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1 Introduction

This paper studies how GDP responds to temperature change and how these responses vary

across countries. We decompose a country’s temperature into global (common) and idiosyncratic

components, then use local projections [Jordà, 2005] to estimate the responses of real GDP per

capita growth to each temperature component. The distribution of cross-country responses to both

global and idiosyncratic temperature shocks displays heterogeneity in sign and in magnitude. The

number of countries with negative growth responses to idiosyncratic temperature shocks exceed

positive responses. The cross-country growth response to shocks to global temperature are more

evenly split between positive and negative. In many cases, the responses of a given country to

global and idiosyncratic temperature shocks go in opposite directions. These differences highlight

the importance of including both sources of temperature fluctuations in order to isolate the broader

effects of global temperature change.

Much of the related literature, discussed below, employs panel regression techniques that im-

poses extensive homogeneity restrictions across countries. These studies either find uniformly

negative effects of higher temperature on growth for all countries, or negative effects only for

poor countries with inconclusive results for the rich. This paper departs from the literature along

two main dimensions. First, in contrast to panel regression, we use local projections, which im-

poses few restrictions and allows for complete cross-country response heterogeneity. The second

departure lies in the decomposition of country-level temperature into orthogonal global and id-

iosyncratic components, whereas much of the previous research regressed country i real GDP per

capita growth on a measure of country i specific temperature. Our global and idiosyncratic com-

ponents are similar in spirit to a permanent and transitory decomposition. The global component,

reflecting global warming, is trending upward and shocks to it are permanent. The idiosyncratic

component, on the other hand, is transitory by construction.

The idiosyncratic component is similar to the regressand in panel regressions with time-fixed

effects. Global temperature is more systematic and less noisy than country temperature, since it

is a cross-country average. If each country is a small open economy, not only would that country’s

own temperature matter for growth, but temperature should work indirectly through its effect on

the rest-of-world then circling back to the country in question via trade and financial linkages.

These external, spill-over effects can be captured by global temperature shocks.

The temperature decomposition is also useful because global temperature is conceptually closer

to climate change, which is a global phenomenon. We find impulse responses of rich country real

GDP per capita growth to global temperature variation tend to be negative. At longer horizons,

all of the Group of Seven (G-7) countries have negative responses (although Canada’s is not

significant), whereas many of the responses by poor countries tend to be positive.

To study the determinants of cross-country response variation, we regress the local projection

impulse response coefficients on various country characteristics. This methodology draws on
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research strategies used in finance (e.g., Lustig and Richmond [2020] who regress the exchange

rate’s dollar-factor ‘beta’ on gravity variables). Note that there is no ‘generated regressor’ problem

in this cross-sectional analysis because the estimated response coefficients are the dependent

variable. We find the country-level attributes have little explanatory power for the idiosyncratic

responses. Country-level characteristics do a better job of explaining the impact from the global

component. At longer horizons (4 and 5 years), positive growth responses to global temperature

shocks, which would appear to be anomalous, are more likely for countries that are poorer, have

experienced slower growth, are less educated (lower high school attainment), less open to trade,

and more authoritarian. Surprisingly, the average agricultural share in the economy is never

significant.

A central motivation for this project is to shed light on limited and conflicting conclusions in

the literature regarding impact heterogeneity of temperature variation on real GDP per capita

growth. Depending on the particular study, the empirical literature that employs panel regressions

find either an inverse relationship between temperature and GDP for all countries, or an inverse

relationship that holds only for poor countries. A path-breaking study in this literature is Dell

et al. [2012] who use international data in estimation with country and time-fixed effects. An

important motive for their panel regression approach was to use country fixed effects to control

for omitted-variables bias that was present in an earlier generation of studies of cross-sectional

regressions of time-averaged GDP on temperature.1 Dell et al. [2012] reports that increased

temperature lowers GDP per capita growth, but only for poor countries. Leta and Tol [2019] and

Henseler and Schumacher [2019] report similar results for total factor productivity growth. Burke

et al. [2015], on the other hand, find increased temperature to have a negative effect on GDP

growth but do not find differential impacts between rich and poor countries. Bansal and Ochoa

[2011] find increasing global temperature lowers GDP growth of all countries with larger effects

on low latitude countries.2

Informed by the extant literature, our prior beliefs were that the time-series variation would

reveal a distribution of negative local projection coefficients with the far left tail populated pri-

marily by poor, low latitude countries. It was surprising for us to estimate the direction of growth

responses to be more evenly split between positive and negative and to find that many of the

richer countries fall on the negative side of the distribution. Our empirical approach relaxes

homogeneity restrictions which is prevalent in the existing literature. As a result, we unmask

1The most prominent candidate omitted variables may be institutional quality, which is controlled for by the
country fixed effect in panel regressions. Studies by Acemoglu et al. [2002], Easterly and Levine [2003], and Rodrik
et al. [2004] argue institutions are main drivers of long-run growth outcomes.

2The panel regression approach to study the economic effects of climate was introduced by Deschênes and
Greenstone [2007], who estimated the effect of temperature on agricultural profits in the United States. Also,
focusing on the United States, Colacito et al. [2019] reports higher summer temperatures are damaging to output
growth in southern states and the negative impacts are by geography, not income. Hsiang et al. [2017], who
examines growth in county-level income, similarly finds income is negatively impacted by temperature in the south
and southwest, and increases in the north.
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significant heterogeneity.

Some broader implications follow from this project. First, the pattern of cross-country re-

sponse heterogeneity can supplement the ethical arguments presented by Stern [2008] to incen-

tivize rich countries to invest in abatement strategies. The evidence that rich countries are directly

economically damaged by warming should naturally incentive them to invest in climate mitiga-

tion.3 Furthermore, if environmental policy is largely informed by observing past relationships

–and we show that the sign of these responses are not uniform across countries – our results

identify an additional reason why forming a global consensus on future abatement strategies is

difficult. Our results can also inform refinements to damage function specifications in integrated

assessment models (IAM) that compute welfare costs and evaluate the social cost of carbon. Since

much of the empirical literature finds higher temperatures to be more economically damaging to

poorer and hotter regions, regional IAMs, informed by such empirical damage estimates produce

similar regional damage projections.4 The geographical variation provided by our country-specific

assessments to the knowledge base can provide more detailed specifications of IAM damage func-

tions. However, our findings show that growth in many countries, and many poor countries,

respond positively to historical global temperature change. We believe these findings are robust

given the historical record but acknowledge that these historical relationships between growth and

temperature might change in the future following several degrees (Celsius) of additional warming

due to ‘tipping points’ or adaptation.5

The remainder of the paper is organized as follows. Section 2 describes the data. Section 3

discusses substantive ways our analysis departs from panel regressions. The local projection

analysis is reported in Section 4. Section 5 undertakes a cross-sectional analysis to understand

the country-level attributes that, in part, account for the results. Section 6 concludes.

2 Data

Our empirical analysis explores the responses of real GDP per capita growth from temperature

variation. In this section we first describe the sources and construction of our economic and

temperature variation. Section 2.2 then describes how we decompose country-level temperature

into global and idiosyncratic temperature components.

3In the absence of a global coordinated effort, Stern [2008] appeals to two ethical considerations to get the rich,
industrialized countries to shoulder disproportionate costs of future abatement. First, industrialized countries are
responsible for most of the current stock of greenhouse gasses and have gotten rich by generating those emissions.
Second, poor countries are just beginning to overcome poverty through rapid growth and should not be forced to
slow.

4DICE, FUND, and PAGE are prominent IAMs that serve as the main policy models employed by the U.S.
Environmental Protection Agency. Regional IAMS have been developed by Hassler and Krusell [2012], Nordhaus
and Yang [1996], Tol [2019], and Ricke et al. [2018], amongst others.

5See Barreca et al. [2016], Kim et al. [2022], and Gandhi et al. [2022] for examples of adaptation to weather
related phenomenon.
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2.1 Data Sources

Real GDP per capita is from the World Bank’s, World Development Indicators. These data are

valued in constant 2010 United States dollars and have a maximal span from 1960-2017. The

main empirical analysis uses only those 137 countries that have at least 30 consecutive years of

observations.6 In the analysis of Section 5, we also use the World Bank’s, World Development

Indicators to represent country characteristics.

Our temperature observations are population-weighted by year and country. The source is

Terrestrial Precipitation: 1900-2017 Gridded Monthly Time Series (V 5.01) Matsuura and Will-

mott [2018]. This is a monthly dataset estimated from weather station records and interpolated

to a 0.5-degree by 0.5-degree latitude/longitude grid. We aggregate the monthly data to annual

observations by node. We overlay the temperature data with population data in 2000 from the

Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 [Cen-

ter for International Earth Science Information Network, 2018]. The data provides population

counts at a 2.5 minute by 2.5 minute latitude/longitude grid. We use the population weights to

obtain population-weighted temperatures by country and year, which is the standard approach

in the literature (Kahn et al. 2019 and Dell et al. 2012).7

The temperature data is gridded and is interpolated among several ground stations. If we

had consistent temperature measurement, temperature would be plausibly exogenous to any in-

dividual country’s GDP. However, it has been pointed out that potential endogeneity arises if the

underlying ground station temperature availability is dependent upon real GDP per capita growth

(see Schultz and Mankin [2019] on the relation of civil conflict and discontinuity of weather sta-

tion temperature readings). To address potential endogeneity concerns, we show in Appendix B

that real GDP per capita growth is uncorrelated with weather station availability, thus mitigating

these concerns. Going forward, we assume temperature is exogenous.

2.2 Temperature

Let country j temperature in year t be τj,t. We decompose each τj,t into a common global

component and a country-specific idiosyncratic component. This allows partial separation of geo-

graphically concentrated temperature variation and temperature change shared across countries.

Global temperature Gt, is the cross-sectional average of τj,t across the N countries,

Gt =
1

N

N∑
j=1

τj,t.

Idiosyncratic temperature Ij,t, is country temperature not explained by the global temperature.

6The full list of countries and the available sample time period for each country are listed in Appendix A.
7We do not consider precipitation since earlier empirical work finds little or no effect of precipitation on income

growth at the annual frequency.
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It is measured as the residual from regressing country temperature τj,t on global temperature Gt,

Ij,t = τj,t − δjGt − αj , (1)

where αj is the country intercept and δj is the slope coefficient on global temperature, Gt. By

construction, the idiosyncratic component is stationary.

Figure 1 plots annual global temperature from 1900-2017. It is reasonably stable from 1900

to 1980. After 1980, an upward trend is visually obvious, rising by about 1oC over 40 years. We

describe how trending global temperature is dealt with econometrically in Section 3.2 below.

Figure 1: Cross-Sectional Average of Population-Weighted Country Annual Temperature

Figure 2 displays a histogram of the global temperature factor loadings (the δj) from the

country-specific regressions in equation 1. The coefficients on all factor loadings are positive,

meaning country-level temperatures all vary directly with global temperature. The distribution

is centered around δj = 1; by construction, country temperature varies one to one with global

temperature on average. However, the dispersion of the estimates highlights that some country’s

actual temperature are more (less) impacted by global temperature changes.
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Figure 2: Global Slope Coefficients (δ) from Equation (1)

3 Departures from Panel Regression

The related literature widely adopts panel regression estimation procedures with time-fixed effects

to investigate the relationship between temperature changes and real GDP per capita growth

(hereafter, growth).8 Two features of panel regression with time-fixed effects obscure the rela-

tionship between temperature and growth. The first is the manner in which time-fixed effects

removes the global component from growth and temperature, thus resulting in a regression of

coarsely constructed idiosyncratic growth on idiosyncratic temperature variation. The effects of

actual country-level and global temperature variation on growth are not observed. The second

feature is the extensive homogeneity restrictions imposed on the slope coefficient of interest. While

an objective of panel regression is to exploit cross-sectional variation to shrink standard errors,

the imposition of extensive homogeneity should be imposed only when such restrictions are not

rejected by the data. Section 3.2 shows they are rejected.

3.1 Time Fixed Effects

To illustrate the two points raised above, let yj,t be log real GDP per capita of country j =

1, . . . , N in time t. Without loss of generality, we abstract from time-invariant country-fixed

8Kahn et al. [2019] is an exception, who estimate panel autoregressive-distributed lag models. They also find
negative GDP growth impacts of temperature but no differences between rich and poor.
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effects. Consider the panel regression of growth, ∆yj,t = yj,t − yj,t−1, on the country’s annual

temperature, τj,t, with time fixed effects, θt,

∆yj,t = θt + βτj,t + ϵj,t. (2)

Taking the cross-sectional average of equation (2) gives

1

N

N∑
j=1

∆yj,t = θt + β
1

N

N∑
j=1

τj,t +
1

N

N∑
j=1

ϵj,t. (3)

Subtracting equation (3) from equation (2) eliminates the time-fixed effect giving,

∆yj,t −
1

N

N∑
j=1

∆yj,t = β

τj,t −
1

N

N∑
j=1

τj,t

+

ϵj,t −
1

N

N∑
j=1

ϵj,t

 . (4)

The variables in equation (4) are not growth and temperature, but are deviations of growth and

temperature from their global averages. They are coarsely constructed idiosyncratic components

of growth and temperature. Estimating the panel regression with time-fixed effects, equation (2),

is equivalent to running stacked least squares on equation (4). The coefficient of interest β, does

not measure the growth response to variations in the country’s temperature. It measures the

relative (to the world) growth response to relative (to the world) variations in temperature. If

the panel estimate of β is negative, we can infer a country’s growth is lower than average when

it’s temperature is hotter than average, but we cannot infer that global warming lowers growth.

3.2 Rejecting Extensive Homogeneity Restrictions with Local Projection at

Horizon Zero

The literature has allowed modest amounts of heterogeneity on the slope for broad classes of

countries (e.g., above and below median income) with dummy variable interactions. If one’s

interest is to study individual country responses, constrained (pooled) estimation should not

proceed if the homogeneity restrictions are rejected. As a precursor to our main empirical work,

we test, and reject, the extensive (i.e., across large numbers of countries) homogeneity restrictions

that might typically be imposed in panel regressions.

Consider the regression of real GDP per capita growth on the global (Gt) and idiosyncratic

(It) temperature factors. This is a local projection at horizon zero.

100∆yj,t = βG
j Gt + βI

j Ij,t + x′j,tγj + ϵj,t, (5)

where x′j,tγj =
∑4

k=1 δj,k∆yj,t−k +
∑2

k=1 β
G
j,t−kGt−k +

∑2
k=1 β

I
j,t−kIj,t−k + cj are the regression

constant and four lags of annual real GDP per capita growth, two lags of both global and id-
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iosyncratic temperature components, included as controls. The timing of the variables conforms

to those used in Dell et al. [2012].

Because the two temperature components are derived from country temperature, the same

information is employed whether the regression includes only country temperature (τj,t), country

and global temperature (τj,t, Gt), country and idiosyncratic temperature (τj,t, Ij,t), or as in equa-

tion (5). Employing Gt and Ij,t as in equation (5) permits the most straightforward identification

of effects from the different components, except we do not identify the global temperature factor

loading δj separately from the GDP response.

Note also that global temperature, which appears to be nonstationary, enters in levels. We

specify the regression this way to get the most direct relationship between temperature and

growth. The specification is justified by West [1988], who established asymptotic normality of

the least squares estimator of β when Gt is nonstationary and when it is the only nonstationary

variable in the regression. West’s analysis was extended by Park and Phillips [1988] who estab-

lished asymptotic normality of the least squares estimator of β when both current and lagged Gt

are included, provided that Gt is exogenous, which we assume.

To test the homogeneity restrictions, we first estimate equation (5) separately for each country.

Then, we sort countries into two groups: those whose β̂s are positive and those whose are negative.

Call them groups P (for positive) and N (for negative), respectively. Next, jointly estimate with

all countries but constrain these slopes to be identical within group P and to be identical within

group N . Call these slopes βp and βn, respectively. Then the Wald test of the hypothesis βp = βn

is χ2
1 under the null. We do this for both slopes on global and idiosyncratic temperature. Apart

from the slope on the contemporaneous temperature, all other coefficients are allowed to vary

across countries.

Panel A of Table 1 shows the results using all countries in the sample. The growth response

variation to temperature is widespread and significant. The homogeneity restrictions are rejected

by the data, as the p-values of the test statistics are zero for both temperature measures.

Next, we report that the split between positive and negative betas is not simply a split between

rich and poor countries. In panel B, the test is applied only to poor countries–those whose average

real GDP per capita over the sample is below the median. Even among poor countries, many

have positive growth responses to each of the temperature measures. Of the poor countries, 43

percent of the slope point estimates are positive in regressions with global temperature, and 40

percent with idiosyncratic temperature. The estimated βp is positive and highly significant. Here

as well, the test of the homogeneity restrictions across poor countries is rejected.

The rejections of the homogeneity restrictions shown in Table 1 yields evidence that extensive

pooling is not appropriate and the presence of widespread response heterogeneity, even among

poor countries.
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Table 1: Tests of Extensive Homogeneity Restrictions

βp = βn

βp βn χ2 p-val
A. All Countries
Global 2.96 -3.26 80.52 0.00

(5.64) (-7.20)

Idiosyncratic 1.25 -1.64 81.02 0.00
(5.29) (-7.54)

B. Poor Countries
Global 4.00 -3.41 48.98 0.00

(5.09) (-4.80)

Idiosyncratic 1.72 -2.37 49.84 0.00
(3.99) (-6.11)

Notes: The slope is βp in the positive beta group and is βn in the negative beta group. The t-ratio is in parenthesis.
A Wald test of the hypothesis βp = βn is χ2

1 under the null. Global temperature is Gt and idiosyncratic temperature
is Ij,t. Poor countries are those whose average real GDP per capita over the sample is below the median.

4 Impulse Responses by Local Projections

This section first discusses our local projection specification and how estimation with limited

pooling of small groups of countries with quantitatively similar responses preserves the individual

point estimates while achieving shrinkage in standard errors. Section 4.2 presents our main results.

4.1 Local Projection by Regression and Limited Scale Pseudo Panel Estima-

tion

Our local projections are the sequence of regressions at horizons h ∈ {0, ..., 5} years, estimated

separately for each country with at least 30 per capita GDP observations j ∈ {1, ..., 137},

100 (yj,t+h − yj,t−1) = βG
j,hGt + βI

j,hIj,t + x′j,tγj,h + ϵj,t+h, (6)

where yj,t is log real GDP per capita of country j at time t, Gj,t is global temperature at

time t, Ij,t is idiosyncratic country j temperature at time t, and x′j,tγj,h =
∑K

k=1 δj,h,k∆yj,t−k +∑L
ℓ=1 θj,h,ℓGt−ℓ +

∑M
m=1 µj,h,mIj,t−m + cj,h are controls consisting of lags of annual real GDP per

capita growth, lags of global temperature, lags of idiosyncratic temperature, and the regression

constant. Lag lengths K, L, and M are determined by the Akaike’s Information Criterion (AIC)

for each country j at horizon h = 0.9 As is well-known, AIC tends to lead to overparameteriza-

tion. For this reason, we use the AIC specifications to guard against omitted variable bias. Here

9The number of lags of global temperature (G), idiosyncratic temperature (I), and real GDP per capita growth
(∆y) included in equation (6) for each country according to Akaike’s Information Criterion (AIC) are reported in
Appendix C.
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we again rely on the results of West [1988] and Park and Phillips [1988] to establish our use of

including the global temperature, Gt, in levels for our estimations.

The sample length for our countries ranges from 30 to 57 annual observations. As shown by

Jordà [2005] and Plagborg-Møller and Wolf [2021], the local projection coefficients are asymp-

totically equivalent to the impulse response function from a vector autoregression. The local

projection coefficients βG
j,h, give us impulse responses of the percent change in real GDP per

capita from time t− 1 to t+ h due to a 1oC shock in global temperature at time t. βI
j,h gives us

the impulse responses of the percent change in real GDP per capita from t− 1 to t+ h due to a

1oC shock in idiosyncratic temperature at time t. Since impulse responses from vector autoregres-

sions are colloquially referred to as responses to ‘shocks,’ we similarly refer to the local projection

estimates as growth responses to temperature ‘shocks’ even though the regressor is a temperature

variable, Gt or Ij,t (and not a ‘shock’ per se). To further economize on terminology, we refer

to these response coefficients (βG
j,h and βI

j,h) as global/idiosyncratic ‘local projection betas.’ At

horizons h > 0, the overlapping dependent variable observations induce serial correlation in the

error terms which we address with Newey and West [1987] standard errors.

Small Scale Pseudo-Panel Local Projections. Here, we describe a strategy for shrinking the impulse

response standard errors while keeping point estimates close to the single-equation local projection

estimates. This is done by constrained estimation of small sets of pseudo-panels for countries with

similar sized local projection betas. While extensive pooling was shown to be unjustified, this

limited pooling of countries with locally similar sized betas is supported by the data (as we report

in the next subsection).

The pseudo-panel estimation proceeds as follows. Begin with country 1 at horizon h ∈
{0, ..., 5}. Using the single-equation local projection estimates, compute country 1’s SSE (sum of

squared errors) relative to the remaining countries, (βG
1,h − βG

j,h)
2 + (βI

1,h − βI
j,h)

2, j ̸= 1 and sort

by SSE from lowest to highest. Form country 1′s pseudo-panel consisting of between two to five

countries with the lowest SSEs.10 Repeat for countries 2 through 137. Index the members of a

given pseudo-panel by j and estimate the constrained local projection,

100 (yj,t+h − yj,t−1) = βG
h Gt + βI

hIj,t + x′j,tγj,h + ϵj,t+h. (7)

Only the global and idiosyncratic local projection betas are constrained to be equal. We refer

to these systems as pseudo-panels because the group membership can change from one horizon

to the next. We estimate the pseudo-panels by generalized method of moments (GMM), where

the regressors for each country’s equation serve as instruments for that equation. The result is a

system of constrained least squares estimation with GMM (system-wide Newey-West) standard

errors. As a matter of terminology, we refer to these local projection impulse response coefficients

10Pseudo-panel sizes are small in cases where there are few similarities.
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as global/ idiosyncratic ‘pseudo-panel local projection betas.’

4.2 Local Projections with Global and Idiosyncratic Temperature

This section reports results for the responses of growth to global (Gt) and idiosyncratic (Ij,t)

temperature shocks. We report summaries of the results rather than showing all of the impulse

response figures. The full set of impulse responses to global and idiosyncratic temperature shocks

are shown in Appendix D.

Figure 3: Global and Idiosyncratic Temperature Local Projection Betas

A. Global Temperature B. Idiosyncratic Temperature

Horizon 0 Horizon 0

Horizon 5 Horizon 5

Notes: Distribution of global temperature (Gt) and idiosyncratic temperature (Ij,t) local projection betas, βG
j,h and

βI
j,h, from equation (6) for j = 1, ..., 137 and h = 0 and 5. Specifications are determined by Akaike’s Information

Criterion (AIC).

Figure 3 displays the histograms of the global (Panel A) and idiosyncratic (Panel B) tem-

perature local projection betas at horizons 0 and 5. Extensive heterogeneity is observed in the

responses. We note that some of the responses are quite large in magnitude because the responses

are stated in percent and are for a 1oC increase in global or idiosyncratic temperature, which is
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much larger than the normal year-to-year variation in observed temperature. For example, the

maximum temperature change in a year for the global component was approximately 0.5oC in

the sample period.

Table 2: Global and Idiosyncratic Temperature Local Projection and Pseudo-Panel Local Projec-
tion Summary

A. Global Temperature
Pseudo-Panel

Local Projection Betas Local Projection Betas
Horizon 0 1 2 3 4 5 0 1 2 3 4 5
# neg 71 65 67 68 68 69 75 70 69 68 72 71
# pos 66 72 70 69 69 68 62 67 68 69 65 66
# sig neg 15 11 13 16 17 18 47 40 40 40 45 50
# sig pos 7 8 10 11 17 23 33 34 38 44 44 52

B. Idiosyncratic Temperature
Pseudo-Panel

Local Projection Betas Local Projection Betas
Horizon 0 1 2 3 4 5 0 1 2 3 4 5
# neg 78 76 68 78 74 77 77 78 67 75 73 75
# pos 59 61 69 59 63 60 60 59 70 62 64 62
# sig neg 7 6 14 16 14 12 48 51 41 44 49 55
# sig pos 8 8 4 4 4 4 31 41 33 32 34 31

Notes: This table shows the count of global (Panel A) and idiosyncratic (Panel B) temperature local projection

(estimates from equation (6)) and pseudo-panel local projection (estimates from equation (7)) betas that are negative

(neg), positive (pos), and statistically significant at the 5 percent level (sig neg and sig pos). Specifications are

determined by Akaike’s Information Criterion (AIC).

Table 2 reports the summary comparison between the local projection and pseudo-panel local

projection betas. Panel A shows results for global temperature shocks and Panel B shows re-

sults for idiosyncratic shocks. Comparing across estimation methods and horizons reveals similar

numbers of positive and negative point estimates but many more statistically significant pseudo-

panel estimates. Negative betas often outnumber positive betas for the idiosyncratic temperature

shocks (Panel B), but the number of positive and negative betas for the global temperature shock

is approximately even (Panel A). The total number of significant negative and significant posi-

tive responses to global temperature shocks often dominates those for idiosyncratic temperature

shocks.
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Figure 4: Scatter Plots of Global and Idiosyncratic Temperature Pseudo-Panel Local Projection
Betas and Local Projection Betas

A. Global Temperature B. Idiosyncratic Temperature

Horizon 0 Horizon 0

Horizon 5 Horizon 5

Notes: The 45o line is given in red. Local projection betas are estimates from equation (6) and pseudo panel local

projection betas are estimates from equation (7) for h = 0 and h = 5. Specifications are determined by Akaike’s

Information Criterion (AIC).

Figure 4 displays scatter plots of the global (Panel A) and idiosyncratic (Panel B) pseudo-

panel local projection betas against the local projection betas at horizons 0 and 5. The 45o line

is given in red. This figure provides visual confirmation that the pseudo-panel point estimates

lie close to the local projection point estimates in most cases. With very few exceptions the

plotted coefficients lie in the 1st and 3rd quadrants, meaning there is agreement on the signs of

the coefficients irrespective of the estimation method. Even for the estimates far from the 45o line,

which tend to be closer to the distribution tails, the signs of the coefficients remain in agreement.
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Figure 5: Global and Idiosyncratic Temperature Pseudo-Panel Local Projection Betas

A. Global Temperature B. Idiosyncratic Temperature

Horizon 0 Horizon 0

Horizon 5 Horizon 5

Notes: Global (Panel A) and idiosyncratic (Panel B) temperature pseudo-panel local projection betas, βj,h, are
from equation (7) for h = 0 and h = 5. Specifications are determined by Akaike’s Information Criterion (AIC). *
indicates significance at the 5 percent level.

Figure 5 plots the pseudo-panel local projection betas at horizons 0 and 5 onto a world map.

Results for global temperature shocks are in Panel A and idiosyncratic temperature shocks in

Panel B. Negative responses are shown in red and positive responses in green. Darker shades

indicate statistical significance at the 5 percent level.

Let us look at the response to global temperature shocks. At horizon 0, negative responses are

found for both high (e.g., Denmark, South Korea, and Norway) and low (e.g., Zambia, Uganda,

and Ghana) income countries. At horizon 5, negative responses are found primarily for rich

countries. All of the Group of 7 (G-7) country responses are negative and of these all but Canada’s

are significantly so. Surprisingly, some of the poorest countries experience significantly positive

growth responses to positive global temperature shocks. This include large swaths in Sub-Saharan

Africa and South Asia. Some of the larger oil producing countries in OPEC have significantly

positive responses by horizon 5 such as Angola, Iran, Nigeria, Saudi Arabia, and UAE. However,
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Iraq’s is significantly negative while Venezuela’s (-) and Algeria’s (+) are both insignificant.

Next, we look at the response to idiosyncratic temperature shocks. Here, at horizons 0 and 5,

negative responses outnumber positive ones and there is less of a pattern amongst rich countries.

At horizon 5, the response of the UK and Canada are significantly negative but is significantly

positive for Japan. At longer horizons, the coefficient signs are negative for many countries in

Southeast Asia and Oceana, Nigeria, Mexico, and Russia.

Interestingly, a visual comparison across shocks within each horizon shows the direction of a

country’s response are sometimes at odds with each other. Prominent examples include Brazil

and India at horizon 0, and large oil states such as Angola, Saudi Arabia, and UAE at horizon

5. The same sized coefficients on global and idiosyncratic temperature should not be interpreted

to mean the two temperature components are equally important. Global temperature is trending

up while idiosyncratic temperature is, by construction, stationary around zero. This makes the

global temperature shocks quantitatively more important.

Figure 6 displays the pseudo-panel impulse responses to global and idiosyncratic temperature

shocks for a set of rich (Panel A) and poor (Panel B) countries. The rich are represented by the

G-7 countries plus Australia and China and the poor are the nine poorest countries in our sample,

based on average real GDP per capita over the sample.11 Amongst the rich, except for China and

the UK, real GDP per capita initially declines following an increase in global temperature. The

responses are more mixed following an increase in idiosyncratic temperature. Amongst the poorest

countries, real GDP per capita increases on impact from a positive global country temperature

shock and a positive idiosyncratic temperature shock in Ethiopia and Nepal.

To summarize this section, the local projection and pseudo-panel local projection results estab-

lish three main findings. First, there is substantial heterogeneity in the responses across countries,

irrespective of the source of temperature fluctuations. Second, the variation in growth responses

from the two sources of temperature fluctuations highlights the importance of separately consider-

ing idiosyncratic, country-specific from global temperature change. While the signs of the growth

responses from global and idiosyncratic temperatures often coincide, there are many instances

where they go in opposite directions. Finally, we show the most developed countries evidently

face substantial economic damages from global temperature change.

11China is grouped with the rich countries, not on the basis of per capita GDP but because it is the world’s
second largest economy.
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Figure 6: Pseudo-Panel Impulse Responses of Growth to Global (Dashed) and Idiosyncratic
(Solid) Temperature Shocks–Selected Rich and Poor Countries

A. G-7 Plus Australia and China

B. Nine Poorest Countries

Notes: Shaded areas are plus and minus 1.96 standard error bands.

5 Cross-Sectional Response Heterogeneity and Country Charac-

teristics

What explains the response heterogeneity across countries? This section investigates how coun-

try characteristics, including geographic, economic, demographic, and political factors can ex-

plain the variation in responses. The analysis is based on a cross-sectional regression of the
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global/idiosyncratic local projection betas on these country characteristics.12 Although the betas

are estimated, there is no ‘second stage’ or generated regressors problem because the estimated

response coefficients are the dependent variable in the regressions. If Xj is the vector of country

j′s characteristics and the constant, we run the cross-sectional regression

β̂τ
j,h = X ′

jγτ,h + uτ,h, (8)

of the idiosyncratic and global impulse response estimates τ = I,G at horizons h = 0, . . . , 5.

The variables we use are based on the following considerations. We are primarily interested

in the explanatory power of various economic characteristics after controlling for geographic vari-

ables. In light of panel studies finding response differences between rich and poor countries, we

include average real GDP per capita in logarithmic form. Extant research would lead one to

expect log income to enter with a positive coefficient. We also consider a country’s long-horizon

growth rate, which is the growth rate of real GDP per capita (Growth) from beginning to the

end of the sample. The country’s average openness (Openness), which are exports plus imports

as a share of GDP, captures the degree of economic connectedness to the rest of the world. We

also include the average GDP share of agriculture since agriculture has long been seen as a very

direct channel through which temperature affects the economy. Agricultural workers, especially in

poorer countries, are directly exposed to temperature as are the crops themselves, and Deryugina

and Hsiang [2014], Deschênes and Greenstone [2007], Nelson et al. [2014], and Dietz and Lanz

[2019] report empirical damage estimates to agriculture from high temperatures. Average high-

school attainment gives a coarse measure of human capital accumulated and democracy examines

the potential role of political responses to temperature.

Except for latitude and temperature, the data are from the World Bank’s, World Development

Indicators and are the country’s time series average over the available sample span. Democracy

is the World Bank’s Index of Democratization. Absolute latitude and temperature are included

primarily as control variables.

12Recently, Lustig and Richmond [2020] employed the same methodology to regress exchange rate betas on gravity
variables.
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Table 3: Correlation Matrix of Explanatory Variables

L.T. Open- High Demo- Agricul- Temp-
Growth ness School cracy tural Share Latitude erature

log(GDP Per Capita) 0.144 0.256 0.705 0.738 -0.885 0.032 -0.529
L.T. Growth -0.028 0.089 0.147 -0.126 -0.028 -0.161
Openness 0.185 0.117 -0.297 -0.140 -0.097
High School 0.617 -0.618 0.017 -0.688
Democracy -0.603 0.077 -0.615
Agricultural Share 0.007 0.453
Latitude -0.065

Table 3 shows the correlations amongst these variables. Country latitude is only slightly nega-

tively correlated with high-school attainment but is roughly uncorrelated with all other variables.

The inverse relationship between temperature and growth in the cross-section (correlation -0.529)

has been well studied [Dell et al., 2009]. In what follows, we present specifications with the entire

list of variables together as regressors to mitigate potential omitted variables bias.

Table 4: Cross-Sectional Regression with Idiosyncratic Temperature Local Projection Betas

Horizon
0 1 2 3 4 5

log(GDP Per Capita) -0.197 -0.562 -0.725 -0.975 -0.915 -1.132
(-0.685) (-1.219) (-1.113) (-1.313) (-1.158) (-1.274)

L.T. Growth 0.051 0.188 0.144 0.552 0.494 0.899
(0.240) (0.550) (0.299) (1.005) (0.843) (1.367)

Openness 0.001 0.003 -0.005 -0.009 -0.011 -0.005
(0.204) (0.428) (-0.419) (-0.692) (-0.771) (-0.307)

High School 0.011 0.024 0.030 0.046* 0.066 0.038
(1.185) (1.603) (1.450) (1.930) (2.602) (1.356)

Democracy 0.023 0.043 -0.009 -0.014 -0.064 -0.013
(1.020) (1.192) (-0.169) (-0.241) (-1.032) (-0.184)

Agricultural Share -0.003 0.022 -0.014 -0.028 -0.020 -0.025
(-0.115) (0.489) (-0.219) (-0.388) (-0.263) (-0.290)

Latitude -0.006 0.003 0.006 0.008 0.007 0.047
(-0.683) (0.214) (0.306) (0.353) (0.298) (1.662)

Temperature -0.016 0.022 -0.031 -0.034 -0.044 -0.111
(-0.492) (0.420) (-0.417) (-0.407) (-0.499) (-1.113)

R-Square 0.068 0.058 0.043 0.070 0.101 0.097
Observations 122 122 122 122 122 122

Notes: T-ratios in parentheses. Except for latitude and temperature, variables are from the World Devel-
opment Indicators. Significance at the 5% level indicated by bold face and at the 10% level by ‘*’.
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We begin with the idiosyncratic temperature betas. Table 4 shows results. Almost none of

the estimates are significant. The only exceptions are average high-school attainment at horizons

3 and 4. GDP response to idiosyncratic temperature shocks are unsystematic in the sense that

their variation is largely unexplained by country characteristics.

Table 5: Cross-Sectional Regression with Global Temperature Local Projection Betas

Horizon
0 1 2 3 4 5

log(GDP Per Capita) 0.133 -1.306 -1.411 -3.029 -4.177* -4.450
(0.288) (-1.644) (-1.308) (-2.070) (-1.935) (-1.452)

L.T. Growth 0.261 -1.511 -2.548 -4.258 -6.138 -7.122
(0.768) (-2.569) (-3.193) (-3.931) (-3.841) (-3.138)

Openness 0.011 0.037 0.052 0.070 0.103 0.132
(1.304) (2.619) (2.720) (2.731) (2.694) (2.435)

High School 0.013 0.075 0.131 0.236 0.382 0.483
(0.903) (2.953) (3.824) (5.049) (5.555) (4.945)

Democracy -0.029 -0.030 -0.141* -0.225 -0.458 -0.720
(-0.823) (-0.483) (-1.685) (-1.972) (-2.725) (-3.019)

Agricultural Share 0.028 0.034 0.094 0.065 0.157 0.378
(0.628) (0.441) (0.892) (0.458) (0.746) (1.268)

Latitude -0.029 -0.043* -0.047 -0.048 -0.055 -0.033
(-2.026) (-1.728) (-1.375) (-1.036) (-0.813) (-0.338)

Temperature 0.029 -0.031 -0.048 0.009 -0.135 -0.422
(0.553) (-0.352) (-0.397) (0.057) (-0.556) (-1.223)

R-Square 0.080 0.244 0.315 0.394 0.429 0.398
Observations 122 122 122 122 122 122

See notes to Table 4.

Next, we turn to the global temperature betas. To suggest a mechanism for global temperature,

let us think of each country as a small-open economy. Then the effect of temperature on GDP

need not be restricted to temperature within its borders. While some part of a global temperature

shock may represent the direct effect of country temperature on GDP, a good portion may also

be the effect on the rest-of-world (ROW) economy and subsequent indirect effects on individual

countries through trade and finance linkages. Countries vary in their exposure to changes in global

economic conditions induced by temperature shocks.

Table 5 shows regression results for the global temperature betas and tells quite a different

story. At horizons 3-5, GDP, growth, openness, high-school and democracy are generally signifi-

cant. A country is more likely to have a positive GDP response to increased global temperature if

it is poorer, has grown less rapidly, is more open to trade, more educated, and more authoritarian.

Average temperature is never significant, and latitude only at horizons 0 and 1. Interestingly, the

GDP share of agriculture is never significant.
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The negative point estimates on log GDP and growth largely confirm impressions from viewing

the maps in Figure 4. The positive coefficient on openness is consistent with the following: suppose

the global temperature shock has the effect of an uncertainty shock and has a larger effect on

colder and richer countries. This affects these countries like a negative aggregate demand shock

which improves the terms of trade for poorer and hotter countries. Countries that are more open

to trade are able to benefit from this.13 Indeed, Lee et al. [2022] find, at the four year horizon,

exchange rates tend to appreciate for hotter, open countries from temperature shocks.14

The positive coefficient on high-school suggests that a more educated country is better equipped

to deal with higher temperature through innovation and adaptation.

The negative coefficient on democracy may indicate lower bargaining power of labor in au-

thoritarian regimes where resources are concentrated and under control of a small number of

elites. We emphasize that our results are about the potential role of democracy on how a country

responds to temperature shocks and not on the relationship between democracy and growth per

se.15 Another potential explanation relates to Tavares and Wacziarg [2001] who find democracy

hinders growth because more democratic countries channel more resources to the poor which

comes at the expense of capital accumulation. Hence, if temperature change and warming dispro-

portionately afflicts the poor, it may be that more democratic countries respond to temperature

change by redirecting resources to those most afflicted instead of towards avenues that promote

growth. In contrast, less democratic countries may opt to neglect resource redistribution to those

most vulnerable to warming.

6 Conclusion

This paper reexamines the relationship between rising temperature and real GDP per capita

growth, but from a country-specific time series perspective using local projections [Jordà, 2005].

We examine the growth responses from both country-specific (idiosyncratic) and common, global

temperature variation. We find substantial heterogeneity across countries in the impulse responses

of real GDP per capita growth to shocks to our temperature components–more than was previously

reported in the literature. Qualitatively consistent with the previous literature though, there are

more negative than positive impulse responses of real GDP per capita growth to increases in

idiosyncratic temperature. On the other hand, approximately half of the countries across all

horizons have positive responses to global temperature change. Richer countries, in particular,

13Berg and Mark [2022] show how an uncertainty shock causes terms-of trade deterioration in the country expe-
riencing the shock.

14This is not the same for climate disasters. Hale [2022] shows safe country currencies appreciate relative to risky
country currencies following a climate disaster shock.

15There is a vast literature on the role of democracy on growth, but the relationship is still debated. Studies
finding positive effects include Acemoglu et al. 2019, Colagrossi et al. 2020 and references therein. Studies finding
negative or nil effects include Gerring et al. 2005 and references therein and among others.
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such as the United States, tend to experience negative impulse responses of real GDP per capita

growth to increases in global temperature.

We find growth responses are statistically significantly positive for many countries, including

some of the poorest ones, from global temperature variation. We believe these results are robust to

observed historical GDP and temperature variation. However, we are less certain of the stability

of these relationships when projecting forward. It would be highly speculative to think that

the historical relationship between temperature and growth will continue in the future if global

temperature rises 2o-4o Celsius. For this reason, we did not use our results to assess future

damage.

Our analysis also investigates the country-level characteristics that might explain variation

in the estimated growth responses to temperature change. These country characteristics did

not explain growth responses to idiosyncratic temperature change. Responses to idiosyncratic

temperature shocks are largely unsystematic. Variation in response to global temperature shocks

are systematically related to several country-level characteristics. A country’s GDP is more likely

to respond positively to a global temperature shock if it is poorer, has grown less rapidly, is more

open to trade, more educated, and more authoritarian.

Our results may be helpful in framing climate change policy. As an ethical matter, Stern

[2008] argues that rich countries should pay more for greenhouse gas abatement than developing

countries, since the industrialized world has been responsible for emitting most of the current stock

of greenhouse gasses. Beyond these ethical considerations, our findings that global temperature

increases have resulted in significant economic damages to rich countries suggests that they have

a self-interest in investing in abatement policies. If environmental policy is informed by historical

relationships – and we show that direction of the growth responses are not uniform across countries

– our results also suggest another challenge in forming a global consensus on future abatement

strategies.

21



References

Acemoglu, D., S. Johnson, and J. A. Robinson (2002): “Reversal of fortune: Geography

and institutions in the making of the modern world income distribution,” The Quarterly journal

of economics, 117, 1231–1294.

Acemoglu, D., S. Naidu, P. Restrepo, and J. A. Robinson (2019): “Democracy does

cause growth,” Journal of political economy, 127, 47–100.

Bansal, R. and M. Ochoa (2011): “Temperature, Aggregate Risk, and Expected Returns,”

NBER wp. 17575.

Barreca, A., K. Clay, O. Deschenes, M. Greenstone, and J. S. Shapiro (2016):

“Adapting to climate change: The remarkable decline in the US temperature-mortality re-

lationship over the twentieth century,” Journal of Political Economy, 124, 105–159.

Berg, K. A. and N. C. Mark (2022): “Uncertainty, Long-Run, and Monetary Policy Risks in

a Tow-Country Macro Model,” mimeo, University of Notre Dame.

Burke, M., S. M. Hsiang, and E. Miguel (2015): “Global Non-Linear Effect of Temperature

on Economic Production,” Nature, 527, 235–239.

Center for International Earth Science Information Network, C. (2018): “Gridded

Population of the World, Version 4 (GPWv4): Population Count, Revision 11,” Columbia

University.

Colacito, R., B. Hoffmann, and T. Pham (2019): “Temperature and Growth: A Panel

Analysis of the United States,” Journal of Money, Credit, and Banking, 51.

Colagrossi, M., D. Rossignoli, and M. A. Maggioni (2020): “Does democracy cause

growth? A meta-analysis (of 2000 regressions),” European journal of political economy, 61,

101824.

Dell, M., B. F. Jones, and B. A. Olken (2009): “Temperature and Income: Reconciling

New Cross-Sectional and Panel Estimates,” American Economic Review, 99, 198–204.

——— (2012): “Temperature Shocks and Economic Growth: Evidence from the Last Half Cen-

tury,” American Economic Journal: Macroeconomics, 4, 66–95.

Deryugina, T. and S. M. Hsiang (2014): “Does the Environmenbt Still Matter? Daily Tem-

perature and Income in the United States,” NBER wp. 20740.

22
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A Country Code, Country Name, and Sample Time Period

Table A1: Country Code, Country Name, and Sample Time Period

Code Country Name Sample Code Country Name Sample
AGO Angola 1980 – 2017 ESP Spain 1960 – 2017
ALB Albania 1980 – 2017 ETH Ethiopia 1981 – 2017
ARE United Arab Emirates 1975 – 2017 FIN Finland 1960 – 2017
ARG Argentina 1960 – 2017 FJI Fiji 1960 – 2017
AUS Australia 1960 – 2017 FRA France 1960 – 2017
AUT Austria 1960 – 2017 GAB Gabon 1960 – 2017
BDI Burundi 1960 – 2017 GBR United Kingdom 1960 – 2017
BEL Belgium 1960 – 2017 GEO Georgia 1965 – 2017
BEN Benin 1960 – 2017 GHA Ghana 1960 – 2017
BFA Burkina Faso 1960 – 2017 GIN Guinea 1986 – 2017
BGD Bangladesh 1960 – 2017 GMB Gambia, The 1966 – 2017
BGR Bulgaria 1980 – 2017 GNB Guinea-Bissau 1970 – 2017
BHS Bahamas, The 1960 – 2017 GNQ Equatorial Guinea 1980 – 2017
BLZ Belize 1960 – 2017 GRC Greece 1960 – 2017
BOL Bolivia 1960 – 2017 GRL Greenland 1970 – 2017
BRA Brazil 1960 – 2017 GTM Guatemala 1960 – 2017
BRN Brunei Darussalam 1974 – 2017 GUY Guyana 1960 – 2017
BTN Bhutan 1980 – 2017 HND Honduras 1960 – 2017
BWA Botswana 1960 – 2017 HTI Haiti 1960 – 2017
CAF Central African Republic 1960 – 2017 IDN Indonesia 1960 – 2017
CAN Canada 1970 – 2017 IND India 1960 – 2017
CHE Switzerland 1970 – 2017 IRL Ireland 1970 – 2017
CHL Chile 1960 – 2017 IRN Iran, Islamic Rep. 1960 – 2017
CHN China 1960 – 2017 IRQ Iraq 1968 – 2017
CIV Cote d’Ivoire 1960 – 2017 ISL Iceland 1970 – 2017
CMR Cameroon 1960 – 2017 ISR Israel 1960 – 2017
COD Congo, Dem. Rep. 1960 – 2017 ITA Italy 1960 – 2017
COG Congo, Rep. 1960 – 2017 JAM Jamaica 1966 – 2017
COL Colombia 1960 – 2017 JOR Jordan 1975 – 2017
COM Comoros 1980 – 2017 JPN Japan 1960 – 2017
CPV Cabo Verde 1980 – 2017 KEN Kenya 1960 – 2017
CRI Costa Rica 1960 – 2017 KGZ Kyrgyz Republic 1986 – 2017
CUB Cuba 1970 – 2017 KOR Korea, Rep. 1960 – 2017
CYP Cyprus 1975 – 2017 LAO Lao PDR 1984 – 2017
DEU Germany 1970 – 2017 LBN Lebanon 1988 – 2017
DNK Denmark 1960 – 2017 LKA Sri Lanka 1961 – 2017
DOM Dominican Republic 1960 – 2017 LSO Lesotho 1960 – 2017
DZA Algeria 1960 – 2017 LUX Luxembourg 1960 – 2017
ECU Ecuador 1960 – 2017 MAR Morocco 1966 – 2017
EGY Egypt, Arab Rep. 1960 – 2017 MDG Madagascar 1960 – 2017
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Table A2: Country Code, Country Name, and Sample Time Period (Continued)

Code Country Name Sample Code Country Name Sample
MEX Mexico 1960 – 2017 SEN Senegal 1960 – 2017
MLI Mali 1967 – 2017 SLE Sierra Leone 1960 – 2017
MMR Myanmar 1960 – 2017 SLV El Salvador 1965 – 2017
MNG Mongolia 1981 – 2017 SUR Suriname 1960 – 2017
MOZ Mozambique 1980 – 2017 SWE Sweden 1960 – 2017
MRT Mauritania 1961 – 2017 SWZ Eswatini 1970 – 2017
MWI Malawi 1960 – 2017 TCD Chad 1960 – 2017
MYS Malaysia 1960 – 2017 TGO Togo 1960 – 2017
NAM Namibia 1980 – 2017 THA Thailand 1960 – 2017
NER Niger 1960 – 2017 TJK Tajikistan 1985 – 2017
NGA Nigeria 1960 – 2017 TKM Turkmenistan 1987 – 2017
NIC Nicaragua 1960 – 2017 TTO Trinidad and Tobago 1960 – 2017
NLD Netherlands 1960 – 2017 TUN Tunisia 1965 – 2017
NOR Norway 1960 – 2017 TUR Turkey 1960 – 2017
NPL Nepal 1960 – 2017 TZA Tanzania 1988 – 2017
NZL New Zealand 1970 – 2017 UGA Uganda 1982 – 2017
OMN Oman 1965 – 2017 UKR Ukraine 1987 – 2017
PAK Pakistan 1960 – 2017 URY Uruguay 1960 – 2017
PAN Panama 1960 – 2017 USA United States 1960 – 2017
PER Peru 1960 – 2017 UZB Uzbekistan 1987 – 2017
PHL Philippines 1960 – 2017 VCT St. Vincent and the Grenadines 1960 – 2017
PNG Papua New Guinea 1960 – 2017 VEN Venezuela, RB 1960 – 2017
PRI Puerto Rico 1960 – 2017 VNM Vietnam 1984 – 2017
PRT Portugal 1960 – 2017 VUT Vanuatu 1979 – 2017
PRY Paraguay 1960 – 2017 WSM Samoa 1982 – 2017
RUS Russian Federation 1989 – 2017 ZAF South Africa 1960 – 2017
RWA Rwanda 1960 – 2017 ZMB Zambia 1960 – 2017
SAU Saudi Arabia 1968 – 2017 ZWE Zimbabwe 1960 – 2017
SDN Sudan 1960 – 2017

3



B Temperature Endogeneity with Changes in GDP Per Capita

Our temperature data relies on gridded temperature data which interpolates temperature among

the ground station weather readings. This data thus adjusts for missing data from ground stations.

One concern is that the underlying ground station weather availability used for interpolation may

vary by location, potentially producing inaccurate temperature readings in interpolation that

is correlated with economic outcomes – our variable of interest (for example, see Schultz and

Mankin [2019] who discuss weather station (dis)continuity during civil conflict risk). Here, we

test whether missing temperature observations at ground stations is correlated with our variable

of interest, GDP per capita growth. We use ground station temperature reading availability from

the Global Historical Climatology Network (GHCN) dataset. This is the data source our gridded

temperature data uses.

To measure temperature station availability, for each country we identify the total number of

weather stations in our sample period. For each year, we then find the number of stations with

complete temperature availability as a share of the total number of stations, share coverage. Table

B1 reports regression results of share coverage on GDP per capita growth and controls. Columns

(1) is a simple regression of share coverage on GDP per capita growth and columns (2) and (3)

add controls for country and time fixed effects. Column (4) includes a poor dummy (GDP per

capita below median for that year) and interaction of poor dummy with GDP per capita growth

to investigate whether station availability is driven by relatively poorer countries. Across all

specifications, the coefficients on GDP growth and the interaction term are not significant. We

conclude that there is not evidence that temperature availability – and thus measurement error

– is correlated with GDP per capita growth.

Table B1: Share of Stations with Temperature Coverage

(1) (2) (3) (4)
∆yj,t 0.787 0.139 0.162 -0.867

(1.28) (0.26) (0.34) (-0.91)
∆yj,t × poor 1.387

(1.28)
Country FE No Yes Yes Yes
Time FE No No Yes Yes
Poor Dummy No No No Yes
R2 0.000 0.300 0.493 0.493
Observations 6135 6135 6135 6135

Note: T-ratios in parentheses
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C Local Projections Specifications - Akaike’s Information Crite-

rion (AIC)

Table C1: Local Projections Specifications - Akaike’s Information Criterion (AIC)

Country Lags of Country Lags of Country Lags of Country Lags of
Code G I ∆y Code G I ∆y Code G I ∆y Code G I ∆y
AGO 0 0 1 ESP 1 0 1 MEX 0 0 0 TTO 0 0 2
ALB 0 0 1 ETH 0 0 4 MLI 0 0 0 TUN 2 0 0
ARE 0 0 4 FIN 1 1 1 MMR 2 0 4 TUR 0 0 0
ARG 0 0 0 FJI 0 0 0 MNG 0 1 2 TZA 1 0 4
AUS 0 1 2 FRA 2 1 2 MOZ 0 1 4 UGA 2 1 4
AUT 1 1 1 GAB 0 0 1 MRT 1 0 4 UKR 1 0 1
BDI 1 0 4 GBR 1 0 2 MWI 2 0 0 URY 0 0 2
BEL 2 0 0 GEO 0 0 2 MYS 0 0 0 USA 0 0 2
BEN 0 0 3 GHA 2 0 2 NAM 0 0 1 UZB 0 0 4
BFA 1 1 0 GIN 0 0 0 NER 0 0 0 VCT 0 0 3
BGD 1 0 0 GMB 0 1 1 NGA 0 0 1 VEN 0 0 0
BGR 0 0 0 GNB 2 0 1 NIC 0 1 3 VNM 0 0 2
BHS 0 0 1 GNQ 2 0 1 NLD 2 0 4 VUT 0 0 4
BLZ 0 0 1 GRC 0 0 3 NOR 0 0 1 WSM 1 0 0
BOL 0 0 2 GRL 2 1 1 NPL 0 0 4 ZAF 2 1 1
BRA 0 0 1 GTM 0 1 3 NZL 1 1 4 ZMB 2 0 4
BRN 0 1 4 GUY 0 0 4 OMN 0 0 3 ZWE 0 1 1
BTN 1 0 0 HND 2 0 4 PAK 0 0 0
BWA 0 0 1 HTI 2 0 2 PAN 1 0 1
CAF 1 1 0 IDN 2 0 3 PER 0 0 1
CAN 0 0 2 IND 1 1 4 PHL 0 0 1
CHE 0 1 2 IRL 1 0 1 PNG 0 1 1
CHL 0 0 1 IRN 0 0 1 PRI 0 0 1
CHN 2 0 3 IRQ 1 0 1 PRT 0 0 4
CIV 0 0 4 ISL 0 0 4 PRY 0 0 1
CMR 2 1 3 ISR 0 0 3 RUS 1 1 3
COD 1 0 3 ITA 2 0 1 RWA 1 0 1
COG 1 0 3 JAM 0 0 4 SAU 0 0 2
COL 0 0 1 JOR 0 0 4 SDN 1 1 3
COM 2 0 4 JPN 0 0 1 SEN 2 0 1
CPV 0 0 1 KEN 0 1 1 SLE 0 0 0
CRI 0 0 1 KGZ 1 0 4 SLV 0 0 2
CUB 0 0 1 KOR 1 0 0 SUR 0 0 1
CYP 2 0 1 LAO 0 0 4 SWE 0 1 1
DEU 0 0 2 LBN 0 1 4 SWZ 1 1 1
DNK 0 0 4 LKA 0 0 1 TCD 0 0 0
DOM 0 0 2 LSO 2 0 2 TGO 0 0 0
DZA 0 0 4 LUX 2 1 0 THA 0 0 1
ECU 0 0 1 MAR 0 1 3 TJK 0 1 4
EGY 0 0 3 MDG 0 0 0 TKM 2 0 4

Notes: This table reports the number of lags of global temperature (G), idiosyncratic temperature (I), and real

GDP per capita growth (∆y) included in equation (6) for each country according to Akaike’s Information Criterion

(AIC).
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D Global and Idiosyncratic Temperature Local Projection and

Pseudo-Panel Local Projection Results
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Figure D1: Global Temperature Local Projection Impulse Responses

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D2: Global Temperature Local Projection Impulse Responses (Continued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D3: Global Temperature Local Projection Impulse Responses (Continued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D4: Global Temperature Pseudo-Panel Local Projection Impulse Responses

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D5: Global Temperature Pseudo-Panel Local Projection Impulse Responses (Continued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D6: Global Temperature Pseudo-Panel Local Projection Impulse Responses (Continued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D7: Idiosyncratic Temperature Local Projection Impulse Responses

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D8: Idiosyncratic Temperature Local Projection Impulse Responses (Continued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D9: Idiosyncratic Temperature Local Projection Impulse Responses (Continued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D10: Idiosyncratic Temperature Pseudo-Panel Local Projection Impulse Responses

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D11: Idiosyncratic Temperature Pseudo-Panel Local Projection Impulse Responses (Con-
tinued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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Figure D12: Idiosyncratic Temperature Pseudo-Panel Local Projection Impulse Responses (Con-
tinued)

Notes: Shaded areas are plus and minus 1.96 standard error bands. Specifications are determined by Akaike’s
Information Criterion (AIC).
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