

NBER WORKING PAPER SERIES

SUPPLY, DEMAND, INSTITUTIONS, AND FIRMS:
A THEORY OF LABOR MARKET SORTING AND THE WAGE DISTRIBUTION

Daniel Haanwinckel

Working Paper 31318
<http://www.nber.org/papers/w31318>

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
June 2023, Revised February 2025

I would like to thank David Card, Fred Finan, Pat Kline, Maurizio Mazzocco, and Andrés Rodríguez-Clare for their guidance and support. The paper benefited from comments from Ben Faber, Thibault Fally, Cecile Gaubert, Jinyong Hahn, Brian Kovak, Thibault Lamadon, Thomas Lemieux, Nicholas Li, Juliana Londoño- Vélez, Magne Mogstad, Piyush Panigrahi, Raffaele Saggio, Andres Santos, Yotam Shem-Tov, Avner Strulov-Shlain, José P. Vásquez-Carvajal, Christopher Walters, four anonymous referees, and participants at several seminars and conference presentations. I also thank Lorenzo Lagos and David Card for providing code to clean the RAIS data set, and Gustavo de Souza for providing task content data for Brazilian occupations. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2023 by Daniel Haanwinckel. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Supply, Demand, Institutions, and Firms: A Theory of Labor Market Sorting and the Wage Distribution

Daniel Haanwinckel

NBER Working Paper No. 31318

June 2023, Revised February 2025

JEL No. J24, J31, J38

ABSTRACT

This paper examines how workforce composition, labor demand, and minimum wage jointly determine wages through their effects on worker-task assignments, firm wage premiums, and firm-worker sorting. Using an estimated model of monopsonistic local labor markets, it finds that minimum wage hikes and labor demand shocks drove the decline in Brazilian wage inequality from 1998 to 2012. While rising educational attainment compressed skill premiums within firms, it also reallocated skilled workers to high-wage firms, limiting that shock's effect on inequality. The analysis highlights interactions among exogenous factors, showing that concurrent supply and demand changes attenuated minimum wage impacts.

Daniel Haanwinckel

Department of Economics

University of California, Los Angeles

8242 Bunche Hall

Los Angeles, CA 90095

and NBER

haanwinckel@econ.ucla.edu

A data appendix is available at <http://www.nber.org/data-appendix/w31318>

1 Introduction

Brazil experienced a dramatic reduction in wage inequality between the mid-1990s and the early 2010s. In a literature review, [Firpo and Portella \(2019\)](#) point to three shocks as plausible causes of that phenomenon: an increased supply of skilled labor due to rising educational attainment, labor demand shocks that favored unskilled workers (mostly due to the 2000s commodities boom), and large real increases in the federal minimum wage. Understanding the labor market effects of these shocks is important for not only those interested in the Brazilian case but also those seeking to remedy rising wage inequality in other contexts.

To that end, this paper develops a tractable framework that describes how supply, demand, and minimum wage jointly determine wage distribution in the long run in imperfectly competitive labor markets. I employ matched employer-employee data to test its theoretical predictions and to structurally estimate a local labor markets model of the Brazilian economy. Finally, I simulate counterfactual scenarios to quantify the individual impacts of each shock, as well as their interactions.

Current academic literature employs two frameworks to study those shocks' labor market effects. Supply and demand factors are typically examined under the assumption of perfect competition, using models with representative firms (e.g., [Bound and Johnson, 1992](#); [Card and Lemieux, 2001](#)) or task assignment models based on comparative advantage (e.g., [Teulings, 1995](#); [Acemoglu and Autor, 2011](#)). In such models, inequality trends reflect changes in productivity gaps between workers. By contrast, leading minimum wage models such as those developed by [Flinn \(2006\)](#) and [Engbom and Moser \(2022\)](#) are imperfectly competitive. They emphasize the contribution of cross-firm wage differentials between equally productive workers (henceforth, firm wage premiums) to overall wage inequality.

Using different frameworks for different shocks facilitates tractability but also restricts causal pathways. In competitive models, supply and demand factors cannot affect wages through firm wage premiums or *sorting*, defined in this paper as the assortativeness between worker skill and the firm wage premium they earn at their current employer. Those channels may be quantitatively important. For example, [Card, Heining and Kline \(2013\)](#) and [Song et al. \(2018\)](#) show that long-run changes in sorting account for significant shares of the overall increase in wage inequality in West Germany and the US, respectively. If those changes in sorting are driven by supply and demand factors, competitive models may provide an

incomplete account of these factors' labor market effects. On the minimum wage side, the leading models either assume perfect substitutability between worker types, rule out changes in technologies firms may use, or disallow cost pass-throughs to consumer prices. Thus, they impose strong restrictions on how between-worker productivity gaps may change in response to the minimum wage.

A descriptive analysis of the Brazilian case shows that these restrictions may be consequential. I use matched employer-employee data to calculate labor market statistics for 151 *microregions* comparable to US commuting zones. Those statistics include several measures of wage inequality, minimum wage bindingness, and formal employment rates for 1998 and 2012. I also use the methodology detailed by [Kline, Saggio and Sølvsten \(2018\)](#) to obtain reduced-form estimates of the importance of firm wage premiums and sorting, based on two-way fixed effects regressions in the tradition of [Abowd, Kramarz and Margolis \(1999\)](#).

Many of my descriptive findings align with previous work on Brazil: the fall in inequality is large, widespread, and associated with the reduced dispersion of firm wage premiums ([Alvarez et al., 2018](#)). However, I also document a new fact not readily explained by existing theoretical approaches: assortative matching rises in most regions. Although papers such as [Engbom and Moser \(2022\)](#) allow for the minimum wage to impact sorting, it acts in the opposite direction. Thus, the new finding challenges the hypothesis that the evolution of Brazilian labor markets can be easily understood through the lenses of existing theoretical frameworks: a competitive supply-demand model on the one hand and an imperfectly competitive minimum wage model on the other.

Motivated by that challenge, I develop a new framework to investigate whether the transformations observed in Brazilian labor markets can be parsimoniously explained by supply, demand, and minimum wage shocks and, if so, to determine what role each of them plays. It features rich worker and firm heterogeneity, a task-based model of production, monopsony power based on idiosyncratic worker preferences, general equilibrium in the market for goods, and free entry of firms. The distinguishing feature of my framework is that it combines the two theoretical perspectives mentioned above by allowing all shocks to affect wages via changes in labor productivity, the dispersion of firm wage premiums, and sorting.

This unified approach provides novel insights into how these shocks affect wage inequality. The first insight is a new explanation for why increases in the supply of skilled labor may have limited effects on the aggregate skill wage premium or may even widen it ([Blundell, Green and Jin, 2021](#); [Carneiro, Liu and Salvanes, 2022](#)). This phenomenon is typically

explained using models of endogenous innovation, which creates non-convexities in the aggregate production function (Acemoglu, 1998, 2007). My framework features no such non-convexities. Instead, the aggregate skill premium can rise when the supply shock leads to the creation of skill-intensive, high-wage firms, and the gains in firm premiums for skilled workers reallocated to those new firms outweigh decreases in productivity differentials by skill. I formally show that this phenomenon can only happen if the elasticity of substitution between goods produced by different firms is sufficiently large relative to the elasticity of labor supply to individual firms.¹

I also show that combining monopsony power, firm heterogeneity, and task-based production leads to new predictions regarding minimum wage effects. I first show that, in a model with these three features, the elasticity of substitution between worker types is not constant. Specifically, a pair of worker types may be substituted with one another in low-skill, low-wage firms while being complements in high-skill, high-wage ones. That is because those firms require different sets of tasks to produce goods. In addition, with monopsony and firm heterogeneity, minimum wages reallocate unskilled labor from low- to high-wage firms. Combining these two channels, I show that minimum wage impacts on wages may be negative in the middle of the wage distribution and positive at the top, contrasting with the smooth inequality-reducing effects predicted by both competitive task-based models (Teulings, 2000) and frictional minimum wage models (Engbom and Moser, 2022).

With the objective of performing policy counterfactuals, I estimate a parsimonious parameterization of the framework using a simultaneous equation nonlinear least squares procedure. The exercise resembles Katz and Murphy (1992) or Krusell et al. (1999), who use supply/demand models to explain rising wage inequality in the US. I target an array of endogenous outcomes at the region-time level: wage inequality between and within three educational groups, the variance of firm effects, the covariance of firm and worker effects, minimum wage bindingness metrics, and formal employment rates by education. Although over-identified, the model provides a good fit to the data. Thus, at least in the Brazilian context, secular trends in wage inequality, the dispersion of firm wage premiums, and sorting can be largely explained by supply, demand, and minimum wage.

Armed with the estimated model, I measure each shock's labor market impact. Consistent

¹This mechanism is comparable to that of Acemoglu (1999) but differs in that it is not based on search frictions. In addition, firms in my model are large and simultaneously employ many worker types, with within-firm imperfect substitution between skill levels. This generates smooth labor market responses to supply shocks instead of the discrete regime changes predicted by Acemoglu (1999).

with previous work, demand shocks and the rising minimum wage are the leading causes of the decline in wage inequality in Brazil's formal sector. Supply and demand shocks increase measured sorting, the former due to compositional effects and the latter through changes in structural differences between firm types.

I also find significant interactions that are only detectable with a unified framework. When acting in isolation, the minimum wage compresses the lower tail of the wage distribution and reduces the degree of assortative matching, as found in previous work. However, when the minimum wage is accompanied by supply and demand transformations, its inequality-reducing effects are only half as strong, and the sorting effects disappear.

Finally, I conduct two exercises to demonstrate the quantitative relevance of the new theoretical pathways. In the first exercise, I show that if firm entry, prices, and output levels remained constant following the increase in educational attainment, inequality would fall due to changing worker-task allocations within firms. However, the supply shock also reallocates skilled labor to high-wage firms. These two channels largely offset each other, explaining why education has little effects on wage inequality in the Brazilian context. The second exercise finds that, contrary to the predictions of [Engbom and Moser \(2022\)](#), the minimum wage has negligible impacts on workers above the bottom two productivity deciles. One reason for this difference is that, in my model, the reallocation of low-skill workers to high-wage firms reduces the marginal product of mid-skill labor. In addition, reallocation effects are limited by local labor market boundaries in my model, whereas workers may reallocate nationally in [Engbom and Moser \(2022\)](#).

The paper proceeds as follows. The next section details this paper's contribution to different strands of literature. The third section describes the Brazilian case. The fourth section presents the task-based model of production and its partial equilibrium properties. The fifth section completes the general equilibrium framework and discusses comparative statics on supply, demand, and minimum wage shocks. The sixth section contains the quantitative exercises, and the final section concludes with directions for further research.

2 Literature and contribution

This paper's framework can rationalize a large set of empirical facts documented in recent years. It can explain why the contribution of firm wage premiums and sorting to wage inequality may change in the long run ([Card, Heining and Kline, 2013](#); [Song et al., 2018](#);

[Alvarez et al., 2018](#)). Sorting originates from differences in demand for skills between firms, as documented by [Deming and Kahn \(2018\)](#). Because firms use production functions featuring complementarity between worker types, the framework rationalizes changes in within-firm wages in response to shifts in the firm’s internal workforce composition, such as those documented by [Jäger and Heining \(2022\)](#). Minimum wage can cause positive employment effects, reallocation of workers from low- to high-wage firms ([Dustmann et al., 2021](#)), spillovers ([Fortin, Lemieux and Lloyd, 2021](#)), and changes in how selective firms are when hiring ([Butschek, 2022](#)). Minimum wages may also precipitate changes in the types of firms operating in the economy ([Rohlin, 2011](#); [Aaronson et al., 2018](#)) and relative consumer prices ([Harasztsosi and Lindner, 2019](#)). Including all those potential channels lends credibility to the model’s quantitative predictions.

On the theoretical side, my task-based model of production builds upon the work of [Sattinger \(1975\)](#) and [Teulings \(1995\)](#), among many others. I derive new formulas for elasticities of complementarity between worker types and provide a computationally efficient parameterization. But the core contribution to this literature is characterizing task-based production in an environment with monopsony power and heterogeneous firms. I show that the optimal assignment of workers to tasks may differ between firms and find support for that prediction in the data. I also discuss how substitution patterns differ between firms and why that matters for comparative statics.

I also build upon monopsony models of labor markets based on idiosyncratic worker preferences for firms. I embed the model developed by [Card et al. \(2018\)](#) into a general equilibrium framework with task-based production, firm entry, endogenous participation decisions, and minimum wages. I show how firm heterogeneity in skill intensity and wage premiums emerge from differences in production technologies available to entrepreneurs when they create firms. Within the monopsony literature, my paper resembles the work of [Lamadon, Mogstad and Setzler \(2022\)](#), whose model also generates realistic firm wage premiums and sorting patterns. They allow for worker reallocation across regions and richer forms of firm heterogeneity but do not model within-firm complementarities between worker types, endogenous participation decisions, firm entry, or minimum wages.

More broadly, this paper relates to models that quantify the effects of changing supply of and demand for skills. Within that literature, it is closest to those where supply/demand shocks alter the composition of jobs in the economy. Some work in that tradition, such as [Kremer and Maskin \(1996\)](#) and [Lindenlaub \(2017\)](#), abstract from the role of firm wage premiums.

Others, such as [Helpman et al. \(2017\)](#), [Shephard and Sidibe \(2019\)](#), and [Lise and Postel-Vinay \(2020\)](#), feature imperfect competition and firm wage premiums but assume workers are perfect substitutes within firms (or that each firm hires only one worker). In such models, labor market imperfections are the only reason for observing skills dispersion within a firm type. By contrast, firms in my model hire multiple types of workers to benefit from the division of labor, even when labor markets are competitive.

Finally, I describe how my framework differs from quantitative models of minimum wages developed in recent years. [Engbom and Moser \(2022\)](#) build a model with on-the-job search in the style of [Burdett and Mortensen \(1998\)](#). Similar to my study, they estimate their model using Brazilian data and match moments from two-way fixed effects decompositions. Because their model features search frictions, it is better suited to studying job ladders and transitions into and out of unemployment. However, it abstracts from non-wage amenities and assumes perfect substitutability between worker types.

[Berger, Herkenhoff and Mongey \(2024\)](#) and [Hurst et al. \(2022\)](#) build monopsonistic minimum wage models with imperfect substitution across labor types. [Berger, Herkenhoff and Mongey \(2024\)](#) include cross-firm differences in productivity and allow for variation in markdowns depending on the firm size relative to the market. [Hurst et al. \(2022\)](#) abstract from firm heterogeneity but include search frictions and a putty-clay technology that allows them to distinguish between short- and long-run minimum wage effects. They also study how minimum wage can be paired with transfers to achieve redistribution goals.

As a tool for evaluating minimum wages, my framework is unique in four ways. First, substitution patterns between worker types depend on whether they are close or distant in terms of skill and also on the task demands of the firm employing them. Second, it allows for cost pass-throughs and endogenous changes in the composition of firms operating in the economy. Third, it measures how minimum wages interact with educational trends and many types of labor demand shocks. Fourth, it includes an estimation procedure based on regional and time variation. That procedure showcases the model's tractability (because each iteration of the estimation procedure requires solving for equilibria more than 15 thousand times) and its ability to explain cross-sectional variation in features such as the minimum wage spike. It also allows for measuring how minimum wage effects differ between local labor markets, which may be important in contexts with significant regional heterogeneity.

3 Wage inequality and sorting in Brazil

In this section, I present descriptive statistics that motivate the theoretical framework. I use two data sources. The first is the RAIS (*Relação Anual de Informações Sociais*), a confidential linked employer-employee dataset maintained by the Brazilian Ministry of Labor. Firms are mandated by law to report to the RAIS at the establishment level. The dataset contains information about both the establishment (including legal status, economic sector, and the municipality in which it is registered) and each worker it formally employs (including education, age, earnings in December, contract hours, and hiring and separation dates).

The other data come from the Brazilian censuses of 1991, 2000, and 2010. From them, I obtain statistics for the overall population, such as the number of adults in each educational group and the proportion of those who hold formal jobs. I also extract from the Census the share of workers in agriculture, manufacturing, or other sectors.²

I focus on individuals between 18 and 54 years of age. In the RAIS, I select individuals in that age range who are working in December, having been hired in November or earlier. If a worker has more than one job in the same year, I only keep the highest-paying one.

All the statistics are calculated at the local level. I use the concept of “microregion” as defined by the Brazilian Statistical Bureau (IBGE). Microregions group nearby, economically connected municipalities ("IBGE", 2003) and are commonly used to define local labor market models in Brazil (e.g., Costa, Garred and Pessoa, 2016; Ponczek and Ulyssea, 2021).³

I use a local labor markets approach for two reasons. First, regional variation helps identify key parameters of the structural model. Second, local labor markets more closely map theory to empirics. If firm-worker sorting is measured nationally, it will largely reflect geographical barriers in addition to the supply-demand-minimum wage dynamics emphasized by the framework. I return to this point at the end of the paper when I compare my results to previous work studying the Brazilian case.

The final sample is restricted to microregions with at least 15,000 workers in the RAIS data in 1998 and 2012 and at least 1,000 formal workers in each of the three educational groups defined below. That leaves a set of 151 microregions encompassing 73% of the adult

²Population shares and log population counts for 1998 and 2012 are linearly interpolated or extrapolated.

³Using data for 2000 and 2010, Dix-Carneiro and Kovak (2017) calculate that less than 5% of workers lived in one region and worked in another. That number, combined with their average size, makes Brazilian microregions analogous to commuting zones in the US. After combining some microregions to ensure that their boundaries remain constant throughout the study period, my base sample features 486 microregions.

Table 1: Evolution of wage inequality measures and sorting

	1998	2012
<i>Panel A: Variances of log wages in base years</i>		
All workers	0.745	0.553
Less than secondary	0.410	0.241
Secondary	0.684	0.355
Tertiary	0.702	0.624
<i>Panel B: Mean log wage gaps in base years</i>		
Secondary / less than secondary	0.498	0.168
Tertiary / secondary	0.965	1.038
<i>Panel C: Variance decomposition using three-year panels</i>		
Variance of worker effects	0.454	0.368
Variance of establishment effects	0.126	0.054
2×Covariance worker, estab. effects	0.105	0.092
Correlation worker, establishment effects	0.224	0.315

Notes: Statistics calculated by the author based on RAIS data. Panels A and B display average wage inequality measures for the base years of 1998 and 2012. Panel C shows the average outcomes of region-specific log wage decompositions based on Equation (1), using the estimator provided by [Kline, Saggio and Sølvsten \(2018\)](#). All numbers are averaged over regions using the total number of formal workers in both base years as weights.

population. Appendix Table [D1](#) presents the consequent sample sizes.⁴

Differing from the pattern in many high-income countries, wage inequality has been downward trending in Brazil since the 1990s. The first two panels in Table 1 report the evolution of several inequality metrics calculated at the microregion level and averaged nationally using total formal employment in both base years as weights (this means that region weights are constant over time). Almost all metrics are declining, some of them dramatically. The one exception is the college premium, which widened in 47 out of 151 regions. Because those regions tend to be larger, the average college premium increased.

I gauge the contribution of firm wage premiums and sorting using region-specific variance decompositions based on two-way fixed effects regressions of log wages (henceforth AKM regressions after [Abowd, Kramarz and Margolis, 1999](#)). The log wage of worker i in region r at time τ is written as:

$$\log y_{i,r,\tau} = v_{i,r} + \psi_{J(i,r,\tau)} + \delta_{r,\tau} + u_{i,r,\tau}$$

⁴My structural estimation procedure requires a low level of measurement error in formal employment rates by educational group and minimum wage bindingness. Those restrictions also yield better estimates of the contribution of firm wage premiums and sorting to local wage inequality.

where $v_{i,r}$ is the worker fixed effect, ψ_j is establishment j 's fixed effect, $J(i, r, \tau)$ denotes the establishment employing worker i in region r at time τ , $\delta_{r,\tau}$ is a region-time effect, and $u_{i,r,\tau}$ is a residual. Then, the within-region variance of log wages can be written as follows:

$$\begin{aligned}\text{Var}(\log y_{i,r,\tau}|r) &= \text{Var}(v_{i,r}|r) + \text{Var}(\psi_{J(i,r,\tau)}|r) + 2\text{Cov}(v_{i,r}, \psi_{J(i,r,\tau)}|r) \\ &\quad + \text{Var}(\delta_{r,\tau}|r) + 2\text{Cov}(v_{i,r} + \psi_{J(i,r,\tau)}, \delta_{r,\tau}|r) + \text{Var}(u_{i,r,\tau}|r) \quad (1)\end{aligned}$$

If wages differ substantially across establishments for similar workers, the variance of establishment effects may be large, adding to overall wage dispersion. If high-wage workers are more likely to work at high-wage establishments, then the first covariance term will be positive, further boosting inequality. Based on this logic, the correlation between establishment and worker fixed effects is often used as a simple measure of labor market sorting.

Estimating the variance decomposition (1) is not trivial. I use the method developed by [Kline, Saggio and Sølvsten \(2018\)](#) (henceforth KSS), which is not subject to the limited mobility bias discussed by [Andrews et al. \(2008\)](#). I run the KSS model separately for each microregion and period, using three-year panels centered on either 1998 or 2012. Because that procedure requires a leave-one-out connected set, small establishments are under-represented in that sample. Appendix [D.2](#) provides details about the procedure.

Decomposition results appear in Panel C of Table 1. The variances of both worker and establishment effects decline on average. Together, they account for more than 80% of the average decline in the variance of log wages. In comparison, the covariance term displays a minor average reduction, explaining less than 7% of the inequality fall. Thus, it accounts for a larger share of the variance of log wages in 2012. The measured correlations between worker and establishment effects increase in most microregions (104 out of 151).^{5,6}

The interpretability of AKM decompositions relies on categorizing establishments as high- or low-wage. However, in many economic models, including this paper's, log wages are not additive in worker and establishment effects. Still, indirect inference can be used to extract identifying information from the AKM decomposition. I employ this strategy in this paper.

⁵The KSS estimate of the *correlation* between worker and establishment effects is not necessarily unbiased. In the structural estimation exercise, I target the unbiased covariance estimates rather than the correlations.

⁶[Alvarez et al. \(2018\)](#) and [Engbom and Moser \(2022\)](#) also find that establishment effects explain much of the decline in wage inequality in Brazil. However, they find that the covariance term also falls, such that there is no increase in measured sorting. The key difference between my approach and theirs is that my decompositions are performed at the local labor market level, whereas they use national models. National-level sorting can fall if, for example, gains in educational achievement are stronger in areas with low-wage firms.

Table 2: Trends in schooling achievement and minimum wage bindingness

	1998	2012
<i>Panel A: Share of adults by education group</i>		
Less than secondary	0.699	0.493
Secondary	0.229	0.383
Tertiary	0.072	0.124
<i>Panel B: Minimum wage bindingness</i>		
Log minimum wage minus mean log wage	-1.418	-0.922
Log minimum wage minus log median wage	-1.220	-0.719
Share up to log minimum wage + 0.3	0.086	0.212

Notes: Statistics calculated by the author based on data from the Census (Panel A) and RAIS (Panel B). All numbers are averaged over regions using the total number of formal workers in both base years as weights.

Now, I consider the potential explanations for Brazil’s falling inequality. The most conspicuous are gains in educational attainment and the federal minimum wage. Table 2 shows the magnitude of those shocks. Panel A displays the average share of adults in each of three educational groups: less than secondary (that is, a level of achievement lower than completing high school or between zero and ten years of schooling), secondary (combining complete high school and college dropouts, or between 11 and 14 years of schooling); and tertiary (complete college or more). The pattern is striking: in 14 years, the share of adults completing high school or further education increases by 20 percentage points—a 68% increase. It follows educational reforms and policies traceable to the 1980s, including minimum expenditure requirements on education, school construction, cash transfers conditional on enrollment, and college vouchers. See Appendix D.6.5 for institutional details.

Panel B shows that the minimum wage became more binding over the study period. Between December 1998 and December 2012, the Brazilian federal minimum wage rose by 93.7 percent (66.1 log points) in real terms, increasing the “bite” of the minimum wage into the wage distribution. The apparent compression of the Brazilian wage distribution is evident in log wage histograms (see Appendix Figure D1).

A third factor emphasized in the Brazilian case is labor demand shocks, primarily but not exclusively associated with international trade. During the study period, Brazilian regions were still adapting to the trade liberalization of the early 1990s, which, according to Dix-Carneiro and Kovak (2017), had long-lasting impacts. During the 2000s, the “rise of China” led to significant changes in terms of trade. Costa, Garred and Pessoa (2016) study that shock and also find evidence of differential labor market impacts at the microregion level. Trade

liberalization benefited skilled workers, while the commodities boom benefited unskilled workers.

Existing quantitative models cannot easily explain these transformations. One could use a supply/demand model to infer that rising education and demand for commodities increase the relative productivity of unskilled workers. Then, to consider the role of the minimum wage, an imperfectly competitive model could be used, perhaps leading to the conclusion that the minimum wage reduces markdowns for unskilled workers and reallocates some of them to high-wage firms (Engbom and Moser, 2022). However, this narrative cannot explain why sorting is rising. Indeed, the minimum wage’s reallocation effects would imply *falling* sorting. The same concern applies more broadly, given that the rising sorting of high-wage workers to high-wage firms has also been documented in other countries (Card, Heining and Kline, 2013; Song et al., 2018). That is the motivation for building a framework where supply and demand factors affect wages through worker productivity, firm wage premiums, and assortative matching.

4 The task-based production function

Task-based models of comparative advantage are increasingly used to model wage inequality. Acemoglu and Autor (2011) show that these models are better suited than the “canonical” constant elasticity of substitution (CES) model of labor demand to study inequality trends in the US. Teulings (2000, 2003) shows that substitution patterns implied by assignment models make them particularly suitable for studying minimum wages. Costinot and Vogel (2010) develop a task-based model to study the consequences of trade integration and offshoring.

In this section, I demonstrate an additional advantage of the task-based approach: It allows for intuitive, tractable, and parsimonious modeling of firm heterogeneity in both competitive and imperfectly competitive labor markets. All proofs appear in Appendix A.

4.1 Setup, definitions, and the assignment problem

Workers are characterized by their labor type $h \in \{1, \dots, H\}$ and the amount of labor efficiency units they can supply, $\varepsilon \in \mathbb{R}_{>0}$. They use their labor to produce tasks that are indexed by complexity $x \in \mathbb{R}_{>0}$ as follows:⁷

⁷In the quantitative exercises, worker skill is mapped to educational achievement, meaning more complex tasks should be interpreted as those better performed by formally educated workers. The assumption of a single

Definition 1. The *comparative advantage function* $e_h : \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ denotes the rate of conversion of worker efficiency units of type h into tasks of complexity x . It is continuously differentiable and log-supermodular: $h' > h \Leftrightarrow \frac{d}{dx} \left(\frac{e_{h'}(x)}{e_h(x)} \right) > 0 \forall x$.

To fix ideas, consider an example with two workers. Alice, characterized by h, ε , can produce $\varepsilon e_h(x)$ tasks of complexity x if she uses all of her time working on those tasks. Bob (h', ε'), who belongs to a lower type ($h' < h$), can still produce more of those tasks than Alice, provided his quantity of efficiency units is sufficiently high (i.e., if $\varepsilon' > \varepsilon e_h(x)/e_{h'}(x)$). But Alice has a comparative advantage: moving toward more complex tasks increases her productivity relative to Bob's.

Each good, indexed by $g = 1, \dots, G$, is produced by combining tasks in fixed proportions:

Definition 2. The *blueprint* $b_g : \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ is a continuously differentiable function that denotes the density of tasks of each complexity level x required for the production of a unit of consumption good g . Blueprints satisfy $\int_0^\infty b_g(x)/e_H(x)dx < \infty$ (production is feasible given a positive quantity of the highest labor type).

Consider a firm trying to produce good g after hiring $\mathbf{l} = \{l_1, \dots, l_H\}$ efficiency units of labor of each type in the labor market. I assume that tasks cannot be traded; they must be produced internally. Firms can assign its employees to work on specific tasks by choosing assignment functions $m_h : \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$, assumed to be right-continuous. They can be interpreted in the following way: given any arbitrary range of tasks $[\underline{x}, \bar{x})$, the total quantity of efficiency units of labor type h used in the production of those tasks is $\int_{\underline{x}}^{\bar{x}} m_h(x)dx$.

Given this structure, the production function is defined as the maximum quantity of goods that the firm can produce by optimally assigning workers to tasks:

Definition 3. The *task-based production function* is given by

$$\begin{aligned} f(\mathbf{l}; b_g) &= \max_{q \in \mathbb{R}_{\geq 0}, \{m_h(\cdot)\}_{h=1}^H} q \\ \text{s.t.} \quad qb_g(x) &= \sum_h m_h(x) e_h(x) \quad \forall x \in \mathbb{R}_{>0} \\ l_h &\geq \int_0^\infty m_h(x)dx \quad \forall h \in \{1, \dots, H\} \end{aligned}$$

and is defined for all $\mathbf{l} \in \mathbb{R}_{\geq 0}^{H-1} \times \mathbb{R}_{>0}$ and blueprints b_g .

complexity dimension is maintained throughout. Quantitative models using multi-dimensional skills and tasks include [Lindenlaub \(2017\)](#) and [Lise and Postel-Vinay \(2020\)](#).

The first constraint corresponds to task production requirements for all complexity levels, while the second constraint ensures that total labor use does not exceed labor available to the firm. This definition assumes a positive amount of labor of type H , which is not restrictive for my applications. See Appendix B.1 for a brief discussion.

The following sections characterize the properties of this production function under different labor market structures. Before arriving there, I present a general result on the optimal assignment of workers to tasks:

Lemma 1 (Optimal allocation is assortative). *For every combination of inputs \mathbf{l}, b_g , there exists a unique set of $H - 1$ complexity thresholds $\bar{x}_1 < \dots < \bar{x}_{H-1}$ that defines the range of tasks performed by each worker type in an optimal allocation: $m_h(x) > 0 \iff x \in [\bar{x}_{h-1}, \bar{x}_h]$, with $\bar{x}_0 = 0$ and $\bar{x}_H = \infty$. Thresholds satisfy:*

$$\frac{e_{h+1}(\bar{x}_h)}{e_h(\bar{x}_h)} = \frac{f_{h+1}}{f_h} \quad h \in \{1, \dots, H-1\} \quad (2)$$

where $f_h = \frac{d}{dl_h} f(\mathbf{l}, b_g(\cdot))$ denotes the marginal product of labor h , which is strictly positive.

Lower types specialize in low-complexity tasks and vice-versa. Equation (2) means that the shadow cost of using neighboring worker types is equalized at the task that separates them. This result is instrumental in obtaining compensated labor demands, as described below.⁸

4.2 Compensated labor demand in competitive labor markets

Consider an individual firm that produces good g and attempts to minimize labor costs given a production target of q . The labor market is competitive, so unit costs per efficiency unit are constants $\{w_1, \dots, w_H\} \equiv \mathbf{w}$.

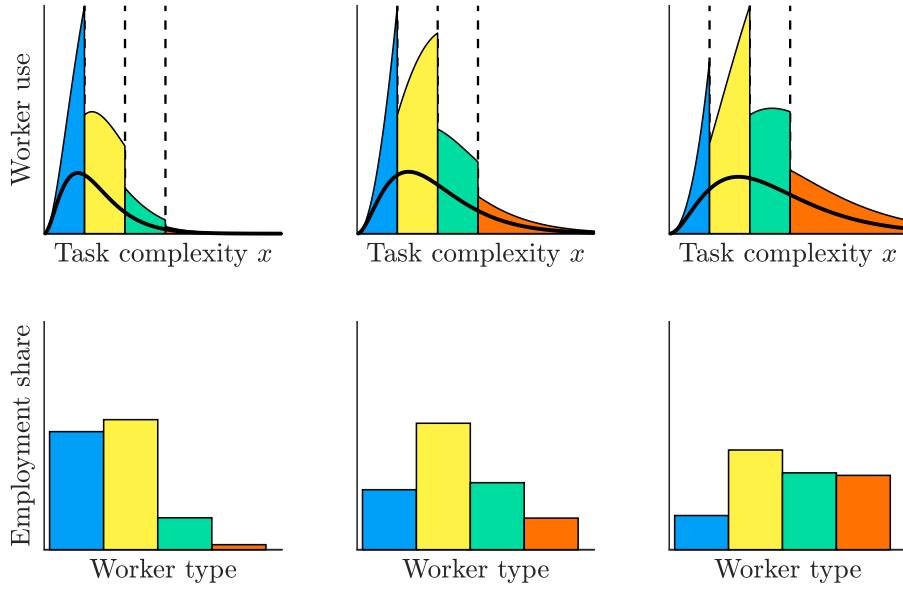
Optimality requires that marginal product ratios equal wage ratios. Then, from Equation (2):

$$\frac{e_{h+1}(\bar{x}_h)}{e_h(\bar{x}_h)} = \frac{w_{h+1}}{w_h}$$

Because the left-hand side is strictly increasing in \bar{x}_h (from Definition 1), this expression pins all task thresholds as functions of wage ratios and comparative advantage functions. That is,

⁸In general, the task-based production function and its derivatives do not have closed-form representations. To evaluate output and marginal productivities, one must first solve the system of H compensated labor demand equations (3) on q and the $H - 1$ thresholds. Next, use equation (2) to calculate marginal productivity gaps. Finally, use the constant returns relationship $q = \sum_h l_h f_h$ to normalize marginal productivities.

Figure 1: Compensated labor demand in competitive labor markets



Notes: This figure illustrates how the assignment of workers to tasks determines labor demand in competitive labor markets. In the upper row, the heavy continuous lines represent blueprints $b_g(x)$, with each sub-figure corresponding to a different good g . The thin lines represent the density of workers needed per unit of output for each task, $b_g(x)/e_h(x)$. It is discontinuous at the thresholds determining which group h is assigned to each range of tasks. The colored areas correspond to the compensated labor demand per unit of output, which determines the employment shares of each worker type illustrated in the corresponding bottom-row bar charts.

thresholds are strictly increasing functions $\bar{x}_h(w_{h+1}/w_h)$. This renders the compensated labor demand as follows:

$$l_h(q, b_g, \mathbf{w}) = q \int_{\bar{x}_{h-1}(w_h/w_{h-1})}^{\bar{x}_h(w_{h+1}/w_h)} \frac{b_g(x)}{e_h(x)} dx \quad (3)$$

Now suppose that different firms produce different goods in this partial equilibrium environment. Because neither efficiency functions nor labor costs are good-specific, all firms choose the same task thresholds.

Figure 1 illustrates how blueprints determine demand for skills. The graphs at the top show the compensated labor demand integral for three different blueprints. As we move from left to right, the blueprints (the heavy, continuous lines) become more intensive in high-complexity tasks. The vertical dashed lines are the thresholds defining the ranges of tasks assigned to each worker type. The colored areas represent the labor demand integrals from Equation 3. The bottom panels show corresponding factor intensities as histograms.

Due to the infinite-dimensional blueprints and efficiency functions, the task-based structure might appear exceedingly flexible at first glance. Proposition 1 extends the results of [Teulings \(2005\)](#) and shows that, on the contrary, there are strong constraints on substitution patterns.⁹

Proposition 1 (Curvature). *The task-based production function is concave, features constant returns to scale, and is twice continuously differentiable with strictly positive first derivatives. Appendix A provides formulas for elasticities of complementarity and substitution.*

Corollary 1 (Distance-dependent complementarity). *For a fixed h , the partial elasticity of complementarity between that type and another type h' is strictly increasing in h' for $h' \geq h$ and strictly decreasing in h' for $h' \leq h$.*

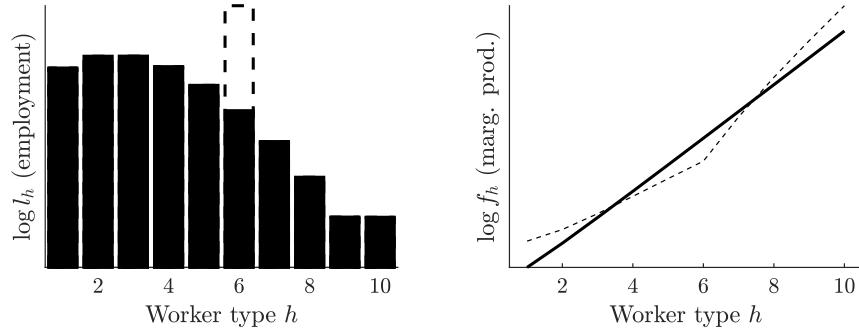
The curvature of the task-based production function reflects the division of labor within the firm. Suppose that, initially, a firm only employs Alice, who belongs to the highest type H . In this case, output is linear in the quantity of labor bought from Alice. Adding a lower-type worker, Bob, increases Alice's productivity by enabling her to specialize in complex tasks while Bob takes care of simpler tasks. At that point, decreasing returns to Alice's hours reflect a reduction in gains from specialization.

Now consider a firm that employs workers of many types. If that firm hires an additional worker, how does that affect the marginal productivity of existing employees? The answer depends on the elasticities of complementarity, the objects of interest in the corollary. They are thus of central importance in this paper since one of its goals is to evaluate how changes in workforce composition affect wage distribution. For example, if the number of college-educated people in the economy grows, firms will employ more college workers. That will change marginal products of labor of all worker types, with corresponding effects on wages.

The distance-dependent substitution property means that, in the task-based production function, worker pairs that are “close” in terms of their group h are substitutes. At the same time, those with very different h are complements. Figure 2 illustrates that pattern. The black bars on the left panel show the initial quantities of labor at a particular firm. At those employment levels, marginal products correspond to the solid line on the right panel. Suppose there is an exogenous increase in employment of workers of type $h = 6$ at that firm. In addition to an

⁹[Teulings \(2005\)](#) derives elasticities of complementarity for a similar model but using parametric efficiency functions and taking a limit where the number of worker types grows to infinity. In an application of assignment models to optimal taxation, [Ales, Kurnaz and Sleet \(2015\)](#) derive elasticities of substitution in a model of production where output is CES in tasks, instead of Leontief .

Figure 2: Distance-dependent complementarity



Notes: This figure shows how a change in labor inputs affects marginal products of labor in the task-based production function. The solid black bars in the left panel represent initial employment levels, and initial marginal products of labor for each worker type correspond to the solid line in the right panel. An increase in the number of workers of type six, illustrated as the dashed bar on the left, changes marginal products of labor to the dashed line on the right. Marginal products fall for nearby types and rise for other types more distant in skill—an illustration of distance-dependent complementarity.

increase in output, that will cause changes in marginal products of labor as the firm reassigns workers to tasks. The new marginal products are shown as the dashed line in the right panel. They fall for workers of types four through seven (that is, they are substitutes with the new type six workers) and rise for low and high types further away (complements).

[Teulings \(2000\)](#) shows that distance-dependent complementarity is also useful for modeling minimum wage spillovers, that is, changes in the distribution of wages at quantiles where the minimum wage does not bind. If a minimum wage causes disemployment of low-skilled workers, then the logic of Figure 2 implies that marginal products—and hence wages—should increase for workers close to the minimum. The core contribution of [Teulings \(2000\)](#) is to show that, differing from a “canonical” CES approach, a task-based model with many worker types can explain realistic levels of spillovers even when the disemployment effects are small.¹⁰ My framework differs from [Teulings \(2000\)](#) in that I allow for firm heterogeneity and imperfect competition, which I start discussing in the next subsection.

4.3 Labor demand in a monopsonistic labor market

Suppose that firms have wage-setting power. Each firm j posts prices per efficiency unit w_{hj} for each type h . At that posted wage, it attracts a quantity of labor equal to $l_{hj} = L_h \cdot \left(\frac{w_{hj}}{\omega_h}\right)^\beta$.

¹⁰[Teulings and van Rens \(2008\)](#) derive a sufficient statistic that can be used to compare the degree of substitution across worker types in different models. Task-based models and the canonical model may in some cases produce similar predictions, but this is typically not true for minimum wage shocks.

A microfoundation for that labor supply curve will be provided later in the paper; for now, note that it has constant elasticity $\beta > 1$. The core implication of upward-sloping supply curves to the firm is that the more intensely a factor is used, the higher its marginal cost. Thus, if firms differ in skill intensity because they use different blueprints, their marginal product ratios also differ. Equation (2) implies that their optimal assignments will also differ:

Lemma 2 (Differences in skill intensity, monopsony, and task assignment). *Consider a partial equilibrium environment where firms have wage-setting power as described above. Suppose that the optimal labor choices of two firms indexed by $j \in \{1, 2\}$ satisfy $\frac{l_{h+1,2}}{l_{h,2}} > \frac{l_{h+1,1}}{l_{h,1}}$ for some h . Then, $\bar{x}_{h,2} > \bar{x}_{h,1}$ (where $\bar{x}_{h,j}$ denotes the task threshold \bar{x}_h at firm j).*

When workers move from one firm to another, which is more skill-intensive, they are assigned more complex tasks. I test that prediction in Appendix D.3. Lemma 2 also implies that wage-setting power introduces productive mismatch: a planner that maximizes aggregate output given a vector of prices for goods would choose a different assignment of workers to tasks compared to the monopsonistic allocation. This result is analogous to how search frictions introduce mismatch in [Teulings and Gautier \(2004\)](#)

Another implication of wage-setting power and task-based production is that an aggregate shock may produce different responses at different firms:

Proposition 2 (Complementarity patterns may differ between firms). *Consider a partial equilibrium model with three worker types ($H = 3$), two goods with positive prices, and wage-setting power as described above. Good $g = 1$ has a degenerate blueprint requiring a unit measure of low-complexity tasks, $x = 0$. Good $g = 2$ has a regular blueprint. Then:*

1. *Firms producing either good employ workers of all types h .*
2. *If there is an increase in L_1 but all other supply parameters remain unchanged, posted wages do not change for firms producing good $g = 1$. But for firms producing good $g = 2$, all posted wage gaps $w_{h+1,j}/w_{h,j}$ become larger.*

The first part of this proposition exemplifies the production mismatch mentioned above. In a competitive market, firms that only need tasks $x = 0$ would not hire workers of high types. However, given isoelastic firm-level supply curves, hiring at least a few such workers is sensible because, at sufficiently low employment levels, they become very cheap. More generally, there is less employment specialization under monopsony, although we should still expect firms demanding more complex tasks to be more skill-intensive.

The second part of Proposition 2 highlights a key feature of my framework: substitution patterns differ depending on which good the firm chooses to produce. For firms using the regular blueprint, $g = 2$, an increase in the aggregate supply of labor type $h = 1$ widens all within-firm skill wage differentials, reflecting distance-dependent complementarity. For firms producing the low-complexity good $g = 1$, posted wages do not change: the shock increases employment of workers of type $h = 1$ but has no other impact.

The degenerate blueprint used in Proposition 2 is stylized but serves to illustrate a more general pattern. Suppose the blueprints are those shown in Figure 1. Then, the intuition from Proposition 2 still applies: We should expect wage responses to be more muted for firms using the blueprint in the left panel because workers are closer substitutes in those firms. In Subsection 5.6, I show that this property has implications for the equilibrium effects of minimum wages.

4.4 Exponential-Gamma parameterization

In the quantitative exercises, I employ a parameterization with exponential efficiency functions and blueprints shaped like the density of a Gamma distribution:

$$e_h(x) = \exp(\alpha_h x) \quad b_g(x) = \frac{x^{\kappa-1}}{\Gamma(\kappa) \theta_g^\kappa} \exp\left(-\frac{x}{\theta_g}\right)$$

The coefficients $\alpha_1 < \alpha_2 < \dots < \alpha_H$ determine the degree of comparative advantage of a labor type. The parameter θ_g relates to average task complexity. All else being equal, goods with higher θ_g require more complex tasks and thus have a higher demand for skills. Goods with higher θ_g also have more diffuse task requirements, meaning that workers of different skill levels are more likely to be complements at those firms.

Appendix C presents useful formulas for this parameterization, including compensated labor demand in terms of incomplete gamma functions or power series. They do not require numerical integration, making them computationally efficient.

4.5 Discussion

In this section, I introduced the task-based production function, explained its properties in competitive and imperfectly competitive labor markets, and showed that it admits a parsimonious and computationally efficient parameterization. Before proceeding to the general

equilibrium model, I briefly discuss why this formulation is appropriate for this paper.

As a first comparison point, consider models where workers are perfect substitutes within firms (e.g., [Bagger and Lentz, 2019](#); [Engbom and Moser, 2022](#); [Lamadon, Mogstad and Setzler, 2022](#)). These models can tractably deal with two-sided heterogeneity but have two limitations that are consequential for the research questions explored in this paper. First, marginal products of labor within the firm are exogenous, ruling out decreasing marginal returns to specific types of labor following an increase in their aggregate supply. Second, these models predict that, without search frictions or idiosyncratic worker preferences for firms, every firm would hire identical workers (except in knife-edge cases). Since one of my goals is to rationalize changes in sorting patterns over time, it is helpful to use a framework where imperfect assortative matching can arise from the division of labor within firms instead of solely from labor market imperfections.

Another alternative approach would be to use a CES production function (e.g., [Berger, Herkenhoff and Mongey, 2024](#)). That would imply the same elasticity of complementarity for all pairs of worker types, in contrast to the distance-dependent substitution property. One can introduce richer substitution patterns by adding a nested structure at the cost of increasing the estimated parameters. Nevertheless, even in the nested case, there is a fundamental difference between that approach and the task-based production function: in the former, substitutability is intrinsic to the worker types, while in the latter, it depends on endogenous assignment to tasks.¹¹

For an example of why cross-firm differences in substitution patterns could be relevant, consider a college graduate choosing between a technical job at a manufacturing firm or a low-level managerial position at a grocery store. The manufacturing job pays more, but she may be indifferent between the two options because the commute to the grocery store is shorter. As a manufacturing worker, she would be assigned high-complexity tasks that few high school workers could perform. That means high school workers are poor substitutes for her at that firm. In contrast, if employed at the grocery store, she can be easily replaced by

¹¹In principle, one could estimate nested CES models where elasticities vary across firms. However, the number of parameters to be estimated can skyrocket, leading to identification challenges. [Eeckhout and Pinheiro \(2014\)](#) and [Trottner \(2019\)](#) also model large firms with multiple jobs but with common elasticities of substitution across all pairs of worker types. [Herkenhoff et al. \(2018\)](#) allows for search frictions and within-firm complementarities, but firms may only employ up to two workers. Models of hierarchical firms in the tradition of [Garicano \(2000\)](#), [Garicano and Rossi-Hansberg \(2006\)](#), and [Antràs, Garicano and Rossi-Hansberg \(2006\)](#) imply a within-firm division of labor. However, the modeling of costly information transmission within firms reduces their tractability.

workers without a college degree because the marginal task that separates the two types at that firm—perhaps managing worker schedules—has lower complexity (Lemma 2).

5 Markets and wages

This section builds a general equilibrium model with monopsonistic firms and free entry. The first subsection lays out the structure of the economy. The second subsection describes the functioning of labor markets, solves the problem of the firm, and presents an important property of the model: goods encapsulate firm heterogeneity in skill intensity and wages. The third subsection describes firm wage differentials. The remaining subsections discuss comparative statics with respect to supply, demand, and minimum wage shocks.

Although the model is static, Appendix C.3 discusses a simple dynamic extension that can be used to simulate moments that require a panel dimension. Unless otherwise noted, all parameters are assumed to be strictly positive.

5.1 Factors, goods, technology, and preferences

There are two factors of production. The first is labor. The total number of workers of type h is denoted by N_h , and the distribution of efficiency units ε within group h is continuous with density $r_h(\cdot)$ and support over the positive real line. The second factor is an entry input used to create firms. It is fully owned by a representative entrepreneur and its stock is normalized to one.

The economy features G firm-produced goods. The good produced by each firm is chosen upon that firm’s creation, with entry costs F_g varying with the chosen good. The entrepreneur’s action is to choose the number of firms J_g , conditional on the entry input constraint $\sum_g F_g J_g \leq 1$.

Firm-produced goods are sold in competitive markets at prices p_g . Consumers (workers or the representative entrepreneur) combine them into the final consumption good using a constant elasticity of substitution (CES) aggregator:

$$c = z \left[\sum_{g=1}^G \gamma_g Q_g^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{1-\sigma}}$$

where z is a productivity parameter and γ_g is a taste shifter. The elasticity of substitu-

tion σ may depend on the interpretation of goods in the model: lower for different sectors, higher for different varieties within sectors, or close to infinity for different production technologies used to produce the same good (or for a small open economy where all goods are tradable).¹² I use the corresponding price index as the numeraire in this economy:

$$P \equiv \left[\sum_{g=1}^G \gamma_g^\sigma p_g^{1-\sigma} \right]^{\frac{1}{1-\sigma}} = 1.$$

Alternatively, the final consumption good may be home-produced. A worker of type (h, ε) who chooses not to work at any firm produces $c = \varepsilon z_{0,h}$ units of that good. The productivity parameters $z_{0,h}$ capture the value of outside options such as informal employment, self-employment, and government transfers to unemployed adults. The quantitative section allows those parameters to vary flexibly at the region, time, and education levels.

The entrepreneur's preferences are monotonic in the final good. Worker preferences depend on not only consumption but also where they are employed:

$$U_i(c, j) = c \cdot [\exp(\eta_{ij})]^{\frac{1}{\lambda}}$$

where i denotes worker identity, c is its final good consumption, and j denotes the employment choice. Home production is denoted by $j = 0$. Employment in any of the firms is denoted by $j = 1, \dots, J$ where $J = \sum_g J_g$. The η_{ij} parameters denote idiosyncratic preferences of workers towards their employment options. The importance of those components relative to consumption is regulated by λ .

The idiosyncratic preference components capture match-specific features, such as distance to the workplace, personal relationships with the manager or other coworkers, and how much they like staying at home for $j = 0$. The vector of idiosyncratic preferences for a worker is drawn from the following cumulative distribution function:

$$CDF\left(\{\eta_{ij}\}_{j=0}^J\right) = \exp\left\{-\exp(-\eta_{i0}) - \left[\sum_{j=1}^J \exp\left(-\eta_{ij} \cdot \frac{\beta}{\lambda}\right)\right]^{\frac{\lambda}{\beta}}\right\}$$

This is a nested logit, with all firms included in one nest and home production in another. The parameter $\beta \geq \lambda$ denotes the correlation in preferences between firms. In the following

¹²In the empirical exercise, I do not map goods to industries because the within-industry dimension is important. In many contexts, changes in inequality happen within industries (see [Card, Heining and Kline, 2013](#); [Song et al., 2018](#)). The validation exercise in Subsection D.3 suggests substantial task heterogeneity within finely defined sectors.

section, I demonstrate that λ pins down the macro elasticity of labor supply to all firms, while β determines the firm-level elasticity of labor supply.

5.2 Labor markets, the problem of the firm, and equilibrium

Throughout this section, it is important to distinguish between quantities of workers, denoted by n , and quantities of labor, denoted by l . Worker earnings are denoted by y , while prices for efficiency units of labor are denoted by w .

Labor regulations prevent firms from paying any worker a total compensation of less than \underline{y} . I refer to \underline{y} as the minimum wage. Because the model has no variation in hours worked, earnings and hourly wages are interchangeable. Moreover, because workers with low ε might have a marginal product of labor below \underline{y} at some firms, I allow firms to reject workers with productivity below some minimum value $\underline{\varepsilon}_{hj}$.

5.2.1 Firm-level labor supply and labor costs

The timing of the labor market is as follows. First, all firms post rejection cutoffs $\underline{\varepsilon}_{hj}$ and earnings schedules $y_{hj}(\varepsilon) : [\underline{\varepsilon}_{hj}, \infty) \rightarrow [\underline{y}, \infty)$. Second, workers observe all $\underline{\varepsilon}_{hj}$ and $y_{hj}(\varepsilon)$ and choose their employment option j . Third, firms observe (h, ε) of workers who applied to them (but not idiosyncratic preference shifters η_{ij}) and hire those with $\varepsilon \geq \underline{\varepsilon}_{hj}$. Finally, production occurs, and hired workers are paid. Rejected workers, if any, earn zero income.

To study worker choices in step 2, consider the indirect utility of a worker i characterized by (h, ε) if this worker chooses option j . It can be written as:

$$V_{ih}(\varepsilon, j) = \begin{cases} \exp\left(\lambda \log(\varepsilon z_{0,h}) + \eta_{ij}\right)^{\frac{1}{\lambda}} & \text{if } j = 0 \\ \mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_{hj}\} \exp\left(\lambda \log y_{hj}(\varepsilon) + \eta_{ij}\right)^{\frac{1}{\lambda}} & \text{if } j \geq 1 \end{cases}$$

Given the distribution of η_{ij} , the probability of a worker (h, ε) choosing a particular option j is given by:

$$\Pr\left(0 = \arg\max_{j' \in \{0, 1, \dots, J\}} V_{ih}(\varepsilon, j')\right) = \frac{(\varepsilon z_{0,h})^\lambda}{(\varepsilon z_{0,h})^\lambda + \omega_{\varepsilon,h}^\lambda}$$

$$\Pr\left(j = \arg\max_{j' \in \{0, 1, \dots, J\}} V_{ih}(\varepsilon, j')\right) = \frac{\omega_{\varepsilon,h}^\lambda}{(\varepsilon z_{0,h})^\lambda + \omega_{\varepsilon,h}^\lambda} \times \left(\frac{\mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_{hj}\} y_{hj}(\varepsilon)}{\omega_{\varepsilon,h}}\right)^\beta \quad \text{for } j \geq 1$$

$$\text{where } \omega_{\varepsilon,h} = \left(\sum_{j=1}^J \mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_{hj}\} y_{hj}(\varepsilon)^\beta \right)^{\frac{1}{\beta}}$$

The “inclusive value” $\omega_h(\varepsilon)$ measures demand for skills coming from firms. The employment rate for workers with productivity (h, ε) is given by a logit formula comparing that value against those workers’ efficacy when producing at home. The macro elasticity of labor supply with respect to $\omega_h(\varepsilon)$ is given by λ multiplied by the non-employment rate.

As in [Card et al. \(2018\)](#), I assume that firms ignore their contribution to $\omega_h(\varepsilon)$, an approximation that is adequate when firms are small relative to the size of the labor market. Under that assumption, each firm’s labor supply elasticity for workers of a particular type (h, ε) is given by β as long as earnings are above the minimum wage.

The number of workers choosing a particular firm, the resulting supply of efficiency units, and total labor costs are increasing in posted earnings and decreasing in rejection cutoffs:

$$n_h(y_{hj}, \underline{\varepsilon}_{hj}) = N_h \int_{\underline{\varepsilon}_{hj}}^{\infty} \frac{\omega_{\varepsilon,h}^\lambda}{(\varepsilon z_{0,h})^\lambda + \omega_{\varepsilon,h}^\lambda} \left(\frac{y_{hj}(\varepsilon)}{\omega_h(\varepsilon)} \right)^\beta r_h(\varepsilon) d\varepsilon \quad (4)$$

$$l_h(y_{hj}, \underline{\varepsilon}_{hj}) = N_h \int_{\underline{\varepsilon}_{hj}}^{\infty} \frac{\omega_{\varepsilon,h}^\lambda}{(\varepsilon z_{0,h})^\lambda + \omega_{\varepsilon,h}^\lambda} \left(\frac{y_{hj}(\varepsilon)}{\omega_h(\varepsilon)} \right)^\beta \varepsilon r_h(\varepsilon) d\varepsilon \quad (5)$$

$$C_h(y_{hj}, \underline{\varepsilon}_{hj}) = N_h \int_{\underline{\varepsilon}_{hj}}^{\infty} \frac{\omega_{\varepsilon,h}^\lambda}{(\varepsilon z_{0,h})^\lambda + \omega_{\varepsilon,h}^\lambda} \frac{y_{hj}(\varepsilon)^{\beta+1}}{\omega_h(\varepsilon)^\beta} r_h(\varepsilon) d\varepsilon \quad (6)$$

5.2.2 Problem of the firm

Firms maximize profit by choosing posted earnings schedules and rejection cutoffs:

$$\pi_j = \max_{\mathbf{y}_j, \varepsilon_j} p_g f(\mathbf{l}(\mathbf{y}_j, \varepsilon_j), b_g) - \sum_{h=1}^H C_h(y_{hj}, \underline{\varepsilon}_{hj})$$

The following Lemma shows that this problem has intuitive solutions:

Lemma 3. *Firms producing the same good g choose the same earnings schedules and rejection criteria, denoted by y_{hg} and $\underline{\varepsilon}_{hg}$. Optimal earnings schedules have the form $y_{hg}(\varepsilon) = \max\{w_{hg}\varepsilon, \underline{y}\}$. The following first-order conditions define prices per efficiency unit w_{hg} and*

hiring thresholds:

$$p_g f_h(\mathbf{l}(\mathbf{w}_g, \boldsymbol{\varepsilon}_g), b_g) \frac{\beta}{\beta + 1} = w_{hg} \quad h = 1, \dots, H \quad (7)$$

$$p_g f_h(\mathbf{l}(\mathbf{w}_g, \boldsymbol{\varepsilon}_g), b_g) \underline{\varepsilon}_{hg} = y \quad h = 1, \dots, H \quad (8)$$

Equation 7 defines optimal prices per efficiency unit $w_{h,g}$ as constant markdowns of their marginal revenue products, a typical result in monopsony models with constant elasticity of labor supply to the firm. Equation 8 is the first-order condition on the rejection cutoffs. A lower cutoff brings in additional workers with $\varepsilon = \underline{\varepsilon}_{hj}$, each increasing revenues by $p_g f_h \underline{\varepsilon}_{hj}$. When firms choose thresholds optimally, that additional revenue equals the minimum wage y , which is the labor cost at that margin.

5.2.3 Firm creation and equilibrium

A finite σ engenders positive firm creation for all goods for two reasons. First, with the CES functional form for the consumption aggregator, marginal utilities for each good are unbounded as consumption moves to zero, enabling arbitrarily high equilibrium prices even if entry and marginal costs are large. Second, firms are guaranteed to record positive profits due to the constant markdowns of log wages.¹³

An equilibrium of this model is defined by vectors of aggregate consumption $\{Q_g\}_{g=1}^G$, firm entry $\{J_g\}_{g=1}^G$, choices by representative firms $\{\mathbf{w}_g, \boldsymbol{\varepsilon}_g\}_{g=1}^G$, and prices $\{p_g\}_{g=1}^G$ such that:

1. Markets for firm-produced goods clear:

$$Q_g = \gamma_g^\sigma p_g^{-\sigma} I = J_g f(\mathbf{l}(\mathbf{y}_g, \boldsymbol{\varepsilon}_g), b_g) \quad \forall g \quad (9)$$

$$\text{where } I = \sum_{g=1}^G J_g \left[\pi_g + \sum_{h=1}^H C_h(w_{hg}, \underline{\varepsilon}_{hg}) \right] = \sum_{g=1}^G J_g p_g f(\mathbf{l}(\mathbf{y}_g, \boldsymbol{\varepsilon}_g), b_g)$$

2. For all g , firm choices solve the first-order conditions (7) and (8).

3. Firm creation is optimal and feasible:

$$\frac{\pi_g}{F_g} = \frac{\pi_{g'}}{F_{g'}} \quad \forall (g, g') \text{ and } \sum_g J_g F_g = 1 \quad (10)$$

¹³I assume that the number of firms in every market is sufficiently large that we can ignore the integer constraint in optimal firm creation. Accordingly, I treat J_g as a continuous variable.

Labor market clearing is embedded in the firm-level labor supply curve. Appendix C presents an efficient numerical algorithm to solve for equilibrium given a set of parameters.

5.3 Firm wage premiums

The following proposition describes how equilibrium wages vary between firms:

Proposition 3. *1. If $b_g(x) = b(x)/z_g$ for scalars z_1, \dots, z_G and F_g is the same for all firm-produced goods, then there are no firm wage premiums:*

$$\log y_{hg}(\epsilon) = \max \{v_h + \log \epsilon, \log \underline{y}\}$$

where v_1, \dots, v_H are scalar functions of parameters.

2. If there is no minimum wage and $b_g(x) = b(x)/z_g$, wages are log additive:

$$\log y_{hg}(\epsilon) = v_h + \log \epsilon + \frac{1}{1+\beta} \log (F_g)$$

3. If there is no minimum wage and there are firm types g, g' and worker types h', h such that $\ell_{h'g'}/\ell_{hg'} > \ell_{h'g}/\ell_{hg}$ (that is, good g' is relatively more intensive in h'), then:

$$\frac{y_{h'g'}(\epsilon)}{y_{hg'}(\epsilon)} > \frac{y_{h'g}(\epsilon)}{y_{hg}(\epsilon)}$$

The first part of Proposition 3 shows that wage dispersion for similar workers only exists if there are differences in the shapes of blueprints (such that firms differ in skill intensity) or entry costs. Notably, differences in physical productivity across goods (z_g) or taste shifters (γ_g) are insufficient to generate wage differentials between firms. This is because if entry costs are the same, differences in physical productivity or tastes lead to additional entry and reduced marginal utility of consumption of the good with greater productivity, up to the point where the marginal revenue product of labor is equalized across firms.

The second part highlights the role of entry costs in generating wage differences across firms. Optimal firm creation implies that all else being equal, firms producing goods with higher entry costs must operate at a larger scale. To hire more workers, these firms must post higher wages. At equilibrium, prices for those goods will also be higher, such that worker earnings are proportional to the marginal revenue product of labor.

The third part of Proposition 3 shows how skill intensity heterogeneity generates differential wage gaps across firms. Firms that are relatively more intensive in hiring a labor type must pay a relative premium for that type. This model's inability to simultaneously generate log-additive wages and assortative matching echoes some results in the literature on labor market sorting, such as those in [Eeckhout and Kircher \(2011\)](#). However, skill-intensive firms can pay all workers a positive wage premium if those firms have high entry costs, so “high-wage firms” can be a meaningful concept in this model.

Appendix B.2 adds vertical differentiation of non-wage amenities to the model. Those extra parameters have implications for firm sizes but are irrelevant to the rest of the theory.

5.4 Supply shocks

Labor supply, labor demand, and the minimum wage may evolve in concert, making the economy more productive while leaving wage distribution unchanged (see Proposition 6 in Appendix B.3). However, if there are imbalances in this race, relative prices for goods and labor may change.

I start with supply shocks. To focus on what general equilibrium and firm entry add to the model, the following proposition abstracts from within-firm complementarities by assuming that each good only requires one task (i.e., workers are perfect substitutes within firms):

Proposition 4 (Supply shock and reallocation). *Consider an economy with two comparative advantage types, two goods, full employment ($z_{0,h} = 0$), and no minimum wage. Assume both goods $g = 1, 2$ have degenerate blueprints such that each unit of output requires a unit measure of tasks of complexity x_g , with $x_2 > x_1$. Then:*

$$\frac{d \left(\frac{s_{2,1} \log w_{2,1} + s_{2,2} \log w_{2,2}}{s_{1,1} \log w_{1,1} + s_{1,2} \log w_{1,2}} \right)}{d \log(L_2/L_1)} = \frac{d \log \left(\frac{p_2}{p_1} \right)}{d \log \left(\frac{L_2}{L_1} \right)} \cdot \left[(s_{2,2} - s_{1,2}) + (\beta + 1 - \sigma) \left(s_{2,1} s_{2,2} \log \frac{w_{2,2}}{w_{2,1}} - s_{1,1} s_{1,2} \log \frac{w_{1,2}}{w_{1,1}} \right) \right]$$

where $s_{h,g}$ denotes the share of efficiency units of labor of type h employed by firms producing good g , and $\frac{d \log(p_2/p_1)}{d \log(L_2/L_1)} < 0$.

Corollary 2. *For any set of parameters satisfying the conditions of Proposition 4, there exists*

a number $\bar{\beta}$, such that by changing β to $\beta' > \bar{\beta}$ and F_g to $F'_g = F_g \frac{\beta+1}{\beta'+1}$, the effect of rising supply on the mean log wage gap is negative.

The effect of the increased supply of skills on the aggregate skill wage premium has two components. The first is the direct effect of the supply shock on marginal products of labor via prices. That component is always negative because positive supply shocks reduce p_2/p_1 and $s_{2,2} > s_{1,2}$. The second component is the reallocation of labor across firms paying different wage premiums. If the reallocation effect is positive and sufficiently large, the aggregate skill premium can widen in response to the supply shock.

The strength of the reallocation effect depends on the magnitude of firm wage premiums, initial sorting patterns, and the elasticities β and σ . Those elasticities also determine the direction of net reallocation flows. As mentioned, the supply shock reduces p_2/p_1 . Because that price change passes on to wages, individual firms producing $g = 1$ can attract more workers, with elasticity β . However, the reduction in p_2/p_1 also shifts consumption toward the second good, increasing relative firm entry J_2/J_1 . If $\sigma > \beta + 1$, the second effect wins, and there is net reallocation to firms producing $g = 2$.

Corollary 2 emphasizes how imperfect competition is essential to the result that positive supply shocks may widen the aggregate skill premium. By moving the parameters close to the competitive limit ($\beta \rightarrow \infty$, $F_g \rightarrow 0$), supply shocks are guaranteed to compress the skill wage premium. This result exemplifies how Proposition 4 differs fundamentally from the directed technical change channel emphasized by [Acemoglu \(1998, 2007\)](#).

In a more general environment with non-degenerate blueprints, the expression for the change in the aggregate skill wage premium would include additional terms deriving from imperfect substitution within firms. The total impact of supply shocks on the aggregate skill premium may be positive even in these cases, as the quantitative analysis at the end of the paper demonstrates.

5.5 Demand shocks

There are three ways to model skill-biased demand shocks in this economy. The first is changing blueprints to increase the relative demand for complex tasks. Analogously to the monotone comparative statics used by [Costinot and Vogel \(2010\)](#), this should increase all wage gaps w_{h+1}/w_h in a competitive economy with a single good. This conclusion extends to multiple-good economies if all goods' consumption shares remain roughly constant fol-

lowing the shock.

The second form of skill-biased shock is an increase in demand for skill-intensive goods, which may represent improvements in the quality of those goods or trade shocks affecting demand for goods that are more skill intensive (in the spirit of Stolper and Samuelson, 1941):

Proposition 5 (Demand for goods and returns to skill). *Consider a competitive version of this economy ($\beta \rightarrow \infty$, $F_g = 0$) with full employment ($z_{0,h} = 0$), two goods, and no minimum wage. Assume $b_2(x)/b_1(x)$ is increasing in x (good $g = 2$ is more intensive in high-complexity tasks). Then, an increase in γ_2/γ_1 increases all wage gaps w_{h+1}/w_h .*

Proposition 5 has a more general implication: if other shocks change aggregate consumption shares, there may be secondary effects on skill wage premiums. I return to this point when discussing the general equilibrium effects of minimum wage policies.

The third type of skill-biased demand shock is a reduction in relative entry costs F_2/F_1 when good $g = 2$ is more skill intensive. It reallocates labor towards more complex tasks by reducing relative prices p_2/p_1 and increasing relative entry J_2/J_1 . As Proposition 3 describes, that shock also reduces the magnitude of firm wage premiums when skill-intensive firms are high-wage. The net effect on wage inequality measures is ambiguous.

In the empirical exercise, I allow for regional and time differences in these three dimensions of labor demand.

5.6 Minimum wage

An increase in the minimum wage affects the model economy through three channels, as described below. In the quantitative section, I implement a decomposition exercise that measures the relative impact of each of them in the Brazilian context. Appendix B.4 discusses causal pathways not included in this framework and explains why their omission may not be consequential for my analysis.

5.6.1 Channel 1: partial equilibrium effects in a monopsonistic environment

This channel combines mechanical wage increases, disemployment, positive employment effects, and reallocation while keeping posted wages, firm entry, and prices unchanged. Suppose the minimum wage increases to $\underline{y}' > \underline{y}$. To calculate the impact of this channel, I update earnings schedules from $y_{h,g}(\varepsilon)$ to $y'_{h,g}(\varepsilon) = \max \{y_{h,g}(\varepsilon), \underline{y}'\}$. I also update the minimum

hiring thresholds to account for the fact that, assuming marginal products of labor remain constant, some low-skilled workers become unprofitable under the new minimum. Then, I allow workers to change their employment options based on the new earnings schedules and hiring thresholds.

Figure 3 illustrates the counterfactual employment choices in a model with a single good. The graphs show the mass of workers by employment choice and worker productivity, providing a close-up view of the left tail of the productivity distribution.

Consider the baseline scenario in Panel A. For workers with $\varepsilon > \log(y/w_{h,1})$, employment options remain unchanged, as do their optimal choices. Because workers with $\varepsilon < \underline{\varepsilon}_{hj}$ are no longer employable at formal firms, all of them move to their outside options. Finally, workers with $\varepsilon \in [\underline{\varepsilon}_{h,1}, \log(y/w_{h,1})]$ are the ones receiving a mechanical “wage boost” at formal firms. If they choose to work there, they earn exactly the minimum wage. Thus, the blue mass of workers in that interval corresponds to the minimum wage spike.

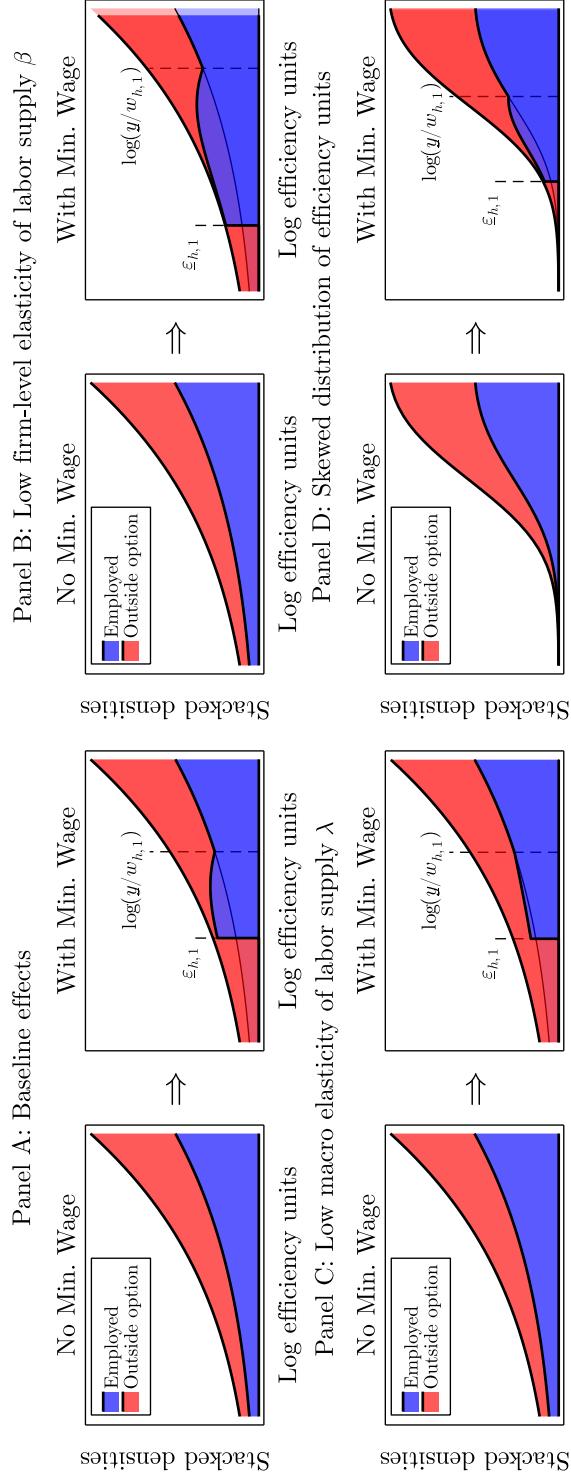
Positive employment effects of minimum wage arise from workers in that middle interval. One important takeaway is that, even if the *total* change in employment is non-negative, the minimum wage may still cause disemployment for very low-productivity workers. This pattern reflects the minimum wage’s inability to simultaneously correct monopsony-induced underemployment for all worker types, first noted by [Stigler \(1946\)](#).

Panels B, C, and D in Figure 3 illustrate how minimum wage effects depend on the firm-level elasticity of labor supply, the aggregate elasticity of labor supply, and the shape of the underlying productivity distribution.

Figure 4 resembles Figure 3 except that it shows a scenario with two goods. The initial equilibrium has workers evenly split between low-wage firms ($g = 1$), high-wage firms ($g = 2$), and home production. The high-wage firms have higher revenue productivity and can afford to hire workers with lower ε after the introduction of the minimum wage. Thus, workers with $\varepsilon \in [\underline{\varepsilon}_{h,2}, \underline{\varepsilon}_{h,1}]$ reallocate from low- to high-wage firms, a pattern that is the model analog of the empirical results in [Dustmann et al. \(2021\)](#).

The model also predicts some reallocation from high- to low-wage firms, especially for workers with $\varepsilon \approx \log(y/w_{h,2})$. That is because the minimum wage does not affect their compensation at high-wage firms but makes low-wage firms more attractive. This result has implications for empirical studies that compare workers based on their initial wages. Even if there are no strategic wage-posting responses and no general equilibrium effects, workers

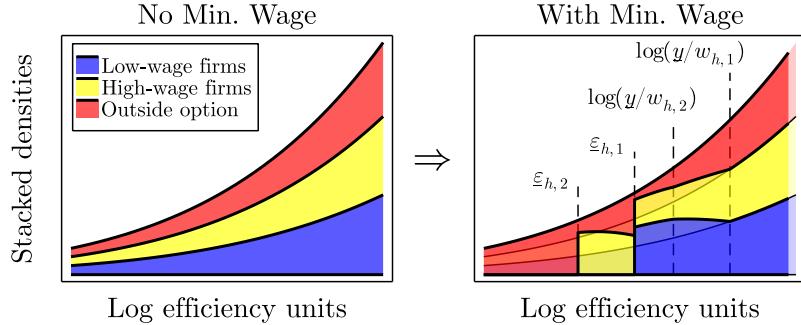
Figure 3: Minimum wage effects with a single firm type



Notes: This figure shows the “monopsony” effects of minimum wages on worker employment options in a context with a single firm type. The graph shows the lower tail of the distribution of efficiency units ε for a particular worker group h . Each vertical slice of the graphs shows the stacked densities of employed and non-employed workers for each ε , such that the total height corresponds to the total density $N_h r_h(\varepsilon)$. Workers with $\varepsilon < \varepsilon_{h,1}$ lose their formal jobs. Workers with $\varepsilon \in [\varepsilon_{h,1}, \log(y/w_{h,1})]$ earn exactly the minimum wage. These are the workers for whom formal wages are increasing mechanically and for whom we should see positive employment effects.

Panel B shows that a lower β increases the range of productivity levels where the minimum wage may cause positive employment effects. **Panel C** shows that if λ is small, positive employment effects are also likely to be small. **Panel D** shows that estimates of minimum wage effects depend crucially on assumptions about the shape of the underlying productivity distribution.

Figure 4: Minimum wage effects with two firm types



Notes: This figure shows the impact of minimum wage on worker employment options when there are two firm-produced goods (equivalently, two firm types). The “high-wage firms”, $g = 2$, have higher revenue productivity and can afford to hire workers with lower ε after the introduction of the minimum wage. This generates reallocation from low- to high-wage firms for workers with $\varepsilon \in [\underline{\varepsilon}_{h,2}, \underline{\varepsilon}_{h,1}]$. The neighborhood around $\log(y/w_{h,2})$ may feature the opposite type of reallocation (from high-wage to low-wage firms).

earning more than the new minimum may still be affected by the minimum wage, precluding them from being a valid control group.

5.6.2 Channel 2: Wage-posting responses and within-firm returns to skill

To quantify this channel, I calculate a partial equilibrium where prices p_g and firm creation J_g are kept constant following the increase in the minimum wage. Firms can reoptimize earnings schedules $y_{h,g}(\varepsilon)$ and hiring thresholds $\underline{\varepsilon}_{h,j}$. Then, I compare the simulated outcomes of this partial equilibrium to the baseline equilibrium and subtract the contribution of the “Monopsony” channel described in the previous subsection.

Why would firms choose different posted earnings following a minimum wage hike? Holding earnings schedules constant, disemployment and reallocation effects imply changes in factor shares within firms. Because the production function is concave, marginal products of labor also change. Then, firms need to adjust w_{hg} to ensure that they are proportional to the marginal revenue products of labor.

The combination of monopsony power, firm heterogeneity, and task-based production generates novel predictions regarding minimum wage effects compared to competitive task-based models (Teulings, 2000) and frictional minimum wage models (Engbom and Moser, 2022). Suppose that there are two firms with blueprints that are equally skill-intensive but with $F_2 \gg F_1$. A newly introduced minimum wage may bind for low- h workers at firms producing good $g = 1$ but not good $g = 2$. The ensuing reallocation of low- h labor could compress skill premiums at firms $g = 1$ and widen them at firms $g = 2$.

Perhaps a more typical scenario is one where low-wage firms are also low-skill. Suppose that good $g = 1$ has a blueprint fully concentrated in tasks of complexity $x = 0$, as described in Proposition 2. Then, internal skill premiums at firms producing that good will not respond to the minimum wage. Reallocation will still widen skill premiums at firms producing $g = 2$. Combining those effects, wage changes induced by the minimum wage may be ultimately less progressive, especially for middle-skill workers. The quantitative section shows that this channel induces negative wage effects for workers in the middle of Brazil's productivity distribution.¹⁴

This theoretical prediction also has implications for empirical minimum wage designs. Some papers compare firms in the same region based on the proportion of their workers who earn below the new minimum wage value. The preceding discussion demonstrates that the minimum wage may also affect high-wage firms through the inflow of low-wage workers, such that they may not constitute an appropriate control group.

5.6.3 Channel 3: General equilibrium

Finally, I account for minimum wage effects on prices p_g and firm entry J_g . The strength of those equilibrium effects depends crucially on the elasticity of substitution in consumption σ . To make the analysis concrete, consider a scenario with two goods in which skill-intensive firms are also high-wage.

Start with the Leontief case, $\sigma = 0$. Minimum wages reduce profits at low-wage firms by compressing their markdowns. In general equilibrium, falling profits at low-wage firms increase J_2/J_1 . In the Leontief world, $Q_2/Q_1 = (J_2/J_1) \cdot (q_2/q_1)$ is constant, so q_2/q_1 must fall. That change in relative scale can only be achieved by compressing firm wage premiums because minimum-wage-induced reallocation tends to increase q_2/q_1 . Consequently, the cost ratio falls, as does the price ratio p_2/p_1 .

Now consider the other extreme with perfect substitution: $\sigma \rightarrow \infty$. Relative prices are now invariant, $p_2/p_1 = \gamma_2/\gamma_1$, and thus, changes in relative profits impact the firm entry margin. There is more reallocation of labor from low- to high-wage firms because there is no need for offsetting entry with scale responses to keep quantities constant.

Comparing both scenarios, we should expect minimum wages to be less progressive if σ

¹⁴This channel may not always cause reductions in real wages for low-wage workers at high-wage firms. For example, when minimum wage causes strong mechanical increases in wages at low-wage firms but not much disemployment, the resulting increase in $\omega_{h,e}$ can lead to positive wage effects at high-wage firms.

is large. With a low σ , low- and medium-skilled workers benefit from higher prices for low-skill goods even if the minimum wage does not mechanically increase their wages. An increase in p_1 also attenuates disemployment effects. With a large σ , no such pass-through effects exist. In addition, shifting consumption shares increases aggregate demand for complex tasks, further harming low-skilled workers.

6 Quantitative exercises

I now apply the framework to the data. The first subsection structurally estimates a parametric model of the Brazilian economy. The second subsection presents the counterfactual exercises and discusses the model's validity.

6.1 Structural estimation

I propose a local labor markets model where each market corresponds to one of the 151 Brazilian microregions described in Section 3. My analysis aims to disentangle the effects of supply, demand, and minimum wage changes affecting these labor markets between 1998 and 2012. The supply shock is the rising educational achievement of the adult population, as observed in Census data. The minimum wage shock corresponds to the observed increase in the federal minimum wage. Finally, the demand shocks encompass various transformations in the Brazilian economy, including the commodities boom, the expansion of broadband internet, changes in labor regulation enforcement, and more.

In estimating the model, I treat the demand shocks as a residual factor capturing changes in target outcomes that cannot be explained by supply or minimum wage. This approach follows a long-standing tradition in Labor Economics, dating back at least to [Katz and Murphy \(1992\)](#), where skill-biased technical change is inferred from a residual trend in the skill premium after accounting for labor supply contributions. My treatment of labor demand differs from that in [Katz and Murphy \(1992\)](#) in two important ways. First, the shocks are multi-dimensional in my model and thus inferred from several endogenous outcomes. Second, I allow demand factors to depend on observable regional characteristics as of 1998, including educational levels and the share of the workforce engaged in agriculture or manufacturing.

I treat each microregion-time, indexed by (r, t) , as an isolated economy. In the first subsection, I propose a parsimonious parameterization and discuss how it maps between estimated parameters and simulated endogenous outcomes in each of these economies. In the second

subsection, I formalize the data-generating process and discuss identification and estimation.

6.1.1 Parameterization

Elasticities of labor supply: I set $\beta = 4$, based on recent studies that find elasticities of labor supply to the firm between three and six.¹⁵ The λ parameter, which determines the macro elasticity of labor supply, is assumed to be common across regions and periods and is estimated jointly with the other parameters in the model.

Worker types and outside options: I continue to sort workers into three educational groups, as in the descriptive section of the paper, to measure the supply of skills and some of the outcomes. However, in the model, I assume that there are ten latent worker types: $H = 10$. Thus, productivity differences between workers in the same educational group can come from dispersion in efficiency units and differences in comparative advantage. The relative importance of one vis-à-vis the other is an important determinant of how the variance of log wages within each educational group responds to exogenous shocks.

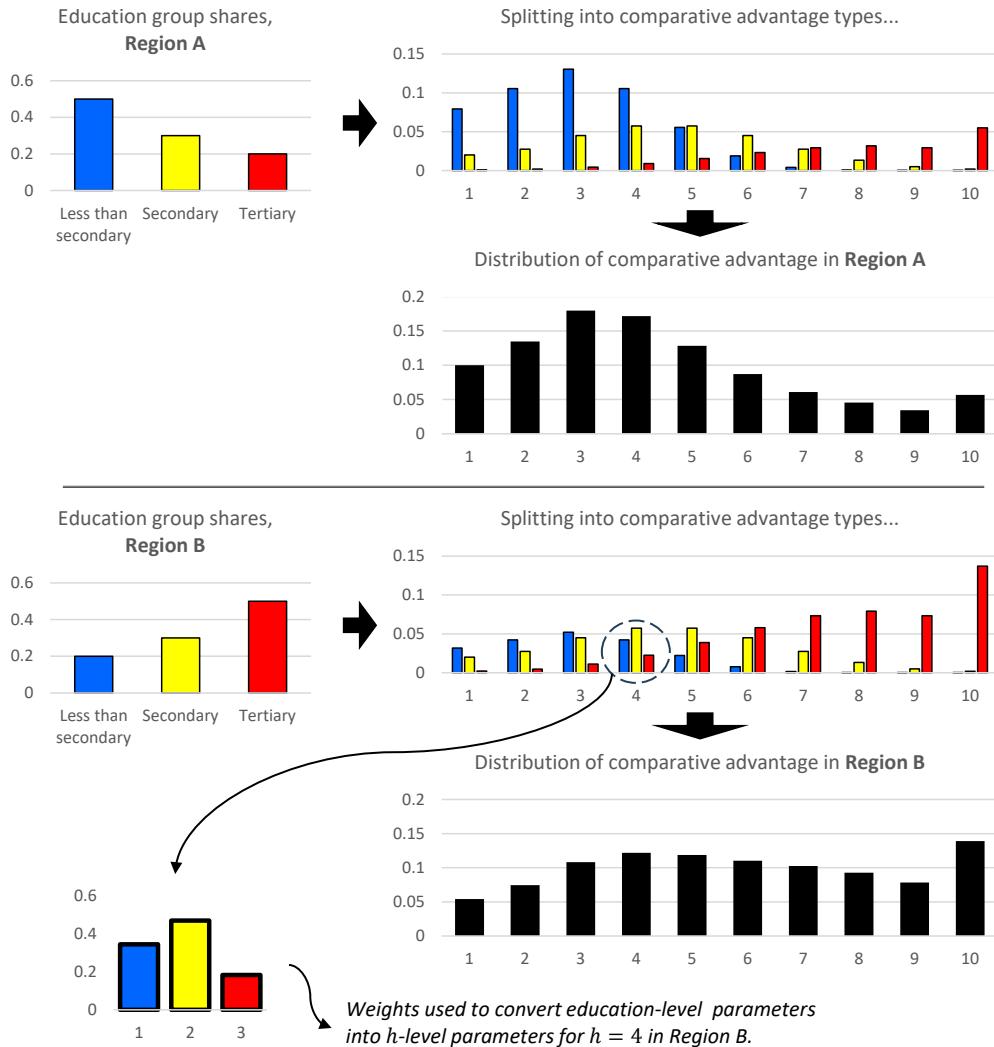
Figure 5 illustrates how I convert observed education shares for groups $\hat{h} \in \{1, 2, 3\}$ into distributions of workers along the 10 latent types $h \in \{1, \dots, 10\}$ for two hypothetical regions A and B . I assume that the distribution of h -types within each education group, $\Pr(h|\hat{h})$, is the same in all regions and periods. Using those shares—which are determined by four estimated parameters—, I first calculate the number of workers of each h coming from an educational group \hat{h} (this step corresponds to the horizontal black arrow). Then, I sum the mass of workers in each h coming from all educational groups (the vertical black arrow).

When discussing the effects of minimum wages in the model, I emphasized how they depend crucially on the parametric distribution of efficiency units. I assume that conditional on (h, r, t) , ε has a Skew Normal distribution with mean zero and dispersion parameter $S_{h,r,t}$. The skewness parameter χ captures the possibility that the lower tail of productivity has leaner or fatter tails than what would be implied by a Normal distribution.

Finally, I specify how the 10 h -types in each region-time differ in the dispersion parameters $S_{h,r,t}$ and outside options $z_{0,h,r,t}$. Appendix D.5 details how they are determined by their

¹⁵I discuss why I chose to calibrate this parameter, rather than estimating it, in Appendix D.4. Card et al. (2018) use the same value in their calibration, implying a markdown of 20%. Lamadon, Mogstad and Setzler (2022) estimate firm-level elasticities of labor supply between 6.02 and 6.52, corresponding to markdowns around 14%. Kroft et al. (2023) find elasticities between 3.5 and 4.1. Berger, Herkenhoff and Mongey (2022) find average firm-level markdowns of 22% or 11%, depending on whether the average is weighted by payroll.

Figure 5: Parameterization of worker types in the structural model



Notes: This figure explains the structural model's mapping between the three observed educational groups \hat{h} and the ten latent worker types h . The black arrows show how, starting from the shares of the adult population in each educational group (colored bars on the left), one can obtain the distribution of workers along latent groups h for each region-time combination, using exogenous probabilities $\Pr(h|\hat{h})$ derived from a subset of the estimated parameters (see Appendix D.5). The bottom-left part shows the corresponding $\Pr(\hat{h}|h, r, t)$ probabilities, which are used to convert (\hat{h}, r, t) -level estimated parameters into (h, r, t) -level model counterparts.

education-level counterparts $\hat{S}_{\hat{h}}$ and $\hat{z}_{0,\hat{h},r,t}$. The $\hat{z}_{0,\hat{h},r,t}$ are, in turn, the product of region-time, region-education, and education-time parameters to richly capture other factors that determine heterogeneity in formal employment rates, such as intensity of enforcement of labor regulations. To go from \hat{h} -level parameters to h -level parameters in each region, I use the probabilities $\Pr(\hat{h}|h, r, t)$, as illustrated in the bottom part of Figure 5.

Labor demand: There are $G = 2$ goods in each region.¹⁶ Blueprints follow the Exponential-gamma parameterization presented in Subsection 4.4. Five demand-side parameters vary at the region-time level. The first is the total factor productivity (TFP) parameter $z_{r,t}$, which is unrestricted. The others are blueprint complexities $\theta_{g=1,r,t}$ and $\theta_{g=2,r,t}$, relative entry costs $F_{2,r,t}/F_{1,r,t}$, and relative consumer preference $\gamma_{2,r,t}/\gamma_{1,r,t}$.¹⁷ They are determined by region-time-specific covariates as follows:

$$\begin{aligned} D_{r,t}^d = & \delta_0^{d,t} + \delta_1^{d,t} ShareHighSchool_{r,1998} + \delta_2^{d,t} ShareCollege_{r,1998} \\ & + \delta_3^{d,t} ShareAgriculture_{r,1998} + \delta_4^{d,t} ShareManufacturing_{r,1998} \\ & + \delta_5^{d,t} [\log(\min.wage) - \text{meanLogWage}]_{r,t} \end{aligned} \quad (11)$$

for $d \in \{\theta, F, \gamma\}$, where:

$$D_{r,t}^\theta = \log \theta_{2,r,t} \quad D_{r,t}^F = \log \left(\frac{F_{2,r,t}}{F_{1,r,t}} \right) \quad D_{r,t}^\gamma = \log \left(\frac{\gamma_{2,r,t}}{1 - \gamma_{2,r,t}} \right)$$

and:

$$\theta_{1,r,t} = \theta_{2,r,t} \tilde{\theta}_t$$

Blueprint complexities, entry costs, and consumer tastes vary between regions depending on a set of covariates. The gap in blueprint complexity between the two goods, $\tilde{\theta}_t$, is assumed to be the same in all regions within each period. This formulation yields a total of 38 demand-side parameters to be estimated: 36 of the $\delta_i^{d,t}$ form plus the two $\tilde{\theta}_t$.

This formulation is essential for unbiased estimation of each shock's effect, as it allows unobserved demand shifters to correlate with initial educational levels and TFP (the latter being proxied by the gap between mean log wages and the federal minimum wage). Consider the

¹⁶I used two goods to keep the model as simple as possible. There is no technical impediment to using a larger number of goods. The estimator proposed by [Bonhomme, Lamadon and Manresa \(2019\)](#) may be helpful in higher-dimensional applications.

¹⁷Entry costs only matter in relative terms because I do not target average firm sizes. I set $F_{2,r,t} = 1$ for computational purposes. The same is true for consumer preferences, given that outside option parameters are fully flexible. As such, I normalize $\gamma_{1,r,t} + \gamma_{2,r,t} = 1$.

following example. Suppose that, in Brazilian regions where the workforce is highly skilled, the technologies available to firms require more complex tasks (perhaps due to differences in comparative advantage at the sectoral level). This pattern could generate a positive correlation between the college share and the college wage premium. The model allows for this possibility, which would translate into a positive $\delta_2^{\theta,t}$ parameter in Equation (11). Without this term, the econometric model would incorrectly infer that the positive correlation above implies a causal effect from education to the college premium. Similar arguments hold for identifying minimum wage effects if the model omitted the $\delta_5^{d,t}$ parameters.

Because of regional convergence, allowing the $\delta_i^{d,t}$ to be time-specific is essential in the Brazilian context. Regions that are less educated as of 1998 may “catch up” in terms of technology, such that the relationship between initial education and current demand parameters may become weaker over time. In this flexible formulation, the variation used to identify the wage effects of labor supply shocks is the *change* in educational shares, and the relevant comparison group is regions that had similar levels of education in 1998.

Initial shares of the workforce engaged in agriculture and manufacturing are used as additional predictors of labor demand shocks. This approach is analogous to the “shift-share designs” used to evaluate the consequences of labor demand shocks on employment and wages, where the “shift” component is effectively a dummy for $t = 2012$.

Summing up, there are 52 estimated parameters common across regions: eight defining worker types, two outside option shifters at the education-time level, one determining whether regional shocks to outside options have weaker effects on college workers (see Appendix D.5), 38 determinants of local demand, blueprint shape κ , and the elasticities σ and λ . In addition, there are six region-specific parameters: two time-specific TFP’s determining minimum wage bindingness and four formal employment shifters (three region-education base levels plus one region-time shock).

6.1.2 The data-generating process, identification, and estimation

The data-generating process is:

$$\mathbf{Y}_r = a(\mathbf{Z}_r, \boldsymbol{\theta}^G, \boldsymbol{\theta}_r^R) + \mathbf{u}_r \quad r \in \{1, \dots, R\},$$

where \mathbf{Y}_r is a vector of 26 endogenous outcomes for each region (13 for each of the two periods, 1998 and 2012). It includes inequality measures within and between groups, vari-

ance components from the AKM decomposition, formal employment rates, and minimum wage bindingness measures. The full list corresponds to the moments in Table 4. The vector Z_r corresponds to region-specific exogenous covariates. The 52 general parameters are represented by the θ^G vector, while θ_r^R represents the six region-specific parameters. The function $a(\cdot)$ simulates the endogenous outcomes using the model parameters implied by $(Z_r, \theta^G, \theta_r^R)$. The residuals u_r represent unmodeled factors at the regional level and sampling variation in the measurement of endogenous variables. These residuals have zero mean conditional on the covariates and region-specific parameters and are independent across regions but not necessarily within. That is, the model allows for correlations in residuals between different endogenous outcomes or between periods within the same region.¹⁸

Given a guess for the general parameters θ^G and covariates Z_r , one can invert the six region-specific parameters θ_r^R from six endogenous moments (a subset of Y_r): formal employment rates for each of the educational groups in $t = 1998$, the formal employment rate for high school workers in $t = 2012$, and minimum wage bindingness in both years (defined as log minimum wage minus mean log wage). Then, using the inverted region-specific parameters along with θ^G and Z_r , all other endogenous outcomes can be simulated. The estimator chooses the general parameters θ^G that minimize a weighted sum of squared deviations after accounting for the inversion procedure in all regions. Appendix D.6.1 formalizes these arguments and explains how I calculate asymptotic cluster-robust standard errors.

The remainder of Appendix D.6 contains a thorough discussion of identification. First, it demonstrates how the inversion procedure addresses unobserved heterogeneity at the regional level without causing incidental parameter bias. Next, it describes how each parameter is identified and proposes a parallel between my estimator and a nonlinear instrumental variables design. Finally, it discusses the validity of the identification assumptions in the Brazilian context and considers threats such as regional differences in schooling quality.

The empirical model is over-identified. To see that, note that there are 52 general parameters to be estimated, but the zero mean assumption on residuals implies 260 moments of the form $E[u_{r,o}X_{r,k}] = 0$ where o indexes outcomes not used in the inversion procedure and $X_{r,k}$ is either a constant, an exogenous covariate, or a region-specific parameter. Thus, unlike a

¹⁸The residuals u_r include measurement errors arising from the RAIS sample used to calculate the AKM decomposition (a three-year leave-out connected set) differing from that used for constructing other moments (the complete data for a single year). To partly address this issue, I normalize AKM decomposition outcomes such that the total variance of log wages is the same as in the primary sample. A complete solution—modeling selection into the leave-out set—would add significant complexity to the paper and is thus left to future work.

standard regression model, my structural model is not guaranteed to match average levels of target outcomes, and cross-sectional fit may be poor. In the following, I show that, on the contrary, the model fits the data very well.

6.1.3 Estimation results

I estimate the model using the Levenberg-Marquardt method with region and equation weights. Region weights are identical to those used in Section 3: total formal employment in the region (adding up both years). Equations were weighted by the inverse mean squared error from the “Simple” regressions described in Appendix D.7.4. This procedure down-weights moments with more residual variation after eliminating the linear contributions of time effects, educational composition, and minimum wage bindingness. The one exception to this rule is the minimum wage spike. There, the equation weight is half of what those residuals imply. The model tends to overestimate the spike, possibly because it does not include factors such as fairness/relative wage concerns within the firm.¹⁹ Assigning half weight to the spike allows the model to match that moment fairly well without worsening the fit quality in other dimensions. See Appendix D.4 for an extended discussion.

Estimation is computationally costly because, for each region, one must invert the regional parameters based on the subset of endogenous variables, find the equilibrium, and then simulate all moments. Each optimization step requires performing that procedure 16,006 times: 151 regions \times 2 time periods \times (1 base value + 52 Jacobian columns). Furthermore, I use several starting points because the loss function may not be globally concave. Appendix D.7 details the implementation, describing, for example, how to increase tractability by performing the inversion and equilibrium finding procedures simultaneously.

Table 3 shows a subset of the estimated parameters. The others—labor demand determinants $\delta_i^{d,t}$ —appear in Appendix Table D4. Before discussing the values I find for the key elasticities in the model, I note that one parameter, the dispersion in comparative advantage for workers with less than secondary education, was estimated at the boundary of the parametric space: $\hat{S}_{\hat{h}=1} = 0$. The interpretation is that, within the group of workers with little formal education, productivity differences exclusively reflect heterogeneity in efficiency units of labor

¹⁹Suppose that after a minimum wage hike, if wages are adjusted to match the new minimum, entry-level wages become as high as wages for more senior workers engaged in the same type of work. In that case, the firm may introduce raises for the latter such that they remain above the spike to preserve the ordering of earnings within the firm.

Table 3: Selected parameter estimates

Parameter	Estimate	Std. Error
<i>Panel A: Worker types</i>		
$\mu_{\hat{h}=2}$ (modal comp. adv. type, secondary)	3.67	(0.10)
$\rho_{\hat{h}=1}$ (dispersion in comp. adv., less than secondary)	0	-
$\rho_{\hat{h}=2}$ (, secondary)	2.52	(0.07)
$\rho_{\hat{h}=3}$ (, tertiary)	3.05	(0.28)
$\hat{S}_{\hat{h}=1}$ (dispersion in abs. adv., less than secondary)	0.81	(0.06)
$\hat{S}_{\hat{h}=2}$ (, secondary)	0.19	(0.04)
$\hat{S}_{\hat{h}=3}$ (, tertiary)	0.40	(0.15)
χ (skewness of abs. adv. distribution)	-0.99	(0.29)
<i>Panel B: Worker preferences</i>		
σ (elast. of substitution between goods)	8.36	(3.33)
λ (aggregate labor supply parameter)	1.51	(0.16)
$\log \hat{z}_{0,\hat{h}=1,t=2}^{HT}$ (participation shock, less than secondary)	-0.04	(0.02)
$\log \hat{z}_{0,\hat{h}=3,t=2}^{HT}$ (participation shock, tertiary)	-0.66	(0.19)
Λ (rel. effect of regional part. shocks on tertiary)	0.27	(0.11)
<i>Panel C: Labor demand</i>		
κ (blueprint shape)	6.80	(1.27)
$\theta_{1,1998}/\theta_{2,1998}$ (rel. complexity of low-skill good, 1998)	0.32	(0.04)
$\theta_{1,1998}/\theta_{2,2012}$ (, 2012)	0.11	(0.01)

Notes: Standard errors are cluster-robust at the region level. They are calculated using the asymptotic formula from Proposition 7 in Appendix D.6.

instead of comparative advantage.²⁰

The estimated elasticity of substitution between goods is $\sigma = 8.36$. That estimate is somewhat imprecise, but the hypothesis $\sigma \leq 1$ (goods are *not* net substitutes) is rejected at the 95% confidence level. Thus, we should expect significant reallocation effects in the long run. Since the point estimate is substantially higher than $\beta + 1 = 5$, an increase in the supply of skilled workers should also increase the share of those workers employed at skill-intensive firms, following Proposition 4.

One may wonder whether the model predicts unplausible changes in the composition of firm types in the economy in the long run, given the large estimate for σ . To investigate that possibility, I calculate shares of employed workers at firms producing good $g = 2$ in each region and period based on the estimated model parameters. The mean change in that

²⁰Table 3 does not report standard errors for that parameter because the asymptotic formula is not valid at the boundary. To conduct inference on other parameters, I assume that $\hat{S}_{\hat{h}=1}$ is known to be equal to zero, such that it does not belong to the vector Θ^G .

Table 4: Quality of fit along targeted moments

Moments	Data		Model		R2
	1998 (1)	2012 (2)	1998 (3)	2012 (4)	
<i>Wage inequality measures</i>					
Secondary / less than secondary	0.498	0.168	0.478	0.168	0.755
Tertiary / secondary	0.965	1.038	0.981	0.954	0.127
Within less than secondary	0.41	0.241	0.401	0.233	0.607
Within secondary	0.684	0.355	0.67	0.331	0.848
Within tertiary	0.702	0.624	0.701	0.637	0.139
<i>Two-way fixed effects decomposition</i>					
Variance establishment effects	0.126	0.054	0.126	0.04	0.586
Covariance worker, estab. effects	0.052	0.046	0.056	0.059	0.374
<i>Formal employment rates</i>					
Less than secondary	0.266	0.337	0.266	0.335	0.953
Secondary	0.435	0.508	0.435	0.508	1.0
Tertiary	0.539	0.629	0.539	0.63	0.89
<i>Minimum wage bindingness</i>					
Log min. wage - mean log wage	-1.418	-0.922	<i>-1.418</i>	<i>-0.922</i>	1.0
Share < log min. wage + 0.05	0.031	0.053	0.046	0.084	0.528
Share < log min. wage + 0.30	0.086	0.212	0.107	0.201	0.873

Notes: Columns (1) through (4) report national averages of the corresponding moments for each year, calculated using region weights based on total formal employment. Column (5) reports the usual R2 metric $r_e^2 = 1 - \left[\sum_{t=1}^2 \sum_{r=1}^{151} s_r (Y_{e,r,t} - \hat{Y}_{e,r,t})^2 \right] / \left[\sum_{t=1}^2 \sum_{r=1}^{151} s_r (Y_{e,r,t} - \bar{Y}_e)^2 \right]$, where e indexes the specific target moment, $\hat{Y}_{e,r,t}$ is the model prediction, and \bar{Y}_e is the sample average using the region weights s_r . The italicized numbers represent instances where the quality of fit is perfect due to the inversion procedure used to estimate the model.

share is -0.116, with a standard deviation of 0.070. The highest increase is from 0.219 to 0.366, while the most negative change is from 0.625 to 0.252. That means the production possibilities frontier is “concave enough” to prevent unrealistic reallocation responses and corner solutions, even though the shocks affecting the Brazilian economy are substantial.

The estimated λ implies aggregate labor supply elasticities to the formal sector of around 0.6-0.7 for college workers. These values are in the upper range of steady-state elasticities inferred from microdata in the US but also below the values between 1 and 2 typically used in macroeconomic models (Keane and Rogerson, 2012). Elasticities are larger for less skilled workers, reaching 1.1 for those with less than high school in 1998. This difference aligns well with informality being an important outside option for those workers. For example, Dix-Carneiro and Kovak (2017) find evidence of formal-informal transitions in microregions

Table 5: Effects of supply, demand, minimum wage, and their interactions

Outcome	Base	All	Individual effects:			Interactions			Triple
	value	Changes	S	D	M	S+D	S+M	D+M	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Variance of log wages	0.73	-0.22	0.04	-0.18	-0.13	0.00	0.02	0.03	0.01
Var. worker effects	0.44	-0.12	-0.01	-0.06	-0.06	0.01	0.01	-0.03	0.01
Var. estab. effects	0.13	-0.09	0.00	-0.09	0.00	0.00	-0.01	0.00	0.01
2×Cov. worker, estab	0.11	0.01	0.04	-0.02	-0.07	-0.01	0.01	0.06	-0.01
Var. residuals	0.06	-0.02	0.00	-0.01	-0.01	0.00	0.00	0.00	0.00
Corr. worker, estab effects	0.23	0.30	0.09	0.19	-0.14	0.01	0.04	0.15	-0.03

Notes: Each row shows within-region effects averaged across all 151 regions using total formal employment summed over 1998 and 2012 as weights. “S” is for supply (the rise in educational achievement of the adult population), “D” is for the combined changes in demand-side parameters, and “M” is for the real minimum wage increase of 66.1 log points. See the text for an explanation of each column.

more affected by trade liberalization.

Table 4 shows that the model fits the data effectively. Columns (1)–(4) report national averages for each targeted moment, separately by year. Overall, model-implied averages closely track their data counterparts. Column (5) shows that, beyond national averages, the model also has predictive power in the cross-section. I postpone a detailed discussion of the quality of fit until the model validation section, following the counterfactual simulations.

6.2 Counterfactual exercises

This subsection presents the counterfactual analyses that I use to understand how supply, demand, and minimum wage shocks affected Brazilian labor markets between 1998 and 2012. As mentioned above, the supply shock is the change in the educational composition of the adult population, and the minimum wage shock is an increase of 66.1 log points in the minimum wage relative to the price index in all regions. The demand shock combines all other time-varying factors in the model: TFP, task requirements, relative entry costs, relative consumer taste, and outside option parameters. In Appendix D.8.2, I discuss why outside options are included in the demand shock and separately show comparative statics for different demand parameters.

6.2.1 Supply, demand, minimum wage, and their interactions

Table 5 shows the impact of those shocks on the variance of log wages and variance components from the AKM decomposition. Columns (1) and (2) show base levels and total changes for each outcome, averaged over regions. Columns (3), (4), and (5) explore counterfactuals where only one factor changes, starting from the 1998 equilibria. Columns (6), (7), and (8) show pairwise interactions. To calculate them, I simulate the combined effect of two shocks and then subtract the corresponding individual effects. Finally, Column (9) shows the triple interaction, that is, the difference between Column (2) and the sum of Columns (3)–(8). Appendix D.8.1 shows similar decompositions for other outcomes of interest.

The combination of demand shocks and the minimum wage had strong inequality-reducing effects in Brazil, while the supply shock had a weak—but positive—effect. The model also reveals significant interactions that would not be detectable without a unified approach. For example, if minimum wages were the only change between 1998 and 2012, the variance of log wages would have fallen by 0.13. However, another meaningful counterfactual involves considering what would have happened if supply and demand changed, but the minimum wage stayed at the 1998 level. This scenario corresponds to adding up the effects in columns (5), (7), (8), and (9). In that case, inequality in 2012 would be higher, but only by 0.07. In other words, the inequality-reducing effects of the minimum wage were damped by other transformations affecting the Brazilian economy during the same period.

The increase in assortative matching of high-wage workers to high-wage firms comes from supply and demand, with the latter being more important. If minimum wages were the only transformation affecting the Brazilian economy between 1998 and 2012, sorting would have fallen significantly. However, when accompanied by the supply and demand changes, as described in the previous paragraph, its effect on the correlation between worker and establishment effects is close to zero.²¹

The following two sections discuss the effects of supply and minimum wage in more detail. Before getting there, I briefly discuss the nature and impact of labor demand shocks in the Brazilian context. They are more challenging to interpret for two reasons. First, as

²¹One may wonder whether the heterogeneity in the causal effects of the minimum wage would be captured by models that assume minimum wage effects are heterogeneous depending on how binding it is. The answer is no. In both exercises, the initial and final levels of average minimum wage bindingness are about the same regardless of which bindingness metric is used. If anything, the increase in the log minimum wage relative to the mean log wage is higher in the second exercise, where the minimum wage impacts are weakest. See Appendix Table D9, Panel C for details.

Table 6: Decomposition of the impact of supply shocks

Outcome	Total supply effect (1)	Compositional effect (2)	Task assignments (3)	Scale, entry, and prices (4)
Variance of log wage	0.066	0.084	-0.221	0.203
Corr. worker, estab. effects	0.098	0.075	-0.165	0.189
Educational premium	0.008	0.000	-0.393	0.401

Notes: This table decomposes the effects of rising schooling achievement in Brazil, displayed in Column (1). Column (2) accounts for compositional effects, keeping log wages and employment shares at each firm type unchanged. Column (3) measures changes from the re-weighting scenario to a partial equilibrium where firms can reassign workers to tasks to take advantage of the increased supply of skills, keeping production levels, firm entry, and prices constant. Column (4) corresponds to the change from the partial equilibrium to the new general equilibrium, accounting for scale, entry, and price responses.

explained above, these shocks are not observed; instead, they are inferred from observed changes in inequality and sorting after netting out the contribution of supply and minimum wage. Second, several transformations could have plausibly affected labor demand in this period: trade liberalization, the commodities boom, import competition from China, the internet, rising availability of skill-biased forms of capital such as computers and robots, and changing labor regulation enforcement.

According to the model, the net effect of those transformations was a reduction in most inequality measures and an increase in assortative matching. They come from changes in structural parameters that, on average, make the two firm types in the model closer to each other regarding entry costs but further apart in task complexity, such that segregation by skill increases. Interestingly, the significant reduction in the variance of establishment fixed effects in the Brazilian context, first documented by [Alvarez et al. \(2018\)](#), is explained in my model by those demand-side transformations. That interpretation is consistent with the results in [Engbom and Moser \(2022\)](#). Using their estimated structural model, they find that the Brazilian federal minimum wage increase barely affects the variance of establishment effects (see Appendix E.2 in their paper).

6.2.2 Supply effects: composition, returns to skill, or reallocation?

Even if posted wages and allocations remained constant for every worker group, we should expect wage statistics to be affected by changes in workforce composition. For example, the variance of log wages may rise because the estimated model features more productivity dispersion among educated workers. There could also be statistical effects on sorting.

Beyond the statistical effects of compositional shifts, the model specifies two types of endogenous responses to the supply shock. The first derives from firms reoptimizing the assignment of workers to tasks to take advantage of the increased supply of skilled workers. To isolate this effect, I calculate a partial equilibrium in which firm production levels, firm entry, and prices for goods remain at their initial levels. This channel emphasizes the concavity of the task-based production function and represents the central component of competitive, representative-firm models of wage inequality.²²

The other endogenous response derives from changes in labor allocation across firms, emphasized in Proposition 4. Given that the estimated $\sigma = 8.36$ is substantially above $\beta + 1 = 5$, we should expect net reallocation of labor toward high-wage, skill-intensive firms.

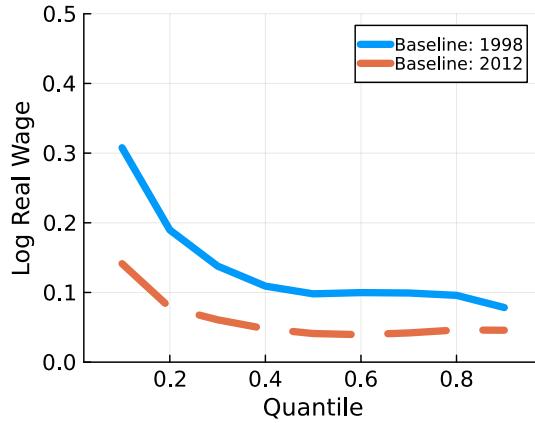
Table 6 splits the effects of the educational shock in Brazil into these three components: compositional effects, task reallocations within firms, and reallocation of labor across firms. In this exercise, I define the effects to be decomposed as the difference between the 2012 equilibrium and a counterfactual scenario where workforce composition remains constant at the 1998 levels. Under this definition, rising educational attainment increases the variance of log wages and sorting by 0.066 and 0.098, respectively, corresponding to adding up columns (3), (6), (7), and (9) in Table 5. The educational premium, defined as the gap in mean log wages between college workers and those with less than complete high school, would have remained roughly constant.

Table 6 displays the decomposition exercise. Its main message is that while task reassessments and cross-firm reallocations are impactful in isolation, they largely offset each other in determining those three outcomes. When production levels, entry, and prices are kept constant, the increased availability of skilled workers moves task thresholds to the left, leading to significant reductions in skill wage premiums. However, cost reductions drive up demand for skill-intensive goods. The resulting reallocation of labor between firms increases the average skill premium, inequality, and assortative matching. These results highlight the importance of accounting for firm wage premiums, sorting, scale effects, and endogenous firm entry when calculating the long-run effects of educational shocks.

In the discussion of Proposition 4, I argued that positive supply shocks may widen the aggregate skill wage premium instead of compressing it as in the canonical competitive model. To

²²To calculate that partial equilibrium, I define a wedge between prices perceived by consumers—which are kept constant—and prices perceived by firms. These wedges and task thresholds are the equilibrium variables; the equilibrium conditions are determined by equating labor supply and labor demand for all firm types.

Figure 6: Minimum wage spillovers



Notes: This figure shows minimum wage impacts on quantiles of within-region log wage distributions, averaged over all regions. The blue line corresponds to a 66.1 log point increase in the minimum wage starting from the 1998 equilibria. The orange dashed line corresponds to a similar-sized reduction starting from the 2012 equilibria.

illustrate this possibility, I simulate the effects of small increases in the share of workers with complete college in all region-time combinations. If the baseline models are the 1998 equilibria, the educational premium falls in all but six regions. However, if the baseline models are the 2012 equilibria, it widens in 109 out of 151 regions. The difference between those scenarios illustrates how reallocation effects may depend on equilibrium characteristics, such as the starting level of segregation by skill across firms.

6.2.3 The impacts of the rising minimum wage

Figure 6 plots the rising minimum wage's impact on regional wage distribution deciles, averaged over all regions. Effects are positive at all points. The minimum wage substantially reduces inequality in the lower tail of the wage distribution but has no inequality-reducing effects in the upper tail. The difference between the two curves reflects the significant interactions I have described in Subsection 6.2.1: the wage distribution effects of a minimum wage increase starting from 1998 are about twice as strong as a similar-sized reduction based on the model as of 2012.

Next, I evaluate how the minimum wage affects the average outcomes of workers grouped by productivity. That exercise differs from Figure 6 because the same quantile of the wage distribution may correspond to workers of different productivity levels before and after the introduction of the minimum wage. If the minimum wage causes disemployment of low-

Table 7: Wage and employment effects of the minimum wage

Prod. decile	Pop. share	Base wage	Mean wage changes, by channel:			Base emp.	Emp. elasticities w.r.t.:		
(1)	(2)	(3)	Monopsony	Wage posting	Gen. eq.	(7)	Min.	Mean	·, monops.
1	0.15	1.24	0.75	-0.01	-0.01	0.21	-0.61	-0.97	-0.92
2	0.12	1.78	0.49	-0.02	-0.02	0.27	-0.16	-0.61	-0.58
3	0.11	2.35	0.02	-0.01	0.02	0.28	0.01		
4	0.11	2.97	-0.00	-0.02	0.04	0.29	-0.01		
5	0.10	3.75	-0.00	-0.02	0.05	0.31	-0.01		
6	0.10	4.76	0.00	-0.02	0.06	0.33	-0.01		
7	0.09	6.11	-0.00	-0.01	0.07	0.37	-0.01		
8	0.08	8.13	-0.00	0.00	0.07	0.40	-0.00		
9	0.07	11.91	0.00	0.04	0.08	0.45	-0.00		
10	0.06	25.04	-0.00	0.11	0.09	0.50	0.00		

Notes: Each row reports the causal effects of an increase of 66.1 log points in the minimum wage in all regions. Adults are grouped based on productivity at skill-intensive firms, such that each row corresponds to 10% of the employed population (i.e., the product of Columns (2) and (7) is constant across rows). Wage effects are decomposed as described in Subsection 5.6: partial-equilibrium effects under monopsony, wage posting responses, and general equilibrium. Columns (8) and (9) report employment elasticities with respect to the log real minimum wage and the mean wage for the group. Column (10) resembles Column (9) but only considers the monopsony channel.

skilled workers, changes in quantiles may be mechanical consequences of truncation, as explained by [Lee \(1999\)](#). Furthermore, even if net employment effects are zero, the minimum wage may introduce compositional changes in the lower tail, which could affect observed log wage quantiles (as illustrated in Figure 3).

Table 7 reports that analysis, showing the effects of a *ceteris paribus* increase in the minimum wage starting from the 1998 equilibria. Workers are grouped at the national level based on their productivity if employed at their region's skill-intensive firms. Column (3) shows the mean wage for the subset of adults employed at the initial equilibrium. Columns (4), (5), and (6) show how the mean wage for employed workers changes within that group of adults. Each column isolates one of the channels described in Subsection 5.6: partial equilibrium effects under monopsony (which combines disemployment, positive employment effects, mechanical wage increases, and cross-firm reallocation), wage posting (encompassing changes in firm-specific returns to skill under constant prices and entry), and general equilibrium (corresponding firm creation and price responses).

Only workers in the bottom two productivity deciles see noteworthy changes in average wages; for all others, wages rise by about one percent once all channels are considered. The

strong wage effects in the lower tail come primarily from the “monopsony” channel. The small increases for all other workers, in turn, come from the other two channels.

The wage posting channel reduces wages for low- and middle-skill workers and increases them for those at the top two deciles. Those effects originate from the reallocation of low-skilled workers from low- to high-wage firms, which increases the returns to skill at the latter. General equilibrium effects generate modest wage increases for almost all worker types. However, for low-productivity workers, those effects are harmful. The reason is that relative labor demand for low-skill workers falls following a reduction in the number of low-wage, low-skill firms.

At first glance, the almost negligible wage effects for workers in productivity deciles three and above may seem difficult to reconcile with the positive effects on all wage deciles reported in Figure 6. The difference emerges from the disemployment effects in the lower two deciles. Columns (8) and (9) of Table 7 show that the implied employment elasticities for the lowest group are in the lower range of estimates for the US (Harasztsosi and Lindner, 2019; Neumark and Shirley, 2021). In Appendix D.8.4, I discuss possible reasons why the predictions of my model regarding disemployment effects in the lower tail differ from reduced-form regression results reported by Engbom and Moser (2022).²³

6.2.4 Model validation and discussion

Micro-level validation of task assignment and wage-setting: Because all estimation targets are at the local labor market level, the ability of the structural model to fit those moments does not provide direct empirical support for the microeconomic mechanisms emphasized in the theoretical discussion. To fill this gap, Appendix D.3 estimates micro-level regression models designed to validate those mechanisms without relying on the parametric assumptions of the structural model.

Specifically, I test three predictions of the task-based model of production: skill-intensive firms have more demand for complex tasks (Figure 1); within firms, more skilled workers are assigned more complex tasks (Lemma 1); with monopsony power, workers moving to more skill-intensive firms move to more complex tasks (Lemma 2). These tests employ the nonroutine cognitive content of Brazilian occupations (calculated by de Sousa 2020 based

²³In Column (10), I report the employment elasticity with respect to the minimum wage accounting only for the first channel. The resulting numbers are smaller but close to the ones in Column (9), suggesting that ignoring the wage-posting and general equilibrium channels when evaluating minimum wage impacts for low-skill workers may not lead to dramatic biases.

on the work of [Deming 2017](#)) as a proxy for task complexity. I also test a prediction from the wage-setting model: wage gaps between high- and low-skill firms should be larger for skilled workers ([Proposition 3](#)). I find strong support for all four predictions, lending credibility to the theoretical and quantitative results in the paper.

Quality of fit: Previously, I showed that the estimated model closely reproduces average outcomes in the data and, in addition, successfully explains a significant fraction of the cross-sectional variation as well ([Table 4](#)). The framework accounts for rising assortative matching and the significant declines in wage inequality according to several metrics.

The only qualitative pattern not replicated by the model is the observed *increase* in the college premium. The lack of a perfect fit along this margin is not surprising, given that the model is overidentified and that this moment has the least weight in the estimation procedure. It suggests that a more flexible model of demand transformations at the top of the skill distribution would be needed to match this moment precisely. However, while the qualitative pattern is incorrect, the *quantitative* gap between observed and predicted outcomes is small. The model accurately predicts the college premium in 1998; for 2012, the predicted premium is only 0.084 below the observed 1.038. This slight discrepancy is unlikely to compromise the reliability of the counterfactual results.

[Appendix D.7.5](#) presents an extended discussion of the fit quality, including performance regarding untargeted moments and figures showing how histograms of log wages predicted by the model compare with the data. That discussion reinforces the view that, despite its parsimony, the model provides an excellent approximation for Brazilian labor markets over the period studied.

Comparison to the results in [Engbom and Moser \(2022\)](#): My findings of negligible minimum wage effects beyond the bottom two deciles of worker productivity differ from those in [Engbom and Moser \(2022\)](#). Specifically, their simulations based on a frictional model imply that the wage effects of the Brazilian federal minimum wage extend much farther up the worker productivity distribution.

There are two main reasons for that difference. [Engbom and Moser \(2022\)](#) uses a wage-posting model with perfect substitution between workers at the firm level and without non-wage amenities. A consequence of those assumptions is that an increase in the minimum wage boosts posted wages at all other firms (with more potent effects at low-wage firms). In

my model, wage-posting responses at high-wage firms can instead be negative for low-skill workers due to the returns to skill channel mentioned above.

A second reason my results differ from those in [Engbom and Moser \(2022\)](#) is my use of a local labor markets approach. In their model, disemployment effects for very low-skilled workers are damped by reallocation to firms in the top 5% of the productivity distribution (see their Appendix Figure E.3). Many of these firms may be in the wealthiest parts of the country, while the displaced workers may be in the poorest. My model does not allow for geographical mobility, limiting the extent of minimum wage-induced reallocation. This approach is consistent with [Dix-Carneiro and Kovak \(2017\)](#), who document that the Brazilian microregions most affected by tariff reductions in the 1990s saw declines in formal employment but no systematic out-migration responses.

7 Conclusion

The unified framework proposed in this paper combines two labor economics perspectives on the determinants of wage distribution: supply/demand models focusing on endogenous productivity gaps between workers and imperfectly competitive labor market models focusing on firm wage differentials and sorting. I have demonstrated that these two traditions interact. One such interaction is how including firm wage premiums in a supply/demand framework may qualitatively change the effects of education on wage distribution. After fitting a structural model to Brazilian data, I find that the significant increase in schooling achievement between 1998 and 2012 does not explain the decline in wage inequality observed during this period. Because firms in the model use concave production functions, a rising supply of skilled workers would have significantly compressed skill wage premiums if production levels, firm entry, and prices remained constant. However, as those variables are allowed to adjust to the supply shock, skilled labor flows toward high-wage firms, causing increases in average skill premiums. The within-firm and reallocation effects offset each other at the aggregate level, explaining the limited role of supply shocks.

I also show that combining task-based production, firm heterogeneity, and monopsony power generates new channels through which the minimum wage affects employment and wages. For example, following a minimum wage increase, high-wage firms may receive an inflow of low-skilled labor reallocated from low-wage firms. This inflow reduces the marginal product of that kind of labor at the receiving firms, lowering posted wages. The unified

approach also allows for measuring how minimum wages interact with changes in supply and demand factors. In Brazil, the rise of the federal minimum wage was accompanied by growing educational achievement and a series of labor demand shocks. The structural model predicts that, while the minimum wage contributed to falling inequality, it would have had more potent impacts if it were the only shock affecting the economy then.

As a technical contribution, the paper introduces the task-based production function and shows that it is a convenient tool for studying labor markets with rich worker and firm heterogeneity. It offers a tractable, intuitive, and parsimonious means of modeling cross-firm differences in labor demand patterns. It also enables the modeling of different forms of technical change. One avenue for further research is to employ this tool for understanding the effects of routine-biased technical change (Autor, Levy and Murnane, 2003; Acemoglu and Autor, 2011) in a context with firm heterogeneity and imperfect competition.

References

Aaronson, Daniel, Eric French, Isaac Sorkin, and Ted To. 2018. “INDUSTRY DYNAMICS AND THE MINIMUM WAGE: A PUTTY-CLAY APPROACH.” *International Economic Review*, 59(1): 51–84.

Abowd, John M, Francis Kramarz, and David N Margolis. 1999. “High Wage Workers and High Wage Firms.” *Econometrica*, 67(2): 251–333.

Acemoglu, Daron. 1998. “Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality.” *The Quarterly Journal of Economics*, 113(4): 1055–1089.

Acemoglu, Daron. 1999. “Changes in Unemployment and Wage Inequality: An Alternative Theory and Some Evidence.” *The American Economic Review*, 89(5): 1259–1278.

Acemoglu, Daron. 2007. “Equilibrium Bias of Technology.” *Econometrica*, 75(5): 1371–1409.

Acemoglu, Daron, and David Autor. 2011. “Skills, Tasks and Technologies: Implications for Employment and Earnings.” In *Handbook of Labor Economics*. Vol. 4, Part B, , ed. David Card and Orley Ashenfelter, Chapter 12, 1043–1171. Elsevier.

Ales, Laurence, Musab Kurnaz, and Christopher Sleet. 2015. “Technical Change, Wage Inequality, and Taxes.” *American Economic Review*, 105(10): 3061–3101.

Almeida, Rita, and Pedro Carneiro. 2012. “Enforcement of Labor Regulation and Informativity.” *American Economic Journal: Applied Economics*, 4(3): 64–89.

Alvarez, Jorge, Felipe Benguria, Niklas Engbom, and Christian Moser. 2018. “Firms and the Decline in Earnings Inequality in Brazil.” *American Economic Journal: Macroeconomics*, 10(1): 149–89.

Andrews, M. J., L. Gill, T. Schank, and R. Upward. 2008. “High wage workers and low wage firms: negative assortative matching or limited mobility bias?” *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 171(3): 673–697.

Antràs, Pol, Luis Garicano, and Esteban Rossi-Hansberg. 2006. “Offshoring in a Knowledge Economy.” *The Quarterly Journal of Economics*, 121(1): 31–77.

Autor, David H., Alan Manning, and Christopher L. Smith. 2016. “The Contribution of the Minimum Wage to US Wage Inequality over Three Decades: A Reassessment.” *American Economic Journal: Applied Economics*, 8(1): 58–99.

Autor, David H, Frank Levy, and Richard J Murnane. 2003. “The Skill Content of Recent Technological Change: An Empirical Exploration.” *The Quarterly Journal of Economics*, 118(4): 1279–1333.

Azar, José, Emiliano Huet-Vaughn, Ioana Marinescu, Bledi Taska, and Till von Wachter. 2019. “Minimum Wage Employment Effects and Labor Market Concentration.” Working Paper 26101.

Bagger, Jesper, and Rasmus Lentz. 2019. “An Empirical Model of Wage Dispersion with Sorting.” *The Review of Economic Studies*, 86(1): 153–190.

Berger, David, Kyle Herkenhoff, and Simon Mongey. 2022. “Labor Market Power.” *American Economic Review*, 112(4): 1147–93.

Berger, David, Kyle Herkenhoff, and Simon Mongey. 2024. “Minimum Wages, Efficiency and Welfare.” *Unpublished manuscript*.

Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. “Julia: A fresh approach to numerical computing.” *SIAM review*, 59(1): 65–98.

Blundell, Richard, David A Green, and Wenchao Jin. 2021. “The U.K. as a Technological Follower: Higher Education Expansion and the College Wage Premium.” *The Review of Economic Studies*, 89(1): 142–180.

Bonhomme, Stéphane, Thibaut Lamadon, and Elena Manresa. 2019. “A Distributional Framework for Matched Employer Employee Data.” *Econometrica*, 87(3): 699–739.

Bound, John, and George Johnson. 1992. “Changes in the Structure of Wages in the 1980’s: An Evaluation of Alternative Explanations.” *The American Economic Review*, 82(3): 371–392.

Burdett, Kenneth, and Dale T. Mortensen. 1998. “Wage Differentials, Employer Size, and Unemployment.” *International Economic Review*, 39(2): 257–273.

Butschek, Sebastian. 2022. “Raising the Bar: Minimum Wages and Employers’ Hiring Standards.” *American Economic Journal: Economic Policy*, 14(2): 91–124.

Card, David, Ana Rute Cardoso, Joerg Heining, and Patrick Kline. 2018. “Firms and Labor Market Inequality: Evidence and Some Theory.” *Journal of Labor Economics*, 36(S1): S13–S70.

Card, David, and Thomas Lemieux. 2001. “Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis.” *The Quarterly Journal of Economics*, 116(2): 705–746.

Card, David, Jörg Heining, and Patrick Kline. 2013. “Workplace Heterogeneity and the Rise of West German Wage Inequality.” *The Quarterly Journal of Economics*, 128(3): 967.

Carneiro, Pedro, Kai Liu, and Kjell G Salvanes. 2022. “The Supply of Skill and Endogenous Technical Change: Evidence from a College Expansion Reform.” *Journal of the European Economic Association*, 21(1): 48–92.

Costa, Francisco, Jason Garred, and João Paulo Pessoa. 2016. “Winners and losers from a commodities-for-manufactures trade boom.” *Journal of International Economics*, 102: 50–69.

Costinot, Arnaud, and Jonathan Vogel. 2010. “Matching and Inequality in the World Economy.” *Journal of Political Economy*, 118(4): 747–786.

Coviello, Decio, Erika Deserranno, and Nicola Persico. 2022. “Minimum Wage and Individual Worker Productivity: Evidence from a Large US Retailer.” *Journal of Political Economy*, 130(9): 2315–2360.

Deming, David, and Lisa B. Kahn. 2018. “Skill Requirements across Firms and Labor Markets: Evidence from Job Postings for Professionals.” *Journal of Labor Economics*, 36(S1): S337–S369.

Deming, David J. 2017. “The Growing Importance of Social Skills in the Labor Market.” *Quarterly Journal of Economics*, 132(4): 1593–1649.

Derenoncourt, Ellora, François Gérard, Lorenzo Lagos, and Claire Montialoux. 2021. “Racial Inequality, Minimum Wage Spillovers, and the Informal Sector.” Unpublished manuscript.

de Sousa, Gustavo. 2020. “The Labor Market Consequences of (In)Appropriate Technology.” Unpublished manuscript.

Dix-Carneiro, Rafael, and Brian K. Kovak. 2017. “Trade Liberalization and Regional Dynamics.” *American Economic Review*, 107(10): 2908–46.

Dustmann, Christian, Attila Lindner, Uta Schönberg, Matthias Umkehrer, and Philipp vom Berge. 2021. “Reallocation Effects of the Minimum Wage*.” *The Quarterly Journal of Economics*, 137(1): 267–328.

Eckhout, Jan, and Philipp Kircher. 2011. “Identifying Sorting—In Theory.” *The Review of Economic Studies*, 78(3): 872–906.

Eckhout, Jan, and Roberto Pinheiro. 2014. “Diverse Organizations and the Competition for Talent.” *International Economic Review*, 55(3): 625–664.

Engbom, Niklas, and Christian Moser. 2022. “Earnings Inequality and the Minimum Wage: Evidence from Brazil.” *American Economic Review*, 112(12): 3803–47.

Engerman, S.L., and K.L. Sokoloff. 2012. *Economic Development in the Americas Since 1500: Endowments and Institutions. NBER Series on Long-Term Factors*, Cambridge University Press.

Firpo, Sergio, and Alysson Portella. 2019. “Decline in Wage Inequality in Brazil: A Survey.” World Bank Policy Research Working Paper 9096.

Flinn, Christopher J. 2006. “Minimum Wage Effects on Labor Market Outcomes under Search, Matching, and Endogenous Contact Rates.” *Econometrica*, 74(4): 1013–1062.

Fortin, Nicole M., Thomas Lemieux, and Neil Lloyd. 2021. “Labor Market Institutions and the Distribution of Wages: The Role of Spillover Effects.” *Journal of Labor Economics*, 39(S2): S369–S412.

Garicano, Luis. 2000. “Hierarchies and the Organization of Knowledge in Production.” *Journal of Political Economy*, 108(5): 874–904.

Garicano, Luis, and Esteban Rossi-Hansberg. 2006. “Organization and Inequality in a Knowledge Economy.” *The Quarterly Journal of Economics*, 121(4): 1383–1435.

Haanwinckel, Daniel. 2024. “Does regional variation in wage levels identify the effects of a national minimum wage?” arXiv:2307.01284.

Hahn, Jinyong, and Guido Kuersteiner. 2002. “Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects When Both n and T Are Large.” *Econometrica*, 70(4): 1639–1657.

Hahn, Jinyong, and Whitney Newey. 2004. “Jackknife and Analytical Bias Reduction for Nonlinear Panel Models.” *Econometrica*, 72(4): 1295–1319.

Harasztosi, Peter, and Attila Lindner. 2019. “Who Pays for the Minimum Wage?” *American Economic Review*, 109(8): 2693–2727.

Helpman, Elhanan, Oleg Itskhoki, Marc-Andreas Muendler, and Stephen J Redding. 2017. “Trade and Inequality: From Theory to Estimation.” *The Review of Economic Studies*, 84(1): 357.

Herkenhoff, Kyle, Jeremy Lise, Guido Menzio, and Gordon M Phillips. 2018. “Production and Learning in Teams.” National Bureau of Economic Research Working Paper 25179.

Hurst, Erik, Patrick Kehoe, Elena Pastorino, and Thomas Winberry. 2022. “The Distributional Impact of the Minimum Wage in the Short and Long Run.” *Unpublished manuscript*.

"IBGE", Instituto Brasileiro de Geografia e Estatística. 2003. *Metodologia do Censo Demográfico 2000*. IBGE.

Jäger, Simon, and Jörg Heining. 2022. “How Substitutable Are Workers? Evidence from Worker Deaths.” *Unpublished manuscript*.

Katz, Lawrence F, and Kevin M Murphy. 1992. “Changes in Relative Wages, 1963-1987: Supply and Demand Factors.” *The Quarterly Journal of Economics*, 107(1): 35–78.

Keane, Michael, and Richard Rogerson. 2012. “Micro and Macro Labor Supply Elasticities: A Reassessment of Conventional Wisdom.” *Journal of Economic Literature*, 50(2): 464–476.

Kline, P., R. Saggio, and M. Sølvsten. 2018. “Leave-out estimation of variance components.” *ArXiv e-prints*.

Kremer, Michael, and Eric Maskin. 1996. “Wage Inequality and Segregation by Skill.” National Bureau of Economic Research Working Paper 5718.

Kroft, Kory, Yao Luo, Magne Mogstad, and Bradley Setzler. 2023. “Imperfect Competition and Rents in Labor and Product Markets: The Case of the Construction Industry.” NBER Working Paper 27325.

Krusell, Per, Lee E Ohanian, José-Víctor Ríos-Rull, and Giovanni L Violante. 1999. “Capital-skill Complementarity and Inequality: A Macroeconomic Analysis.” *Econometrica*, 68(5): 1029–1053.

Lamadon, Thibaut, Magne Mogstad, and Bradley Setzler. 2022. “Imperfect Competition, Compensating Differentials, and Rent Sharing in the US Labor Market.” *American Economic Review*, 112(1): 169–212.

Lee, David S. 1999. “Wage Inequality in the United States during the 1980s: Rising Dispersion or Falling Minimum Wage?” *The Quarterly Journal of Economics*, 114(3): 977–1023.

Lindenlaub, Ilse. 2017. “Sorting Multidimensional Types: Theory and Application.” *The Review of Economic Studies*, 84(2): 718–789.

Lise, Jeremy, and Fabien Postel-Vinay. 2020. “Multidimensional Skills, Sorting, and Human Capital Accumulation.” *American Economic Review*, 110(8): 2328–76.

Neumark, David, and Peter Shirley. 2021. “Myth or Measurement: What Does the New Minimum Wage Research Say about Minimum Wages and Job Loss in the United States?” Working Paper 28388.

Neumark, David, and William Wascher. 1992. “Employment Effects of Minimum and Subminimum Wages: Panel Data on State Minimum Wage Laws.” *ILR Review*, 46(1): 55–81.

Ponczek, Vladimir, and Gabriel Ulyssea. 2021. “Enforcement of Labour Regulation and the Labour Market Effects of Trade: Evidence from Brazil.” *The Economic Journal*, 132(641): 361–390.

Rohlin, Shawn M. 2011. “State minimum wages and business location: Evidence from a refined border approach.” *Journal of Urban Economics*, 69(1): 103–117.

Sattinger, Michael. 1975. “Comparative Advantage and the Distributions of Earnings and Abilities.” *Econometrica*, 43(3): 455–468.

SEDLAC. 2022. “Socio-Economic Database for Latin America and the Caribbean.” CED-LAS and The World Bank.

Shephard, Andrew, and Modibo Sidibe. 2019. “Schooling Investment, Mismatch, and Wage Inequality.” PIER Working Paper 19-013.

Smith, Alexander A. 2021. “The minimum wage and teen educational attainment.” *Labour Economics*, 73: 102061.

Song, Jae, David J Price, Fatih Guvenen, Nicholas Bloom, and Till von Wachter. 2018. “Firming Up Inequality*.” *The Quarterly Journal of Economics*, 134(1): 1–50.

Stigler, George J. 1946. “The Economics of Minimum Wage Legislation.” *The American Economic Review*, 36(3): 358–365.

Stolper, Wolfgang F., and Paul A. Samuelson. 1941. “Protection and Real Wages.” *The Review of Economic Studies*, 9(1): 58–73.

Teulings, Coen, and Thijs van Rens. 2008. “Education, Growth, and Income Inequality.” *The Review of Economics and Statistics*, 90(1): 89–104.

Teulings, Coen N. 1995. “The Wage Distribution in a Model of the Assignment of Skills to Jobs.” *Journal of Political Economy*, 103(2): 280–315.

Teulings, Coen N. 2000. “Aggregation Bias in Elasticities of Substitution and the Minimum Wage Paradox.” *International Economic Review*, 41(2): 359–398.

Teulings, Coen N. 2003. “The Contribution of Minimum Wages to Increasing Wage Inequality.” *The Economic Journal*, 113(490): 801–833.

Teulings, Coen N. 2005. “Comparative Advantage, Relative Wages, and the Accumulation of Human Capital.” *Journal of Political Economy*, 113(2): 425–461.

Teulings, Coen N, and Pieter A Gautier. 2004. “The Right Man for the Job.” *The Review of Economic Studies*, 71(2): 553–580.

Trottner, Fabian. 2019. “Who Gains From Scale? Trade and Wage Inequality Within and Between Firms.” Unpublished manuscript.

Verhoogen, Eric A. 2008. “Trade, Quality Upgrading, and Wage Inequality in the Mexican Manufacturing Sector*.” *The Quarterly Journal of Economics*, 123(2): 489–530.

Online Appendix

Supply, Demand, Institutions, and Firms

Daniel Haanwinckel

UCLA and NBER

December 2024

Table of Contents

A	Proofs	2
B	Appendix to the theory	17
B.1	Definition of the task-based production function	17
B.2	Firm sizes and non-wage amenities	18
B.3	Tinbergen's race	20
B.4	Discussion: missing minimum wage channels	21
C	Numerical implementation	23
C.1	Task-based production function	23
C.2	Equilibrium	24
C.3	Simulating measures of wage inequality	27
D	Appendix to the quantitative exercises	28
D.1	Sample sizes	28
D.2	Variance decomposition using Kline, Saggio and Sølvsten (2018)	28
D.3	Validation: task assignments and wage premiums	29
D.4	Discussion: estimating the labor supply elasticity β	32
D.5	Details on the parameterization of worker types	35
D.6	Identification and definition of the estimator	36
D.7	Estimation details	45
D.8	Counterfactuals	55

A Proofs

Section 4: Task-based production function

Proof of Lemma 1: Allocation is assortative and labor constraints bind

I proceed by proving two lemmas that, together, imply the desired result. I use the term *candidate solution* to refer to tuples of output and schedules $\{q, \{m_h\}_{h=1}^H\}$ that satisfy all constraints in the assignment problem.

Lemma 4. *If there exists a candidate solution $\{q, \{m_h(\cdot)\}_{h=1}^H\}$ such that one can find two tasks $x_1 < x_2$ and two worker types $h_1 < h_2$ with $m_{h_1}(x_2) > 0$ and $m_{h_2}(x_1) > 0$, then there exists an alternative candidate solution $\{q', \{m'_h(\cdot)\}_{h=1}^H\}$ that achieves the same output ($q = q'$) but has a slack of labor of type h_1 ($l_{h_1} > \int_0^\infty m'_{h_1}(x) dx$).*

Proof. Let $\Delta = x_2 - x_1$ and pick $\tau \in (0, \min\{m_{h_1}(x_2), m_{h_2}(x_1)e_{h_2}(x_1 + \Delta)/e_{h_1}(x_1 + \Delta)\})$. Because $m_h(\cdot)$ is right continuous and the efficiency functions $e_h(\cdot)$ are strictly positive and continuous, I can find $\delta > 0$ such that $m_{h_1}(x) > \tau \forall x \in [x_2, x_2 + \delta]$ and $m_{h_2}(x_1)e_{h_2}(x_1 + \Delta)/e_{h_1}(x_1 + \Delta) > \tau \forall x \in [x_1, x_1 + \delta]$.

Now construct $\{q', \{m'_h(\cdot)\}_{h=1}^H\}$ identical to $\{q, \{m_h(\cdot)\}_{h=1}^H\}$, except for:

$$\begin{aligned} m'_{h_1}(x) &= m_{h_1}(x) - \tau, & x \in [x_2, x_2 + \delta] \\ m'_{h_2}(x) &= m_{h_2}(x) + \tau \frac{e_{h_1}(x)}{e_{h_2}(x)}, & x \in [x_2, x_2 + \delta] \\ m'_{h_2}(x) &= m_{h_2}(x) - \tau \frac{e_{h_1}(x + \Delta)}{e_{h_2}(x + \Delta)}, & x \in [x_1, x_1 + \delta] \\ m'_{h_1}(x) &= m_{h_1}(x) + \tau \frac{e_{h_1}(x + \Delta)}{e_{h_2}(x + \Delta)} \frac{e_{h_2}(x)}{e_{h_1}(x)}, & x \in [x_1, x_1 + \delta] \end{aligned}$$

I need to prove that $\{q', \{m'_h(\cdot)\}_{h=1}^H\}$ satisfies all constraints in the assignment problem and has a slack of labor h_1 , and that $m'_h(\cdot) \in RC$. Starting with the latter, note that $m'_h(\cdot)$ is always identical to $m_h(\cdot)$ except in intervals of the form $[a, b)$. In those intervals, $m'_h(\cdot)$ is a continuous transformation of $m_h(\cdot)$. So, because $m_h(\cdot)$ is right continuous, so is $m'_h(\cdot)$. In addition, $m'_h(x) > 0 \forall x \in \mathbb{R}_{>0}$ by the condition imposed when defining δ . So $m'_h(\cdot) \in RC$.

Next, the blueprint constraints are satisfied under the new candidate solution because second and fourth rows increase task production of particular complexities in a way that exactly

offsets decreased production due to the first and third rows, respectively. Total labor use of type h_2 is identical under both allocations, because the additional assignment in the second row is offset by reduced assignment in the third row. Finally, decreased use of labor type h_1 follows from log-supermodularity of the efficiency functions, which guarantees that the term multiplying τ in the fourth row is strictly less than one. So labor added in that row is strictly less than labor saved in the first row. \square

Lemma 5. *Any candidate solution with slack of labor is not optimal.*

Proof. Consider two cases:

If there is slack of labor of the highest type, $h = H$: By the feasibility condition in the definition of blueprints, $u_H = \int_0^\infty b(x)/e_H(x)dx$ is finite. Denote the slack of labor of type H in the original candidate solution by $S_H = l_H - \int_0^\infty m_H(x)dx$. Now consider an alternative candidate solution with $q' = q + S_H/u_H$, $m'_H(x) = m_H(x) + (S_H/u_H)b(x)/e_H(x)$, and $m'_h(\cdot) = m_h(\cdot) \forall h < H$. That candidate solution satisfies all constraints and achieves a strictly higher level of output. Thus, the original candidate solution is not optimal.

Otherwise: Then there is a positive slack $S_h = l_h - \int_0^\infty m_h(x)dx$ for some $h < H$, and no slack of type H . I will show that it is possible to construct an alternative allocation with the same output and positive slack of labor type H . Using that alternative allocation, one can invoke the first part of this proof to construct a third allocation with higher output.

Remember that the domain of f imposes $l_H > 0$. Because there is no slack of labor H , there must be some \underline{x} with $m_H(\underline{x}) > 0$. Pick an arbitrarily small $\tau > 0$. By right continuity of m_H , there is a small enough $\delta > 0$ such that $m_H(x) > \tau \forall x \in [\underline{x}, \underline{x} + \delta]$. Let $\tilde{u}_h = \int_{\underline{x}}^{\underline{x} + \delta} e_H(x)/e_h(x)dx < \infty$ and define $g = \min\{\tau, S_h/\tilde{u}_h\}$.

Now consider an alternative candidate solution identical to the original one, except that $m'_H(x) = m_H(x) - g$ in the interval $[\underline{x}, \underline{x} + \delta]$ and $m'_h(x) = m_h(x) + g e_H(x)/e_h(x)$ in the same interval. The new candidate solution satisfies all constraints, has right continuous and non-negative assignment functions, and has slack of labor of type H . \square

Proof of Lemma 1, except non-arbitrage condition. From Lemma 5, we know that any optimal solution must not have any slack. The same Lemma implies that any candidate solution satisfying the conditions in Lemma 4 is also not optimal. So any optimal solution must be such that for any two tasks $x_1 < x_2$ and two types $h_1 < h_2$, $m_{h_2}(x_1) > 0 \Rightarrow m_{h_1}(x_2) = 0$ and $m_{h_1}(x_2) > 0 \Rightarrow m_{h_2}(x_1) = 0$. This property can be re-stated as: for any pair of types

$h_1 < h_2$, there exists at least one number $h_1 \bar{x}_{h_2}$ such that $m_{h_2}(x) = 0 \forall x < h_1 \bar{x}_{h_2}$ and $m_{h_1}(x) = 0 \forall x > h_1 \bar{x}_{h_2}$. By combining all such requirements together, there must be $H - 1$ numbers $\bar{x}_1, \dots, \bar{x}_{H-1}$ such that, for any type h , $m_h(x) = 0 \forall x \notin [\bar{x}_{h-1}, \bar{x}_h]$ (where $\bar{x}_0 = 0$ and $\bar{x}_H = \infty$ are introduced to simplify notation).

Because there is no overlap in types that get assigned to any task (except possibly at the thresholds), the blueprint constraint implies that $m_h(x) = b(x)/e_h(x) \forall x \in (\bar{x}_{h-1}, \bar{x}_h)$. Right continuity of assignment functions means that the thresholds must be assigned to the type on the right.

It remains to be shown that the thresholds are unique and non-decreasing. To see that, recall that $b(x) > 0$ and $e_h(x) > 0 \forall h$. Now start from type $h = 1$ and note that the integral $\int_0^{\bar{x}_1} m_1(x) dx = \int_0^{\bar{x}_1} b(x)/e_1(x) dx$ is strictly increasing in \bar{x}_1 . Thus, there is only one possible $\bar{x}_1 \geq 0$ consistent with full labor use of type 1. One can then proceed by induction, showing that for any type $h > 1$, the thresholds \bar{x}_h is greater than \bar{x}_{h-1} and unique, for the same reason as in the base case.

Proof of the non-arbitrage condition (Equation 2) is provided in the next section of this Appendix. \square

Proposition 1, curvature of the production function: formulas for elasticities and proofs (including Equation 2)

Elasticities: I denote by $c = c(w, q)$ the cost function, use subscripts to denote derivatives regarding input quantities or prices, and omit arguments in functions to simplify the expressions. Then, for any pair of worker types h, h' with $h < h'$:

$$\frac{cc_{h,h'}}{c_h c_{h'}} = \begin{cases} \frac{\rho_h}{s_h s_{h'}} & \text{if } h' = h + 1 \\ 0 & \text{otherwise} \end{cases} \quad (\text{Allen partial elasticity of substitution})$$

$$\frac{ff_{h,h'}}{f_h f_{h'}} = \sum_{\mathfrak{h}=1}^{H-1} \xi_{h,h',\mathfrak{h}} \frac{1}{\rho_{\mathfrak{h}}} \quad (\text{Hicks partial elasticity of complementarity})$$

$$\text{where } \rho_h = b_g(\bar{x}_h) \frac{f_h}{e_h(\bar{x}_h)} \left[\frac{d}{d \bar{x}_h} \ln \left(\frac{e_{h+1}(\bar{x}_h)}{e_h(\bar{x}_h)} \right) \right]^{-1}$$

$$\xi_{h,h',\mathfrak{h}} = \left(\mathbf{1}\{h \geq \mathfrak{h} + 1\} - \sum_{k=\mathfrak{h}+1}^H s_k \right) \left(\mathbf{1}\{\mathfrak{h} \geq h'\} - \sum_{k=1}^{\mathfrak{h}} s_k \right)$$

$$\text{and } s_h = \frac{f_h l_h}{f} = \frac{c_h l_h}{c}$$

Proofs: Constant returns to scale and concavity follow easily from the definition of the production function. Let's start with concavity. Suppose that there are two input vectors \mathbf{l}^1 and \mathbf{l}^2 , achieving output levels q^1 and q^2 using optimal assignment functions m_h^1 and m_h^2 , respectively. Now take $\alpha \in [0, 1]$. Given inputs $\bar{\mathbf{l}} = \alpha\mathbf{l}^1 + (1 - \alpha)\mathbf{l}^2$, one can use assignment functions defined by $\bar{m}_h(x) = \alpha m_h^1(x) + (1 - \alpha)m_h^2(x) \forall x, h$ to achieve output level $\bar{q} = \alpha q^1 + (1 - \alpha)q^2$, while satisfying blueprint and labor constraints. So $f(\bar{\mathbf{l}}, b) \geq \bar{q}$. For constant returns, note that, given $\alpha > 1$, output αq^1 is attainable with inputs $\alpha\mathbf{l}^1$ by using assignment functions $\alpha m_h^1(x)$. Together with concavity, that implies constant returns to scale.

Lemma 1 implies that, given inputs $(\mathbf{l}, b_g(\cdot))$, the optimal thresholds and the optimal production level satisfy the set of H labor constraints with equality. I will now prove results that justify using the implicit function theorem on that system of equations. That will prove twice differentiability and provide a path to obtain elasticities of complementarity and substitution.

Definition 4. *The excess labor demand function $\mathbf{z} : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}^{H-1} \times \mathbb{R}_{\geq 0}^{H-1} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}^H$ is given by:*

$$z_h(q, \bar{x}_1, \dots, \bar{x}_{H-1}; \mathbf{l}) = q \int_{\bar{x}_{h-1}}^{\bar{x}_h} \frac{b_g(x)}{e_h(x)} dx - l_h$$

Lemma 6. *The excess labor demand function is C^2 .*

Proof. We need to show that, for all components $z_h(\cdot)$, the second partial derivatives exist and are continuous. This is immediate for the first derivatives regarding q and \mathbf{l} , as well as for their second own and cross derivatives (which are all zero).

The first derivative regarding threshold \bar{x}_h is:

$$\frac{\partial z_h(\cdot)}{\partial \bar{x}_h} = q \left[\mathbf{1}\{h' = h\} \frac{b_g(\bar{x}_h)}{e_h(\bar{x}_h)} - \mathbf{1}\{h' = h-1\} \frac{b_g(\bar{x}_h)}{e_{h+1}(\bar{x}_h)} \right]$$

Because blueprints and efficiency functions are continuously differentiable and strictly positive, this expression is continuously differentiable in \bar{x}_h . The cross-elasticities regarding q and \mathbf{l} also exist and are continuous. \square

Lemma 7. *The Jacobian of the excess labor demand function regarding $(q, \bar{x}_1, \dots, \bar{x}_{H-1})$, when evaluated at a point where $\mathbf{z}(\cdot) = \mathbf{0}_{H \times 1}$, has non-zero determinant.*

Proof. The Jacobian, when evaluated at the solution to the assignment problem, is:

$$J = \begin{bmatrix} \frac{l_1}{q} & q \frac{b_g(\bar{x}_1)}{e_1(\bar{x}_1)} & 0 & 0 & \dots & 0 & 0 \\ \frac{l_2}{q} & -q \frac{b_g(\bar{x}_1)}{e_2(\bar{x}_1)} & q \frac{b_g(\bar{x}_2)}{e_2(\bar{x}_2)} & 0 & \dots & 0 & 0 \\ \frac{l_3}{q} & 0 & -q \frac{b_g(\bar{x}_2)}{e_3(\bar{x}_2)} & q \frac{b_g(\bar{x}_3)}{e_3(\bar{x}_3)} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{l_{H-1}}{q} & 0 & 0 & 0 & \dots & -q \frac{b_g(\bar{x}_{H-2})}{e_{H-1}(\bar{x}_{H-2})} & q \frac{b_g(\bar{x}_{H-1})}{e_{H-1}(\bar{x}_{H-1})} \\ \frac{l_H}{q} & 0 & 0 & 0 & \dots & 0 & -q \frac{b_g(\bar{x}_{H-1})}{e_H(\bar{x}_{H-1})} \end{bmatrix}$$

The determinant is:

$$|J| = (-1)^{H+1} q^{H-2} \left[\prod_{h=1}^{H-1} \frac{b_g(\bar{x}_h)}{e_{h+1}(\bar{x}_h)} \right] \sum_{h=1}^H \left(l_h \prod_{i=2}^h \frac{e_i(\bar{x}_{i-1})}{e_{i-1}(\bar{x}_{i-1})} \right)$$

which is never zero, since $q > 0$ (from feasibility of blueprints and $l_H > 0$) and $b(x), e_h(x) > 0 \forall x, h$.

□

Lemmas 6 and 7 mean that the implicit function theorem can be used at the solution to the assignment problem to obtain derivatives of the solutions to the system of equations imposed by the labor constraints. These solutions are $q(\mathbf{l}) = f(\mathbf{l}, b_g(\cdot))$ and $\bar{x}_h(\mathbf{l})$. Because z is C^2 , so are the production function and the thresholds as functions of inputs.

Obtaining the ratios of first derivatives in Lemma 1 and the elasticities of complementarity and substitution in Proposition 1 is a matter of tedious but straightforward algebra, starting from the implicit function theorem. For the non-arbitrage condition in Lemma 1, a simpler approach is to define the allocation problem in terms of choosing output and thresholds, and then use a Lagrangian to embed the labor constraints into the objective function. Then, the result of Lemma 2, along with the constant returns relationship $q = \sum_h l_h f_h$, emerge as first order conditions, after noting that the Lagrange multipliers are marginal productivities.

When working towards second derivatives, it is necessary to use the derivatives of thresholds regarding inputs. For reference, here is the result:

$$\frac{d\bar{x}_h}{dl_{h'}} = \frac{e_h(\bar{x}_h)}{qb_g(\bar{x}_h)} \frac{f_{h'}}{f_h} \left[\mathbf{1}\{h \geq h'\} - \sum_{i=1}^h s_i \right]$$

One can verify $\frac{d\bar{x}_h}{dl_{h'}} > 0 \Leftrightarrow h \geq h'$. Adding labor "pushes" thresholds to the right or to the left depending on whether the labor which is being added is to the left or to the right of the threshold in question.

Proof of Corollary 1: Distance-dependent complementarity

This is proven by inspecting the sign of the weights $\xi_{h,h',h}$ above. When $h = h'$, these terms are negative for all i . Changing h' by one, either up or down, changes one of the $\xi_{h,h',h}$ from negative to positive while keeping the others unchanged. So there must be an increase in the elasticity of complementarity since all of the ρ_h are positive. Every additional increment or decrement of h' away from h involves a similar change of sign in one of the $\xi_{h,h',h}$, leading to the same increase in complementarity.

Proof of Lemma 2: Differences in skill intensity, monopsony, and task assignment

We can write the problem of the firm under monopsony as:

$$\pi_j = \max_{l_j} p_g f(l_j, b_g) - \sum_{h=1}^H \omega_h \frac{l_{h,j}^{1+\frac{1}{\beta}}}{L_h^{\frac{1}{\beta}}}$$

Which has first order conditions:

$$p_g f_h(l_j, b_g) = \frac{\beta+1}{\beta} \omega_h \left(\frac{l_{h,j}}{L_h} \right)^{\frac{1}{\beta}}$$

Taking ratios for $(h+1)/h$, using Equation 2, and introducing the firm-specific task threshold notation:

$$\frac{e_{h+1}(\bar{x}_{h,j})}{e_h(\bar{x}_{h,j})} = \frac{\omega_{h+1}}{\omega_h} \left(\frac{l_{h+1,j}}{l_{h,j}} \right)^{\frac{1}{\beta}} \left(\frac{L_{h+1,j}}{L_{h,j}} \right)^{-\frac{1}{\beta}} \quad h \in \{1, \dots, H-1\} \quad (12)$$

The desired result follows from the comparative advantage assumption, making the task threshold $\bar{x}_{h,j}$ increasing in $l_{h+1,j}/l_{h,j}$ if all firms face the same supply parameters.

Proof of Proposition 2: Complementarity patterns may differ between firms

For firms producing $g = 1$, the production function is $f(l, b_1) = \sum_{h=1}^H l_h e_h(0)$, since each unit measure of tasks $x = 0$ corresponds to one unit of output. Using the first order condition of

problem of the firm under monopsony (from the previous proof), we find:

$$p_g e_h(0) = \frac{\beta + 1}{\beta} \omega_h \left(\frac{l_{h,j}}{L_h} \right)^{\frac{1}{\beta}} \quad \forall h$$

From here, it is clear that there is no change in employment for any $h \neq 1$. For $h = 1$, because the left-hand side is invariant in this partial equilibrium exercise, $l_{1,j}$ changes proportionately to L_1 , such that the ratio $l_{1,j}/L_1$ remains invariant—and thus, the posted wage $w_{h,j}$ does not change either.

For firms producing $g = 2$, it is sufficient to show that all task thresholds move to the right following an increase in L_1 . To see that, plug the labor supply expression into Equation 12 to find a monotonic link between posted wages and task thresholds:

$$\frac{e_{h+1}(\bar{x}_{h,j})}{e_h(\bar{x}_{h,j})} = \frac{w_{h+1,j}}{w_{h,j}}$$

Rewrite Equation 12 with task thresholds as the only endogenous variables (note that when the labor choices are divided, the choice of quantity cancels out):

$$\frac{e_{h+1}(\bar{x}_{h,j})}{e_h(\bar{x}_{h,j})} = \frac{\omega_{h+1}}{\omega_h} \left(\frac{\int_{\bar{x}_{h,j}}^{\bar{x}_{h+1,j}} \frac{b_g(x)}{e_{h+1}(x)} dx}{\int_{\bar{x}_{h-1,j}}^{\bar{x}_{h,j}} \frac{b_g(x)}{e_h(x)} dx} \right)^{\frac{1}{\beta}} \left(\frac{L_{h+1,j}}{L_{h,j}} \right)^{-\frac{1}{\beta}} \quad h \in \{1, 2\}$$

If we take logs and implicitly differentiate with respect to $\log L_1$, we find:

$$\frac{d\bar{x}_{1,j}}{d\log L_1} = \frac{1 + \frac{d\bar{x}_{2,j}}{d\log L_1} \frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}}{\beta \left[\frac{e_1(\bar{x}_{1,j})}{e_2(\bar{x}_{1,j})} \right] \frac{d}{d\bar{x}_{1,j}} \left[\frac{e_2(\bar{x}_{1,j})}{e_1(\bar{x}_{1,j})} \right] + \frac{b_g(\bar{x}_{1,j})}{l_2 e_2(\bar{x}_{1,j})} + \frac{b_g(\bar{x}_{1,j})}{l_1 e_1(\bar{x}_{1,j})}}$$

$$\frac{d\bar{x}_{2,j}}{d\log L_1} = \frac{\frac{d\bar{x}_{1,j}}{d\log L_1} \frac{b_g(\bar{x}_{1,j})}{l_2 e_2(\bar{x}_{1,j})}}{\beta \left[\frac{e_2(\bar{x}_{2,j})}{e_3(\bar{x}_{2,j})} \right] \frac{d}{d\bar{x}_{2,j}} \left[\frac{e_3(\bar{x}_{2,j})}{e_2(\bar{x}_{2,j})} \right] + \frac{b_g(\bar{x}_{2,j})}{l_3 e_3(\bar{x}_{2,j})} + \frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}}$$

The comparative advantage assumption implies that the derivatives of efficiency ratios are positive. Thus, all individual terms in those expressions are positive, the second equation implies that both thresholds move in the same direction. Tedious but straightforward algebra

shows that they move to the right if and only if:

$$\beta \left[\frac{e_1(\bar{x}_{1,j})}{e_2(\bar{x}_{1,j})} \right] \frac{d}{d\bar{x}_{1,j}} \left[\frac{e_2(\bar{x}_{1,j})}{e_1(\bar{x}_{1,j})} \right] + \frac{b_g(\bar{x}_{1,j})}{l_2 e_2(\bar{x}_{1,j})} + \frac{b_g(\bar{x}_{1,j})}{l_1 e_1(\bar{x}_{1,j})} > \frac{\frac{b_g(\bar{x}_{1,j})}{l_2 e_2(\bar{x}_{1,j})} \frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}}{\beta \left[\frac{e_2(\bar{x}_{2,j})}{e_3(\bar{x}_{2,j})} \right] \frac{d}{d\bar{x}_{2,j}} \left[\frac{e_3(\bar{x}_{2,j})}{e_2(\bar{x}_{2,j})} \right] + \frac{b_g(\bar{x}_{2,j})}{l_3 e_3(\bar{x}_{2,j})} + \frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}}$$

This expression is always true. To see why, note that the right-hand size is bounded above by one of the terms on the left-hand side:

$$\begin{aligned} & \frac{\frac{b_g(\bar{x}_{1,j})}{l_2 e_2(\bar{x}_{1,j})} \frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}}{\beta \left[\frac{e_2(\bar{x}_{2,j})}{e_3(\bar{x}_{2,j})} \right] \frac{d}{d\bar{x}_{2,j}} \left[\frac{e_3(\bar{x}_{2,j})}{e_2(\bar{x}_{2,j})} \right] + \frac{b_g(\bar{x}_{2,j})}{l_3 e_3(\bar{x}_{2,j})} + \frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}} < \frac{\frac{b_g(\bar{x}_{1,j})}{l_2 e_2(\bar{x}_{1,j})} \frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}}{\frac{b_g(\bar{x}_{2,j})}{l_2 e_2(\bar{x}_{2,j})}} \\ & = \frac{b_g(\bar{x}_{1,j})}{l_2 e_2(\bar{x}_{1,j})} \end{aligned}$$

Section 5: Markets and wages

Proofs in this section are written for a more general version of the model with heterogeneous non-wage amenities at the firm level, denoted by a_j and with good-specific averages \bar{a}_g . That general version is described in Appendix B.2 below.

Proof of Lemma 3: Firm problem and representative firms

I start by establishing that the solution must have positive employment of all types. The marginal product of an efficiency unit of labor of the highest type is bounded below by $1/\int_0^\infty b_g(x)/e_H(x)dx = \underline{f}_H$, which is strictly positive due to the feasibility condition imposed on blueprints. Consider the strategy of posting a fixed payment $y_{Hj}(\varepsilon) = \bar{y} \geq \underline{y}$ to all workers with $\varepsilon > \underline{\varepsilon}_{Hj}$. Profit from workers of type H associated with that strategy are bounded below by $\int_{\underline{\varepsilon}_{Hj}}^\infty N_H a_j \bar{y}^\beta / \omega_H(\varepsilon)^\beta r_H(\varepsilon) (p_g \underline{f}_H \varepsilon - \bar{y}) d\varepsilon$. That expression is assured to be positive for high enough $\underline{\varepsilon}_{Hj}$ (note that $\omega_h(\varepsilon)$ is always finite in an equilibrium). Thus, positive employment of skilled workers following that strategy is more profitable than not employing any of those workers.

A positive amount of l_H ensures that all other types are employed as well. Consider a particular type $h < H$ and whether it is optimal to set $l_h = 0$, fixing employment of all other types. Because $l_H > 0$, \bar{x}_{H-1} is finite, and thus threshold \bar{x}_h (the highest task performed by h) is guaranteed to be finite as well. Then, from Equation 2, the marginal product of type

h is bound below by $f_H e_h(\bar{x}_{H-1})/e_H(\bar{x}_{H-1})$. A similar reasoning as above establishes that employing small quantities of labor h is more profitable than setting $l_h = 0$.

The rest of the proof follows from the logic described in the text. The threshold ε_{hj} is chosen so that the worker with the least amount of efficiency units pays for himself, bringing in revenue equal to the minimum wage. Below that, labor payments — which are bound by the minimum wage — will necessarily exceed marginal revenue from those workers. For every $\varepsilon > \varepsilon_{hj}$, the firm chooses $y_{hj}(\varepsilon)$ by equating marginal revenue from workers of that (h, ε) combination with their marginal cost. For high enough ε , that leads to the constant markdown rule, implying that earnings are proportional to marginal product of labor — and thus linear in ε . Workers close to the cutoff are still profitable, but for them, the minimum wage constraint binds.

To see why these solutions do not depend on amenities, such that there is a representative firm for each good g , first note that a_j is a multiplicative term in both $C_h(y_{hj}, \varepsilon_{hj}, a_j)$ and $l_h(y_{hj}, \varepsilon_{hj}, a_j)$. Now remember that the task-based production function has constant returns to scale. Thus, the profit function can be rewritten as $\pi(a_j) = a_j \pi(1)$. Amenities scale up employment and production while keeping average labor costs constant.

Proof of Proposition 3: Wage differentials across firms

I start by proving a useful Lemma that shows how proportional terms dividing task requirements can be interpreted as physical productivity shifters.

Lemma 8. *If $b_g(x) = b(x)/z_g$ for a blueprint $b(\cdot)$ and scalar $z_g > 0$, then $f(\mathbf{l}, b_g(\cdot)) = z_g f(\mathbf{l}, b(\cdot))$.*

Proof. Plug $b_g(x) = b(x)/z_g$ into the assignment problem defining the task-based production function. Change the choice variable to $q' = q/z_g$. The z_g terms in the task constraint cancel each other and the maximand changes to $z_g q'$. The result follows from noting that $\max_{\{\cdot\}} z_g q' = z_g \max_{\{\cdot\}} q'$ and that the resulting value function is $f(\mathbf{l}, b(\cdot))$ by definition. \square

Now I proceed to the proof of each statement of Proposition 3 separately.

Proof of part 1: From Lemma 8, $f_h(\mathbf{l}, b_g(\cdot)) = z_g f_h(\mathbf{l}, b(\cdot))$. Also note $\mathbf{l}(\mathbf{w}_g, \varepsilon_g, \bar{a}_g) = \bar{a}_g \mathbf{l}(\mathbf{w}_g, \varepsilon_g, 1)$ and $\mathbf{C}(\mathbf{w}_g, \varepsilon_g, \bar{a}_g) = \bar{a}_g \mathbf{C}(\mathbf{w}_g, \varepsilon_g, 1)$, and remember that the task-based production function has constant returns to scale (and so marginal productivities are homogeneous of degree

zero). Now let $\tilde{F} = F_g/\bar{a}_g$ and rewrite the first order conditions of the firm (7), (8) and the zero profits condition (10) imposing the conditions from this proposition:

$$\begin{aligned} p_g z_g f_h(\mathbf{l}(\mathbf{w}_g, \boldsymbol{\epsilon}_g, 1), b(\cdot)) \exp(\underline{\epsilon}_{hg}) &= \underline{y} & \forall h, g \\ p_g z_g f_h(\mathbf{l}(\mathbf{w}_g, \boldsymbol{\epsilon}_g, 1), b(\cdot)) \frac{\beta}{\beta + 1} &= w_{hg} & \forall h, g \\ \bar{a}_g \left[p_g z_g f(\mathbf{l}(\mathbf{w}_g, \boldsymbol{\epsilon}_g, 1), b(\cdot)) - \sum_{h=1}^H C_h(\mathbf{w}_g, \boldsymbol{\epsilon}_g, 1) \right] &= \bar{a}_g \tilde{F} & \forall g \end{aligned}$$

To see that these equations imply a representative firm for the economy, plug in $\underline{\epsilon}_g = \boldsymbol{\epsilon}$, $\mathbf{w}_g = \boldsymbol{\lambda} = \{\lambda_1, \dots, \lambda_H\}$, and $p_g = p/z_g$ for common $\boldsymbol{\epsilon}$, $\boldsymbol{\lambda}$, and p . All dependency on g is eliminated, showing that the solution of the problem of the firm is the same for all firms in the economy and that prices are inversely proportional to physical productivity shifters z_g (such that marginal revenue product of labor is equalized across firms). \square

Proof of part 2: Without a minimum wage, there is no motive for a cutoff rule: $\underline{\epsilon}_{hg} = 0$. In addition, the labor supply curve becomes isoelastic with identical elasticities for all worker types:

$$\begin{aligned} l_h(w_{hg}, \cdot, \bar{a}_g) &= \bar{a}_g \left(\frac{w_{hg}}{\omega_h} \right)^\beta \\ C_h(w_{hg}, \cdot, \bar{a}_g) &= w_{hg} l_h(w_{hg}, \cdot, \bar{a}_g) \\ \text{where } \omega_h &= \left(\sum_g J_g \bar{a}_g w_{hg}^\beta \right)^{\frac{1}{\beta}} \end{aligned}$$

Rewrite the first order conditions on wages as in the proof of part 1 above:

$$p_g z_g f_h(\mathbf{l}(\mathbf{w}_g, \cdot, 1), b(\cdot)) \frac{\beta}{\beta + 1} = w_{hg} \quad \forall h, g$$

Also, rewrite the zero profit condition as:

$$\begin{aligned} F_g &= p_g z_g f(\mathbf{l}(\mathbf{w}_g, \cdot, \bar{a}_g), b(\cdot)) - \sum_{h=1}^H C_h(\mathbf{w}_g, \cdot, \bar{a}_g) \\ &= p_g z_g \sum_{h=1}^H l_h(w_{hg}, \cdot, \bar{a}_g) f_h(\mathbf{l}(\mathbf{w}_g, \cdot, 1), b(\cdot)) - \sum_{h=1}^H w_{hg} l_h(w_{hg}, \cdot, \bar{a}_g) \end{aligned}$$

I claim that $\mathbf{w}_g = (F_g/\bar{a}_g)^{1/(\beta+1)} \boldsymbol{\lambda}$ for some vector $\boldsymbol{\lambda} = \{\lambda_1, \dots, \lambda_H\}$. From the labor supply equation, that implies $l_{hg} = F_g^{\beta/(\beta+1)} \bar{a}_g^{1/(\beta+1)} \ell_h$, where $\ell_h = \omega_h^{-\beta/(\beta+1)}$. Plugging these expressions in the rewritten zero profit condition yields $\sum_h \ell_h \lambda_h = 1 \ \forall g$, showing that the claim does not contradict optimal entry behavior; instead, optimal entry merely imposes a normalization on the $\boldsymbol{\lambda}$ vector.

The corresponding prices that lead to zero profits are:

$$\begin{aligned} \Rightarrow p_g &= \frac{(\beta+1)F_g}{z_g f(\mathbf{l}(\mathbf{w}_g, \cdot, \bar{a}_g), b(\cdot))} \\ &= \frac{\beta+1}{z_g f(\boldsymbol{\ell}, b(\cdot))} \left(\frac{F_g}{\bar{a}_g} \right)^{\frac{1}{\beta+1}} \end{aligned}$$

Finally, plugging these results into the first order conditions yields:

$$f_h(\boldsymbol{\ell}, b) \beta = \lambda_h \quad \forall h, g$$

Which again has no dependency on g , showing that the claimed solution solves the problem for all firms. \square

Proof of part 3: Under the conditions from this part, labor supply curves are isoelastic, as shown in the proof of part 2 above. It is easily shown, using that isoelastic expression for $l_h(\cdot)$, that:

$$\left(\frac{w_{h'g'}}{w_{hg'}} \right) \Big/ \left(\frac{w_{h'g}}{w_{hg}} \right) = \left[\left(\frac{l_{h'g'}}{l_{hg'}} \right) \Big/ \left(\frac{l_{h'g}}{l_{hg}} \right) \right]^{\frac{1}{\beta}}$$

Under the condition imposed on labor input ratios, the right hand side is positive. The proof follows from noting that the desired ratio of earnings is equal to the ratio of wages in the left hand side. \square

Proof of Proposition 4: Supply shocks

For notational simplicity, in this proof we set p_1 as the numeraire, so $p_2/p_1 = p_2$. The proof proceeds in two parts. First, we will obtain an expression for the skill wage premium as a function of p_2 and model parameters, so that the main result can be derived. Next, we obtain

the expression that pins down p_2 to prove that it is decreasing in L_2/L_1 .

From the constant mark-down rule and the fact that blueprints are degenerate:

$$w_{h,1} = \frac{\beta}{\beta+1} e_h(x_1) \quad w_{h,2} = \frac{\beta}{\beta+1} e_h(x_2) p_2$$

To obtain the shares $s_{h,g}$ as functions of p_2 , start with optimal firm creation, which implies that profits per firm must be proportional to entry costs; coupled with the fact that with no minimum wage, profits are proportional to revenues:

$$\frac{q_1}{F_1} = \frac{q_2 p_2}{F_2}$$

Next, optimal consumption implies:

$$\frac{Q_2}{Q_1} = \frac{q_2 J_2}{q_1 J_1} = \left(\frac{\gamma_2}{\gamma_1} \frac{1}{p_2} \right)^\sigma$$

Combining both expressions:

$$\frac{J_2}{J_1} = \left(\frac{\gamma_2}{\gamma_1} \right)^\sigma \frac{F_1}{F_2} p_2^{1-\sigma}$$

Now we are ready to derive expressions for employment shares:

$$\begin{aligned} s_{h,1} &= \frac{J_1 w_{h,1}^\beta}{J_1 w_{h,1}^\beta + J_2 w_{h,2}^\beta} \\ &= \left[1 + \frac{J_2}{J_1} \left(\frac{w_{h,2}}{w_{h,1}} \right)^\beta \right]^{-1} \\ &= \left[1 + \left(\frac{\gamma_2}{\gamma_1} \right)^\sigma \frac{F_1}{F_2} p_2^{1-\sigma} \left(\frac{e_h(x_2) p_2}{e_h(x_1)} \right)^\beta \right]^{-1} \\ &= \left[1 + \left(\frac{\gamma_2}{\gamma_1} \right)^\sigma \frac{F_1}{F_2} \left(\frac{e_h(x_2)}{e_h(x_1)} \right)^\beta p_2^{\beta+1-\sigma} \right]^{-1} \end{aligned}$$

and $s_{h,2} = 1 - s_{h,1}$.

Neither the employment shares nor wages depend on L_h directly. So, the effects of supply shocks on the mean log wage gap are fully mediated by p_2 . This result is specific to the case with degenerate blueprints. It simplifies the analytical solution of the model and helps

isolate the role of general equilibrium effects through prices and firm entry.

Then, to obtain the first price of the proposition, one just needs to combine the expressions above to write the mean log wage gap and differentiate it with respect to $\log p_2$. This is simple once one notes that the elasticity of $s_{h,2}$ with respect to p_2 is $(\beta + 1 - \sigma)s_{h,1}$.

Finally, we need to prove that p_2 is decreasing in L_2/L_1 . To do that, we will use an expression linking aggregate production to aggregate consumption (in ratios), which only depends on p_2 and model parameters:

$$\left(\frac{\gamma_2}{\gamma_1} \frac{1}{p_2}\right)^\sigma = \frac{L_1 s_{1,2} e_1(x_2) + L_2 s_{2,2} e_2(x_2)}{L_1 s_{1,1} e_1(x_1) + L_2 s_{2,1} e_2(x_1)}$$

where, once again, the assumption of degenerate blueprints helps with tractability.

After careful manipulations, this expression can be rewritten as:

$$\frac{L_2}{L_1} = \frac{\frac{e_1(x_1)}{F_1} - \frac{e_1(x_2)}{F_2} \left[\frac{e_1(x_2)}{e_1(x_1)} \right]^\beta p_2^{1+\beta}}{\frac{e_2(x_2)}{F_2} - \frac{e_2(x_1)}{F_1} \left[\frac{e_2(x_1)}{e_2(x_2)} \right]^\beta p_2^{-1-\beta}} \frac{\left[\frac{e_2(x_1)}{e_2(x_2)} \right]^\beta p_2^{-1-\beta} \frac{\gamma_1^\sigma + \gamma_2^\sigma}{F_1 + F_2} \left[\frac{e_2(x_2)}{e_2(x_1)} \right]^\beta p_2^{1+\beta-\sigma}}{\frac{\gamma_1^\sigma + \gamma_2^\sigma}{F_1 + F_2} \left[\frac{e_1(x_2)}{e_1(x_1)} \right]^\beta p_2^{1+\beta-\sigma}}$$

To show that p_2 is decreasing in L_2/L_1 , we only need to show that the right-hand side of this expression is decreasing in p_2 . This is easy to see for all terms except the last fraction. If $\sigma \leq 1 + \beta$, one only needs to multiply the standalone $p_2^{-1-\beta}$ and the last numerator to obtain a fraction that is obviously decreasing in p_2 . If instead $\sigma > 1 + \beta$, then one needs to use the comparative advantage assumption to see that the term multiplying $p_2^{1+\beta-\sigma}$ in the numerator is larger than the same term in the denominator of that expression. This, coupled with the fact that $1 + \beta - \sigma < 0$, is enough to establish that the fraction is decreasing in p_2 , given that the first term is the same in both the numerator and the denominator.

Proof of Proposition 5: Changes in firm costs affect the returns to skill

Before proving the Proposition, I derive a Lemma that states that blueprints that are more intensive in complex tasks lead to higher gaps in marginal productivity, holding constant the quantity of labor. This Lemma is conceptually similar to the monotone comparative statics in [Costinot and Vogel \(2010\)](#).

Lemma 9. *Let b and b' denote blueprints such that their ratio $b'(x)/b(x)$ is strictly increas-*

ing. Then:

$$\frac{f_{h+1}(\mathbf{l}, b')}{f_h(\mathbf{l}, b')} > \frac{f_{h+1}(\mathbf{l}, b)}{f_h(\mathbf{l}, b)} \quad h = 1, \dots, H-1$$

Proof. Fix \mathbf{l} , let $q = f(\mathbf{l}, b)$ and $q' = f(\mathbf{l}, b')$. Now construct $b''(x) = b'(x)q'/q$. From Lemma 8, it follows that $f(\mathbf{l}, b'') = q$ and $f_h(\mathbf{l}, b'') = f_h(\mathbf{l}, b') \forall h$. I will show that the statement holds for b and b'' , and since b'' and b' lead to the same marginal products, the desired result holds.

Because b and b'' lead to the same output given the same vector of inputs, but $b''(x)/b(x)$ is increasing, there must be a task x^* such $b''(x) < b(x) \forall x < x^*$ and $b''(x) > b(x) \forall x > x^*$. To see why they must cross at least once at x^* , suppose otherwise (one blueprint is strictly more than other for all x): there will be a contradiction since task demands are strictly higher for one of the blueprints, but they still lead to the same production q given the same vector of inputs. From this crossing point, differences before and after emerge from the monotonic ratio property.

Now note from the non-arbitrage condition (2) in Lemma 1, along with log-supermodularity of $e_h(x)$, that the statement to be proved is equivalent to

$$\bar{x}'_h \geq \bar{x}_h \quad h \in \{1, \dots, H-1\}$$

where \bar{x}'_h denotes thresholds under the alternative blueprint b'' .

I proceed by using compensated labor demand integrals to show that thresholds differ as stated above. Denote by h^* the type such that $x^* \in [\bar{x}_{h^*-1}, \bar{x}_{h^*})$. The proof will be done in two parts: starting from \bar{x}'_1 and ascending by induction up to \bar{x}_{h^*-1} , and next starting from \bar{x}_{h-1} and descending by induction down to \bar{x}_{h^*} . Note that if $h^* = 1$ or $h^* = H$, only one part is required.

Base case \bar{x}_1 : The equation for $h = 1$ is $\int_0^{\bar{x}_1} \frac{b(x)}{e_1(x)} dx = \frac{l_1}{q}$ under the original blueprint, and $\int_0^{\bar{x}'_1} \frac{b''(x)}{e_1(x)} dx = \frac{l_1}{q}$ under the new one. Equating the right hand side of both expressions and rearranging yields:

$$\int_{\bar{x}_1}^{\bar{x}'_1} \frac{b''(x)}{e_1(x)} dx = \int_0^{\bar{x}_1} \frac{b(x) - b''(x)}{e_1(x)} dx$$

Since $b(x) \geq b''(x)$ for $x < x^*$, the right-hand side is positive, and then the equality will only hold if $\bar{x}'_1 \geq \bar{x}_1$.

Ascending induction rule: Suppose $\bar{x}'_{h-1} \geq \bar{x}_{h-1}$ and $h < h^*$. I will prove that $\bar{x}'_h \geq \bar{x}_h$. To

do so, use the fact that $\frac{l_h}{q}$ is the same under both the old and new blueprints to equate the labor demand integrals, as was done in the base case. This yields the following equivalent expressions:

$$\begin{aligned} \int_{\bar{x}_h}^{\bar{x}'_h} \frac{b''(x)}{e_h(x)} dx &= \int_{\bar{x}_{h-1}}^{\bar{x}'_{h-1}} \frac{b(x)}{e_h(x)} dx + \int_{\bar{x}'_{h-1}}^{\bar{x}_h} \frac{b(x) - b''(x)}{e_h(x)} dx \\ &= \int_{\bar{x}_{h-1}}^{\bar{x}_h} \frac{b(x)}{e_h(x)} dx + \int_{\bar{x}_h}^{\bar{x}'_{h-1}} \frac{b''(x)}{e_h(x)} dx \end{aligned}$$

It is enough to show that the expression is positive, ensuring that $\bar{x}'_h \geq \bar{x}_h$. Consider two cases. If $\bar{x}'_{h-1} \leq \bar{x}_h$, then use the first expression. The induction assumption guarantees positivity of the first term, and the integrand of the second term is positive because $\bar{x}_h < z^*$. If instead $\bar{x}'_{h-1} > \bar{x}_h$, the second expression is more convenient. There, all integrands are positive and the integration upper bounds are greater than the lower bounds.

Base case \bar{x}_{H-1} and descending induction rule: Those are symmetric to the cases above. \square

In a competitive economy, thresholds are the same for all firms. Given total endowments of labor efficiency units \mathbf{L} and aggregate demand for tasks $B(x) = Q_1 b_1(x) + Q_2 b_2(x)$ (where Q_g denotes aggregate demand for good g before the shock), wages w_h must be proportional to marginal productivities $f_h(\mathbf{L}, B(\cdot))$, because the labor constraints that determine thresholds and marginal productivities in the task-based production function are the labor clearing conditions for this economy.

Aggregate demand for tasks following the shock is $B'(x) = Q'_1 b_1(x) + Q'_2 b_2(x)$. As noted above, wages after the shock are proportional to $f_h(\mathbf{L}, B'(\cdot))$. But $B(x, Q'_1, Q'_2)/B(x, Q_1, Q_2)$ is increasing in x if $Q'_2/Q'_1 > Q_2/Q_1$. And an increase in relative taste for good 2, holding all else equal, necessarily implies an increase in aggregate consumption of good 2 relative to good 1. Thus, Lemma 9 implies that wage gaps increase as stated in the Proposition.

Section 6: Wage inequality and sorting in Brazil

Proof of Proposition 7: Identification, estimation, and inference

The goal of this proof is to show that Assumptions 1 through 6, coupled with the smoothness of the economic model (which makes the $a(\cdot)$ function differentiable), imply that the

econometric model satisfies standard identification conditions for a parametric nonlinear least squares panel regression. The panel dimension is the region, as there are several different endogenous outcomes by region. Discussion of the identification assumptions in the context of Brazil is left to Appendix D.6.

The non-standard part of the proposed identification strategy is the inversion of region-specific parameters using a subset of the endogenous variables. Assumptions 3 and 4 imply that this condition is satisfied. See Appendix D.6 for a discussion of why invertibility is feasible in the theoretical model. Then, the model to be estimated is the one described in Assumption 5:

$$\mathbf{Y}_r = \tilde{a} \left([\mathbf{Z}'_r, PB(\mathbf{y}_r)']', \boldsymbol{\theta}^G \right) + \mathbf{u}_r$$

which is a nonlinear simultaneous equation model where the set of “exogenous” covariates is expanded to include the endogenous outcomes selected by the $PB(\cdot)$ function. The fact that those variables are listed both on the left- and right-hand sides is irrelevant, since for those equations, the error is always zero. Thus, they bear no consequence for the least squares procedure. Alternatively, one could define an equivalent model omitting those equations.

For exogeneity of this model, I need $E[\mathbf{u}_r | \mathbf{Z}_r, PB(\mathbf{Y}_r)] = 0$. From assumptions 1 and 3, $E[\mathbf{u}_r | \mathbf{Z}_r, \hat{\boldsymbol{\theta}}^R(PB(\mathbf{Y}_r) | \mathbf{Z}_r, \boldsymbol{\theta}_0^G)] = 0$. Since $\hat{\boldsymbol{\theta}}^R(\cdot)$ is a measurable injective function in the first argument, conditioning on \mathbf{Z}_r and $PB(\mathbf{Y}_r)$ is the same as conditioning on \mathbf{Z}_r and $\hat{\boldsymbol{\theta}}^R(PB(\mathbf{Y}_r) | \mathbf{Z}_r, \boldsymbol{\theta}_0^G)$, proving the desired result.

This result, along with assumptions 2, 5, and 6, are standard assumptions for a nonlinear least squares panel model with exogenous covariates, no unobserved heterogeneity, and errors that may have an arbitrary variance-covariance matrix within regions.

B Appendix to the theory

B.1 Definition of the task-based production function

Here, I make two notes about the task-based production function. The first is that the assignment model is very general. The function $m_h(x)$ allows firms to use multiple worker types for the same task, the same worker in disjoint sets of tasks, and discontinuities in assignment rules.

The second note is on the restriction $f : \mathbb{R}_{\geq 0}^{H-1} \times \mathbb{R}_{>0} \times \{b_1(\cdot), \dots, b_G(\cdot)\} \rightarrow \mathbb{R}_{\geq 0}$: that is,

there must be a positive input of the highest labor type. This assumption simplifies proofs and ensures well-behaved derivatives, because the feasibility requirement of blueprints requires a positive quantity of the highest skilled labor type.

That assumption is not restrictive for the applications in this paper. That's because with isoelastic demand curves for very skilled workers, they become arbitrarily cheap when their quantity is close to zero.

In a more general formulation, blueprints might require at least one worker of a minimum worker type \underline{h} — if none is available, lower types have zero marginal productivity. This property might be useful for models of endogenous growth and innovation.

B.2 Firm sizes and non-wage amenities

The basic framework shows that firms producing the same good are identical in all aspects, including firm size. In addition, the model imposes strong links between firm size differences and wage premiums. In this Appendix, I show that those restrictions can be relaxed by allowing for dispersion in firm-specific non-wage amenities—without invalidating any of the theoretical results of the paper.

The fundamentals of the model need to be modified as follows. When the entrepreneur creates a firm, it gets a random draw of amenities $a_j > 0$ from a good-specific distribution that has mean \bar{a}_g . Normalize $a_j = 1$ for home production. Worker preferences are now given by:

$$U_i(c, j) = c \cdot a_j^{\frac{1}{\beta}} \cdot [\exp(\eta_{ij})]^{\frac{1}{\lambda}}$$

The idiosyncratic vector η_{ij} is randomly drawn from the same distribution as before. The probability of a worker (h, ε) choosing a particular option j is given by:

$$\begin{aligned} \Pr \left(0 = \arg \max_{j' \in \{0, 1, \dots, J\}} V_{ih}(\varepsilon, j') \right) &= \frac{(\varepsilon z_{0,h})^\lambda}{(\varepsilon z_{0,h})^\lambda + \omega_{\varepsilon,h}^\lambda} \\ \Pr \left(j = \arg \max_{j' \in \{0, 1, \dots, J\}} V_{ih}(\varepsilon, j') \right) &= \frac{\omega_{\varepsilon,h}^\lambda}{(\varepsilon z_{0,h})^\lambda + \omega_{\varepsilon,h}^\lambda} a_j \left(\frac{\mathbf{1}\{\varepsilon \geq \varepsilon_{hj}\} y_{hj}(\varepsilon)}{\omega_{\varepsilon,h}} \right)^\beta \quad \text{for } j \geq 1 \\ \text{where } \omega_{\varepsilon,h} &= \left(\sum_{j=1}^J \mathbf{1}\{\varepsilon \geq \varepsilon_{hj}\} a_j y_{hj}(\varepsilon)^\beta \right)^{\frac{1}{\beta}} \end{aligned}$$

This expression makes it clear that a_j terms becomes a proportional shifter in the firm-level labor supply curve. Given the same posted wage, a firm with a_j twice as large as another will attract twice as many workers, and thus use twice as many efficiency units of labor in production. Lemma 3 can then be extended:

Complement to Lemma 3. *Among firms producing the same good, differences in output and employment are proportional to differences in amenities a_j .*

Finally, Proposition 3 can be rewritten in the following way:

Proposition 3a.

1. *If $b_g(x) = b(x)/z_g$ for scalars z_1, \dots, z_G and the ratio F_g/\bar{a}_g is the same for all firm-produced goods, then there are no firm-level wage premiums:*

$$\log y_{hg}(\varepsilon) = \max \{v_h + \log \varepsilon, \log \underline{y}\}$$

where v_1, \dots, v_H are scalar functions of parameters.

2. *If there is no minimum wage and $b_g(x) = b(x)/z_g$, wages are log additive:*

$$\log y_{hg}(\varepsilon) = v_h + \log \varepsilon + \frac{1}{1+\beta} \log \left(\frac{F_g}{\bar{a}_g} \right)$$

3. *If there is no minimum wage and there are firm types g, g' and worker types h', h such that $\ell_{h'g'}/\ell_{hg'} > \ell_{h'g}/\ell_{hg}$ (that is, good g' is relatively more intensive in h'), then:*

$$\frac{y_{h'g'}(\varepsilon)}{y_{hg'}(\varepsilon)} > \frac{y_{h'g}(\varepsilon)}{y_{hg}(\varepsilon)}$$

What makes a firm “high-wage” in this generalized model is not simply a high entry cost, but a high entry cost relative to average amenities provided by the firm. That is because the model implies a compensating variation for vertical differences in amenities. If firms producing a given good—say, mineral ores—are on average much worse workplaces, they must pay more to achieve the same firm size on average.

With vertical differences in amenities, the model can rationalize any distribution of firm sizes in the economy. Conversely, if firm sizes are not of primary concern, then the model can be simplified by omitting amenities. This is the approach I use in the main paper.

B.3 Tinbergen's race

The following proposition considers a case in which the supply of skill, demand for task complexity, and minimum wages rise in tandem:

Proposition 6 (Race between technology, education, and minimum wages). *Start with a baseline economy characterized by parameters $(\{e_h, N_h, z_{0,h}\}_{h=1}^H, \{b_g, F_g, \bar{a}_g\}_{g=1}^G, z, T, \beta, \lambda, \sigma, \underline{y})$, where T is the stock of entry input (which is normalized to one in the main text). Consider a new set of parameters denoted with prime symbols. Assume e_h are decreasing functions to simplify interpretation (more complex tasks are harder to produce). Let Δ_0, Δ_1 and Δ_2 denote arbitrary positive numbers and consider the following conditions:*

1. $N'_h = \Delta_0 N_h \forall h$ and $T' = \Delta_0 T$: *The relative supply of factors remains constant.*
2. $e'_h(x) = e_h\left(\frac{x}{1+\Delta_1}\right) \forall h$: *Workers become better at all tasks and the degree of comparative advantage becomes smaller for the current set of tasks (e.g. both high school graduates and college graduates improve at using text editing software, but the improvement is larger for high school graduates).*
3. $b'_g(x) = \frac{1}{1+\Delta_1} b_g\left(\frac{x}{1+\Delta_1}\right) \forall g$: *Production requires tasks of increased complexity.*
4. $z' = (1 + \Delta_2)z$, $z'_{0,h} = (1 + \Delta_2)z_{0,h} \forall h$, and $\underline{y}' = (1 + \Delta_2)\underline{y}$: *productivity and minimum wage rise in the same proportion.*

If these conditions are satisfied, the equilibrium under the new parameter set is identical to the initial equilibrium, except that prices for goods are uniformly lower: $p'_g = p_g/(1 + \Delta_2)$ and $P' = P/(1 + \Delta_2)$.²⁴

Proof. The proof is simple once one notes that the difference between the two economies is a linear change of variables in the task space $x' = (1 + \Delta_1)x$, coupled with a reduction in task demand by a factor of $(1 + \Delta_2)$. Let \bar{x}_h^g denote task thresholds for firm g in the original equilibrium. Thresholds $(1 + \Delta_1)\bar{x}_h^g$ lead to exactly the same unit labor demands, except for a proportional reduction:

$$\int_{(1+\Delta_1)\bar{x}_{h-1}^g}^{(1+\Delta_1)\bar{x}_h^g} \frac{b'_g(x')}{e'_h(x')} dx' = \int_{(1+\Delta_1)\bar{x}_{h-1}^g}^{(1+\Delta_1)\bar{x}_h^g} \frac{1}{(1+\Delta_1)(1+\Delta_2)} \frac{b_g(x'/(1+\Delta_1))}{e_h(x'/(1+\Delta_1))} dx' = \frac{1}{1+\Delta_2} \int_{\bar{x}_{h-1}^g}^{\bar{x}_h^g} \frac{b_g(x)}{e_h(x)} dx$$

So if firms use exactly the same labor inputs, they will produce $(1 + \Delta_2)$ times more goods.

²⁴Using the exponential-gamma parametrization, changes in comparative advantage functions and blueprints are equivalent to $\alpha'_h = \alpha_h/(1 + \Delta_1)$, $\theta'_g = (1 + \Delta_1)\theta_g$, $\kappa'_g = \kappa_g$, and $z'_g = (1 + \Delta_2)z_g$.

But because $p'_g = p_g / (1 + \Delta_2)$, total and marginal revenues are the same. Since all other equilibrium variables are the same, all equilibrium conditions are still satisfied. \square

Proposition 6 delineates balanced technological progress in this economy. Production becomes more efficient by using tasks that are more complex. At the same time, the skill of workers increases, changing the set of tasks where skill differences are relevant. If minimum wages remain as important, then there is a uniform increase in living standards. Wage differences between worker groups and across firms for workers in the same group remain stable.

B.4 Discussion: missing minimum wage channels

In this appendix, I briefly discuss three minimum wage channels that are not present in this paper. The first is interactions of minimum wage with labor market concentration. By using a “monopsonistic competition” assumption and assuming that the β parameter is common across regions and skill levels, my model rules out the possibility that labor market power varies significantly across regions, as suggested by the empirical work of [Azar et al. \(2019\)](#). My assumptions also rule out the possibility that, by reallocating labor from smaller to larger firms, the minimum wage increases the labor market power of the latter—a channel that is present in the theoretical model of [Berger, Herkenhoff and Mongey \(2024\)](#).

The reason why my framework abstracts from these channels is simplicity. Adding concentration requires not only a more complicated model but also significant effort in precisely defining specific labor markets (such that concentration measures are meaningful). I believe that abstracting from those dimensions does not have first-order implications for my analysis for two reasons. First, low-wage workers in Brazil typically have low levels of schooling. Those workers may not have very specialized skills, and so their potential labor markets may be large and thus less likely to be concentrated. Second, despite not including that feature, the estimated model has a very good cross-sectional fit with respect to formal employment rates for unskilled workers and the size of the minimum wage spike. So, to the extent that regional differences in market power may exist, they may be relatively small.

The second channel that is not explicitly included is capital-labor substitution. The task-based production function could directly account for different forms of capital replacing workers at particular tasks, in the style of [Acemoglu and Autor \(2011\)](#). The reason why this omission is arguably not very consequential is because the firm creation side of the

model may account for it. Specifically, the entry input entrepreneurs use to create firms may be interpreted as including capital investment. And the association of larger entry costs with a blueprint that is more intensive in complex tasks is a representation of capital-skill complementarity.

One may be concerned that entry inputs are not a good representation of capital because they are a one-time investment. A firm may respond to the minimum wage by scaling up with no need to purchase more capital. The reason why this is probably not a significant constraint is that I only use the model for long-run analyses, and what is most relevant for the calculation of the target moments is the share of workers of each type employed by all firms producing the same good.

The third channel not included in the paper are endogenous increases in worker efficiency in response to the minimum wage. Such “efficiency wage” effects may arise either because of reciprocity/fairness concerns, or because workers would choose to put in more effort at some utility cost to avoid being unemployed following a minimum wage hike. The second effect is the most important for the analysis of employment and wage effects. [Coviello, Deserranno and Persico \(2022\)](#) find support for that hypothesis in the US, but only for workers who are monitored more intensely.

The omission of these worker effort effects is likely insignificant because, to the extent that this channel exists, it should reflect in the minimum wage spike. That is because workers would put the necessary effort to be above the recruitment bar, but they do not need to put in so much effort that it overcomes the wage mark-down. Suppose I estimated an augmented model where a quantitatively significant number of workers bunch at the minimum wage due to endogenous effort. That would make the predicted spike bigger. However, in the structural estimation part of the paper, I find that the predicted spike is larger than the real one. Thus, adding that additional channel would decrease, rather than improve, the fit quality.

The final channel not included in the paper is endogenous responses in educational attainment caused by changes in the national minimum wage. Using data from the US, [Smith \(2021\)](#) documents that a ten percent increase in minimum wage lowers the probability of dropping out of high school by between four and ten percent, but only for teenagers in the low socio-economic status (SES) group (corresponding to 20% of teenagers).

Suppose such an effect is present in Brazil as well. In that case, the part of the effects of the minimum wage coming from this education channel will be assigned to education,

instead of minimum wage, in the main counterfactual decomposition (Table 5). It is not obvious, however, that the results from the US are applicable in my context. For low-SES teenagers in Brazil, formality rates are meager, such that changes in the minimum wage may not substantially affect the opportunity cost of schooling. Even if it does, the magnitude of those effects is likely to be small compared to all other reasons why educational achievement has risen in Brazil, which I list in Appendix D.6.5. That said, one should interpret the minimum wage effects reported in Section 6.2 as not including this potential channel.

C Numerical implementation

C.1 Task-based production function

The basic logic of obtaining compensated labor demands in this model is to use the non-arbitrage equation 2 from Lemma 1 to obtain thresholds as functions of marginal productivity gaps. Then, compensated labor demands can be obtained through numerical integration of Equation 3.

The exponential-Gamma parametrization is helpful because it provides a simple closed form solution for thresholds and the labor demand integrals. Consider the slightly more general version of the parameterization shown in the main text (allowing for heterogeneous κ_g by good and productivity shifters z_g):

$$e_h(x) = \exp(\alpha_h x) \quad \alpha_1 < \alpha_2 < \dots < \alpha_{H-1} < \alpha_H$$

$$b_g(x) = \frac{x^{\kappa_g-1}}{z_g \Gamma(\kappa_g) \theta_g^{\kappa_g}} \exp\left(-\frac{x}{\theta_g}\right) \quad (z_g, \theta_g, \kappa_g) \in \mathbb{R}_{>0}^3$$

Then, the compensated labor demand integral can be written as a function of thresholds in two ways: either in terms of incomplete gamma functions or as a power series.

$$\bar{x}_h \left(\frac{f_{h+1}}{f_h} \right) = \frac{\log f_{h+1}/f_h}{\alpha_{h+1} - \alpha_h} \quad (13)$$

$$\ell_{hg}(\bar{x}_{h-1}, \bar{x}_h) = \int_{\bar{x}_{h-1}}^{\bar{x}_h} \frac{b_g(x)}{e_h(x)} dx$$

$$= \begin{cases} \frac{1}{z_g \Gamma(\kappa_g)} \left(\frac{1}{\Upsilon_{hg} \theta_g} \right)^{\kappa_g} [\gamma(\Upsilon_{hg} \bar{x}_h, \kappa_g) - \gamma(\Upsilon_{hg} \bar{x}_{h-1}, \kappa_g)] & \text{if } \Upsilon_{hg} \neq 0 \\ \frac{1}{z_g \kappa_g \Gamma(\kappa_g)} \left[(\bar{x}_h / \theta_g)^{\kappa_g} - (\bar{x}_{h-1} / \theta_g)^{\kappa_g} \right] & \text{otherwise} \end{cases} \quad (14)$$

$$= \begin{cases} \sum_{m=0}^{\infty} \frac{\bar{x}_h^{\kappa_g} \exp(-\Upsilon_{hg}\bar{x}_h) (\Upsilon_{hg}\bar{x}_h)^m - \bar{x}_{h-1}^{\kappa_g} \exp(-\Upsilon_{hg}\bar{x}_{h-1}) (\Upsilon_{hg}\bar{x}_{h-1})^m}{z_g \theta_g^{\kappa_g} \Gamma(\kappa_g + m + 1)} & \text{if } \Upsilon_{hg} \neq 0 \\ \frac{1}{z_g \kappa_g \Gamma(\kappa_g)} [(\bar{x}_h/\theta_g)^{\kappa_g} - (\bar{x}_{h-1}/\theta_g)^{\kappa_g}] & \text{otherwise} \end{cases} \quad (15)$$

where $\Upsilon_{hg} = \alpha_h + \frac{1}{\theta_g}$, $\gamma(\cdot, \cdot)$ is the lower incomplete Gamma function, and $\Gamma(\cdot)$ is the Gamma function.

Expression 14 is simple to code and fast to run in software packages such as Matlab, where optimized implementations of the incomplete Gamma function are available.²⁵ When $\Upsilon_{hg} < 0$, that expression requires calculating complex numbers as intermediate steps. This is not a problem in Matlab.

If using complex numbers is not convenient or reduces computational efficiency, then the power series representation in 15 should be used. In my Julia implementation, I only use real (floating point) numbers. I use formulation 14 when $\Upsilon_{hg} \geq 0$, and 15 when $\Upsilon_{hg} < 0$. Another option, not used in this paper, is to change the normalization of α_h such that they are all non-negative.

Calculating the production function and its derivatives — that is, solving for output and marginal productivities given labor inputs — is not needed in the equilibrium computation nor in estimation. However, it might be useful for other purposes. Those numbers are obtained from a system of H equations implied by requiring that labor demand equals labor available to the firm. The choice variables can be either $(q, \bar{x}_1, \dots, \bar{x}_{H-1})$ or f_1, \dots, f_H . Moving from thresholds and output to marginal productivities, or vice-versa, is a matter of applying the constant returns relation $\sum_h f_h = q$.

C.2 Equilibrium

Solving for equilibrium can seem challenging at first glance. Using a convenient set of choice variables reduces the problem to solving a square system of $(H + 1) \times G$ equations. First, I use the “price” of the entry input (that is, the Lagrange multiplier for the entrepreneur) instead of the price of the final good as the numeraire. Then, I use the following procedure to map guesses of firm-specific task thresholds, firm-level output, and prices for each good

²⁵Note that Matlab’s *gammainc* yields a normalized incomplete Gamma function, so dividing by $\Gamma(\kappa_g)$ is not necessary.

into a vector of $(H + 1) \times G$ “residuals” which must be zero in an equilibrium:

1. Start with values for mean output \bar{q}_g and task thresholds $\bar{x}_g = \{\bar{x}_{1g}, \dots, \bar{x}_{Hg}\}$ for the representative firms of each type, along with prices for goods p_g .
2. Use the compensated labor demand integral for the task-based production function to find average labor demands \bar{l}_{hg} (Equation 3 in the text, or Equation 14 in Appendix C if using the exponential-Gamma parametrization).
3. Find marginal products of labor f_{hg} via the non-arbitrage conditions (2) and the constant returns to scale relationship $\sum_h f_{hg} \bar{l}_{hg} = \bar{q}_g$.
4. Employ the first order conditions of the firm (7) and (8) to find wages w_{hg} and rejection cutoffs ε_{hg} , respectively.
5. Calculate relative consumption $Q_g/Q_1 = (p_g/p_1)^{-\sigma}$ and relative firm entry $J_g/J_1 = (Q_g/Q_1)/(\bar{q}_g/\bar{q}_1)$.
6. Pin down entry of firm type 1 (and thus all others) with entrepreneurial talent clearing: $J_1 = T/(\sum_g F_g J_g/J_1)$.
7. Calculate the real minimum wage as the sum of the minimum wage parameter and the price index implied by the guess of prices for goods.
8. For each $h \in \{1, \dots, H\}$, integrate over ε to find labor supply and labor costs for each firm:
 - (a) Choose minimum and maximum values $\varepsilon_{h,\text{lowest}}$ and $\varepsilon_{h,\text{highest}}$ for numerical integration, based on quantiles of the r_h distribution. In my application I use 0.001 and 0.999 as quantiles.
 - (b) Split the space $[\varepsilon_{h,\text{lowest}}, \varepsilon_{h,\text{highest}}]$ into (at most) $2G + 1$ segments, based on two thresholds for each g : one based on the minimum employment requirement, and another based on the point where the minimum wage ceases to bind.
 - (c) For each of those segments:
 - i. Create an array of discrete values of ε , uniformly spaced between the end-points of the segment (inclusive).
 - ii. For each point, calculate $\omega_{h,\varepsilon}$, then the shares of workers choosing each individual firm, the corresponding units of labor going to each firm, and

labor cost. Each point should have “mass” corresponding to the density at the point, times the distance between halfway to the previous point until halfway to the next point. For the boundaries, the distance is from the point to the next or previous halfway point.

9. Calculate the error in the system of equations, which has two components:

- (a) For each h, g , the deviation between labor demand \bar{l}_{hg} found in Step 2 and the labor supply from Step 8. I normalize those residuals such that they are measured in terms of shares of the total workforce.
- (b) The relative deviation between profits and the entry cost parameter F_g (given that the “price” of the entry input is normalized to one).

I make two important notes about the trapezoidal integration in Step 8. One could be tempted to just use a constant grid of ε values. But that significantly reduces the accuracy of numerical differentiation of the system of equations. That is: we want the errors calculated through that procedure to change continuously with respect to the initial guesses. Using the endogenous grid based on the precisely calculated thresholds in ε space is crucial for that.

Second, the procedure could be more simply described as trapezoidal integration, without having to think about the “mass” of each individual discrete point of ε . But the analogy of each point having a weight makes clear that the trapezoidal integration is, effectively, creating a discretized “data set” that can be used to simulate moments from the model. Thus, the same procedure doubles down as a simulation tool, in addition to serving to find equilibrium. See the next subsection for details.

That system of equations can be solved using standard numerical procedures, with the restrictions that $\bar{q}_g > 0$, $p_g > 0$, and $0 \leq \bar{x}_{1g} \leq \bar{x}_{2g} \leq \dots \leq \bar{x}_{Hg} \forall g$. These restrictions can be imposed through transformations of the choice variables: log prices, log quantities, log of the lowest task thresholds \bar{x}_{1g} , and log of differences between consecutive thresholds $\bar{x}_{hg} - \bar{x}_{h-1,g}$ for $h = 2, \dots, H - 1$.

The procedure may be sensitive to starting points for some parameters. I solve this issue in two ways. First, I create a separate routine to provide a reasonable guess for the starting point. In essence, the procedure makes sure that initial task thresholds are such that, for all g , employment shares of each type is at least $0.1/H$. This is to make sure that derivatives regarding task thresholds are not zero in the starting point. For the prices and quantities, I just try a small grid and choose the combination with the lowest maximum for the loss

vector.

The second way to address the issue is to try a potentially large number of starting points, and also different optimization algorithms. My code tries a maximum of 50 attempts. If a point is found that has maximum residual of 10^{-10} or less, the equilibrium-finding procedure stops. If no solution that precise is found, it takes the one with the smallest maximum residual among all 50 attempts. If the maximum residual is 10^{-4} or less, it is considered a success. Otherwise, the procedure fails.

C.3 Simulating measures of wage inequality

As explained in the previous section, the procedure used to calculate the equilibrium “errors” doubles down as a simulation tool. I include an option in that function to save a data set with all discrete combinations of (h, ε, g) with the corresponding weights (i.e., shares of workforce) and log earnings.

In the quantitative exercise, I need to calculate some moments at the educational level. It is straightforward to create a version of the same data set with a variable for observable educational group. To do so, one needs to “expand” the data so that each observation in the old data corresponds to three observations in the new. The weight of the old observation is split among the new three based on the probabilities $P(\hat{h}|h)$. From the new data set, it is straightforward to calculate metrics such as between-group wage gaps and within-group variances.

The only moments that require more thinking are the variance decomposition components. To reason about AKM decompositions in the theory, I need a two-period version of the model, from which panel data could be simulated if needed. I assume that, with some probability $R > 0$, workers re-draw their full vector of idiosyncratic preferences η_i from period one to period two. I also assume that only part of the efficiency units of labor of a worker is transferable: $\log \varepsilon_{t=2} = A \log \varepsilon_{t=1} + (1 - A^2)^{0.5} \log \varepsilon'$, where ε' is a new i.i.d. draw from the same distribution of efficiency units (given h). After the re-draws, the labor market clears in the same way as in period 1.

Because the cross-sectional distribution of (h, ε, η) remains the same as before, firm choices and the equilibrium allocation remain the same, except for the identity of workers employed by each firm. That model of job-to-job transitions implies that, whenever a given worker type (h, ε) is employed in equilibrium by the two firm types, there is a positive probability

that some of those workers moved from a firm of type $g = 1$ to another of type $g = 2$ (and vice-versa).

Furthermore, I assume that firms are large, in the sense that there are many movers and firm fixed effects in the AKM regression are precisely estimated. Together with Lemma 3, that assumption implies that all firms producing the same good will have the same estimated fixed effect.

Given these assumptions, the results of an AKM decomposition of log wages using simulated panel data are identical to running a two-way fixed effects model based on simulated data from one period, using a “worker id” indicator for each combination of (h, ϵ) and a “firm id” indicator for each good. Each observation is a (h, ϵ, g) cell. The regression is weighted by the share of the employed population in the corresponding cell. Finally, the estimated worker fixed effects are shrunk by the factor A , since they correspond only to the portable portion of productivity. The persistence parameter A is calibrated such that the R^2 of the simulated AKM regression is 0.9, about the same as the empirical regressions.²⁶

This approach ignores granularity issues in the simulation of AKM moments. That is conceptually consistent with the way the corresponding moments are estimated from the data, since the KSS estimator is not subject to limited mobility bias.

D Appendix to the quantitative exercises

D.1 Sample sizes

Sample sizes for the descriptive statistics and quantitative exercises are displayed in Table D1.

D.2 Variance decomposition using Kline, Saggio and Sølvsten (2018)

The estimation of variance components follows the methodology proposed in Kline, Saggio and Sølvsten (2018), henceforth KSS. For each period (1998 and 2012), I use a three-year panel centered around the base year. The sample used for estimation is the largest leave-one-out connected set. This concept differs from the usual connected set in matched employer-employee datasets because it requires that firms need to be connected by at least two movers,

²⁶The persistence parameter is allowed to change between 1998 and 2012 and between regions.

Table D1: Sample sizes for the 151 selected microregions

	1998			2012		
	Min.	Mean	Max.	Min.	Mean	Max.
<i>Panel A: Base year</i>						
Adult population (thousands)	69	396	7,037	82	512	8,240
Formal workers in RAIS (thousands)	16	121	3,117	26	216	4,954
Establishments in RAIS	743	9,216	190,784	2,352	15,887	288,929
<i>Panel B: Three year panel around base year</i>						
Unique workers in connected set (thousands)	7	93	2,500	18	178	4,181
Unique establishments in connected set	132	2,527	62,416	598	6,637	135,819

Notes: Panel A shows sample sizes for each microregion in 1998 and 2012. Adult population is the count of all individuals between 18 and 54 (inclusive), using Census data. RAIS is the matched employer-employee data set. Panel B shows the numbers of workers and establishments used in the estimation of two-way fixed effects models, using data from 1997 through 1999 ("1998") and 2011 through 2013 ("2012").

such that removing any worker from the sample does not disconnect this set. Table D1 presents the size of that largest connected set in each period.

The variance of log wages in the leave-one-out connected set is typically a bit smaller than the overall variance of log wages using the whole sample. To keep all measures in each region-time consistent with one another, I rescale the KSS variance components. Specifically, I multiply those components by the ratio of the overall variance of log wages in a region-time to the same variance in the leave-out connected set.

I implement the variance decomposition using the Julia code provided by KSS.²⁷ There are some implementation choices required in this estimation, stated below:

- Dealing with controls (year fixed effects): "Partialled out" prior to estimation.
- Maximum number of interactions: 300
- Sample selection: includes both movers and stayers. The leave-out procedure leaves a whole match out, not simply a worker-time observation.
- Number of simulations for JLA algorithm: 200

D.3 Validation: task assignments and wage premiums

In this Appendix, I test four implications of the model: (i) skill-intensive firms have more demand for complex tasks (Figure 1); (ii) within firms, more skilled workers are assigned

²⁷Currently available at <https://github.com/HighDimensionalEconLab/VarianceComponentsHDFE.jl>.

Table D2: Validation of the task-based production function.

	Non-routine cognitive task content of occupation				Log wage	
	Estab. average		Worker level			
	(1)	(2)	(3)	(4)		
Mean schooling in establishment	0.07921 (0.00049)					
Own schooling		0.06304 (0.00159)				
Mean schooling of coworkers in establishment			0.00663 (0.00077)	0.00343 (0.00086)		
Own \times mean schooling of coworkers in estab.					0.00162 (0.00045)	
Sample	Estabs. 1997	All workers 1997	Movers 1997, '99	Movers 1997, '99	All workers 1997, '99	
Years used						
Microregion-time fixed effects	✓		✓	✓	✓	
Establishment fixed effects		✓			✓	
Sector fixed effects				✓		
Worker fixed effects			✓	✓	✓	
r2	0.26216	0.40172	0.84463	0.85033	0.95789	
N	93,606	11,551,108	2,673,660	2,673,659	14,996,848	

Notes: RAIS data, largest connected set in each of the 151 selected microregions. Standard errors (in parenthesis) are robust in Column (1), clustered at the establishment level in Column (2), and two-way clustered at the worker and establishment levels in the other columns. The standard deviation of the task content variable is approximately one.

to more complex tasks (Lemma 1); (iii) with monopsony power, workers moving to more skill-intensive firms are reallocated to more complex tasks (Lemma 2); and (iv) wage gaps between high- and low-skill firms should be larger for skilled workers (Proposition 3).

To test these predictions, I need proxies for worker skill and task complexity. Skill is measured by years of schooling; see below for results using an alternative measure. For task complexity, I use the non-routine analytical task content of Brazilian occupations created by [de Sousa \(2020\)](#). That measure reflects whether O*NET survey respondents believe that their occupation requires mathematical reasoning and was created following the methodology in [Deming \(2017\)](#).²⁸

²⁸The O*NET survey asks workers in the US about their jobs, including skill requirements and the degree of automation in the occupation. [Deming \(2017\)](#) describes how that survey is collected and processed to produce

Columns (1) and (2) in Table D2 test the first two predictions using data for 1997. Column (1) reports a firm-level regression of the establishment's average task complexity on the average years of schooling of that establishment's employees. Consistent with the theory, I find a positive relationship. Column (2) is a worker-level regression of the task content of the worker's occupation on that worker's schooling, controlling for firm fixed effects. The positive coefficient confirms the prediction for within-firm assignment.

Next, I use worker transitions between establishments to test the third prediction. Specifically, I regress the analytical task content of the worker's occupation on mean schooling of other workers in the same establishment, controlling for worker fixed effects. That regression uses data from 1997 and 1999 and only includes movers. Column (3) demonstrates that the estimate is positive and significant, although the correlation is weaker than in Column (2). Workers moving to firms with more educated colleagues tend to be assigned to more analytical occupations, consistent with differences in optimal assignment across firms in imperfectly competitive environments.

I also investigate whether changes in assignment are driven by workers moving between sectors. Column (4) shows results for a specification similar to Column (3) but with sector fixed effects.²⁹ I find that the coefficient falls by about half but remains highly significant. This suggests sizable within-sector variation in skill intensity and task content of occupations, consistent with the interpretation that goods in the model might represent differentiated varieties or technologies within industries.

Finally, Column (5) tests the fourth prediction, again using panel data. It reports a regression of log wage on worker fixed effects, firm fixed effects, and the interaction between a worker's years of schooling and the average schooling of coworkers in their workplace. I find a positive, statistically significant estimate, consistent with the theory.

Table D3 shows additional versions of the validation exercises from Table D2. Panel A repeats the results from that table for quick referencing. Panels B and C show sample restrictions where regions where the minimum wage binds more strongly are eliminated. That exercise tests whether the log-wage complementarities shown in Column (5) are mechanical consequences of minimum wages. That could be a concern since minimum wages censor the bottom of the wage distribution, and thus reduce the possibility of cross-firm wage dif-

data that describe each occupation as a combination of tasks of varying intensities. [de Sousa \(2020\)](#) links SOC occupation codes with occupation codes in the RAIS data before calculating the task content of occupations using O*NET data and the procedures in [Deming \(2017\)](#).

²⁹There are 560 “CNAE10” sectors in the regression sample. 507 include at least 100 movers.

ferentials for unskilled workers.

The coefficient of interest falls by 28% from Panel A to Panel B, but remains statistically significant. The further sample restriction from Panel B to Panel C has essentially no effect on the estimated coefficient, which remains statistically distinguishable from zero. Thus, I conclude that minimum wages are not the primary cause for the log wage complementarities.

In Panel D, I explore an alternative measure of skill, constructed in the following way. First, I split workers into 12 age groups (each group includes three years of age, except the last, which includes workers 51 through 54). Next, I use data from 1997 only to run a regression of log wages on schooling fixed effects, age fixed effects, and firm fixed effects. Thus, it accounts for nonlinearities in returns to schooling, the role of age, and nets out some of the effects of firms on log wages. The measure is normalized to range from zero to 15, so that the magnitude of the coefficient can be more easily comparable to the ones from the other panels. The firm-level averages and leave-out averages are recalculated using the Mincerian measure.

I find that the results are very similar for all outcomes. In unreported results, I also find that results hold if the skill measure is just dummies for the three educational groups, as used in the remainder of the quantitative exercises. I conclude that the results are not sensitive to the particular metric of worker skill I use.

D.4 Discussion: estimating the labor supply elasticity β

In this Appendix, I discuss the decision to calibrate the firm-level elasticity of supply parameter β instead of estimating it. I also discuss assigning half weight to the minimum wage “spike” in the estimation procedure since both decisions are related.

In principle, it is possible to estimate the firm-level elasticity of labor supply based on the size of the spike in log wage distributions, given the structure of the model. Comparing Panels A and B in Figure 3, one can note how β determines the range of workers who earn exactly the minimum wage conditional on posted wages and the distribution of abilities.

I did not pursue this strategy in the paper because the spike may be strongly affected by economic factors not included in the model, such that this approach to identifying β is not as credible as state-of-the-art methods exploited in recent literature. One example of a theoretical channel not included in the model but with potentially significant consequences for the spike is the role of fairness considerations and relative earnings within the firm (see Foot-

Table D3: Validation of the task-based production function: robustness.

	Non-routine cognitive task content				Log wage
	(1)	(2)	(3)	(4)	(5)
<i>Panel A: baseline estimates</i>					
Coefficient	0.07921	0.06304	0.00663	0.00343	0.00162
Standard error	(0.00049)	(0.00159)	(0.00077)	(0.00086)	(0.00045)
r2	0.26216	0.40172	0.84463	0.85033	0.95789
N	93,606	11,551,108	2,673,660	2,673,659	14,996,848
<i>Panel B: 101 microregions where spike $\leq 5\%$ of formal emp.</i>					
Coefficient	0.08138	0.06166	0.00827	0.00531	0.00117
Standard error	(0.00053)	(0.00175)	(0.00073)	(0.00084)	(0.00039)
r2	0.26849	0.40415	0.84489	0.85056	0.9572
N	82,711	10,333,034	2,415,618	2,415,617	13,142,099
<i>Panel C: 44 microregions where spike $\leq 2\%$ of formal emp.</i>					
Coefficient	0.08331	0.06116	0.00941	0.00678	0.00113
Standard error	(0.00061)	(0.00214)	(0.00085)	(0.00098)	(0.00048)
r2	0.2762	0.40159	0.84052	0.84619	0.95668
N	60,230	7,567,905	1,774,798	1,774,796	9,510,389
<i>Panel D: Mincerian measure of skill</i>					
Coefficient	0.07373	0.05314	0.00519	0.00297	0.00159
Standard error	(0.00043)	(0.00182)	(0.00074)	(0.00086)	(0.00042)
r2	0.27312	0.40156	0.84461	0.85033	0.95789
N	93,606	11,551,108	2,673,660	2,673,659	14,996,848

Notes: See notes from Table D2.

note 19). Another is the possibility that, when deciding whether to work in the formal sector, workers have imperfect information about the level of earnings they will receive. In this case, a higher minimum wage may induce search efforts by workers who think there is a significant probability that they will earn exactly the minimum wage. That's because, for those workers, the expected earnings rise with the minimum. However, some may receive employment offers with wages a bit above the minimum. Because workers in my model have perfect information about their potential earnings in all firms in the economy, the positive employment effects of the minimum wage concentrate on the spike.

Indeed, when I estimate the model with a level of β similar to values estimated in recent papers and assign half weight to the spike target, I find that it over-estimates the size of the spike (see Table 4). Assigning full weight to the spike leads to minor improvements in that

moment but significantly decreases the quality of fit in other dimensions. That's because the residual variance in the spike moment is relatively small compared to the wage inequality moments.

An alternative approach would be to estimate the β parameter by targetting the spike and assigning full weight to that target. I pursued this strategy in a previous version of this paper (available upon request). In that version, the predicted spike is closer to the measured one, though still larger. The estimated β was 10.2, consistent with the mechanism from Figure 3 being used to match the smaller spike. The conclusions from the main counterfactual exercises were very similar concerning the role of each factor in explaining changes in wage inequality in Brazil. As expected, the disemployment effects of the minimum wage are larger with a higher elasticity β .³⁰

As a final note, the spike size may be different in the Brazilian context if one uses alternative data sets in the estimation procedure, which provides another potential reason to downweight that moment. For example, one can find more significant estimates of the minimum wage spike using the *Pesquisa Nacional por Amostragem de Domicílios* (PNAD) household survey. See Figure 2, Panel D in [Derenoncourt et al. \(2021\)](#) for a specific example. The discrepancies between the spike size in my paper and that in [Derenoncourt et al. \(2021\)](#) are primarily due to sample selection: my data excludes the smallest microregions in the country, where the minimum wage binds more strongly. I conjecture that they may also reflect rounding bias in the PNAD data compared to the RAIS. That is because the RAIS is an administrative data set managed by the government, and thus, firms are incentivized not to over-report wages since some mandatory contributions are proportional to the reported wage. The spike size in my paper is similar to that in [Engbom and Moser \(2022\)](#). That said, if it is true that the actual minimum wage spike is larger than what is implied by the RAIS data I use, then that would make the moments in the data closer to the values predicted by the fitted structural model.

³⁰In the previous version of the paper, the minimum wage caused small, negative wage spillovers for workers in the middle of the productivity distribution. In the current version, the spillovers are also small but positive. The difference is not due to the β parameter. Rather, the previous model version imposed that low-wage firms had degenerate demand for low-complexity tasks. In contrast, those firms may demand high-complexity tasks in the current version. Thus, differences in returns to skill between firms were magnified in the previous version, strengthening the returns to skill channel of minimum wage effects.

D.5 Details on the parameterization of worker types

I set $H = 10$. The comparative advantage functions for these ten groups are fixed:

$$e_h(x) = \exp(\alpha_h x)$$

$$\alpha_h = -1 + \left(\sum_{h'=1}^{h-1} \frac{1}{h'} \right) / \left(\sum_{h'=1}^{H-1} \frac{1}{h'} \right)$$

This formulation implies that the highest type has the same productivity in all tasks, while the lowest type has $e_1(x) = \exp(-x)$. The values for intermediate types are such that if task thresholds are equally spaced for a firm g , then ratios of marginal products of labor between neighboring worker types are identical for all types. Although not essential, this property helps make skill premiums between groups reasonably uniform.

The exogenous number of workers N_h is determined by the observed shares of the adult population in each educational group $\hat{h} \in \{1, 2, 3\}$ (less than high school, high school, and college or more) according to the following probabilities:

$$\Pr(h = 1 | \hat{h}) = \Phi \left(\frac{1.5 - \mu_{\hat{h}}}{\rho_{\hat{h}}} \right)$$

$$\Pr(h | \hat{h}) = \Phi \left(\frac{h + 0.5 - \mu_{\hat{h}}}{\rho_{\hat{h}}} \right) - \Phi \left(\frac{h - 0.5 - \mu_{\hat{h}}}{\rho_{\hat{h}}} \right) \quad h \in \{2, \dots, 9\}$$

$$\Pr(h = 10 | \hat{h}) = 1 - \Phi \left(\frac{9.5 - \mu_{\hat{h}}}{\rho_{\hat{h}}} \right)$$

where Φ is the cumulative distribution function of a standard Normal. Those probabilities resemble an “ordered Probit” model with thresholds $1.5, 2.5, \dots, 9.5$. I normalize $\mu_{\hat{h}=1} = 3$ and $\mu_{\hat{h}=3} = 8$. That is, the median worker with less than high school corresponds to $h = 3$, and the median college worker has $h = 8$. The comparative advantage of the median high-school worker is given by the estimated parameter $\mu_{\hat{h}=2}$. The model allows for dispersion in comparative advantage within an educational group, depending on the magnitude of $\rho_{\hat{h}}$.

The distribution of efficiency units ε within latent group h is a mean-zero Skew Normal:

$$r_{h,r,t}(\varepsilon) = \frac{2}{S_{h,r,t}} \phi(\tilde{\varepsilon}) \Phi(\chi \tilde{\varepsilon})$$

$$\tilde{\varepsilon} = \frac{\varepsilon}{S_{h,r,t}} - \chi \sqrt{\frac{2}{\pi(1 + \chi^2)}}$$

$$S_{h,r,t} = \sum_{\hat{h}=1}^3 \Pr(\hat{h}|h,r,t) \hat{S}_{\hat{h}}$$

where ϕ is the density of a standard Normal. The skewness is determined by χ . This degree of freedom helps the model fit the left tail of the wage distribution, which is essential for the effects of minimum wages. The parameters $\hat{S}_{\hat{h}}$ determine the dispersion of the efficiency units associated with each educational group \hat{h} .

The value of outside options is determined by:

$$z_{0,h,r,t} = \sum_{\hat{h}=1}^3 \Pr(\hat{h}|h) \hat{z}_{0,\hat{h},r,t}$$

where $\hat{z}_{0,\hat{h},r,t} = \hat{z}_{0,\hat{h},t}^{HT} \cdot \hat{z}_{0,r,\hat{h}}^{RH} \cdot \hat{z}_{0,r,t}^{RT} (1 + \Lambda \mathbf{1}\{\hat{h}=3\})$

and normalizing: $\hat{z}_{0,\hat{h},t}^{HT} = 1 \quad \text{if } t = 1998 \text{ or } \hat{h} = 2$

and $\hat{z}_{0,r,\hat{h}}^{RH} = 1 \quad \text{if } \hat{h} = 2$

The easiest way to understand that formulation is to focus on $\hat{z}_{0,\hat{h},r,t}$, the average value for educational group \hat{h} . It is determined by flexible education-time (HT), region-education (RH), and region-time (RT) components, which absorb confounders determining formal employment such as regional differences in the enforcement of labor regulation. The region-time shocks are allowed to have stronger or weaker effects on college workers ($\hat{h} = 3$) depending on the Λ parameter.

Once the outside options for the three educational groups are known, they can be transformed into outside options for latent worker groups, $z_{0,h,r,t}$, using the conditional probabilities $\Pr(\hat{h}|h,r,t)$ (similarly to the approach for the dispersion of efficiency units).

D.6 Identification and definition of the estimator

D.6.1 Formalization of the data-generating process and estimator

As explained in the main text, the data-generating process is:

$$\mathbf{Y}_r = a(\mathbf{Z}_r, \boldsymbol{\theta}_0^G, \boldsymbol{\theta}_r^R) + \mathbf{u}_r \quad r \in \{1, \dots, R\}.$$

Let $PB(\mathbf{Y})$ be a function that selects the following six moments from \mathbf{Y} : formal employment rates for each of the educational groups in $t = 1998$, the formal employment rate for high

school workers in $t = 2012$, and minimum wage bindingness in both years (defined as log minimum wage minus mean log wage). These endogenous outcomes are used to “invert” the region-specific parameters given a guess of the other parameters, as formalized in the following identification assumptions:

Assumption 1 (Exogeneity). $E[\mathbf{u}_r | \mathbf{Z}_r, \boldsymbol{\theta}_r^R] = \mathbf{0}_{26 \times 1}$.

Assumption 2 (Independence between microregions). *If $r \neq r'$, then $E[\mathbf{u}_r \mathbf{u}'_{r'}] = \mathbf{0}_{26 \times 26}$.*

Assumption 3 (Correct specification of employment and bindingness). $PB(\mathbf{u}_r) = \mathbf{0}_{6 \times 1} \forall r$.

Assumption 4 (Invertibility of outside options and TFP). *For all r and all allowable $\boldsymbol{\theta}^G$, there is a function $\hat{\theta}^R(\cdot | \mathbf{Z}_r, \boldsymbol{\theta}^G)$ such that: $\mathbf{Y} = a(\mathbf{Z}_r, \boldsymbol{\theta}^G, \boldsymbol{\theta}^R) \Leftrightarrow \boldsymbol{\theta}^R = \hat{\theta}^R(PB(\mathbf{Y}) | \mathbf{Z}_r, \boldsymbol{\theta}^G)$.*

Assumption 5 (Rank condition). *Define:*

$$\tilde{a}([\mathbf{Z}'_r, PB(\mathbf{Y}_r)']', \boldsymbol{\theta}^G) = a(\mathbf{Z}_r, \boldsymbol{\theta}^G, \hat{\theta}_r^R(PB(\mathbf{Y}_r) | \mathbf{Z}_r, \boldsymbol{\theta}^G))$$

Denote the 51×1 gradient of the o -eth endogenous outcome of the $\tilde{a}(\cdot)$ function, with respect to $\boldsymbol{\theta}^G$, in region r , by $J_{r,o}(\boldsymbol{\theta}^G)$. Then, the following matrix exists and is nonsingular:

$$\mathbf{A}_0 = \underset{R \rightarrow \infty}{plim} \frac{1}{R} \sum_{r=1}^R \sum_{o=1}^{26} J_{r,o}(\boldsymbol{\theta}_0^G) J_{r,o}(\boldsymbol{\theta}_0^G)'$$

Assumption 6 (Limited dispersion of structural residuals). *The following matrix exists and is positive definite:*

$$\mathbf{B}_0 = \underset{R \rightarrow \infty}{plim} \frac{1}{R} \sum_{r=1}^R \sum_{o=1}^{26} \sum_{o'=1}^{26} J_{r,o}(\boldsymbol{\theta}_0^G) J_{r,o'}(\boldsymbol{\theta}_0^G)' u_{r,o} u_{r,o'}$$

These assumptions allow for the identification of model parameters:

Proposition 7 (Identification, estimation, and inference). *Under Assumptions 1 through 6, the following nonlinear least squares estimator*

$$\hat{\boldsymbol{\theta}}^G = \arg \min_{\boldsymbol{\theta}^G} \sum_{r=1}^R \left[\mathbf{Y}_r - \tilde{a}([\mathbf{Z}'_r, PB(\mathbf{y}_r)']', \boldsymbol{\theta}^G) \right]' \left[\mathbf{Y}_r - \tilde{a}([\mathbf{Z}'_r, PB(\mathbf{y}_r)']', \boldsymbol{\theta}^G) \right]$$

has the following asymptotic distribution:

$$\sqrt{R}(\hat{\boldsymbol{\theta}}^G - \boldsymbol{\theta}_0^G) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \mathbf{A}_0^{-1} \mathbf{B}_0 \mathbf{A}_0^{-1})$$

D.6.2 Overidentification

In this section, I provide examples of how the economic model imposes strong constraints on the data, leading to an over-identified empirical model. First, note that I target seven inequality measures at the region-time level, but only allow three demand-side parameters to vary flexibly between regions. The model does not have enough degrees of freedom to simultaneously match, for each of those inequality measures, their time-specific means, variances, and how they correlate with the covariates we use.

Intuitively, the three demand parameters allowed to vary systematically between regions—blueprint complexity, relative entry costs, and relative taste for skill-intensive goods—are closely linked to the returns to college, the variance of establishment effects, and the covariance of worker and establishment effects, respectively. One could thus identify the 36 parameters $\delta^{d,t}$ by estimating period-specific regressions of those endogenous outcomes on the covariates in Equation (11), and then using the estimated regression coefficients as targets. After this, one could then consider using only a few selected moments of the other four inequality measures as targets to estimate the remaining parameters. Just trying to match their period-specific averages and variances would correspond to 16 moments, the same number of parameters left to be estimated after the $\delta^{d,t}$ terms are recovered. But there is important economic content not only in averages and variances of these inequality measures but also in how they correlate with each other. Below, in Section D.6, I discuss how the correlation between within-group variances of log wages and the covariance between worker and firm effects is important for identifying the elasticity σ . By trying to match all of the moments at the region-time level, the least-squares estimator uses that variation for identification.

Another example comes from the minimum wage bindingness measures. There is no guarantee that the model can replicate period-specific shares of workers at the minimum wage spike or up to 30 log points of the minimum wage, as they all depend fundamentally on a single parameter—the skewness of efficiency units of labor χ . A failure to match these bindingness measures would suggest misspecification of the distribution of skills or the economic mechanism that generates the minimum wage spike. The β parameter could, in principle, be estimated by targeting the size of the minimum wage spike (I thank an anonymous referee

for this suggestion). In a previous discussion (Appendix D.4), I explained why this approach was not pursued in the paper.

D.6.3 Avoiding incidental parameter bias

A central challenge in the empirical model is allowing for region-specific heterogeneity in labor demand parameters, formal employment shifters, and overall productivity levels (which are strong determinants of how binding the minimum wage is in each region). It would not be realistic, for example, to assume that regional labor demand is orthogonal to education, or that education is orthogonal to productivity. Thus, when specifying the unobserved supply, demand, and productivity parameters, the structural model needs to account for the possibility of such correlations.

One approach would be to add flexible fixed effects to model to capture such unobserved heterogeneity. But that solution would be incomplete, since there may be heterogeneous trends in addition to heterogeneous levels. For example, rural regions could on average be less educated initially, face stronger educational growth, and receive stronger shocks to TFP and relative demand for unskilled labor due to the commodities boom.

A worse problem with the fixed effects approach would be incidental parameter bias, since the model is nonlinear. There exist methods to deal with incidental parameter bias in such panel models (e.g., [Hahn and Kuersteiner, 2002](#); [Hahn and Newey, 2004](#)). However, they rely on large T asymptotics. Since I am estimating a long-run model, those methods are not appropriate.

This is the motivation for specifying the regression-style models for the biased demand parameters, and using a subset of the endogenous outcomes to invert the flexible region-specific parameters. Three region-specific outside option parameters are recovered from formal employment rates in 1998, capturing heterogeneity in outside options at the microregion-education group level. The formal employment rate for high school workers in 2012 recovers the common region-specific shock to outside options for all groups. That could reflect, for instance, location-specific changes in the enforcement of labor regulations, which affects informality rates ([Almeida and Carneiro, 2012](#)).³¹ Local TFP in each period is inferred from the minimum wage bindingness level. In effect, those endogenous outcomes are used as covariates, somewhat analogously to how empirical strategies such as [Lee \(1999\)](#) use mea-

³¹I choose high school workers as the reference group because it corresponds to a large share of the workforce in both periods, thus providing more precise estimates of the formal employment rate.

sures of minimum wage bindingness as independent variables in regressions. An important difference is that the inversion procedure explicitly takes into account that observed bindingness depends on several other characteristics at the local level in addition to TFP, such as the educational distribution and labor demand characteristics.

Inversion requires that there should be no error in formal employment rates for 1998, the employment rate of high school workers in 2012, and the minimum wage bindingness variable (Assumption 3). That is because the model is nonlinear: even if there is mean-zero error, it could still introduce bias to the model, which would not go away with an increase in the number of regions.

As mentioned in the main text, the residuals u_r include misspecification in functional forms, omitted variables, and sampling error. Functional form issues are not an issue, since the model can always match observed formal employment rates and levels of minimum wage bindingness by shifting the flexible productivity and outside option parameters. As for omitted variables, Assumption 3 can be viewed as a normalization: the “ z ” parameters to be inverted should be interpreted as encompassing all factors that drive formal employment and bindingness other than the wage index.

Sampling error could be an issue, but it is made less relevant by the sample restrictions I use. The most imprecise measure is the formal employment rate of college workers in 1998, as they are by far the smallest worker group and the sample is smaller (and less educated) in 1998. But since the sample is selected to have regions with at least 1,000 formal workers with college education (and thus more than 1,000 adults with college education), the sampling error is minimal. The largest estimated standard error is 0.013, for a point estimate of 0.654. That region has a small population, such that its weight in estimation is not large. The mean standard error, using the region-specific estimation weights, is 0.005. That is, standard errors are about 1% of the point estimates, and 2% in the region with the most imprecise estimate. Thus, they are unlikely to cause significant bias.

D.6.4 Identifying variation and instrumental variables analogy

The estimator can be interpreted as a nonlinear instrumental variables model. The population share instruments have a primary effect (“first stage”) on the endogenous total supply of skilled labor to the formal sector. Time is used as an instrument for common changes in the three time-varying demand-side parameters: blueprint complexity of advanced firms, entry cost ratios between firms, and relative taste for advanced goods. That is: conditional on

observed changes in minimum wage bindingness and labor supply, the only time-varying factors are the three demand shocks. That approach is analogous to that of papers such as [Katz and Murphy \(1992\)](#), where a time trend is interpreted a change in unobserved shocks conditional on labor supply.

The interaction of time with initial sectoral shares in agriculture and manufacturing is inspired by papers that use shift-share instruments to gauge the effects of trade shocks between regions. That is clear by noting that the equations for the three time-varying demand parameters can be written as time changes within microregion, and each of the initial sectoral shares can have an independent effect on those changes that is different from their impacts on initial levels.

The simultaneous equation least squares estimator can then be interpreted as stacking the first stages and reduced forms, which is one way to estimate an IV model (in the classic IV model, one would estimate them as a set of seemingly unrelated regressions). A potential concern is that the residuals of first stages will be correlated with those of the reduced forms. This is an important reason why the model needs to allow for within-region correlated errors, even between different time periods. It is not the only reason, though. As another example, an unobserved factor that affects the wage for high school workers would mechanically affect the two between-group wage gaps.

I also rely on some exogenous variation in the bindingness level of the minimum wage. It comes from the assumption that region-time-specific TFP is mean independent of the residuals conditional on all instruments and outside option parameters. The estimator uses that variation to infer how minimum wage bindingness maps into the size of the spike and the share of the employed workforce close to the minimum wage. That information, in turn, identifies the skewness parameter of the distribution of efficiency units, χ .

One advantage of my approach is that it “corrects” for differences in the shape of the wage distribution that could be driven by different supply and demand characteristics across regions. Those might be confounders both because they may correlate with TFP and because they have independent effects on wages, and thus affect empirical measures of bindingness such as the size of the minimum wage spike or how the minimum wage compares to the mean or median of the log wage distribution. In addition, I do not need to specify a reference point at which the minimum wage is assumed to have no effects, as in [Lee \(1999\)](#) or [Autor, Manning and Smith \(2016\)](#). That is useful for capturing possible general equilibrium effects which could affect the upper tail of the distribution. As a potential downside, I have

to specify a fully parametric model, which may not be accurate. When evaluating the fit of the model, I will argue that the model is flexible enough to accurately portray the shape of the wage distribution, particularly at the left tail.

The variation in labor supply, labor demand, and minimum wage bindingness induced by the instruments is then used to identify the remaining general parameters of the model:

Worker types: The comparative advantage of high school workers $\mu_{\hat{h}=2}$ is identified from the initial mean log wage gap between high school workers and those with less than high school. To identify the dispersion in comparative and absolute advantage within educational groups, I need to combine two kinds of information for each of them. The first is the overall level of wage dispersion, measured through the initial variance of log wages within group. The second piece of information is revealed by how the changes in the variance of log wages correlate with changes in skill premiums at the microregion.³²

Outside options: The four region-specific parameters are inferred from observed formal employment rates, as described above. The two shocks to outside options at the education level (for less than high school and for college workers) are identified by matching the average employment rates for those groups. Finally, the preference parameter λ , which regulates the macro elasticity of labor supply, is identified by the correlation between employment rates and the predicted inclusive value of formal employment, which is a function of wages and the number of firms of each type in the economy.

Blueprint shape and elasticity of substitution between goods: Those two parameters have important implications for sorting and the aggregate substitution patterns between worker types. The first, κ , determines the extent to which the skill-intensive firms are specialized. The second, σ , determines how good-specific output, and thus firm entry and aggregate employment by firm type, responds to shocks that affect relative costs, such as changes in skill premiums induced by supply or demand shocks. That has strong implications for how mean log wage gaps between groups respond to those shocks, as well as the contribution of firm premiums to within-group inequality. Thus, the two parameters are jointly recovered from cross-sectional correlations between supply and demand shocks, sorting, skill premiums between groups, and variances of log wages within groups.

³²If there is significant dispersion in comparative advantage in a group, then the variance of log wages within that group should increase with skill-premiums. Alternatively, if all of the productivity dispersion is in absolute advantage, then log wages within a group move in tandem. Because the estimation procedure is joint, that logic is valid after netting out the contribution of other factors such as minimum wages, which may have strong independent effects on within-group variances of log wages.

D.6.5 Identifying variation in the Brazilian context

The variation used to identify the impact of supply comes from the dramatic rise educational achievement in Brazil. The country has historically low levels of schooling (see Chapter 5 in [Engerman and Sokoloff, 2012](#), for a discussion of the historical development of schooling institutions in the Americas). In 1989, average years of schooling were 5.1 in Brazil, compared to 6.1 in Mexico, 7.11 in Venezuela, or 8.4 in Chile (calculated using statistics compiled in [SEDLAC, 2022](#)). But with the return to democracy in 1985, following more than 20 years of military dictatorship, a series of reforms helped set a new trajectory for schooling achievement in the country.

These developments started at the end of the military dictatorship. A constitutional amendment passed in 1983 (“Emenda Calmon”) imposed minimum expenditure requirements on education: at least 13% of federal resources and 25% of state and municipality-level resources. The dictatorship argued that the amendment was not binding without another law regulating it. Congress acted, and the new law was passed in 1985. Later, the new Constitution of 1988 enshrined that law, with the federal expenditure requirement increasing to 18%. The new Constitution also gave municipalities more autonomy in how to organize their educational systems.

More systematic efforts to expand schooling followed in the 1990’s and 2000’s. In 1996, a new law (“Lei de Diretrizes e Bases da Educação Nacional”) established guidelines and attributed formal responsibilities to federal, state, and municipal agents in promoting the universalization of schooling. In 1995, the federal government created an effective system to collect school quality data at the national level (“Saeb”). Another system for evaluating secondary education followed in 1998 (“Enem”). In 2001, the federal government implemented a national cash transfer program conditional on school enrollment (“Bolsa-Escola”, later incorporated into the “Bolsa Família” program). And starting in 2005, the “ProUni” program subsidizes low-income students who wished to attend private colleges and universities (public universities are tuition-free in Brazil, but few low-income students are able to pass the entry exams). This list of reforms and policies, which is not exhaustive, shows that the rise in schooling achievement in Brazil was not an accident, nor should be viewed as “automatic” consequence of economic growth. Indeed, economic growth was much more significant in the 1960’s and 1970’s than the 1980’s and early 1990’s.

The model allows for trends in labor demand that correlate with schooling achievement measured in 1998, as well as with initial employment shares in agriculture and manufacturing

and overall wage levels (relative to the minimum wage). Thus, the variation that disentangles the effect of supply from that of demand comes from regions where the growth in schooling achievement was faster or slower than expected, compared to other locations that were similar in 1998. I argue that this variation is plausibly exogenous. Reverse causality is unlikely because it takes years or decades for household or local government decisions to be reflected into shares of the adult population belonging to each educational group.

Why does schooling rise faster in some regions, compared to others? It could be due to differences in policies implemented before 1998, or due to the fact that some national policies could affect regions differently. As an example of the former, the Brazilian Federal District (where the capital, Brasília, and a few other cities are located) implemented a local cash transfer program in 1995, six years before the national program. As for the latter, the minimum expenditure requirements from “Emenda Calmon” and the 1988 Constitution were more binding in some states than in others, such that some were more strongly affected by that policy.

D.6.6 Threats to identification

At this point, it is worth emphasizing some threats that could hinder identification in other models, but are not problematic for my estimator:

- Labor demand shocks cause endogenous responses in labor market participation, leading to simultaneity bias in supply: not a problem because supply of labor to the formal sector is a modeled endogenous outcome.
- On average, regions that are initially more “backward”—lower education and TFP, for example—experience both more rapid growth in education and more biased labor demand shocks (regional convergence): not a problem because demand shocks may correlate with initial education and sectoral shares.
- Outside options for educated workers might be worse in places with higher demand for skilled labor, or places where the supply of educated workers grows faster, or regions experiencing more technical change: not a problem because region-education-specific outside option parameters are not assumed to be independent of demand, supply, or TFP (though they must be orthogonal to the unmodeled residuals).
- Outside options are becoming worse for low-educated workers relative to college workers, because of unmodeled factors leading to a decline in the number of informal

jobs in the economy: not a problem because of the flexible education-time-specific outside option parameters.

- Outside options for all workers are becoming worse in regions that are developing faster, again due to a stronger decline in informal jobs in those regions: not a problem because of the flexible region-time-specific outside option parameters, which need to be orthogonal to the residuals but may be arbitrarily correlated with local supply and demand factors.

Still, there may be threats to identification. One particular concern is an imperfect mapping between education groups and worker productivity in the model. For example, average school quality may be higher in large urban areas, compared to more rural microregions. That would introduce non-random measurement error, a possible source of bias.

The model is robust to some forms of correlated misspecification of both absolute or comparative advantage, if they affect workers of all educational groups in the same microregion. For absolute advantage, the result follows from noting that the productivity shifters z_{rt} are flexible, and thus would absorb proportional differences in productivity for all workers. For comparative advantage, the model is robust to region and time differences in the α_h parameters that correlate with labor demand shifters, as long as the α_h vary in the same proportion for all h . To see why, look at Proposition 6, shown in Appendix B.3. It shows how the effects of such proportional shocks to the α_h can be “compensated” by corresponding proportional changes in task complexity θ , leaving the wage distribution unchanged.

One could think of other forms of misspecification that would be more serious. For example, the quality of newly created colleges might be lower than that of preexisting ones, such that in places where college expansion is stronger, the average human capital of college graduates might be lower compared to workers without college. In that case, the estimated effects of increased supply of skill on the labor market may be underestimated (possibly introducing bias in the estimated effects of demand shocks as well). Investigating that potential source of bias is beyond the scope of this paper.

D.7 Estimation details

D.7.1 Numerical implementation of the loss function

The estimation procedure is implemented using the Julia programming language (Bezanson et al., 2017). There are two major challenges in the implementation of the loss function. The

first is the need to account for the inversion procedure described in the main text. The second is the need to minimize the chance that no equilibrium can be found. The issue is that, with 302 region-time combinations, it is possible that parameter guesses are such that it is hard to find all of the equilibria. This is a problem for estimation, because if even one equilibrium is not found, the loss function cannot be calculated. While one can impose ad hoc shortcuts such as assuming the loss function is large in such cases, those shortcuts can lead the optimization procedure astray, making it fail to converge or converge to points that could be local instead of global minimums.

I start with creating two alternative formulations of the equilibrium-finding procedure that incorporate the inversion procedure. The first one is used for equilibria corresponding to the 1998 time period. In those, I include four choice variables, corresponding to the parameters to be inverted: $\hat{z}_{r,1}^{RH}$, $\hat{z}_{r,3}^{RH}$, $\hat{z}_{r,1998}^{RT}$, and $z_{r,1998}$. Then, I add four “residuals” corresponding to the formal employment rates for the three educational groups and the minimum wage bindingness.

The second version is used for the 2012 period. It only has two additional variables, $\hat{z}_{r,2012}^{RT}$ and $z_{r,2012}$, and two additional residuals, the formal employment rate for high school workers and minimum wage bindingness.

The evaluation of the loss function will then try to solve equilibria for each region separately (using parallel processing if multiple cores are available). First, it will attempt to solve for the 1998 equilibria using the alternative equilibrium-finding procedure above (trying up to 50 starting points, as described in Appendix C). If it fails, it will try to match at least minimum wage bindingness and employment for high school workers (that is, using the procedure for 2012). If even that fails, it will try to solve for an equilibrium with no inversion.

In case an equilibrium without the full inversion is found, the procedure will try to use that as a starting point to achieve complete inversion. Specifically, if only an equilibrium with no inversion at all is found, that equilibrium is used as a starting point to find an equilibrium using the 2012 inversion. Then, if an equilibrium with 2012 inversion is found, then that is used as a starting point for the desired 1998 inversion.

Next, the procedure tries to solve for the actual 2012 equilibrium. There, it will use some of the outside options parameters found for 1998. Again, if the equilibrium with inversion cannot be found, the procedure will attempt to find an equilibrium without inversion. That equilibrium will then be used as a starting point to find the equilibrium with inversion.

The estimator then proceeds to the Jacobian. There, it will use all of the equilibria found in the first evaluation as starting points, leading to large computational gains.

The estimation loss function allows for incomplete inversion. This is addressed by including all endogenous outcomes, including the ones used in the inversion, in the sum of squared deviations to be minimized. The endogenous outcomes that need to be zero by the inversion procedure receive a high equation weight.

That sequence of steps is somewhat complicated, but highly effective. In practice, the procedure will report using equilibria without full inversion only for points very far from the global minimum.

D.7.2 Estimator and starting points

I use the Levenberg-Marquardt optimization algorithm. All parameters are transformed to eliminate the need for constrained optimization. I begin with a set of parameters that produced somewhat realistic moments, with elasticities $\lambda = 0.5$, and $\sigma = 2$. Then, I started the optimization procedure using that starting point and nine others in parallel. The other starting points had random Uniform[-0.5,0.5] shifts (in terms of transformed parameters) compared to the base one.

The best result from this first step was then used in a second draw of starting points. There, the random shifts in transformed were smaller (between -0.1 and 0.1). The best point from that second draw is the optimal point shown in the paper. Most of the other points were very close in terms of estimated parameters and values of the loss function. The complete process took about four weeks using 180 CPU cores in a modern compute cluster.

I also experimented with other heuristics to generate starting points, different optimization algorithms, and weighting schemes. My conclusion is that the procedure is not very sensitive to most implementation choices. However, abandoning equation weights leads to much worse quality of fit for some moments. That is because there is significant differences in the variance of residuals in different equations.

D.7.3 Estimates of demand parameters

Table D4 shows estimates of the $\delta_i^{d,t}$ demand-side parameters. The coefficients are reported for demeaned variables within each period, such that the constants capture the year-specific averages of the parameter transformations. Those averages point to an overall demand shock

Table D4: Estimates of demand parameters

	$\log \theta_{2,r,t}$		$\log \left(\frac{F_{2,r,t}}{F_{1,r,t}} \right)$		$\log \left(\frac{\gamma_{2,r,t}}{1-\gamma_{2,r,t}} \right)$	
	1998	2012	1998	2012	1998	2012
Constant	-0.46 (0.19)	0.13 (0.24)	4.36 (0.06)	2.75 (0.06)	1.51 (0.07)	1.41 (0.07)
Initial share high school	-0.04 (0.49)	1.24 (1.10)	-0.79 (1.90)	2.09 (1.88)	0.03 (0.63)	-0.61 (0.86)
Initial share college	3.45 (0.76)	-4.75 (1.43)	3.05 (2.86)	6.74 (3.77)	-0.05 (0.85)	-0.50 (0.88)
Initial share agriculture	0.14 (0.27)	1.18 (0.28)	0.39 (1.07)	-2.24 (0.88)	-0.23 (0.22)	-1.19 (0.31)
Initial share manufacturing	-0.45 (0.27)	-2.27 (0.44)	-3.61 (0.94)	-3.05 (0.69)	-1.23 (0.28)	-1.04 (0.23)
Current log min. wage minus mean log wage	0.41 (0.10)	0.32 (0.22)	-0.14 (0.27)	-1.03 (0.66)	0.02 (0.09)	-0.36 (0.18)

Notes: Estimates of the $\delta_i^{d,t}$ demand-side parameters. All of the variables are demeaned within time period, and thus the constants measure mean parameter values for each year. Standard errors, shown in parentheses, are cluster-robust at the region level, calculated using the sample analogue of the asymptotic formula from Proposition 7.

that combines three elements. First, task complexity requirements at the skill-intensive firms are increasing. Second, the relative entry cost ratio falls, such that it becomes relatively easier (from the point of view of entry inputs) to create skill-intensive firms. And third, there is a reduction in the relative taste for the skill-intensive good (corresponding to an exogenous average increase in the price for the low-skill good, since $\sigma \rightarrow \infty$ in the estimated model).

The interpretation of the other coefficients is not straightforward clear, since they correspond to partial correlations. However, it is worth pointing out that several of them have economically meaningful magnitudes and are statistically significant. That points to the importance of allowing for those correlations in the empirical model.

D.7.4 Benchmark regression models for quality of fit

I use two benchmark models to gauge the quality of fit within sample.

Simple OLS: I run separate regressions for each moment. For all outcomes except the formal employment rates, the regressions include both time periods (302 observations in each). The regressors are time effects, share of adults with high school, share of adults with college, and the difference between the minimum wage and the mean log wage. I run two additional regressions, one for formal employment rates of adults with less than secondary, and the same outcome for adults with college education. Each uses data only for 2012 (151 observations each). The regressors are a constant, the lagged employment rate (i.e., for the same group in 1998), and the current formal employment rate for high school workers. That makes the employment rate regression comparable to the structural model, as it features region-education and region-time effects estimated by matching lagged participation values and the employment rates for high school workers. The model has a total of 51 parameters ($9 \times 5 + 2 \times 3$). This is the exact number of estimated parameters in the structural model, if I do not count the dispersion parameter that is found at the boundary of the parametric space ($\rho_{\hat{h}=1} = 0$).

Large OLS: That model is an augmented version of the Simple OLS with more regressors and allowing for nonlinearities in the effect of the effective minimum wage. For outcomes other than employment rates, the regressors are time effects, current share of adults with high school, initial share of adults with high school (that is, for the same region in 1998), current share of adults with college, initial share of adults with college, initial share of workforce in agriculture, initial share of workforce in manufacturing, effective minimum wage, and effective minimum wage squared. For the formal employment regressions, the regressors are those Simple OLS model along with all others mentioned above. That yields a total of 112 parameters ($9 \times 10 + 2 \times 11$).

D.7.5 Additional measures of fit

In this section, I show additional measures of the quality of fit. I start with Table D5, which expands Table 4 in two ways. First, it includes a few untargeted moments. Second, and most importantly, it adds benchmark R2 values. The reason why those benchmarks are provided is because it may be difficult to make sense of the R2 metric coming from the model without a reference point. A low R2 may come from either a failure of the model to fit the data or a lack of sufficient explanatory power in the covariates used by the model. To distinguish between these two possibilities, I estimate benchmark predictive models based on Ordinary Least Squares (OLS) regressions. The “Simple” model is constructed to have the same number of parameters as the structural model. It includes the minimum wage bindingness

Table D5: Quality of fit and comparison to benchmark predictive models

Moments	Data		Model		R2	Benchmark R2	
	1998 (1)	2012 (2)	1998 (3)	2012 (4)	Model (5)	Simple (6)	Large (7)
<i>Wage inequality measures</i>							
Secondary / less than secondary	0.498	0.168	0.478	0.168	0.755	0.78	0.812
Tertiary / secondary	0.965	1.038	0.981	0.954	0.127	0.169	0.407
Within less than secondary	0.41	0.241	0.401	0.233	0.607	0.706	0.792
Within secondary	0.684	0.355	0.67	0.331	0.848	0.761	0.86
Within tertiary	0.702	0.624	0.701	0.637	0.139	0.255	0.379
<i>Total variance of log wages</i>	0.745	0.553	0.733	0.514	0.758		
<i>Two-way fixed effects decomposition</i>							
Variance establishment effects	0.126	0.054	0.126	0.04	0.586	0.634	0.667
Covariance worker, estab. effects	0.052	0.046	0.056	0.059	0.374	0.354	0.485
<i>Variance worker effects</i>	0.454	0.368	0.44	0.316	0.439		
<i>Correlation worker, estab. effects</i>	0.224	0.315	0.234	0.539	-1.395		
<i>Formal employment rates</i>							
Less than secondary	0.266	0.337	0.266	0.335	0.953	0.956	0.979
Secondary	0.435	0.508	0.435	0.508	1.0	1.0	1.0
Tertiary	0.539	0.629	0.539	0.63	0.89	0.93	0.95
<i>Minimum wage bindingness</i>							
Log min. wage - mean log wage	-1.418	-0.922	-1.418	-0.922	1.0	1.0	1.0
Share < log min. wage + 0.05	0.031	0.053	0.046	0.084	0.528	0.576	0.785
Share < log min. wage + 0.30	0.086	0.212	0.107	0.201	0.873	0.738	0.904

Notes: Moments targeted by the estimation procedure appear as plain text. Untargeted moments are *italicized*. Columns (1) through (4) report national averages of the corresponding moments for each year, calculated using region weights based on total formal employment. Column (5) reports the usual R2 metric $r_e^2 = 1 - \left[\sum_{t=1}^2 \sum_{r=1}^{151} s_r (Y_{e,r,t} - \hat{Y}_{e,r,t})^2 \right] / \left[\sum_{t=1}^2 \sum_{r=1}^{151} s_r (Y_{e,r,t} - \bar{Y}_e)^2 \right]$, where e indexes the specific target moment, $\hat{Y}_{e,r,t}$ is the model prediction, and \bar{Y}_e is the sample average using the region weights s_r . Columns (6) and (7) report analogous R2 metrics for benchmark OLS models for comparison purposes (see Appendix D.7.4).

measure, educational shares for secondary and tertiary, and time dummies as regressors. The “Large” model includes several other variables, such as initial sectoral shares and a quadratic component for minimum wage bindingness. It features a total of 112 parameters, more than twice as many as in the structural model. Those models are guaranteed to match time-specific averages for all moments. See the previous subsection in the Appendix for details.

My model fits the data approximately as well as the Simple OLS benchmark. It is worse for inequality measures and participation rates among college workers but better for AKM moments and bindingness measures. Although the Large OLS model has a better R2 for all moments, for many of them, the difference is not substantial. These results support the

view that the functional form assumptions and theoretical restrictions imposed by the model are reasonable, since they do not prevent the model from fitting the data as well as standard regression models.

To further validate the model, I verify the quality of fit for outcomes not directly targeted by the estimation procedure. Table D5 shows that the model has predictive power for the overall variance of log wages and the variance of worker effects. The correlation between worker and establishment fixed effects is significantly higher in the model than in the data for 2012, due to a combination of the covariance component being overestimated and both variance components being underestimated. Still, the qualitative pattern of increasing sorting of high-wage workers to high-wage firms within regions is replicated.³³

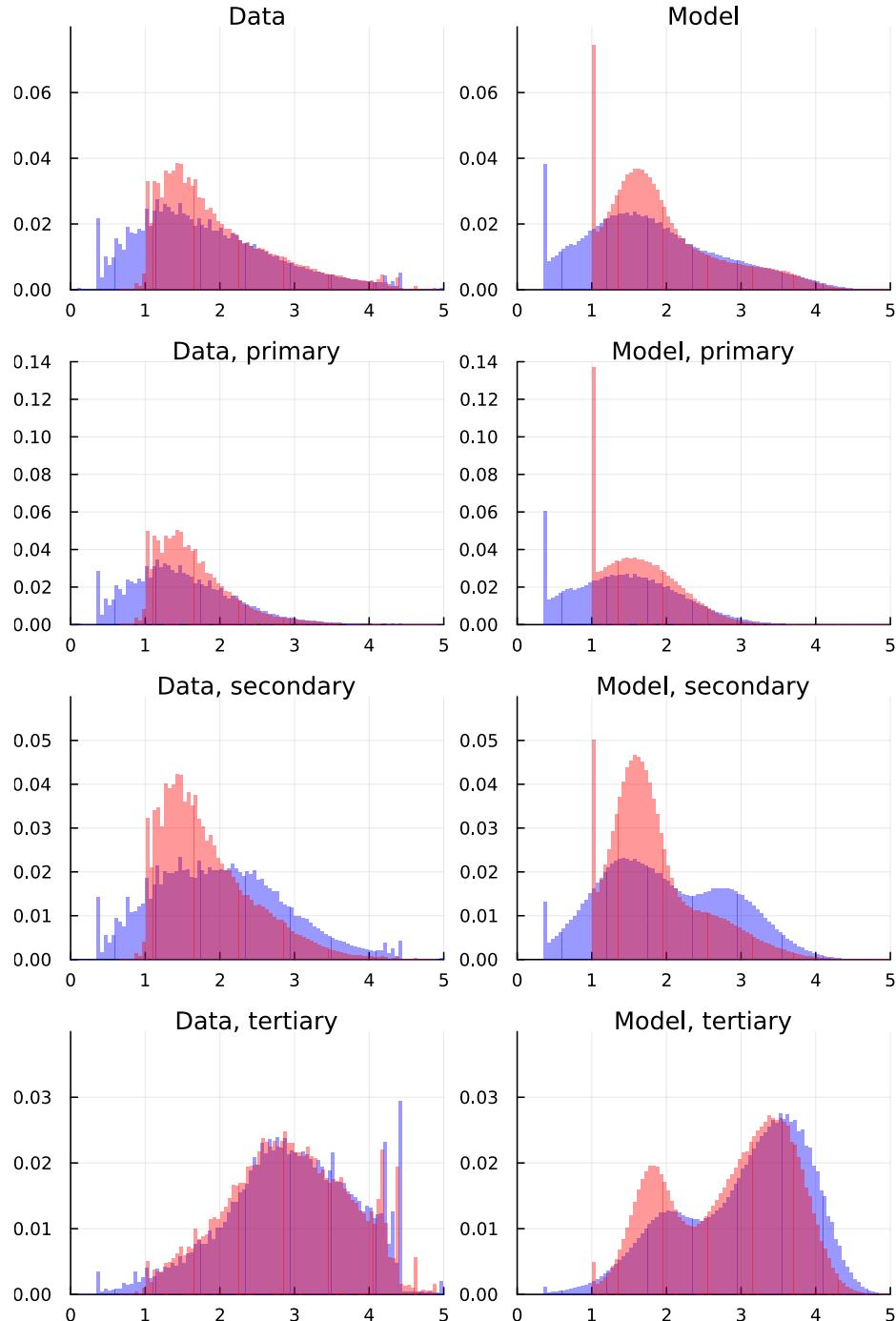
Next, I provide a comparison of the national histogram of log wages to that predicted by the model. The top panels in Figure D1 shows that the model closely approximates the real histogram, highlighting the quality of fit in both the inequality and relative formal employment across worker groups and regions. The other panels shows separate histograms for each educational group. Again, the model fits the data very well. The worst fit is for college workers. That is consistent with the lower quality of fit shown in Table 4 for the returns to college and the variance of log wages for college-educated workers. This lower quality of fit comes from the fact that those moments have more residual variance in the data, and thus receive lower weight in the estimation procedure.

Next, I investigate whether the model is able to explain the cross-sectional variation within years. Table D6 shows that, for almost all target moments, the R2 metrics are positive. The only exception is the variance of log wages for college workers, which is the moment with the worst fit in the aggregate. Table D6 also shows the corresponding measures of fit for the two benchmark OLS models described in Appendix D.7.4. Similar to the discussion of the overall quality of fit, the Simple OLS model is comparable to the structural model. The Large OLS model fits the data better in most dimensions, but again, the differences are not large with respect to the minimum wage bindingness measures, two-way fixed effects moments, and employment rate for workers with less than secondary.

The following exercise verifies the quality of fit regarding the spike and the share close to the minimum wage, separately by education. Those measures are not targeted by the

³³As mentioned in the descriptive section, the KSS estimate of the correlation between worker and establishment effects may be biased, such that part of the low quality of fit for this untargeted moment may be due to measurement issues.

Figure D1: Distribution of log wages, data and model



Notes: This figure shows histograms of log wages using 0.05-sized bins, for the whole adult population and separately by educational group (Less than secondary, Secondary, and Tertiary). The histograms represent real and simulated data for all 151 microregions in the sample.

Table D6: Cross-sectional quality of fit (R2) within time periods

Moments	Model		Simple OLS		Large OLS	
	1998 (1)	2012 (2)	1998 (3)	2012 (4)	1998 (5)	2012 (6)
<i>Wage inequality measures</i>						
Secondary / less than secondary	-0.148	0.269	0.034	0.286	0.19	0.373
Tertiary / secondary	0.062	0.277	0.143	0.263	0.274	0.626
Within less than secondary	0.391	0.175	0.47	0.503	0.671	0.573
Within secondary	0.285	0.605	-0.055	0.319	0.311	0.661
Within tertiary	0.237	-0.247	0.302	0.021	0.381	0.279
<i>Two-way fixed effects decomposition</i>						
Variance establishment effects	0.168	-0.838	0.112	0.248	0.188	0.338
Covariance worker, estab. effects	0.289	0.501	0.241	0.531	0.349	0.705
<i>Formal employment rates</i>						
Less than secondary	1.0	0.908	1.0	0.915	1.0	0.959
Secondary	1.0	1.0	1.0	1.0	1.0	1.0
Tertiary	1.0	0.161	1.0	0.471	1.0	0.619
<i>Minimum wage bindingness</i>						
Log min. wage - mean log wage	1.0	1.0	1.0	1.0	1.0	1.0
Share < log min. wage + 0.05	0.673	0.407	0.634	0.509	0.848	0.731
Share < log min. wage + 0.30	0.832	0.828	0.697	0.617	0.864	0.878

Notes: This table displays the within-year quality of fit of the model, as measured by the R2 metric. The R2 can be negative if the model fits the data more poorly than a constant equal to the weighted mean of the target moment. The table also shows the quality of fit of the two benchmark OLS models described in Appendix D.7.4.

Table D7: Minimum wage spike and share close to the minimum wage by education

Moments	Data		Model		R2
	1998 (1)	2012 (2)	1998 (3)	2012 (4)	Model (5)
Less than sec., up to 5 log points	0.041	0.077	0.066	0.144	0.156
Secondary, up to 5 log points	0.022	0.05	0.02	0.062	0.616
Tertiary, up to 5 log points	0.005	0.009	0.002	0.007	0.434
Less than sec., up to 30 log points	0.117	0.287	0.148	0.298	0.809
Secondary, up to 30 log points	0.054	0.22	0.056	0.181	0.859
Tertiary, up to 30 log points	0.01	0.032	0.006	0.027	0.681

Notes: This table displays national averages by year and the R2 quality-of-fit measure for additional moments that are not targeted in the estimation procedure: the size of the spike and share close to the minimum wage by educational group.

Table D8: Quality of fit with equal weights for all regions

Moments	Data		Model		R2	Benchmark R2	
	1998 (1)	2012 (2)	1998 (3)	2012 (4)	Model (5)	Simple (6)	Large (7)
<i>Wage inequality measures</i>							
Secondary / less than secondary	0.478	0.131	0.473	0.122	0.726	0.723	0.764
Tertiary / secondary	0.978	0.953	0.992	0.929	0.043	-0.099	0.068
Within less than secondary	0.362	0.212	0.37	0.221	0.528	0.606	0.715
Within secondary	0.681	0.307	0.666	0.293	0.825	0.724	0.827
Within tertiary	0.755	0.612	0.744	0.639	0.274	0.364	0.423
<i>Total variance of log wages</i>	<i>0.687</i>	<i>0.465</i>	<i>0.686</i>	<i>0.46</i>	<i>0.702</i>		
<i>Two-way fixed effects decomposition</i>							
Variance establishment effects	0.117	0.048	0.119	0.028	0.413	0.481	0.524
Covariance worker, estab. effects	0.041	0.033	0.043	0.049	0.066	0.112	0.219
<i>Variance worker effects</i>	<i>0.428</i>	<i>0.311</i>	<i>0.428</i>	<i>0.299</i>	<i>0.539</i>		
<i>Correlation worker, estab. effects</i>	<i>0.193</i>	<i>0.256</i>	<i>0.188</i>	<i>0.545</i>	<i>-2.095</i>		
<i>Formal employment rates</i>							
Less than secondary	0.256	0.336	0.256	0.335	0.934	0.942	0.967
Secondary	0.425	0.509	0.425	0.509	1.0	1.0	1.0
Tertiary	0.534	0.632	0.533	0.637	0.836	0.917	0.936
<i>Minimum wage bindingness</i>							
Log min. wage - mean log wage	-1.237	-0.831	-1.237	-0.831	1.0	1.0	1.0
Share < log min. wage + 0.05	0.046	0.062	0.065	0.104	0.277	0.486	0.688
Share < log min. wage + 0.30	0.121	0.235	0.148	0.24	0.834	0.671	0.857

Notes: This table is identical to Table 4, except that all of the averages and R2 measures are calculated without using region weights.

estimation procedure, and thus serve as a test of whether the distributional assumptions on worker productivity seem warranted. In addition, if β varies strongly by skill, instead of being common as assumed in the model, then the data and the model would likely disagree regarding the relative size of the spike for different educational groups.

Table D7 shows that this is not the case. The overall pattern of a good fit for the spike in 1998, and an over-estimate in 2012, holds for all worker types. The fit of share close to the minimum wage is excellent for workers with secondary or less. For college workers, the R2 metric is close to zero, but the shares are very low to begin with. Thus, the lack of excellent quality of fit there is likely not very consequential for counterfactual analysis.

Finally, I investigate whether the good quality of fit is being driven by the largest regions,

Table D9: Effects of supply, demand, and minimum wage on other outcomes

Outcome	Base	All	Individual effects:				Interactions		
	value	Changes	S	D	M	S+D	S+M	D+M	Triple
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
<i>Panel A: Inequality between and within groups</i>									
Between groups: 2/1	0.48	-0.31	-0.02	-0.20	-0.06	0.02	0.01	-0.05	0.00
Between groups: 3/2	0.98	-0.03	-0.04	-0.00	-0.07	0.03	0.01	0.04	-0.01
Within group: 1	0.40	-0.17	-0.00	-0.04	-0.13	-0.02	0.02	0.02	-0.00
Within group: 2	0.67	-0.34	-0.04	-0.29	-0.09	0.02	0.01	0.06	-0.00
Within group: 3	0.70	-0.06	-0.09	-0.01	-0.05	0.04	0.01	0.03	-0.01
<i>Panel B: Formal employment rates</i>									
All workers	0.32	0.11	0.04	0.10	-0.02	-0.00	0.01	-0.01	0.00
Group 1	0.27	0.07	0.01	0.10	-0.03	-0.01	0.01	-0.02	-0.00
Group 2	0.44	0.07	-0.01	0.09	-0.02	-0.00	0.00	0.01	-0.00
Group 3	0.54	0.09	-0.01	0.10	-0.00	0.01	-0.00	-0.00	0.00
<i>Panel C: Minimum wage bindingness</i>									
Log min. wage - mean log wage	-1.42	0.50	-0.24	0.06	0.51	0.08	0.04	0.04	-0.01
Share < log min. wage + 0.30	0.11	0.09	-0.04	-0.04	0.19	0.01	-0.03	-0.01	0.01

Notes: This table is similar to Table 5, except that it shows a different set of outcomes.

which are more strongly weighted in the estimation procedure. In Table D8, I shows that this is not the case. That table follows the same structure of Table 4 shown in the text. The only difference is that region weights are not used to calculate the averages and R2 metrics. To be clear, this is not a separate estimation exercise: the same parameter estimates are being used to calculate the simulated moments in each region-time, both for the structural model and the benchmark OLS models. Quality of fit decreases a bit for all models, but the overall conclusions from the main text still hold.

D.8 Counterfactuals

D.8.1 Additional decomposition outcomes

Table D9 performs decomposition exercises identical to those in Table 5, but for different outcomes.

D.8.2 Demand shocks

As explained in the main text, I group several time-varying changes under the “demand” umbrella. There are two points to warrant further discussion. The first is why outside options

were included as a demand shock. The second is on the interpretability of the effects of each component in isolation.

The main reason for grouping outside options with demand shocks is conceptual, related to the interpretation of what is the final good. The model specifies two technologies to produce the final good: either home production or combining the two goods produced by firms. Shocks to θ_g , γ_g , and F_g are changing the second technology. It is plausible that such changes could also change the relative “quality” of the final good produced by using the second technology. Including the estimated change in $z_{0,h}$ parameters as part of the demand shock bundle is an effective way to allow for that possibility in an agnostic way.

Changes in the technologies used by formal firms may not be the only reason why the $z_{0,h}$ parameters changed. Another example, previously mentioned in the paper, would be changes in the enforcement of labor regulations that make the formal sector more or less appealing to some workers. Whether such a shock is on the supply or demand side is a matter of interpretation—in this paper, I classify them as demand shocks.

On the second point, it could be tempting to attach an economic interpretation to each component of the demand shock. Specifically, one could think of an increase in $\theta_{g=2,r,t}$ as skill-biased technical change (SBTC), and the reduction in the relative taste for the skill intensive good $\gamma_{g=2,r,t}/(1 - \gamma_{g=2,r,t})$ as representing the commodities boom (which favored goods in the agricultural and mining sectors). To see why this interpretation is not warranted, consider SBTC. Given the formulation I use for the efficiency functions $e_h(x)$, an increase in $\theta_{2,r,t}$ leads to a relative increase in the cost for the skill-intensive good. But it would be reasonable to think that technological advancements such as personal computers, the internet, or programmable machines should reduce the cost of some goods that use skilled labor. Thus, SBTC may be better represented by a combination of primitives of the model, including not only θ_2 but also $\gamma_2/(1 - \gamma_2)$ and F_2/F_1 . A similar argument can be made for trade shocks, if, for example, higher demand for exports comes together with increases in quality requirements (Verhoogen, 2008).

Another way of framing this issue is that, to identify the independent effect of specific demand shocks such as SBTC or the commodities boom, we need additional exclusion restrictions. For example, one could impose the restriction that, in the empirical model of demand parameters, the interaction of the agricultural share with the time dummy corresponds to the effect of the commodities boom. I refrain from making such assumptions and focus instead on the role of demand shocks as a whole.

Table D10: Decomposition of demand shock

Outcome	All demand shocks (1)	Task demand (2)	Consumer taste (3)	Entry cost (4)	TFP and outside opt. (5)
<i>Panel A: Inequality and sorting</i>					
Mean log real wage	-0.06	-0.18	0.05	0.11	-0.04
Variance of log wages	-0.18	-0.28	-0.01	0.10	0.01
Corr. worker, estab effects	0.19	0.03	-0.06	0.21	0.00
<i>Panel B: Inequality between and within groups</i>					
Between groups: 2/1	-0.20	-0.31	0.01	0.10	0.01
Between groups: 3/2	-0.00	-0.15	-0.09	0.21	0.03
Within group: 1	-0.04	-0.06	0.02	0.00	-0.00
Within group: 2	-0.29	-0.38	-0.02	0.08	0.02
Within group: 3	-0.01	0.13	-0.16	0.03	-0.01
<i>Panel C: Two-way fixed effects decomposition</i>					
Variance of log wages	-0.18	-0.28	-0.01	0.10	0.01
Var. worker effects	-0.06	-0.15	0.01	0.08	0.01
Var. estab. effects	-0.09	-0.06	-0.01	-0.02	-0.00
2×Cov. worker, estab	-0.02	-0.04	-0.01	0.03	0.00
Var. residuals	-0.01	-0.02	-0.00	0.01	0.00
<i>Panel D: Formal employment rates</i>					
All workers	0.10	0.07	0.03	-0.12	0.12
Group 1	0.10	0.08	0.03	-0.13	0.11
Group 2	0.09	0.06	0.03	-0.13	0.14
Group 3	0.10	-0.04	0.02	-0.07	0.19

Notes: Each column from (2) to (5) shows the marginal effect of changing each set of parameters described in the header. The decomposition is sequential. Column (3), for example, shows the effects of moving from models as of 1998, except that they have the θ_2 values of 2012; to other equilibria where the taste parameters γ_2 are also at their 2012 values.

One may still be interesting to understand the mechanical effects of each shock in isolation. To that end, Table D10 decomposes the total demand shock.

D.8.3 Effects of a small increase in the minimum wage

The increase in the Brazilian minimum wage between 1998 and 2012 is very large. One may be interested in the predicted effects of a small increase in the minimum wage. To that end, I generate a copy of Table 7 based on a change in the log minimum wage of 10 log points, instead of 66.1 log points as in the main exercise.

Table D11 shows that, with a small change in the minimum wages, its effects are fully concentrated on the lowest decile of worker productivity. For that group, wage effects come

Table D11: Effects of a small increase in the minimum wage

Prod. decile	Pop. share	Base wage	Mean wage changes:			Base emp.	Emp. elasticities w.r.t.:		
(1)	(2)	(3)	Monops.	Ret. sk.	Gen. eq.	(7)	Min.	Mean	-, monops.
1	0.15	1.24	0.07	-0.00	0.00	0.21	-0.49	-0.98	-0.94
2	0.12	1.78	-0.00	-0.00	0.00	0.27	-0.01		
3	0.11	2.35	-0.00	-0.00	0.00	0.28	-0.01		
4	0.11	2.97	0.00	-0.00	0.00	0.29	-0.01		
5	0.10	3.75	-0.00	-0.00	0.00	0.31	-0.01		
6	0.10	4.76	0.00	-0.00	0.00	0.33	-0.01		
7	0.09	6.11	-0.00	-0.00	0.00	0.37	-0.00		
8	0.08	8.13	-0.00	0.00	0.00	0.40	-0.00		
9	0.07	11.91	0.00	0.00	0.01	0.45	0.00		
10	0.06	25.04	0.00	0.01	0.01	0.50	0.00		

Notes: This table is similar to Table 7 in the main text, except that it describes the effects of a 10 log point increase in the minimum wage.

from the truncation, censoring, and reallocation effects which compose the “monopsony” channel. In other words, the minimum wage shock is too small to introduce quantitatively significantly changes in returns to skill, firm entry, and prices. Notably, the elasticities of employment with respect to either the minimum wage increase or the change in the mean wage are similar to those in Table 7.

D.8.4 Why do regressions find no employment effects of minimum wages in Brazil?

In this Appendix, I address the issue of why previous reduced-form work studying the Brazilian case have not detected the negative employment effects. I focus on the descriptive results of [Engbom and Moser \(2022\)](#), as they study a similar period and the paper was recently published in a leading peer-reviewed journal. To be clear from the outset, this is not a criticism of that paper or of the authors. Indeed, they acknowledge the limitations of their reduced-form estimates, and most of their effort is spent in creating and estimating a structural model of the Brazilian economy. The point of this discussion is to argue that the identification of employment effects of minimum wages in the Brazilian context is challenging.

[Engbom and Moser \(2022\)](#) exploit variation in the “effective minimum wage,” that is, the log of the national minimum wage minus the median log wage in each state-time combination, which they refer to as the Kaitz-50 index.³⁴ They run regressions of formal employment on

³⁴In other papers, the Kaitz index may be defined differently. In this discussion, I use their nomenclature.

the effective minimum wage, its square, and controls. This approach has a long tradition in labor economics, going back at least as far as [Neumark and Wascher \(1992\)](#), who used the minimum wage relative to the mean in the state-year instead of the median). In the specification they report in the paper, [Engbom and Moser \(2022\)](#) use state fixed effects and state-specific time trends as controls.

In [Haanwinckel \(2024\)](#), I discuss the necessary identification assumptions required for this design to work well in contexts with no regional variation in minimum wage laws, such as Brazil. I find that, in general, this approach is subject to large biases if the minimum wage causes changes in the median wage, even if these effects are small at the individual level, and even if these effects have mean zero. In addition, I show that the design relies crucially on unobserved shocks that move the entire log wage distribution to the left or to the right, while being orthogonal to changes in the shape of the distribution or in employment measures. Even small correlations between these unobserved shocks and other determinants of the log wage distribution can introduce large biases. In other words, if the econometrician cannot pinpoint what is the quasi-experimental source of variation that makes the minimum wage bind more in some regions than in others, then it is possible that the effective minimum wage design may be subject to substantial misspecification biases.

In the remainder of this appendix, I discuss specific factors in the Brazilian context that complicate the identification of minimum wage effects in reduced form.

One challenge with the effective minimum wage design is that the median wage, used to construct the effective minimum wage, is an endogenous object. As emphasized in this paper, wages are determined at the local labor market level by a combination of region-specific supply and demand parameters. They correlate with each other, and also with local TFP. That introduces correlations between those factors and the Kaitz-50 index. On the supply side, I find that microregion-level changes in educational achievement are positively correlated with the change in the Kaitz-50 index, which is somewhat surprising. In addition, Table D4 shows that the current Kaitz index is a statistically significant predictor of demand-side parameters after controlling for initial characteristics at the microregion, with coefficients that vary between years. Those correlations may introduce omitted variable bias because all of those supply and demand shocks have large effects on employment rates even in the absence of minimum wage changes, as shown in Table D9. And because they correlate in differences, not only in levels, their effect is not absorbed by the state fixed effects.

To tackle those time-varying confounders, [Engbom and Moser \(2022\)](#) include region-specific

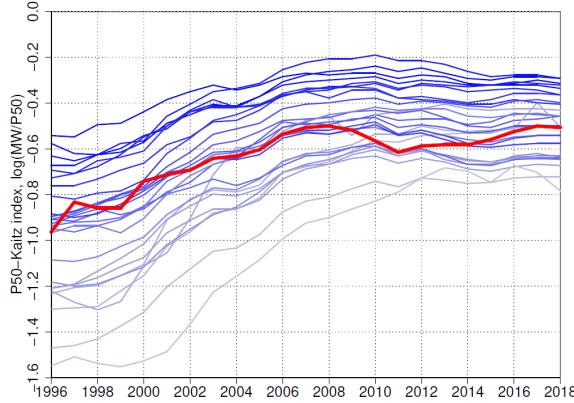


Figure D2: Variation in effective minimum wages at the state-time level

Notes: This is a copy of Appendix Figure B.10 in [Engbom and Moser \(2022\)](#). It shows the variation used to identify the effects of minimum wages on employment in Brazil.

time trends in regression models with many periods (the panel is at the yearly level, from 1996 through 2018). Intuitively, the assumption behind this approach is that the influence of these confounders on employment is well approximated by the linear trends, while the influence of the minimum wage is nonlinear. Another way of visualizing that assumption is: if one takes time differences two times for both employment rates and the Kaitz index, then the relationship between those transformed variables should reflect the impact of locational changes in the latent distribution of wages (what could be described as TFP), not the direct effect of compositional changes between groups that have different intrinsic employment rates or of biased demand shocks that affect the latent productivity distribution and employment rates differently from a locational shift.

For the minimum wage, the non-linear part of the variation comes from faster minimum wage growth in the first half of the sample. This is evident from Figure D3, which is a copy of Appendix Figure B.10 from [Engbom and Moser \(2022\)](#)). The red thick line shows the national average for the Kaitz-50 index, while the blue lines show the Kaitz-50 index for each state.

Is the variation in minimum wages more nonlinear than the supply and demand shocks affecting the Brazilian economy? Below, I argue that this is not the case. Figure D3 shows two metrics related to the supply of young educated adults: the share of those between 15 and 17 who are in school, and the share of those between 15 and 24 who can read. Both graphs show steeper slopes early in the period, similarly to the minimum wage graph. This is an important issue, since formal employment rates vary dramatically by educational level. And

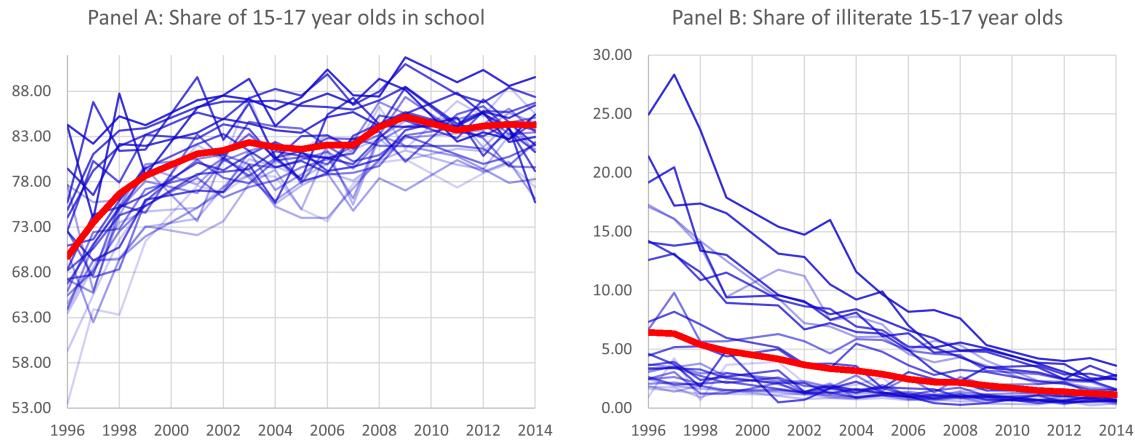


Figure D3: Evolution of educational outcomes by state

Source: PNAD survey. The series were obtained using the Ipeadata online tool (available at <http://www.ipeadata.gov.br>).

among all adults, the young are more likely to be affected by the minimum wage.

A similar argument can be made for demand shocks. The variation in international commodity prices, shown in Figure D4, suggests that the influence of demand shocks may be much less smooth and monotonic than the impacts of minimum wages. In addition, Figure 2 in [Costa, Garred and Pessoa \(2016\)](#) shows that trends in Brazilian imports from, and exports to China are also nonlinear. The export trends is nonmonotonic, and considerably further from the a line than trends in the Kaitx-50 index. [Costa, Garred and Pessoa \(2016\)](#) goes on to show that shocks to Chinese supply and demand have significant labor market effects at the microregion level.

One could think about alternative regression specifications, such as adding time fixed effects or higher-order trends at the state level. However, those approaches are not likely to solve the problem. That is because those terms absorb not only the confounders, but also the “good” variation introduced by the national minimum wage. The fundamental problem is the lack of a quasi-experiment that manipulates the minimum wage independently of other factors. This is a specific example of broader issues that I document in [Haanwinckel \(2024\)](#). That said, the analysis in that paper does suggest that time fixed effects should in general be included in this design.

In addition to the possibility of omitted variables and misspecification biases, the regressions may find no effects because they may measure short-run, instead of long-run, effects. To see why, note that the inclusion of state-specific trends means that the identifying variation is

Figure D4: Global Price Index of All Commodities

not coming from the long-run trend towards higher minimum wages. Instead, identification comes from deviations around these long-run trends: is employment particularly lower in years where the minimum wage is higher relative to the state-specific trend? If it takes time for the effects of minimum wages to materialize, then the regression will likely not detect them.

One can think of the structural approach used in this paper as a model designed to control for the influence of the supply and demand factors. The variation used to measure the effects of minimum wages is fundamentally the same: differences in bindingness of the minimum wage across regions, stemming from structural differences in education, total factor productivity, and local demand for skills. The effect of those local-level confounders is inferred from a series of additional outcomes at the local level, such as measured sorting. Thus, it provides a principled way to deal with those confounders.

Appendix Table D6 provides a test of whether the strong disemployment effects are rejected by the data. Specifically, if the employment effects predicted by the model were strongly at odds with what was observed at the microregion level, one would expect the R2 metric for the formal employment rate of workers with less than secondary in 2012 to be bad. Instead, it is 0.908.

The weakness of the structural approach is that it only measures effects of causal channels pre-specified by the econometrician. Given that my framework includes a uniquely wide

array of causal pathways for the minimum wage, and given the threats that affect reduced-form designs in the Brazilian case, I believe that my estimates of minimum wage effects are the most reliable in this context. See Appendix B.4 for a discussion of minimum wage causal channels not included in my framework and why I believe adding them would not make a significant difference for my results.