
NBER WORKING PAPER SERIES

THE DEMAND FOR MOBILITY:
EVIDENCE FROM AN EXPERIMENT WITH UBER RIDERS

Peter Christensen
Gustavo Nino
Adam Osman

Working Paper 31330
http://www.nber.org/papers/w31330

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2023, Revised September 2025

We thank Santosh Rao Danda for support in implementing the experiment, as well as others at Uber 
including Ahmed Aly, Rana Kortam, and Ian Muir. We thank Esther Du o and John List for their 
support in the development of this project. We thank our referees for many terrific comments and 
suggestions. We thank Treb Allen, Michael Anderson, David Atkin, Gharad Bryan, Juan Camilo 
Castillo, Benjamin Faber, Erica Field, Marco Gonzalez-Navarro, Jonathan Hall, Amit Khandelwal, 
Florence Kondylis, Gabriel Kreindler, Lewis Lehe, David Phillips, Nicola Rosaia, Nick 
Tsivanidis, Kate Vyborny and seminar and conference participants who provided feedback. We 
thank Rahma Ali, Norhan Muhab, Sarah Saeed, Mahmoud El Bably, Ahmed Abdelsalam for 
research assistance in Egypt, as well as Abdelrahman Nagy and Nagla Rizk for implementation 
support. We also thank Keshi Shen, Felipe Diaz, and student assistants in the University of Illinois 
Big Data and Environmental Economics and Policy (BDEEP) Group. We acknowledge generous 
support from the University of Illinois Department of Economics (RIFDC) and Office of 
International Programs. University of Illinois IRB 19102, AEARCTR-0004966. Authors retained 
full intellectual freedom throughout all stages of this project (more details in the Ethics Appendix). 
All views expressed here, and all remaining errors are our own and do not reflect the views of Uber 
B.V. and/or any affiliates. The views expressed herein are those of the authors and do not 
necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2023 by Peter Christensen, Gustavo Nino, and Adam Osman. All rights reserved. Short sections 
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source.



The Demand for Mobility: Evidence from an Experiment with Uber Riders 
Peter Christensen, Gustavo Nino, and Adam Osman
NBER Working Paper No. 31330
June 2023, Revised September 2025
JEL No. Q5, R4

ABSTRACT

Optimal transportation policies depend on demand elasticities that interact across modes and vary 
across the population, but understanding how and why these elasticities vary has been an empirical 
challenge. Using an experiment with Uber in Egypt, we randomly assign large price discounts for 
transport services over a 3-month period to examine: (1) the demand for ride-hailing services, (2) 
the demand for total mobility (km/week), and (3) its contributions to external costs (e.g. 
congestion). A 50% discount more than quadruples Uber usage and induces an increase of nearly 
49% in total mobility. These effects are stronger for women, who are less mobile at baseline and 
perceive public transit as unsafe. Technology-induced reductions in the price of ride-hailing 
services could generate substantial benefits to users (6.1% of GDP) that would be accompanied by 
considerable increases in external costs (0.7% of GDP), with benefits accruing to the most affluent 
and costs being borne by the entire population.

Peter Christensen
University of California, Santa Cruz 
Department of Economics
and NBER
pechrist@ucsc.edu

Gustavo Nino
University of Illinois Urbana-Champaign
genino2@illinois.edu

Adam Osman
University of Illinois Urbana-Champaign
Department of Economics
aosman@illinois.edu

A randomized controlled trials registry entry is available at 
https://www.socialscienceregistry.org/trials/4966 
Appendices are available at http://www.nber.org/data-appendix/w31330



1 Introduction

The introduction and expansion of ride-hailing services represents one of the most dra-

matic changes in global transportation markets in decades. This is especially true in

the developing world, where the high fixed costs of car ownership and low levels of re-

liability/safety of taxi services have historically limited private travel in low-occupancy

vehicles. While previous work has found substantial consumer surplus from ride-hailing

services (Cohen et al., 2016, Alvarez and Argente, 2020a), it has been challenging to

simultaneously account for the external costs associated with these shifts (Hall et al.,

2018, Tirachini and Gomez-Lobo, 2020). It is well understood that substitution from

mass transit to the same travel using low-occupancy vehicles (i.e. cars) involves consid-

erably higher congestion and emissions externalities (FTA, 2010, FHA 2018). However,

credible estimates of the impacts of changes in ride-hailing markets on external costs

requires exogenous variation in prices and comprehensive micro-data that can capture

both changes in overall travel and substitution across different modes of transportation

(high/low-occupancy).

To overcome these challenges, we implement a demand-side experiment on the Uber

platform.1 The study randomizes large, sustained changes to the prices facing Uber

riders in Cairo, Egypt and introduces a new method for collecting comprehensive data on

participants’ travel patterns using Google Maps’ Timeline software. We randomly assign

1,373 Uber riders into three groups: (1) participants who face prices that are reduced by

50% for the 3-month study period, (2) participants who face prices that are reduced by

25% for the 3-month study period, and (3) a control group. We use individual-level data

collected from Google Maps’ Timeline, a mobile app that measures total daily travel for

each participant, to estimate the demand for total mobility (km/day).2 We combine this

with data collected in follow-up phone surveys to examine how impacts on total travel are

split across private and public modes of transport, each of which contributes differently

to economy-wide transport externalities.3

We find evidence of a strong demand response to the price reductions, with those

receiving a 25% price reduction more than doubling their Uber utilization and those

receiving a 50% reduction more than quadrupling it. We find that these effects also

translate into large increases in overall mobility – participants receiving the 50% treatment

increase their vehicle kilometers traveled (VKT) by 49%, an increase of 1,211 km over

the 12-week period. This increase in total travel understates the increase in private

1Individuals volunteered to join the research program, as outlined in section 2.2 below.
2Google Maps’ Timeline feature is part of the Google Maps app and when activated tracks an individual’s
movement throughout the day. This allows us to get high quality data on the total amount of kilometers
traveled by each participant during the study period.
3We focus on kilometers traveled as opposed to the number of trips taken because that is the relevant
metric for assessing congestion and emission externalities. We also report impacts on trips, which are
similar.
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(low-occupancy) vehicle kilometers traveled due to substitution behavior. Using direct

evidence on transport mode-switching, we find that the proportion of trips taken by

public (high-occupancy) transport declines by approximately 10%. Combining the effects

on distance traveled with the substitution from public to private vehicles, we estimate

that a 50% price reduction in ride-hailing can result in a 60% increase in low-occupancy

(i.e. car) vehicle kilometers traveled.

We then examine impacts by subgroup and find that these average effects mask impor-

tant heterogeneity by gender. Point estimates indicate that the price elasticity of demand

for mobility is substantially higher among women (-1.47) relative to men (-0.60). Female

participants are less mobile at baseline but have higher baseline Uber utilization, and

they respond to the 50% treatment by expanding their Uber usage as well as their overall

mobility more than men. We use data on transport mode use and safety perceptions

to examine key mechanisms underlying these differences. We find that women feel more

unsafe than men on all modes of transit aside from private cars and ride-hailing (where

all participants tend to report feeling safe). While men primarily use Uber to increase

their overall travel, a substantial portion of Uber use among women involves substitution

away from public buses – the least safe travel option reported by female participants in

our study. This substitution pattern is particularly strong among the subset of women

who reported the public bus as an unsafe mode of travel at baseline. The price treatment

on Uber leads to important increases in safety experienced in recent travel for female

participants but not for male participants.

Researchers have predicted that costs in ride-hailing markets could fall by 40-80% as

connected and autonomous vehicle (CAV) technologies improve (Narayanan et al., 2020).

Given our strong reduced-form evidence of substantial latent demand for travel, it’s im-

portant to consider the implications of these potentially large changes in future prices

on both benefits and external costs (e.g. congestion and emission externalities), which

are critical for designing optimal transport policies. We begin by estimating the welfare

change associated with a technology-induced price reduction in the cost of ride-hailing.

We compute the private benefits from price reductions using a measure of compensating

variation in income under minimal assumptions. A key advantage of our experimental

elasticity estimates is that our intervention shifts the price of Uber services faced by

participants without affecting markets for complementary or substitute modes of trans-

portation, which is typically not possible outside an experimental setting. We find that

a price reduction results in substantial private benefits, but that these gains are het-

erogeneous, with the largest benefits accruing to women who find public transit to be

unsafe.

While the elasticities that we estimate are experimentally identified, they do not

take into account potential market-level responses in terms of increased congestion. We

construct a simple model that allows us to account for the effects of increased conges-
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tion on the equilibrium elasticities of travel. In the model, agents choose how much to

travel on low-occupancy (e.g. cars, taxis) and high-occupancy (e.g. bus, rail) modes of

transportation, with low-occupancy modes contributing much more to congestion than

high-occupancy modes. Based on our partial equilibrium elasticities and a set of addi-

tional parameters including the value of time, the shape of the congestion function, and

the share of the population that utilizes ride-hailing, we provide an estimate of the equi-

librium elasticity for travel and the associated benefits at the population level in Cairo,

Egypt.

We then estimate the increase in external costs by estimating the change in kilo-

meters traveled on both low-occupancy and high-occupancy modes of transportation in

equilibrium, and we combine this with comprehensive World Bank estimates of the cost

of transport externalities in Cairo, Egypt (Nakat et al., 2013). In our preferred specifica-

tion, we find that a technology-induced 50% reduction in the price of ride-hailing would

yield benefits that are equivalent to 6.1% of Cairo’s GDP, but also increase external costs

by 0.7% of GDP. This increase in benefits would be concentrated among users of ride-

hailing services, who have higher incomes relative to Cairo’s overall population, while the

external costs are borne by the full population, which raises important questions about

optimal taxation and redistribution.

A recent database identifies more than 45 cities within Brazil, China, India and Mexico

alone that have implemented uniform tax instruments to address externalities in the ride-

hailing market and to redistribute the surplus (World Resources Institute, 2020). Our

elasticity estimates suggest that taxes are likely to have strong effects on ride-hailing

behavior in developing country cities like Cairo, but that implementing a uniform tax to

more equitably address the regressive nature of imbalance between benefits and external

costs would have a disproportionate impact on women. Our estimates indicate that a

uniform tax would reduce overall female mobility by 46% more than the reduction in male

mobility, with the greatest negative impact on women who feel unsafe on public transport.

Estimates from our model show that a uniform tax would decrease welfare more for many

women relative to men. Earlier work has shown how transport accessibility and safety

concerns can affect a variety of downstream outcomes for women including education

and labor market choices (Kondylis et al., 2020, Kreindler, 2020, Anderson, 2014, Bryan

et al., 2014, Desmet and Rossi-Hansberg, 2013). This suggests that policymakers must

carefully consider heterogeneity in price elasticities when utilizing price instruments.

We highlight three important caveats to consider when interpreting our results. First,

as with any experimental study implemented on a particular sample, we must be careful

to consider the extent to which these results will generalize to non-experimental settings.

We run two auxiliary experiments to test the importance of key features of our exper-

imental design – the salience and length of the price reductions. We recover consistent

elasticities when varying these features in independent experimental samples, providing

3



strong evidence that they do not affect the interpretation of our results. Second, we

describe the generalizability of our results using the framework prescribed by List (2020).

We examine the transport characteristics of Cairo relative to other developing country

megacities, and find a similar combination of high public transit ridership and high lev-

els of harassment on public transit, suggesting that our findings could be important for

understanding the mechanisms that might lead to outsized effects of price reductions on

private travel for populations in several emerging economies. Third, our experimental

design does not allow us to assess the full range of general equilibrium effects of large re-

ductions in the price of ride-hailing services. Making personalized travel more accessible

could have wide ranging impacts on outcomes and on time-scales that fall outside the

scope of this specific experiment.

This paper contributes to a large empirical literature on the impact of transporta-

tion services on commuting patterns and economic activity in cities (Bryan et al., 2019,

Campante and Yanagizawa-Drott, 2017, Asher and Novosad, 2018, Hanna et al., 2017,

Duranton and Turner, 2011). A primary challenge in this literature is that the pro-

vision and prices of transportation services are almost never randomly assigned. As a

result, empirical efforts have focused on settings characterized by exogenous shocks in

service provision (Gupta et al., 2020, Gorback, 2020, Yang et al., 2020, Tsivanidis, 2018,

Gonzalez-Navarro and Turner, 2018, Ahlfeldt et al., 2015, Anderson, 2014), available

instruments (Severen, 2018, Baum-Snow et al., 2017, Duranton and Turner, 2011, Baum-

Snow, 2007), and structural approaches (Heblich et al., 2020, Allen and Arkolakis, 2019,

Redding and Rossi-Hansberg, 2017). Recent studies have demonstrated the benefits of

high-frequency price variation in estimating price elasticities for gasoline or private trans-

portation services (Levin et al., 2017, Cohen et al., 2016), though it remains difficult to

study sustained changes in the price of transport services (Schaal and Fajgelbaum, 2020,

Ahlfeldt et al., 2016). We contribute to this literature by randomizing the price of a

transport service for a 3-month period and collecting comprehensive travel data, allowing

us to provide a novel experimental estimate of the demand for mobility. We use this

and other experimental parameters, along with a simple congestion feedback model to

provide a framework for estimating both the benefits and the external costs associated

with changes in the price of travel.

An important feature of our research design is the measurement of overall mobility pat-

terns using a mobile app, which helps to avoid recall/reporting biases. We combine these

data with information from follow-up surveys to examine the mechanisms through which

price reductions in transport services affect mobility, including substitution across modes,

changes in the geography of travel, and learning. There is growing interest in using digital

technologies to measure transportation decisions and map physical movements (Kreindler

and Miyauchi, 2021, Kreindler, 2020, Martin and Thornton, 2017, Glaeser et al., 2018).

Advances in data collection on mobile devices will facilitate direct observation of mobil-
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ity patterns in future research, though these sources also involve important measurement

challenges. We combine data from mobile phones with trip-level data on Uber travel and

a trip survey, allowing us to evaluate the robustness of our central findings and perform

validation tests that can inform future work on individual mobility patterns.

Our paper also builds on a growing set of economic studies of the impacts of ride-

hailing on the travel choices of riders. Studies that consider how ride-hailing may act as

a complement/substitute to other transportation modes have relied mainly upon stated

preference methods (Leard and Xing, 2020, Young and Farber, 2019) or observational

methods using aggregate behavior on outside modes (Hall et al., 2018).4 Our detailed

data on mode use and total distance traveled allow us to track the ways in which ride-

hailing can act as both a complement and a substitute to other modes of transportation.

The previous literature on ride-hailing has largely focused on the benefits to partic-

ipants (riders/drivers) (Buchholz et al., 2020, Alvarez and Argente, 2020b, Goldszmidt

et al., 2020, Castillo, 2019, Moskatel and Slusky, 2019, Cohen et al., 2016). Our es-

timation strategy differs from prior work that relies upon exogenous price variation in

observational settings, such as that from surge pricing as in a recent analysis of con-

sumer surplus from ride-hailing in the U.S. by Cohen et al. (2016). Relative to these

approaches our sustained randomization allows us to overcome concerns about the rela-

tionship between price variation and local demand/supply conditions during a particular

ride request.5 We also contribute to the literature on ride-hailing, and transportation

more generally, by providing a framework that researchers could use to estimate the ex-

ternal costs associated with changes in the price of transport. In our setting, we find

these costs are considerable in magnitude and critical for optimal policy.

Finally, we also contribute to a strand of research that demonstrates that reducing

the monetary cost of transportation can improve the economic outcomes of mobility-

constrained populations (Franklin, 2018, Bryan et al., 2014, Phillips, 2014). We identify

key sources of heterogeneity by gender and safety perceptions in Cairo’s transport market,

linking to the growing literature on the importance of female safety in transportation.

There is evidence that perceived safety levels can affect educational attainment and earn-

ings in developing country settings (Kondylis et al., 2020, Jayachandran, 2019, Velásquez,

2019, Borker, 2018). These safety considerations are also relevant in high income coun-

tries. For example, Kaufman et al. (2018) find that 54% of women are concerned about

being harassed while using public transportation in New York City. Liu and Su (2020)

4Relatedly, Alvarez and Argente (2020a) use experiments to estimate how demand for Uber changes
based on riders’ payment method, cash or credit.
5If surge pricing is commonly engaged during very busy periods with increased congestion, then the
elasticity estimates used to compute CS may differ from the elasticities from non-surge trips. Shen
(2023) suggests that ridehailing elasticities are higher in the face of congestion, which would imply that
Cohen et al. (2016) estimates are upper bounds. Elasticities from surge pricing also differ from the
variation we would observe from a market-wide experiment, where a change in price could affect road
congestion and the effective prices of travel on outside modes (which we discuss in Section 6.2).
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show that the spatial distribution of jobs in the US contributes to the gender-wage gap due

to differential preferences by gender about commuting. We find that subsidies for ride-

hailing services result in disproportionate effects on women in several outcomes: Uber

utilization, total kilometers traveled, substitution away from less safe options (buses),

and self-reported safety in recent trips. Our results suggest the need for attention to the

benefits of safety improvements and the safety of outside options when designing pricing

instruments for ride-hailing services, which are becoming widespread.

The paper proceeds as follows: Section 2 describes the setting and experimental de-

sign, Section 3 provides details on the data we collect and Section 4 reports the impacts

on Uber Utilization. Section 5 reports the impacts on total mobility and presents ro-

bustness checks. Section 6 estimates changes in welfare and external costs and discusses

policy implications. Section 7 discusses study limitations and Section 8 concludes.

2 Study Setting & Experimental Design

Cairo is a city of approximately 20 million inhabitants and is expected to continue to

grow in the coming years. Cairo suffers from high levels of traffic congestion and un-

derinvestment in public transit services (Nakat et al., 2014), and travel is perceived to

come with non-trivial accident and harassment risk (Parry and Timilsina, 2015), similar

to many other large cities in the developing world (see Appendix Table B4).

The primary modes of travel in Cairo include: private cars and taxis, private and

public buses (though no official bus map exists for the city), a metro line that runs

through the heart of the city, and other small transport vehicles such as mini-buses

(private vans) and auto-rickshaws (locally called tuktuks). Ride-hailing services are also

well-established in Cairo. Egypt is one of Uber’s larger markets, with over 4 million users

(Reuters, 2018), where it launched in 2014. The ride-hailing market also includes another

option in “Careem,” which provides services that are similar to Uber.6 At the time of

the study, the market was considered competitive, with promotions and subsidies used

regularly to attract both riders and drivers to the platform. Promotions usually take the

form of coupons for 5-10% off of a set number of upcoming rides.

According to Egypt’s Household Income, Consumption and Expenditure Survey of

2015, Cairo’s residents spend between 5-7% of their income on transportation-related

expenses (Economic Research Forum, 2015). Household expenditure on transportation

services differs across the income distribution. At the lower end of the income distribution,

individuals tend to spend less of their income on transport and rely upon low cost options,

while those in the highest quintile spend closer to 7% of their income.7 This is because

there are large price differences between public and private options. A typical bus ticket

6Uber acquired Careem in 2019, but regulators approved the purchase conditional on Careem continuing
to operate as an independent brand with independent management (Saba, 2019).
7This is somewhat lower than the share of income spent on transport in Latin American cities, where
households spend between 12-15% of income on transport (Gandelman et al., 2019).
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costs 5 EGP, and a typical metro fare is also 5 EGP, for trips that can be as long as

40km. Ride-hailing services on the other hand can cost 6 EGP per kilometer traveled, as

is also true of the costs of taxis.

2.1 Experimental Design

We study the demand response to experimental variation in the price of ride-hailing ser-

vices in Cairo. The experiment applied discounts that reduced the price8 of Uber mobility

services over a period of 12 weeks for two randomly-assigned groups of individuals that

opted in: (1) a 50% reduction or (2) a 25% reduction to the price of Uber services. Par-

ticipants in the control group continued to face standard market prices on the Uber app.

The experiment reduced the prices on five of Uber’s services, including the most common-

UberX which provides a private car on demand based on the individual’s requested start

location and time. Participants also received a price adjustment on UberXL (similar

to UberX but with larger cars), Uber Pool (rides shared with other passengers that are

less expensive but may take longer to complete), Uber Scooter (rides on a two-wheeled

motorcycle that are significantly cheaper than the car-based services, but potentially less

safe/comfortable), and Uber Bus (a newer, high-occupancy service provided along a dy-

namic path across certain zones of the city).9 See Appendix L for a discussion of ethical

considerations regarding the experimental design.

2.2 Recruitment

To recruit the study sample, Uber’s engineering team sent text messages to a random

subset of riders who had taken at least one ride in Cairo over the past 4 weeks. The text

message informed riders that researchers at the University of Illinois were conducting a

study on mobility patterns and participants had a chance to receive discounts on their

future Uber rides. Interested individuals were given a link to a registration page that

provided more detailed information about the study and the opportunity to enroll.10

Upon enrollment, participants received a phone call to confirm their understanding of

the study and to implement the baseline survey that is outlined in section 3.1 below.

Recruitment occurred in batches, with a group of messages sent out every 2-3 weeks,

allowing for the surveyors to complete data collection on the existing cohort before sending

recruitment messages to a new one.

8In this paper, “price reduction” refers to experimental changes to the price faced by the consumer vs.
changes in the market price of Uber services.
9Participants were informed that price reductions would not apply to rides on Uber Select, which is
a service that provides on-demand rides in luxury cars and is Uber’s most expensive option. This
restriction was implemented to safeguard against the potential depletion of funds on services that were
not commonly used and less relevant for the study.
10The response rate to the text message was about 2%, which is typical of these types of solicitations
(Allcott et al., 2020, 2021).

7



2.3 Randomization and Enrollment

After successful completion of the baseline survey, participants were randomized into one

of the two treatment groups or the control group. The randomization was conducted at

the individual level and was stratified by gender and whether individuals were looking

for a job. Each cohort was randomized separately (cohort fixed effects are included in

all regressions). After randomization, individuals were sent an email to welcome them

into the study and to inform them about their treatment status.11 The first cohorts were

enrolled in July 2019, with the final cohorts enrolled in December 2019.12 During the

study period, all participants were sequestered from other incentives that Uber provides

on the basis of recent ridership. Those in the two treatment groups were told that they

were provided their respective price reduction for 12 weeks and informed that they could

apply it to any service except “Uber Select.” Participants were also informed that the

discounts could not be transferred to another person.13 Subsidy treatments were applied

directly to a participant’s account and were applied to prices displayed to participants

whenever they used the app, such that participants in each of the different groups faced

different prices directly and in real-time in the context of a trip decision. For those

assigned to treatment groups, the Uber App would display the reduced fare and below

that, a smaller display of the original fare with a strike-through (an example can be found

in Figure A.1).14

3 Data Collection & Sample Characteristics

3.1 Baseline Survey

Prior to their enrollment in the study, participants were asked to complete a baseline

phone survey to collect individual characteristics such as gender, age, education, marital

status and employment information. Appendix Table B1 reports the characteristics of

the experimental sample of 1,373 participants at baseline. The sample is composed of

47% women (53% men), approximately half of whom are married. Participants in the

control group make an average of 4,655 EGP in monthly income. 78% of the sample is

currently working, though 48% of participants are looking for work at baseline. About

11We do not observe whether the participants had read the enrollment email. The results below indicate
that individuals respond to the subsidies within the first week (see Figure 1), providing evidence that
the emails were seen in a timely fashion. Individuals were also cross-randomized into an information
treatment. The entirety of treatment was two additional sentences in the enrollment email. One group
was informed about a popular online job board that includes thousands of vacancies, and another was
informed about a website that provided data on harassment risk around the city. We control for these
additional treatments in our regressions, but their impacts are outside the scope of this paper.
12As discussed in Appendix J, we exclude the final cohort which was affected by COVID-19. Including
them in our estimates does not qualitatively change the reported results.
13Uber engineers can identify whether people were utilizing their account to provide discounted rides for
other people and reported a negligible number of rides that fit that criteria in our sample.
14The ‘discount display’ (strike-through) was a requirement of the Uber engineering team. While not
prominent on the screen, it could possibly affect the behavior of participants.
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a quarter of the sample owns a car. We compare our participants to a representative

sample of Cairo residents in Appendix Table B2. We find that our sample is younger,

more educated, and has a higher income than the average Cairene, which is not surprising

given that selection depends on utilization of Uber.

We also collect data on overall transport behavior through the survey and Google

Maps Timeline (which we detail below). To simplify comparisons across our different

measures, we adjust all of our variables so that they are reported as activities taken over

a 7-day period. We ask respondents to report the number of trips they took on a variety

of transport modes during the day before the survey. This includes trips on the metro,

on the bus, on taxis, in private cars as well as ride-hailing services (we group Uber and

Careem in this question). Furthermore, in an effort to better understand baseline travel

behavior and perceptions of available options, we collected detailed data on a participants’

longest trip (in distance for a single direction of travel) taken the day before the survey.

We began by collecting information on the mode of travel used for that trip. Figure B1

plots the fraction of trips on the 6 primary modes that participants use for their longest

trips on a given day. The 3 primary modes of transit are bus, ride-hailing services, and

private car, which together constitute more than 85% of trips. While these three modes

are the primary modes used by both genders, men report the greatest reliance on bus

services whereas women report the greatest reliance on Uber services for long trips.

Survey enumerators asked participants to report the perceived duration, cost, and

level of personal safety for the longest trip they took yesterday. They then asked them to

imagine taking the exact same trip using each of the 5 other primary modes available to

them: private car, taxi, ride-hail (i.e. Uber or Careem), public buses (including private

mini-buses), private bus (Swvl), and metro.15 Participants were then asked to report

their expectations about the duration, cost, level of safety, and likelihood of on-time

arrival on each counterfactual mode. Figure B2 plots these counterfactual perceptions on

each mode relative to ride-hailing services. Not surprisingly, ride-hailing is considered a

more expensive option than all but taxi services. Ride-hailing is also considered to offer

a faster trip from origin to destination than bus and taxis but not substantially different

from metro services or transport by private car. Interestingly, ride-hailing services are

also considered to be substantially safer than all options aside from private car. An

additional survey question asked participants to categorize the purpose of their trip as

for work, school, leisure (i.e. personal, family visit, shopping and health), or other.

Results reported in Table B7 indicate that the majority of trips were related to work

(47%) or leisure (46%), with school representing 6% of trips in the sample.

15We ask about ride-hailing as a whole to capture the overall effects on ride-hailing services, which include
substitution from Careem to Uber. A few companies in Cairo (such as Swvl) now provide private bus
services that people reserve in advance. Mini-buses in Cairo are vehicles that are about the size of a
large van and can hold about a dozen passengers. They are usually the cheapest form of transit and
follow varied routes usually starting and ending at known landmarks.
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3.2 Google Timeline Data

To complete enrollment in the study, we asked individuals to adjust the settings on their

mobile phones during the baseline survey to allow Google Maps to record their locations

as they travel. Google uses this information to generate a “Timeline” of travel. This

option is available for all mobile devices that have access to Google services (i.e. Android

and iPhone devices), but is turned off by default. Some participants in our sample already

had this service turned on at the time of recruitment, but the majority did not.16 When

turned on, Google then uses the location data to generate summary statistics on mobility

patterns, including daily reports that provide the distance and time spent traveling on

different transport modes (as shown in Figure A.2). Participants who had it off received

guided instruction on how to turn on their Google Timeline and a follow-up call (4-7 days

later) to confirm functionality and report to us the summary statistics for their travel on

each of the past three days, which is then included in their baseline data.

To our knowledge, this is the first case of researchers using Google’s Timeline feature to

collect data on the mobility behavior (total km traveled) of participants in an experiment.

Digital and mobile-based technologies provide distinct advantages over earlier methods

that depend exclusively upon respondent recall (Kreindler, 2020, Martin and Thornton,

2017). Google Timeline records the places an individual has been, how long it took to get

there and how long they stayed there. Users can access both the summary of their travel

and more detailed data which breaks the day into separate trips including information

on the exact locations and exact times of their travel. Depending on the city, Google

Timeline can differentiate between modes of travel including private car, bus, train, as

well as plane, motorcycle and walking. In Cairo, Google’s mode algorithm is unable to

differentiate between car and bus travel since the two modes use the same routes and

travel at similar speeds. We use the Timeline data to measure the total daily travel for

each participant in the study – participants read their summary statistics to enumerators

over the phone. We utilized this method to avoid participant concerns about potential

violations of privacy.

The daily travel measurements on the Timeline app rely upon GPS measurements and

a proprietary algorithm that is designed to detect and minimize error for a given set of

measurements. While the large user base and importance of accurate trace data for many

of Google’s products may yield a more robust set of measurements than those collected

from other available trace-retrieval applications (and their correction algorithms), little

work has been done on the accuracy of the daily travel measurements from the Timeline

app. Most prior studies that have used GPS data have relied exclusively on the single

source, making it difficult to understand the magnitude or implications of measurement

16It is possible that part of the treatment effect is coming from making participants more cognizant of
their Google Maps app and timeline and that this leads to a differential impact by treatment. But since
the app is pre-installed on all Android phones and is one of the most downloaded apps on iPhone, we
think any impact would be small relative to the direct treatment effect.
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error. In Appendix C, we provide an analysis of measurement error in total daily travel

using trip logs conducted by our research team prior to the experiment as well as using

Uber administrative data and additional survey information for participants during the

study. We find that the data from Google Timeline serve as a good measure of total

distance traveled.

3.3 Follow-Up Surveys and Uber Administrative Data

Upon completion of the baseline survey (including reporting on their total daily distance

traveled from Google Timeline), we randomized individuals into the different treatment

groups. We then implemented multiple rounds of follow-up phone surveys with each

participant in the sample, with four attempts per participant. Follow-up surveys mir-

ror the baseline survey in collecting data on recent travel, counterfactual expectations

about a participant’s longest trip using alternate modes, and Google Timeline data over

the past three days using the summary feature in the mobile application. Individuals

were informed that for each successfully completed survey they will receive 25 EGP in

Uber credit on their account. This is distinct from the subsidized prices shown only to

participants in treatment.17

All participants consented to allow Uber to share trip-level Uber utilization data with

the research team, including the 3-month period preceding the study, the study period,

and the 3-months following the completion of the study.18 For each trip, this dataset

records the Uber service used (e.g. UberX, Uber Bus, etc.), the time of the trip (rounded

to the nearest hour), the start and end locations of the trip (rounded to the 4th digit

latitude/longitude), the distance and duration of the trip, the fare (both before and

after the application of the price treatment, if appropriate), and any credits applied for

payment of a trip (including the 25 EGP credits obtained after the completion of each

survey).

4 Impacts on Uber Utilization

We use the following specification to estimate the impact of price treatments on outcomes:

Yit = β1T1i + β2T2i + β0Y0iPDL + δC + γt + λS + εit (1)

where Yi is the outcome of interest (e.g. weekly kilometers on Uber), T1 and T2 are

indicators for the 25% treatment and 50% treatment respectively, Y0PDL represents the

set of baseline controls chosen using the post double-lasso procedure outlined in Belloni

et al. (2014), δC are randomization cohort fixed effects, γt represents fixed effects for

17These one-time credits have the potential to have differential impacts due to their interaction with
reduced prices. On average, 1 km of travel on Uber costs approximately 6 EGP, so those in the 50%
treatment could travel an additional 4 km on each credit relative to control. A conservative upper bound
estimate of this impact would be 20 km over the study period. By comparison, our impact estimates
are equivalent to an increase of over 700 km in distance traveled on Uber in the 50% group relative to
control during the study period.
18We analyze the post-treatment impacts of the subsidies in Appendix G.
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each round of follow-up surveys, and λS represents randomization strata fixed effects.19

Standard errors are clustered at the individual level. Our results are robust to adjusting

for multiple hypothesis testing using the methods outlined in List et al. (2019, 2021). To

maximize power we make these adjustments on a regression where we include a combined

treatment indicator. We report these results for all main tables in Appendix D.

For continuous variables, we measure outcomes using the Inverse Hyperbolic Sine

(IHS) transformation, which confers three primary advantages: (1) our outcome data

follow a log normal distribution, which lends itself to the IHS form; (2) it allows us to

interpret the coefficients as percentage changes. To properly translate the coefficients

into percentage change, we can calculate “exp(β) − 1,” which for small values of β are

approximately equal to β. As described below, several estimates that we report are quite

large and the values can differ as a result (Bellemare and Wichman, 2020). We therefore

report both the IHS coefficient in the tables and the corresponding changes in the text

where appropriate; (3) The IHS transformation dampens the effects of outliers, while

retaining realizations in outcomes that have a value of zero.20

4.1 Effects on Uber Usage

Table 1 reports estimates of the effects of the price reduction on the use of Uber services

for the three experimental groups: control, the 25% price reduction treatment, and the

50% price reduction treatment. Column 1 reports effects on weekly distance traveled,

which are estimated using the IHS transformation. Relative to the mean of 13.6 km

per week for the control group, we estimate that distance traveled on Uber increases by

1.01 IHS points (approx. 23.7 km or 175% per week) for participants who receive the

25% price reduction and by 1.70 IHS points (approx. 60.8 km or 447% per week) for

participants who receive the 50% price reduction.

Average effects mask important differences between male and female participants.

In Column 2, we include an interaction term for male riders. These estimates indicate

19The main idea behind the post double-lasso procedure is that it uses regularized regressions to select the
optimal baseline controls that minimize residual variance in the outcome variable leading to increased
statistical power. It performs two separate Lasso-type regressions: one to select covariates that are
predictive of the outcome and another to select covariates that are predictive of the treatment, followed
by an OLS estimation using the combined selected variables as controls. We also report our main
results while controlling only for the baseline value of the outcome variable in Appendix H. We find
no substantial differences in the two specifications, aside from increased precision when using the post
double lasso selected baseline controls. We list all controls provided to the lasso in Appendix H. We also
control for two additional information treatments that were cross-randomized on the sample which are
outside the scope of this paper.
20Chen and Roth (2024) recently describe how transformations like IHS can yield results that are sensitive
in cases where there are zeros. In two of our outcomes, distance traveled on Uber and total distance
traveled, there are zeros 36% and 7.5% of the time, respectively. As a test for robustness of our results to
this concern, we use the procedure from Aı̈hounton and Henningsen (2020), which suggests changing the
scale of the outcome variable (in this case we use meters and 1000’s of kilometers instead of kilometers
as the scale). We find that kilometers is close to the optimal level of scaling and provides slightly more
conservative estimates. Our elasticity estimates are also very similar to the estimates generated using
nominal levels instead of the IHS transformation.
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that female participants are more price elastic than their male counterparts. Weekly

distance traveled on Uber in the 25% treatment group increases by 1.11 IHS points among

female riders and by 0.93 IHS points among male riders. A similar difference is found

in the 50% treatment group, where Uber utilization increases by 1.85 IHS points among

female riders and by 1.58 IHS points among male riders. While differences by gender are

not always statistically significant for the 25% group, we run a pooled specification to

maximize power and report the findings in Appendix D. Even after correcting for multiple

hypothesis testing concerns we find that the gender differences remain significant at the

10% level.

Columns 3 and 4 report effects on the average number of trips taken in a week.21

Estimates in column 3 indicate that relative to the mean of 1.5 trips per week for the

control group, participants who receive a 25% reduction increase their Uber trips by 1.8

trips per week (to 3.3) and participants who receive a 50% reduction increase trips by

3.7 per week (to 5.2). Estimates in column 4 indicate that the differential effect on trips

for female participants in the two treatment groups parallels the findings on distance. In

the low treatment group, the number of trips increases by 123% for women, and 107%

for men. The 50% price treatment increases trips by 256% for women (from 1.6 to 5.7

trips per week) and by 218% for men (from 1.5 to 4.8 trips per week).

Figure 1 plots treatment effects for each group (upper panel) and average kilometers

traveled on Uber across the 12 weeks of the study by gender and treatment group (lower

panel). While the initial increase in utilization for the 25% group levels off after the

first week, the (larger) initial increase for the 50% group continues to grow across the

first 3-5 weeks of the study. These increases appear to level off during the latter half of

the study, suggesting that participants may be adjusting during the first month of the

study period, such that estimates from a 1-trip, 1-day, 1-week, or even 1-month study

(commonly used in other work) would underestimate the long-run effect. The magnitude

of estimates after the first month (week 4) are quite stable, which suggests that effects

may asymptote toward a longer-run effect. Specifically, we do not find any evidence of

differences in the magnitude of effects after the first month of treatment.

We plot the results from quantile regressions of the treatment effect in Figure B3.

We do not interpret these results as the true distribution of treatment effects, as that

would require a strong rank-preservation assumption. On the other hand, it provides

suggestive evidence that our estimates of average treatment effects are not driven by a

small group of “super-users.” Panel A presents the estimates on total distance traveled.

We find that they are relatively evenly distributed across quantiles. In both the 25%

and 50% price treatments, there are a small fraction of riders that do not respond to the

treatment, a large increase in the middle of the distribution, and a moderate increase at

21Since the number of trips in a week is usually small, we analyze this variable using levels instead of
IHS.
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the top of the distribution. Panel B presents the estimates for trips taken, which illustrate

a steady increase over the distribution, with larger increases for women relative to men.

In each of the quantile regressions, we utilize bootstrapped standard errors with 1,000

repetitions, clustered at the individual level.

4.2 Price Elasticity of Demand for Uber

In Panel B of Table 1, we explicitly estimate price elasticities of demand for both distance

traveled and trips per week.22 Demand elasticities for total Uber kilometers average -9.5

for women and -6.8 for men. Elasticities estimated based on the number of trips taken

are more similar across genders, with women averaging -5.1 and men averaging -4.4. The

confidence intervals for these elasticity estimates generally overlap between genders.

Our estimates are larger than recent travel elasticities from the United States gaso-

line market, which are larger than had been found in prior studies with aggregate data

and cross-sectional designs Levin et al. (2017). They are also larger than those found in

the United States taxi market (Rose and Hensher, 2014). However, they are consistent

with recent estimates from ride-hail services in Prague (Buchholz et al., 2020). Our esti-

mates may differ with the earlier literature for a few potential reasons: (1) Prior studies

have typically examined the effects of short-run price changes. As far as we are aware,

this price treatment was the largest and longest that Uber has provided to riders. It

is possible that our pre-announced price reductions affected the salience of discounted

Uber services, leading to increased utilization due to the attention our study brings to

travel as opposed to the price effects alone. Using two auxiliary experiments detailed

in Appendix G, we find no evidence that the salience of the experiment led to strategic

overuse. We also show that the length of the treatment does not change behavior. Rid-

ers who were informed that they only had 1 week of subsidy acted similarly to the first

week of behavior for those in our 3-month experiment. (2) Whereas prior studies have

typically focused on transport markets with higher-quality transportation options, this

study specifically focuses on a transit-constrained city. The large price changes examined

in this study may induce significant substitution away from options such as public buses

and other ride-hailing services; we assess the importance of substitution across modes in

Section 5.2. (3) The experimental elasticities in Table 1 isolate the response to a change

in price alone, while studies of market-wide price changes examine responses to changes in

monetary costs as well as endogenous increases in time cost related to congestion effects.

Similarly changes in gasoline prices can have wide ranging effects on the economy, not

just travel. We examine differences between the effects of monetary price changes in our

sample and the equilibrium effects of market-level price reductions in Section 6.
22To calculate the elasticities, we take the changes estimated from the regressions in Panel A and divide
them by the change in price, -0.25 for the smaller treatment and -0.5 for the larger treatment. For the
impacts on number of trips we take the coefficient and divide it by the control mean to estimate the
percent change in trips. For weekly kilometers we need to first transform the coefficient from IHS points
to a percent change using the exp(coef)− 1 transformation (Bellemare and Wichman, 2020).
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5 Effects on Overall Mobility and Substitution

The estimates reported in the prior section demonstrate that price reductions on Uber

services dramatically increase Uber utilization. Furthermore, we are able to use Uber

administrative data on the origin and destination locations of trips taken by study par-

ticipants to show that subsidies increase Uber travel to an expanded set of locations in

Cairo (which we explore in Appendix F). However, these estimates alone are not sufficient

for determining to what extent the price treatments increase mobility (total kilometers

traveled) versus inducing substitution from other modes. To our knowledge, no prior

study has measured effects on total mobility or fully accounted for substitution behavior

in the context of reductions in the cost of private transport services.

5.1 Effects on Overall Distance Traveled

To test for effects on total distance traveled, we use data from each participant’s Google

Maps Timeline (described in section 3.2 above, with more details in Appendix C). Table

2 reports estimates for each of the treatment groups. Columns 1 and 2 report effects on

total distance traveled during the week before the survey, as reported on a participant’s

Google Timeline during follow-up surveys. Relative to the mean of 205 km per week

for the control group, point estimates suggest that total mobility increases by 0.10 IHS

points (approx. 22 km or 10.5% of the control mean) for participants who receive a 25%

price reduction, though this effect is not statistically significant. Total mobility increases

by approx. 101 km or 49% of the control mean among participants who receive a 50%

reduction.23

The average male participant in the control group travels nearly twice as much as

the average female participant (261 km vs. 145 km per week). Column 2 reports effects

on overall mobility for female versus male riders. Among female riders, our estimates

suggest a larger (but non-significant) increase of approx. 29 km or 19.7% of the control

mean in the low treatment group. In the high treatment group, we estimate an increase

of approx. 106 km or 73% of the control mean. Differences by gender are not statistically

significant, but suggest much smaller effects for men in both treatment groups.

Price Elasticity of Demand for Mobility

In Panel B of Table 2, we report estimates of the price elasticity of demand for mobility

(total travel). We begin by calculating the price-elasticity of demand for mobility with

respect to the price of Uber. The estimated elasticities for the full sample are -0.44 for

the low subsidy and -0.99 for the high subsidy. The average elasticity for women is -1.32,

and for men it is -0.38. These estimates are consistent with other estimates of price elas-

ticity of travel demand. Power calculations conducted prior to the experiment suggested

that treatment effects on total travel could be difficult to detect for the 25% group and

indeed we cannot rule out an elasticity of 0 in the 25% group. Hence, another possible

23The estimated impacts for the two treatment groups are statistically different at the 1% level.
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interpretation of our results is that moderate changes in cost of Uber may not change

overall mobility, but large price changes do. Figure B3 includes results from quantile

regressions of total distance traveled by treatment and gender in Panel C. We find that

the results are relatively evenly distributed across all quantiles, providing evidence that

our average treatment effects are not driven by a small subset of users who dramatically

increase their overall mobility.

Next, we compute an alternate statistic: the price-elasticity of demand for mobility

with respect to the overall price of mobility. This elasticity describes how a change in the

price of any transport service will affect total distance traveled. This parameter can be

used by researchers and policymakers to make more informed decisions about how price

changes will affect congestion and emission externalities in the absence of direct data on

overall mobility.

We formalize this notion with a representative consumer’s utility function.24 Here,

and throughout the rest of the paper, an agent will aim to maximize utility of the following

form: U(QM , Y ) where QM is mobility (total distance traveled) and Y is a numeraire.

Mobility is generated using a production function QM = f(Q), where Q is a vector of

quantities of transportation bought on the market (i.e. bus, car, uber and metro) and

f is homogeneous of degree 1. If we let P be the price vector corresponding to Q, this

yields a definition of a “cost of mobility” in terms of the following unit cost function25:

c(P, 1) = {min
q>0

P ·Q s.t f(Q) = 1} = min
q>0

P ·Q
f(Q)

(2)

We can recover an estimate of the change in the aggregate cost of mobility resulting from

a change in the price of Uber using:

∂c(P, 1)

∂pu
=

qu
QM

,
∂2c(P, 1)

∂p2
u

=
∂ qu
QM

∂pu

where qu
QM

represents the quantity of Uber usage per unit of mobility produced. This

yields the following expression for the percent change in the cost of mobility that results

from a given percent reduction in the price of Uber services26:

∆%c ≈ su∆%pu + εuusu(∆%pu)
2 (3)

where su measures the share of the budget spent on mobility completed using Uber

services (pu·qu
w

), while ∆%pu measures percent changes in the price of Uber, and εuu

24The model assumes uniform preferences and focuses on average demand patterns and responsiveness.
This approach maintains tractability for analyzing total welfare effects based on aggregate moments, but
differs from frameworks designed to estimate distributions of heterogeneity or derive robust policy under
uncertainty arising from multi-dimensional types (see, e.g., Bodoh-Creed et al. (2023) for a discussion in
the context of nonlinear pricing).
25The consumer’s utility function would be: maxQM ,Y U(QM , Y ) s.t c(P, 1).QM + pY · Y ≤ w, where
Y represents non-transport goods.
26See Appendix K for full derivation.
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measures the (budget) share elasticity of Uber ( ∂su
∂pu

), i.e. the response of a consumer’s

transport budget allocation to Uber in response to a price change on that mode. Using

values from our experiment, we estimate that a 25% or 50% decrease in the price of Uber

reduces the aggregate price of 1km of travel for the average participant in our sample by

6.1% and 13.7%, respectively.

Panel C of Table 2 reports the price-elasticity of demand for mobility relative to the

overall price of travel in our sample. We find elasticities of -1.81 and -3.62 for the 25%

and 50% price treatments. By accounting for the optimal allocation of transport budgets

across services, these elasticities allow for a more general analysis of how the changes in

the price of a given service will affect total mobility. For example, using this measure we

estimate that a 50% reduction in the price of bus service would result in a 31% increase

in the total daily travel by the average participant in our sample.27 This compares to

the 49.5% increase in total travel that results from a 50% price reduction on Uber. This

difference is driven in large part by the much smaller impact of a 50% reduction in the

price of bus services on the aggregate price of travel in our Cairo sample. While public

bus travel accounts for an important share (33.5%) of the average participant’s total trips,

it accounts for a substantially smaller fraction (11.4%) of their transport budget.

5.2 Is Uber a Substitute or a Complement to Other Modes?

Cities around the world are interested in the extent to which travelers use ride-hailing

services as a substitute or complement to public transit. Empirical studies have produced

mixed results, with some concluding that ride-hailing services increase private vehicle

kilometers traveled (PVKT) (Tirachini and Gomez-Lobo, 2020) and others indicating

that they increase public transit use (Hall et al., 2018).28 The literature has thus far

been unable to reconcile these results, which is critical for developing optimal transport

policies.

Our research design allows us to evaluate how transport mode choice responds to

changes in Uber usage at the individual level. Table 3 reports effects on the number of

trips taken on each the 5 main modes of transportation on the day before our survey. The

bottom panel reports corresponding effects on mode choice probabilities.29 The estimates

reveal evidence of substitution away from the primary transit mode used by the Cairo

sample: the public bus. The 50% fare reduction reduces the number of weekly bus trips

by 1.51 and the probability of taking a bus trip by 10 percentage points. We also observe

a smaller shift away from taxis, which are perceived as less safe and more costly than

27This comparison assumes that the εuu = 0.98 estimate found for Uber services is also comparable for
public bus services. Estimates of 0.75 or 0.5 for the price-elasticity of demand for bus services imply
respective increases of 28.6% and 26% in total mobility.
28Using variation in entry timing and growth of Uber services across metropolitan areas, Hall et al. (2018)
suggest that within 2 years of entry, Uber services increased public transit use by 5% for the average
transit agency in the U.S.
29We compare effects on mode choice probabilities for all trips to those for longest trips in Appendix
Table C7 and find that they are highly consistent.
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ride-hailing services. We find suggestive evidence of small increases in the number of trips

taken by metro and private car in the 50% treatment, although these differences are not

statistically significant.

Our survey collects data on the total number of ride-hailing trips, including Uber

as well as other services such as Careem. By comparing the treatment effects estimated

using Uber admin data to treatment effects on total ride-hailing trips from the survey, we

can evaluate the magnitude of substitution between Uber and other ride-hailing services

in response to the price change. While those in the 50% group take an extra 3.66 trips on

Uber (based on our estimate in Table 1), they only take an additional 2.32 trips on any

ride-hailing service. Assuming the self-reported trip data are perfectly comparable to the

Uber administrative data, this implies a substitution effect of approximately 1.34 weekly

trips from Careem to Uber, which is about a third of the increase in Uber utilization. The

same substitution behavior occurs in the 25% treatment group, about half as often. These

data allow us to go beyond estimating Uber specific elasticities to compute elasticities

for ride-hailing more generally.

Our results indicate that price reductions on Uber induce substitution away from

bus trips, taxi trips and other ride-hailing services. Nonetheless, a reduction in the

proportion of travel taken on public bus doesn’t necessarily imply a decrease in the total

travel taken on public transit. While we do not directly measure changes in the distances

traveled for each trip taken by each mode for each individual, results in Appendix Table

B5 indicate that the average length of Uber trips increases substantially for those in

treatment.30 In Appendix Table B6, we estimate the total distance traveled separately

by public and private modes under the assumption that total distance traveled on a mode

is proportional to the rate of utilization of that mode. Under this assumption, we find no

evidence of a significant decrease in total distance traveled on public transit, with point

estimates consistent with a potential increase. This suggests that ride-hailing could serve

as a complement to public transit in certain contexts, with individuals taking fewer but

longer trips on average.

The findings above illustrate the importance of understanding multi-margin re-

sponses to shifts in the price of transport services. As participants become more mobile,

they may increase their use of other modes in multi-part journeys or for return trips.

Our micro-level findings indicate that price reductions have considerable effects on trip

substitution, though these substitution effects may not translate into large reductions in

30Estimates reported in Appendix Table B5 indicate an increase of 0.17 IHS-points in the length of trips
on Uber in the 50% treatment group, which corresponds to an 18.5% increase. The results from Table 3
indicate participants in the 50% group take 1.2 additional trips per week (across all modes of transport),
a statistically significant 6% increase relative to control. Combining these two estimates produces a
calculated increase in total mobility of 26%, which lies within the confidence interval of our estimates
of the impact of the 50% price reduction on total mobility using the Google Maps Timeline measure,
providing additional evidence of consistency in the estimated effects obtained using the different data
sources.
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the kilometers traveled using public buses use when accompanied by strong increases in

total travel. The implication for metro use, where point estimates suggest an increase in

the 50% group that is not statistically significant, is that the 50% price reduction may

have induced a net increase through complementarity. This is corroborated by the finding

(from Appendix Table F.1, using administrative data on the location of trips) that price

reductions increased Uber travel to and from metro stations.

5.3 Safety Concerns Help Explain Heterogeneity by Gender

Our baseline survey reveals important gender disparities in baseline mobility levels and

in expectations regarding safety on public transit. In the presence of large fare reductions

for ride-hailing services, women may benefit from shifting existing trips away from modes

where they feel less safe, which could help explain why we find greater substitution

behavior by women relative to men. We explore this below using two different pieces

of information: (1) self-reported levels of safety on recent trips and (2) heterogeneity in

effects on Uber use and total mobility among safety-conscious riders.

In Table 4, we report the estimated effects of the treatments on the reported safety

of the longest trip that a participant took on the day prior to the survey. We find

significant increases in the perceived safety of recent trips among participants in the high

treatment group. However, they appear to be entirely driven by female participants,

who report a 0.2 point increase in the safety of yesterday’s trip from an average baseline

rating of 4 out of 5. We find no impact on perceived safety among men.31 To assist

interpretation, estimates in Columns 3 & 4 standardize the outcome variable. Perceived

safety increases by 0.17 standard deviations in the 50% group, which is considered large

in other literatures with hard-to-interpret outcomes (e.g. test scores in education as in

Evans and Yuan (2020)).

Panel A of Table 5 reports the results of tests for differences in the effects of the

price interventions on mobility for individuals who used the bus at baseline. These tests

suggest important gender differences that also vary across the two treatment groups.

While the intervention may have had somewhat smaller effects among male bus riders in

both groups, we find substantially larger effects for female bus riders in the 50% treatment

group (Columns 2 & 3). The intervention increases Uber utilization by 2.29 IHS points

for this group. Our point estimate becomes even larger when we examine effects for

female bus riders that also perceive public transit as unsafe (at baseline) (Column 5).

For this group, the 50% price reduction increases Uber utilization by 2.93 IHS points.32

31Table E2 in the appendix shows that nighttime travel on Uber is similar across both genders, implying
that these safety gains are more due to adaptations to the general safety environment as opposed to
specifically unsafe times of day.
32It is worth noting that while women are much more responsive to the price change, the overall level of
Uber utilization for male bus users in control is more than twice as large as female bus users in control.
This changes after the price change, with women who feel unsafe on the bus at baseline increasing their
level of Uber usage to surpass the level of usage by men who felt the bus to be unsafe.
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In Panel B, we report effects on total mobility for the same groups. These estimates

indicate that while female bus riders increase their Uber usage relative to non-bus riders,

they do not increase their overall mobility relative to non-bus riders. This result holds for

women who perceived the bus as unsafe at baseline. Appendix Table E3 helps explain this

by showing how women who took the bus at baseline substitute away from the bus more,

while men don’t. Taken together, these results indicate that price reductions on Uber

lead to important differences in travel by gender and baseline behavior and perceptions.

In particular, women substitute away from using the bus and subsequently report feeling

more safe on their recent trips. This result is stronger for women who perceived the bus

as an unsafe mode of transit at baseline.

5.4 Robustness Tests

We consider three main types of robustness tests: (1) implicit transfer effects, (2) survey

response rates, and (3) sensitivity to controls.

One underlying concern in our experimental design is that the price intervention

also serves as an implicit income transfer. By making these trips cheaper, the overall

budget constraint for participants has changed and it is possible that participants use

Uber more because they have more income to spend on travel. Our intervention is

different from the pure transfers found in some other programs (e.g. Banerjee et al.

(2017)), since participants in treatment still face a non-zero price in every transaction,

and so our impacts are unlikely to be driven primarily by these implicit transfers.

Second, Appendix Tables B8 - B10 provide information about survey response rates.

Column 1 shows that 94% of the control group responded to at least 1 follow-up survey,

with 96% of the low treatment group responding to at least one and 97% of the high

treatment group. Columns 2-5 provide information about response rates for each survey.

The first two follow-up surveys indicate that control group response rates fall in the 80%

range while the latter two suggest much lower response rates. Treatment assignment

does lead to a statistically significant increase in response rates. Reassuringly, Appendix

Tables B9 & B10 illustrate that there is no differential response based on observable

characteristics. In other words, individuals who are responding to the surveys in the

treatment groups are observationally equivalent to those who respond to the surveys in

the control group. This is true both for whether they respond to any follow-up survey, as

well as for their response rates for all follow-up surveys. We also estimate Lee bounds for

both our “Total Mobility” and “Safety” outcomes in Appendix Tables B11 & B12 (we

have no attrition in the Uber admin data by design).

Third, our main results utilize the double-post lasso procedure outlined in Belloni

et al. (2014). This procedure allows us to maximize statistical power while remaining

agnostic regarding which controls to include in our regressions. In Appendix H, we recon-

struct our main tables using the ANCOVA specifications that were previously standard
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in the experimental literature (McKenzie, 2012). Those tables include the results from

regressions of the outcome variable on treatment indicators and control for the baseline

value of the outcome variable when available (as well as all relevant strata and survey

round fixed effects). We find no meaningful differences between both sets of results.

6 Benefits and External Costs

Combining our randomization and careful data collection allows us to credibly estimate

several parameters that are essential for designing optimal policy. In this section we com-

bine these estimates with a simple framework that allows us to estimate the benefits and

external costs associated with a market-level change in the price of private travel. Some

researchers have estimated that technological innovations such as autonomous driving

could reduce the cost of private (low-occupancy) vehicle travel by 40-80% (Narayanan

et al., 2020). In section 6.1, we build on the model from section 5 to credibly estimate the

change in private benefits from price changes such as these, how they might differ across

the population, and their implications for a uniform tax on ride-hailing. In section 6.2,

we develop a simple model that incorporates congestion in order to convert our partial-

equilibrium elasticities into equilibrium elasticities that account for congestion feedbacks

induced by price changes.33 In section 6.3, we then use these equilibrium elasticities to

estimate how total benefits and total external costs change in response to a 50% price

reduction in the price of low-occupancy transport. This allows us to compare the pri-

vate benefits and external costs to understand the welfare implications of meaningful

reductions in the price of low-occupancy transport services.

6.1 Benefits from Price Reductions

Our research design provides experimentally-identified demand elasticities for travel on

Uber services, which we use in a simple framework to estimate the benefits from price

reductions under minimal assumptions. Building on the framework introduced in section

5.1, we consider an agent maximizing utility with the following value function:

V (P ) = max
QM ,Y

U(QM , Y ) s.t P.Q+ Y ≤ W (4)

where Y is a numeraire good, Q is a vector of consumption goods associated with mobility

(kilometers traveled on different travel modes) and P is a vector of prices for those goods.

We assume that income effects are negligible.34 The above utility representation can

be thought of as denoted in monetary terms. This formula allows us to approximate

the benefits (to second order) using a measure of the compensating variation in income

associated with a price change for Uber services. The change in welfare takes the following

33Our model allows riders to respond to changes in congestion at the market level, but does not account
for larger responses in the economy such as adjustments to housing and labor markets.
34Consumption shares for transportation are just 5.5-6.1% of the budget for households in Cairo (as seen
in Appendix Table B3), suggesting that large income effects are unlikely.
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form:

∆V ≈
k∑
i=1

qipi∆%pi +
k∑
i=1

k∑
j=1

∆%pi∆%pj.pi.(
∂λ

∂pu
.qu +

∂qu
∂pu

.λ) (5)

Where pi and qi represent the price and quantity of mode i and the λ is the shadow

price of utility coming from an increase in the consumption of the numeraire good Y

(see Appendix K for the full derivation). A key advantage of our experiment is that

it shifts the price of Uber services faced by participants without affecting the prices

of other travel modes. Hence ∆%pbus = 0, ∆%pcar = 0, ∆%pmetro = 0, etc., while

∆%pu = −25%,∆%pu = −50% for the different treatment arms. The equation above,

which would otherwise give rise to a very large number of cross-price elasticity parameters,

reduces to the following simple expression:35

∆V ≈ qupu∆%pu(1 + ∆%pu(
∂λ

∂pu
+ λ.εuu)) (6)

Our experimental estimates indicate that 25% and 50% reductions in the price of

ride-hailing services generate benefits of 46 EGP per week and 227 EGP per week for the

average rider in each of the two respective treatment groups. However, we find substantial

heterogeneity within each of the two treatment groups. Table 6 reports benefits calcula-

tions for different subpopulations in the 50% treatment group. Here we find that benefits

to the average car owner (211 EGP per week) are 28% lower. We do not find significant

differences in the magnitude of benefits for the average female participant relative to the

average male participant in the sample. However, we do find evidence of statistical and

economically meaningful differences benefits for the female participants that are most

affected by public transit safety in Cairo. Relative to benefits of 280 EGP/week received

by the average female participant in the sample, female participants who ride the bus

at baseline receive 353 EGP per week in benefits, more than the 113 EGP/week gained

by male bus riders. Female participants that view public transit as unsafe receive 412

EGP per week, more than the 218 EGP/week gained by men. We estimate 577 EGP per

week in benefits to female riders who report feeling unsafe on public transit and who ride

the bus at baseline, which is more than twice as large as those accruing to the average

respondent in the 50% treatment group, although this estimate is less precise.

These results contribute three novel findings to the literature on the welfare impacts

of reductions in the cost of transportation. First, several recent studies have indicated

that reducing the monetary cost of transportation can improve the economic outcomes

of mobility-constrained populations (Franklin, 2018, Bryan et al., 2014, Phillips, 2014).

The estimates above provide a measure of private benefits based directly on participant

35We use the following estimates from Table 1: qu = 13.6, pu = 5.07, εuu−25% = 7.03, and εuu−50% = 8.96.
The resulting estimate for λ is 7.89. Appendix K provides more detail on how lambda is derived and
estimated.
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demand for total mobility and suggest gains that are equivalent to 17% of the monthly

income of the average participant in our sample.

Second, this measure indicates that there are large benefits that accrue to some

women in our Cairo sample. These results, along with our elasticity estimates, have im-

plications for policymakers who may be considering a uniform tax on ride-hailing. Since

we find that female elasticities are larger than their male counterparts, a tax on ridehail-

ing would decrease female mobility more than men. More importantly, Table 6 shows

that a price decrease leads to larger private benefits for some women, suggesting that a

countervailing tax could imply larger costs on those women relative to men. Hence, pol-

icymakers will want to think carefully about the potentially asymmetric impacts across

genders. This also provides further evidence to support the general finding that safe,

low-cost transportation services dramatically improve the welfare of mobility-constrained

populations, especially women in developing countries (Kondylis et al., 2020, Jayachan-

dran, 2019, Velásquez, 2019, Borker, 2018).

Third, we show how randomized pricing experiments in ride-hailing markets can

produce elasticities that are useful for directly estimating the welfare effects of techno-

logical changes in transportation markets. In contrast to the $1.60 in consumer surplus

estimated in Cohen et al. (2016) for US consumers, applying a similar approach using

our elasticity estimate of -1.17 would imply that every dollar spent in Cairo provides an

additional $0.43 in private benefits.36 It is possible that methodological differences as well

as differences in income and other characteristics of populations in U.S. markets versus

Cairo contribute to variation in these estimates.37 It is also different from the variation

we would observe from a market-wide experiment, where a change in price could affect

road congestion and the effective prices of travel on outside modes (which we discuss in

the following section).

36To provide the most direct comparison to the findings from Cohen et al. (2016), we use the price elasticity
estimate for treatment effects on the number of ride-hailing trips from Table 3, Panel A, Column 9. We
find that a 50% price reduction leads to an increase of 2.32 trips per week from the baseline of 3.97 trips
per week in control. This is an increase of 58.4%, which translates to an elasticity of -1.17. This estimate
assumes, as in Cohen et al. (2016), that a price change in Uber services is equivalent to a price change
for the entire ridehailing market. We can relax this assumption by adjusting the 50% change in price
according to Uber’s share of the market, which we estimate to be 82% of ridehailing trips in our Cairo
sample based on data from trip surveys. With that adjustment, we find that a 42.4% price reduction on
ridehailing services leads to an increase of 58.4%, which translates to an elasticity of -1.38.
37The research design in Cohen et al. (2016) relies on using data from individual searches on the Uber app
and a regression discontinuity framework that leverages variation form Uber’s surge pricing strategies,
which increases prices dynamically based on the demand and supply in a particular area & time. Our
design allows us to use experimentally derived ride-hailing elasticities to estimate the private benefits
under less restrictive assumptions. Estimates derived from times when there is a “surge” may be higher
than estimates from normal operations because of the increased value of ride-hailing services than is
typically the case (e.g. because it’s raining, or there is a time-sensitive sporting event, etc).
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6.2 Equilibrium Responses to Market-Level Price Reductions

Pricing experiments provide an opportunity to isolate the price elasticity of travel demand

while holding all else fixed. But when market-level reductions in the price of transport

occur, the behavioral responses become more complex. Understanding these broader

dynamics is crucial for policymakers as they address the challenges posed by evolving

transportation technologies and increasing transport demand.

In this section, we introduce congestion into our model, allowing us to take our

partial equilibrium elasticities from the experiment and use them to estimate equilibrium

elasticities that account for changes in congestion. Our simple model is motivated by

theoretical and empirical findings that a market-level price reduction would increase con-

gestion, which would in turn exert downward pressure on demand. We use the demand

elasticities and other parameters from the experiment to calibrate the model and estimate

equilibrium outcomes. We then use these equilibrium demand elasticities in the following

section to study the implications of a market-level 50% price reduction on private bene-

fits to consumers of ride-hailing services38 as well as the external costs produced by their

travel.

A Simple Framework for Equilibrium Mobility

In our framework, an agent first maximizes their utility by choosing an optimal level of

kilometers traveled (QM), subject to a constraint that their spending on transportation

and a numeraire good does not exceed their budget. This is the outer nest. The cost of

a kilometer of travel remains c(P, 1) as specified in Equation 2 above. We expand on our

previous model by assuming that utility is CES and by adding a penalty for congestion,

taking the updated form:

maxQM ,Y U(QM , Y ) = (ωQρ
M + (1− ω)Y ρ)1/ρ − γ(Qlocc, Qhocc) · V OT ·QM

s.t. c(P, 1) ·QM + Y ≤ W
(7)

We model the congestion penalty as total distance traveled (QM), multiplied by the value

of time (V OT ) spent per kilometer, and a congestion scale parameter (γ) that depends

on the level of aggregate travel demand. (γ) takes demand on low-occupancy and high-

occupancy modes as separate arguments (Qlocc, Qhocc). Congestion is initially normalized

to one to reflect baseline congestion levels in Cairo at the time of our experiment.

The agent must also choose how to allocate kilometers traveled between low-occupancy

transport modes (qlocc, e.g. car, Uber, etc), and high-occupancy transport modes (qhocc,

e.g. bus, rail, etc), giving rise to the inner nest. Low- and high-occupancy modes differ

38This section considers market-level price reductions that result from changes in ride-hailing technologies
using elasticity estimates of effects on all ride-hailing trips (Uber/Careem) from Table 3.
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in their cost per kilometer, their utility value and in their contribution to congestion39:

max
qlocc,qhocc

(η(qlocc)
σ + (1− η)(qhocc)

σ)1/σ (8)

s.t. c(P, 1) ∗QM = phocc ∗ qhocc + qlocc ∗ plocc

QM = qhocc + qlocc

with plocc and phocc as the corresponding prices.40

The congestion function, γ, determines the percent change in congestion relative to

the base condition where there was no change in prices. We first consider a linear case:

γ(·) = 1 +

(
α ·
(
Qlocc −Qlocc0

Qlocc0

)
+ β ·

(
Qhocc −Qhocc0

Qhocc0

))
· S (9)

The first term captures the percent change in kilometers traveled on low-occupancy

modes multiplied by a congestion weight (α) that represents the relative contribution

of a kilometer of low-occupancy travel to road congestion (compared to a kilometer of

high-occupancy travel). We use a base value of β = 0.2 from Authority (2017), which im-

plies that the congestion impact of the average kilometer of high-occupancy travel is 20%

as large as the effect of an additional kilometer made using low-occupancy transport.41

We then multiply this weighted change in congestion by S, which reflects the share of

the population that uses ride-hailing services and hence are directly affected by the price

change.42 We treat the linear congestion function as our primary specification given the

evidence in favor of this assumption from Kreindler (2020), and since small changes are

often given a linear approximation. We also estimate a non-linear specification and in-

39We assume that changes in ridership levels do not affect safety perceptions. The model also assumes
perfectly elastic supply, which may be a strong assumption depending on how the ride-hailing market
evolves. If a technologically-induced price reduction results from the proliferation of autonomous vehicle
capabilities, it may be the case that capital frictions become a more important constraint than the supply
of drivers, which is discussed in current research about supply-side parameters in ride-hailing markets
(e.g. Castillo (2019)). We assume that capital friction will be resolved in equilibrium, as the analysis of
supply elasticities or capital frictions are beyond the scope of our experiment. To the extent that the
supply response is not perfectly elastic, rider responses may be attenuated due to higher prices.
40A kilometer traveled on public transit takes about 30% longer than on private travel, based on our data
collected from participants on their counterfactual expectations of travel time on the longest trip they
took yesterday. We can adjust for these differences by multiplying qhocc by 1.3. On the other hand, there
is also evidence that congestion affects private travel more than public travel, because, for example, a
significant portion of the time on a bus is spent stopping, which is not as affected by congestion (Nguyen-
Phuoc et al., 2018, Akbar and Duranton, 2017). Accounting for these considerations in our estimation
results in slight increases in equilibrium elasticities.
41Values of β normally range from 0.15 to 0.3 in the transportation literature (Authority, 2017) and our
results are not very sensitive to using higher or lower estimates from this range.
42We do not model the impact that increased congestion has on the population of riders that does
not utilize ride-hailing services. Their travel should decrease in response to the additional congestion,
which would attenuate the feedback, implying that our estimates are conservative upper bounds of the
dampening effect. Other research has suggested that autonomous vehicles would have a smaller effect on
congestion than normal cars, which could further attenuate the dampening effect (Bagloee et al., 2016).
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clude the results in Table 7 below.43 The intuition underlying a linear congestion function

is that if a price decrease leads to a 20% increase in travel by those that use ride-hailing,

and 30% of the population use ride-hailing, then the time cost of all travel increases by

6%. Agents make choices taking congestion as given.44

We calibrate the model using the following experimentally-identified estimates: (1)

the price elasticity of total distance traveled in response to a change in the price of low-

occupancy travel, (2) the price elasticities for low-occupancy travel and high-occupancy

travel in response to a change in the price of low-occupancy travel, (3) the budget con-

straint, W , which we set equal to the income of the average participant in our sample,

(4) the baseline share of income spent on travel, and (5) the baseline quantities of travel

on low-occupancy and high-occupancy modes.45 We then recover values of ω, ρ, σ, η &

V OT that are consistent with our experimentally identified estimates. Next, we estimate

equilibrium price elasticities under different assumptions for the (i) value of time (75%

or 150% of mean wage), (ii) the form of the congestion function (linear or quadratic) and

(iii) the share of travelers that use ride-hailing (S=0.2,0.3,0.4).46 To estimate the elas-

ticity, we iteratively solve the model for different prices of low-occupancy travel, holding

the price of high-occupancy travel fixed at the level present in our experiment.47

Table 7 reports elasticity estimates using the parameter values described above and

the different assumptions regarding congestion, the value of time and the proportion who

43We consider a quadratic expression as follows: (
∣∣∣α · Qlocc−Qlocc0

Qlocc0

+ β · Qhocc−Qhocc0

Qhocc0

∣∣∣ ·S + 1)2, multiplied

by the sign of the expression between the absolute value bars. Another non-linear expression follows
the BPR functions that are widely used in the transport engineering literature (e.g. Geroliminis and
Daganzo (2008)). They often take a form such as 1 +α(∆X)β , where α and β are empirically estimated
from traffic data. We find that at conventional values of these two parameters, using our quadratic
expression provides larger increases in congestion, implying that our estimates are conservative upper
bounds of the costs.
44Agents face a range of exogenous levels of congestion and make choices for each given level. We consider
a wide range including the baseline level of congestion experienced in Cairo in our experiment up to a
7-fold increase. The model selects parameter values that ensure internal consistency between estimated
choices and the exogenous congestion level, while excluding values that would be consistent with an
endogenous equilibrium where agents internalize the contribution of their travel on congestion.
45We provide further details in Appendix K. We estimate the partial equilibrium elasticity of low-
occupancy vehicle kilometers traveled by combining our data on total distanced traveled and our data
on the proportion of travel taken on low-occupancy modes for each survey observation from a given
participant. By multiplying these two measures, we recover a measure of total distance traveled on
low-occupancy modes. We then regress those measures on treatment (in Appendix Table B6) and use
those coefficients to estimate the elasticity. The estimated partial equilibrium elasticity is -1.4. This
differs from the elasticity of overall mobility (approximately -1.2), illustrating the importance of directly
accounting for mode substitution when analyzing the impact of price changes on travel.
46We include VOT as a parameter to be estimated by the model to fit our experimental demand elastic-
ities. We then calculate the model-implied VOT and calibrate it to match empirical estimates found in
the literature such as Goldszmidt et al. (2020) and Parry and Timilsina (2015), who report respective
empirical estimates of 75% and 150% of hourly wages. This provides a more flexible way to deal with
congestion costs, as opposed to including VOT as an explicit time cost in the budget constraint which
would require additional assumptions about the value of non-work time.
47We assume that congestion responds in relation to baseline congestion and do not model specific impacts
on the capacity and relative use of different roads.
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use ridehailing. Relative to a partial equilibrium elasticity of -1.4, we find that the equilib-

rium elasticity can be dampened to as much as -1.15 in the cases of quadratic congestion

and a high share of riders using ridehailing. Our preferred specification assumes a linear

congestion function (as found in Kreindler (2020)), a value of time equivalent to 75%

hourly wage (as estimated in Goldszmidt et al. (2020)), and assumes that the proportion

of the population using ride-hailing grows from a baseline of 20% at the time of the study

to 30% with a 50% price reduction (Reuters, 2018). Under these assumptions, we recover

an equilibrium elasticity of -1.33, implying that congestion feedback could attenuate our

partial equilibrium estimate of -1.4 by approximately 5%.

6.3 Private Benefits and External Costs in Equilibrium

In this section, we use the equilibrium elasticities to estimate the welfare benefits to a

market-wide reduction in the price of low-occupancy travel, as well as the increase in

associated external costs. We generate a simple estimate of external costs, αeq, by using

the equilibrium elasticity of mobility and our congestion function to estimate how a 50%

decrease in the price of low-occupancy travel would change overall congestion levels under

different assumptions. We then multiply this change in congestion with the baseline cost

of congestion in Cairo, i.e. αeq = α0 ∗ γ(Qlocc, Qhocc), as detailed below. We do this for

both the linear and quadratic forms of the congestion function.

A comprehensive World Bank study of transport externalities in Cairo estimates

a total cost that is equivalent to 47 billion EGP ($10.9B PPP), which was 3.6% of

Egypt’s GDP in 2010 (Nakat et al., 2014, 2013). The report carefully characterizes 10

different dimensions of congestion costs including travel time delay, reliability, excess

fuel consumption, excess CO2 emissions, road safety, and suppressed demand. We scale

this estimate by the increase in congestion, varying the increase based on the elasticities

reported in Table 7, which capture the range of assumptions described above. In the case

with linear congestion, a value of time that is equivalent to 75% of the median wage,

and where 30% of the population use ride-hailing, a 50% price reduction results in a 20%

increase in overall congestion. We then multiply this overall change in congestion by the

baseline cost of congestion for Cairo (α0), which generates an estimate of an increase

in external costs of approximately $2B PPP, or 0.7% of Cairo’s GDP.48 Table 7 reports

estimates for the full range of parameter values.

48Since the baseline estimate of congestion costs from the World Bank report includes the costs of time
delays from congestion and our model of equilibrium elasticities includes a utility penalty for time delays,
there is a risk of “double-counting” these time costs in our estimates. To account for this, we construct
the costs of congestion separately for ride-hailing users and non-users. While we summarize costs as
αeq = α0 ∗ γ we treat this as αeq = (αTDR ∗ S + α0 ∗ (1− S)) ∗ γ, where S is the share of the population
who are ride-hailing users, and αTDR is the cost of congestion with the cost of time delays removed
“TDR”. Furthermore, since the report assumes a value of time of 75% of average hourly income, we use
this value in our scenarios that assume a VOT of 75% of average hourly income. In scenarios that use a
VOT of 150% of average hourly income, we adjust α0 accordingly.

27



In Table 7, we also calculate and report the change in private benefits that comes

from a market-level change in the price of ride-hailing. We follow the same strategy as

described in section 6.1 above, and calculate the benefits using the equilibrium elasticities

for each of the different combinations of parameters. We then extend these benefits for

the entire share of the population that uses ride-hailing services and transform the full

amount into percent of Cairo GDP to make them easily comparable to the estimates

of external costs. In our preferred specification with linear congestion, a value of time

that is 75% the median wage, and with 30% of the population using these services, we

estimate that the welfare benefit would be 6.1% of GDP, much larger than the 0.7%

increase in external costs. Furthermore, across all assumptions we find evidence that a

technology-induced price change would provide considerable benefits to consumers but

also lead to a substantial increase in external costs, with costs ranging from 0.5% to 3.0%

of GDP, and benefits ranging from 4.0% to 9.0% of GDP.

While the net benefits are positive, the surplus would be concentrated in the higher-

income, higher-educated segment of the population that uses Uber (as shown in Appendix

Table B2) The external costs, however, would be more evenly distributed across the pop-

ulation, given general effects on road users (including bus riders) and residents affected by

pollution exposures. Hence, a technology-induced price reduction may be distributionally

regressive.

7 Study Limitations

We identify five main study limitations: (1) sample size, (2) incomplete data on all travel

locations during the study period, (3) measurement of longer-run impacts, (4) equilibrium

effects on non-transport markets, and (5) generalizability.

While our study and data collection procedures were designed to ensure sufficient

power to detect impacts on mobility (total kilometers traveled), downstream impacts such

as labor market outcomes are noisier and likely require larger sample sizes for precision.

Future studies could secure and invest the additional funds necessary to provide subsidies

to a larger sample.

We are also limited in our ability to fully characterize certain mobility choices. For

instance, our overall mobility data cannot help determine whether price reductions lead

to travel to new places or to the same places more often. Using trip-level data from Uber,

we find that treatment increased Uber travel to new locations, but participants could have

otherwise traveled to that location using a different mode of transportation. Future stud-

ies could track geographic impacts through comprehensive location monitoring, though

this would compromise participant privacy.

As is true of many studies of transportation behavior, the 3-month study period

limits our analysis of impacts on margins that involve longer-run adjustments such as
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vehicle purchase decisions and residential location decisions.49 Our experimental design

also does not permit a comprehensive examination of the general equilibrium effects

from price reductions on ride-hailing services for the full population of Cairo. A broader

examination of effects that includes adjacent sectors like housing, education, and the

labor market is an important area for additional research.

As with any study of a particular intervention or policy, we are limited in how

broadly our results will generalize to other contexts. We do three things to address this.

First, we consider the SANS conditions from List (2020), Holz et al. (2023). They help

make comparisons across studies easier by describing selection, attrition, naturalness and

scaling. In our case, our selection of Uber users provides a sample that is richer and

younger than the general population (see Appendix Table B2), but constitute a policy-

relevant group. Our attrition from the sample is low (as shown in Appendix Tables B8

& B9) and shows that there is no differential response by observable characteristics by

treatment. Our intervention would score high on a naturalness scale. It is a framed field

experiment (Harrison and List, 2004) inside the Uber app. Participants become aware

of the experiment since they must consent to become part of the study and provide the

full set of survey data. In Appendix G, we report the results of tests for differences in

participant behavior between the main intervention and Auxiliary Experiment 2, which

is a natural field experiment run in parallel by our partners at Uber where participants

are unaware they are part of an experiment. The estimates of their price responses are

nearly identical to the estimates from the first week of our main sample. Our model in

Section 6.2 shows that scaling the intervention would dampen the effects due to increases

in congestion, and we treat this as an important policy consideration.

Second, we compare Cairo to several other developing country megacities in Ap-

pendix Table B4. This helps us consider how preferences, beliefs and constraints may

differ across contexts, such as in Nairobi, Bogota and Mexico City. We find that the

combination of high levels of female harassment risk on public transit and high levels of

public transit ridership that characterize Cairo are similar in several other large cities

in the developing world. Finally, we designed and implemented a set of auxiliary exper-

iments that test the importance of certain features of our experimental design. These

experiments provide support for the conclusion that our estimated effects are driven by

strong demand for mobility in Cairo, and not unique features of the experimental design.
49We planned to follow up with the participants in our study 6 months after the onset of treatment to
examine effects on longer-run outcomes from the 3-month treatment. While our 12-week treatments were
effectively complete before the onset of the COVID-19 crisis (see Appendix J), the pandemic resulted
in significant disruptions to travel behavior and survey capacity. We paused data collection for longer-
term 6-month follow-ups that coincided with COVID-19, which was true for the majority of our sample,
limiting what we can say about longer-run impacts on mobility.

29



8 Conclusion

Ride-hailing services will continue to transform the transportation option set in cities

around the world. When paired with careful data collection methods, digital platforms

provide an opportunity for researchers and policymakers to more rigorously examine

complex behavioral responses to shifts in the transportation sector and develop a basis

for the design of evidence-based policy instruments. The present study provides evidence

that in developing country cities like Cairo, individuals travel substantially more when

the cost of ride-hailing services falls and they are not close to satiating their demand

for mobility (total kilometers traveled). These findings have important implications for

researchers and policymakers, as they imply that improvements in transportation services

could substantially increase urban mobility. They reinforce prior results from Duranton

and Turner (2011), who find that expanding road capacity leads to a commensurate

increase in travel.

Our estimates suggest that technology-induced price changes would yield large ben-

efits to users as well as substantial external costs from increases in private vehicle kilo-

meters. They also provide important evidence that the benefits of cheaper ride-hailing

services may be pronounced for groups that face safety/harassment risk on outside options

such as public buses. These benefits are concentrated among higher-income individuals

that use ride-hailing services, while external costs would be borne by everyone who uses

public roads or is affected by associated pollution. Tax instruments could be used to re-

distribute the gains more equally across society, though a uniform tax could reduce female

mobility much more than it would reduce male mobility. Policymakers therefore need to

anticipate the potential for substantial increases in utilization while also considering the

nuanced distributional implications of price changes on population subgroups.
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Figures

Figure 1. Uber Usage Across the Study Period

Treatment Effects by Week on Uber (IHS)

Average Weekly Travel: All Groups

Notes: Figure plots average weekly kilometers traveled on Uber. The upper panel split reports weekly treatment effects
by treatment group, with effects estimated relative to participants in control and vertical lines representing 95% CI using
standard errors clustered at the individual level. The bottom panel plots kilometers traveled on Uber by experiment group,
split by gender. The y-axis is reported using nominal kilometers, and the x-axis is the week of the study.
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Tables

Table 1. Impacts of Uber Subsidies on Uber Utilization

Panel A: Experimental Impacts

Weekly KM on Uber (IHS) Weekly Trips on Uber
(1) (2) (3) (4)

Price X 75% 1.01*** 1.11*** 1.76*** 1.96***
(0.08) (0.11) (0.15) (0.21)

Price X 75% * Male -0.18 -0.35
(0.15) (0.30)

Price X 50% 1.70*** 1.85*** 3.66*** 4.12***
(0.08) (0.12) (0.20) (0.31)

Price X 50% * Male -0.27* -0.84**
(0.16) (0.41)

Observations 16440 16440 16440 16440

Control Group Mean Levels 13.6 14.1 1.5 1.6

Control Group Mean Levels (Male) 13.2 1.5

Panel B: Estimated Elasticity

Weekly KM on Uber (IHS) Weekly Trips on Uber

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Price X 75% -7.03 -8.17 -6.04 -4.65 -4.93 -4.26
[-5.38 , -8.67] [-5.45 , -10.89] [-4.02 , -8.05] [-3.86 , -5.43] [-3.87 , -5.98] [-3.12 , -5.41]

Price X 50% -8.96 -10.74 -7.63 -4.85 -5.20 -4.49
[-7.23 , -10.67] [-7.83 , -13.65] [-5.58 , -9.67] [-4.33 , -5.37] [-4.46 , -5.94] [-3.80 , -5.19]

Notes: Panel A: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of weekly kilometers traveled on Uber.
Column (2) reports the results from a specification that interacts a dummy variable for men, showcasing the differential impact the treatments
have for that subgroup. Columns (3) & (4) report the estimates from a regression on the weekly number of trips taken on Uber (in levels). The
bottom rows of Panel A report the control means in levels for each group in Columns (1) & (3), and split the means by gender in columns (2) &
(4). Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard
errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01. Panel B: Elasticities are calculated using the standard
transformation of the coefficients estimated in Panel A. Values in brackets are the 95% confidence intervals of the estimated elasticities.
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Table 2. Impacts on Total Mobility

Panel A: Experimental Impacts

Total KM Past Week (IHS)
(1) (2)

Price X 75% 0.10 0.18
(0.10) (0.16)

Price X 75% * Male -0.13
(0.21)

Price X 50% 0.40*** 0.55***
(0.09) (0.14)

Price X 50% * Male -0.29
(0.18)

Observations 3476 3476

Control Group Mean Levels 205.2 144.6

Control Group Mean Levels (Male) 261.0

Panel B: Elasticity w.r.t Price of Uber

Total KM Past Week (IHS)

(1) (2) (3)
Overall Female Male

Price X 75% -0.44 -0.84 -0.15
[-1.33 , 0.46] [-2.3 , 0.67] [-1.22 , 0.92]

Price X 50% -0.99 -1.47 -0.60
[-1.52 , -0.46] [-2.40 , -0.55] [-1.21 , 0.02]

Panel C: Elasticity w.r.t Cost of Mobility

(1) (2) (3)
Overall Female Male

Price X 75% -1.81 -3.04 -0.75
[-5.47 , 1.89] [-8.33 , 2.43] [-6.10 , 4.60]

Price X 50% -3.62 -5.40 -2.31
[-5.56 , -1.68] [-8.82 , -2.02] [-4.65 , 0.08]

Notes: Panel A: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of total kilometers
traveled in the three days prior to our follow-up survey as reported by Google Maps’ “Timeline” feature. Column (2) reports
the results from a specification that interacts treatment with a dummy variable for men. The bottom rows of Panel A report
the control means in levels and split by gender in Column (2). Regressions include strata, cohort and follow-up round fixed
effects as well as controls chosen using a double-post-lasso procedure. Standard errors clustered at the individual level in
parentheses. Significance: *.10; **.05; ***.01. Panel B: Elasticities are calculated using the standard transformation of the
coefficients estimated in Panel A. Values in brackets are the 95% confidence intervals of the estimated elasticities. Panel
C: Elasticities are calculated using the standard transformation of the coefficients estimated in Panel A and the change in
the cost of mobility for each group
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Table 3. Impacts on Trips by Mode of Travel

Panel A: Number of Trips
All Modes Metro Bus Taxi Uber/Careem Car

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Price X 75% 1.00 1.19 -0.05 -0.06 -0.15 -0.31 -0.09 -0.20 1.11*** 1.11** -0.11 0.54
(0.68) (0.89) (0.21) (0.29) (0.52) (0.71) (0.13) (0.20) (0.35) (0.52) (0.52) (0.61)

Price X 75% * Male -0.40 0.04 0.35 0.16 0.06 -1.00
(1.35) (0.44) (1.04) (0.27) (0.70) (1.03)

Price X 50% 1.35** 1.50* 0.13 0.20 -1.51*** -1.80*** -0.30** -0.34* 2.32*** 2.42*** 0.54 0.67
(0.62) (0.79) (0.21) (0.29) (0.47) (0.67) (0.11) (0.18) (0.36) (0.54) (0.51) (0.59)

Price X 50% * Male -0.29 -0.12 0.48 0.08 -0.32 -0.21
(1.22) (0.42) (0.95) (0.23) (0.72) (0.99)

Observations 3465 3463 3463 3463 3463 3463 3463 3463 3465 3463 3463 3463

Control Group Mean 18.57 16.94 1.29 1.03 6.72 5.45 0.65 0.79 3.97 4.62 5.96 5.06

Control Group Mean (Male) 20.07 1.53 7.90 0.53 3.38 6.79

Panel B: Proportion of Trips
Metro Bus Taxi Uber/Careem Car

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Price X 75% -0.00 -0.02 -0.03 -0.04 -0.01 -0.02* 0.06*** 0.06* -0.02 0.01
(0.01) (0.01) (0.02) (0.03) (0.01) (0.01) (0.02) (0.03) (0.02) (0.03)

Price X 75% * Male 0.02 0.02 0.02 -0.00 -0.04
(0.02) (0.04) (0.01) (0.04) (0.04)

Price X 50% 0.00 0.00 -0.10*** -0.11*** -0.02** -0.02* 0.12*** 0.12*** -0.01 0.00
(0.01) (0.02) (0.02) (0.03) (0.01) (0.01) (0.02) (0.03) (0.02) (0.03)

Price X 50% * Male 0.00 0.02 0.01 -0.01 -0.01
(0.02) (0.04) (0.01) (0.04) (0.04)

Observations 3133 3133 3133 3133 3133 3133 3133 3133 3133 3133

Control Group Mean 0.06 0.06 0.34 0.29 0.04 0.05 0.24 0.29 0.32 0.31

Control Group Mean (Male) 0.06 0.39 0.03 0.19 0.33

Notes: Panel A shows the coefficients from 5 regressions on the number of trips taken the previous day of our follow-up survey. Even numbered
columns report the results from a specification that interacts treatment with a dummy variable for men. The bottom rows report the control
means in levels, split by gender in even numbered columns. Panel B shows the coefficients from 5 regressions on a continuous outcome that
show the proportion of trips taken the previous day of our follow-up survey. Proportion of observations decline in panel B because we do not use
observations where individuals report not taking any trips. Even numbered columns report the results from a specification that interacts treatment
with a dummy variable for men. The bottom rows report the control means in levels, split by gender in even numbered columns. Regressions
include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard errors clustered
at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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Table 4. Impacts on Reported Safety on Recent Trips

Feeling on Longest Trip Yesterday Feeling on Longest Trip Yesterday
5=Very Safe, 1=Very Unsafe Standardized Variable

(1) (2) (3) (4)

Price X 75% 0.06 0.17* 0.05 0.15*
(0.06) (0.09) (0.05) (0.08)

Price X 75% * Male -0.22* -0.19*
(0.12) (0.10)

Price X 50% 0.09* 0.20** 0.08* 0.17**
(0.05) (0.08) (0.05) (0.07)

Price X 50% * Male -0.19* -0.16*
(0.11) (0.10)

Observations 3182 3182 3182 3182

Control Group Mean 3.98 3.90 -0.04 -0.12

Control Group Mean (Male) 4.06 0.03

Notes: Column (1) reports the impacts of the two treatment arms on the reported level of safety felt during the longest trip
taken by the individual during the day prior to the follow-up survey. Column (2) reports the results from a specification
that interacts treatment with a dummy variable for men. Column (3) reports the impacts of the two treatment arms on
the standardized reported level of safety felt during the longest trip taken by the individual during the day prior to the
follow-up survey. Column (2) reports the results from a specification that interacts treatment with a dummy variable for
men. The bottom rows report the control means in levels, split by gender in Column (2) & (4). The bottom rows report the
control means in levels, split by gender in even numbered columns. Regressions include strata, cohort and follow-up round
fixed effects as well as controls chosen using a double-post-lasso procedure. Standard errors clustered at the individual
level in parentheses. Significance: *.10; **.05; ***.01.
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Table 5. Effect on Baseline Bus Riders

Panel A:Weekly Uber Usage (KM)

Weekly KM on Uber (IHS) Weekly KM on Uber (IHS)
Perceive Bus as Unsafe

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Price X 75% 1.10*** 1.11*** 1.08*** 1.03*** 1.20*** 0.81***
(0.09) (0.14) (0.12) (0.15) (0.20) (0.22)

Price X 75% * Bus User -0.32** -0.08 -0.47** -0.39 -0.44 -0.07
(0.16) (0.23) (0.22) (0.34) (0.41) (0.48)

Price X 50% 1.70*** 1.69*** 1.70*** 1.55*** 1.67*** 1.28***
(0.10) (0.14) (0.13) (0.14) (0.19) (0.21)

Price X 50% * Bus User 0.02 0.60*** -0.36 0.04 1.26*** -0.49
(0.17) (0.23) (0.22) (0.31) (0.47) (0.40)

Observations 16440 7272 9168 6012 3336 2676

Control Group Mean Levels 25.5 25.7 25.4 25.9 27.5 23.5

Control Group Mean Levels (Bus User) 13.4 14.0 13.1 12.6 6.2 15.6

Panel B:Total Mobility (KM)

Total Mobility (KM) in Past Week (IHS) Total Mobility (KM) in Past Week (IHS)
Perceive Bus as Unsafe

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Price X 75% 0.09 0.20 -0.05 -0.01 -0.03 0.09
(0.12) (0.19) (0.16) (0.18) (0.25) (0.25)

Price X 75% * Bus User 0.09 0.09 0.06 0.84* 0.44 0.70
(0.22) (0.35) (0.28) (0.36) (0.72) (0.44)

Price X 50% 0.37*** 0.59*** 0.16 0.28 0.47* -0.13
(0.11) (0.16) (0.16) (0.16) (0.20) (0.27)

Price X 50% * Bus User 0.03 -0.18 0.16 0.62 0.33 0.55
(0.20) (0.31) (0.24) (0.34) (0.70) (0.42)

Observations 3476 1666 1810 1313 780 533

Control Group Mean Levels 218.8 142.3 303.7 223.4 158.3 333.5

Control Group Mean Levels (Bus User) 176.3 151.3 191.7 147.3 122.6 160.2

Notes: Panel A: Columns (1), (2), & (3) report impacts on the inverse hyperbolic sine of weekly kilometers traveled on Uber in a
specification that interacts the treatment with a dummy variable that takes the value of 1 if the individual reports at baseline that
the longest trip took in the previous day was using a bus and 0 otherwise. Columns (4), (5), & (6) in panel A report the result
for a specification that includes only people who perceived the bus as unsafe in the baseline survey. Panel B reproduces the same
regressions but with total kilometers traveled as the outcome variable. The bottom rows in each panel report the control means
in levels, split by if they were bus users at baseline. Regressions include strata, cohort and follow-up round fixed effects as well as
controls chosen using a double-post-lasso procedure. Standard errors clustered at the individual level in parentheses. Significance:
*.10; **.05; ***.01.
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Table 6. Private Benefits from 50% Price Reduction on Uber

All Car Owner Public Unsafe Bus Riders Bus Riders Unsafe

Overall 293 211 307 221 213
[256 , 329] [163 , 259] [251 , 362] [174 , 267] [118 , 307]

Men 313 199 218 170 156
[255 , 371] [140 , 259] [166 , 270] [127 , 214] [89 , 223]

Women 280 251 412 353 577
[234 , 326] [163 , 340] [309 , 515] [236 , 470] [137 , 1017]

Notes: Upper panel shows the estimates of welfare change when there is a 50% reduction of Uber Price. Confidence intervals of
the estimates at 95% are in square brackets. Bottom panel shows the average income by subcategory.

Table 7. Private Benefits and External Costs from a 50% Price Reduction

Share of Pop Functional Equilibrium Individual Annual Population Population Increase
Using Form of Elasticity of Welfare Change Increase in Private in External Cost

Ridehailing Congestion Private Travel (EGP/Week) Benefits (% GDP) (% GDP)

Value of Time = 75% of Median Wage

0.2 Linear -1.36 355 4.0% 0.5%
0.3 Linear -1.33 361 6.1% 0.7%
0.4 Linear -1.29 368 8.3% 0.8%
0.2 Quadratic -1.29 369 4.2% 1.3%
0.3 Quadratic -1.29 368 6.2% 1.8%
0.4 Quadratic -1.15 400 9.0% 2.0%

Value of Time = 150% of Median Wage

0.2 Linear -1.33 360 4.1% 0.7%
0.3 Linear -1.25 378 6.4% 1.0%
0.4 Linear -1.26 377 8.5% 1.2%
0.2 Quadratic -1.28 371 4.2% 1.9%
0.3 Quadratic -1.20 390 6.6% 1.6%
0.4 Quadratic -1.17 396 9.0% 3.0%

Notes: Top panel shows the estimates of welfare change when there is a 50% reduction of Uber Price but no effects from congestion.
The second panel estimates the equilibrium elasticity of private travel using the model in section 6.2 assuming that the value of time
is equal to 75% of median wage. The bottom panel recalculates the elasticity assuming a value of time equal to 150% of median
wage. These elasticities are then used to calculate the change in welfare for the population of ridehailing users, and external costs
for all road users.
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Appendices

A Experimental Design

A1. Price Information for Treated Riders

Figure A.1. Uber Price Information

Notes: The figure illustrates an example of a price change represented within the Uber application on a mobile device in
the Cairo market. Users receive price information in the process of requesting a given trip and are charged upon
completion of a trip.
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A2. Google Timeline Platform

Figure A.2. Google Timeline Platform

Notes: The figure illustrates the location and travel information displayed to participants on the Google Timeline
application. The application provides total travel data for each date after the application is enabled.
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A3. Uber Administrative Data

The figure below illustrates the geographic features (origins/destinations) of the Uber
administrative data. The top panel maps a sample of trips for 3 randomly drawn partic-
ipants in the study. The bottom panel maps the full set of trips for a single randomly
drawn day. Trips in the control group are shown in blue, trips in the 25% group are
shown in red, and trips in the 50% group are shown in orange.

Notes: The figures illustrate the origin/destination information obtained for trips recorded in Uber administrative data.
The application provides total travel data for each date after the application is enabled. The top panel maps a sample of
trips for 3 randomly drawn participants in the study. The bottom panel maps the full set of trips for a single randomly
drawn day. Trips in the control group are shown in blue, trips in the 25% group are shown in red, and trips in the 50%
group are shown in orange.
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B Sample Characteristics, Attrition and Additional

Results

This appendix includes figures and tables that provide additional detail and insights
from the experiment. The first two figures describe baseline travel behavior and beliefs,
split by gender. Table B1 reports baseline characteristics and balance tests for baseline
covariates. Table B2 compares baseline characteristics for the sample to a representative
sample of the Cairo population. Table B3 shows how budget shares differ by income.
Table B4 provides data on the transportation market in Cairo and 5 other cities in Africa
and Latin America, illustrating that the high levels of public transit ridership and female
harassment risk on public transit that characterize Cairo are similar in several other large
cities in the developing world. Tables B8-B9 analyze attrition throughout the study and
test for differential response rates by baseline characteristics across treatment groups.
Tables B11 & B12 estimate Lee bounds for Mobility and Safety.

Figure B1. Baseline Transport Behavior

Notes: The figure illustrates mode use from baseline surveys for male (green) and female (yellow) respondents. Survey
question asks participants to recall the mode of travel used for their longest trip on the day prior to a phone survey.
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Figure B2. Perceived Cost, Duration, and Safety of Outside Options

Relative Cost Compared to Uber

Males Females

Relative Duration Compared to Uber

Males Females

Relative Safety Compared to Uber

Males Females

Notes: The figure illustrates mode use from baseline surveys for male (left) and female (right) respondents. Survey asks
participants to provide expectations for cost, duration, and safety for all possible modes that could have been used for
their longest trip on the day prior to a phone survey.
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Figure B3. Quantile Regressions

Panel A: Total Weekly Uber Distance (IHS)
25% Price Reduction 50% Price Reduction

Panel B: Number of Weekly Uber Trips
25% Price Reduction 50% Price Reduction

Panel C: Total Distance (IHS)
25% Price Reduction 50% Price Reduction

Notes: This figure plots the results of quantile regressions of the impacts of the treatment split by gender. Panel A reports
impacts on weekly distance kilometers traveled on Uber, Panel B reports impacts on the average number of weekly Uber
trips, and Panel C reports impacts on the total distance using data from Google Maps’ Timeline. The panels on the left
show the impacts for the 25% group, while the panels on the right show the impacts for the 50% group. Bootstrapped
standard errors with 1,000 repetitions are clustered at the individual level.
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Table B1. Baseline Characteristics

Variables Control 75% 50% 50% vs 75%
Mean vs Control vs Control

Female 0.47 0.00 0.00 -0.00
(0.50) (0.03) (0.03) (0.03)

Age 31.36 -0.29 -0.96 -0.67
(10.65) (0.72) (0.80) (0.77)

Married 0.50 -0.00 -0.06* -0.05
(0.50) (0.03) (0.03) (0.03)

Monthly Income 4,655 -192 -419 -226
(6,803) (430) (423) (314)

Currently Working 0.78 0.00 0.01 0.00
(0.41) (0.03) (0.03) (0.03)

Hours Worked (hours/week) 44.54 -0.88 0.32 1.20
(15.61) (1.24) (1.16) (1.22)

Looking for Work 0.48 0.00 -0.01 -0.01
(0.50) (0.03) (0.03) (0.03)

Car Owner 0.26 0.01 -0.05 -0.05*
(0.44) (0.03) (0.03) (0.03)

Total Weekly Trips 20.83 1.26 -0.04 -1.30
(13.66) (0.90) (0.88) (0.86)

Total Mobility (km/week) 86.33 -12.59 -0.66 11.93
(200.24) (11.39) (12.29) (9.63)

Total Time in Transit (min/week) 604.72 -59.98 -28.86 31.12
(2,698.80) (144.62) (146.43) (87.86)

Velocity (km/hour) 25.64 -5.12 10.33 15.45
(143.54) (7.65) (14.24) (12.77)

Observations 455 954 958 960
Joint F-test (p-value) 0.80 0.61 0.72

Notes: Column (1) reports the mean and standard deviation of the control group for a given outcome variable, Column
(2) reports the average difference between each variable for those in the Price X 75% treatment group relative to control,
Column (3) reports the average difference between each variable for those in the Price X 50% treatment group relative to
control, and Column (4) reports the average difference between each variable for those in the Price X 75% treatment group
relative to those in the Price X 50% treatment group. The last row in each panel reports the p-value for the F-test from a
regression of the treatment dummy on all baseline balance variables. Significance: *.10; **.05; ***.01.
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Table B2. Comparing Experiment Sample to Representative Sample of Cairo

Overall Female Male

(1) (2) (3) (4) (5) (6)
Population Sample Population Sample Population Sample

Gender 0.49 0.53 0 0 1 1
(0.5) (0.50) (0.0) (0.0) (0.0) (0.0)

Age 35.89 30.92 36.42 29.95 35.33 31.77
(13.81) (9.54) (14.11) (9.89) (13.47) (9.15)

Married 0.60 0.49 0.63 0.45 0.57 0.52
(0.49) (0.50) (0.48) (0.50) (0.50) (0.50)

Hours Worked (hours/week) 20.67 44.47 6.76 39.05 35.20 48.15
(26.98) (16.17) (16.69) (28.00) (17.08) (16.44)

Currently Working 0.44 0.79 0.17 0.68 0.73 0.88
(0.50) (0.41) (0.37) (0.47) (0.44) (0.32)

Monthly Income 1026 4403 305 3434 1778 5060
(2990) (5274) (1415) (3813) (3882) (5987)

College Education 0.27 0.88 0.25 0.90 0.29 0.86
(0.44) (0.32) (0.43) (0.30) (0.45) (0.34)

High School 0.33 0.09 0.29 0.08 0.35 0.10
(0.47) (0.28) (0.46) (0.27) (0.48) (0.30)

Less than High School 0.40 0.01 0.46 0.01 0.36 0.01
(0.49) (0.08) (0.50) (0.08) (0.48) (0.08)

Car Owner 0.13 0.25 0.13 0.20 0.12 0.29
(0.33) (0.43) (0.34) (0.40) (0.32) (0.46)

Looking for Work 0.03 0.49 0.03 0.33 0.04 0.63
(0.18) (0.50) (0.17) (0.47) (0.19) (0.48)

Notes: Columns (1), (3), & (5) report the average values for a representative sample of Cairo residents, taken from the
2018 Egypt Labor Market Panel Survey. Columns (2), (4), & (6) report the values for individuals in our sample. Standard
deviations reported in parentheses.
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Table B3. Budget Share of Consumption by Income Quartile

Food Housing Clothing Transportation Others

Overall 36.6% 12.8% 2.5% 5.8% 42.3%
[35.7% , 37.5%] [12.2% , 13.4%] [2.3% , 2.6%] [5.5% , 6.1%] [41.3% , 43.3%]

1st Quartile 47.7% 11.7% 2.5% 5.5% 32.6%
[45.6% , 49.8%] [10.6% , 12.8%] [2.3% , 2.7%] [5.0% , 6.0%] [30.2% , 34.75%]

2nd Quartile 37.9% 12.9% 2.6% 5.6% 40.1%
[36.6% , 39.2%] [11.8% , 13.95%] [2.4% , 2.9%] [5.2% , 6.0%] [39.4% , 42.4%]

3rd Quartile 34.9% 11.4% 2.5% 6.1% 45.0%
[33.5% , 36.4%] [10.3% , 12.5%] [2.3% , 2.7%] [5.6% , 6.6%] [43.5% , 46.7%]

4th Quartile 25.9% 15.1% 2.2% 6.0% 50.8%
[24.4% , 27.3%] [13.7% , 16.5%] [2.0% , 2.4%] [5.4%, 6.6%] [48.9% , 52.8%]

Notes: Transportation category includes transportation services cost, cost of maintenance and cost of buying car. Con-
fidence intervals at 95% are in square brackets. This estimate comes from Egypt’s Household Income, Consumption and
Expenditure Survey of 2015 (Economic Research Forum, 2015).

Table B4. Comparison between Cities

Cairo Bogota Cape Town Mexico City Nairobi Panama City

% Public Transit 63% 60% 54% 69% 60% 57%

Harassment of Women on Public Transit 86.5% 80% 73-90% 75% 75% -

Insecurity on Transit - 68% 42% - - 54%

% Car Owner 13% 15% 43.8% 28% - 15%

Notes: These data come from Ouali et al. (2020), Lombard et al. (2007), Estupiñan et al. (2018), El Deeb (2013), Odhiambo
et al. (2021), Yañez-Pagans et al. (2019).
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Table B5. Impact of Treatment on Length of Uber Trips

Total KM per Trip (IHS)
(1) (2)

Price X 75% 0.09* 0.11
(0.05) (0.08)

Price X 75% * Male -0.04
(0.11)

Price X 50% 0.17*** 0.23***
(0.05) (0.07)

Price X 75% * Male -0.11
(0.10)

Observations 56802 56718

Control Group Mean 9.0 8.9

Control Group Mean (Male) 9.1

Notes: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of total kilometers traveled
in the uber trip. Column (2) reports the results from a specification that interacts treatment with a dummy variable for
men. The bottom rows report the control means in levels and split by gender in Column (2). Regressions include strata,
cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard errors
clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.

Table B6. Travel on Private vs. Public Transportation

Total Weekly KM Public (IHS) Total Weekly KM Private (IHS)
(1) (2) (3) (4)

Price X 75% 0.12 0.39 0.37** 0.07
(0.19) (0.26) (0.18) (0.25)

Price X 75% * Male -0.54 0.61*
(0.37) (0.36)

Price X 50% 0.22 0.27 0.47*** 0.39
(0.19) (0.26) (0.18) (0.24)

Price X 50% * Male -0.08 0.15
(0.37) (0.36)

Observations 3352 3352 3352 3352

Control Group Mean Levels 74.5 38.9 127.7 106.6

Control Group Mean Levels (Male) 108.0 147.7

Notes: Notes: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of total kilometers
on public transportation (bus & metro). Column (2) reports the results from a specification that interacts treatment with a
dummy variable for men. The bottom rows report the control means in levels and split by gender in Column (2). Columns
(3) & (4) report impacts on on private travel (i.e. taxi, Uber, and private car). Regressions include strata, cohort and
follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard errors clustered at
the individual level in parentheses. Significance: *.10; **.05; ***.01.
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Table B7. Impacts of Treatment on Trip Purpose

Work School Leisure Other

(1) (2) (3) (4) (5) (6) (7) (8)

Price X 75% 0.00 -0.03 0.01 0.00 -0.02 0.01 0.02 0.01
(0.05) (0.04) (0.02) (0.02) (0.05) (0.04) (0.01) (0.01)

Price X 75% * Male -0.05 -0.02 0.08 -0.01
(0.08) (0.03) (0.08) (0.02)

Price X 50% -0.05 -0.04 0.03 0.01 0.01 0.02 0.02 0.00
(0.05) (0.04) (0.02) (0.02) (0.05) (0.04) (0.01) (0.01)

Price X 50% * Male 0.03 -0.04 0.04 -0.03
(0.07) (0.03) (0.07) (0.02)

Observations 1661 1661 1661 1661 1661 1661 1661 1661

Control Group Mean Levels 0.47 0.39 0.06 0.09 0.46 0.51 0.01 0.01

Control Group Mean Levels (Male) 0.54 0.03 0.43 0.01

Notes: Table reports the coefficients from 4 discrete regressions of each purpose on a binary outcome that takes the value
1 if the individual reported taking that purpose of transportation for their longest trip the day of our follow-up survey.
Even numbered columns report the results from a specification that interacts treatment with a dummy variable for men.
“Leisure” category includes trips with the following purposes: personal, family visit, friend visit, shopping and health.
Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.

Table B8. Response Rates

(1) (2) (3) (4) (5)
Any Follow-Up Follow-Up 1 Follow-Up 2 Follow-Up 3 Follow-Up 4

Price X 75% 0.02 -0.01 0.05* 0.04 0.02
(0.01) (0.03) (0.03) (0.03) (0.03)

Price X 50% 0.03** 0.02 0.08*** 0.06* 0.08**
(0.01) (0.02) (0.03) (0.03) (0.03)

Control Group Response Rate 0.94*** 0.82*** 0.78*** 0.40*** 0.38***
(0.01) (0.02) (0.02) (0.02) (0.02)

Observations 1373 1373 1373 1373 1373

Notes: Columns (1) reports the coefficients from a regression on a binary outcome that takes the value 1 if the individual
reported to answer any follow-up survey and 0 otherwise. Columns (2), (3), (4), & (5) report the result for each follow-up.
Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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Table B9. Impacts of Observable Characteristics on Response Rates (All Follow-Ups)

Dependent variable: Response to Follow-Up

(1) (2)
Price X 75% Price X 50%

treatment -0.09 -0.13
(0.11) (0.11)

Car -0.06** -0.06**
(0.03) (0.03)

Education -0.02 -0.02
(0.02) (0.02)

Married -0.02 -0.02
(0.02) (0.02)

Female 0.09*** 0.09***
(0.02) (0.02)

Looking for work 0.00 0.00
(0.00) (0.00)

Total distance 0.00 -0.00
(0.00) (0.00)

Treatment * Car 0.03 0.08**
(0.04) (0.04)

Treatment * Education 0.03 0.03
(0.02) (0.02)

Treatment * Married -0.01 -0.02
(0.03) (0.03)

Treatment * Female -0.04 0.03
(0.03) (0.03)

Treatment * Looking for work 0.00 0.00
(0.00) (0.00)

Treatment * Total distance 0.00 0.00
(0.00) (0.00)

Constant 0.67*** 0.67***
(0.08) (0.08)

Observations 3632 3644

F-Test 0.71 1.30
(P Value) (0.64) (0.25)

Notes: Columns (1) reports the coefficients from a regression on a binary outcome that takes the value 1 if the individual
reported to answer any follow-up survey and 0 otherwise given the 25% treatment group, some control variables and the
interaction of the treatment with the controls. Column (2) reports the same estimation for the 50% treatment group. The
F-Test shows joint significance for the control variables when interacted with the treatments. Standard errors clustered at
the individual level in parentheses. Significance: *.10; **.05; ***.01.
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Table B10. Impacts of Observable Characteristics on Response Rates (1 Follow-Up Min.)

Dependent variable: Response to Follow-Up

(1) (2)
Price X 75% Price X 50%

Treatment -0.01 -0.13
(0.10) (0.09)

Car -0.04* -0.04**
(0.02) (0.02)

Education -0.01 -0.01
(0.01) (0.01)

Married -0.01 -0.01
(0.02) (0.02)

Female 0.00 0.00
(0.02) (0.02)

Looking for work 0.00 0.00
(0.00) (0.00)

Distance 0.00 0.00
(0.00) (0.00)

Treatment * Car 0.03 0.04
(0.03) (0.03)

Treatment * Education 0.01 0.03*
(0.02) (0.02)

Treatment * Married 0.00 -0.02
(0.03) (0.03)

Treatment * Female -0.03 0.01
(0.03) (0.03)

Treatment * Look For Work 0.00 0.00
(0.00) (0.00)

Treatment * Total Distance 0.00** 0.00
(0.00) (0.00)

Constant 1.01*** 1.01***
(0.07) (0.06)

Observations 908 911

F-Test 1.17 0.91
(P Value) (0.32) (0.49)

Notes: Columns (1) reports the coefficients from a regression on a binary outcome that takes the value 1 if the individual
reported to answer at least 1 follow-up survey and 0 otherwise given the 25% treatment group, some control variables
and the interaction of the treatment with the controls. Column (2) reports the same estimation for the 50% treatment
group. The F-Test shows joint significance for the control variables when interacted with the treatments. Standard errors
clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.

A13



Appendix B Sample Characteristics

Table B11. Lee Bounds for Total Mobility

Overall Female Male

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lower Higher Main Estimate Lower Higher Main Estimate Lower Higher Main Estimate

Price X 75% -0.01 0.5*** 0.1 0.11 0.65*** 0.18 -0.11 0.38*** 0.03
(0.00) (0.08) (0.09) (0.14) (0.12) (0.14) (0.12) (0.10) (0.12)

Price X 50% 0.11 0.74*** 0.35*** 0.24* 0.90*** 0.49*** 0.02 0.58*** 0.23**
(0.08) (0.07) (0.08) (0.12) (0.11) (0.12) (0.11) (0.10) (0.11)

Notes: Columns (1), (4) & (7) report the lower Lee bounds from regressions of total mobility on treatment. To generate the lower Lee bounds we
compare the proportion in treatment and control groups who respond to the surveys and trim the excess respondents with the highest values in
the group with more respondents. For columns (2), (5) & (8) we repeat this process but remove the lowest values. In columns (3), (6), & (9) we
reproduce the main results. Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.

Table B12. Lee Bounds for Safety

Overall Female Male

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lower Higher Main Estimate Lower Higher Main Estimate Lower Higher Main Estimate

Price X 75% -0.71*** 0.39*** 0.06 -0.62*** 0.31*** 0.19*** -0.78*** 0.32*** 0.05
(0.06) (0.05) (0.06) (0.10) (0.09) (0.10) (0.08) (0.06) (0.08)

Price X 50% -0.77*** 0.44*** 0.09* -0.69*** 0.76*** 0.22*** -0.85*** 0.33*** 0.01
(0.06) (0.05) (0.06) (0.10) (0.07) (0.09) (0.08) (0.06) (0.08)

Notes: Columns (1), (4) & (7) report the lower Lee bounds from regressions of total mobility on treatment. To generate the lower Lee bounds we
compare the proportion in treatment and control groups who respond to the surveys and trim the excess respondents with the highest values in
the group with more respondents. For columns (2), (5) & (8) we repeat this process but remove the lowest values. In columns (3), (6), & (9) we
reproduce the main results. Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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C Measuring Mobility

This appendix provides additional detail on the measurement of mobility across the three
data sources used in the study: (1) Uber administrative data on trips, (2) trip surveys,
and (3) total travel using Google Timeline.

C.1 Measuring Total Travel with Google Timeline

In this section, we evaluate the consistency of measurements across different data sources
and report results from a set of validation exercises that evaluated differences in distance
measurements between a manually constructed daily travel log, Uber administrative data,
and Google Timeline data prior to the study.

Google Timeline Validation

Over a 5-day period prior to the study, we conducted a validation exercise to evaluate
measurement error in Google Timeline data. As depicted in Figure C1, we created a
manual trip log that records the distances of travel taken by Uber and private car. We
then compared the distances recorded in the log to the distance measurements collected
on the Uber platform and in our Google Timeline.
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Figure C1. Comparison of Manual Travel Log, Google Timeline, Uber Admin

figures/overlay_13_final_revised.png

Table C1 reports the results from the validation exercise, which indicates that Timeline
understates total travel by about 12.5% relative to the manual log. In our analysis, we
report our results in percentage terms using an IHS transformation and restrict all com-
parisons between data sources to comparisons of percentage effects, further helping to
correct for any uniform underestimate of overall distance measured on Google Timeline.
The difference is 12.6% when taking an Uber trip and by 12% when not taking an Uber
trip, providing some evidence that GPS functionality when an individual is taking an
Uber trip does not result in differences in Timeline measurements of total travel. When
we compare data from Uber’s administrative data to manual logs, we find that the admin-
istrative data understates total travel by 2.9%. This is likely because Uber’s log utilizes
data from an application on the driver’s phone, which is built to collect more accurate
data (but is much more battery intensive).
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Table C1. Comparison of Manual Travel Log, Google Timeline, Uber Admin

Category # of trips Log Distance Uber Distance Timeline DistanceLog-Timeline (%) Log-Uber (%)

Uber Trips 11 169.30 174.20 147.90 12.62% 2.89%
Non-Uber Trips 3 33.70 - 29.70 11.94% -
All Vehicle Trips 14 202.90 - 177.60 12.51% -

Notes: All distances are reported in kilometers.

GPS tracking on Uber vs. Non-Uber Trips

The validation exercise above suggests that measurement error in Google Timeline mea-
surements is similar across Uber and non-Uber trips. It is possible that participants
disable their GPS while using modes other than Uber. While this would require that
a participant fully disables navigation services during travel, participants may do this
in certain cases to preserve battery life. A benefit of the Timeline app is that it is
optimized for battery life, potentially reducing participant concerns about battery use.
Either of these issues could bias our experimental results if they differentially affect the
measurement of total travel for the treated group (who use Uber more).

Using data from the baseline survey, Table C2 reports the results of a regression of
total travel on the number of trips taken using each mode for the same period. While dis-
entangling mode-specific measurement error from mode-specific differences in trip lengths
would require independent measurements of distances traveled in each of the recorded
trips, these correlations do not suggest that Uber trips have an outsized influence in the
total distance measurement.

Table C2. Previous Day Km on Trips (Baseline)

(1)
Total KM Previous Day (IHS)

Metro Trips 0.21***
(0.06)

Bus Trips 0.23***
(0.03)

Taxi Trips 0.17**
(0.07)

Uber Trips 0.31***
(0.05)

Car Trips 0.27***
(0.03)

Observations 1373

Notes: This table reports the coefficients from a regression of previous day kilometers on the number of
trips taken that day. Standard errors clustered at the individual level in parentheses. Significance: *.10;
**.05; ***.01.

We then compare the coefficient of variation in total distance traveled on days that include
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Uber trips and those that do not. If the use of Uber makes Google Timeline more precise,
then we would expect less variation in the data collected on days when Uber trips are
taken. Directly comparing the variance would not be appropriate because as distance
traveled increases, the overall variance will also increase. For this reason, we utilize the
coefficient of variation (the standard deviation divided by the mean), which provides a
scale invariant measure. Table C3 reports the results of this analysis. We find that the
coefficient of variation are very similar on days with and without an Uber, suggesting
that this potential bias is not a first-order concern for our analysis.

Table C3. Coefficient of Variation

Overall Control Subsidy 25% Subsidy 50%
(1) (2) (3) (4)

Day With Uber 1.41 1.32 1.47 1.44
[1.19, 1.47] [1.12, 1.36] [1.27, 1.68] [1.24, 1.68]

Day Without Uber 1.52 1.42 1.55 1.59
[1.23,1.59] [1.33,1.80] [1.36, 1.70] [1.53, 1.95]

Notes: This table reports the coefficient of variation of distance reported on Google Timeline separated by days in which
an individual took an Uber ride and days in which they did not take an Uber ride. 95% confidence intervals reported in
brackets.

Uber Travel (Administrative Data) vs Total Travel (Timeline)

Next, we examine the robustness of our results by utilizing Uber’s administrative data
to identify instances of measurement error in the Google Timeline. Figure C2 plots the
total distance traveled from a participant’s Timeline against the distance recorded on
Uber over the same period. During the average 3-day period with no Uber travel, a par-
ticipant’s total travel is 77 km. For each additional 1 km of Uber travel, the total travel
increases by 0.26 km on average. Table B10 reports these estimates by treatment group.
We do not find any evidence of systematic differences in the relationships between Uber
and Timeline measurements across the groups.
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Figure C2. Total Travel (Timeline) vs Uber Travel (Uber Admin. Data) (3 days)

Table C4. Total Distance vs Uber Distance Regression

Overall Control Subsidy 25% Subsidy 50%
(1) (2) (3) (4)

Beta Estimator 0.27*** 0.24* 0.20** 0.29***
(0.04) (0.14) (0.07) (0.05)

Notes: Column (1) reports the beta estimator of the regression of Total distance on Uber distance for the same period.
Columns (2), (3) & (4) report the beta estimators of the regression of Total distance on Uber distance by treatment group.
Standard errors in parentheses. Significance: *.10; **.05; ***.01.

Since a participant’s Uber travel should be captured in their total daily distance, we ex-
pect to see that TotalDistance > UberDistance. In Table C5, we identify observations
where the measurement of Uber travel exceeds the measurement of total travel, which in-
dicates measurement error that could occur during intervals when a GPS is not collecting
data or battery failure. This occurs in 13.6% of the observations in the sample.

Table C5. Total Travel (Timeline) vs Uber Travel (Administrative Data)

3 Days
Distance Fraction Average Total Distance (km)

Total Distance ≥ Uberdistance 86.37% 98.25

Uber distance ≥ TotalDistance 13.63% 68.57
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To examine the effects of these observations on our results on the effects of price re-
ductions on total mobility, we produce a version of Table 2 that omits the 13.6% of
observations where Uber travel exceeds total travel. We view this set of inconsistent ob-
servations as instances of likely under-reporting of total travel by Google Timeline. We
find that removing these observations slightly increases our estimates of effects of treat-
ment on total mobility, likely due to the fact that these observations fall at the low end
of the distribution of observations of total travel, at the upper end of the distribution of
observations of Uber travel (which are more likely to be found in the treatment groups).
However, the estimates are not different from estimates produced with the full sample.
Whereas the point estimate for the effect of a 50% price reduction was 0.40 IHS points
in Table 2, the effects in this restricted sample are 0.53 IHS points.

Table C6. Impacts in Total Mobility (Sample: TotalDistance > UberDistance)

Total KM Past Week (IHS)
(1) (2)

Price X 75% 0.13 0.22
(0.11) (0.18)

Price X 75% * Male -0.19
(0.23)

Price X 50% 0.53*** 0.67***
(0.10) (0.15)

Price X 50% * Male -0.27
(0.20)

Observations 3073 3071

Control Group Mean 212.95 151.16

Control Group Mean (Male) 267.29

Notes: Table reports estimates from Table 2, restricting the sample to observations where TotalDistance > UberDistance.
Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of total kilometers traveled in the
three days prior to our follow-up survey as reported by Google Maps’ “Timeline” feature. Column (2) reports the results
from a specification that interacts treatment with a dummy variable for men. The bottom rows of report the control means
in levels and split by gender in Column (2). Regressions include strata, cohort and follow-up round fixed effects as well
as controls chosen using a double-post-lasso procedure. Standard errors clustered at the individual level in parentheses.
Significance: *.10; **.05; ***.01.

C.2 Mode Choice

We measure mode choice using two different survey questions: (1) total number of trips
taken on each mode on the day before the survey, and (2) mode used for the longest
trip (in distance) on the day before the survey. Table C7 reports treatment effects across
the two measures. Panel A reports effects on the mode share for all trips while Panel B
reports effects on the mode share for longest trips. We find that these two measures are
highly consistent, indicating that treatment effects on mode substitution on longest trips
are reflective of overall effects.

A20



Appendix C Measuring Mobility

Table C7. Travel Mode Choice

Panel A: Longest Trip
Metro Bus Taxi Uber/Careem Car

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Price X 75% 0.00 -0.02 -0.03 -0.05 -0.02** -0.03** 0.07*** 0.09*** -0.02 0.01
(0.01) (0.02) (0.02) (0.04) (0.01) (0.01) (0.02) (0.03) (0.02) (0.03)

Price X 75% * Male 0.03 0.02 0.02 -0.04 -0.04
(0.03) (0.05) (0.01) (0.04) (0.05)

Price X 50% 0.00 -0.01 -0.09*** -0.11*** -0.02** -0.03** 0.11*** 0.12*** 0.00 0.03
(0.01) (0.02) (0.02) (0.03) (0.01) (0.01) (0.02) (0.03) (0.02) (0.03)

Price X 50% * Male 0.02 0.03 0.02 -0.02 -0.06
(0.03) (0.05) (0.01) (0.04) (0.05)

Observations 3186 3186 3186 3186 3186 3186 3186 3186 3186 3186

Control Group Mean 0.06 0.06 0.33 0.36 0.03 0.02 0.21 0.16 0.32 0.34

Control Group Mean (Male) 0.07 0.29 0.04 0.26 0.29

Panel B: Proportion of Trips
Metro Bus Taxi Uber/Careem Car

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Price X 75% -0.00 -0.02 -0.03 -0.04 -0.01 -0.02* 0.06*** 0.06* -0.02 0.01
(0.01) (0.01) (0.02) (0.03) (0.01) (0.01) (0.02) (0.03) (0.02) (0.03)

Price X 75% * Male 0.02 0.02 0.02 -0.00 -0.04
(0.02) (0.04) (0.01) (0.04) (0.04)

Price X 50% 0.00 0.00 -0.10*** -0.11*** -0.02** -0.02* 0.12*** 0.12*** -0.01 0.00
(0.01) (0.02) (0.02) (0.03) (0.01) (0.01) (0.02) (0.03) (0.02) (0.03)

Price X 50% * Male 0.00 0.02 0.01 -0.01 -0.01
(0.02) (0.04) (0.01) (0.04) (0.04)

Observations 3133 3133 3133 3133 3133 3133 3133 3133 3133 3133

Control Group Mean 0.06 0.06 0.34 0.29 0.04 0.05 0.24 0.29 0.32 0.31

Control Group Mean (Male) 0.06 0.39 0.03 0.19 0.33

Notes: Panel A reports the coefficients from 5 discrete regressions of each mode on a binary outcome that takes the value 1 if the individual
reported taking that mode of transportation for their longest trip the day our follow-up survey. Even numbered columns report the results
from a specification that interacts treatment with a dummy variable for men. The bottom rows report the control means in levels, split by
gender in even numbered columns. Panel B reports the coefficients from 5 regressions on the proportion of trips taken the previous day of
our follow-up survey. Even numbered columns report the results from a specification that interacts treatment with a dummy variable for
men. The bottom rows report the control means in levels, split by gender in even numbered columns. Regressions include strata, cohort and
follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard errors clustered at the individual level
in parentheses. Significance: *.10; **.05; ***.01.

C.3 Robustness: Time Spent on Different Modes

Figure C3 plots histograms of the fraction of time spent on a participants’ longest trip
(self-reported) relative to time recorded in travel by Google Timeline. We note that on
14% of trips, participants report spending more time on their longest trip than the total
recorded travel. This does not vary by treatment group – Control Group: 13.58%; 25%
Treatment Group: 15.44%; 50% Treatment Group: 13.21%. We split the sample using
this histogram into two groups: (1) participant-days where the longest trip is a large
fraction of total travel and (2) participant-days where the longest trip is a small fraction
of total travel.
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Figure C3. Longest Trip as Fraction of Time Spent Daily Travel Histograms

Control Group Subsidy 25%

Subsidy 50%

Notes: The figure illustrates longest trip as fraction of time spent daily travel histograms. Bars in red color represent
frequencies below the median, bars in blue color represent frequencies above the median.

C.4 Velocity

Figure C4 describes the average speed of all movements (km/hour) recorded on partici-
pant mobile devices using measurements of distance and time spent traveling. On average
velocities range from 20-26 km/hour.
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Figure C4. Velocity Histograms by Group

Control Group Subsidy 25%

Subsidy 50%

Notes: The figure illustrates velocity histograms calculated as total distance (Km) in past 3 days divided by total time
(Hours) in past 3 days.
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D Multiple Hypothesis Testing

This appendix replicates all of the regressions from the main tables after adjusting for
multiple hypotehsis testing concerns using strategies outlined in List et al. (2019, 2021).
To maximize power we implement a regression where we pool the treatments into one
variable that is equal to 0.75 in the case of a 25% subsidy, and 0.5 in the case of a 50%
subsidy.

Table D1. MHT for Table 1. Impacts of Uber Subsidies on Uber Utilization

Weekly KM on Uber (IHS) Weekly Trips on Uber
(1) (2) (3) (4)

Subsidy 3.4*** 3.7*** 7.32*** 8.24***
(0.16) (0.23) (0.40) (0.21)

Subsidy * Male -0.54* -1.68*
(0.32) (0.62)

Observations 16440 16440 16440 16440

Control Group Mean Levels 13.6 14.1 1.5 1.6

Control Group Mean Levels (Male) 13.2 1.5

Notes: Column (1) reports the impacts of the continuous treatment on the inverse hyperbolic sine of weekly kilometers traveled on Uber.
Column (2) reports the results from a specification that interacts a dummy variable for men, showcasing the differential impact the treatment
has for that subgroup. Columns (3) & (4) report the estimates from a regression on the weekly number of trips taken on Uber (in levels).
P-values are adjusted to address multiple hypothesis testing concerns following List et al. (2019) & List et al. (2021). Significance with
adjusted p-values, p¡0.1*, 0.05**, 0.01***..

Table D2. MHT for Table 2. Experiments on the Length and Salience of the Price
Reduction

Long Experiment 1st Week Preannounced Short Experiment Unannounced Short Experiment

(1) (2) (3) (4) (5) (6)
Weekly KM Trips Weekly KM Trips Weekly KM Trips

Subsidy 1.32*** 4.23*** 4.14* 3.78 1.34*** 2.75***
(0.347) (0.783) (1.87) (2.37) (0.36) (0.71)

Subsidy * Male -0.165 -1.57 -2.4 -2.1 0.4 1.95
(0.479) (0.94) (2.52) (3.29) (0.52) (1.11)

Observations 1370 1370 1000 1000 1500 1500

Control Mean (Levels) 22.9 2.6 13.4 2.0 20.4 2.2

Control Mean for Men 20.9 2.2 18.7 2.2 21.4 2.1

Notes: Columns (1), (3), (5) report the impacts of the continuous treatment and their interactions with a male dummy variable, on the
inverse hyperbolic sine of weekly kilometers traveled on Uber during the first week of the experiment, the pre-announced experiment and the
unannounced experiment respectively.Columns (2), (4), (6) report the same but with number of trips as the outcome variable. P-values are
adjusted to address multiple hypothesis testing concerns following List et al. (2019) & List et al. (2021). Significance with adjusted p-values,
p¡0.1*, 0.05**, 0.01***.
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Table D3. MHT for Table 3. Trips to University, Hospital and Metro

Unique Location Visited University Trips Hospital Trips Metro Trips

(1) (2) (3) (4) (5) (6) (7) (8)

Subsidy 28.28*** 42.63** 34.39*** 47.13*** 23.59** 27.13***
(6.34) (12.47) (6.54) (10.06) (3.65) (6.057)

Subsidy * Male -24.16 -20.03 -6.36
(13.75) (13.39) (7.45)

Observations 1404 1404 16452 16452 16452 16452 16452 16452

Control Group Mean Levels 8.9 8.8 5.3 5.6 7.2 6.1 4.7 4.8

Control Group Mean Levels (Male) 8.9 5.0 8.1 4.7

Notes: Column (1) reports the impacts of the continuous treatment on the unique weekly number of grids visited in the start and finish
locations on Uber trips. Columns (3), (5), (7) report the impacts on the weekly number of trips that started or end close to an university,
hospital and metro station (multiplied by 100 to make coefficients easier to read). Columns (2), (4), (6), (8) do the same but include an
interaction term for men. P-values are adjusted to address multiple hypothesis testing concerns following List et al. (2019) & List et al.
(2021). Significance with adjusted p-values, p¡0.1*, 0.05**, 0.01***.

Table D4. MHT for Table 4. Impacts on Total Mobility

Total KM Past Week (IHS)
(1) (2)

Subsidy 0.18*** 1.11***
(0.18) (0.27)

Subsidy * Male -0.57
(0.37)

Observations 3476 3476

Control Group Mean Levels 205.2 144.6

Control Group Mean Levels (Male) 261.0

Notes: Column (1) reports the impacts of the continuous treatment on the inverse hyperbolic sine of total kilometers traveled in the three
days prior to our follow-up survey as reported by “Google Maps” “Timeline” feature. Column (2) reports the results from a specification that
interacts treatment with a dummy variable for men. The bottom rows of Panel A report the control means in levels and split by gender in
Column (2). P-values are adjusted to address multiple hypothesis testing concerns following List et al. (2019) & List et al. (2021). Significance
with adjusted p-values, p¡0.1*, 0.05**, 0.01***.
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Table D5. MHT Table 5. Impacts on Trips by Mode of Travel

Panel A: Number of Trips

All Modes Metro Bus Taxi Uber/Careem Car
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Subsidy 2.63 2.91 0.29 0.41 -
3.04***

-
3.63*

-0.59 -0.68 4.65*** 4.85*** 1.12 1.31

(0.031) (1.57) (0.43) (0.57) (0.95) (1.33) (0.23) (0.36) (0.31) (1.089) (1.03) (0.91)

Subsidy * Male -0.52 -0.2 1.01 0.16 -0.61 -0.42
(2.42) (0.85) (1.90) (0.46) (1.44) (1.97)

Observations 3465 3463 3463 3463 3463 3463 3463 3463 3465 3463 3463 3463

Control Group Mean 18.57 16.94 1.29 1.03 6.72 5.45 0.65 0.79 3.97 4.62 5.96 5.06

Control Group Mean (Male) 20.07 1.53 7.90 0.53 3.38 6.79

Panel B: Proportion of Trips

Metro Bus Taxi Uber/Careem Car
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Subsidy 0.00 0.00 -
0.21***

-0.22 -0.03 -0.04 0.28*** 0.32*** -0.05 -0.07

(0.02) (0.03) (0.05) (0.07) (0.01) (0.02) (0.05) (0.07) (0.04) (0.07)

Subsidy * Male 0.0 0.03 0.01 -0.07 -0.04
(0.04) (0.09) (0.03) (0.09) (0.09)

Observations 3133 3133 3133 3133 3133 3133 3133 3133 3133 3133

Control Group Mean 0.06 0.06 0.34 0.29 0.04 0.05 0.24 0.29 0.32 0.31

Control Group Mean (Male) 0.06 0.39 0.03 0.19 0.33

Notes: Panel A shows the coefficients from 5 regressions on the number of trips taken the previous day of our follow-up survey. Even numbered
columns report the results from a specification that interacts treatment with a dummy variable for men. The bottom rows report the control
means in levels, split by gender in even numbered columns. Panel B shows the coefficients from 5 regressions on a continuous outcome that
show the proportion of trips taken the previous day of our follow-up survey. Proportion of observations decline in panel B because we do not
use observations where individuals report not taking any trips. Even numbered columns report the results from a specification that interacts
treatment with a dummy variable for men. P-values are adjusted to address multiple hypothesis testing concerns following List et al. (2019)
& List et al. (2021). Significance with adjusted p-values, p¡0.1*, 0.05**, 0.01***.

Table D6. MHT Table 6. Impacts on Reported Safety on Recent Trips

Panel F:

Feeling on Longest Trip Yesterday Feeling on Longest Trip Yesterday
5=Very Safe, 1=Very Unsafe Standardized Variable
(1) (2) (3) (4)

Subsidy 0.18 0.37* 0.17 0.33**
(0.11) (0.16) (0.09) (0.15)

Subsidy * Male -0.36 -0.31
(0.22) (0.19)

Observations 3182 3182 3182 3182

Control Group Mean 3.98 3.90 -0.04 -0.12

Control Group Mean (Male) 4.06 0.03

Notes: Column (1) reports the impacts of the continuous treatment arms on the reported level of safety felt during the longest trip taken by
the individual during the day prior to the follow-up survey. Column (2) reports the results from a specification that interacts treatment with
a dummy variable for men. Column (3) reports the impacts of the two treatment arms on the standardized reported level of safety felt during
the longest trip taken by the individual during the day prior to the follow-up survey. Column (2) reports the results from a specification
that interacts treatment with a dummy variable for men. The bottom rows report the control means in levels, split by gender in Column (2)
(4). P-values are adjusted to address multiple hypothesis testing concerns following List et al. (2019) & List et al. (2021). Significance with
adjusted p-values, p¡0.1*, 0.05**, 0.01***.
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Table D7. MHT Table 7. Effect on Baseline Bus Riders

Panel A: Weekly Uber Usage (Km)

Weekly KM on Uber (IHS) Weekly KM on Uber (IHS)
Perceive Bus as Unsafe

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Subsidy 3.39*** 3.38*** 3.39*** 3.1*** 3.32*** 3.29***
(0.19) (0.28) (0.27) (0.29) (0.4) (0.22)

Subsidy * Bus 0.03 1.18* -0.7 0.07 2.65* 2.49*
(0.39) (0.46) (0.16) (0.62) (0.25) (0.07)

Observations 16440 7272 9168 6012 3336 2676

Control Group Mean Levels 25.5 25.7 25.4 25.9 27.5 23.5

Control Group Mean Levels (Bus User) 13.4 14.0 13.1 12.6 6.2 15.6

Panel B: Total Mobility (Km)

Total Mobility (KM) in Past Week (IHS) Total Mobility (KM) in Past Week (IHS)
Perceive Bus as Unsafe

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Subsidy 0.76** 1.18*** 0.33 0.56 0.97* -0.2
(0.12) (0.19) (0.19) (0.31) (0.39) (0.54)

Subsidy * Bus 0.06 -0.36 0.29 1.25 0.61 1.09
(0.12) (0.95) (0.16) (0.67) (1.34) (0.83)

Observations 3476 1666 1810 1313 780 533

Control Group Mean Levels 218.8 142.3 303.7 223.4 158.3 333.5

Control Group Mean Levels (Bus User) 176.3 151.3 191.7 147.3 122.6 160.2

Notes: Panel A: Columns (1), (2), (3) report impacts on the inverse hyperbolic sine of weekly kilometers traveled on Uber in a specification
that interacts the treatment with a dummy variable that takes the value of 1 if the individual reports at baseline that the longest trip took
in the previous day was using a bus and 0 otherwise. Columns (4), (5), (6) in panel A report the result for a specification that includes only
people who perceived the bus as unsafe in the baseline survey. Panel B reproduces the same regressions but with total kilometers traveled as
the outcome variable. P-values are adjusted to address multiple hypothesis testing concerns following List et al. (2019) & List et al. (2021).
Significance with adjusted p-values, p¡0.1*, 0.05**, 0.01***.
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E Additional Heterogeneity in Effects

This appendix includes figures and tables that provide insights from additional analysis of
heterogeneity in experimental effects by other characteristics. Table E1 estimates effects
on Uber usage, disaggregated by Uber’s 4 services: Black, Moto, Shared, UberX. These
effects demonstrate that nearly all effects come through increased consumption of UberX
services, which account for 79% of trips in the control group. We do not find any evidence
of effects on Moto services (8% of trips in control) or Shared services (13% of trips in
control). We do find evidence of a statistical increase in trips taken using the Black car
service, though the service accounts for less than 1% of trips in control. Table E2 tests
for effects on rides taken during at night – effects on both rides and distance traveled are
lower than the average effects. Table E3 tests for effects on mode substitution (on longest
trips) for the subset of riders that use bus at baseline. While imprecisely estimates, the
results provide suggestive evidence of even stronger substitution away from buses among
women who ride bus at baseline. The same difference is not observed for men. Among
men, the results indicate that effects on additional Uber usage come almost exclusively
from men who do not ride bus at baseline. Table E4 reports tests of effects for the
bottom/top of the income distribution (at baseline), providing some evidence that effects
are stronger for higher-income riders.

Table E1. Impacts by Uber Service

Black Moto Shared Uber X
(1) (2) (3) (4) (5) (6) (7) (8)

Price X 75% 0.01** 0.01 0.04 0.01 -0.02 -0.04 1.07*** 1.18***
(0.00) (0.00) (0.04) (0.02) (0.04) (0.05) (0.08) (0.11)

Price X 75% * Male 0.01 0.09 0.04 -0.22
(0.01) (0.08) (0.07) (0.15)

Price X 50% 0.01** 0.02*** -0.02 -0.02 -0.03 -0.07 1.84*** 1.96***
(0.00) (0.01) (0.04) (0.01) (0.04) (0.05) (0.08) (0.11)

Price X 50% * Male -
0.02**

0.00 0.07 -0.22

(0.01) (0.07) (0.07) (0.16)

Observations 16452 16452 16452 16452 16452 16452 16452 16452

Control Group Mean 0.02 0.00 1.07 0.09 1.80 1.44 10.69 12.58

Control Group Mean (Male) 0.03 1.84 2.08 9.20

Notes: Columns (1), (3), (5), & (7) report the impacts of the two treatment arms on the inverse hyperbolic sine of weekly
kilometers traveled on Uber for each kind of service. Columns (2), (4), (6), & (8) report the results from a specification that
interacts a dummy variable for men, showcasing the differential impact the treatments have for that subgroup. The bottom
rows report the control means in levels for each group in Columns (1), (3), (5), & (7), and split the means by gender in
columns (2), (4), (6), & (8). Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen
using a double-post-lasso procedure. Standard errors clustered at the individual level in parentheses. Significance: *.10;
**.05; ***.01.
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Table E2. Impacts of Uber Subsidies on Uber Utilization at Night

Weekly KM on Uber (IHS) Weekly Trips on Uber
(1) (2) (3) (4)

Price X 75% 0.57*** 0.54*** 0.51*** 0.35***
(0.05) (0.08) (0.06) (0.06)

Price X 75% * Male 0.07 0.29**
(0.11) (0.12)

Price X 50% 1.13*** 1.18*** 0.99*** 0.96***
(0.06) (0.10) (0.07) (0.11)

Price X 50% * Male -0.10 0.06
(0.13) (0.15)

Observations 16440 16440 16440 16440

Control Group Mean Levels 2.7 3.4 0.32 0.28

Control Group Mean Levels (Male) 2.5 0.33

Notes: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of weekly kilometers
traveled on Uber at night. Column (2) reports the results from a specification that interacts a dummy variable for men,
showcasing the differential impact the treatments have for that subgroup. Columns (3) (4) report the estimates from
a regression on the weekly number of trips taken on Uber (in levels) at night. Regressions include strata, cohort and
follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard errors clustered at
the individual level in parentheses. Significance: *.10; **.05; ***.01.
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Table E3. Impacts on Mode Used by Bus User (Longest Trip)

Panel A: Impacts on Mode Used

Metro Bus Taxi

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Overall Female Male Overall Female Male Overall Female Male

Price X 75% 0.00 -0.02 0.01 -0.02 -0.02 -0.02 -0.01 -0.04** 0.01
(0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.01) (0.01) (0.01)

Price X 75% * Bus User -0.01 0.00 -0.02 -0.06 -0.12 -0.02 -0.01 0.04* -0.04*
(0.03) (0.04) (0.04) (0.05) (0.09) (0.07) (0.01) (0.02) (0.02)

Price X 50% 0.01 0.00 0.01 -0.08*** -0.09*** -0.08** -0.02* -0.03** 0.00
(0.02) (0.02) (0.02) (0.02) (0.03) (0.04) (0.01) (0.01) (0.01)

Price X 50% * Bus User -0.03 -0.05 -0.01 -0.03 -0.10 0.02 0.00 0.03* -0.02
(0.03) (0.04) (0.04) (0.05) (0.08) (0.07) (0.01) (0.02) (0.02)

Observations 3186 1503 1683 3188 1503 1683 3188 1503 1683

Control Group Mean Levels 0.07 0.07 0.08 0.57 0.54 0.62 0.03 0.04 0.01

Control Group Mean Levels (No Bus User) 0.06 0.05 0.07 0.22 0.25 0.19 0.03 0.02 0.05

Panel B: Impacts on Mode Used

Uber Car

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Price X 75% 0.09*** 0.10** 0.08** -0.03 0.00 -0.04
(0.03) (0.04) (0.04) (0.03) (0.04) (0.04)

Price X 75% * Bus User -0.06 -0.02 -0.09* 0.05 0.08 0.07
(0.04) (0.07) (0.06) (0.05) (0.06) (0.07)

Price X 50% 0.13*** 0.12*** 0.14*** -0.02 0.01 -0.06
(0.03) (0.04) (0.04) (0.03) (0.04) (0.04)

Price X 50% * Bus User -0.05 0.01 -0.12** 0.07 0.09* 0.09
(0.04) (0.08) (0.05) (0.05) (0.06) (0.07)

Observations 3186 1503 1683 3188 1503 1683

Control Group Mean Levels 0.13 0.11 0.17 0.18 0.23 0.09

Control Group Mean Levels (No Bus User) 0.24 0.19 0.29 0.39 0.42 0.36

Notes: Panel A reports the coefficients from a regression on a binary outcome that takes the value 1 if the individual reported taking that
mode of transportation for their longest trip the day our follow-up survey in a specification that interacts the treatment with a dummy
variable that takes the value of 1 if the individual reports at baseline that the longest trip took in the previous day was using a bus and 0
otherwise. Panel B reproduces the same regression but with Uber and Car modes. The bottom rows in each panel report the control means
in levels, split by if they were bus users at baseline. Regressions include strata, cohort and follow-up round fixed effects as well as controls
chosen using a double-post-lasso procedure. Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01
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Table E4. Treatment Heterogeneity by Income

Weekly KM on Uber (IHS)

(1) (2)
Low Income High Income

Quartile Quartile

Price X 75% 1.06*** 0.86***
(0.08) (0.11)

Price X 75% * Interaction -0.39* 0.30*
(0.21) (0.15)

Price X 50% 1.81*** 1.60***
(0.09) (0.11)

Price X 50% * Interaction -0.82*** 0.20
(0.24) (0.16)

Observations 16440 16440

Control Group Mean Levels 15.2 13.9

Control Group Mean Levels (Interacted group) 13.3 13.1

Notes: Column(1) report impacts on the inverse hyperbolic sine of weekly kilometers traveled on Uber in a specification
that interacts the treatment with a dummy variable that takes the value of 1 if the individual falls in the bottom quartile
of the income distribution at baseline and 0 otherwise. Column (2) reports the results from a specification that interacts
the treatment with a dummy variable that takes the value of 1 if the individual falls in the top quartile of the income
distribution at baseline and 0 otherwise .The bottom rows in each panel report the control means in levels, split by gender.
Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso
procedure. Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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F Geography of Travel

This section uses Uber administrative data to estimate effects of price reductions on
Uber travel to unique locations, hospitals, universities, and metro stations. We begin
by estimating differences in the number of unique locations visited using Uber services
during the intervention, noting that this captures the effect of treatment on changes in
how participants use Uber services but not their travel outside the platform (which we
consider in Section 5). We do this by dividing the Cairo Metropolitan Region into 1x1
km grid cells and then computing the total number of unique grid cells that a participant
travels to (origins or destinations) across the 12-week study period. We show an example
of one trip mapped in red below in Figure F.1.

Columns 1 & 2 in Table F.1 report the average number of locations visited for
participants in the study. We find that the average participant in the control group
travels to 8.9 unique grid cells during the study period. This increases by 5 grid cells for
participants in the 25% treatment group, an increase of 64%. Participants in the 50%
treatment group more than double their Uber travel to unique destinations (to 18.7 grid
cells). We do not find evidence of strong differences by gender. These results indicate
that price reductions induce both groups to increase their consumption of Uber services
and also to use Uber services to travel to locations that they did not previously visit
using Uber.

We dig deeper into effects on Uber travel behavior by testing for increased travel
to major universities, hospitals and metro stops throughout Cairo.50 Table F.1 reports
differences for each of the treatment groups. We find that the 25% price reduction
increases the number of trips to universities by 88%, trips to hospitals by 141% and to
metro stations by 237%. In the 50% price reduction trips to universities increase by
265%, to hospitals by 240%, and to metro stations by 251%. We find some evidence that
the effects on travel to universities are stronger for women in the 50% treatment group,
though this difference is marginally significant.

The exact location and extent of hospitals, universities, and metro stations was
obtained using geographically explicit data obtained from OpenStreetMap. Using the
latitude/longitude information for trips in the Uber sample, we identify all trips for
participants in treatment and control within origins/destinations falling within 100 meters
of each feature type. The locations and extents of each feature and associated trips are
mapped below in blue and red, respectively, along with the coordinates of all trips in
grey.

If the origin/destination of a trip falls within 100 meters, we attribute that feature
with the purpose of the trip. The tests reported in Table F.1 depend upon the assumption
that differences in the frequency of trips that originate or end within a tight radius around
each of these types of features (between treatment and control) provide evidence of the
impacts of the intervention on the use of Uber to access universities, hospitals, and
metro stations. It is possible, of course, that they provide evidence of the impacts of
the intervention on access to other places that are located within close proximity to the
associated feature. Tables F.2, F.3, F.4 provide an analysis of the sensitivity to the choice
of 100 meter, 175 meter, or 250 meter thresholds for distances around buildings using
OpenStreetMap. These tests suggest little difference in the estimated effects (percent
difference relative to control).

50We define a trip to these points of interest using buffers of 100 meters, 175 meters, or 250 meters around
the buildings using OpenStreetMap.
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Figure F.1. Uber Travel to Unique Locations: Cairo Grid

Table F.1. Trips to University, Hospital and Metro

Unique Location Visits University Trips Hospital Trips Metro Trips

(1) (2) (3) (4) (5) (6) (7) (8)

Price X 75% 4.99*** 4.81*** 4.62** 8.42** 10.19*** 10.85** 11.18*** 4.92***
(0.43) (0.64) (2.01) (4.12) (2.95) (4.38) (4.04) (1.53)

Price X 75% * Male 0.25 -5.67 0.87 11.29
(0.88) (4.44) (6.07) (7.29)

Price X 50% 9.80*** 10.61*** 14.07*** 21.20*** 17.28*** 23.81*** 11.82*** 13.59***
(0.53) (0.79) (3.15) (6.20) (3.26) (5.01) (1.81) (3.01)

Price X 50% * Male -1.48 -11.97* -10.23 -3.17
(1.07) (6.85) (6.68) (3.70)

Observations 1404 1404 16452 16452 16452 16452 16452 16452

Control Group Mean Levels 8.9 8.8 5.3 5.6 7.2 6.1 4.7 4.8

Control Mean Levels (Male) 8.9 5.0 8.1 4.7

Notes: Column (1) reports the impacts of the two treatment arms on the unique weekly number of grids visited in the start
and finish locations on Uber trips. Columns (3), (5), & (7) report the impacts on the weekly number of trips that started
or end close to an university, hospital and metro station (multiplied by 100 to make coefficients easier to read). Columns
(2), (4), (6), & (8) do the same but include an interaction term for men. The bottom rows report the control means in
levels, split the means by gender in even numbered columns. Regressions include strata, cohort and follow-up round fixed
effects as well as controls chosen using a double-post-lasso procedure. Standard errors clustered at the individual level in
parentheses. Significance: *.10; **.05; ***.01.
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Figure F.2. Trips to Hospitals

Table F.2. Trips to Hospitals

Hospital 100 Hospital 175 Hospital 250

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Overall Female Male Overall Female Male Overall Female Male

Price X 75% 11.31*** 10.71** 11.73*** 21.45*** 15.85** 25.91*** 28.83*** 26.15*** 31.13***
(3.05) (4.40) (4.20) (4.94) (7.12) (6.84) (5.96) (9.23) (7.79)

Price X 50% 18.13*** 23.67*** 13.49*** 32.87*** 37.11*** 29.35*** 50.55*** 52.98*** 48.54***
(3.34) (5.00) (4.41) (5.07) (7.38) (6.89) (6.31) (9.05) (8.69)

Constant 7.21*** 6.16*** 8.08*** 13.62*** 14.49*** 12.94*** 19.31*** 21.40*** 17.62***
(1.50) (1.66) (2.35) (2.40) (3.99) (2.92) (2.74) (4.56) (3.35)

Observations 16452 7272 9168 16452 7272 9168 16452 7272 9168

Notes: The table reports the impacts of the two treatment arms on the weekly number of trips times 100 that started or finished close to
a hospital taken on Uber. Columns (1), (2), & (3) report trips that are taken in a range of 100 meters from a hospital. Columns (4), (5),
& (6) report trips that are taken in a range of 175 meters. Columns (7), (8), & (9) report trips that are taken in a range of 250 meters.
Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard
errors clustered at the individual level in parentheses. Significance: *.10;**.05; ***.01.
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Figure F.3. Trips to Universities

Table F.3. Trips to Universities

University 100 University 175 University 250

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Overall Female Male Overall Female Male Overall Female Male

Price X 75% 5.27** 8.33** 2.80* 10.74*** 11.90** 9.86*** 14.72*** 13.88** 15.48***
(2.06) (4.12) (1.63) (3.01) (5.27) (3.34) (3.72) (6.04) (4.55)

Price X 50% 14.60*** 21.49*** 9.14*** 24.25*** 26.85*** 22.25*** 34.76*** 38.97*** 31.56***
(3.22) (6.25) (2.91) (4.58) (7.03) (5.98) (5.53) (8.66) (7.12)

Constant 5.22*** 5.59*** 4.96*** 7.73*** 9.23*** 6.54*** 10.55*** 12.59*** 8.91***
(0.88) (1.33) (1.19) (1.18) (2.03) (1.42) (1.49) (2.45) (1.83)

Observations 16452 7272 9168 16452 7272 9168 16452 7272 9168

Notes: The table reports the impacts of the two treatment arms on the weekly number of trips times 100 that started or finished close to
a university taken on Uber. Columns (1), (2), & (3) report trips that are taken in a range of 100 meters from an university. Columns (4),
(5), & (6) report trips that are taken in a range of 175 meters. Columns (7), (8), & (9) report trips that are taken in a range of 250 meters.
Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard
errors clustered at the individual level in parentheses. Significance: *.10;**.05; ***.01.
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Figure F.4. Trips to Metro Stations

Table F.4. Trips to Metro Stations

Metro 100 Metro 175 Metro 250

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Overall Female Male Overall Female Male Overall Female Male

Price X 75% 11.17*** 4.80*** 16.23** 18.19*** 10.77*** 24.00*** 30.71*** 25.27*** 34.82***
(4.03) (1.49) (7.15) (4.63) (3.01) (7.94) (6.27) (6.55) (9.94)

Price X 50% 11.86*** 13.74*** 10.36*** 22.70*** 21.68*** 22.83*** 37.12*** 37.97*** 35.73***
(1.81) (3.05) (2.18) (3.11) (3.81) (4.64) (4.80) (5.49) (7.42)

Constant 4.72*** 4.77*** 4.69*** 8.81*** 8.44*** 9.14*** 15.73*** 12.22*** 18.64***
(0.65) (0.87) (0.98) (0.99) (1.23) (1.55) (2.20) (1.76) (3.77)

Observations 16452 7272 9168 16452 7272 9168 16452 7272 9168

Notes: The table reports the impacts of the two treatment arms on the weekly number of trips times 100 that started or finished close to a
metro station taken on Uber. Columns (1), (2), & (3) report trips that are taken in a range of 100 meters from a metro station. Columns (4),
(5), & (6) report trips that are taken in a range of 175 meters. Columns (7), (8), & (9) report trips that are taken in a range of 250 meters.
Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard
errors clustered at the individual level in parentheses. Significance: *.10;**.05; ***.01.
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G Salience, Treatment Length and Persistence

It is possible that our pre-announced price reductions affected the salience of discounted
Uber services, leading to increased utilization due to the attention our study brings to
travel as opposed to the price effects alone. In order to better disentangle the experimen-
tal effect of the price change from the salience and length of announced discounts, we
implemented two separate 1-week experiments with additional waves of participants. It
is also possible that the treatment led to a sustained change in rider behavior after the
price reductions were removed. We analyze that behavior further below.

Experiments on the Salience and Length of Treatment

In the first auxiliary experiment, we split the sample into 3 treatment groups (50%
price reduction, 10% price reduction, control) and held all elements of the experimental
protocol constant aside from the length of the intervention.51 Participants were sent an
email telling them that they were enrolled in the study, and that they would get a 1
week subsidy based on their treatment group (as opposed to the 3 months in the main
experiment).

In the second auxiliary experiment, we split a different sample into 3 treatment
groups (50% price reduction, 10% price reduction, control) but instead of informing the
participants of their impending discount we simply applied the discount to their accounts
automatically for 1 week. These individuals did not know in advance that they would
have a price reduction during this time, nor did they know how long the price reduction
would continue for. This experiment deviates from the main experiment in two ways:
(1) in the length of the subsidy (i.e. 1 week vs 3 months) and (2) in the salience of the
subsidy (pre-announced vs unannounced).

Table G1 reports the results of these two experiments alongside estimates of effects
from the first week of the main experiment. We assess the importance of salience by
comparing impacts on Uber utilization for the 10% treatment group in columns 3 &
4 versus columns 5 & 6. If it were the case that prior knowledge of the discount was
leading to strategic overuse of Uber during the 1 week of the discount (e.g. moving up
travel they were planning to take in the future to benefit from the discount), we would
expect greater increases among participants in the pre-announced experiment relative
to those in the unannounced experiment. Instead, we find that the effects on weekly
kilometers are nearly the same across the two experiments, while the number of trips is
somewhat smaller but not statistically different in the pre-announced experiment. Even
without strategic overuse, bringing attention to the subsidy could have led to additional
utilization due to salience effects. We do not find any evidence to support this hypothesis.

We evaluate the effect of knowledge of the 3-month experimental treatment by
comparing the impacts from the 1-week experiments to the impacts from the first week
of our main experiment. The point estimate for weekly kilometers from the 50% price
reduction is 0.65 in the main experiment versus 0.77 in the 1-week experiment. These
estimates are statistically equivalent. Hence, it does not appear that intervention length
has an important impact on the findings reported in our main experiment.

51We reduced the treatment in the low group from 25% to 10% as a result of implementation costs. We
also note that due to an implementation error in this experiment, the 50% group was provided a one-time
price change instead of a week-long price change and so we omit them from the table.
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Table G1. Experiments on the Length and Salience of the Price Reduction

Panel A: Effects by Gender and Discount
Long Experiment 1st Week Preannounced Short Experiment Unannounced Short Experiment

(1) (2) (3) (4) (5) (6)
Weekly KM Trips Weekly KM Trips Weekly KM Trips

Price X 90% 0.41* 0.38 0.44* 0.51
(0.19) (0.24) (0.18) (0.32)

Price X 90% * Male -0.24 -0.21 -0.46 -0.35
(0.25) (0.33) (0.26) (0.45)

Price X 75% 0.29* 0.86***
(0.17) (0.30)

Price X 75% * Male 0.01 -0.12
(0.24) (0.42)

Price X 50% 0.65*** 2.11*** 0.77*** 1.45***
(0.17) (0.37) (0.19) (0.36)

Price X 50% * Male -0.07 -0.80* 0.04 0.79
(0.24) (0.47) (0.27) (0.56)

Observations 1370 1370 1000 1000 1500 1500

Control Mean (Levels) 22.9 2.6 13.4 2.0 20.4 2.2

Control Mean for Men 20.9 2.2 18.7 2.2 21.4 2.1

Panel B: Pooled Effects
Long Experiment 1st Week Preannounced Short Experiment Unannounced Short Experiment

(1) (2) (3) (4) (5) (6)
Weekly KM Trips Weekly KM Trips Weekly KM Trips

Treatment 1.43∗∗∗ 3.77∗∗∗ 2.76∗∗ 2.58 1.55∗∗∗ 3.72∗∗∗

(0.27) (0.54) (1.26) (1.66) (0.26) (0.56)

Observations 1,370 1,370 1,000 1,000 1,500 1,500

Control Mean 21.9 2.4 16.05 2.1 20.7 2.1

Notes: Top panel reports the full set of estimates from the fully interacted model, whereas bottom panel reports pooled treatment effects to
maximize statistical power (by gender and discount level as a continuous variable). Columns (1), (3), & (5) report the impacts of the two
treatment arms and their interactions with a male dummy variable, on the inverse hyperbolic sine of weekly kilometers traveled on Uber during
the first week of the experiment, the pre-announced experiment and the unannounced experiment respectively. Columns (2), (4), & (6) report
the same but with number of trips as the outcome variable. The bottom rows report the control means in levels and split by gender. Regressions
include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure in columns (1) and (2).
Pairwise statistical tests of coefficients in Panel B all fail to reject equality (comparing columsn 1,3,5 and 2,4,6). Standard errors clustered at the
individual level in parentheses. Significance: *.10; **.05; ***.01.
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Longer Term Impacts on Uber Utilization

While the subsidies provided to the participants in our study changed their Uber usage
during the 12 weeks of the intervention, it is unclear how their usage would change after
discontinuing the subsidies. It is possible that individuals go back to their pre-treatment
utilization levels, but it also possible that individuals have learned how to better optimize
their mobility choices now that they have additional experience with Uber and decide
to use it more than they did before. On the other hand, they may have become used
to having access to Uber at a lower price, changing their reference points for acceptable
costs, and decrease their Uber usage after the end of the intervention due to the relative
increase in price.

Using Uber administrative data, we can estimate the impact of the treatments on
rider behavior after the subsidies are removed. Table G2 reports the impacts on total
weekly kilometers traveled on Uber and the number of weekly trips taken during the 12
weeks after the end of the intervention (weeks 13-24 after randomization). We find that
those in treatment use Uber much more than those in control, an increase of 0.55 IHS-
points for the 25% treatment group (a 73% increase), and an increase of 0.60 IHS-points
for those in the 50% group (an 82% increase). While this is much smaller than the impact
from the actual price reductions, these estimates are both statistically and economically
significant. Point estimates suggest that the persistence of effects for participants in
the 50% group is lower than for those in the 25% group. One possible explanation is
that participants anchored their reference point at the 50% price level, making the price
increase after the end of the intervention larger compared to those in the 25% group.
However, we note that treatment effects are less precisely estimated than effects during
the treatment period and that differences between groups are not statistically significant.
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Table G2. Persistence of Uber Utilization After Study

Weekly KM on Uber (IHS) Weekly Trips on Uber
(1) (2) (3) (4)

Price X 75% 0.55*** 0.92*** 0.77*** 1.18***
(0.13) (0.24) (0.23) (0.40)

Price X 75% * Male -0.50* -0.50
(0.28) (0.47)

Price X 50% 0.60*** 0.75*** 0.80*** 0.68
(0.13) (0.25) (0.20) (0.43)

Price X 50% * Male -0.19 0.04
(0.29) (0.48)

Observations 4251 4251 4251 4251

Control Group Mean Levels 12.1 13.9 1.3 1.6

Control Group Mean Levels (Male) 11.4 1.3

Notes: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of weekly kilometers
traveled on Uber after the experiment is finished. Column (2) reports the results from a specification that interacts a
dummy variable for men, showcasing the differential impact the treatments have for that subgroup. Columns (3) & (4)
report the estimates from a regression on the weekly number of trips taken on Uber (in levels). The bottom rows report
the control means in both IHS and levels for each group in Columns (1) & (3), and split the means by the interacted
and non-interacted groups in columns (2) & (4). Regressions include controls chosen using a double-post-lasso procedure.
Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso
procedure. Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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H Estimates of Treatment Effects Omitting

Lasso-Based Controls

In this section, we report estimates for all main tables using regressions that control for
the baseline value of the outcome variable instead of the set of controls selected when
using the double post-lasso procedure developed by Belloni et al. (2014). We use this
procedure in the main paper because it can help improve power by optimally selecting
the baseline controls that minimize residual variance of the outcome variable. We find
no evidence of sensitivity to the inclusion of these controls, although the precision of
estimates often increases when we utilize the double post-lasso procedure, in line with
their theoretical purpose.

We included 34 variables for the lasso to utilize: Gender, total travel, travel on
Uber, marital status, work status, car ownership, motorcycle ownership, aspects of their
longest trip in the day before the survey (safety, time, cost), feelings of safety on 6 different
transport modes, education, and an interaction of all of these variables with a dummy
variable for male.

The procedure selects controls for each regression separately, and so listing out the
chosen controls for each table would be messy. We find that the most common variables
that are chosen are total distance traveled, distance traveled on Uber, education, income
and safety perceptions.

Table H.1. Impacts of Uber Subsidies on Uber Utilization

Weekly KM on Uber (IHS) Weekly Trips on Uber
(1) (2) (3) (4)

Price X 75% 1.00*** 1.08*** 1.73*** 1.98***
(0.08) (0.12) (0.15) (0.21)

Price X 75% * Male -0.15 -0.44
(0.16) (0.30)

Price X 50% 1.69*** 1.84*** 3.68*** 4.20***
(0.08) (0.12) (0.20) (0.31)

Price X 50% * Male -0.27 -0.92**
(0.16) (0.41)

Observations 16440 16440 16440 16440

Control Group Mean Levels 13.6 14.1 1.5 1.6

Control Group Mean Levels (Male) 13.2 1.5

Notes: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of weekly kilometers
traveled on Uber. Column (2) reports the results from a specification that interacts a dummy variable for men, showcasing
the differential impact the treatments have for that subgroup. Columns (3) & (4) report the estimates from a regression
on the weekly number of trips taken on Uber (in levels). The bottom rows of Panel A report the control means in levels for
each group in Columns (1) & (3), and split the means by gender in columns (2) & (4). Regressions include strata, cohort
and follow-up round fixed effects as well as baseline value of the outcome variable as control. Standard errors clustered at
the individual level in parentheses. Significance: *.10; **.05; ***.01.
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Table H.2. Experiments on the Length and Salience of the Price Treatment

Unannounced Short Experiment Preannounced Short Experiment Long Experiment 1st Week

(1) (2) (3) (4) (5) (6)
Weekly KM Trips Weekly KM Trips Weekly KM Trips

Price X 90% 0.42** 0.49 0.42** 0.38
(0.18) (0.32) (0.19) (0.24)

Price X 90% * Male -0.44* -0.32 -0.25 -0.22
(0.26) (0.45) (0.25) (0.33)

Price X 75% 0.32* 0.88**
(0.20) (0.34)

Price X 75% * Male 0.19 0.24
(0.27) (0.49)

Price X 50% 0.77*** 1.44*** 0.84*** 2.49***
(0.19) (0.36) (0.20) (0.43)

Price X 50% * Male 0.04 0.80 -0.23 -1.08**
(0.27) (0.56) (0.27) (0.55)

Observations 1500 1500 1000 1000 1370 1370

Control Mean 20.4 2.2 13.4 2.0 22.9 2.6

Control Mean (Male) 21.4 2.1 18.7 2.2 20.9 2.2

Notes: Columns (1), (3), & (5) report the impacts of the two treatment arms and their interactions with a male dummy
variable, on the inverse hyperbolic sine of weekly kilometers traveled on Uber during the unannounced experiment respec-
tively , the pre-announced experiment and the first week of the experiment. Columns (2), (4), & (6) report the same but
with number of trips as the outcome variable. The bottom rows report the control means in levels and split by gender.
Regressions include strata, cohort and follow-up round fixed effects as well as baseline value of the outcome variable as
control. Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.

Table H.3. Impacts in Total Mobility

Total KM Past 3 Days (IHS)
(1) (2)

Price X 75% 0.10 0.17
(0.09) (0.14)

Price X 75% * Male -0.12
(0.19)

Price X 50% 0.36*** 0.49***
(0.08) (0.12)

Price X 50% * Male -0.26
(0.17)

Observations 3476 3476

Control Group Mean Levels 88.0 62.0

Control Group Mean Levels (Male) 111.9

Notes: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of total kilometers traveled
in the three days prior to our follow-up survey as reported by Google Maps’ “Timeline” feature. Column (2) reports the
results from a specification that interacts a dummy variable for men, showcasing the differential impact the treatments have
for that subgroup. The bottom rows report the control means in levels and split the means by the interacted group, and
non-interacted groups in Columns (2).Regressions include strata, cohort and follow-up round fixed effects as well as baseline
value of the outcome variable as control. Standard errors clustered at the individual level in parentheses. Significance:
*.10; **.05; ***.01.
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Table H.4. Impacts on Mode Used for Longest Trip

Metro Bus Taxi Uber Car
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Price X 75% -0.01 -0.02 -0.06** -0.04 -0.02** -0.03** 0.10*** 0.10*** -0.01 -0.01
(0.01) (0.02) (0.03) (0.04) (0.01) (0.01) (0.02) (0.04) (0.03) (0.04)

Price X 75% * Male 0.03 -0.03 0.02 0.00 -0.01
(0.03) (0.05) (0.01) (0.05) (0.05)

Price X 50% 0.00 -0.01 -0.1*** -0.1*** -0.02** -0.03** 0.13*** 0.15*** -0.02 0.00
(0.01) (0.02) (0.03) (0.04) (0.01) (0.01) (0.02) (0.04) (0.03) (0.04)

Price X 50% * Male 0.02 0.02 0.02 -0.03 -0.03
(0.03) (0.05) (0.01) (0.05) (0.05)

Observations 3186 3186 3186 3186 3186 3186 3186 3186 3186 3186

Control Group Mean Levels 0.1 0.1 0.3 0.3 0.0 0.0 0.2 0.3 0.3 0.3

Control Group Mean Levels (Male) 0.1 0.4 0.0 0.2 0.3

Notes: This table reports the coefficients from a regression on a binary outcome that takes the value 1 if the individual
reported taking that mode of transportation for their longest trip the day our follow-up survey. Even numbered columns
report the results from a specification that interacts treatment with a dummy variable for men. The bottom rows report
the control means in levels, split by gender in even numbered columns. Regressions include strata, cohort and follow-up
round fixed effects as well as baseline value of the outcome variable as control. Standard errors clustered at the individual
level in parentheses. Significance: *.10; **.05; ***.01.

Table H.5. Impacts on Reported Safety on Recent Trips

Feeling on Longest Trip Yesterday
5=Very Safe, 1=Very Unsafe

(1) (2)

Price X 75% 0.07 0.16*
(0.06) (0.09)

Price X 75% * Male -0.16
(0.12)

Price X 50% 0.11* 0.20**
(0.06) (0.09)

Price X 50% * Male -0.18
(0.11)

Observations 3101 3101

Control Group Mean Levels 4.0 3.9

Control Group Mean Levels (Male) 4.1

Notes:Column (1) reports the impacts of the two treatment arms on the reported level of safety felt during the longest trip
taken by the individual during the day prior to the follow-up survey. Column (2) reports the results from a specification
that interacts treatment with a dummy variable for men. The bottom rows report the control means in levels, split by
gender in Column (2). The bottom rows report the control means in levels, split by gender in even numbered columns.
Regressions include strata, cohort and follow-up round fixed effects as well as baseline value of the outcome variable as
control. Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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Table H.6. Effect on Baseline Bus Riders

Panel A:Weekly Uber Usage (KM)

Weekly KM on Uber(IHS) Weekly KM on Uber(IHS)
Perceive Bus as Unsafe

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Price X 75% 1.08*** 1.11*** 1.06*** 1.07*** 1.24*** 0.90***
(0.09) (0.14) (0.12) (0.15) (0.21) (0.22)

Price X 75% * Bus User -0.29* -0.06 -0.43* -0.36 -0.34 -0.17
(0.16) (0.24) (0.22) (0.33) (0.43) (0.48)

Price X 50% 1.69*** 1.70*** 1.69*** 1.59*** 1.77*** 1.44***
(0.10) (0.14) (0.13) (0.15) (0.19) (0.22)

Price X 50% * Bus User -0.02 0.57** -0.38 -0.03 1.10** -0.56
(0.17) (0.24) (0.23) (0.33) (0.46) (0.42)

Observations 16440 7272 9168 6012 3336 2676

Control Group Mean Levels 25.5 25.7 25.4 25.9 27.5 23.5

Control Group Mean Levels (Bus User) 13.4 14.0 13.1 12.6 6.2 15.6

Panel B:Total Mobility (KM)

Total Mobility (KM) in past 3 days(IHS) Total Mobility (KM) in past 3 days(IHS)
Perceive Bus as Unsafe

(1) (2) (3) (4) (5) (6)
Overall Female Male Overall Female Male

Price X 75% 0.10 0.18 -0.04 0.03 0.02 0.03
(0.12) (0.17) (0.15) (0.17) (0.23) (0.24)

Price X 75% * Bus User 0.02 0.04 0.15 0.64 0.91 0.72
(0.21) (0.32) (0.26) (0.35) (0.60) (0.41)

Price X 50% 0.37*** 0.52*** 0.21 0.23 0.43* -0.12
(0.11) (0.15) (0.14) (0.15) (0.18) (0.25)

Price X 50% * Bus User -0.04 -0.12 0.12 0.50 0.79 0.62
(0.18) (0.29) (0.22) (0.31) (0.57) (0.36)

Observations 3476 1666 1810 1313 780 533

Control Group Mean Levels 93.8 61.0 130.2 95.7 67.8 142.9

Control Group Mean Levels (Bus User) 75.6 64.8 82.1 63.1 52.6 68.6

Notes: Panel A: Columns (1), (2), & (3) report impacts on the inverse hyperbolic sine of weekly kilometers traveled on Uber in a specification
that interacts the treatment with a dummy variable that takes the value of 1 if the individual reports at baseline that the longest trip took in
the previous day was using a bus and 0 otherwise. Columns (4), (5), & (6) in panel A report the result for a specification that includes only
people who perceived the bus as unsafe in the baseline survey. Panel B reproduces the same regressions but with total kilometers traveled
as the outcome variable. The bottom rows in each panel report the control means in levels, split by if they were bus users at baseline.
Regressions include strata, cohort and follow-up round fixed effects as well as baseline value of the outcome variable as control. Standard
errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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I Effects on Short-Term Labor Market Outcomes

This section reports on the impacts of reductions in the cost of ride-hailing services on
labor market impacts. A price decrease could improve the ability of job seekers to better
match with existing vacancies. Previous studies, such as Abebe et al. (2021a), Franklin
(2018), Abebe et al. (2021b), Bryan et al. (2014) and Phillips (2014), provide evidence
that travel subsidies can improve employment outcomes. Other work has shown the
importance of safety on female education and labor market choices in developing country
cities (Kondylis et al., 2020, Borker, 2018, Jayachandran, 2019).

Table I.1 reports impacts on job search and work status. We stratified our sample
by job search status and interact search status with treatment in this table. The main
effects are reported for individuals who were searching for a job at baseline. Overall,
we find little evidence that these subsidies had substantial effects on search behavior or
employment for either gender across the 3-month study period. We find that among
individuals who were searching for a job at baseline, there is a one percentage point
decrease in whether those in the 25% treatment group are currently working relative to
control, and a three percentage point decrease in the 50% subsidy group. These null
effects are precisely estimated, with standard errors of 3 percentage points.

These results contribute to a growing literature on the labor market impacts of
transport subsidies, much of which has found that transport frictions are an important
part of the reason why job seekers are not matching with employers. The present study
provides larger subsidies, over a longer period, and delivers transport services using a
highly flexible ride-hailing platform. The intervention generates large effects on mobility
yet we can rule out large labor market effects (in the short-run). Our findings reflect effects
on a higher income sample than the earlier studies, implying that transport frictions in
the job search phase may interact in important ways with capital constraints in low
income countries.

Table I.1. Labor Market Impacts

Searching Apply Currently Working

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Overall Female Male Overall Female Male Overall Female Male

Price X 75% -0.03 0.02 -0.04 -0.47** -0.32 -0.50* -0.01 0.02 -0.01
(0.04) (0.08) (0.05) (0.23) (0.34) (0.30) (0.03) (0.07) (0.04)

Price X 75% * Not Searching 0.08 0.02 0.10 0.60** 0.39 0.67** -0.06 -0.09
(0.05) (0.08) (0.06) (0.25) (0.36) (0.32) (0.06) (0.08)

Price X 50% 0.02 -0.04 0.05 -0.01 0.60 -0.20 -0.03 -0.01 -0.01
(0.04) (0.07) (0.05) (0.30) (0.68) (0.32) (0.03) (0.08) (0.03)

Price X 50% * Not Searching -0.01 0.02 -0.01 0.07 -0.63 0.34 0.03 0.01
(0.04) (0.08) (0.06) (0.30) (0.70) (0.33) (0.05) (0.09)

Observations 3195 1501 1692 3193 1500 1691 1643 959 684

Control Group Mean Levels 0.50 0.43 0.52 1.28 0.94 1.43 0.80 0.69 0.85

Control Group Mean Levels (N.S.) 0.07 0.08 0.07 0.08 0.09 0.05 0.66 0.66 1.00

Notes: Columns (1), (2), & (3) report the impact of treatments on a binary variable that is equal to 1 if the individual reports that they
are searching for work during the follow-up survey. The regression specification includes treatment interacted with a dummy equal to 1 if
the individual was not searching for work at baseline. Columns (4), (5), & (6) estimate the impacts on the number of jobs applied to, while
columns (7), (8), & (9) estimate the impacts on if the individuals are currently working at the time of the follow-up survey. The bottom rows
report the control means in levels, split by if they were searching for a job at baseline (N.S. = “Not Searching”). There is no variation in
responses for men who were not searching for a job at baseline in column 9 and so those interaction cells are intentionally left empty (they are
all currently working). Regressions include strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso
procedure.Standard errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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J Adjustments for COVID-19

Our budget allowed us to enroll 1,500 participants, but our last cohort was impacted by
the lock-down associated with COVID-19. Since mobility behavior was greatly affected
by this unusual worldwide event, we drop this cohort from our main analysis. The sample
used in our main analysis consists of 1,373 participants, though we do have administrative
data and some follow-up data on the final cohort. Including the final cohort in our analysis
does not substantially affect our results, though estimates are slightly attenuated as a
result of reductions in mobility levels for all participants in that cohort. COVID-19 also
negatively impacted our intended 6-month follow-up survey, which was designed to collect
additional data on overall mobility and labor market outcomes three months after the
completion of the experiment. We had collected those data for one third of the sample by
the time the lock-down began. Given selection and attrition concerns, we do not report
these longer-term results.

Table J.1. Main Results including Cohort Affected by COVID-19

Weekly KM on Uber (IHS) Weekly Trips on Uber Total KM Past 3 Days
(1) (2) (3) (4) (5) (6)

Price X 75% 0.94*** 1.03*** 1.65*** 1.79*** 0.14 0.19
(0.07) (0.11) (0.14) (0.20) (0.09) (0.13)

Price X 75% * Male -0.17 -0.25 -0.15
(0.14) (0.29) (0.17)

Price X 50% 1.60*** 1.68*** 3.44*** 3.73*** 0.39*** 0.50***
(0.08) (0.11) (0.19) (0.28) (0.08) (0.11)

Price X 50% * Male -0.15 -0.55 -0.25
(0.15) (0.37) (0.15)

Observations 17964 17964 17964 17964 3670 3670

Control Group Mean Levels 12.1 13.9 1.3 1.6 55.8 34.8

Control Group Mean Levels (Male) 11.4 1.3 75.1

Notes: Column (1) reports the impacts of the two treatment arms on the inverse hyperbolic sine of weekly kilometers
traveled on Uber. Column (2) reports the results from a specification that interacts a dummy variable for men, showcasing
the differential impact the treatments have for that subgroup. Columns (3) (4) report the estimates from a regression on
the weekly number of trips taken on Uber (in levels). Columns (5) & (6) report the impacts on the inverse hyperbolic sine
of total kilometers traveled in the three days prior to our follow-up survey as reported by Google Mapsâ âTimelineâ feature.
The bottom rows report the control means in levels and split by gender in Columns (2), (4), & (6). Regressions include
strata, cohort and follow-up round fixed effects as well as controls chosen using a double-post-lasso procedure. Standard
errors clustered at the individual level in parentheses. Significance: *.10; **.05; ***.01.
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K Model Derivations & Sample Moments

This section outlines how we use our model to estimate welfare. In the first part we show
how we derive an expression for the change in V (p), the value of utility at price “p”. In
the second part we outline the different moments we use from our experiment and the
academic literature to estimate our model.

From equation 4 in section 6, we recall the utility maximization problem as:

V (p) = maxU(QM , Y ) s.t c(P, 1).QM + Y ≤ W

We re-write the problem as:

max
QM ,Y,λ

V (p) = U(QM , Y )− λ(c(P, 1).QM + Y −W )

The first order conditions of this maximization problem are:

∂L
∂QM

= UQM (QM , Y )− λ.c(P, 1) = 0 ⇒ UQM (QM , Y ) = λ.c(P, 1)

∂L
∂Y

= UY (QM , Y )− λ = 0 ⇒ UY (QM , Y ) = λ

We then apply the envelope theorem to find ∂V
∂c(P,1)

. Starting from the budget constraint,
we have:

Y = W − c(P, 1).QM

Taking the total differential:

∂Y = −QM .∂c(P, 1)− c(P, 1).∂QM

The total differential of utility at the optimum is:

∂V = UQM .∂QM + UY .∂Y

Since UQM (QM , Y ) = λc(P, 1) and UY (Q, Y ) = λ, we substitute these into the expression:

∂V = λ.c(P, 1).∂QM + λ.∂Y

Next, substituting ∂Y = −QM .∂c(P, 1)− c(P, 1).∂QM :

∂V = λ.c(P, 1).∂QM + λ(−QM .∂c(P, 1)− c(P, 1).∂QM).

Distributing λ:

∂V = λ.c(P, 1).∂QM − λQM .∂c(P, 1)− λc(P, 1).∂QM

Note that λ.c(P, 1).∂QM and −λc(P, 1)∂QM cancel out, leaving:

∂V = −λQM .∂c(P, 1)
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Hence the solution is:

∂V (P )

∂c(P, 1)
= −λ(P ).QM(P )

Taking the second derivative, we get:

∂V II(P, ω)

∂c(P, 1)∂pu
= −(

∂λ(P )

∂pu
·QM(P ) +

∂QM(P )

∂pu
· λ(P ))

We can express the change in welfare as a change in the price of each good in the following
way52:

∆V ≈ qT∆p+ ∆pT .(∆λ.qT + ∆q.λ)∆p

We can then approximate the solution to second order in terms of percentage changes:

∆V ≈
k∑
i=1

qipi∆%pi +
k∑
i=1

k∑
j=1

∆%pi∆%pj.pi.(
∂λ

∂pu
.qi +

∂q

∂pu
.λ) (1)

From the F.O.C in the maximization problem, we know that:

λ(P ) =
∂U(QM , Y )

∂Y

In our setup, the utility function assumes CES with a congestion (i.e. time) penalty :

U = (ω.Qρ
M + (1− ω).Y ρ)1/ρ − γ.V OT.QM (2)

and so λ(p) is equal to:

∂U(.)

∂Y
=

1

ρ
(ω.Qρ

M + (1− ω)Y ρ)
1−ρ
ρ · ρ.(1− ω)Y ρ−1 = λ(P ) (3)

The change of λ∗(p) with respect to price is:

∂λ

∂p
=

1− ρ
ρ
· (1− ω)Y ρ−1. (ω.Qρ

M + (1− ω)Y ρ)
1−2ρ
ρ .(ω.ρ.Qρ−1

M

∂QM

∂p
+ ρ.(1− ω).Y ρ−1.

∂Y

∂p
)+

(ω.Qρ
M + (1− ω)Y ρ)

1−ρ
ρ · (1− ω).(ρ− 1).Y ρ−2.

∂Y

∂p

Substituting the derivatives with respect to price with their corresponding elasticities
provides:

∂λ

∂p
=

1− ρ
ρ
· (1− ω)Y ρ−1. (ω.Qρ

M + (1− ω)Y ρ)
1−2ρ
ρ .(ω.ρ.Qρ−1

M .εQM .QM)+

ρ.(1− ω).Y ρ−1.εY .Y + (ω.Qρ
M + (1− ω)Y ρ)

1−ρ
ρ · (1− ω).(ρ− 1).Y ρ−2.εY .Y

(4)

52Since the change in price is negative, the change in compensating variation is positive.
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Then, substituting the term from equation (4) into equation (1) provides the expression
for the change in utility (∆V ) to second order. We divide this value by λ(p) to get an
estimate of compensating variation. We use our experimentally identified parameters and
the derived expressions to produce the values reported in Tables 6 & 7.

Sample Moments used in the Model

Here we define the moments taken from our experiment/sample for the model:

• εLcc – the experimentally identified elasticity of demand for low-occupancy travel
(i.e. Car, Uber, Careem, Taxi, Toktok) with respect to the price of low-occupancy
travel: -1.4.53

• εQM – the experimentally identified elasticity of demand for total kilometers traveled
with respect to the price of low-occupancy travel: -1.2.54

• W – the average income reported in our sample: 5,468EGP/month. We also esti-
mate a wage of 34.2 EGP/hour using this and the assumption that survey respon-
dents work 160 hours a month.

• QM ·c(P,1)
W

– the baseline share of the budget that individuals spend on travel: 0.07.

• QM – the baseline quantity of total travel: 205km.

• T – the average time it takes for individuals to travel one kilometer in our sample:
3.06 minutes (0.051 hours).

• C – the average cost per kilometer across the different modes of transportation in
our sample: 6.19EGP /KM.

Here we define the moments taken from the literature for the model:

• V OT – We initially include VOT as a parameter that is estimated by the model.
We then calculate the model-implied VOT as (dQ/dT )/(dQ/dP ) which can be
expressed as (

εQ,T
εQ,P

) ∗ ( P
T0

). Based on our estimates, the model-implied VOT is 95%

of hourly wage. We then calibrate the model using two distinct estimates of VOT
from the literature – 75% of the hourly wage from Goldszmidt et al. (2020) & 150%
of the hourly wage from Parry and Timilsina (2015).

– Hence V OT = 75% · wage · T · C or 150% · wage · T · C

The figure below illustrates how our estimates for private benefits change across a
range of V oT estimates, including 100% and 125% of the hourly wage.

53Using the shares and relative costs of travel modes in our sample, we find that a 50% reduction in the
price of Uber leads to a 42% decrease in the cost of low-occupancy travel and a 60% increase in km
traveled in low-occupancy vehicles (from Table B6).
54Using the shares and relative costs of travel modes in our sample, we find that a 50% reduction in the
price of Uber leads to a 42% decrease in the cost of low-occupancy travel and a 49% increase in total
distance (km) traveled (from Table 2).
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Figure K.1. Welfare Vs Different Value Of Time

• S – the share of the population that uses ride-hailing. We consider three values:
0.2, 0.3 & 0.4. Our baseline estimate of S = 0.2 comes from Reuters (2018), who
report that 20% of the current population uses ridehailing. We consider 50% and
100% increases in that baseline share.

• The relative contribution to congestion from 1km traveled in a high-occupancy
vehicle vs. in a low-occupancy vehicle. Estimates from Authority (2017) indicate
that high-occupancy vehicles contribute 0.2 as much as low-occupancy vehicles.
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L Ethics of RCT and Uber Collaboration

We have developed this appendix in an effort to describe the ethical considerations of this
experiment, and clarify the nature of the collaboration between the researchers and Uber.
We follow the framework put forth in Asiedu et al. (2021), for the sake of comparability
within economics. When relevant, we quote from the main text or directly from our IRB
documentation, which we did not deviate from.

1. Equipoise

Excerpt from Introduction: Attempts to study the demand for mobility have been
limited not only by the complexity of transportation markets, but also by endogeneity
concerns and a lack of available micro-data on transportation behavior.

...This paper contributes to a growing empirical literature on the impact of trans-
portation services on commuting patterns and economic activity in cities (Campante
and Yanagizawa-Drott, 2017, Asher and Novosad, 2018, Hanna et al., 2017). A pri-
mary challenge in this literature is that the provision and prices of transportation
services are (almost) never randomly assigned. As a result, empirical efforts have
focused on settings characterized by exogenous shocks in service provision (Gupta
et al., 2020, Gorback, 2020, Tsivanidis, 2018, Gonzalez-Navarro and Turner, 2018,
Ahlfeldt et al., 2015, Anderson, 2014), available instruments (Severen, 2018, Baum-
Snow et al., 2017, Duranton and Turner, 2011, Baum-Snow, 2007), and structural
approaches (Heblich et al., 2020, Allen and Arkolakis, 2019, Redding and Rossi-
Hansberg, 2017).

2. Role of Researchers with Respect to Implementation:

Christensen and Osman are active researchers in the project. They designed the
treatment arms and managed the data collection activities and all of the data
analysis.

3. Potential Harms to Research Participants from the Interventions:

Excerpt From IRB 19102: There are no known risks other than the normal privacy
risks from participation in any research study. All participants will provide consent.
Initial consent will be obtained through an online form. We will send an email to
individuals in the follow-up experiments to give them the opportunity to opt-out of
the follow up experiment.

4. Potential Harms to Research Participants from Data Collection or Re-
search Protocols

Excerpt From IRB 19102: Individuals will enroll in the study by providing the
researchers their identifying information, including the email address that is asso-
ciated with their Uber account. We will generate two unique IDs for each of these
email addresses, and we will provide one of the ID/email address combinations to
Uber. Uber will send us back rider data using the unique ID. Uber staff will not have
access to any additional information about the participants in our study or obtain
any new information at all about sample participants.

Individuals will be given unique IDs. Personal identifying information will be kept
separate. Only de-identified data will ever be shared. The identity key will be kept
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separate from participant data, maintained in an encrypted folder on PI hard-drives,
on a password protected computer.

5. Potential Harms to Non-Participants: Non-participants did not receive incen-
tives, but were not subject to any known risk due to non-participation.

6. Potential Harms to Research Staff: Research staff running phone surveys,
analyzing data, and implementing price changes on the Uber platform are not
subject to any known risk.

7. Scarcity: The price treatments in this study reduced the price of Uber services for
individuals assigned to treatment groups and did not negatively affect the aggregate
value programs/services currently offered by Uber.

8. Counterfactual Policy: All participants in the study received incentives for par-
ticipation in surveys, directly from price reductions, or both. No participants were
adversely affected relative to counterfactual conditions had they opted out of the
study.

9. Researcher Independence: This study was conducted through a collaboration
between PIs Christensen and Osman and Uber Research. The study was conceived
and designed by Christensen and Osman, who maintained full intellectual freedom
throughout all stages of the project through the following:

(a) All experimental protocols were defined and agreed upon prior to initiating
the partnership. Access to Uber administrative data and protocols for main-
taining the privacy of participants were established in a legal agreement be-
tween the University of Illinois and Uber Technologies, which was executed
on 10/15/2018. Uber staff never had access to any data collected outside
their platform, including the data collected via participant surveys or Google
Timeline.

(b) Research was conducted with the understanding that research design, empir-
ical tests, and interpretation of results would be based on established meth-
ods/practices/literature in economics, irrespective of any other considerations.

(c) Research results were reported to Uber after the completion of analysis and
shared outside the research team after completion of the working paper. Uber
reserved the right to review the contents of the working paper before public
release to ensure that no confidential information was shared, but did not
shape or in any way influence the analysis or interpretation of results.

10. Financial Conflicts of Interest: Christensen and Osman did not receive any form
of financial compensation from Uber as part of this study (nor did any assistants
or staff associated with the UIUC research team). No Uber employee was named
as a PI or participant in any research grant that provided funding for this project.

11. Reputational Conflicts of Interest: The research questions pursued in this
study and the results described in this study are novel and different form of prior
work conducted by the authors. We perceive no reputational conflicts of interest.

12. Feedback to Participants or Communities: We intend to share our results
with participants via email after our work is subject to peer-review.
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13. Foreseeable Misuse of Research Results: The authors recognize that the re-
sults described in this paper involve research questions that are relevant for public
policy and regulatory activities in ride-hailing markets. Any misinterpretation or
deliberate mis-characterization of the results of this study could have implications
for individuals, communities and firms affected by these markets. We dedicate Sec-
tion 7 to a discussion of the limitations of the study and method and will provide
de-identified data for full transparency/replicability.
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