalizes private

damages γi ≤ δi.

The firm’s profit maximization problem can be formulated recursively in the same way as

the planner’s problem in the previous section. The state variables before the disaster are again

µ and Q, and the state variables relevant for firm i after the disaster are x̄ i and Q. Let Πi (µ,Q)
denote the firm’s pre-disaster value, Φi ( x̄ i,Q) the firm’s post-disaster value, and Yi (x i,Q) its

(gross) output. The HJB equations for the firm are

ρΠi (µ,Q) = max
x i∈{0,1}

{Yi (x i,Q) +µλ (E [Φi ( x̄ i,Q)| x i]−Πi (µ,Q))}+ Π̇i (µ,Q) , (8)

ρΦi ( x̄ i,Q) = max
x i∈{ x̄ i ,1}

�

Y (x i,Q)− x iγiQN

	

+ Φ̇i ( x̄ i,Q) . (9)

These value functions differ from the planner’s, (3) and (4), because the firm internalizes only

a fraction γi/δi of the flow damages from technology N .

We assume that private damages are also sufficiently large that firm i will always choose

technology O after the disaster if possible:12

αi ≤ γi. (10)

12Without this assumption, the equilibrium would be even more inefficient, as firms will continue to use the
new technology in some (reversible) sectors even after a disaster.
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Similar to the planner’s problem, it is privately optimal for firm i to use technology N iff

αiQN −QO > µληi

�

1
ρ − gO

QO −
αi − γi

ρ − gN
QN

�

.

The only difference between this condition and the planner’s optimality condition (6) is that

private damages γi appear instead of social damages δi on the right-hand side. Firm i inter-

nalizes fewer damages from irreversible use of technology N after the disaster, and as a result

it begins using technology N earlier than the planner before the disaster.

4.2 Equilibrium Technology Adoption

We denote total equilibrium adoption by

X̃ (µ, q) =

∫ 1

0

x̃ i (µ, q) di,

where x̃ i (µ, q) = 1 iff firm i uses technology N in state (µ, q). Again assuming that αi and ηi

are constant across sectors, it is immediate to see that firm i will adopt the new technology iff

private damages are lower than the damage threshold, γi < L (µ, q). Equilibrium adoption is

then

X̃ (µ, q) = Fγ (L (µ, q)) ,

where Fγ is the cumulative density function of γi.

This characterization implies that all comparative statics results from Section 3.2 also ap-

ply to equilibrium adoption. In particular, the results in Propositions 1 and 3 concern only

the damage threshold L (µ, q) and apply exactly as stated, while Proposition 2 applies after

replacing X (µ, q) with X̃ (µ, q) (and so we omit their proofs):

Proposition 4. For all t > 0:

1. X̃ (µ (t) , q (t)) is decreasing in gO.

2. There exists an earliest time t̃ <∞ such that X̃ (µ (t) , q (t)) is decreasing in gN if t > t̃ .

The time t̃ is decreasing in gN .

3. Adoption falls to zero as gN increases to ρ: limgN↑ρ X̃ (µ (t) , q (t)) = 0.

In the remainder of this section, we seek to understand how the optimal and equilibrium

adoption curves differ when private damages γi diverge from social damages δi. First observe

that even similar adoption curves do not imply that the equilibrium is optimal, because the
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order in which sectors adopt the new technology matters. For example, private and social

damages may be negatively affiliated, meaning that high social damage sectors have low private

damages. In this case, the order in which the new technology spreads in equilibrium is exactly

the opposite of the optimal order.

Even when equilibrium and optimal orders of adoption coincide, the equilibrium can be

inefficient. To see this, suppose that social and private damages are positively affiliated, so that

there exists a non-negative and strictly increasing function κ with γi = κ (δi) ≤ δi. Then we

can write equilibrium adoption in terms of the (uniform) distribution of social damages F :

X̃ (µ, q) = F
�

κ−1 (L (µ, q))
�

.

This equation implies that the equilibrium adoption curve X̃ (µ (t) , q (t)) is a distorted version

of the optimal adoption curve, with an equilibrium damage threshold L̃ (µ, q) = κ−1 (L (µ, q)).
In this case, knowing how the equilibrium and social damage thresholds differ is sufficient to

fully characterize the inefficiencies in equilibrium adoption. The next proposition determines

how the level, rate of change, and curvature of the equilibrium damage threshold L̃ (µ, q) differ

from its social counterpart L (µ, q).

Proposition 5.

1. The equilibrium damage threshold is always greater than the social damage threshold:

L̃ (µ, q)≥ L (µ, q).

2. The equilibrium damage threshold increases more quickly than the social damage threshold,

provided that κ′
�

L̃ (µ, q)
�

< 1:

˙̃L (µ, q) =
L̇ (µ, q)

κ′
�

L̃ (µ, q)
� .

3. The equilibrium damage threshold is more convex than the social damage threshold when κ

is locally concave, i.e.,

¨̃L (µ, q)
˙̃L (µ, q)

=
L̈ (µ, q)
L̇ (µ, q)

−
κ′′
�

L̃ (µ, q)
�

κ′
�

L̃ (µ, q)
� L̇ (µ, q) .

These results follow from the definition of the equilibrium damage threshold L̃ (µ, q). We

illustrate them in Figure 2 by depicting socially optimal and equilibrium adoption curves for the

benchmark parameterizations in Figure 1 and a concave affiliation function κ. We see that the

equilibrium damage threshold is always greater than its social counterpart, and it increases
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Figure 2: Socially optimal and equilibrium adoption curves, X (t) and X̃ (t) ≡ X̃ (µ (t) , q (t)).
The calibration is the same as in Figure 1. The affiliation function is κ (δ) = δ1/2.

more quickly (for the marginal sectors where κ′
�

L̃ (µ, q)
�

< 1). Consequently, equilibrium

adoption is inefficiently rapid and accelerates when there are high social damages.

In summary, equilibrium adoption of transformative technologies is determined by the same

forces that shape optimal adoption. However, because firms are motivated by higher produc-

tivity and discouraged only by private damages, equilibrium adoption is generally suboptimal:

Firms do not fully internalize social damages from potential disasters, so equilibrium adop-

tion is typically too high and rises too quickly, and the order in which sectors adopt the new

technology may differ from the optimal one.

5 Regulating Technology Choice

Since equilibrium adoption is potentially inefficient, a natural question is whether government

regulation can close the gap between equilibrium and optimal adoption decisions. Throughout

this section, we simplify the analysis by focusing on ex ante regulations.13

Socially optimal and equilibrium technology choices differ because the planner and private

firms internalize different damages after the disaster and hence different expected damages

13We ignore ex post (“Pigovian”) taxes both because their analysis is essentially identical to our characterization
of use taxes, and also because they may not be credible as they do not affect technology choice after the disaster—
the private sector already stops using the new technology whenever possible.
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before the disaster. A straightforward way to correct firms’ incentives is through a use tax that

raises firms’ costs of using the new technology before the disaster.14 If sector-specific taxes are

feasible, then the tax that implements the optimal technology choice for sector i is equal to the

difference between expected discounted social and private damages:

τi (µ,QN ) = µληi
δi − γi

ρ − gN
QN . (11)

The next proposition notes several properties of these optimal taxes.

Proposition 6. The optimal use tax τi (µ,QN ) is larger in sectors with a larger probability of

irreversibility ηi and a larger difference between social and private damages δi − γi. It is log-

concave in time and limits to zero as t →∞ iff λ > gN .

The cross-sector comparative statics follow immediately from equation (11). Differentiat-

ing it with respect to time yields

τ̇i (µ,QN )
τi (µ,QN )

=
µ̇

µ
+

Q̇N

QN
= −λ (1−µ) + gN .

Since µ declines before the disaster, we observe that τi (µ (t) ,QN (t)) is log-concave. The

assumption that the social and private damages from a disaster are increasing in QN provides a

force for the tax to increase over time, while growing optimism about the absence of a disaster

pushes taxes lower. The tax is eventually decreasing to zero iff learning about the disaster risk

is sufficiently fast, λ > gN .

Sector-specific taxes require a planner to have very detailed information about damages

and may generally be difficult to implement. Even in the benchmark case in which αi and ηi

are constant across sectors, the next proposition shows that a sector-independent tax scheme

cannot correct inefficient equilibrium adoption unless social and private damages are positively

affiliated.

Proposition 7. Given any sector-independent use tax τ (µ,Q), firm i begins using technology N

earlier than firm j iff γi ≤ γ j. Socially optimal technology choices can be implemented for any

initial state (µ (0) ,Q (0)) iff social and private damages are positively affiliated. In this case, the

following tax is optimal:

τ (µ,Q) = µλη
L (µ, q)−κ (L (µ, q))

ρ − gN
QN . (12)

14Naturally, adoption taxes that are paid when new technologies are first introduced are equivalent to these use
taxes.
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When private and social damages are not positively affiliated, the power of sector-independent

tax and regulatory schemes declines even further, because the order in which different sectors

adopt the new technology cannot be aligned with the social optimum. In this case, a differ-

ent policy that we refer to as a regulatory sandbox may be more effective. Under this policy,

sectors with social damages below a threshold δ̂ (“inside the sandbox”) can choose their tech-

nology freely, while sectors above the threshold are restricted from using the new technology

until time T̂ . This policy allows the planner to ensure that sectors with high social damages

adopt only after the new technology is established to be relatively safe. The next proposition

demonstrates that the sandbox policy can improve upon the laissez-faire equilibrium.

Proposition 8. Suppose αi and ηi are constant and γi < δi across all sectors i. Then there exists

a sandbox policy
�

δ̂, T̂
�

that strictly improves upon the laissez-faire equilibrium.

In Appendix D, we provide additional details about optimal regulatory sandboxes and com-

pare them to sector-independent taxes. In general, combining a sector-independent tax with

a regulatory sandbox is better than either policy alone: A sector-independent tax can differen-

tially delay adoption for sectors with varying private damages γi, but it cannot alter the order

of adoption. In contrast, a regulatory sandbox can alter the order by delaying adoption for

sectors with high social damages.

6 Concluding Remarks

Advances in generative AI technologies, such as GPT-4 and other large language models, have

both raised hopes of more rapid growth thanks to the rollout of these technologies and concerns

about misuses and unforeseen negative consequences from their new capabilities. Despite a

multifaceted public discussion about their regulation, there are currently no economic models

of the regulation of transformative technologies. This paper has taken a first step in building

such a model to provide insights for this debate.

We consider the adoption decision of a new, transformative technology that can increase

productivity growth across all sectors of the economy but also raises risks of misuse, which

we model as the stochastic arrival of a “disaster”. If a disaster occurs, some of the sectors

that started using the new technology may be unable to switch back to the old, safe technol-

ogy and generate social damages. We assume that the likelihood of a disaster is unknown

and society gradually learns about whether such a disaster will occur. We show that adoption

should be slow and follow a convex path, initially growing slowly before accelerating later.

This slow adoption is motivated by social learning about the likelihood of a disaster—as the

posterior probability of a disaster declines over time, adoption increases. Most surprisingly, a
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faster growth rate of the new technology should lead to slower adoption. This is because of a

precautionary channel: Despite the fact that the planner is risk neutral, irreversible damages

imply that it is optimal to wait and learn about the likelihood of a disaster. These irreversible

damages are greater when the new technology has a higher growth rate, strengthening the

precautionary motive. Finally, if private firms internalize only part of the social damages from

transformative technologies, equilibrium adoption tends to be too fast and necessitates regu-

latory policies, some of which we characterized.

There are many interesting areas left for future work. First, we assumed, both as a natu-

ral benchmark and for tractability, that the rate at which society learns about the likelihood

of a disaster is independent of which sectors have adopted the technology. In practice, early

adoption may increase risks or may facilitate learning. In addition, there may be sector-specific

learning about “safe use” of the new technology. These considerations may motivate “experi-

mentation” by adopting the technology in a few sectors or trying different uses in some areas.

An analysis of these types of experimentation is an interesting area for future work. Second,

many of the misuses of new AI technologies depend on market structure and other aspects of

regulation (e.g., concerning disinformation, discrimination, or privacy), and it would be inter-

esting to explore how these affect optimal and equilibrium adoption. Third, we simplified the

analysis by assuming risk neutrality. As explored in Jones (2023), the extent of risk aversion

in the social welfare function has a first-order effect on the trade-off between higher growth

and the likelihood of a disaster, and these can be incorporated in future analyses of learning

about misuses of new transformative technologies. Fourth, we also abstracted from any choices

about how new technologies may be used. If regulations or other factors can prevent misuse

of technology, then faster adoption can become optimal. Finally, we showed that the optimal

path of adoption depends on a few parameters, but there is currently a huge amount of un-

certainty about the values of these parameters, and careful empirical assessments of the costs

and benefits of the adoption of new transformative technologies, such as generative AI, is an

obvious area for fruitful research.
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Online Appendix

Appendix A contains proofs for the results in the main text. In Appendices B, C, and D, we

analyze extensions of our benchmark model and discuss the robustness of our main results.

A Main Proofs from the Main Text

In this appendix, we provide proofs for results in the main text.

A.1 Proofs for Section 3

Proof of Proposition 2. Let L (t) ≡ L (µ (t) , q (t)) denote the damage threshold at time t ∈
(0,∞). Making use of Proposition 1 and the equation q (t) = q (0) + (gN − gO) t, the damage

threshold equals

L (t) = α+ (ρ − gN )
�

α− exp (− [q (0) + (gN − gO) t])
µ (t)λη

−
exp (− [q (0) + (gN − gO) t])

ρ − gO

�

. (A1)

It is immediate that L (t) is strictly decreasing in gO, so adoption at time t is nonincreasing in

gO. Note that adoption is also strictly decreasing whenever L (t) ∈
�

δ, δ̄
�

.

Considering instead the comparative static with respect to gN , we can differentiate to find

∂ L (t)
∂ gN

= (1+ (ρ − gN ) t)
�

1
µ (t)λη

+
1

ρ − gO

�

exp (− [q (0) + (gN − gO) t])−
α

µ (t)λη
.

This derivative is positive iff

(1+ (ρ − gN ) t)
�

1+
µ (t)λη
ρ − gO

�

exp (− [z (0) + (gN − gO) t])≥ α.

The left side limits to zero as t → ∞, so there exists an earliest time t̄ < ∞ such that

∂ L (t)/∂ gN < 0 for t > t̄. If t̄ > 0, then the left side of the inequality above must be de-

creasing in t at t = t̄. Since the left side is also decreasing in gN , we must have that t̄ is

decreasing in gN .

Finally, the bracketed term in (A1) limits to a finite value as gN increases to ρ, which

implies that L (t) limits to α. Since the lower support of F satisfies α ≤ δ, we conclude that

X (µ (t) , q (t)) limits to zero. ■
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Proof of Proposition 3. Using the expression for the damage threshold (7), we can calculate

L̇ (µ, q)
ρ − gN

=
1−µ
µ

α− exp (−q)
η

+
�

1
µλη

+
1

ρ − gO

�

(gN − gO)exp (−q) .

This equation implies that L̇ (µ, q) is strictly decreasing in gO. Differentiating implies that

L̇ (µ, q) is strictly decreasing in gN iff

αexp (q)− 1>
(ρ − gN )− (gN − gO)

1−µ

�

1
λ
+
µη

ρ − gO

�

.

Differentiating L̇ (µ, q) again yields

L̈ (µ, q)
ρ − gN

= λ
1−µ
µ

α− exp (−q)
η

+
�

2
1−µ
µ
−
�

1
µλ
+

η

ρ − gO

�

(gN − gO)
�

(gN − gO)
exp (−q)
η

.

Provided that α > exp (−q), this expression immediately implies that L̈ (µ, q)< 0 iff gN − gO >

G (µ, q), where G (µ, q) is the largest solution to the quadratic equation

λ
1−µ
µ

α− exp (−q)
η

+
�

2
1−µ
µ
−
�

1
µλ
+

η

ρ − gO

�

G (µ, q)
�

G (µ, q)
exp (−q)
η

= 0.

Equivalently,

G (µ, q) = λ
1+
r

1+
�

1+ µλη

ρ−gO

�

(1−µ)−1 (αexp (q)− 1)
�

1+ µλη

ρ−gO

�

(1−µ)−1
.

We observe that G is decreasing in µ and increasing in q, so that Ġ (µ, q)> 0 with

lim
t→∞

G (µ (t) , q (t)) =∞.

■

A.2 Proofs for Section 5

Proof of Proposition 7. With a sector-independent use tax τ (µ,Q), it is privately optimal to

use technology N before the disaster iff

αQN −QO −τ (µ,Q)> µλη
�

1
ρ − gO

QO −
α− γi

ρ − gN
QN

�

. (A2)

The right side of this inequality is strictly increasing in γi. Given an initial state (µ (0) ,Q (0)),
let t̃ i denote the time at which firm i begins using technology N . For any sector j with private
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damages γ j, we immediately observe that γi ≤ γ j iff t̃ i ≤ t̃ j. The latter inequality is strict if

γi < γ j and t̃ j > 0.

If γi and δi are positively affiliated, the tax (12) suffices to implement socially optimal

technology choices in equilibrium. To see this, note that the private optimality condition (A2)

implies that firm i uses technology N in state (µ,Q) iff γi < L̂ (µ, q), where

L̂ (µ, q)−α+ L (µ, q)− κ (L (µ, q))
ρ − gN

=
α− exp (−q)
µλη

−
exp−q
ρ − gO

.

Using the definition of the damage threshold L (µ, q) from Proposition 1, this equation reduces

to L̂ (µ, q) = κ (L (µ, q)). Since κ is strictly increasing, we conclude that equilibrium technology

choices are efficient: Firm i uses technology N iff

δi = κ
−1
�

γi

�

< κ−1
�

L̂ (µ, q)
�

= L (µ, q) .

Finally, fix an initial state (µ (0) ,Q (0)) such that L (µ (0) ,Q (0))< δ, so that it is inefficient

for any sector to use technology N at t = 0. Suppose that a given sector-independent tax

τ (µ,Q) implements socially optimal technology choices in equilibrium. We can define the

affiliation function κ as follows: For any value of social damages δ ∈
�

δ, δ̄
�

, let t (δ) > 0 be

the time at which sectors with social damages δ (socially) optimally begin using technology

N . Since τ (µ,Q) implements socially optimal technology choices in equilibrium, these same

sectors must find it privately optimal to begin using technology N at time t (δ). These sectors

must have a common value of private damages γ (t (δ)): If one sector had a larger value of

private damages γ′ > γ (t (δ)), it would find it privately optimal to delay using technology

N , contradicting the assumption that τ implements socially optimal technology choices. As a

result, the affiliation function κ (δ) = γ (t (δ)) is well-defined, and we conclude that social and

private damages must be positively affiliated.

■
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Proof of Proposition 8. Given a threshold δ̂ and wait time T̂ , the planner’s objective dis-

counted to t = 0 can be written

V
�

δ̂, T̂
�

=

∫ T̂

0

exp (−ρt)

∫

δi<δ̂

§

�

1− x
�

µ(t), q(t),γi

��

�

1+µ(t)λη
1

ρ − gO

�

QO(t)

+x
�

µ(t), q(t),γi

�

�

α+µ(t)λη
α−δi

ρ − gN

�

QN (t)
ª

did t

+

∫ T̂

0

exp (−ρt)

∫

δi≥δ̂

�

1+µ(t)λη
1

ρ − gO

�

QO(t)did t

+

∫ ∞

T̂

exp (−ρt)

∫ 1

0

§

�

1− x
�

µ(t), q(t),γi

��

�

1+µ(t)λη
1

ρ − gO

�

QO(t)

+x
�

µ(t), q(t),γi

�

�

α+µ(t)λη
α−δi

ρ − gN

�

QN (t)
ª

did t.

Here x
�

µ, q,γi

�

denotes the unrestricted equilibrium technology choice given state (µ, q) and

private damages γi:

x
�

µ, q,γi

�

=







1 if αi − exp(−q)> µλη
�

1
ρ−gO

exp(−q)− α−γi
ρ−gN

�

,

0 else.

With δ̂ fixed, we can differentiate V with respect to T̂ to find

exp
�

ρ T̂
� ∂ V
�

δ̂, T̂
�

∂ T̂
= −
∫

δi≥δ̂
x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

di.

To simplify notation, we have left the dependence of the state (µ,Q) on the wait time T̂ implicit.

First observe that the optimal wait time is bounded:

lim
T̂→∞

1

QN

�

T̂
�

∂ V
�

δ̂, T̂
�

∂ T̂
= −α
∫

δi≥δ̂
di < 0.

Let t̃ i denote the equilibrium time of adoption for sector i when unrestricted, and let t(δ̂)≥ 0

denote the greatest lower bound for these times across all sectors above the threshold (δi ≥ δ̂).

Note that we can write

exp
�

ρ T̂
� ∂ V
�

δ̂, T̂
�

∂ T̂
= −
∫

δi≥δ̂, t̃ i≤T̂

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�

di.
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Clearly ∂ V (δ̂)/∂ T̂ = 0, and ∂ V (δ̂)/∂ T̂ > 0 for T̂ in a neighborhood of t
�

δ̂
�

, because

∂

∂ T̂
exp
�

ρ T̂
� ∂ V
�

δ̂, T̂
�

∂ T̂

�

�

�

�

�

T̂=t(δ̂)

= −
∫

δi≥δ̂, t̃ i=t(δ̂)

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�

di.

On the right-hand side, the state (µ,Q) is evaluated at t(δ̂). Since γi < δi for all sectors

above the threshold, the right-hand side must be strictly positive. This implies that V is strictly

increasing in T̂ in a neighborhood of t(δ̂), so the optimal wait time T̂ must be interior. It

satisfies the first-order condition

0= −
∫

δi≥δ̂
x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

di.

Setting T̂ = t(δ̂) replicates the laissez-faire equilibrium, so this argument establishes that a

sandbox policy with δ̂ > δ can strictly improve upon the laissez-faire equilibrium. ■
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B Analysis of the General Model

In this part of the Appendix, we analyze the benchmark model without restrictions on the

parameters αi, δi, γi.

B.1 Socially Optimal Technology Choice

As described in the main text, the planner uses technology N after the disaster iff x̄ i = 1 or
�

αi − γi

�

QN > QO. Letting q = log (QN/QO) denote the log quality gap between the technolo-

gies, we can equivalently define a threshold gap qi such that the planner uses technology N

after the disaster iff x̄ i = 1 or q ≥ qi:

qi =







− log (αi −δi) if αi > δi,

∞ else.
(B1)

At the onset of the disaster, if q < qi the planner optimally reverts to using technology O in

sector i if possible. If qi <∞, the planner eventually uses technology N again when it attains

a sufficiently large lead over technology O.

With this characterization, we can directly integrate the post-disaster HJB equation (4) and

take expectations with respect to x̄:

E [W ( x̄ ,Q)| x] =
∫ 1

0

�

1− x iηi

�

§�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO

+exp
�

−
ρ − gN

gN − gO
(qi − q)+

�

αi −δi

ρ − gN
QN

ª

+ x iηi
αi −δi

ρ − gN
QN di.

Here we use the notation (qi − q)+ =max {qi − q, 0}. Considering the planner’s problem before

the disaster (3), we observe that it is optimal to use technology N in sector i iff

αiQN −QO > µληi

§�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO (B2)

−
�

1− exp
�

−
ρ − gN

gN − gO
(qi − q)+

��

αi −δi

ρ − gN
QN

ª

.

This optimality condition differs from (6) because the discounted future net output from using

technology O at the time of the disaster now accounts for the possibility that technology N is

used after the quality gap q exceeds qi.
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B.2 Comparative Statics for Socially Optimal Adoption

Suppose as in Section 3.2 that αi and ηi are constant across sectors, but make no assumption

about the ranking between δi and α. Let q̄ (δi) = qi denote the quality gap above which it is

optimal to use technology N in sector i after the disaster (B1), making explicit the dependence

on δi. The following proposition shows that optimal technology choices can be described using

a damage threshold L (µ, q) and provides comparative statics, generalizing Proposition 1 from

Section 3.2.

Proposition B.1. It is socially optimal to use technology N in sector i before the disaster iff δi <

L (µ, q), where L (µ, q) is the unique solution to the equation

α− exp (−q) = µλη
§�

1− exp
�

−
ρ − gO

gN − gO
(q̄ (L (µ, q))− q)+

��

1
ρ − gO

exp (−q) (B3)

−
�

1− exp
�

−
ρ − gN

gN − gO
(q̄ (L (µ, q))− q)+

��

α− L (µ, q)
ρ − gN

ª

.

L (µ, q) (and thus X (µ, q)) is strictly increasing in α and q and strictly decreasing in gO, λ, and

µ. It is strictly decreasing in gN if L (µ, q)> α and strictly increasing in gN if L (µ, q)< α.

Proof. Throughout the proof, we suppress the arguments of the damage threshold L (µ, q) to

simplify notation. The results described in the proposition are easier to prove if we re-write

the discounted values on the right-hand side of (B3) as integrals over time. To do this, given

a quality gap q, let T̄ (q, g,δ) denote the length of time after the disaster during which it is

optimal to use technology O instead of technology N in a sector with damages δ:

T̄ (q, g,δ) =







max
¦

− log(α−δ)−q
gN−gO

, 0
©

if α > δ,

∞ else.

If the sector is not constrained to technology N , its discounted net output after the disaster is

∫ T̄ (q,g,δ)

0

exp (−ρt)exp (gO t)QOd t +

∫ ∞

T̄ (q,g,δ)

exp (−ρt)exp (gN t) (α−δ)QN d t. (B4)

Similarly, its discounted net output when constrained to technology N is

∫ ∞

0

exp (−ρt)exp (gN t) (α−δ)QN d t. (B5)

The bracketed term in (B3) is the difference between the previous two terms above for the
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marginal sector (with δ = L), divided by QN . The right-hand side of (B3) can then be written

RHS= µλη

∫ T̄ (q,g,L)

0

exp (−ρt) [exp (gO t)exp (−q)− exp (gN t) (α− L)] d t.

We first demonstrate that, when α > exp (−q) so that technology N is more productive

than technology O, there always exists a unique solution L to (B3). We observe that RHS is

continuous in L, equals zero when L ≤ α−exp (−q), and limits to infinity as L→∞. Moreover,

RHS is strictly increasing in L when L > α− exp (−q): This condition implies T̄ (q, g, L) > 0,

and we can differentiate RHS to find

∂ RHS
∂ L

= µληexp
�

−ρ T̄
� �

exp
�

gO T̄
�

exp (−q)− exp
�

gN T̄
�

(α− L)
� ∂ T̄
∂ L

+µλη

∫ T̄ (q,g,L)

0

exp (−ρt)exp (gN t) d t

= µλη

∫ T̄ (q,g,L)

0

exp (−ρt)exp (gN t) d t

> 0.

Note that the second equality holds by the Envelope Theorem: T̄ maximizes the discounted

net output from the marginal sector after the disaster, assuming its technology choice is un-

constrained. As a result RHS does not vary locally with respect to T̄ (∂ RHS/∂ T̄ = 0). Given

these properties of RHS, the Intermediate Value Theorem guarantees a unique solution L to

(B3) when α > exp (−q). Moreover, it follows from the optimality condition (B2) that it is

socially optimal to use technology N in sector i before the disaster iff δi < L (µ, q).
The comparative statics for the damage threshold L follow from the Implicit Function The-

orem. Holding L fixed, we immediately observe that RHS is decreasing in α and increasing in

µ, λ, and η. Differentiating with respect to q, gO, and gN yields

∂ RHS
∂ q

= −µλη
∫ T̄

0

exp (−ρt)exp (gO t)exp (−q) d t,

∂ RHS
∂ gO

= µλη

∫ T̄

0

exp (−ρt)exp (gO t)exp (−q) td t,

∂ RHS
∂ gN

= −µλη
∫ T̄

0

exp (−ρt)exp (gN t) (α− L (µ, q)) d t.

These expressions imply that RHS is decreasing in q, increasing in gO, and decreasing (increas-

ing) in gN iff α > (<)L (µ, q). Collecting these results, the Implicit Function Theorem delivers

B-3



the comparative statics stated in the proposition. ■

The proposition demonstrates that almost all comparative statics from Proposition 1 hold

without the assumption that social damages always exceed output from technology N after

the disaster (αi ≤ δi). However, the comparative static with respect to gN is sensitive to this

assumption. When damages in the marginal sector exceed output (L (µ, q) > α), the damage

threshold is decreasing in gN as in Proposition 1. When damages in the marginal sector are

below output (L (µ, q)< α), the damage threshold is instead increasing in gN .

The following proposition generalizes Proposition 2 to provide full comparative statics for

adoption with respect to the growth rates gO and gN , including both the direct effects described

in Proposition B.1 and the indirect effects through the state (µ(t), q(t)).

Proposition B.2. For all t > 0 with L (µ (t) , q (t))< α:

1. X (µ (t) , q (t)) is decreasing in gO.

2. X (µ (t) , q (t)) is increasing in gN .

3. If q(0) is sufficiently low and X (µ (t) , q (t)) < F (α), X (µ (t) , q (t)) is bounded strictly

below F (α) as gN approaches ρ, i.e., limgN↑ρ X (µ (t) , q (t))< F (α).

The first two results follow from Proposition B.1 after noting that the damage threshold L

is increasing in the quality gap q, and in turn the quality gap q(t) at time t is decreasing in

gO and increasing in gN . The final result of the proposition follows by taking the limit gN ↑ ρ
in (B3). Notably, in this limit adoption does not tend to either of the extreme values 0 or

F(α), in contrast to the corresponding result in Proposition 2. This holds because, for any

sector i with δi < α, the discounted net output after the disaster tends to infinity as gN ↑ ρ
regardless of whether the sector is constrained to use technology N after the disaster. However,

the difference between the discounted net output when unconstrained and the discounted net

output when constrained tends to a finite limit. Socially optimal technology choices before the

disaster depend on this difference (see B2), so provided that δi is sufficiently close to α and

the initial quality gap q(0) sufficiently low, it can remain optimal to delay using technology N

in sector i before the disaster even when gN ↑ ρ.

We illustrate these results in Figure 3 by depicting adoption curves for a stylized param-

eterization of the model. We modify the calibration of Figure 1 only by assuming that the

distribution of damages δi is uniform over [0,5] instead of [1,5]. Technology choices for sec-

tors with δi ∈ [1, 5] are exactly as in Section 3, and since these sectors comprise 5/6 of all

sectors in this calibration, the adoption curves in Figure 3 when X (t) ≥ 5/6 are identical to

the adoption curves in Figure 1.
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Figure 3: Adoption curves X (t) for different values of gN . The parameterization is the same
as in Figure 1, but with δ = 0.

When instead X (t) ∈ (0, 1/6), the sectors adopting technology N produce positive net

output after the disaster, so the analysis in this appendix becomes relevant. In this region, we

observe that adoption is increasing in gN , consistent with Proposition B.2.

B.3 Equilibrium Technology Choice

Using the same derivations as for the optimal technology choice, firm i uses technology N after

the disaster iff x̄ i = 1 or q ≥ q̃i, where

q̃i =







− log
�

αi − γi

�

if αi > γi,

∞ else.

Note that q̃i ≤ qi since γi ≤ δi. This implies that the private firm returns to using technology

N more quickly after the disaster than the planner. Integrating the firm’s post-disaster HJB

equation (9) and taking expectations with respect to x̄ i yields

E [Φi ( x̄ i,Q)| x i] =
�

1− x iηi

�

§�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO

+exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

�

αi − γi

ρ − gN
QN

ª

+ x iηi
αi − γi

ρ − gN
QN .
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It is then privately optimal to use technology N in sector i before the disaster iff

αiQN −QO > µληi

§�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO (B6)

−
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi − γi

ρ − gN
QN

ª

.

We observe two differences between this condition and the planner’s optimality condition (B2),

First, as in the main text, private damages γi appear in (B6) instead of the social damages that

appear in (B2). Second, the firm begins using technology N more quickly after the disaster

than the planner (q̃i ≤ qi). Both effects tend to reduce the net private cost of irreversibility and

incentivize the firm to use technology N more often than the planner before the disaster.

Lemma B.1. If the social planner uses technology N in sector i in state (µ,Q) before the disaster,

then so does firm i.

Proof. The statement holds provided that firm i’s opportunity cost to using technology N

instead of technology O at the time of the disaster is smaller than the planner’s opportunity

cost:
�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi − γi

ρ − gN
QN

≤
�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(qi − q)+

��

αi −δi

ρ − gN
QN .

Replacing γi with δi yields the intermediate inequality

�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi − γi

ρ − gN
QN

≤
�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi −δi

ρ − gN
QN .

Optimality of qi in the planner’s problem after the disaster yields the remaining inequality

�

1− exp
�

−
ρ − gO

gN − gO
(q̃i − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(q̃i − q)+

��

αi −δi

ρ − gN
QN

≤
�

1− exp
�

−
ρ − gO

gN − gO
(qi − q)+

��

1
ρ − gO

QO −
�

1− exp
�

−
ρ − gN

gN − gO
(qi − q)+

��

αi −δi

ρ − gN
QN .

■
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C Extensions

In this part of the Appendix, we discuss two extensions.

C.1 Heterogeneous αi

Suppose that ηi and δi are constant across sectors, and let Fα denote the smooth distribution

function for αi with support
�

α, ᾱ
�

. We maintain the assumption that αi ≤ δ for each sector i,

which requires ᾱ ≤ δ. Making use of the planner’s optimality condition (6), we observe that

there exists a productivity threshold A(µ, q) such that it is optimal to use the new technology

in sector i iff αi > A(µ, q). Total adoption of the new technology is then the fraction of sectors

above the productivity threshold:

X (µ, q) = 1− Fα (A(µ, q)) .

The following proposition characterizes the productivity threshold and is analogous to Propo-

sition 1 in Section 3.2.

Proposition C.1. It is socially optimal to use technology N in sector i iff αi > A(µ, q), where

A(µ, q) +µλη
A(µ, q)−δ
ρ − gN

=
�

1+
µλη

ρ − gO

�

exp (−q) . (C1)

A(µ, q) (and thus 1 − X (µ, q)) is strictly decreasing in q; strictly increasing in gO and δ; and

strictly increasing in λ, η, µ, and gN provided that A(µ, q)< δ.

Proof. The characterizing equation (C1) follows from the planner’s optimality condition (6).

The comparative statics are immediate from (C1). ■
The analogue of Proposition 2 also holds:

Proposition C.2. For all t > 0:

1. X (µ (t) , q (t)) is decreasing in gO.

2. There exists an earliest time t̄ <∞ such that X (µ (t) , q (t)) is decreasing in gN if t > t̄ .

The time t̄ is decreasing in gN .

3. Adoption falls to zero as gN approaches ρ, i.e., limgN↑ρ X (µ (t) , q (t)) = 0.

Comparative statics for the evolution of the productivity threshold A(µ, q) over time are

less tractable than for the damage threshold L (µ, q) in the benchmark model. The following
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proposition provides some guidance about Ȧ(µ, q) and Ä(µ, q) for the limiting case in which

the new and old technologies grow at the same rate.

Proposition C.3. When g = gO = gN :

1. Ȧ(µ, q) is negative and increasing in g.

2. There exists a posterior µ̄ ∈ (0, 1/2) such that if µ≤ µ̄, Ä(µ, q) is positive.

Proof. When g = gO = gN , the characterizing equation (C1) becomes

A(µ, q) =
1

1+ ρ−g
µλη

δ+ exp (−q) .

The quality gap q is constant since g = gO = gN . Differentiating in t then yields

Ȧ(µ, q) = µ̇
ρ−g
λη
�

µ+ ρ−g
λη

�2δ,

Ä(µ, q) =

�

µ̈− 2µ̇2 1

µ+ ρ−g
λη

� ρ−g
λη
�

µ+ ρ−g
λη

�2δ.

Clearly Ȧ(µ, q)< 0 because µ̇ < 0. Using the equations µ̇= −λµ (1−µ) and µ̈= −λµ̇ (1− 2µ),
we observe that Ä(µ, q)> 0 iff

1− 2µ > 2
µ (1−µ)
µ+ ρ−g

λη

.

This inequality is violated at µ = 1/2, but it is satisfied at µ = 0. Hence there exists a cutoff

µ̄ ∈ (0,1/2) such that it is satisfied for µ≤ µ̄. ■

Corollary C.1. If g = gO = gN and µ ∈ (0, µ̄], adoption is concave over time: Ẍ (µ, q)< 0.

These results imply that learning dynamics favor concave adoption over time when sectors

are heterogeneous according to comparative advantage, in contrast to the case with heteroge-

neous damages considered in the main text.

C.2 Constant Damages

In this section, we assess the role of the assumption that post-disaster damages scale with

quality QN by revisiting the analysis of Section 3 under an alternative assumption: Post-disaster
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damages in sector i are a fixed constant ∆i ≥ 0. In this case, the planner’s HJB equations (3,

4) are still valid, but total damages D (x) are now independent of Q and satisfy

D (x) =

∫ 1

0

x i∆idi.

The planner uses technology N in sector i after the disaster iff x̄ i = 1 or αiQN −∆i > QO.

If the disaster strikes when the quality vector is Q and the technology choice in sector i is

unconstrained, the planner uses technology O for a time period of length T̄ (Q, g,∆i), after

which she switches to technology N . The time period T̄ (Q, g,∆i) is equal to zero if αiQN−∆i ≥
QO, and otherwise it is the unique solution to the equation

αiQN exp
�

gN T̄ (Q, g,δi)
�

−∆i =QO exp
�

gO T̄ (Q, g,δi)
�

.

The solution always exists and is unique since gN > gO.

By the same argument as in Section 3.1, technology N is used in sector i before the disaster if

the increase in flow outputαiQN−QO dominates the expected loss due to the disaster. The latter

is the product of the expected arrival rate of the disaster µλ, the probability of irreversibility

ηi, and the difference between the discounted value of net output when technology choice is

unconstrained and when it is constrained to technology N . If the technology choice in sector

i is unconstrained after the disaster, the sector produces discounted net output

∫ T̄ (Q,g,δi)

0

exp (−ρt)exp (gO t)QOd t +

∫ ∞

T̄ (Q,g,δi)

exp (−ρt) [αi exp (gN t)QN −∆i] d t.

When constrained to technology N , the sector’s discounted net output is

∫ ∞

0

exp (−ρt) [αi exp (gN t)QN −∆i] d t.

We then that it is optimal to use technology N in sector i before the disaster iff

αiQN −QO > µληi

∫ T̄ (Q,g,δi)

0

exp (−ρt) {exp (gO t)QO − [αi exp (gN t)QN −∆i]} d t. (C2)

This optimality condition is analogous to (6) in the benchmark model, but with three differ-

ences. First, we have not explicitly integrated the integral in (C2) as we have in (6). Second,

in (C2) the fixed damages∆i replace the quality-dependent damages QNδi in (6). Finally, with

quality-independent damages ∆i it is always optimal to use technology N at some point after
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Figure 4: Adoption curves X (t)≡ X (µ (t) , q (t)) for different values of gN . The parameteriza-
tion is the same as in Figure 1, but with ∆= 1 and ∆̄= 5.

the disaster in sector i: T̄ (Q, g,δi) <∞. This contrasts with the benchmark model, in which

the assumption αi ≤ δi implies that the planner will always use technology O after the disaster

when possible.

Suppose as in Section 3.2 that αi and ηi are constant across sectors. The following propo-

sition is analogous to Proposition 1 in Section 3.2. It demonstrates that optimal technology

choices can be described using a damage threshold L (µ,Q) and provides comparative statics.

Proposition C.4. It is socially optimal to use technology N in sector i before the disaster iff ∆i <

L (µ,Q), where L (µ,Q) is the unique solution to the equation

αQN −QO (C3)

= µλη

∫ T̄ (Q,g,L(µ,Q))

0

exp (−ρt) {exp (gO t)QO − [αexp (gN t)QN − L (µ,Q)]} d t.

L (µ,Q) (and thus X (µ,Q)) is strictly increasing in α, QN , and gN and strictly decreasing in gO,

λ, µ, and QO.

We omit the proof details, because the argument is almost identical to the proof of Proposi-

tion B.1 in Appendix B.2. This proposition demonstrates that, when damages from technology

N do not scale with its quality QN , optimal adoption is increasing in the growth rate gN . This

contrasts with the corresponding result in Proposition 1, demonstrating that the assumption of
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proportional damages has significant implications for optimal adoption. We argue that many

of the conjectured dangers of (generative) AI more naturally correspond to the case in which

damages scale with the capabilities (quality) of rapidly improving models.

We illustrate these results in Figure 4. We modify the calibration of Figure 1 only by as-

suming constant damages ∆i uniformly distributed over
�

∆, ∆̄
�

, where ∆= 1 and ∆̄= 5, and

by initializing Q(0) = (1, 1). As a result, the initial value of the damages in each sector is the

same as in the quantitive example in the main text, as is the quality gap q(0) = 0. Consistent

with Proposition C.4, we observe that adoption is increasing in the growth rate gN . Moreover,

adoption is much faster than in Figure 1 because (potential) damages do not increase over

time as technology N improves.
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D Other Issues in Regulation

In this part of the Appendix, we explore second-best tax regulation schemes when private and

social damages are not positively affiliated, and we provide additional details about optimal

regulatory sandboxes and discuss their advantages relative to sector-independent taxes.

D.1 Second-Best Tax Regulation

Aside from the special case in which social and private damages are positively affiliated, a

sector-independent tax cannot implement the optimal technology choices in equilibrium. More

generally, use taxes can allow the planner to improve upon laissez-faire technology choices even

when optimal ones cannot be implemented. Suppose as in Proposition 7 that αi and ηi are

constant across sectors, but make no assumptions on the joint distribution of δi and γi. In each

state (µ,Q) before the disaster, the planner chooses the use tax τ (µ,Q) to maximize output

less the expected discounted social cost from the disaster:

max
τ

∫ 1

0

§

�

1− x
�

µ,Q,γi,τ
��

�

QO +µλη
1

ρ − gO
QO

�

+x
�

µ,Q,γi,τ
�

�

αQN +µλη
α−δi

ρ − gN
QN

�ª

di.

Here x
�

µ,Q,γi,τ
�

describes the equilibrium technology choice for firm i when subject to the

tax:

x
�

µ,Q,γi,τ
�

=







1 if αQN −QO −τ > µλη
�

1
ρ−gO

QO −
α−γi
ρ−gN

QN

�

,

0 else.

Firms adopt technology N in order of increasing γi, so we can equivalently assume that the

planner selects a private damage threshold L̂ (µ, q) such that firm i uses technology N iff γi <

L̂ (µ, q). The optimal threshold trades off flow consumption against the expected social cost of

the disaster. When interior, it satisfies

αQN −QO = µλη

�

1
ρ − gO

QO −
α− δ̄
�

L̂ (µ, q)
�

ρ − gN
QN

�

. (D1)

Here δ̄ (γ) = E
�

δi|γi = γ
�

is the average social damages across all firms with private damages

γ. The optimality condition (D1) is analogous to the original optimality condition (6), but it

replaces a single sector’s social damages δi with the expectation δ̄ (γ). The planner’s problem is

concave iff δ̄ (γ) is increasing, in which case an interior solution can be optimal. If, for example,
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δ̄ (γ) is decreasing, then the planner cannot incentivize sectors with low social damages to use

technology N while sectors with high social damages use technology O. As a result, the planner

chooses L̂ (µ, q) = 0 (no use of N) or L̂ (µ, q) =∞ (full use of N). The latter is optimal when

αQN −QO > µλη

�

1
ρ − gO

QO −
α−E [δi]
ρ − gN

QN

�

.

D.2 Analysis of Sandbox Regulation

Proposition 8 in the main text demonstrates that it is generally optimal for the planner to

implement a regulatory sandbox with a strictly positive wait time T̂ . The optimal wait time

T̂ must satisfy the following interior first-order condition, which is derived in the proof of the

proposition in Appendix A:

0= −
∫

δi≥δ̂
x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

di. (D2)

Here the state (µ,Q) is evaluated at the optimal time T̂ , and x
�

µ, q,γi

�

= 1 iff sector i would

use technology N in the laissez-faire equilibrium. Two forces determine the optimal wait time

T̂ : If sector i is above the threshold (δi ≥ δ̂) and would inefficiently use technology i at time T̂ ,

its laissez-faire technology choice would decrease social welfare, favoring a longer wait time:

x
�

µ, q,γi

�

§

αQN −QO −µλη
�

1
ρ − gO

QO −
α−δi

ρ − gN
QN

�ª

< 0.

If sector i would instead efficiently use technology i at time T̂ , its laissez-faire technology

choice would increase social welfare, favoring a shorter wait time.15

We can similarly derive the following interior first-order condition for the optimal threshold

δ̂, keeping T̂ fixed:

0=

∫ T̂

0

exp (−ρt)

∫

δi=δ̂

x
�

µ, q,γi

�

�

αQN −QO −µλη
�

1
ρ − gO

QO −
α− δ̂
ρ − gN

QN

��

d t.

If the threshold δ̂ is too high, a large fraction of sectors i face no restrictions on their technology

choices, and they subtract too much from social welfare between t = 0 and t = T̂ as they begin

using the new technology too quickly. If δ̂ is too low, then too many sectors i are forced to use

technology O between t = 0 and t = T̂ , foregoing the benefits of using technology N in these

15As this intuition suggests, it is straightforward to verify that, under the assumptions of Proposition 8, the
optimal wait time T̂ is nondecreasing in δ̂.

D-2



sectors when it is efficient to do so. This analysis demonstrates that the optimal parameters
�

δ̂, T̂
�

are chosen to resolve a trade-off between restricting early use of the new technology in

sectors where expected damages are large, while allowing broad use later as the probability of

a disaster falls and the quality gap grows.

We conclude this section by observing that regulatory sandboxes are likely to dominate

(or complement) sector-independent taxes when the order of adoption differs substantially

between the equilibrium and social optimum. For example, suppose that private and social

damages are negatively affiliated: γi = κ (δi), where κ is strictly decreasing. Then Proposition

7 implies that, for any sector-independent tax τ (µ,Q), the order in which sectors adopt the new

technology in equilibrium is exactly the opposite of the optimal order. Moreover, the analysis

in Appendix D.1 implies that the optimal sector-independent tax is such that there exists a time

T̂ before which no sector uses technology N and after which every sector uses technology N .

This time is characterized by the equation

αQN

�

T̂
�

−QO

�

T̂
�

= µ
�

T̂
�

λη

�

1
ρ − gO

QO

�

T̂
�

−
α−E [δi]
ρ − gN

QN

�

T̂
�

�

.

These technology choices can also be implemented using the sandbox policy with threshold

δ̂ = δ and wait time T̂ . Hence a regulatory sandbox can achieve weakly greater social welfare

than any sector-independent tax when the misalignment in the order of adoption between the

equilibrium and the social optimum is severe.
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