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1. Introduction 

 

1.1. Background 

 

 A central mission of research in public economics has been to determine policies that optimize 

utilitarian welfare, recognizing that policy choice affects individual behavior. To ease analysis, economists 

have maintained simplifying assumptions about behavior. It is well known that findings on optimal policy 

are sensitive to these assumptions. 

 The seminal Mirrlees (1971) study of optimal income taxation assumed that individuals maximize 

static deterministic utility when choosing labor supply. It assumed that individuals have homogeneous 

consumption-leisure preferences and are heterogeneous only in ability, hence wage. Among the 

assumptions that Mirrlees posed in his introductory section, he stated (p. 176): “The State is supposed to 

have perfect information about the individuals in the economy, their utilities and, consequently, their 

actions.” His analysis showed that the optimal tax structure is sensitive to the assumed utility function and 

ability distribution. In his conclusion he wrote (p. 207): “The examples discussed confirm, as one would 

expect, that the shape of the optimum earned-income tax schedule is rather sensitive to the distribution of 

skills within the population, and to the income–leisure preferences postulated. Neither is easy to estimate 

for real economies.” 

 The ensuing literature on optimal taxation has studied settings where individuals may have jointly 

heterogeneous preferences and abilities, it being assumed that the planner knows the joint distribution of 

preferences and ability. It has long been recognized that optimal policy is sensitive to the form of this 

distribution (e.g., Sheshinski, 1972; Atkinson and Stiglitz, 1980). However, empirical understanding of the 

actual population distribution of preferences and abilities has remained weak, impeding application of the 

theory. Manski (2014) studied partial identification of income-leisure preferences using revealed-

preference analysis of labor supply and reached this pessimistic conclusion (p. 146): “As I see it, we lack 

the knowledge of preferences necessary to credibly evaluate income tax policies.”   
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 Theoretical study of utilitarian policy choice began in the 1700s, was formalized in the first half of the 

1900s, and continued to develop steadily through the latter part of the century. The subject has received 

less attention in the 2000s, as public economists have increasingly performed design-based empirical 

research rather than welfare-economic study of potential policies, a trend discussed in Manski (2026). A 

welcome exception to the recent dearth of welfare-economic research is a new body of analysis of optimal 

paternalistic planning in populations with bounded rationality. 

 For about two centuries, paternalistic planning was considered outside the domain of utilitarian welfare 

economics. Economists largely agreed with this emphatic declaration of John Stuart Mill in On Liberty  

(Mill, 1859, p. 18): 

“the only purpose for which power can be rightfully exercised over any member of a civilised 

community, against his will, is to prevent harm to others. His own good, either physical or moral, is 

not a sufficient warrant. He cannot rightfully be compelled to do or forbear because it will be better 

for him to do so, because it will make him happier, because, in the opinions of others, to do so would 

be wise, or even right.” 

 Paternalistic planning has become a mainstream concern of public economics since the early 2000s, 

stimulated by the growth of empirical research in behavioral economics in the latter part of the 1900s. Since 

then, behavioral public economists have suggested that social planners should limit the choice options 

available to individuals to ones deemed beneficial from a utilitarian perspective or, less drastically, should 

frame the options in a manner thought to influence choice in a positive way. Thaler and Sunstein (2003) 

evocatively wrote that such policies express “libertarian paternalism.” Their use of informal reasoning to 

advocate “nudge” policies (Thaler and Sunstein, 2008) has been influential, implemented through 

organizations such as the Behavioral Insights Team (https://www.bi.team/) initially established by the UK 

government. 

 An early expression of the type of formal analysis that we think desirable was given by O’Donoghue 

and Rabin (2003), who began their article as follows (p. 186): 

 “The classical economic approach to policy analysis assumes that people always respond 

optimally to the costs and benefits of their available choices. A great deal of evidence suggests, 

https://www.bi.team/


3 
 

however, that in some contexts people make errors that lead them not to behave in their own best 

interests. Economic policy prescriptions might change once we recognize that humans are humanly 

rational rather than superhumanly rational, and in particular it may be fruitful for economists to study 

the possible advantages of paternalistic policies that help people make better choices. 

 We propose an approach for studying optimal paternalism that follows naturally from standard 

assumptions and methods of economic theory: Write down assumptions about the distribution of 

rational and irrational types of agents, about the available policy instruments, and about the 

government’s information about agents, and then investigate which policies achieve the most efficient 

outcomes. In other words, economists ought to treat the analysis of optimal paternalism as a 

mechanism-design problem when some agents might be boundedly rational.” 

 

 Economists have subsequently performed a growing set of analyses of the type sought by O’Donoghue 

and Rabin, addressing different classes of policy choices and assuming various distributions of preferences 

and deviations from rationality. The literature has expanded to the extent that a review article by Bernheim 

and Taubinsky (2018) is over 100 pages long and contains over 350 references. The literature continues to 

grow in multiple directions, to the extent that it would be foolhardy for anyone to assert full awareness of 

all of the current frontiers. Our present paper emerges from the conjunction of two features of the literature 

to date, one that we find admirable and the other deeply concerning. 

 We find admirable that much research in behavioral public economics evaluates policy with 

recognition that individuals have heterogeneous preferences and deviations from rationality. Early on, 

O’Donoghue and Rabin (2003) referred to “the distribution of rational and irrational types of agents” in 

their opening paragraphs, quoted above. Camerer et al. (2003) called attention to the importance of 

heterogeneity to policy formation when they recommended adoption of what they termed asymmetric 

paternalism, writing (p. 1212): “a regulation is asymmetrically paternalistic if it creates large benefits for 

those who make errors, while imposing little or no harm on those who are fully rational.” Although some 

subsequent research work assumed representative agent models for simplicity, study of planning in 

heterogeneous population is increasingly the norm. See, for example, O’Donoghue and Rabin (2006), 

Allcott and Taubinsky (2015), Goldin and Lawson (2016), Rees-Jones and Taubinsky (2018), Handel, 
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Kolstad, and Spinnewijn (2019), Moser and Olea de Souza e Silva (2019), Farhi and Gabaix (2020), Goldin 

and Reck (2022), Allcott et al. (2025), and Lockwood et al. (2025). 

 Our deep concern is that researchers in behavioral economics commonly assert optimal paternalistic 

planning to be feasible in heterogeneous populations. To their credit, authors sometimes observe that 

findings on optimal policy are sensitive to assumptions made about the population distribution of 

preferences and deviations from rationality. They also sometimes caution that the sensitivity of optimal 

policy to these assumptions makes it important to have a firm empirical understanding of behavior in 

populations with bounded rationality. Nevertheless, the literature has failed to cope with a severe 

identification problem that is endemic in empirical research using data on choice behavior to infer the 

population distribution of preferences and deviations from rationality. 

 The core of the identification problem was understood by Samuelson (1938, 1948) in his pioneering 

study of revealed preference analysis, later extended by Afriat (1967). Consider a rational person making 

decisions with full knowledge of utility outcomes. Observation of a choice reveals only that this action is 

weakly preferred to all other elements of the choice set. It does not reveal the full preference ordering. 

 Whereas Samuelson and Afriat contemplated analysis of choices made by one individual, random 

utility analysis has studied the identification problem at the population level. Marschak (1960), assuming 

only that preferences are strict with probability one, derived sharp bounds on certain counterfactual choice 

probabilities. The discrete-choice literature pioneered by McFadden (1974) has mainly assumed for 

simplicity that the preference distribution lies in a specified finite-dimensional family, yielding point 

identification of preference distributions. However, being troubled by the limited credibility of parametric 

models, econometricians have also studied semiparametric and nonparametric models. Whereas point 

identification of preference distributions persists with modest weakening of parametric models, partial 

identification becomes the norm when weaker assumptions are maintained. See Manski (2007a, 2014) and 

Molinari (2020). 

 As serious as the identification problem is when studying deterministic rational behavior, its severity 

increases qualitatively when studying boundedly rational behavior. In research performed before 



5 
 

development of the behavioral public economics field, several partial identification findings were proved 

in Manski (1997, 2003). A particularly simple and striking finding reported in Manski (1997), Proposition 

1 considered a setting of binary treatment choice and binary utility outcomes. We summarize here: 

 

Choice Between a Treatment Mandate and Decentralization: Suppose that a planner can mandate treatment 

A or B. Alternatively the planner can decentralize decisions, enabling population members to choose their 

own treatments. Let treatment utility outcomes be binary, taking  the value 0 or 1. Assume the planner 

knows the welfare yielded by each mandate, namely P[u(A) = 1] and P[u(B) = 1]. However, the planner 

does not know the joint distribution of preferences and deviations from rationality in the population. 

 There are two polar cases. If all population members are rational and maximize utility, decentralized 

welfare is P[u(A) =1 or u(B = 1]. If they all irrational and minimize utility, welfare is P[u(A) = u(B) = 1]. 

It is proved that knowledge of welfare under each mandate implies that decentralized welfare can take any 

values in the interval [max(0, C  1),  min(C, 1)], where C ≡ P[u(A) = 1] + P[u(B) = 1]. This interval is 

informative from the left or the right but not from both sides. Its width narrows toward 0 as C approaches 

0 or 2 but widens toward 1 as C approaches 1. Thus, knowledge of welfare under the mandates may reveal 

a lot or a little about decentralized welfare, depending on the empirical value of C.      ∎ 

 

 Some subsequent research has revealed more about the identification problem. Assuming that 

individuals maximize subjective expected utility when making decisions under uncertainty, Manski (2004) 

called attention to the difficulty of jointly inferring preferences and expectations from choice data. 

Barseghyan et al. (2021) studied partial identification when bounded rationality takes the form of choice 

from consideration sets, which are cognitively determined subsets of feasible choice sets. In their review 

article on behavioral public economics, Bernheim and Taubinsky (2018) wrote (p. 395-96): 

“Model uncertainty. The BRP approach is also demanding on analysts because it presupposes that 

they can successfully identify correct behavioral models. Because behavioral economists operate 

within a domain that offers abundant degrees of freedom, many distinct models of choice processes 
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can potentially account for the same or similar choice mappings. Experience teaches us that building 

a professional consensus for the “right” model can be extremely difficult, even when the choice 

mapping is known.” 

Here “model uncertainty” is close to a synonym for partial identification and “BRP” is an acronym for 

“behavioral revealed preference.” 

 In light of the above, we think it highly unrealistic for behavioral public economists to assert that they 

are able to learn optimal policies. Yet this have been the prevailing practice. In the language of Manski 

(2011, 2020), researchers perform policy analysis with incredible certitude. 

 

1.2. Contribution of the Paper 

 

 This paper argues that, to enhance credibility, behavioral public economists should analyze policy as 

a problem of social planning under uncertainty, a subject studied in Manski (2024). The paper does much 

more than only exhort the research community. We use a simple yet broadly applicable framework to 

increase understanding of the sensitivity of optimal policy to the distribution of population preferences and 

deviations from rationality. Performing original research, we present a set of novel findings. 

 We consider a planner who has the power to design a discrete choice set from which individuals will 

choose. We suppose that there is no social cost to offering larger choice sets. Hence, classical utilitarian 

welfare economics recommends that the planner should offer the largest choice set possible. We depart 

from the classical setting by supposing that individuals may be boundedly rational in the sense that they 

may not choose options that maximize objective expected utility. In such settings, it may be optimal for the 

planner to constrain the choice set to prevent persons from choosing inferior actions or, less drastically, to 

frame the choice set in a manner that influences behavior. This paper mainly studies policies that constrain 

the choice set, particularly mandates. 

We use the term bounded rationality in the way that Simon (1955) had in mind in the article that 

spawned the modern literature in behavioral economics (p. 101): 
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  “Because of the psychological limits of the organism (particularly with respect to computational 

and predictive ability), actual human rationality-striving can at best be an extremely crude and 

simplified approximation to the kind of global rationality that is implied, for example, by game-

theoretical models.” 

O’Donoghue and Rabin (2003) similarly wrote: “humans are humanly rational rather than superhumanly 

rational.” Thus, we assume individuals have well-defined stable latent utility function that they want to 

maximize but find it infeasible to do so. We do not consider more radical conceptualizations of behavior 

that question the realism of stable utility functions, as in Tversky and Kahneman (1986) and Bernheim and 

Rangel (2008). 

 

Example 1: Some public social security systems and private pensions have an early eligibility age at which 

a person can start receiving a pension, with less than full benefits. This age differs widely across countries. 

In the US, partial benefits are obtainable at age 62 and full benefits later (historically at age 65, in process 

of advancing to 67). The UK has had a single State Pension Age determining eligibility for full benefits 

(historically at age 65, in process of advancing to 67), with no option of earlier retirement with lower 

benefits. Imposing a constraint on the earliest age for eligibility hurts workers who would sensibly stop 

working before this age due to health and other personal circumstances. On the other hand, it prevents 

people from retiring too early, reflecting shortsightedness. Setting an early eligibility age should strike a 

balance between these considerations.   ∎ 

 

Example 2: Clinical practice guidelines (CPGs) in medicine make treatment recommendations that act as 

quasi-mandates. Guidelines condition these recommendations on specified publicly observed patient 

covariates. Clinicians commonly observe patient covariates beyond those considered in guideline 

recommendations, enabling more refined personalization of treatment. Utilitarian theory assuming that both 

guideline panels and clinicians act with complete rationality implies that decentralized treatment is 

preferable to mandates. This conclusion may not hold if guideline panels make optimal recommendations 

conditioning on the covariates they observe, but clinicians do not.    ∎ 
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 The planner’s problem is straightforward if all members of the population have the same known latent 

preferences. Then the optimal paternalistic utilitarian policy calls on the planner to determine the 

population-wide best option and mandate it. This obvious result holds regardless of the nature of bounded 

rationality in the population. 

 Our concern is settings in which persons have heterogeneous stable preferences and may vary in how 

their choices deviate from maximization of objective expected utility. Throughout the paper, we assume 

that members of the population have well-defined latent preferences across actions, expressed as the 

objective expected utility of actions conditional on privately available information. A person who 

maximizes objective expected utility will be said to have complete rationality.1 

To begin, Section 2 shows that the policy that most effectively constrains or influences individual 

choice depends in a particular multiplicative way on the preferences of the population and on the choice 

probabilities conditional on preferences that measure the suboptimality of behavior. This mathematically 

simple finding is central to our subsequent analysis. As far as we are aware, the finding is new to research 

in behavioral public economics. It is, however, reminiscent of a known result on regret in statistical decision 

theory analysis of treatment choice with sample data on treatment response.   

 To simplify notation, Sections 2 and 3 suppress publicly observable covariates of members of the 

population and study optimal planning in a population of persons who are observationally identical to the 

planner. The findings in Sections 2 and 3 are presented in a set of six simple yet instructive propositions. 

 
1 Applied economists have long associated rationality with maximization of objective expected utility. See, for 
example, Friedman and Savage (1948). Nevertheless, other decision criteria for choice under uncertainty that may 
also warrant the term complete rationality. For example, maintaining the concept of an objective probability 
distribution to characterize uncertainty, Manski (1988) studied maximization of objective quantile utility. 

A different perspective is manifest in axiomatic decision theory, which considers rationality to mean behavior  
is consistent with specified choice axioms. Objective probability distributions rarely appear in axiomatic theory. 
Savage (1954) associated rationality with maximization of subjective expected utility, where subjective probability 
distributions and utility functions are constructs implied by adherence to specified choice axioms.  
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Section 2 formalizes how preferences and choice probabilities interact to determine population welfare 

with each policy. We compare the optimal mandate and decentralized choice, where there is no intervention 

by the planner. We characterize settings in which the optimal mandate performs better or worse than 

decentralized choice.  

 Section 3 considers policy choice when individuals are boundedly rational in a specific way, this being 

that they measure utility with additive random error and maximize mismeasured rather than actual utility 

functions. Studying this type of bounded rationality enables more detailed analysis. When the errors in 

utility measurement are bounded or are independent and identically distributed, we obtain lower bounds on 

the welfare achieved by decentralized choice and by policies that constrain the choice set. When the errors 

have a scaled version of the Type I extreme value distribution, implying that choice probabilities have the 

multinomial logit form, we show that the scale of the error distribution succinctly characterizes the degree 

of rationality in the population. For any policy that does not mandate a particular treatment, population 

welfare increases with the degree of rationality, which affects choice probabilities. However, an instructive 

numerical example shows that the optimal paternalistic policy varies in a subtle way with the degree of 

rationality. Contrary to what may seem intuitive, the optimal constrained choice set need not monotonically 

expand as the degree of rationality increases. 

In Sections 2 and 3, the distinction between deterministic choice and choice under uncertainty is not 

relevant, so we refer for brevity to utility rather than to objective expected utility. In Section 4, we address 

settings with uncertainty and refer explicitly to objective expected utility. We focus on the type of bounded 

rationality that occurs when subjective probabilistic beliefs of members of the population differ from 

objective probabilities of uncertain outcomes (aka deviations from rational expectations). 

Section 4 removes the simplification that members of the population are observationally identical. We 

now suppose that members of the population have publicly and privately observable covariates. The planner 

sees only the publicly observable covariates, whereas members of the population also see the privately 

observable ones. In these settings, utilitarian theory assuming complete rationality recommends 
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decentralization to enable decision making to condition on private information. However, members of a 

population with bounded rationality may make sub-optimal decisions. 

 Considering problems of binary treatment choice under uncertainty, we present the conventional 

utilitarian argument for decentralization and then focus on a form of bounded rationality that has long been 

of interest in economics. This is maximization of subjective expected utility when probabilistic beliefs differ 

from objective probabilities of uncertain outcomes; that is, deviation of beliefs from rational expectations. 

We characterize the situations in which such deviations yield sufficiently sub-optimal decentralized choices 

that the optimal mandate improves utilitarian welfare. 

 The contexts to which our analysis applies range from medical treatment to school tracking to timing 

of pension eligibility. To illustrate, we focus on medical treatment under uncertainty. Here, the planning 

entities are panels that formulate clinical practice guidelines, mentioned above in Example 2. We use 

assessment of women’s risk of developing breast cancer to illustrate that patients may condition their beliefs 

on privately observed covariates not used in guidelines for prophylactic treatment of breast cancer. We call 

attention to psychological research that studies empirical deviations of clinical judgement from rational 

expectations. 

 We then present a formal analysis comparing adherence to CPGs and clinical judgment in medical 

choice between surveillance and aggressive treatment of disease. This shows that deviations of clinical 

judgement from rational expectations do not, per se, imply that maximization of subjective expective utility 

lowers welfare relative to the ideal optimum. Importantly, the distance between subjective and objective 

probabilities of illness does not determine the welfare performance of patient care with clinical judgement. 

Considering patients with a specified utility function, what matters are choice probabilities. These are 

determined by the frequency with which subjective and objective probabilities of illness differ in whether 

they are smaller or larger than the value of a threshold probability, where the mandate and decentralized 

choice yield the same objective expected utility. 

 In Sections 2 through 4, we assume that the planner has the knowledge necessary to choose an optimal 

policy. Yet we caution throughout that this extensive knowledge is commonly not available. In toto, our 
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analysis characterizes the subtle nature of optimal policy, whose determination requires the planner to 

possess extensive knowledge of population preferences and behavior that is rarely available. 

The concluding Section 5 argues that study of utilitarian policy choice should consider not only the 

population but also the planner to be boundedly rational. We recommend that behavioral public economists 

abandon the conventional research practice of determining optimal policy with unsubstantiated assumptions 

posed for convenience. Instead, researchers should study planning under uncertainty, using credible partial 

knowledge of population preferences and deviations from rationality. 

 

2. The Policy Choice Problem 

 

2.1. General Setup and Findings 

 

  Let J denote the population of concern to a utilitarian planner. Let C denote a pre-specified largest 

feasible finite choice set that the planner may make available to each member of J. Let each individual j ∈ 

J have a utility function uj(∙): C → R expressing the person’s preferences. Let uj
* ≡ max c ∈ C uj(c). This 

specification of utility functions assumes the absence of social interactions; that is, utility varies with a 

person’s own chosen action but not with those chosen by others. 

 To formalize utilitarian welfare, consider J to be a probability space with distribution P(j) and let 

P[u(∙)] denote the population distribution of utility functions. Let utility functions be cardinal and 

interpersonally comparable. Then the idealized optimum utilitarian welfare, if all persons maximize utility, 

is E(u*). 

 Having bounded rationality, individuals may not maximize utility. Let the planner choose among a set 

S of policies that may constrain or influence choice behavior. Suppose that, with policy s, person j chooses 

cj(s) ∈ C. For each i ∈ C, let P[c(s) = i|u(∙)] denote the fraction of persons with utility function u(∙) who 

would choose option i under policy s. The utilitarian welfare achieved by this policy is 
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(1)                      E{u[c(s)]}  =  ∫ ∑ i ∈ C u(i)∙P[c(s) = i|u(∙)]dP[u(∙)]. 

 

The optimal feasible welfare is achieved by a policy that solves the problem max s ∈ S E{u[c(s)]. 

 Observe that the value of E{u[c(s)]} depends multiplicatively on the utility functions u(∙) and the 

conditional choice probabilities P[c(s)|u(∙)] of the population, averaged across its members. It is revealing 

to consider the regret of a policy, its degree of sub-optimality, relative to the idealized optimum utilitarian 

welfare E(u*). The regret of policy s is 

 

 (2)                        E(u*) −  E{u[c(s)]}  =  ∫ ∑ i ∈ C [u* − u(i)]P[c(s) = i|u(∙)]dP[u(∙)]. 

 

For each utility function u(∙) and action i, [u* − u(i)]P[c(s) = i|u(∙)] is the degree of sub-optimality of i 

multiplied by its choice probability. Thus, the regret of policy s is a weighted average of the multiplicative 

interactions of choice probabilities for actions and their degrees of sub-optimality.2  

In this formalization of bounded rationality, the specific cognitive processes that lead individuals to 

deviate from utility maximization are immaterial. What matters for social welfare is the set of choice 

probabilities and the degree of sub-optimality of these choices. This structure of sub-optimality is central 

to our analysis henceforth. 

 

2.1.1. Deterministic and Stochastic Pareto Comparison of Policies 

 The welfare ranking of two policies, say s and s', generally depends on the distribution of utility in the 

population. However, the ranking is invariant to P[u(∙)] if one policy is Pareto superior to the other in the 

classical or a weaker sense. 

 
2 This multiplicative structure is similar to the regret of a utilitarian rule for binary treatment choice using sample data 
on treatment response. There, regret is the mean welfare loss when a member of the population is assigned the inferior 
treatment, multiplied by the expected fraction of the population assigned this treatment. See Manski (2007a, Section 
12.3) and Manski (2021, Section 2.3.2). 
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 Classical Pareto superiority of s relative to s' occurs if uj[cj(s)] ≥ uj[cj(s')] for all j ∈ J and uj[cj(s)] > 

uj[cj(s')] for some j ∈ J. A weaker stochastic sense of Pareto superiority that suffices for utilitarian welfare 

analysis occurs if E{u[c(s)|u(∙)]} ≥ E{u[c(s')|u(∙)]] for almost every utility function u(∙) and E{u[c(s)|u(∙)]} 

> E{u[c(s')|u(∙)]] for a set of utility functions that occur with positive probability in the population. 

 When the choice set contains two actions, say C = {a, b}, there exists a simple characterization of 

stochastic Pareto superiority in terms of choice probabilities. It suffices to consider utility functions for 

which u(a) ≠ u(b). Policy s increases the choice probability for the better of two actions if and only if it 

decreases the choice probability for the worse action. It holds immediately that policy s is stochastically 

Pareto superior to s' if and only choice probabilities satisfy these inequalities: P[c(s) = a|u(∙)] ≥ P[c(s) = 

b|u(∙)] for almost all u(∙) such that u(a) > u(b), P[c(s) = b|u(∙)] ≥ P[c(s) = a|u(∙)] for almost all u(∙) such that 

u(b) > u(a), and at least one of these inequalities is strict for a set of utility functions that occur with positive 

probability in the population. 

 No similarly simple characterization of stochastic Pareto superiority is feasible when C contains more 

than two actions. In these settings, increasing the choice probability for the best action decreases the sum 

of choice probabilities for the remaining actions, but it does not necessarily decrease the choice probability 

for every remaining action. Policy comparison requires attention to the multiplicative interaction of all 

choice probabilities and the cardinal structure of the associated utilities. 

 

2.1.2. The Focus on Choice in Empirical Research in Behavioral Economics 

 We think it important to point out that empirical research in behavioral economics has commonly 

focused on choices alone, rather than on the multiplicative interaction of choice probabilities with utilities 

that determines utilitarian welfare. Thus, behavioral economists have done much more to document the 

existence of bounded rationality than to measure the severity of its implications. 

An apt illustration is the famous Tversky and Kahneman (1981) Asian Disease framing experiment. 

The authors performed an experiment on decision making that studied how choice behavior depends on the 
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framing of the decision problem; that is, on the language that the researcher uses to describe alternative 

actions and their outcomes. They reported striking results. 

 We do not question their findings. Choice probabilities varied dramatically with the framing of the 

decision problem. However, the findings reveal nothing about the magnitudes of the utility losses that 

subjects would experience if they were to make different decisions. The authors conjectured that the 

findings support their prospect theory (Kahneman and Tversky, 1979), but, their research provided no direct 

evidence on the preferences of subjects. 

 In fact, regret is zero if subjects are risk neutral, a possibility discussed in Manski (2007b, Chapter 15). 

All of the policy choices posed in the experiment yield the same expected result for survival and death in 

the population, namely that 200 people will live and 400 will die. Thus, a risk-neutral person is indifferent 

among the policies. Regret is zero, whatever the choice probabilities may be. 

 

2.2. The Optimal Mandate 

 

 In the Introduction, we distinguished between policies that constrain and influence individual choices. 

Both types are encompassed in the above general setup. A choice-constraining policy limits the effective 

choice set to some C(s) ⊂ C, implying that P[c(s) = i|u(∙)] = 0 for all i ∉ C(s) and all u(∙). Such a policy is 

a mandate if C(s) is a singleton. Mandating action i yields welfare E[u(i)]. Hence, the optimal mandate 

selects an action im that solves the problem max i ∈ C E[u(i)]. 

 The optimal mandate yields the idealized optimal utilitarian welfare if all members of the population 

have the same preferences. It yields weakly lower welfare when preferences are heterogeneous. This holds 

by Jensen’s Inequality, which implies that max i ∈ C E[u(i)] ≤ E[max i ∈ C u(i)]. The inequality is strict when 

preferences are sufficiently heterogeneous to make the optimal action vary across the population. The 

optimal mandate is best for persons who most prefer action im, but not for those who most prefer other 

options. By (2), the regret of the optimal mandate is Rm ≡ E[max i ∈ C u(i)] − max i ∈ C E[u(i)]. 
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 Comparison of the optimal mandate with the idealized optimal utilitarian welfare is uninteresting if 

the population is boundedly rational. Comparisons of interest are to the welfare yielded by feasible policies, 

whose impacts are determined by the population distribution of utilities and by choice probabilities 

conditional on utilities. This paper performs various such comparisons. 

 

2.2.1. Comparing the Optimal Mandate with Decentralized Choice 

 An important comparison, which we perform often in this paper, juxtaposes the optimal mandate with 

decentralized choice, where the planner does not intervene in private decision making. We denote 

decentralized choice as the null policy s = o. It yields utilitarian welfare ∫ ∑ i ∈ C u(i)∙P[c(o) = i|u(∙)]dP[u(∙)]. 

The question of interest is to compare this with the welfare max i ∈ C E[u(i)] obtained with the optimal 

mandate. Decentralized choice provides a heterogeneous population the opportunity to achieve higher 

welfare than the optimal mandate, but it opens the danger of doing worse. Which prevails depends on the 

nature of bounded rationality. 

 A simple baseline result holds if the decentralized choices made by the members of the population are 

unrelated to their preferences, in the formal sense that choices are statistically independent of utility 

functions. Proposition 1 proves that the optimal mandate necessarily is preferable to decentralized choice.  

 

Proposition 1: Assume that P[c(o) = i|u(∙)] = P[c(o) = i] for all i ∈ C and almost all u(∙). Then welfare with 

the optimal mandate is greater than or equal to welfare with decentralized choice. Welfare with the optimal 

mandate is strictly greater if there exists h ∈ C such that P[c(o) = h] > 0 and E[u(h)] < max i ∈ C E[u(i)]. ■ 

 

Proof: The assumption implies that 

 

(3)  ∫ ∑ i ∈ C u(i)∙P[c(o) = i|u(∙)]dP[u(∙)]  =  ∑ i ∈ C P[c(o) = i]E[u(i)]. 
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∑ i ∈ C P[c(o) = i]E[u(i)] ≤ max i ∈ C E[u(i)]. The inequality is strict if there exists h s. t. P[c(o) = h] > 0 and 

E[u(h)] < max i ∈ C E[u(i)].  

                                                                                                                                                    Q. E. D. 

 

 Although Proposition 1 assumes that choice is unrelated to preferences, it does not assume that all 

actions have the same choice probability 1/|C|. If this is additionally assumed, welfare with decentralized 

choice is the unweighted mean utility across actions, namely 1/|C| ∙ ∑ i ∈ C E[u(i)]. We henceforth refer to 

such behavior as completely random choice. 

  Proposition 1 shows that a necessary condition for decentralized choice to outperform the optimal 

mandate is statistical dependence between choices and utility functions. An important question for policy 

formation is to characterize the types of dependence that render decentralized choice better or worse than 

the optimal mandate. This question is difficult to address satisfactorily in abstraction. However, informative 

results emerge when one considers specific forms of bounded rationality that place structure on choice 

probabilities. We show one simple result here and others later. 

 

Utility Maximization with Probability α  

 A simple form of bounded rationality with dependence supposes that choices maximize utility with 

some given probability α, and are statistically independent of utility with probability 1 – α. Then 

decentralized choice outperforms the optimal mandate if α is sufficiently large and the optimal mandate is 

better otherwise. Proposition 2 formalizes this result, whose proof is immediate. 

 

Proposition 2: Assume that, among persons with each utility function u(∙), choice maximizes utility with 

probability α. Choice is statistically independent of utility with probability 1 – α, with choice probabilities 

pi, i ∈ C. Then welfare with decentralized choice is αE(u*) + (1 – α) ∑ i ∈ C piE[u(i)]. Welfare with the 
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optimal mandate is max i ∈ C E[u(i)]. Hence, decentralized choice (optimal mandate) outperforms the optimal 

mandate (decentralized choice) if and only if the former (latter) welfare exceeds the latter (former).     ■ 

 

 Observe that, holding (pi, i ∈ C) and P[u(∙)] fixed, welfare with decentralized choice increases linearly 

with α. Proposition 2 is consistent with two interpretations of population behavior. In one interpretation, 

fraction α of the population always maximizes utility and fraction 1 – α always behaves in a manner that is 

unrelated to their preferences. In the other interpretation, each individual temporally varies in rationality, 

maximizing utility with probability α when facing a given choice problem and experiencing a spontaneous 

cognitive lapse with probability 1 − α. 

 

2.3. Nudges 

 

 A choice-influencing policy enhances the prominence of a specified action but does not prevent 

persons from choosing other actions. For example, behavioral economists have sought to enhance 

prominence by specifying some action to be the “default option,” by placing it first in the ordering of 

actions, by associating it with favorable images, and in other ways. Whatever mechanism is used, the 

objective is to increase the probability with which persons choose this action and decrease the probabilities 

with which they choose all other actions. Such policies have been called nudges. 

 A behavioral economist may recommend nudging the population towards the optimal mandate and 

away from all other alternatives. Let s be such a policy. Comparing it with decentralized choice, the nudge 

yields these inequalities on choice probabilities: For all u(∙), P[c(s) = im|u(∙)] ≥ P[c(o) = im|u(∙)] and P[c(s) 

= i|u(∙)] ≤ P[c(o) = i|u(∙)], i ≠ im. It does not seem possible to evaluate the welfare impact of nudges in 

abstraction. One must consider the context. The remainder of this paper focuses on policies that constrain 

the choice set and does not study nudges. 
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3. Policy Choice with Additive Error in Utility Measurement 

 

 To enable further analysis, we now consider policy choice when individuals are boundedly rational in 

a specific way. We assume that they measure utility with additive error and maximize mismeasured rather 

than actual utility functions. We do not assert that this type of bounded rationality is common in actual 

populations. We study it because the idea is easy to understand and because it enables us to apply findings 

on choice probabilities developed in the literature analyzing random utility models. 

 

3.1. Choice Probabilities Generated by Random Utility Models 

 

 Let policy s constrain choice to a choice set C(s), which may be any non-empty subset of C. We assume 

that, under policy s, person j mismeasures the utility of each c ∈ C(s) as uj(c) + εj(c, s), chooses an action 

cj
#(s) ≡ argmax c ∈ C(s) uj(c) + εj(c, s), and thus achieves utility u[cj

#(s)]. For simplicity, we assume that the 

conditional error distribution P[ε(c, s), c ∈ C(s)|u(∙)] is continuous. This implies that cj
#(s) is unique for 

almost every person j. Hence, choice probabilities are well-defined, with 

 

(4)    P[c#(s) = i|u(∙)]  =  P[u(i) + ε(i, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)],   all i ∈ C(s). 

 

Inserting these choice probabilities into (1) yields the welfare achieved by policy s, which is 

 

(5)     E{u[c(s)]}  =  ∫ ∑  i ∈ C(s) u(i)∙ P[u(i) + ε(i, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)]dP[u(∙)]. 

 

Other research studying this type of bounded rationality include Allcott and Taubinsky (2015), Goldin and 

Reck (2022), and Allcott et al. (2025). 

 Equation (4) provides a random-utility model interpretation of bounded rationality (McFadden, 1974; 

Manski, 1977). The values of the choice probabilities are determined by the conditional error distribution 
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P[ε(c, s), c ∈ C(s)|u(∙)]. In the absence of restrictions on this distribution, any choice probabilities are 

possible. Hence, assuming that a random utility model expresses bounded rationality does not, per se, yield 

restrictions on population welfare. Some knowledge of the error distributions is necessary. 

 For example, Goldin and Reck (2022) used an additive random utility model with a particular type of 

error distribution to study nudge policies that distinguish some action as the default option. For i ∈ C, let si 

denote a policy specifying i as the default option. Let there exist a person-varying but not action-varying 

quantity γj ≥ 0 such that εj(i, si) = 0 and εj(c, si) = -γj when c ≠ i. Thus, an individual subtracts an as-if cost 

γj from the utility of each action that is not the default. In their analysis, some person-specific fraction of γj 

is normative, in the sense that it reduces actual welfare. The remaining fraction is considered to be a mistake, 

which does not reduce actual welfare. They characterized utilitarian welfare in this setting. 

 In what follows, we consider random utility models with other assumptions on the error distribution. 

To our knowledge, this analysis is new to the literature. 

  

3.2. Degrees of Rationality 

 

 An initial question is whether one may reasonably compare the degrees of rationality implied by 

different error distributions. Our concern is with the population welfare achieved with boundedly rational 

decision making, so it seems reasonable to say that one error distribution conveys a higher degree of 

rationality than another if it yields larger mean welfare for the persons who mismeasure utility with it. We 

do not see a satisfactory way to compare all distributions in this manner. However, comparison is 

straightforward when the choice set contains two actions and the distributions being compared differ only 

by a scaling factor. Proposition 3 gives the result: 

 

Proposition 3: Let the choice set be C(s) = {a, b}. Consider any utility function for which u(b) > u(a). Let 

P[ε0(c, s), c ∈ {a, b}|u(∙)] be a specified error distribution. Let ε(c, s) = ε0(c, s)/q(s) be ε0 rescaled by a 

positive scaling factor q(s). The mean welfare of persons with utility function u(∙) increases with q(s).  ■ 
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Proof: The choice probability for action b is 

 

(6)       P[u(b) + ε0(b, s)/q(s) ≥ u(a) + ε0(a, s)/q(s)|u(∙)]  =  P[ε0(a, s) – ε0(b, s) ≤ q(s)[u(b) – u(a)]|u(∙)]. 

 

Given that u(b) − u(a) > 0, the probability on the right-hand side weakly increases with q(s). The choice 

probability for action a commensurately decreases with q(s). The result follows. 

                                                                                                                                             Q. E. D. 

 

 One may expect that the above finding holds when considering larger choice sets. We have not been 

able to prove this in generality, but we show in Section 3.5 that it holds when choice probabilities have the 

multinomial logit form. A difficulty encountered when attempting a general analysis is that, when the choice 

set contains three or more actions, one can only definitively sign how the choice probabilities for the best 

and worst actions vary with q(s). The former weakly increases with q(s) and the latter decreases with q(s). 

Choice probabilities for actions yielding intermediate values of utility may increase or decrease with q(s), 

depending on the specific error distribution and utility function. This complicates analysis. 

 Our notation q(s) permits the degree of rationality to vary across policies. We think it plausible that 

the scale of errors in utility measurement may vary in practice. Consider utility measurement as the size of 

the choice set C(s) increases. Utility measurement may be computationally costly, as Simon (1955) 

conjectured. Hence, the accuracy of measurements may tend to decrease with the size of the choice set.   
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3.3. Bounded Measurement Errors 

 

 A simple restriction on the error distribution is to assume that it has known bounded support. Such an 

assumption implies a lower bound on welfare with decentralized choice. Proposition 4 considers the simple 

case where the support is symmetric about zero. 

 

Proposition 4: Assume (4). Assume that, for a known δ > 0, P[−δ ≤ ε(c, o) ≤ δ|u(∙)] = 1 for all c ∈ C and 

almost all u(∙). Then E{u[c(o)]} ≥  E(u*) − 2δ. Decentralized choice necessarily outperforms the optimal 

mandate if E(u*) − 2δ > max i ∈ C E[u(i)].     ■  

 

Proof: For each individual j, let cj be an action that maximizes actual utility on C and let cj
#(o) maximize 

mismeasured utility. Given the bounded support assumption, uj
* – u[cj

#(o)] ≤ 2δ for almost all j ∈ J. Hence, 

the first result follows from (2). The second holds as max i ∈ C E[u(i)] is the welfare of the optimal mandate. 

                                                                                                                                                            Q. E. D. 

 

Observe that the lower bound on welfare with decentralized choice increases as δ decreases. Hence, it is 

reasonable to say that δ measures the maximum deviation of the population from rationality. 

 

3.4. Simple Scalability 

 

 A different lower bound on welfare with decentralized choice emerges if, for almost every utility 

function u(∙), the error components ε(c, s), c ∈ C(s) are known to be independent and identically distributed 

(i. i. d.). We do not assume knowledge of the specific distribution, nor that the distribution has bounded 

support. Indeed, it may vary arbitrarily with u(∙). The i. i. d. assumption expresses the idea that individuals 
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make “white-noise” errors in utility measurement. The error distribution may vary across persons j and 

policies s. We assume only that errors do not vary systematically across actions.  

 Manski (1975) showed that, when errors are conditionally i. i. d., choice probabilities are related to 

utility functions by a set of inequalities called simple scalability. For each utility function u(∙) and action 

pair {a, b} ∈ C(s) ⤬ C(s), simple scalability holds if 

 

(7a)   u(a)  >  u(b)  ⇔  P[u(a) + ε(a, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)] 

                                      ≥  P[u(b) + ε(b, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)], 

 

(7b)   u(a)  =  u(b)  ⇔  P[u(a) + ε(a, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)] 

                                    =  P[u(b) + ε(b, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)]. 

 

 Let umean(s) denote unweighted mean utility in set C(s); that is, umean(s) ≡ [1/|C(s)|] ∑ c ∈ C(s) u(c). Simple 

scalability implies this lower bound on welfare with choice from C(s): 

 

Proposition 5: Assume that, for almost all u(∙), ε(c, s), c ∈ C(s) are i. i. d. conditional on u(∙). Then 

∫umean(s)dP[u(∙)]  ≤  E{u[c(s)]}.            ■ 

 

Proof: The assumption implies (7a)-(7b) for almost all u(∙). These inequalities show that the ordering of 

choice probabilities coincides with the ordering of utility values. It follows that the choice-probability 

weighted average of utility in set C(s) is greater than or equal to the unweighted mean utility. That is, 

 

(8)    umean(s)  ≤  ∑ i ∈ C(s) u(i)∙ P[u(i) + ε(i, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)]. 

 

The result follows by integrating each side of (8) over the distribution of utilities, and applying (1). 
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                                                                                                                                               Q. E. D. 

 

 When applied to decentralized choice (s = o), the inequality in Proposition 5 is [1/|C|] ∑ i ∈ C E[u(i)] ≤ 

E{u[c(o)]}. The lower bound on the left-hand side is weakly less than max i ∈ C E[u(i)]. Hence, Proposition 

5 does not imply that decentralized choice outperforms the optimal mandate. It does imply that population 

welfare is no smaller than welfare with completely random choice. 

 The assumption that ε(c, s), c ∈ C(s) are i. i. d. conditional on u(∙) suffices to imply simple scalability 

but is not necessary. A much weaker assumption suffices if the choice set C(s) contains only two actions, 

say {a, b}. Then (7a)-(7b) reduce to 

 

(9a)   u(a)  >  u(b)  ⇔  P[u(a) + ε(a, s) ≥ u(b) + ε(b, s)|u(∙)] ≥  ½.  

(9b)   u(a)  =  u(b)  ⇔  P[u(a) + ε(a, s) ≥ u(b) + ε(b, s)|u(∙)] = ½. 

 

These conditions hold if P[ε(a, s) − ε(b, s) ≥ 0|u(∙)] = ½.  

 

3.5. Multinomial Logit Choice Probabilities3 

 

 A substantial strengthening of the knowledge used above assumes that errors are i. i. d. with a scaled 

version of the standard type 1 extreme-value distribution, also called the Gumbel distribution. Let ε0(c, s), 

c ∈ C(s) be independent and have the common distribution function P[ε0(c, s) ≤ t] = exp(-e-t). Let ε(c, s) = 

ε0(c, s)/q(s) be ε0 rescaled by a positive scaling factor q(s). Then the conditional choice probabilities have 

the multinomial logit form (McFadden, 1974): 

 
3 The analysis in Sections 3.5 and 3.6 originated in work initiated in the early 2000s that was presented in several 
seminars and distributed in slides (Sheshinski, 2012), but not circulated as a working paper. 
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(10)  P[c#(s) = i|u(∙)]  =  P[u(i) + ε(i, s) ≥ u(c) + ε(c, s), all c ∈ C(s)|u(∙)]  =  eq(s)u(i)/∑ c ∈ C(s) eq(s)u(c),  i ∈ C(s). 

 

Hence, the welfare achieved by policy s is 

 

(11)     E{u[c(s)]}  =  ∫ ∑ i ∈ C(s) u(i)∙ [eq(s)u(i)/∑ c ∈ C(s) eq(s)u(c)] dP[u(∙)]. 

 

 As in Section 3.2, q(s) quantifies the degree of rationality in the population, under policy s. As q(s) → 

∞, the choice probability for the action that maximizes utility increases to one. As q(s) → 0 the choice 

probabilities for all actions converge to 1/|C(s)|, as they would be with completely random choice. 

Proposition 6 shows that population welfare increases with q(s). 

 

Proposition 6: Let the choice set be C(s). Assume that conditional choice probabilities have form (10). Then 

population welfare weakly increases with q(s). Welfare strictly increases with q(s) if a positive fraction of 

the population have utility functions in which utility varies across the actions in C(s).          ■ 

 

Proof: For utility function u(∙) and action i ∈ C(s), the partial derivative of the choice probability with 

respect to q(s) is 

 

(12)    ∂P[c#(s) = i|u(∙)]/∂q(s)  =  P[c#(s) = i|u(∙)]{u(i) − v[s, u(∙)]}, 

 

where v[s, u(∙)] ≡ ∑ h ∈ C(s) u(h)∙P[c#(s) = h|u(∙)] is the choice-probability-weighted expected utility for 

persons with utility function u(∙). Thus, increasing q(s) raises (lowers) the choice probabilities of actions 

whose utility is greater (smaller) than expected utility. 
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 It follows from (12) that, for persons with utility function u(∙), the partial derivative of welfare with 

respect to q(s) is  

 

(13)  ∂[∑ i ∈ C(s) u(i)∙ [eq(s)u(i)/∑ c ∈ C(s) eq(s)u(c)]/∂q(s) 

            =  ∑ i ∈ C(s) u(i)∙ P[c#(s) = i|u(∙)]{u(i) − ∑ h ∈ C(s) u(h)∙P[c#(s) = h|u(∙)]} 

            =  {∑ i ∈ C(s) u(i)2∙P[c#(s) = i|u(∙)]} – {∑ h ∈ C(s) u(h)∙P[c#(s) = h|u(∙)]}2. 

 

The final expression is the variance of u[c(s)], which must be non-negative. All choice probabilities are 

positive. Hence, V{u[c(s)} > 0 if u(∙) varies across the actions in C(s). 

                                                                                                                                                    Q. E. D. 

 

 Although multinomial logit choice probabilities have a simple form, study of the variation in 

population welfare across policies is subtle. To demonstrate, we compare the decentralized-choice policy s 

= o with another, labelled s = 1, that eliminates one action from C, say d. Suppose for simplicity that the 

degree of rationality is the same for these two policies; that is, q(o) = q(1). Then population welfare with 

policy s = o  may be larger or smaller than with s = 1. 

 Welfare with s = o is smaller than welfare with s = 1 for persons whose utility function makes d the 

action that minimizes utility. For such persons, elimination of d reduces its choice probability to zero and 

increases the choice probabilities for all remaining actions, which have higher utility. Symmetrically, 

welfare with s = o is larger than welfare with s = 1 for persons whose utility function makes d the action 

that maximizes utility. Elimination of d may decrease or increase welfare for persons whose utility function 

makes d an action with intermediate utility. It follows that the overall welfare ranking of the two policies 

depends on the population distribution of utility and on the degree of rationality. 
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3.6. Numerical Example Showing the Subtlety of Optimal Choice-Constraining Policy 

 

 In Section 3.5, policy s was described by two factors, the set C(s) constraining individual choice and 

the degree of rationality q(s) with the policy. We now specialize further, considering a set S of policies that 

yield the same value of q(s), now labeled q, and that differ only in their choice-constraining sets C(s). A 

policy cannot exclude every option in C, so there exist 2|C| − 1 such policies. 

 The welfare yielded by policy s is 

 

(14)     E{u[c(s)]}  =  ∫ ∑ i ∈ C(s) u(i)∙ [eq∙u(i)/∑ c ∈ C(s) eq∙u(c)] dP[u(∙)]. 

 

Analytical determination of a policy that maximizes welfare does not seem feasible, but numerical 

calculation of welfare is possible given a specification of q and P[u(∙)]. 

 A numerical example demonstrates that optimal policy choice is subtle. The example is based on the 

famous Hotelling (1929) model of choice when individuals and stores are located on a line. Let C contain 

three actions (potential stores), each identified by a location xi, i = 1, 2, 3 on a line. Let J contain three 

individuals, each residing at a location θj, j = 1, 2, 3 on this line. Let the utility of action i to person j be 

ui(θj) = – (xi –  θj)². Thus, due to transportation costs, utility decreases with the distance of individual j's 

location, θj, from store xi. By construction, preferences are single-peaked.  

 In our example, we specify x1 = 0.5, x2 = 1, x3 = 1.6 and θ1 = -0.5, θ2 = 1, θ3 = 2. This yields the utility 

values shown in Figure 1: 
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Figure 1 

 

 

 The seven possible constrained choice sets are {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, and {1, 2, 3}. The 

corresponding social welfare functions are denoted W1, W2, W3, W1,2, W2,3, W1,3, and W1,2,3, respectively. 

Figure 2 plots each of these welfare functions against different integer levels of q. For each q, the optimum 

choice-set corresponds to the outer envelope of these plots. 

 

Figure 2 
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 Observe that the optimal constrained choice set has a single action (W¹) at low values of q and includes 

all actions (W1,2,3) at high values of q. Of particular interest is the fact that the ordering of welfare across 

choice sets is not nested, with reswitching occurring as q rises. For example, choice set {1, 2} outperforms 

set {2, 3} when q is smaller than about 2.5, but the welfare ordering reverses when q is larger. Choice set 

{1, 2, 3} outperforms set {2, 3} when q is smaller than about 2.2, the welfare ordering reverses for q between 

2.2 and about 4.8, and then reverses again for q above 4.8. 

 This is only an example, but it suffices to demonstrate quantitatively the subtlety of optimal policy 

choice. We find that, even in a highly simplified environment assuming multinomial logit choice 

probabilities, the welfare ordering of different choice-constraining policies is rather sensitive to the degree 

of rationality in the population. 

 

4. Mandated or Decentralized Treatment of a Population with Publicly and Privately Observed Covariates 

 

 Whereas members of the population were observationally identical to the planner in Sections 2 and 3, 

we now suppose that each person has publicly observable covariates x ∈ X and privately observable 

covariates z ∈ Z, where X and Z are finite sets. We analyze settings in which a planner can mandate 

particular actions or can decentralize decision making. The planner sees only the publicly observable 

covariates. Individuals also see the privately observable ones. Thus, the planner can condition a mandate 

on x but not on z. Decentralized choices can vary with (x, z). The term complete rationality now means 

maximization of objective expected utility conditional on (x, z). 

 There are many contexts in which a planner chooses between an x-varying mandate and (x, z)-varying 

decentralized choice. A government may mandate that eligibility for a public pension begins at a particular 

age or may enable workers to receive a smaller benefit at a younger age if they wish. A school principal 

may mandate that high school students with covariates x enroll in a mathematics class taught at a specified 

intellectual level or can permit students to self-select course levels. A clinical guideline panel can 

recommend a particular medical treatment for patients with covariates x, or the panel can state that 
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physicians who observe these and other patient covariates should use clinical judgement to choose 

treatments. 

 Observation of (x, z) expands the set of feasible treatment choices relative to observation of x alone. 

Utilitarian theory assuming complete rationality recommends decentralization, enabling exploitation of the 

larger choice set. See, for example, Phelps and Mushlin (1988), Basu and Meltzer (2007), and Manski 

(2007b). The increase in welfare achieved by observation of (x, z) relative to x is sometimes called the 

value-of-information.4 

 We study a simple yet nuanced setting of binary treatment under uncertainty. If the planner and 

decentralized decision makers make objectively correct probabilistic predictions of an uncertain utility-

relevant outcome, utilitarian theory implies that decentralized treatment outperforms a mandate. We 

quantify the value of information, paraphrasing analysis in Manski, Mullahy, and Venkataramani (2023). 

 A mandate may yield higher utilitarian welfare if some decentralized decision makers have bounded 

rationality and make sub-optimal decisions. Section 4.1 presents the analysis. Section 4.2 considers medical 

treatment. 

 

4.1. Analysis 

 

 Let there be two feasible treatments, labeled A and B. Treatment choice is made without knowing a 

utility-relevant binary outcome, y = 1 or 0. For example, if treatments are mathematics courses taught at 

different levels, we may have y = 1 if a student would pass the more difficult course and y = 0 if the student 

would not pass the course. If A and B are options for patient care, y = 1 may mean that a patient is healthy 

and y = 0 if the patient has an illness of concern. 

 Each person has covariates (x, z), with x observable by the planner and (x, z) by decentralized decision 

 
4 The present discussion concerns maximization of objective expected utility. Mathematically related but conceptually 
distinct work in Bayesian statistical decision theory studies the value of information for individual maximization of 
subjective expected utility. See, for example, Good (1967) and and Kadane, Shervish, and Seidenfeld (2008). 
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makers. Let px = p(y = 1|x) and pxz = p(y = 1|x, z) be objective probabilities that y = 1 conditional on x and 

on (x, z). Let each value of z occur for a positive fraction of persons; thus, P(z|x) > 0 for all z ∈ Z. Assume 

that, conditional on x, pxz varies with z. 

 Let Ux(y, t) denote the objective expected utility that a person with covariates x would experience with 

treatment t, should the outcome be y. For simplicity, this specification assumes that, conditional on x, 

expected utility does not vary across persons with different values of z. However, z still matters to decision 

making because the outcome probabilities pxz do vary with z.5 We assume that the planner knows Ux(y, t) 

for each possible value of (x, t, y). 

 Maximum utilitarian welfare using pxz to predict y is always at least as large as using px, and it is 

strictly larger if optimal treatment choice varies with z. Manski, Mullahy, and Venkataramani (2023) 

derived a simple expression that quantifies the value of information. Section 4.1.1 summarizes the 

derivation. This result provides the foundation for novel consideration of planning with bounded rationality 

in Sections 4.1.2 and 4.1.3. 

 

4.1.1. Optimal Treatment with Complete Rationality 

 For any policy s, utilitarian welfare E{u[c(s)]} is a group-size weighted average of welfare conditional 

on x; that is, E{u[c(s)]} = ∑ x ∈ X E{u[c(s)]|x}∙P(x). A planner who observes x and has the authority to vary 

policy with x maximizes welfare by separately solving the problems max s ∈ S E{u[c(s)|x], x ∈ X. We 

consider x-specific policies that either mandate a specified treatment or permit decentralized treatment 

choice. 

 The optimal x-specific mandate by a utilitarian planner is 

 

(15a) choose treatment A if px⋅Ux(1, A) + (1 – px)⋅Ux(0, A) ≥ px⋅Ux(1, B) + (1 – px)⋅Ux(0, B), 

 

 
5 For example, in a medical treatment setting, z may be features of an individual’s immune system, encoded in DNA. 
It may be that utility functions do not vary with these genetic features, but risk of illness does vary with them. 
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(15b) choose treatment B if px⋅Ux(1, A) + (1 – px)⋅Ux(0, A) ≤ px⋅Ux(1, B) + (1 – px)⋅Ux(0, B). 

 

With (x, z) privately observable, the optimal decentralized treatment is 

 

(16a) choose treatment A if pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A) ≥ pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B), 

 

(16b) choose treatment B if pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A) ≤ pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B). 

 

With criterion (15), the maximized welfare for persons with covariates x is 

 

(17)         max [px⋅Ux(1, A) + (1 – px)⋅Ux(0, A),  px⋅Ux(1, B) + (1 – px)⋅Ux(0, B)]. 

 

With criterion (16), the maximized welfare for patients with covariates (x, z) is 

 

(18)         max [pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A),  pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B)]. 

 

In the latter case, the maximized welfare for persons with covariates x is the mean of (18) with respect to 

the distribution P(z|x); that is, 

 

(19)     Ez|x {max [pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A),  pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B)]}. 

 

 Jensen's inequality shows that, conditional on x, maximum welfare using pzx to predict y is at least as 

great as maximum welfare using px. Hence, decentralized decision making outperforms mandating a 

treatment. However, Jensen’s inequality does not quantify the extent to which criterion (16) outperforms 

(15). Manski, Mullahy, and Venkataramani (2023) do this through direct comparison of the criteria. 

 Without loss of generality, let the optimal mandate be treatment A; that is, A is optimal in (15). Let A 

be optimal in (16) for all z ∈ ZA and let ZB be the complement of  ZA. Thus, inequality (16a) holds for z ∈ 
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ZA, some subset of Z, and does not hold for z ∈ ZB. Criterion (16) yields better outcomes than (15) for 

persons with z ∈ ZB and the same outcomes as (15) for persons with z ∈ ZA. 

 Use the decomposition of Z into (ZA, ZB) to rewrite (17) and (19) as 

 

(20)  max [px⋅Ux(1, A) + (1 – px)⋅Ux(0, A),  px⋅Ux(1, B) + (1 – px)⋅Ux(0, B)] 

 

         =  px⋅Ux(1, A) + (1 – px)⋅Ux(0, A) 

 

        =  P(z ∈ ZA|x)⋅ E[pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A)]|x, z ∈ ZA] 

              +  P(z ∈ ZB|x)⋅ E[pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A)]|x, z ∈ ZB]. 

 

and 

 

(21)    Ez|x {max [pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A),  pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B)]} 

           =  P(z ∈ ZA|x)⋅ E[pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A)]|x, z ∈ ZA] 

              +  P(z ∈ ZB|x)⋅ E[pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B)]|x, z ∈ ZB]. 

  

 Subtracting (20) from (21) yields 

 

(22)     P(z ∈ ZB|x)⋅E{[pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B)] – [pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A)]|x, z ∈ ZB}. 

 

 The strict inequality pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B) > pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A) holds for all z 

∈ ZB. Hence, (22) is positive if P(z ∈ ZB|x) > 0. We thus find that, with complete rationality, a mandate 

cannot yield higher population welfare than decentralized treatment. Decentralization outperforms a 

mandate if the optimal treatment varies across z. 
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This qualitative finding repeats one obtainable using Jensen's inequality. What is new here is that (22) 

quantifies the extent to which criterion (16) outperforms (15). The magnitude of (22) is the product of two 

factors. One is the fraction P(z ∈ ZB|x) of persons for whom treatment B yields strictly larger expected 

utility than treatment A. The other is the mean gain in expected utility that criterion (16) yields for the 

subset ZB of persons. 

 

4.1.2. Optimal Treatment with Bounded Rationality 

 As above, suppose without loss of generality that the optimal mandate for persons with covariates x is 

treatment A. Again, let A be optimal for z ∈ ZA and let ZB be the complement of ZA. However, suppose 

that some decentralized decision makers, having bounded rationality, do not use criterion (16) to choose 

treatments. They choose the worse treatment rather than the better one.  

 For persons with covariate values (x, z), let qxz denote the choice probability for the better treatment 

and let 1 – qxz be the choice probability for the worse treatment. Then qxz = 1 if everyone has complete 

rationality and qxz < 1 if some decision makers have bounded rationality and choose sub-optimally. 

 In this setting, mandating A continues to yield welfare (20). However, decentralization does not yield 

(21). Instead, decentralization yields this lower welfare: 

 

(23)   P(z ∈ ZA|x)⋅ E{qxz[pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A)] 

                                                          + (1 – qxz)[pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B)] |x, z ∈ ZA} 

          +  P(z ∈ ZB|x)⋅E{qxz[pxz⋅Ux(1, B) + (1 – pxz)⋅Ux(0, B)] 

                                                          + (1 – qxz)[pxz⋅Ux(1, A) + (1 – pxz)⋅Ux(0, A)] |x, z ∈ ZB}. 

 

 Here, as in Sections 2 and 3, the best policy depends on the multiplicative interaction of population 

preferences and choice probabilities. Permitting decision makers with covariates x to make decentralized 

decisions yields higher welfare than mandating treatment A if (23) exceeds (20). The mandate is preferable 
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if (20) exceeds (23). Ceteris paribus, the mandate is better if the choice probabilities (qxz , z ∈ Z) for the 

optimal z-specific treatments are sufficiently small. 

 

4.1.3. Optimal Treatment When Decentralized Decisions Maximize Subjective Expected Utility 

 Among the many forms that bounded rationality may take, one that has long been of interest in 

economics has been maximization of subjective expected utility when probabilistic beliefs differ from 

objective probabilities of uncertain outcomes. The axiomatic decision theory of Savage (1954) does not 

refer to an objective reality and, hence, does not view differences between subjective and objective 

probabilities as bounded rationality. The Savage theory only concerns procedural rationality, meaning 

adherence to certain consistency axioms that related decisions across choice sets. In contrast, our pxz is the 

objective probability of an uncertain outcome and we use the term complete rationality to mean 

maximization of objective expected utility. From this perspective, maximization of subjective rather than 

objective expected utility is a form of bounded rationality. 

There is much reason to think that deviations from rational expectations are common. Manski (2004) 

argues that individuals attempting to learn about the real world face identification problems and statistical 

imprecision in data analysis akin to those that economists face in empirical research. Thus, persons with 

covariates (x, z) may not know pxz. 

Let person j place subjective probability πj on the event y = 1 and choose a treatment that maximizes 

subjective expected utility. Thus, j acts as follows:  

 

(24a)   choose treatment A if πj⋅Ux(1, A) + (1 – πj)⋅Ux(0, A) ≥ πj⋅Ux(1, B) + (1 – πj)⋅Ux(0, B), 

 

(24b)   choose treatment B if πj⋅Ux(1, A) + (1 – πj)⋅Ux(0, A) ≤ πj⋅Ux(1, B) + (1 – πj)⋅Ux(0, B). 

 

When πj ≠ pxz, person j maximizes mismeasured expected utility. Criterion (24) does not express 

mismeasurement as an additive error in the manner of Section 3, but it can equivalently be stated that way. 



35 
 

Maximization of subjective expected utility does not imply that person j behaves sub-optimally. Let 

tx(pxz) and tx(πj) denote the treatments solving (16) and (24). Behavior is optimal if tx(πj) = tx(pxz) and sub-

optimal otherwise. 

Subjective probabilities may vary across the population. Let P(π|x, z) be the objective distribution of 

π across persons with covariates (x, z). The choice probability for the objectively optimal treatment is 

 

(25)     qxz = P[π: tx(π) = tx(pxz)|x, z]. 

 

Hence, mean welfare conditional on x when treatment is decentralized and decision makers maximize 

subjective expected utility is given by (23), with choice probabilities (25). 

The x-specific welfare yielded by a mandate and by decentralized treatment are functions of the 

covariate distribution P(z|x) and the values of [qxz, pxz, Ux(∙, ∙)], z ∈ Z. A planner need not have complete 

knowledge of these quantities to optimally choose between a mandate and decentralization. However, 

implementation of optimal paternalism requires sufficient knowledge to determine which option yields 

higher welfare. 

 

4.2. Application to Medical Treatment 

 

4.2.1. Clinical Practice Guidelines 

 Medical textbooks and training have long offered clinicians guidance in patient care. Such guidance 

has become institutionalized through issuance of clinical practice guidelines (CPGs). Institute of Medicine 

(2011) writes (p. 4): “Clinical practice guidelines are statements that include recommendations intended to 

optimize patient care that are informed by a systematic review of evidence and an assessment of the benefits 

and harms of alternative care options.” 

Recommendations made in CPGs are not legal mandates, but clinicians have strong incentives to 

comply, making adherence close to compulsory. A patient’s health insurance plan may require adherence 
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to a CPG as a condition for reimbursement of the cost of treatment. Adherence may furnish evidence of due 

diligence that legally defends a clinician in the event of a malpractice claim. Adherence to guidelines 

provides a rationale for care decisions that might otherwise be questioned by patients, colleagues, or 

employers. 

 The analysis in Section 4.1 shows that adherence to a CPG cannot outperform decentralized care if 

guideline panels and clinicians are utilitarian and have complete rationality. If a CPG conditions its 

recommendations on all of the patient covariates that clinicians observe, it can do no better than reproduce 

clinical decisions. CPGs typically condition recommendations on a subset of the clinically observable 

covariates. Hence, as shown in Section 4.1.1, adhering to a CPG may yield inferior welfare because the 

guideline does not personalize patient care to the extent possible. 

  

4.2.2. Illustration: Assessment of Illness Risk in CPGs for Prophylactic Care of Breast Cancer 
 
 CPGs commonly bring to bear evidence-based objective probabilistic predictions of illness that 

condition on a subset of the patient covariates that clinicians observe. An apt illustration are guidelines for 

prophylactic care of women at risk of developing breast cancer. In this setting, option A is routine 

surveillance, usually meaning that a woman receives a breast examination and mammogram annually or 

biannually, depending on age. Option B may be some form of enhanced surveillance, such as more frequent 

mammograms. This more aggressive option does not affect the risk of disease development, but it may 

reduce the severity of disease outcomes by enabling earlier diagnosis and treatment of tumors. A potential 

side effect may be an increased risk of cancer caused by the radiation from mammograms.6 

 The utilitarian analysis in Section 4.1.1 shows that, ceteris paribus, some form of aggressive treatment 

is the better option if the risk of breast cancer is sufficiently high, and routine surveillance is better 

 
6 Other more aggressive options may include strategies for reduction of the risk of disease development. These include 
changes to diet, administration of a drug such as tamoxifen, and preventive mastectomy. Each strategy may have side 
effects, most obviously in the case of preventive mastectomy. 
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otherwise. Some CPGs use the Breast Cancer Risk Assessment (BCRA) Tool of the National Care Institute 

(2024) to assess risk and recommend aggressive treatment if the predicted probability of invasive cancer in 

the next five years is above a specified threshold. In particular, National Comprehensive Cancer Network 

(2024) recommends routine surveillance if the predicted probability using the BCRA tool is below 0.017 

and some form of aggressive treatment if the probability is higher. 

 The BCRA Tool gives an evidence-based objective probability that a woman will develop breast 

cancer conditional on eight attributes: (1) history of breast cancer or chest radiation therapy for Hodgkin 

Lymphoma (yes/no); (2) presence of a BRCA mutation or diagnosis of a genetic syndrome associated with 

risk of breast cancer (yes/no/unknown); (3) current age, in years; (4) age of first menstrual period (7-11, 

12-13, ≥ 14, unknown); (5) age of first live birth of a child (no births, < 20, 20-24, 25-29, ≥ 30, unknown); 

(6) number of first-degree female relatives with breast cancer (0, 1, >1, unknown); (7) number of breast 

biopsies (0, 1, > 1, unknown); (8) race/ethnicity (White, African American, Hispanic, Asian American, 

American Indian or Alaskan Native, unknown). 

 The reason that the BCRA Tool assesses risk conditional on these covariates and not others is that it 

uses a modified version of the “Gail Model,” based on the empirical research of Gail et al. (1989).  The 

Gail et al. article estimated probabilities of breast cancer for white women who have annual breast 

examinations, conditional on attributes (1) through (7). Scientists at the National Cancer Institute later 

modified the model to predict invasive cancer within a wider population of women. 

 The BCRA Tool personalizes predicted risk of breast cancer in many respects, but it does not condition 

on further patient covariates that may be associated with risk of cancer and that may be observed in clinical 

practice. When considering the number of first-degree relatives with breast cancer (attribute 6), the Tool 

does not consider the number and ages of a woman’s first-degree relatives, nor the ages when any of them 

developed breast cancer. These factors should be informative when interpreting the response to the item. 

Nor does it condition on the prevalence of breast cancer among second-degree relatives, a consideration 

that figures in another risk assessment model due to Claus, Risch, and Thompson (1994). When considering 

race/ethnicity (attribute 8), the BCRA Tool groups all white woman together and does not distinguish 
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subgroups such as Ashkenazi Jews, who are thought to have considerably higher risk of a BRCA mutation 

than other white subgroups, a potentially important matter when the answer regarding attribute (2) is 

“unknown.” Moreover, the BCRA Tool does not condition on behavioral attributes such as excessive 

drinking of alcohol, which has been associated with increased risk of breast cancer (Singletary and Gapstur, 

2001). 

 

4.2.3. Psychological Research Comparing Statistical Prediction and Clinical Judgment 

 Even though clinicians can usually personalize care beyond the capability of CPGs, the medical 

literature contains many commentaries exhorting clinicians to adhere to guidelines, arguing that CPG 

developers have superior knowledge of treatment response than do clinicians.7 Thus, a rationale for 

endorsement of CPGs by the medical establishment is a perception that guideline panels make 

approximately objective probabilistic predictions of health outcomes conditional on publicly observed 

patient covariates x. In contrast, there is widespread concern that clinicians may form inaccurate subjective 

beliefs conditional on the covariates (x, z) that they observe. A body of psychological research provide 

some foundation for this concern. We summarize here, paraphrasing discussion in Manski (2018, 2019). 

 Psychological research comparing evidence-based statistical predictions with ones made by clinical 

judgment has concluded that the former consistently outperforms the latter when the predictions are made 

using the same patient covariates. The gap in performance has been found to persist even when clinical 

judgment uses additional covariates as predictors. This research began in the mid-twentieth century, notable 

early contributions including Sarbin (1943, 1944), Meehl (1954), and Goldberg (1968). To describe the 

 
7 Institute of Medicine (2011) states (p. 26): “Trustworthy CPGs have the potential to reduce inappropriate practice 
variation.” Institute of Medicine (2013) states (p. 2-15): “geographic variation in spending is considered inappropriate 
or ‘unacceptable’ when it is caused by or results in ineffective use of treatments, as by provider failure to adhere to 
established clinical practice guidelines.” These and many similar quotations exemplify a widespread belief that 
adherence to guidelines is socially preferable to decentralized patient care. 
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conclusions of the literature, we quote the informative review article of Dawes, Faust, and Meehl (1989), 

who distinguished statistical/actuarial prediction and clinical judgment as follows (p. 1668): 

“In the clinical method the decision-maker combines or processes information in her or her head.  

In the actuarial or statistical method the human judge is eliminated and conclusions rest solely on 

empirically established relations between data and the condition or event of interest.” 

Comparing the two in circumstances where a clinician observes patient covariates that are not utilized in 

available actuarial prediction, they stated (p. 1670): 

“Might the clinician attain superiority if given an informational edge? For example, suppose the 

clinician lacks an actuarial formula for interpreting certain interview results and must choose 

between an impression based on both interview and test scores and a contrary actuarial 

interpretation based on only the test scores. The research addressing this question has yielded 

consistent results . . . .  Even when given an information edge, the clinical judge still fails to surpass 

the actuarial method; in fact, access to additional information often does nothing to close the gap 

between the two methods.” 

Here and elsewhere, Dawes, Faust, and Meehl (1989) cautioned against use of clinical judgment to 

subjectively predict disease risk or treatment response conditional on patient covariates that are not utilized 

in evidence-based assessment tools or research reports. They attributed the weak performance of clinical 

judgment to clinician failure to adequately grasp the logic of the prediction problem. Psychological research 

published after Dawes, Faust, and Meehl (1989) has largely corroborated the conclusions reached there, 

albeit occasionally with caveats. See, for example, Groves et al. (2000). 

 The psychology literature challenges the realism of assuming that clinicians have rational expectations. 

However, it does not per se imply that adherence to CPGs outperforms decentralized decision making using 

clinical judgment. One issue is that the psychology literature has not addressed all welfare-relevant aspects 

of clinical decisions. We showed in Section 4.1.1 how optimal decisions are determined by objective 

expected utilities. Psychologists have only compared medical risk assessments made by statistical 

predictors and by clinicians. They have not compared evaluations of expected utility, which depends on 

patient preferences as well as on risk assessments. 
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 A second issue is that psychological research has seldom examined the accuracy of probabilistic risk 

assessments. It has been more common to assess point predictions of illness. Study of the logical 

relationship between probabilistic and point predictions shows that data on the latter only yields wide 

bounds on the former. Suppose that a clinician uses a symmetric loss function to translate a probabilistic 

risk assessment into a yes/no point prediction that a patient will develop a disease. Then observation that 

the forecaster states “yes” or “no” as a prediction only implies that he judges the probability of illness to be 

in the interval [½, 1] or [0, ½] respectively (Manski, 1990). Thus, analysis of the accuracy of point 

predictions of illness does not reveal much about the accuracy of statistical and clinical assessment of illness 

probabilities. 

 Given these and other issues, psychological research does not suffice to conclude that mandating 

adherence to CPGs is superior to decentralized decision making. Adherence to CPGs may be inferior to the 

extent that CPGs condition on fewer patient covariates than do clinicians. It may be superior to the extent 

that imperfect subjective clinical judgment generates sub-optimal clinical decisions. How these opposing 

forces interplay depends on the setting. 

 

4.2.4. Using CPGs or Clinical Judgment to Choose Between Surveillance and Aggressive Treatment 

 Consideration of choice between surveillance and aggressive treatment of patients at risk of disease 

yields insight into the circumstances when adherence to a CPG outperforms decentralized care using 

clinical judgment. This choice requires resolution of tension between benefits and costs. Aggressive 

treatment may be more beneficial to the extent that it reduces the risk of disease development or the severity 

of disease. It may be more harmful to the extent that toxicity generates health adverse events and/or 

treatment has financial costs beyond those associated with surveillance. 

 One example of the choice problem is prophylactic care of breast cancer, discussed above. Other 

prominent cases are the choice between surveillance and drug treatment for patients at risk of heart disease 

or diabetes. Yet others are choice between surveillance and adjuvant chemotherapy or immunotherapy for 

patients who have had surgical removal of a cancerous tumor and are at risk of metastasis. 
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 Manski (2018, 2019) characterized the choice between surveillance and aggressive treatment as a 

subclass of the binary treatment problems studied in Section 4.1, in which the illness-specific expected 

utilities ux(∙, ∙) satisfy two inequalities. Recalling the (x, z)-specific decision criterion (16), consider the 

value of pxz that equalizes the expected utility of the two treatments. This threshold probability is 

 
                                                    ux(0, A) − ux(0, B) 
(26)            p*

xz =    ─────────────────────────  . 
                                 [ux(0, A) − ux(0, B)] + [ux(1, B) − ux(1, A)] 

 

 Let A and B denote surveillance and aggressive treatment. It commonly is credible to suppose that 

surveillance yields higher expected utility when a patient does not develop the disease, and aggressive 

treatment yields higher utility when a patient does develop the disease. Formally, assume that 

 

(27)   ux(0, A) > ux(0, B) and ux(1, B) > ux(1, A). 

 

These inequalities imply that 0 < p*
xz < 1. Moreover, they imply that A is optimal if pxz ≤ p*

xz and B is 

optimal if pxz ≥ p*
xz. 

 Consider decentralized patient care for patient j when the clinician does not know the objective 

probability pxz of illness and maximizes subjective expected utility using subjective probability πj. The 

choice is A if πj ≤ p*
xz and B if πj ≥ p*

xz. This choice is optimal if sgn (πj − p*
xz) = sgn (pxz − p*

xz) and is 

sub-optimal if sgn (πj − p*
xz) ≠ sgn (pxz − p*

xz). Considering all patients with covariates (x, z), the objective 

probability that clinical judgement yields the optimal treatment is 

 

(28)   qxz  =  P[π: sgn (πj − p*
xz) = sgn (pxz − p*

xz)|x, z]. 

 

Equation (28) shows that deviations of clinical judgement from rational expectations do not, per se, imply 

that clinical maximization of subjective expective utility lowers welfare relative to the ideal optimum. 



42 
 

Moreover, the distance between subjective and objective probabilities of illness does not determine the 

welfare performance of patient care with clinical judgement. 

 For a given utility function ux(∙, ∙), what matters are choice probabilities and the losses from making 

sub-optimal choices, which multiply to yield regret. Choice probabilities are determined by the frequency 

with which subjective and objective probabilities differ in whether they are smaller or larger than the value 

of the threshold probability. Losses from sub-optimal choices are determined by the difference between the 

objective illness probability pxz and the threshold probability p*
xz, where treatments A and B have the same 

objective expected utility. 

 

5. Policy Choice When the Planner has Bounded Rationality 

 

We have shown that the optimal utilitarian policy in a heterogeneous population with bounded 

rationality is highly context specific. The central reason, shown in Section 2, is that the regret of a policy is 

a subtle multiplicative function of individual utilities and of choice probabilities conditional on utility, 

summed across the population. The analysis in Sections 3 and 4 shows that determination of an optimal 

policy requires the planner to have considerable knowledge of population preferences and deviations from 

rationality, knowledge that is rarely available. 

Some research in behavioral public economics has recognized the sensitivity of optimal paternalism 

to the context, but has optimistically conjectured that empirical analysis can provide planners with the 

necessary knowledge. In their mainly theoretical study of optimal taxation with boundedly rational agents, 

Farhi and Gabaix (2019) wrote (p. 313): 

“A difficulty confronting all behavioral policy approaches is a form of the Lucas critique: how do the 

underlying biases change with policy? The empirical evidence is limited, but we try to bring it to bear 

when we discuss the endogeneity of attention to taxes . . . . We hope that more empirical evidence on 

this will become available as the field of behavioral public finance develops.” 

In their study of optimal default policies, Goldin and Reck (2022) wrote (p. 27): 
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“We have shown how the degree to which decision makers make privately suboptimal choices affects 

optimal default policy, but empirically estimating such internalities is widely acknowledged to be one 

of the central challenges in behavioral public economics.” 

They later added (p. 32): “Uncertainty over the decision-making model that generates an observed behavior 

is a pervasive source of difficulty in behavioral economics.” Nevertheless, they retained enough confidence 

in the power of revealed-preference analysis that they presented an empirical study of optimal default policy 

in the context of 401(k) plan contribution decisions. 

 The review article of DellaVigna (2018) on “Structural Behavioral Economics” exemplifies the 

optimistic perspective of researchers. DellaVigna argues that behavioral economists should estimate 

parametric structural econometric models of choice behavior of the type developed from the 1970s onwards. 

He favorably assesses the ability of such models to deliver point estimates of population distributions of 

utility functions and behavior, enabling design of optimal utilitarian policies. He recognizes that these 

estimates rest on maintained modeling assumptions, stating (p. 616):  

“A second issue with structural estimation is that the estimates, and ensuing welfare and policy 

implications, are only as good as the joint set of assumptions going into the model. The estimates may 

be sensitive to changing some of the auxiliary assumptions, and it is often difficult to thoroughly test 

the robustness of the estimates. . . . Relatedly, it is easy, after all the work of estimation, to take the 

welfare and policy implications too much at face value.” 

 Yet he remains optimistic that estimates of point-identified parametric structural models can be sufficiently 

realistic to provide a suitable basis for conventional public economics study of optimal policy choice.8  

 In contrast to the prevalent perspective in behavioral public economics, we are pessimistic about the 

feasibility of credible implementation of optimal paternalism. As discussed in the Introduction, even when 

heterogeneous agents are completely rational, revealed preference analysis requires unrealistically strong 

 
8 Throughout the article, DellaVigna’s discussion of model identification maintains the classical binary differentiation 
between parameters that are identified or not identified. The potential use of credible assumptions to estimate partially 
identified structural models is not discussed. 
 In their separate review article in the same volume, Bernheim and Taubinsky (2018) obliquely recognized the 
phenomenon of partial identification in their brief discussion of “model uncertainty.” Nevertheless, they did not 
address the implications for policy analysis. Their article repeatedly uses the term “optimal policy” and does not 
engage the difficult problem of social planning under uncertainty. 



44 
 

assumptions to point-identify population distributions of utility functions. Study of partial identification 

with weaker assumptions shows that credible assumptions commonly yield a large identification region for 

the distribution of utility functions (Manski, 2007a, 2014).  

 As mentioned in the Introduction, the identification problem is yet more severe when decision makers 

may be boundedly rational. Then empirical study of choices must attempt to interpret behavior without the 

benefit of the transparent linkage of choices to utility rankings available in classical revealed preference 

analysis. The difficulty is evident when bounded rationality takes the form of maximization of mismeasured 

utility, as we showed in Section 3 and 4. Then choices reveal the ranking of mismeasured utilities rather 

than the ranking of the actual utilities that determine welfare. 

 It follows that utilitarian planners with incomplete knowledge of population preferences and deviations 

from complete rationality should not seek to optimize policy invoking assumptions that lack credibility. 

Doing so constitutes policy analysis with incredible certitude. Planners should recognize their own bounded 

rationality, stemming from incompleteness of their knowledge of population preferences and deviations 

from rationality. 

 Abandoning the unrealistic objective of optimization does not nihilistically imply that study of 

behavioral public economics is fruitless. When realistic optimization is infeasible, planners may make 

social decisions using various reasonable criteria for planning under uncertainty. Prominent criteria with 

well-understood properties include maximization of subjective expected social welfare, maximin planning, 

and minimax-regret planning. Manski (2024) presents broad ideas and a set of applications, mainly studying 

minimax-regret planning. These applications do not study planning in populations with bounded rationality, 

but such planning problems may be addressed in the same manner. Study of reasonable utilitarian planning 

under uncertainty is challenging but can be rewarding. We recommend that behavioral public economics 

should begin to face the challenge. 
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