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The rise of big data has brought major benefits for consumers. By pooling together
multidimensional user data and applying advanced analytics, platforms such as Google,
Amazon, Facebook, and ChatGPT can provide personalized products and services that would
otherwise be prohibitively costly. In finance, big data has enabled fintech lenders partnering
with these platforms to expand credit access to underserved borrowers (Allen, Gu, and
Jagtiani 2021; Berg, Fuster, and Puri 2022). Liu, Lu, and Xiong (2023) show how big tech
lenders use unique user data to extend loans to small businesses, while Parlour, Rajan, and
Zhu (2022) and He, Huang, and Zhou (2023) analyze how open banking’s data-sharing rules
affect bank—fintech competition.

Yet the same data practices raise unprecedented challenges for consumer protection and
privacy. While personalization can improve services, it can also exploit behavioral biases,
encouraging overspending—for example, by bundling credit with online purchases. Reports
by the Stigler Committee (2019), Helberger et al. (2021), OECD (2021), and the FTC (2022)
warn that digital platforms are especially effective at exploiting individual vulnerabilities.
The rapid growth of unsecured credit via “buy now, pay later” (BNPL) lenders illustrates
this concern. Di Maggio, Katz, and William (2022) find BNPL access substantially boosts
spending beyond standard substitution effects. Using data on 10.6 million U.S. consumers,
DeHaan et al. (2024) show BNPL adoption leads to spikes in overdraft charges and credit
card fees, while Larrimore et al. (2024) find that financially vulnerable consumers overextend
themselves when BNPL is offered.

A related concern is the prevalence of “dark patterns” that manipulate consumers into
unwanted purchases or debt. A 2019 survey found that 24% of 1,760 websites employed
such practices (OECD 2021). Mathur et al. (2019) identify dark patterns on 11.1% of
11,000 shopping sites and document third-party providers that design them. Johannesson
(2021) found that two leading Swedish BNPL lenders used at least ten deceptive designs to
encourage borrowers to take on debt with credit installments to increase profits. The FTC
fined Epic Games $520 million in 2022 for using dark patterns to induce unwanted Fortnite
purchases.

Protecting consumer data privacy is central to addressing these risks. As Zarsky (2019)
and Spencer (2020) note, the problem lies less in manipulation per se than in the internet’s
capacity for intensive data collection, personalization, and real-time execution. Platforms like

TikTok tailor content feeds to maximize engagement, a design linked to addiction and mental



health issues among youth (BBC 2022)E] In response, governments have enacted sweeping
privacy regulations, including the EU’s General Data Protection Regulation (GDPR, 2018)
and California’s Consumer Privacy Act (CCPA, 2020), both emphasizing informed consent
and data safeguards.

Motivated by these observations, we develop a model of digital platforms to study how on-
demand credit and data sharing affect both aggregate and cross-sectional consumer welfare.
Platforms use shared data to match consumers with desirable goods and financing, but
the same data expose vulnerable consumers to impulse spending and predatory lending.
Our analysis shows that the ability of platforms, intermediaries, and vendors to profit from
behavioral weaknesses creates costs of data sharing that fall unevenly across consumers.
The resulting divide—between those who benefit and those who are exploited—gives rise to
“algorithmic inequality,” a new form of inequality in the digital age[

To anchor our analysis, we focus on limited self-control as a key vulnerability shaping
consumers’ data-sharing decisions. Consumers with self-control problems may struggle to
resist impulse purchases promoted by digital platforms through BNPL credit schemes. These
schemes, often targeted at credit-constrained consumers, encourage borrowing up to the
limit, downplay the costs of debt, and obscure late fees and interest charges (World Bank
Group 2021). Ultimately, they may impose harm through fees, higher interest, and financial
distress (DeHaan et al. 2024). Recognizing their vulnerability, such consumers may opt to
withhold data to avoid being targeted, even at the cost of losing access to desirable goods
and services.

We adopt the temptation utility framework of Gul and Pesendorfer (2001) to analyze the
data-sharing choices of vulnerable consumers. Weak-willed consumers incur mental costs
from resisting predatory financial products and therefore prefer smaller menus that exclude
such options. Their data sharing, together with sellers’ advertising, shapes these menus and,
in turn, their privacy preferences on digital platforms. Unlike prior work that treats the
cost of privacy as exogenous (e.g., Jones and Tonetti 2020; Cong, Xie, and Zhang 2020; He,
Huang, and Zhou 2023), we microfound it. This approach not only allows consumers to

distinguish between beneficial and harmful data sharing—absent in earlier models—but also

Thttps://www.bbc.com/news/uk-wales-62720657.

20ur concept of “algorithmic inequality” differs from concerns about algorithmic bias arising from sta-
tistical discrimination (e.g., Cowgill and Stevenson 2020; Cowgill and Tucker 2020). For instance, Luguri
and Strahilevitz (2021) show that dark patterns disproportionately affect less educated consumers, leading
to adverse distributive outcomes.



generates novel data-sharing externalities through the endogeneity of privacy costs.

Our model considers an online platform—such as Google, TikTok, or Facebook—that
collects consumer data and shares it with sellers. The platform hosts N normal goods,
which provide consumers with utility, and J predatory goods, whose sellers exploit vulnerable
consumers through dark patterns to induce impulse purchases. Because such purchases are
excessive, they require financing provided by a fintech lender partnering with the platform
via a BNPL scheme. This financing exposes consumers to default risk through late fees and
interest on missed payments. Both normal and predatory sellers can advertise to potential
consumers, but doing so entails a convex cost, capturing the increasing difficulty of reaching
a wider audience.

There are two types of consumers: strong-willed, who always resist predatory goods, and
weak-willed, who may succumb to them. Both types derive utility from normal goods, but
only weak-willed consumers are vulnerable to purchasing predatory goods financed through
BNPL schemes. Such purchases expose them to the risk of financial distress.

While consumers might prefer their data to be shared only with sellers of normal goods,
in practice the same data can also be accessed by predatory sellers. Although data’s non-
rivalry is often celebrated as a strength of the digital economy, we emphasize a problematic
dimension: the lack of exclusivity in its use. This arises both because it is difficult to draft
narrowly tailored data authorization agreements and because consumers fail to internalize
the externalities of their data-sharing decisions.

Strong-willed consumers, who can resist predatory goods, are indifferent to such adver-
tising and thus favor broader product menus and data sharing that enhances targeting of
normal goods. Weak-willed consumers, by contrast, face a sharper trade-off: while data
sharing improves targeting of normal goods, it also heightens their exposure to predatory
marketing. This tension is central to our model. Recognizing their vulnerability, weak-willed
consumers may withhold data to protect themselves, even at the cost of losing beneficial tar-
geting.

We analyze three data-sharing schemes.

e No data sharing: Resembling traditional advertising, sellers face a dark pool of
consumers and can only reach a random subset. This shields weak-willed consumers

from predatory goods but also limits access to normal goods for everyone.

e Full data sharing: Sellers observe each consumer’s type and target ads precisely.



This improves access to normal goods but heightens weak-willed consumers’ exposure
to predatory goods. The welfare gap between strong- and weak-willed consumers—our
measure of algorithmic inequality—is always larger under full data sharing. If the harm
from predatory goods is severe, full data sharing may also reduce total welfare relative

to no data sharing.

e Opt-in/opt-out (GDPR-style): Strong-willed consumers always opt in, while weak-
willed consumers weigh the benefits of better targeting against the risk of predation,
following a cutoff rule: the most tempted opt out, others opt in. Their decisions shape

the composition of opt-in and opt-out pools, which in turn affect sellers’ targeting.

One might expect opt-in/opt-out to dominate the other two schemes, since consumers choose
optimally. But data-sharing externalities complicate the comparison: when one consumer
opts in, sellers also learn about others. As a result, full data sharing maximizes welfare if
weak-willed consumers’ self-control problem is mild; no data sharing dominates if it is severe;
and opt-in/opt-out is best when the problem is intermediate. Regardless of the ranking, full
data sharing always produces the greatest algorithmic inequality, since it offers the least
protection to weak-willed consumers.

Because the cost of privacy is endogenous, the opt-in/opt-out regime can generate mul-
tiple equilibria. In particular, if all consumers opt in, even the most tempted weak-willed
consumers lose the protection of opting out and are effectively forced to share data, collaps-
ing the scheme into full data sharing. Such multiplicity implies that small changes in the
environment can trigger sharp shifts in data-sharing outcomes, leading to extreme forms of
algorithmic inequality.

We calibrate the model using 2024 e-commerce revenues, advertising costs, and evidence
on GDPR efficacy to assess the severity of self-control problems on online platforms. The
calibration yields three equilibria: one with full opt-in by weak-willed consumers, one with
partial opt-in, and one with minimal opt-in. Among these, the full data-sharing equilibrium
delivers the highest utilitarian welfare—16.6% above the minimal data-sharing equilibrium—
but also widens algorithmic inequality between strong- and weak-willed consumers by 11.3%.
Thus, while data sharing generates substantial social benefits, it does so at significant cost to
vulnerable consumers. A dynamic extension shows that these problems intensify over time,
as today’s data sharing both improves the quality of normal goods and erodes consumers’

future ability to resist predatory goods.



Recent advances in big data analytics and information technologies have profound im-
plications for financing on digital platforms. Our model shows that data sharing affects not
only the credit access of individual consumers but also the welfare of others. This perspective
complements existing work: He, Huang, and Zhou (2023) examine how open banking data
sharing shapes competition between banks and fintechs; Parlour, Rajan, and Zhu (2022) an-
alyze fintech competition in payment services when banks use payment data to infer credit
quality; and Berg et al. (2025) show how BNPL allows merchants to price discriminate
through zero-interest loans. None of these studies, however, address the potential harm to
vulnerable consumers, which is the focus of our analysis.

Our paper connects data privacy to the broader literature on exploiting consumer vulner-
abilities in financial markets. Evidence shows that vulnerable consumers are often targeted
through overpriced credit card debt and underpriced investment products such as health club
memberships (DellaVigna and Malmendier 2004, 2006), payday loans (Bertrand and Morse
2011; Melzer 2011), add-on pricing (Gabaix and Laibson 2006), and overdraft fees (Stango
and Zinman 2014). Digital technologies amplify these practices: for example, fintech lenders
exploit borrowers’ self-control problems using payment data (Di Maggio and Yao 2020).

The externalities we highlight build on the concept of social data (Acemoglu et al. 2019;
Bergemann, Bonatti, and Gan 2019; Easley et al. 2019). These studies show that one
consumer’s data can reveal information about others, depressing data prices and encouraging
excessive sharing. Galperti, Levkun, and Perego (2022) extend this logic to e-commerce
platforms using a mechanism design approach. We differ by focusing on a new form of
externality: when some consumers opt in, their data reveal the vulnerability of those who
opt out. Moreover, unlike models with symmetric consumers, ours distinguishes between
those with and without self-control problems. This allows us to show how data sharing can
simultaneously raise aggregate welfare and impose disproportionate costs on the vulnerable,
producing algorithmic inequality and motivating a policy role for data privacy regulation.

Finally, our analysis contributes to the macroeconomic literature on consumer data. Prior
work emphasizes the non-rivalry of data and its increasing returns (Jones and Tonetti 2020;
Cong, Xie, and Zhang 2020; Cong et al. 2020; Cong and Mayer 2022) or its role in long-run
capital accumulation (Farboodi and Veldkamp 2020). These studies typically treat the cost
of data sharing as exogenous. Abis and Veldkamp (2021) provide an exception, showing that

AT adoption may reduce labor’s income share by 5%. Our contribution is to emphasize that



data sharing not only matters for growth but also generates inequality across consumers.

1 A Model of Data Sharing

We examine a digital platform where consumers purchase goods from sellers using BNPL
credit provided by a fintech lender. The process unfolds in two stages. First, consumers
join the platform and decide whether to share their data. Second, over multiple years, the
platform collects digital histories—such as searches and purchases—subject to consent and
shares them with sellers. Using this information, sellers target consumers with offers, and
consumers can make purchases accordingly.

There are N > 1 normal goods, desirable to all consumers, and J predatory goods,
representing excessive or unnecessary expenditures, such as impulse purchases.rf] Consumers
are liquidity constrained and must finance purchases with short-term BNPL loans from
the platform’s affiliated fintech lender. Importantly, predatory goods may lead to default,
reflecting their excessive nature: late fees and high interest on missed payments can trigger
financial distress. We index the N normal goods by n € {1,.., N}, and the J predatory goods
by 7 € {N+1,...,N + J}. While normal goods can also be BNPL-financed, we focus on
predatory goods to highlight how data sharing amplifies self-control problems—overspending
and debt accumulation.

There are two types of consumers: strong-willed, without self-control problems, and weak-
willed, who are subject to them. Following Ichihashi (2020), we assume each consumer desires
only one normal good, and each weak-willed consumer is tempted by a single predatory good.
Sellers therefore face a nontrivial matching problem, and consumer data sharing improves
matching efficiency.

Data is non-rival: the platform can share it with both normal and predatory sellers and
cannot commit to restricting access to the former. This creates a cost of data sharing.
Unlike prior work that treats this cost as exogenous (e.g., Jones and Tonetti 2020; Cong,
Xie, and Zhang 2020; Cong et al. 2020), we model it as endogenous and heterogeneous. For
strong-willed consumers the cost is zero, while for weak-willed consumers it is positive and

rises with the severity of their self-control problem. This captures the reality that consumers

3While our model focuses on goods, it also applies to ecosystems of online services. For instance, normal
services can represent conveniences include Google’s free search or X’s free news feeds, while predatory goods
capture harms from data sharing such as cryptocurrency scams or addictive content.



cannot control how data is used—sharing data for beneficial purposes does not prevent its

exploitation for harmful ones.

1.1 Consumers

There is a total of one unit of consumers, divided into strong-willed (7g) and weak-willed

1

5> consistent with survey evidence (e.g.,

(mw) types, with mg + my = 1. We assume mg >
Ameriks et al., 2007, Toussaert, 2018). Strong-willed consumers resist predatory goods,
while weak-willed consumers may not. Each consumer desires one normal good n, while
each weak-willed consumer is also tempted by one predatory good j. Let S, denote the
strong-willed consumers who want normal good n, and W,,; the weak-willed consumers who
want normal good n and are tempted by predatory good j.

To buy good z, consumer i pays seller p; (x), which may be tailored to that consumer.
For predatory goods, p; (j) also reflects the severity of self-control problems among the
weak-willed. To focus on the role of BNPL credit in excessive expenditures, we assume
that consumers always have sufficient wealth to repay loans for normal goods. By contrast,
weak-willed consumers may face financial distress when repaying BNPL loans for predatory
goodsﬁ We treat normal and predatory purchases as separate accounts, consistent with
evidence on mental accounting (Gelman and Roussanov 2024) that consumers view credit
lines as nonfungible. Hence, each consumer chooses independently across advertised goods.ﬂ

Heterogeneity among weak-willed consumers is central to our model, as it provides camou-
flage under the opt-in/opt-out data-sharing scheme analyzed later. We focus on a symmetric
equilibrium with uniformly distributed preferences: each consumer is equally likely to prefer
any of the N normal goods, and each weak-willed consumer is equally likely to be tempted
by any of the J predatory goods. Both types consume according to their preferences and
the advertisements they receive.

To microfound data-sharing costs, we adopt the temptation utility framework of Gul

4Self-control problems are not confined to disadvantaged consumers. For example, Jike Zhang, a cele-
brated Chinese athlete and 2012 Olympic table tennis champion, reportedly accrued tens of millions of dollars
in gambling debt despite earning around $10 million in 2017. Pressured by creditors, he even resorted to re-
leasing private photos of his former movie-star girlfriend, causing severe reputational and commercial losses.
This illustrates that debt-related self-control issues can afflict even wealthy individuals.

5Adding a budget constraint would introduce an additional distortion: predatory goods might crowd out
normal consumption, further worsening algorithmic inequality by incentivizing normal-good sellers to favor
strong-willed consumers. We abstract from this to focus on the direct impact of data sharing. When a
consumer shares data, she gains better targeting of normal goods but also risks exposure to predatory ones.



and Pesendorfer (2001), which axiomatizes self-control problems. Building on Kreps (1979),
this framework models preferences over menus. Standard utility theory predicts that rational
consumers strictly prefer larger menus, which expand their choice set and potential utility. By
contrast, the temptation utility framework captures that a larger menu including tempting
but predatory options may reduce welfare for consumers with self-control issues.

The consumer’s preference for a menu M is given by:

/
— Vi - ) 1
max [u(z) +v(z) — pi (2)] — max v(2’) (1)
where z is a choice from menu M, and u (z), v (z), and p; () denote the commitment utility,
temptation utility, and price, respectivelyﬁ The consumer’s actual choice is determined by

the first maximization in Equation ({L)):
v, = argmax  [u(z) +v(z) —p; ()], (2)

which compromises between commitment and temptation utilities. If z, # arg max,c v(z'),
the consumer exercises self-control. The cost of self-control arises from the gap max,c v(z')—
v(z,): even unchosen tempting goods impose a welfare loss. If v (x) = 0, the model collapses
to standard Von Neumann—-Morgenstern utility.

The menu M depends on sellers’ advertising strategies, themselves shaped by the plat-
form’s data-sharing scheme and the consumer’s data-sharing choicem A consumer’s ex ante

utility is thus the expected utility over all possible menus.

Temptation utility specification A consumer of type 7; € {S,, W,,;} has commitment

and temptation utilities from consuming normal good n, alternative normal goods n’ # n,

6Following Gul and Pesendorfer (2004), we exclude prices from temptation utilities, though one could
argue that higher prices and default risk reduce temptation. A modified formulation to capture this is:

_ 9, _ AN
max [u () + v (2) = 2p; (z)] — max [v () — p; (2)],
without qualitatively impacting our key insights. For expositional simplicity, we use the first specification.
We thank Shaowei Ke for this observation.

TOur analysis builds on the random temptation utility framework of Stovall (2010), a special case of
random Strotz (1955) utility as characterized by Bénabou and Pycia (2002) and Dekel and Lipman (2012).



predatory good j, and alternative predatory goods j' # j:

strong-willed weak-willed
n Up >0 0 Up >0 0
(3)
n' #n 0 0 0 0
J ug < 0 0 up <0 70 —u >0
j#7 lup<0 0 up <0 0

Here, both types draw a random utility @, ~ U [0, u| from a uniform distribution with @ > 0
as the maximal utility. This random utility can be interpreted as a transient taste for the
normal good—for example, a temporary desire for clothing or a durable good on a given day.

Predatory goods, financed through BNPL, entail possible financial distress from late
fees and interest. Although consumers may enjoy some immediate utility u; > 0, with
probability § (independent across consumers) they default, incurring a loss C. Following
Berg et al. (2025), we treat ¢ as exogenousﬁ We define expected commitment utility as
ug = u; — 0C < 0, reflecting the net harm of predatory goods.

Strong-willed consumers derive no temptation utility from predatory goods (vg, (j) = 0)
and never use them. Weak-willed consumers, however, receive temptation utility v, — up,
where v > 0 measures the overall temptation strength, and 7; ~ U [0, 1] captures hetero-
geneity in susceptibility.

The weak-willed consumer’s choice problem reduces to:

gl{a%} [UWM- () + vw,,; () — pi (x)] = max {70 — p; (j),0} .

z€dj,

Thus, consumer i buys predatory good j if v; > p; (j) /v. We interpret ~; as a behavioral

weakness making consumers susceptible to marketing and credit offers they may later regret.
Note that temptation is persistent (v; is consumer-specific), whereas commitment utility

for normal goods is random. This asymmetry prevents discrimination by normal-good sellers,

8Empirically, DeHaan et al. (2024) show that BNPL users face significantly higher overdraft charges,
credit card interest, and late fees. Industry reports suggest similar risks: four in ten BNPL users report
late payments, and most suffer credit-score declines (https://www.icba.org/newsroom/blogs/main-street-
matters/2022/07/11/bnpl-and-the-illogical-argument-for-credit-card-interchange-fee-regulation).



even with complete information, but allows predatory sellers to target and price-discriminate
effectively. This structure lets us focus on how data access amplifies temptation-driven
exploitation of weak-willed consumers, rather than on normal-good price discrimination,

which is well studied in prior work.

Menu preference The menu M that a consumer faces is determined by the advertise-
ments she receives from sellers. A menu may contain none, one, or multiple normal and/or
predatory goods. Each consumer has additive utilities from normal and predatory good
consumption and may choose any combination of goods. We denote the menu for a normal
product n as M? € {{n,0},0}, where () means the good is not advertised and {n, )} means
it is. Similarly, M? € {{j,0},0} is the menu for a predatory good j.

Given the framework in Equation (), the choices of a consumer of type 7; € {S,, Wy;}

’ i’
from menus M and M] are:

v (M) = g max, [in (@) (@) (4)
(M) = argmax [ (2) +vr, (2) = pi (2)], (5)
zEM]

where p; (x) and p; (z) may reflect price discrimination, depending on whether the seller
knows the consumer’s type. Consumers take sellers” advertising and pricing policies as given.

The consumer’s ex ante preference for the full menu is then

U (MR (ML)

— Z Ur, (T, (M) — pi (4, 27, (M)

N+J
+ Z Ur, (2, (Mf)) + vy, (2r, (./\/lf)) —p;i (i, 2, (Mf)) — max v, (2'). (6)
j=N+1 ZeM]

This formulation allows us to study how data sharing shapes consumer menus via sellers’
advertising.

Our use of temptation utility to model self-control problems parallels an alternative
approach based on present bias (Laibson 1997; O’Donoghue and Rabin 1999; DellaVigna

and Malmendier 2004). Hyperbolic discounting leads consumers to overweight the immediate

10



gratification from predatory goods while undervaluing future repayment costs. Sophisticated
consumers, anticipating this conflict, may prefer to keep predatory goods off their menus.
Benabou and Pycia (2002) show that temptation utility is equivalent to a multiple-selves
formulation, making it consistent with sophisticated present-biased consumers. We adopt
temptation utility for its simplicity, as it captures menu preference without requiring a
dynamic setup, even if the present-bias approach offers sharper positive predictions.

In our model, weak-willed but sophisticated consumers make fully rational data-sharing
decisions, despite their lack of self-control in consumption. This provides a solid foundation
for normative analysis of data-sharing schemes and privacy regulation (e.g., Attanasio and
Weber 2010). We abstract from naive present-biased consumers, who are unaware of their
self-control problem and therefore fail to use opt-out options to protect themselves. While
sophisticated consumers’ choices may affect the welfare of naive ones, incorporating the latter
group poses a conceptual challenge: doing so requires paternalistic welfare judgments that

conflict with their expressed preferences.

1.2 Sellers

There are N + J sellers on the platform, one representative seller n for each normal good
and one seller j for each predatory good. For simplicity, we assume each seller faces zero
marginal production cost but incurs a convex advertising cost of — (1 — ¢) clog(1 — y) to
reach a measure y of consumers, where (1 — ¢)c > 0. As in Grossman and Shapiro (1984),
the convexity reflects the increasing difficulty of reaching a broader audienceﬂ Limited
consumer attention implies advertisers avoid flooding users with ads, requiring progressively
higher fees to expand reach|™]

Normal-good sellers aim to target both strong- and weak-willed consumers who prefer
their good, while predatory-good sellers target only weak-willed consumers tempted by their

product. Their ability to discriminate depends on the platform’s data-sharing scheme and

9This cost can be microfounded as follows. Similar to Grossman and Shapiro (1984), suppose each
advertisement is seen by a consumer with probability 7. If a seller sends out ¢ ads, a consumer sees them
with probability 1 — (1 — )%, so by the Weak LLN, exactly a fraction y = 1 — (1 — n)? of consumers see
the ad. Let £ = —log(1 — 7). To reach y; measure of consumers, the seller must buy ¢ = —(1/¢) log(1 — yx)
ads. If the platform charges f per ad, the cost is fqg = —(f/&)log(l — yx) = — (1 — @) clog(1 — yi), giving
an effective cost parameter (1 — @) c.

10See Chen (2022) for a model of targeted advertising under limited attention and Roussanov et al. (2021)
for evidence of its importance in mutual fund selection.
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consumers’ data-sharing choices. Sellers provide BNPL through the affiliated fintech lender
by charging a discount equal to a fraction ¢ € (0, 1) of the purchase price.

Because consumers are risk-neutral and ultimately receive seller profits, sellers maximize
expected profit. Seller k € {1, ..., N 4+ J} chooses its advertising set Y} and consumer-specific

prices p; (k);cy, to solve:

Iy= sup (1-¢)E U pi (k) 1ip@y=rydi + clog (1 — i) ‘ I’“} : (7)
{pi(k),Yi} €Yy,

where y;, is the measure of consumers in Y}, 14,(;)=#) indicates whether consumer 7 uses good

k, and Z* is seller k’s information set. If a consumer is not advertised to, the good does not

appear on her menu.

Sellers are strategic but lack commitment: they can condition advertising and pricing only
on their information sets and must find it optimal to carry out their announced strategies
after consumers choose data sharing. This will matter under the opt-in/opt-out arrangement,
as it rules out self-confirming equilibria supported only by off-equilibrium beliefs (as in
Perfect Bayesian equilibria).

Sellers face participation constraints:

pi(n) <4, pi(j) <0, (8)

since charging above these thresholds would result in no sales.

1.3 Fintech Lender

There is a BNPL fintech lender affiliated with the digital platform, similar to Klarna or
Afterpay. It provides short-term loans to consumers to facilitate purchases of both normal
and predatory goods. Consistent with practice, the BNPL lender assumes all borrower
default risk on the platform and is compensated through a merchant fee: the merchant
remits a discounted amount of the purchase price to the lender (OCC, 2023).

The lender charges sellers a merchant fee equal to a fraction ¢ of the consumer’s purchase
price. In practice, BNPL lenders typically conduct only a soft or no credit check before issuing

loans for online purchases. Their primary source of revenue is merchant fees, which scale

12



with purchase size, supplemented by late fees and interest on unpaid balances. If a consumer
defaults—which, in our model, occurs only for predatory goods purchases—with probability
0, the lender recovers only a fraction 1 — £ of the loan balance. This recovery reflects late
fees, partial repayments, and proceeds from delinquent loans to collection agencies. By the
Weak Law of Large Numbers, exactly a fraction ¢ of weak-willed consumers will default.
The fintech lender is ultimately owned by households and faces a cost of capital R for its

lending activities. Its expected profits are:

N+J N+J
HF :(1 —R(l —¢))E Z/ Pi (]{) 1{:):@ k}dZ] (Sf 1 — Z / 1{1” k}dl] s
k=1 V€Y% k=N-+1 ”LEYk

(9)
which equals the effective fee revenue from all purchases minus expected losses from default.

The lender is willing to provide loans on the platform as long as

< [ bt Jiey, P (F) 1{x<z‘>:k}di]

>1-
RE |00 [y, i 00) o] + 66 [ iy, s () iy di]

In what follows, we assume ¢ > 1 — the fee that would be required if all purchases

carried default risk, so that this participation constraint is always satisfied. In practice,
BNPL merchant fees are roughly double those charged by credit cards for equivalent services,
and late fees can reach up to 25% of the transaction value, which explains BNPL lenders’
greater tolerance for consumer default.E As such, the lender’s incentives are aligned with
sellers in promoting larger consumer purchases, even when default risk is significant. Al-
though we focus data sharing between platform and sellers for convenience, BNPL lenders in
practice also collect consumer data to maximize incremental sales and the lifetime revenue
that they can extract through tailored product offerings, marketing campaigns, and product

experiences, and to induces some consumers to borrow more than they can repay (CFPB,

2022).

HSee  https://www.icba.org/newsroom/blogs/main-street-matters/2022/07/11/bnpl-and-the-illogical-
argument-for-credit-card-interchange-fee-regulation.
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1.4 Sequential Rational Expectations Equilibrium

We examine the effects of different data-sharing schemes on consumers and sellers, abstract-
ing from the platform’s own incentives. Implicitly, we assume that the platform shares all
consumer data with sellers, subject to each consumer’s sharing preferences. In Section [2 we
analyze two benchmark data-sharing regimes: (i) no sharing and (ii) full sharing. In both
cases, consumers have no individual choice over whether their data is shared. In Section [2.3]
we consider a GDPR-~inspired scheme that allows each consumer to decide whether to share
their data with the platform, which then passes on the authorized data to sellers.

Under each of these data-sharing schemes, an equilibrium consists of:

e Consumer optimization: Given each seller’s advertising and pricing policies, each con-

sumer ¢ chooses an optimal data-sharing choice s; and then follows a purchasing policy
N+J

{{xT (MDY Ly, (M) }j:NJrl} over a menu set { M, M7}.

e Seller optimization: Given consumers’ optimal choices, each seller k selects an adver-
tising policy Y}, and a pricing policy p; (k),cy, for its good. These must be sequentially

rational when consumers authorize data sharing.

For welfare analysis, we assume sellers pay the platform for advertising services. Hence ad-
vertising costs and fintech merchant fees are treated as zero-sum transfers between sellers,
the platform, and the fintech lender—all ultimately owned by consumers. Because prefer-
ences are quasi-linear in expenditures, we can aggregate consumer utilities and seller, lender,

and platform profits to obtain utilitarian welfare:

N

1 u ~
W = N Z/Un (Wsl{neMgn N zg,=n} + le{neM;LVn n ng:n}) dH () (10)
n=1
oy NET

W p—

+7 %1/ (uBl{jeMﬂv'Vj n ijzj} + (up — i) 1{16/‘4% “ ij=®}> dG (vi),
j:

The first term reflects the commitment utility of both strong- and weak-willed consumers
from consuming normal goods. The second captures the social impact of predatory goods:
weak-willed consumers who succumb incur negative commitment utility upg, while those who
resist suffer the mental cost ug — ;0.

As noted in Equation (1), when a weak-willed consumer buys a predatory good, temp-

tation utility is fully offset, leaving zero net temptation utility. Interest payments do not
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affect social welfare because they are transfers to sellers. Welfare losses instead arise from (i)
the negative commitment utility up when weak-willed consumers borrow to buy predatory
goods, and (ii) the disutility of resisting temptation when such goods appear on menus but
are not consumed.

Equation highlights a central trade-off in data sharing. On one hand, sharing im-
proves matching for normal goods, raising welfare; on the other, it exposes weak-willed
consumers to predatory goods, reducing welfare. Unlike standard data privacy models,
which focus on how data increases total surplus through better matching and redistributes
it between consumers and sellers, our framework shows that weak-willed consumers value
privacy not to secure better prices but to avoid exploitation and the harms of overspending—
amplified by BNPL-style credit that fosters indebtedness.

Our model thus underscores that the costs and benefits of data sharing are distributed un-
evenly. Strong-willed consumers gain from better access to normal goods, while weak-willed
consumers face heightened risks due to behavioral vulnerabilities. A representative-agent
cost function misses this heterogeneity and, therefore, the critical role of privacy regulation
in addressing algorithmic inequahtyE

We measure this inequality as the welfare gap A, defined as the difference between
the average utility of strong- and weak-willed consumers after accounting for the costs of

purchasing normal and predatory goods:

N
1 U ~
A= o ; / (i~ 95, ) (75 s o)~ T frency s ) 4 (02) (11)
N+J
™WwW . -
— Z / ((UB —pi (7)) 1{;‘6/\4{,‘/ N anj:j} + (up — v,;0) 1{16/‘4% R man®}> dG (i),
j=N+1 nj nj

where p;, (n) indicates that for normal good n, consumers type is the random utility draw

Uy, -

To anchor the welfare analysis of different data-sharing schemes, we first consider the

12Related work, such as Ali and Benabou (2020) and Jann and Schottmiiller (2020), emphasizes privacy
as protection against social discrimination: public observability of actions allows inferences about private
traits, which fosters conformity at the expense of individual preferences. Tirole (2021) further warns that
absent privacy protections, governments could use social rating systems—Ilinking political stances with social
networks—to control society without overt repression. By contrast, in our setting, vulnerable consumers
value privacy primarily as a shield against exploitation of their behavioral weaknesses rather than against
discrimination.
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planner’s problem of maximizing social welfare in ((10). Since advertising entails no social
cost, the planner would want sellers of normal goods to advertise to all consumers, strong-
and weak-willed alike. In contrast, predatory advertisements impose costs on weak-willed
consumers, whether they succumb to temptation or resist it. Thus, the planner prefers that

predatory sellers do not advertise to anyone. In this ideal outcome, there is no algorithmic

inequality.ﬁ

Proposition 1 In the first-best outcome, sellers of normal goods advertise to all consumers,

while sellers of predatory goods advertise to none.

The first-best outcome might suggest banning predatory financial products altogether.
However, such products are often intertwined with desirable goods and services. For ex-
ample, Larrimore et al. (2024) show that BNPL is used not only by financially vulnerable
consumers prone to overextension but also by more financially secure consumers who use
it to smooth payments and avoid interest charges. A product like BNPL may therefore
be welfare-improving for some consumers but harmful for others, depending on what it fi-
nancesE These overlaps highlight why defining “predatory lending” in legal or regulatory

terms is difficult, and why banning either use or advertising may be infeasibleﬂ

2 Data-Sharing Equilibrium

In this section, we analyze the data-sharing equilibrium. To frame the main scheme in which
consumers can opt in or out of sharing, we first consider two benchmarks: no sharing and full
sharing. We then evaluate consumer welfare across these schemes and provide a calibrated
analysis using realistic parameters. Proofs of the key propositions appear in the Appendix,

with additional proofs in the Internet Appendix.

I131f instead up > 0, predatory sellers would advertise to all weak-willed consumers in the first best. This
contrasts with standard price-discrimination models, where reducing search frictions through data sharing
always improves social surplus. Here, data sharing improves matching for normal goods but can reduce
welfare when it facilitates exposure to predatory goods.

40Our model can be adapted so that each predatory good is a variant of a normal good—tempting only
for specific weak-willed consumers, leading to negative commitment utility for them. While this complicates
consumer inference, the core mechanism is unchanged.

15 An alternative policy is to impose strict borrowing limits to protect vulnerable consumers. Yet BNPL
schemes are deliberately designed to bypass traditional safeguards, limiting recourse for borrowers and using
alternative data to extend credit to consumers who would not qualify under conventional underwriting.
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2.1 Consumer Choice

We begin by analyzing individual consumer choices from a given menu of goods. A strong-
willed consumer who prefers normal good n will purchase it if the seller’s price is below the
consumer’s reservation value, and always reject other goods. A weak-willed consumer who
prefers normal good n but also desires predatory good j behaves similarly for n: they buy if
the price is below their reservation value. In addition, they may buy predatory good j if their
temptation coefficient ~; is sufficiently high relative to the price. The following proposition

summarizes these choices.

Proposition 2 A strong-willed consumer with commitment utility u, for normal good n
purchases it if pg, (n) < @, and rejects all other products. A weak-willed consumer with
commatment utility @, for normal good n and temptation coefficient ~; for predatory good j
purchases good n if pg, (n) < U,, and purchases product j if v; > pild)

This proposition shows that both strong- and weak-willed consumers might reject good
n if their random utility draw falls below the posted price. Consequently, seller of good
n cannot perfectly price discriminate.[z;] As a result, all strong- and weak-willed consumers
prefer to receive advertisements for good n, as this allows them to benefit when their realized

utility is high. This creates a motive for consumers to share their data with the platform.

2.2 Two Benchmarks

To analyze the equilibrium with individual data-sharing choices, we first consider two bench-
mark schemes: one with no data sharing and one with full data sharing.

In the no-sharing (NS) benchmark, the platform neither collects nor shares consumer
data. Sellers thus lack information about consumer types and face a “dark pool” for adver-
tising, with each advertisement reaching its target consumers only with the unconditional
probability. This setting reflects market practices prior to the era of big data. The equilib-

rium is characterized as follows:

16Much of the literature on data sharing emphasizes its role in enabling price discrimination. For example,
Taylor (2004) and Acquisti and Varian (2005) show that using past purchase data is optimal for sellers when
consumers are naive about how information is used, but not when they are sophisticated. Ali, Lewis, and
Vasserman (2019) find that disclosure choices can intensify competition and lower prices, while Ichihashi
(2020) shows that multi-product sellers may prefer not to use data for pricing, allowing consumers to reveal
preferences and improve matching. A recent review is provided by Goldfarb and Tucker (2019). Our analysis
departs from this literature by focusing on data privacy as protection against consumer vulnerabilities rather
than as a constraint on price discrimination.
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Proposition 3 With no data sharing (NS), there exists a unique equilibrium with the fol-

lowing properties:

1. Normal good seller n randomly advertises to a mass
yflVS:maX{l—élNg,O}, (12)
w

at a uniform price: pV° (n) = 1.

[

2. Predatory good seller j randomly advertises to a mass

yévs—max{l—élig,O}, (13)
T™w U

at a uniform price: pV° (n) = 1v.

N | —

In this regime, undirected advertising generates inefficiency. Normal good sellers restrict
advertising to only a fraction of potential buyers. As Equation shows, seller n’s adver-
tising intensity y, falls with the cost parameter ¢, and rises with % (the share of intended
consumers in the population) and @ (which determines the good’s price). Since sellers fail
to advertise to all consumers who value the good—contrary to the first-best—matching is
inefficient, motivating demand for greater data sharing.

At the same time, Equation shows that anonymity discourages predatory sellers
from targeting all weak-willed consumers, which creates a source of welfare gain. Lacking
information about reservation values, both normal and predatory sellers set uniform prices:
n) = s and p™® (j) = 0, which means their advertisements are accepted by intended

p =3

consumers only half of the time.

NS(

The second benchmark represents the opposite extreme, where the platform collects
consumer data and can fully infer each consumer’s type. This setting mirrors the practices
of many digital platforms prior to the introduction of privacy regulations. For simplicity,
we assume the platform can identify whether a consumer is strong- or weak-willed and, in
the latter case, observe the consumer’s temptation coefficient ~;. While this may overstate
current capabilities, rapid advances in data analytics make this an informative limiting case.
By sharing data with sellers, the platform enables them to tailor advertising and pricing

strategies to specific consumer types, particularly vulnerable ones (Nadler and McGuigan
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2018; Stigler Committee Report 2019).E|

Since strong- and weak-willed consumers behave identically with respect to normal good
n, seller n need not differentiate them. Proposition [4] characterizes the measure of consumers
targeted, yI*¥, and the equilibrium price p© (n). Data sharing improves efficiency by allowing
seller n to avoid advertising to consumers who would never purchase, so y2¥ > y~N. Thus,
both strong- and weak-willed consumers face a higher probability of being reached. As seller
n still cannot observe reservation values, it charges a uniform pricep™ (n) = %ﬂ

By contrast, access to consumer data enables predatory seller j to perfectly target weak-
willed consumers and price discriminate based on temptation severity. Each consumer is
charged their full reservation value, p,, (j) = 7;0. This motivates the seller to concentrate its
advertising on the most tempted consumers, i.e., those with v; > 4. As a result, full data
sharing leads to both precise targeting and perfect price discrimination against vulnerable

consumers.

Proposition 4 With full data sharing (FS), there exists a unique equilibrium with the fol-

lowing properties:

1. Normal good seller n advertises to y'S measure of strong- and weak-willed consumers

that desire the good:
FS - ¢ 1
- 1-45 o} = 14
Un min {max { - N} (14)

and charges a uniform price pt'¥ (n) = %a

2. Predatory good seller j advertises to all weak-willed consumers that desire the good with

v > AP =1 — %yfs (0), where y!'® () is the total advertising by seller j:

2
4w /J 1—mw /J Twe o
N \/<—2 ) + 5= ifv>c s
y;” () = , (15)
0 ifv<c

and sets consumer-specific prices p, (j) = 7.

170Our model abstracts from the full complexity of how platforms target vulnerabilities in practice. In real-
ity, platforms use real-time analytics to infer not only cognitive and affective states but also the timing when
consumers are most susceptible. Some strategies even deplete willpower—through aggressive advertising or
continuous engagement—thus proactively inducing vulnerability. Social media platforms, for example, cus-
tomize nudges and content to maximize engagement, occasionally bordering on addictive behavior (Allcott
et al. 2020).
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Full data sharing clearly benefits strong-willed consumers by improving access to normal
goods. For weak-willed consumers, however, it creates a trade-off: better access to normal
goods but increased exposure to predatory goods. This makes the welfare comparison be-
tween no sharing and full sharing non-trivial. As Proposition [6] shows, when weak-willed
consumers’ vulnerability is sufficiently severe (i.e., up is sufficiently negative), full data shar-
ing reduces overall social welfare relative to no sharing.

Policymakers have long worried about these risks. A 2013 U.S. Senate review of the
data broker industry revealed that firms were selling products explicitly designed to identify
financially vulnerable consumers, exposing them to high-cost loans and other risky financial
products.ﬂ Such risks have only intensified on digital platforms, whose access to consumer

data is unprecedented.

2.3 Opt-in/Opt-out

We now analyze the main data-sharing scheme, modeled after the European Union’s General
Data Privacy Regulation (GDPR) and the California Consumer Privacy Act (CCPA). These
regulations safeguard consumer privacy by granting individuals the right to decide whether
to share their data with digital platformsH thus offering the potential to achieve a Pareto
efficient outcome as each consumer can make the most suitable choice for herself. Under such
a scheme, which we refer to as GDPR, strong-willed consumers can opt-in and benefit from
data sharing, while severely tempted consumers can opt-out to avoid exposure to predatory
goods. [

Strong-willed consumers benefit from sharing their data with normal goods sellers and
have no concern about predatory goods sellers. Hence, they all opt in. Weak-willed con-

sumers, however, face a trade-off: opting in improves access to normal goods but also in-

18The report specifically states on page ii: “One company reviewed sells a marketing tool that helps to
“identify and more effectively market to under-banked consumers” that the company describes as individu-
als including “widows” and “consumers with transitory lifestyles, such as military personnel” who annually
spend millions on payday loans and other “non-traditional” financial products. The names, descriptions and
characterizations in such products likely appeal to companies that sell high-cost loans and other financially
risky products to i populations more likely to need quick cash, and the sale and use of these consumer pro-
files merits close review.” See https://www.commerce.senate.gov/services/files/0d2b3642-6221-4888-a631-
08f2f255b577 for the report.

19Similar laws—such as Virginia’s Consumer Data Protection Act (VCDPA), Colorado’s Privacy Act
(CPA), and Utah’s Consumer Privacy Act (UCPA)—follow the same framework.

20These regulations also have measurable effects in practice. Goldberg et al. (2019), for example, find
that spending and visits by EU consumers fell by up to 7% in 2018 relative to 2017 following GDPR
implementation, with the decline especially pronounced for smaller sellers.
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creases exposure to predatory goods. As a result, severely tempted consumers tend to opt
out, while less tempted consumers opt in. To simplify notation, we use in subscripts for
GDPR ()

consumers in the opt-in pool and out for those in the opt-out pool. For example, p;;

denotes the price changed by normal good seller n to opt-in consumers, while pZ2FF (4)

denotes the price charged by temptation good seller j to the opt-out pool.

Opting out does not fully shield vulnerable consumers. The degree of protection depends
on the diversity of the opt-out pool, which creates “noise” that dilutes targeting by predatory
sellers. Thus, each weak-willed consumer’s decision to opt in or out depends on others’
choices. We conjecture the existence of a cutoff temptation level v*: consumers with with
v; > v* opt out, while those with +; < ~* opt in. This threshold is symmetric across all
temptation types.

Conditional on this cutoff v*, the utility of a weak-willed consumer with +; who opts in

is:

yGDPRN  ru
UG?ER Yi) = L/ max ant—pﬁDPRn,O dH (u, 16
G000 00 = 2 [ ma (n) 0} dH (i) (16)
GDPR
Yjin (i) J GDPR (; 7
+ WY UB = Py,in (4) 1{%2P%?€RU>} - %vl{%<z’$£§R(j)} )
where yﬁgf R is the total advertising of seller n to the opt-in pool at price p¢PPE (n), while
yfﬁp R (4;) is the advertising intensity of seller j targeting opt-in consumers with temptation
v; at price pi%f R(4). The consumer’s utility reflects the conditional probability of being
7 yGDPR y?f.,)tPR(%)

targeted by both sellers, Cr——y and —

By contrast, the utility of opting out is:

yGDPR @
USDEN ) = 2 [ {a, — pGE (n) 0} dH (@) (1"
mw (1 =7%) Jo
yGDPR
jou GDPR [ ; _

o (1= \ "8 Pout (7)1 o MR, vl frucslr} |
where ySDPH is the total advertising by normal good seller n to the opt-out pool at price
PSR (n), and y§L P! is the total advertising by predatory good seller j to the opt-out pool
at price pGPTR ().
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A weak-willed consumer opts in if and only if
Usiod ® () = UGEER (), (18)

with equality holding for the marginal consumer with +; = v* who is indifferent between the
two choices.

The following proposition characterizes the equilibrium under the GDPR. Define

155(1— 1—%), (19)

the lowest feasible cutoff value for . If v* were below v, predatory sellers would not target

the opt-in pool, rendering such a cutoff invalid.

Proposition 5 There exists an equilibrium under the GDPR with the following properties:

1. Consumer choice. All strong-willed consumers opt in. A weak-willed consumer opts

n if v < and opts out if y; > v*.

2. Normal goods. Seller n charges the same price in both opt-in and opt-out pools:

pIPPRE () = pSEPR (n) = a, and follows a water-filling advertising strategy that

prioritizes the opt-in pool:

GDPR . c 1—mw(l—79")
DPR - _ 145 20
yn,zn mln{ a? N ? ( )
. * C *
yi?ulzR = min{max{my (1 —~") _4N5’0}’7TW<1 -7} (21)

3. Predatory goods. Seller j also uses a water-filling strategy. If v* > vy, it prioritizes
the opt-in pool, targeting a measure y](»’;l%PR (Equation ) of the more-tempted

consumers and charging their reservation utility: pi[gf R

advertising to a measure yfifR (Equation ) of the opt-out pool at a fixed price:
GDPR (;\ _ 1 21
PP (7) = max { 3,7} o]
2In the knife-edge case that y* = 7, it prioritizes the opt-out pool by targeting a measure yjc,;o%f R given
in Equation 1] of the consumers in the opt-out pool by charging pGL2 T (j) = 14, and it may also target

out 2
an additional measure ny PR given in Equation l) of the more-tempted consumers in the opt-in pool

(7) = viv. It may then extend

mn

and charging them: psﬁffR (J) = viv.
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Figure 1: Tllustration of the relative benefit for the marginal weak-willed consumer with temptation

index v* to opt-in, Ug,?f R () — V%lglﬁR (v*), for four values of v. The parameters are N = 10, J =

3, mw = 0.25, and the rest are listed in Table

4. Equilibrium cutoff. The cutoff v* > v has the following properties:

(a) If v < Zmin {(1 - %) N, 1} +up or v > (1—”7W+7}—V2V)_1Jc, there is a full

data-sharing equilibrium in which all weak-willed consumers opt in (v*=1).

(b) For v < vy (Equation (A.71)) and ¢ > %’ﬂ'w%, there exists an interior cutoff

v e (1, 1), solving Equation (A.69). If, in addition, v > (1 -+ Z—Vzv)fl Je,

multiple equilibria exist, including the full data-sharing equilibrium v* = 1.

Proposition [5| shows that weak-willed consumers follow a cutoff strategy in deciding
whether to share their data. Predatory sellers exploit this by perfectly targeting and price
discriminating against the more tempted opt-in consumers, while only imperfectly targeting
the opt-out pool. The equilibrium cutoff v* is therefore shaped by the relative incentives of
predatory sellers to search across the two pools, as detailed in part 4.

Figure [1] illustrates the equilibrium by plotting the equilibrium cutoff v* against the net
benefit for the marginal consumer to opt-in, UGOPR (v*) — UGRER (%), for different values
of v. An interior equilibrium arises when this difference equals zero. A full data-sharing

*

equilibrium (y* = 1) occurs when the difference is positive at v* = 1, while a minimum

*

data-sharing equilibrium (v* = 7) occurs when this difference is negative at v* = 7. The

sustainability of full data sharing depends on whether predatory sellers find it optimal to
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search the opt-out pool, which in turn requires those opting out to be sufficiently tempted.

e Small . When @ is low (e.g., the top dotted line in Figure[l|with o = 600), the cost to
weak-willed consumers of being targeted by predatory sellers is small and outweighed
by the benefits of sharing data with normal goods sellers. Consequently, all consumers
opt in, and predatory sellers target only the most tempted consumers in the opt-in

pool.

e Moderate v. When v is moderate (e.g., the solid black line in Figurewith v = 1500),
a unique interior equilibrium emerges where the curve intersects the x-axis. Here,
predatory sellers prioritize advertising to the opt-in pool but do not fully cover the

opt-out pool.

e Large v. When @ is large (e.g., the thick dot-and-dashed line in Figurewith v = 3307,
also used in our calibration exercise in Section , multiple equilibria exist: two interior
solutions plus full data sharing. This multiplicity arises because the incentives of
predatory sellers to search the opt-out pool are non-monotonic in v*: profits from
targeting the most tempted in the opt-in pool rise with +*, but for sufficiently large v*,
profits from targeting the opt-out pool also rise. The relative benefit curve thus crosses
zero twice, producing three equilibria. This non-monotonicity generates a coordination
problem among weak-willed consumers: the most tempted may still opt in because they
fail to coordinate on one of the two lower interior cutoffs. Moreover, as v increases,
the minimal and intermediate cutoffs behave differently: fewer weak-willed consumers
opt in at the minimal cutoff, but more do so at the intermediate cutoff, reflecting the

shape of the relative benefit curve.

e Very large v. When 0 is extremely large (e.g., the dashed line in Figure [1| with v =
7000), all consumers once again opt in. In this case, weak-willed consumers’ temptation
is so severe that even if they opt out, predatory sellers still target them in the opt-out

pool. Thus, opting in becomes strictly preferable despite their vulnerability.@

22 A subtle but important observation is that our full data-sharing equilibria do not rely on off-equilibrium
beliefs that opting out would automatically expose consumers to predatory targeting with probability one,
even when it is not in sellers’ best interest. Instead, these equilibria arise because, in equilibrium, predatory
sellers find it profitable to fully search the opt-out pool whenever any positive mass of weak-willed consumers
opts out. Thus, full data sharing is not guaranteed: it emerges only when searching the opt-out pool is
sufficiently profitable.
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Our analysis highlights a crucial data-sharing externality. To avoid targeting by predatory
sellers, the most tempted consumers may opt out and attempt to hide within the opt-out
pool. Yet the opt-in decisions of others—such as strong-willed and moderately tempted
consumers—undermine this protection. Their exit from the opt-out pool reduces its “cam-
ouflage,” raising the probability that the remaining weak-willed consumers are targeted by
predatory sellers. In this sense, the opt-in choices of strong- and moderately weak-willed
consumers impose a negative externality on the most vulnerable, as they do not account for
the harm their decisions create.

This mechanism echoes the concept of social data emphasized by Acemoglu et al. (2019),
Bergemann, Bonatti, and Gan (2019), and Easley et al. (2019), who show that one individ-
ual’s data can reveal information about others. In contrast, in our setting it is a consumer’s
behavior that reveals information about herself to the platform. Thus, the externality we
identify is distinct: it stems not from cross-person inference but from how individual choices
alter the effectiveness of concealment for others. The presence of this externality suggests
that simply granting consumers the ability to opt in or out of data sharing may be insufficient
to protect the most vulnerable.

The existence of multiple equilibria with different cutoffs v* is a sharp manifestation of
this data-sharing externality. When o lies in an intermediate range, several cutoffs can be
self-consistent with consumers’ optimal data-sharing policies, including full data sharing.
These multiple equilibria, and the associated coordination challenges, do not arise in models
with reduced-form cost functions for data sharing (e.g., Jones and Tonetti, 2020) or in models
of data markets (e.g., Acemoglu et al., 2019; Bergemann, Bonatti, and Gan, 2019; Easley et
al., 2019).

The uneven impact of the data-sharing externality on strong- and weak-willed consumers
underscores the presence of algorithmic inequality on the platform. While data sharing ben-
efits strong-willed consumers, it can harm weak-willed consumers by eroding the camouflage
provided by the opt-out pool and thereby intensifying their temptation problem.

Empirical evidence on how consumers make data-sharing choices remains limited because
of the scarcity of detailed individual-level data. A central finding is the so-called data privacy
paradox: although consumers often express concerns about privacy, they nevertheless share
their data with sellers and digital platforms. Survey-based studies—including Gross and

Acquisti (2005), Goldfarb and Tucker (2012), and Athey et al. (2017)—document this
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paradox, which the literature typically attributes to behavioral biases such as present bias
(see Acquisti, Brandimarte, and Loewenstein 2020 for a review). Our model provides a novel
explanation without invoking such biases: even severely tempted consumers may still choose
to share data because the opt-out pool offers insufficient protection, making opting in the
better choice.

Chen et al. (2021) survey Alipay users about their privacy concerns when sharing data
with third-party mini-programs. Nearly half (49%) cite worries about seductive advertising
and temptation consumption as reasons for hesitation. Paradoxically, however, users with
stronger privacy concerns authorize data sharing with more mini-programs—a pattern the
authors attribute to these users’ greater demand for digital services, reflecting the core
trade-off emphasized in our model. Moreover, the study finds that privacy-concerned users
expand their data sharing over time. While our model is not designed to capture this specific
behavior, the coordination problem it highlights—where each consumer’s choice depends on
the decisions of others—offers a rationale for why data sharing may increase even among
privacy-concerned individuals.

Additional evidence shows that data sharing affects both firms and consumers. De Matos
and Adjerid (2021), in a field experiment with a major telecommunications provider, find that
new data authorizations improve targeting, leading to higher sales, more effective marketing,
and stronger contractual lock-ins. Similarly, Aridor et al. (2020) show that GDPR’s opt-
in requirement reduced the number of observable consumers in the online travel industry
by 12.5%, yet those who opted in could be tracked more persistently and targeted more
efficiently.

2.4 Welfare Comparison

In this subsection, we compare the welfare consequences of the three data sharing schemes
analyzed: no data sharing, full data sharing, and the opt-in/opt-out scheme. Social welfare
is given by the aggregate utility of strong- and weak-willed consumers over their purchases
(Equation (10))), while welfare gap is defined as the difference in the welfare between strong-
and weak-willed consumers (Equation (11))).

Proposition 6 The social ranking of full data sharing, no data sharing, and the GDPR-style
opt-in/opt-out scheme has the following properties:
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Full data sharing yields the highest social welfare when the temptation problem is mild,

1.e., when up 1is close to zero.

No data sharing yields the highest social welfare when the temptation problem is severe,

i.e., when ug is sufficiently negative.

For intermediate values of ug, the opt-in/opt-out scheme may deliver the highest social

welfare.

Regardless of the ranking, no data sharing delivers the lowest welfare gap.

Proposition [6] highlights the trade-off at the heart of data sharing: improving matching
efficiency for normal goods versus protecting weak-willed consumers from predatory goods.
Full data sharing maximizes matching efficiency but provides the least protection; no data
sharing does the reverse. The opt-in/opt-out scheme lies between these extremes. Accord-
ingly, full data sharing is optimal when temptation is minor (ug ~ 0), while no data sharing
is optimal when temptation is severe (up << 0). No data sharing also minimizes the welfare
gap, since it reduces the harm suffered by weak-willed consumers from predatory goods.

The opt-in/opt-out scheme can dominate in an intermediate range of upg, balancing the
benefits and costs of data sharing. However, it may face coordination problems: if too
many weak-willed consumers opt in, the protective value of the opt-out pool erodes. When
multiple equilibria exist under the opt-in/opt-out scheme, the equilibrium on which weak-
willed consumers coordinate determines the precise region of ug where this scheme yields
the highest welfare. This coordination issue affects the location of the intermediate region

but not the overall welfare ranking of the three schemes.

3 A Calibration Exercise

We now present a calibration exercise to examine consumer welfare within the opt-in/opt-out
data-sharing scheme. As shown in Proposition |5, the equilibrium cutoff v* may take one or
three values depending on parameter choices. Our goal is to examine the possible equilibria
using parameters calibrated to reflect a realistic economic environment. Given limited data
availability on e-commerce and online consumer lending, we rely on aggregate statistics to

discipline the model.
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Parameter Value Target Data Model

c 713.5 Advertising Revenue 945.52  945.52
u 1557.7  Normal Goods Seller Revenue  3894.19 3894.19
v 3808.3 Predatory Goods Seller Revenue 456.86  456.86

up -432.8 Equilibrium Cutoff v* 0.40 0.40

Table 1: This table displays the parameters for our numerical experiment, the data moments to
which they are targeted, and the model simulated values of these targets.

3.1 Parameters

We calibrate the model to annual online spending by U.S. consumers. Reflecting data-
sharing practices in the U.S. in 2021—where regulation on sellers’ use of consumer data was
limited—we assume all consumers share their data. The calibrated parameters are reported
in [

We set the number of normal goods to N = 10 and predatory goods to J = 3. The
fraction of weak-willed consumers is set to my = 0.25, consistent with survey evidence:
Ameriks et al. (2007) estimate that 10-30% of respondents exhibit self-control problems,
while Toussaert (2018) reports 23-36%.

Three of the four remaining parameters, ¢, u,and v, are pinned down by targeting mo-
ments from 2021 U.S. e-commerce data. To align with the unit mass of consumers in our
model, we normalize all quantities by the number of U.S. online shoppers, about 273.5 million

(see Prose Media, 2025) [

e Advertising cost ¢. We target annual online advertising revenue in 2024, reported as
$258.6 billion in IAB’s 2025 Internet Advertising Revenue Report. Normalized per
online shopper, this yields $945.52.

e Utility from normal goods @ and maximal temptation . We use U.S. annual e-
commerce revenue in 2024, reported by the U.S. Census Bureau at $1.19 trillion.
Dividing by the number of U.S. online shoppers yields per capita annual spending
of $4,351.05. Assuming 25% (my ) of this expenditure comes from weak-willed con-
sumers, strong-willed consumers account for $3,263.29 and weak-willed consumers for

$1,087.76. We choose v so that predatory sellers capture 42% of weak-willed consumers’

238ee, for instance, https://www.prosemedia.com/blog/ecommerce-shoppingstatistics-2025/.
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Equil. Cutoff Strong-Willed Weak-Willed Gap  Utilitarian
aggregate per consumer aggregate per consumer
v*=1.0 1460.3 1947.1 -54.8 -219.1 1515.1 5756.6
v* = .60 1460.3 1947.1 21.5 86.0 1374.3 5201.2
v* = .40 1460.3 1947.1 100.1 400.2 1360.2 4937.4

Table 2: This table displays strong- and weak-willed consumer welfare, their difference, and util-
itarian welfare for the full, opt-in/opt-out, and no data-sharing schemes for the parameters listed

in Table

spending, consistent with 2019 survey evidence from Slickdeals.net showing that 42% of
monthly discretionary spending exceeds budgeted amountsEf] This implies predatory
sellers earn $456.86 annually from weak-willed consumers. We then set @ to match rev-
enue from normal goods, equal to $3,263.29 from strong-willed consumers plus $630.90

from weak-willed consumers, or $3,894.19 in total.

Utility cost of predatory goods ug. We set ug so that 15% of consumers opt out when
the U.S. moves from full data sharing to the minimal opt-in/opt-out equilibrium (i.e.,
the equilibrium with the lowest 7*). This matches the 15% reduction in web traffic
observed after the GDPR’s introduction, as reported by Congiu et al. (2022). We
rely on this indirect measure because privacy preferences are malleable, making direct
evidence difficult to interpret. This calibration implies a cutoff value of v* = 0.40 in

the minimal data-sharing equilibrium.

With four parameters and four moments, we match the data perfectly ]

3.2 Consumer Welfare

Interestingly, under our calibrated parameters from Table , the opt-in/opt-out scheme ad-

mits three possible equilibria. As illustrated by the dashed line in Figure|l these correspond

to cutoffs of .40, .60, and 1.00 (i.e., full data sharing) for the marginal consumer. For each

equilibrium, Table [2| compares the welfare of strong-willed and weak-willed consumers, both

in the aggregate and on a per-consumer basis. Since utility is linear, these welfare values

can be interpreted directly as dollar surpluses, measuring consumption-equivalent welfare.

24Glickdeals.net conducts annual surveys of unintended spending by polling 2,000 U.S. consumers.
25 Additional analyses show that raising the number of predatory goods J mainly increases the calibrated
value of v, while increasing the number of normal goods N increases the calibrated cost of advertising c.



Across the three equilibrium, utilitarian welfare rises monotonically with the extent of
data sharing: social welfare is highest under full data sharing (v* = 1.00) and lowest under
the minimal data-sharing equilibrium (v* = 0.40), with a difference of 16.6% in consumption-
equivalent welfare. This pattern echoes Jones and Tonetti (2020), who emphasize that
because data are non-rival, greater sharing enhances social welfare. They estimate a 40%
welfare loss between the no data-sharing equilibrium and the planner’s optimum.

Despite this monotonic increase in social welfare, the distribution of gains is uneven:

e First, the welfare of strong-willed consumers remains constant across equilibria. Be-
cause the calibrated advertising cost c is relatively low, normal goods sellers always

cover the entire opt-in pool, regardless of the cutoff.

e Second, the welfare of weak-willed consumers declines monotonically with data sharing.
Their aggregate utility is highest (100.1) under the minimal data-sharing equilibrium
(v* = 0.40) and lowest (-54.8) under full data sharing (7* = 1.00). Increased sharing
exposes more weak-willed consumers to predatory goods, lowering their welfare. As
a result, the welfare gap between strong- and weak-willed consumers is largest under
full data-sharing equilibrium (A = 1515.1) and smallest under minimal sharing (A =
1360.2), a difference of 11.4%.

e Third, the upward-sloping social welfare pattern is driven largely by the rising gains
of sellers. Utilitarian welfare also includes seller payoffs. Greater data sharing enables
predatory sellers to target weak-willed consumers more effectively, increasing predatory

sales even as those consumers’ welfare declines.

e Finally, there is substantial heterogeneity among weak-willed consumers. Figure
illustrates how different equilibria affect consumers of varying temptation. Under full
data sharing (v* = 1.00, dashed line), the least tempted weak-willed consumers benefit,
but the most tempted suffer sharply, as reflected in the downward slope. Under minimal
data sharing (v* = 0.40, solid line), welfare is improved for the most tempted: neither
normal nor predatory sellers advertise to the opt-out pool, effectively setting a floor
at zero utility. The intermediate data-sharing equilibrium (v* = 0.60, dotted line)
favors mildly weak-willed consumers, who are less covered by normal sellers than under
~v* = 0.40, but harms the more severely tempted, who are now exposed to predatory

targeting in the opt-out pool.
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Figure 2: Heterogeneous welfare among weak-willed consumers under the three possible (High,
Medium, and Low) GDPR cutoff equilibria for the parameters listed in Table

As discussed in Section these equilibria reflect a coordination problem among weak-
willed consumers. Even without changes in the underlying environment, data sharing can
generate significant welfare losses for the most vulnerable consumers, despite rising aggregate
welfare. We refer to this unequal burden as “algorithmic inequality.”

The multiplicity induced by coordination also underscores the importance of default
options in privacy regulation. By guiding consumers toward either a minimal- or maximal-
sharing equilibrium, default rules can serve as a coordination device. Thaler and Sunstein
(2008) highlighted the powerful role of defaults in shaping welfare, and the Stigler Committee
Report (2019) similarly emphasized their importance for protecting inattentive or biased
consumers.

In Appendix B, we extend the model to a dynamic setting where platforms and sellers use
accumulated data to improve their goods over time. In this dynamic framework, opt-in/opt-
out decisions generate an intertemporal externality: today’s data sharing affects the future
quality of normal goods and the attractiveness of predatory goods. Simulations assuming
coordination on the minimal-sharing equilibrium show that the opt-in/opt-out scheme re-
duces algorithmic inequality by 13.8% but lowers overall social welfare by 15.5% compared
to full data sharing. This highlights a central trade-off of the digital economy: efficiency

gains from greater data sharing versus the rising costs of algorithmic inequality.
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4 Conclusion

This paper takes a novel approach to consumer privacy by emphasizing protection against
individuals” own behavioral vulnerabilities. Data sharing with digital platforms improves
matching efficiency for normal goods but also exposes weak-willed consumers to advertis-
ing that encourages excessive spending, often through BNPL and other potentially preda-
tory products. Privacy regulations such as GDPR and CCPA provide opt-in and opt-out
choices, yet they may fail to protect the most vulnerable because of data-sharing externali-
ties and coordination problems that generate multiple equilibria with very different sharing
outcomes. Greater data sharing can thus widen the welfare gap between strong- and weak-
willed consumers—what we call algorithmic inequality—even as it raises overall welfare by
improving goods quality over time. The result is a fundamental trade-off between efficiency
and inequality in the digital economy.

Our analysis highlights how the data economy affects not only what goods and financ-
ing consumers receive but also the welfare of others. Externalities arise because platforms
bundle data sharing with both normal and predatory sellers, making it costly for vulnerable
consumers to opt out: the benefits of sharing with normal sellers often outweigh the risks of
predatory targeting. In practice, platforms like Apple reinforce this bundling by offering free
services such as messaging and mobile payments, further complicating efforts to regulate or
unbundle data sharing.

Alternative remedies—banning predatory products, expanding legal recourse, or pro-
moting platform competition—face serious limitations. Predatory products are difficult to
define, as what harms one consumer may help another. Exploitation, unlike fraud or mis-
representation, is hard to measure and rarely policed under existing legal frameworks (Calo,
2013; Sunstein, 2015). And greater platform competition may worsen consumer outcomes
by intensifying the race to design addictive content and exploitative practices (Stigler Com-
mittee, 2019; Ichihashi and Kim, 2021). Despite its imperfections, ex ante protection of data
privacy remains the most effective safeguard for consumers in the digital marketplace. Such

insights are relevant as states, such as New York, pass laws to regulate BNPL lendersE]
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Appendix

A Proofs of Propositions

A.1 Proof of Proposition

We first consider a strong-willed consumer, that is, 7 (i) = S,,, who has the following prefer-

ences over different menus:

Us <{n7 ®}> = max {ﬂn — Di (n) 70} ) (
Us({7,0}) = 0. (

=
5=

Consequently, consumer S,, will buy good n if @, > p; (n).

Consider now a weak-willed consumer, 7 (i) = W,,;, with the following preferences:

Uw ({n,0}) = max{a, —p;(n),0}, (A.3)
Uw ({7:0}) = up+max{-p;(j),—70}. (A4)

Choosing j from the menu {7, 0} is optimal if buying j delivers higher utility: —p; (j) > —~,7,

which is equivalent to ~; > ’#

A.2 Proof of Proposition

Given the advertising and pricing strategies of normal good seller n, Proposition [2] implies

that the quantity of goods sold that are financed by seller n is

QS = i (1= H (P () [10)) (4.5)

and consequently the seller’s profit net of the advertisement cost is

I = 5 (n) ol (L H (0% (n) /) + log (1 - ). (A.6)
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Similarly, the quantity of goods sold by the predatory good seller j is

QNS = %Wyj-vs (1-G (™ () /o)), (A7)

and the net profit of seller j is

I ij-vs%vyj (1-G () /0)) +clog (1 —y;"). (A8)

Technological feasibility requires that y® > 0 and y* > 0.
The first-order condition of Equation (A.6) with respect to 2 is

NS(?”L)QNSZC y’ljlvs (AQ)
P Y E— .
Then, we have that
NS
Yn
IS = p9 (n) QNS + clog (1 — yrjys) =7 e + clog (1 — yflvs) . (A.10)
Similarly, the first-order condition with respect to ij 9 is
NS
V() QY = e (A11)
p j i - Cl IYER .
Yj
which further implies that
e
Hévszcl_jyzys + clog (l—ijs). (A.12)
J
The first-order conditions for the goods prices set by the two sellers are
NS
p(n) 1
Q’r]:fs — Tﬁygsl{OS;DNs(n)Sﬂ}? (Alg)
NS (. NS
p° () Twy;
Qﬁ'vs - J0 — Lio<pis(j)<o)- (A.14)

Note that the expected quantities sold by both sellers, QY and Qj-v S are nonnegative, and
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the net profits with respect to prices are concave, since

dPTIYS 21 yg
e = e R (0™ (n) /7)1 3 <0 A15
d (p™S (n))? At B (1) /8) Logpsg<ay <0, (A.15)
d2TINS T 1
9 _9W NS NS\ 21 <0 A 16
d(pVS (5))? 7Y% 9 (") 5 {o<pNS()<ar = (A.16)

It follows that the optimal price will always be nonnegative. Since

dZHNS
I ) (A.17)
d (y,'%) (1= w2’
and % = 0, it follows that the Hessian for seller n’s optimization with respect to

(pN S(n),yNs ) is negative definite and that the FOCs are sufficient.

For strong-willed consumers, there are two possibilities: p™¥° (n) € [0,4] or p™° (n) &
[0,4] . If RN9 (n) ¢ [0, 4], then either p™° (n) = 0 or p™¥° (n) > @, neither of which generates
revenue for seller n, and advertising is costly. Consequently, it must be the case that p)Y° €
[0,a]. Then, Equations and imply that p*¥ (n) = 1a.

Similarly, for seller j, if p¥ (j) & [0,9], then either p (j) = 0 or p™V° (j) > v. Neither
case generates any revenue, but advertising is costly. If p™¥° () € [0,9], then Equations

and imply p"* (j) = 30.

From the FOCs for Y and ij S it then follows that

AN
NS:1——TQamu§S:1—iL—. (A.18)
U

n

Tw U

Thus, the equilibrium is unique. Note that if yY° < 0, then seller n advertises to zero

consumers. Similarly, if ij $ <0, then seller j advertises to zero consumers.

A.3 Proof of Proposition

With full data sharing, sellers can now separately advertise to strong-willed and weak-willed
consumers. We first consider the optimal advertisement and pricing policies of normal good
seller n. It shall be clear that seller n target both strong-willed and weak-willed consumers

that prefer good n. We denote yf™® as the measure of strong-willed and weak-willed con-
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sumers, to which seller n advertises, and pf as the price the seller sets.
Proposition [2[implies that strong-willed and weak-willed consumers use the same thresh-
old pf®/ii in their random utility 4, for purchasing good n. Thus, the sales by the seller

associated with good n is

QP =y, L= H (™ (n) /u)], (A.19)

and the net profit is
I =p™ (n) y® [L = H (0™ (n) /)] + clog (1 — %) . (A.20)

Following the same proof for Proposition , it is optimal for seller n to set a price pf'¥ (n) =

%11. The first-order condition with respect to y£¥ implies that
FS _ ¢
Yy, > =1—4-. (A.21)
U

Like before, if 1 — 42 <0, it is optimal for the seller to advertise to no consumers. That is,

1
N

yES = 0. Furthermore, if 1 —4< > <, then /¥ =

We now consider the policies of the predatory good seller j. Seller j will advertise only to
weak-willed consumers. Since seller j can discriminate by temptation types, it will exercise
first-degree price discrimination by charging a weak-willed consumer his full reservation
value: pf; S(7) = . It can also make its advertising strategy yJF 9 dependent on 7;. Since
consumers with stronger temptation are willing to pay more, seller 57 optimally prioritizes

strong temptation consumers:

0, if~ <AFS
dzfSc = e : (A.22)

Thus, seller j’s profit is

1 1
;% = v/ iy (dy) + clog (1 —yi®)  with g™ =/ y; * (dyi) € [0,mw /J], (A.23)
0 0
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where fol %-yf 9 (dv;) is understood as a Riemann-Stieljes integral. )
L )

Note that the expected revenue of seller j reduces to v f;FS ydry; = 05—,
jt
FS
where 'iij S =1- ;;f/t/ -, since yf S € [0,mw/J]. The expected revenue of seller j is then
FS
oyfS (1 — 12 ) which is determined by the seller’s total advertising y;. Consequently,
Y; 2w/ y g Yj Y.

we can rewrite seller j’s maximization problem as choosing yJF 5

FS
Yj

B §7rw/J

Hfs _ T)yfs (1 ) + clog (1 — yfs) with yJFS e 0,mw/J]. (A.24)

The first-order condition for yJF 9 is

y;® c
11— _|o————<0 A.25
Tw/J Y L—yfs =7 ( )

which has an interior solution when v > ¢. This leads to a quadratic equation:

(v°)" = U mw D)y + 2 (1= 5) =0, (A.26)

which has the following solutions:

1+mw/J 1—mw/J 2 e
FS _ + Vi< v A2
% 2 \/( 2 T (A-27)

We select the negative root because to a first-order approximation the positive root is greater

than 1:

1+7Tw/J 1—7rw/J 2 TTwC 7Tw/J c
S _ 2 T WY -7 —— 1l ——— > 1. A2
Yi 2 +\/( 2 L e i (A.28)
Consequently, we have that
1+7rw/J 1—7Tw/J 2 TTwcC
FS _ _ Vi< v A2
% 2 \/( 2 T (4.29)

Again, if this solution to the first-order condition moves outside the feasible range [0, my /J],
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it is optimal for the seller to advertise at the corner value. Consequently, the equilibrium is
again unique.
Letting p,* = p;,® (@), pj® = p;° (0), yp® = y,® (@) and y[* = y[® (0), we arrive at

the statement of the proposition.

A.4 Proof of Proposition

In what follows, we search for a symmetric opt-in/opt-out strategy in which all weak-willed
follow the same cutoff opt-in/opt-out strategy. Specifically, we conjecture that all weak-
willed consumers will opt-in if their temptation index ~; is less than some critical v*, and
opt-out otherwise.

To avoid an uninteresting problem, we assume sellers for normal good do not have the
capacity to advertise to all consumers even with data-sharing. Otherwise, there is no trade-
off to opting-out for weak-willed consumers.

Sellers: We first characterize the optimal strategies of sellers of both normal and preda-

tory goods taking the opt-in cutoff of weak-willed consumers v* as given. We start with the
GDPR

optimal strategy of normal good seller n. Suppose that seller n advertises to y,;;, " measure
GDPR

in

GDPR
n,out

of strong-willed and weak-willed consumers in the opt-in pool at price p (n) and y

Gt (1)

measure of consumers in the opt-out pool at price p . Then, the seller’s expected

profit, by the law of large numbers, is given by

1 Al P50 (1
M, = e g (1= ) o ygoen oy oen (1 - P2
Uu u
+elog (1= you = Yin ) - (A.30)

where ySDFR € [0, (1 — ~*) mw] and ySPFR € [0, 75 + v*mw] /N. Note that an advertisement
to the opt-in pool reaches a strong or weak-willed consumer who desires the good with perfect
precision, while one to the opt-out pool reaches a weak-willed consumer (who desires the
good) at a probability of 1/N.

If yGPPR > () and ySPPR > 0, the FOCs for pGPFPR (n) and pGPPR (n) reveal that

n,in n,out in out

GDPR (n) GDPR (n) —

pin = pout u. <A31>

N | —
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Then, the seller’s profit becomes

U U
[, = E00% + S0P clog (1 - JGRE" 0. (A%2)

GDPR

n,in

GDPR
n,out

The marginal profit from y is strictly higher than that from y as the advertising

efficiency to the opt-in pool is higher. Thus, seller n gives higher priority to the opt-in pool.
GDPR

The first-order condition with respect to y,/;, " gives

(
<0 ifyCPPE =

n,in

1
[ —,opPR _aopr | =0 if gDl € (0,75 + v mw) /N (A.33)

“Ynout T Ynnin

—C

=]

| >0 if yTDPF = (ms +v*mw) /N

n,imn

The parameter restriction ¢ < % ensures that yS0"% > 0. As ySDPH has higher priority than

Yniout s we have

yGPPR — min {1 - 4%, (75 + 7" 7w) /N} . (A.34)

If yGDPR _

n,in

(ms +v*mw) /N, the seller may have capacity to cover the opt-out pool. The

GDPR ;

first-order condition for y, " in this scenario gives

yf?uljR = min{max{my (1 —~*) — 4N§, 0}, mw (1 —~")}. (A.35)
) i

Since seller n gives a higher priority in advertising to the opt-in pool, we can directly
prove that each strong-willed consumer would prefer opt-in to opt-out. For simplicity, we
skip the proof here.

We now analyze the optimal advertising strategy of predatory seller j. Suppose that seller

7 advertises with intensity yGD PR

Gin. (7:) to weak-willed consumers in the opt-in pool at price

GDPR GDPR

pSEPE(7) = 70 and ySLTR measure of consumers in the opt-out pool at price pS7 7" (7).

out

Note that an advertisement to the opt-out pool reaches, with probability of %, a weak-willed
consumer, who desires the good, and whether this weak-willed consumer buys the good or not

depends on whether his temptation coefficient ~; is above pf()%f R/v. A further complication
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is that only weak-willed consumers with 7; above ~* are in the opt-out pool. Thus, the

seller’s profit is

*

)
I; = clog(1—yShPR _GDPRY 4 g, / idy§m” " ()
0

1
+myf£pr§u?PR (7)
. [(1 — pOGu?PR( )/U> I{RJG(/?MPR>v 1—)} + (1 — ) 1{RJG£5R<’Y ,U} s (A36)

where yS0FR € [0, (1 —~*) mw] and yS0FR = [ yJGZ%PR vi) € [0,7*mw/J] is the total

7,

advertisement to the opt-in pool.

If y&PPR - () then the first-order condition for pS2PE () gives the following:

J,out out
. 1
677 < 5 (1276 /9) gy =0
* 1 o
o > o ol 6) =7, (4.57)

Thus, the optimal price satisfies

v o ifyr <
1 1.
pCDPR () = = max {577 }v. (A.38)

o If~4* > %

Since consumers with stronger temptation are willing to pay more with pi?f R (5) = 7,

it is optimal for seller j to prioritize consumers with higher ~;:

0 ify, < ACDPR
Ay () = : (A.39)

" Wiy, if 5 € (FOPPE 4]

Therefore, the expected revenue of seller j from the opt-in pool reduces to v fg; DPR ”TW%-d% =
(1)’ = (40P R)* Ag A4CGDPR _ yihR oy .
— . As ¥y =7 = =7 by definition, the expected revenue of seller j

from advertising to the opt-in pool is determined by the seller’s total advertising to the

ST
vy
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GDPR
opt-in pool yFPPR: @yf;gp R (7* — %yjr‘j; 77 ) . Thus, the expected profit of seller j becomes

g

2
’ (1—v%)J |4 2 ) “{rr>a}| eut

1y

Ie % Jin _ G G

i\ 5 ’/TJ'W 70T clog (L= yjou " = Yiin ) - (A.40)
, ) . GDPR GDPR

and the seller’s choice reduces to choosing Yiin and Y5 out

Which pool has priority depends on which has higher marginal revenue. The marginal

GDPR
revenue from the opt-in pool ¥ (7* — yjr"‘;f/ = > is decreasing with y&P"® and has the highest

GDPR

value of vy* when y;

Fin = 0. The marginal revenue from the opt-out pool is constant:

1 1 x_ 1)\2 -
T [z -(r—3) 1{7*>%}] v.
GDPR ;

The first-order condition for y: is

Jyin

<0 if yFPPR =0

wm

GDPR
R c ' )
! (7 B ;W/(]> ~ 7 —oppr —oppr | =0 ifyiRte (0,mwnt/g) o (AdD)

Yjout — — Yjin

| >0 if yFRFE =1y

7,

GDPR ;

and the first-order condition for y is

J,out

1 1 L1 21 . ¢
(1=~ J |4 T T5) MY 1 — yGDPR _  GDPR

7yin
;

<0 if y¢PPR —

j,out

=0 if ySPPR c (0,(1 — ) my) -(A42)

7,0ut

| >0 if yP2PR = (1 — ") myy

7,0ut

When ~* < %, the opt-in pool has priority whenever v* > }lﬁ, which is equivalent
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to v* € % [1 — /1= %, 14 4/1— ﬂ , which exists and has its upper end above % When

v > %, it is direct to verify that the opt-in pool has priority. Taken together, the opt-in

pool has priority if and only i]ﬂ

7*>’_y:1<1— 1—l>. (A.43)

If v* < 7, the opt-out pool has priority. In this case, the seller first targets the consumers
in the opt-out pool until it covers the full pool of 7y, (1 — +*). Before it hits the corner, the

interior choice is the first order condition in Equation (A.42|) with yfilzp R —= 0, which gives
dcJ .
YRR =1 -2 (1 ). (A1)

If 1 -2 (1-v") > mw (1 —~*), which is equivalent to v* > 1 — (% +7TW)_17 then

YSOUR = Gour = mw (1 —~*) and y§PF" is given by the first order condition in Equation
(A.41]):

(A.45)

Sl o

« J cprr = GDPR

This equation takes the advertising to the opt-out pool y&2I® = ¢, as given and solves for

j,out
the advertising to the opt-in pool y§¢DPE

Fin ' Generically, we define y;.(7) as the solution to

the following equation:
. J c
(7 - —y) I-z-y)=—, (A.46)

which gives y the optimal amount of advertising to the opt-in pool for a given level of

advertising = to the opt-out pool. This leads to

2 _ (MW _« _ W s _y_TwC
y (ny (1 x)>y+J’y(1 7)- =0, (A.47)

2"We also recognize that £ is the minimum ~* at which predatory goods sellers advertise a positive
amount to the opt-in pool. This value is recovered by recognizing at zero advertising to the opt-in pool (i.e.,
yffzp R = 0), the first-order condition is vy* — ¢, which is nonpositive if v* < <. Notice, however, the seller
financing the predatory good also chooses zero advertising for the opt-out pool because v* > ~, and the
marginal revenue of the opt-in is always higher than that of the opt-out pool. B
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As the larger root of this equation is larger than 1, we choose the smaller root:

1 W \/1 Tw 2 mwece
o) = () e ) (T e As
yinn(@) = 5 (L =2) + 207) =5 (=2 = TFyr) + B2 (A.48)
Thus, in this case, nyQPR = Yins (Yout) -
We now consider the case v* > 7. In this case, the opt-in pool has priority. Before the

marginal revenue of the opt-in pool drops down to that of the opt-out pool, we have an

interior solution for y$2"" =y, (0) with yZ2FR = 0.
These two marginal revenues will intersect at a unique level ;.. for yfﬁp R where
1_(*_12
Y ) 1y .on

| *:”_W*_<7T_W>24 2) {r>3} A.49
which is positive whenever v* > . We can further simplify

Yinsx (V) = : (A.50)

Fr(l-g) ity >

Note if Y« (0) rises above Y. (7%), it becomes profitable for the seller to target the opt-out
pool together with the opt-in pool. In this situation, y¢27% = ;.. (7*), then the first-order

J,in
condition in Equation (A.41) determines the interior level of ySDFR = g,y (2) for a given
level of y&FFR = x with
c x !
outx () =min < max<1—— [ v — —x,0p,mw (1 —°%) 7. A5l
Yot (@) { { t(v-=25) }W< w} (A51)
GDPR

In this expression, y is bounded from above by the size of the opt-out pool my, (1 — v*).

J,out

Consequently, substituting Equation (A.51]) with Equation (A.50))

Youts Yinsx (7)) = min {max {z,0} ,my (1 —~")}. (A.52)
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where

1— 4 (1—q%) — (7* - ﬁlfﬁ if y <" <3
Jc Ty 1 : * 1
If yfﬁf R is constrained at its upper bound ¥, = mw (1 —7*), then the first-order con-
dition in Equation ‘D gives an interior level of yfﬁp R with yf(gf B = 9. That is
yfzng = Yinx (gout)-
Taken together, if v* < v, the opt-out pool has priority:
_ deJ o
g2 = min 1= 20 (0= 77) g (A54)
and
0 iyt ™ < Yout
Yiin = (A.55)
Yinx (gout) lf yf(ﬁfR = gout~
If v* > ~, the opt-in pool has priority:
( .
GDPR _ o . X -
Yiin = Yinse (V) I Yins (0) > Y (V) and Youts Yinse (7)) < Your (A.56)

\ Yinx (gaut) 1f Youtx (yzn** (7*)) Z gout
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and

’
0
GDPR . % * —
yj,out = Youtx (ym** (7 )) 1f Yinx (O) Z Yinxx (7 ) and Youtx (ym** (’Y )) <yout (A57)
\ gout lf Youtx (yzn** (7*)) Z /yout
We first verify if other weak-willed customers follow the

Weak-willed customers:
conjectured cutoff strategy with cutoff +*, it is optimal for a weak-willed consumer with

temptation v; to follow the same cutoff strategy. We then characterize the equilibrium cutoff

v
Consider a weak-willed consumer with temptation index ;. Following Equation (|16)), his
expected utility from opt-in is
GDPR\ -~ GDPR
Ynin N a Yy - () _
UGPPR (1) = 201 — 2 ug — Y0) . A58
W,in (’7) T + VT S Tw ( B — 7 ) ( )

T (30)

This expression shows that UGHF" increases with ySPFR but decreases with 37

Following Equation , his expected utility from opt-out is

VR g iae
(1 =) 7w (1 —7*) mw

GDPR (., \ _
R D e
} 1{%>max{%,“{*}} + %1{%<max{é;y*}}} v, (A59)

W,out

1 *
s |max§ —

9 Y

GDPR 1 . GDPR
mout  and decreases with y,70., " Then,

which increases with y
(A.60)

Usiian " (%) = Ufiout ™ ()
PN ygmin
s +vimw (1 —~%)mw
GDPR 1

(’Yz — max {57 ’f}) ]‘{%>max{%7“/*}}

— GDPR GDPR
(¢ Yiin T Y ou _
-+ J> (7) _ J» f (UB o U%)
8 mw/J (1 =) mw

V(vi) =

<

. yj,out
(1 —v%) 7w
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yGDPRN yGD}?gR . X ,
Note that == > —2r from our earlier analysis of seller n’s strategy. Therefore,

msHyrrw = (1=y*)mw
whether UGRPR (v;) — UGELE (7:) crosses zero depends on the second and third terms. In
GDPR(,, GDPR
the second term, whether yﬂ’:W /37’) — (lyj’;’f;ﬂW is positive or not depends on whether v* is

higher or lower than 7.

We first show that in equilibrium v* cannot be lower than 7. We use contradiction.

. ysia () Yot
Suppose that v* < 7. Then, T T S T because the predatory goods sellers

give higher priority to opt-out pool. It is then clear that V(v;) > 0 for ~; slightly above
~*, implying that this consumer would choose opt-in. This contradicts with v* being the
equilibrium threshold so that consumers with +; above v* all choose opt-out.

For v* > ~, define the (adjusted) net benefit to opt-in for the marginal weak-willed

consumer when she follows the conjectured cutoff strategy:

* 1 * *
COr) = (U () = Uibiow” (1)) (A.61)
I O o AN e
8 \ ms +v'mw (1 —~*) 7w

v

+(U_B_ *) Y (7)Y
o mw/l (=) mw )

For v* to be the equilibrium cutoff, there are three possibilities:

v it C (1) <0
7] €(v1) fC(H)=0 - (A.62)
1 ifC(1)>0

Corner Solution for v* = 1: We consider this corner as a limiting case. There are two
reasons why all consumers would choose opt-in.

First, the severity of temptation v may be so high that predatory goods sellers will search
the opt-out pool on the margin if all weak-willed consumers opt-in. Suppose a fraction e

of weak-willed consumers opt-out, i.e., ¥* = 1 — ¢, then substituting for y&2"", Equation
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(A.61)) reduces t

_ N GDPR GDPR
Cl-e) =L (mind (1-2,/¢) 2 1\ nouw +(“TB+5—1) | Dot
8v u) 1—emwy ETTW v ETTW

(A.63)
Recognizing that unless normal goods sellers can cover all consumers, they will eschew the
opt-out pool (ygfufp‘ = 0) with a emy mass of consumers because it has lower expected

revenue. Even though predatory sellers give priority to the opt-in pool, a seller financing
predatory good j may still cover the opt-out pool if .. (0) rises above Y. (V=1 —¢€),
which is given by Equation (A.50). This condition € — 0 is equivalent to

V> Uy = ) (A.64)

Second, the severity of temptation ¥ may be so low that all weak-willed consumers choose
opt-in for the benefit of matching with normal goods sellers despite the cost of being targeted
by predatory goods sellers. In this case, predatory goods sellers do not also advertise to the

Yiour
opt-out pool (2%~ = 0) and C' (1 — €) reduces to

ET

T c N upg
1—e)= 2~ (1—4—)—,1 B o1, A.
C(l—¢) 8@m1n{ o }—i—@—i—a (A.65)
Then C (1 — ¢) is positive as € — 0 if
_u o, 4e
v<§mln{(1—T>N,1}—l—u3, (A.66)
u

and again all weak-willed consumers opt-in. Similarly, if v < ¢, then predatory goods sellers
never advertise to the opt-in pool because the marginal revenue v is always less than the

marginal cost, c. As such, all weak-willed consumers opt-in if
_ . (TR 4c
v<m1nc,§m1n{<1—7> N,l}—l—uB (A.67)
u

Note that the conditions v < v* and Equation (A.67) may overlap. When this happens,

there are two equilibria. In the equilibrium with v* = 1, all weak-willed consumers choose
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opt-in to maximize matching with normal product sellers. In this case, the opt-out pool offers
no protection for the severely tempted consumers. In the other equilibrium with v* = v, only
a fraction of weak-willed consumers choose opt-in, and the opt-out pool provides substantial
protection for the most tempted consumers. The complementarity in the consumers’ opt-out
decision contributes to the rise of multiple equilibria.

Interior Solution for v* € (1, 1): Note that V' (;) in Equation (A.60|) is monotonically
decreasing with ;. Given that V(7*) = C(v*) = 0, consumers with ~; < 7* want to opt-in
and those with v; > +* want to opt-out, confirming the optimality of the cutoff strategy for
weak-willed consumers.

Given the non-linearity of C'(v*), there may be multiple values in (7, 1) with C' (v*) =0,

GDPR(.* GDPR
and consequently multiple equilibria. In this case, note that %;W—/(Jv) =1 and % <

1. The optimal advertising policy of seller j for the opt-in and opt-out pools is given by

Equations (A.56) and (A.57). Substituting for y5"# and y$DF" with Equations (A.34)
and (|A.35]), we recognize

Yoim Ny
s+ ymw  mw (1 —9%)
i { s M 1} {1 NG 0} (A.68)
= min , — max - , .
1—mw (1—9%) mw (1 — %)

and substituting this into Equation (A.61]) gives

ety = (i 1-ae ) aNe
T g\ e =) T T =)

GDPR

() (1 - Wwyz,;ut_ 7*)) | (A.69)

where y¢PPR is given by Equation (A.57)).

J,out

The first term is continuous and positive on 7*, and not equal to zero because 1 > 4= by

assumption. Whenever the max term is positive, the min term must be 1. The second term

GDPR
yj,out
mw (1=7*)

1) Consequently, C' (v*) is continuous in v* on b, 1} .
Thus, by the Intermediate Value Theorem, there exists a v* € (1, 1) such that C' (v*) = 0,

is continuous in v* because € [0, 1] is (piece-wise) continuous in v* from Equation
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and an interior equilibrium exists. Notice

i 1 —4c ANE up
C(l)>%<mm{1—ﬂw(1—j)]\[7l} max{l 7TW(l_z),O})—l— Pt (A.70)

It is sufficient that ¢ > %ﬂwl%l (i.e., normal goods sellers ignore the opt-out pool and

advertise only to the opt-in pool) and

. N = (1=
D < Ve = 2B 4 Y in mw 1X1, (A.T1)
v 1—my (1-7)

for C (1) > 0. Consequently, it is sufficient that ¢ > %WW% and U < v, to ensure there
is an interior equilibrium.
When, in addition, ¥ > v,,, then there are multiple equilibrium in which full data-sharing

is an equilibrium.
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Internet Appendix for Data Privacy and Algorithmic
Inequality

Internet Appendix A: Additional Proofs of
Propositions and Results

Proof of Proposition [6]

We first compare social welfare under three data sharing schemes: no data sharing, full data
sharing, and the GDPR. Under a specific data-sharing scheme, social welfare is determined
by the aggregate utility of strong- and weak-willed consumers, as indicated by Equation (10)).
This is based on the assumptions that the marginal cost of goods production is zero, and
the price of goods and advertising costs are zero-sum transfers within the population. As
the seller financing normal good n cannot price discriminate against its customers because
of the consumers’ random utility for normal products, it always sets a price of @/2 for its
good. Consequently, only half of the intended consumers with random utility above u/2
consume the good. Thus, consumers’ net utility gain from good n is gapn, where p,, is the
measure of strong-willed and weak-willed consumers receiving seller n’s advertising. For a
predatory good j, weak-willed consumers who borrow (with a measure of p;) experience a
negative utility of up < 0. Meanwhile, those who receive advertising from seller j but resist
the temptation (marked in a set S;) suffer a mental cost of up — ;0. Note that p,, p;, and
S; are determined by the sellers’ advertising and pricing strategies under each of the data
sharing schemes.

Taken together, the social welfare is

3 N N+J
WSS apt > Jue+ [ (un— ) dG () (1A.1)
n=1 J=N+1 i€5;

Across the data sharing schemes, the key trade-off is between the first term (the benefit
from normal goods) and the second and third terms (the cost from predatory goods). Note
that these terms only account for the consumers’ utility from the normal and predatory
goods without including the price to sellers for the goods, which are transfers within the

population.



No data sharing: The social welfare is

N 1 du N+J T 1
W= S [ S By [
n=1 j=N+1 PNS(j)/ﬁ
N+J RNS(5)/v
W
+ )5 yJNS/ (up — 7:0) dv;
j=N+1 0
3 NS N 1 3 N v
= W + Twy; <uB — §U) = SWn + Twy; (uB — §> (IA.2)
Full data sharing: The social welfare is
3 N N+J . 1 3
FS _ ~ FS w 2 a1, FS FS
WH> = éz:uyn + Z —uB /FS dry; = 8Nuyn + Jy; “up. (IA.3)
n=1 j=N+1 7
GDPR: From a social welfare perspective, we have
3_ L2\
PP — (NGB -+ y2E) S (BG4 G20 o8 (5 - ) o1y
(TA.4)

where the last term reflects that the least tempted weak-willed in the opt-out pool suffer a
temptation cost if v* < %

We first compare full data sharing to no data sharing:

w

FS
- 1
e L (—;:i/J—yj-vs>uB+§7rWy§VS@+§a(Ny,fS—yivs)<01A.5)

if up < Upss, Where
3 - FS _ . NS\ 4 7, NS

8 (m ~ Y )
That is, social welfare is lower with full data sharing than with no data sharing.
We now compare the GDPR to no data sharing:
3_
WOEPPE — WS = Ny 4 ot — v ”) g+ (o5 "+ Yot — 97 ) u
— *2
NsV eorr (1 7 -
+ 7TW?/] g - yj,out (g - 92 ) U]"y*<%’ (IA7)



where ¥ and ij 9 are independent of ug. The first term in WEPPE —WNS is positive, rep-
resenting the improved matching with normal goods sellers under opt-in/opt-out, while the
second is negative, reflecting the increased exposure of weak-willed consumers to predatory
goods sellers.

Notice when up = 0, it must be the case WEPPE > WNS because of the improved
matching with normal goods sellers. When up < 0 however, the most-tempted weak-
willed consumers suffer from lack of camouflage because not only all strong-willed, but
also the more-mildly tempted weak-willed, consumers opt-in. Because the social benefit
of GDPR from increased matching with normal goods sellers is bounded from above by
(NySDPR — yV5) 24, it follows for sufficiently negative ug that WEPPE < WNS - Since the
objectives are continuous, there exist critical values of up, upgs, such that WEPPE < /NS
when up < up..

We now compare the GDPR with the full data sharing. The difference in the social
welfare is given by

3
WGDPR . WFS — (NyGDPR + yTC:?ult’R . Nyfs) a4 (JyGDPR 4 ij,’él)LfR . Jyfs ) up

n,aan ) j,in ,out
*2

Ly
_ fong <§_ 5 >v17*<;. (IA.8)

Note that under full data sharing, normal goods sellers have higher advertising efficiency and
therefore are able to better cover their intended consumers, that is, the first term is negative.
It is further clear that total advertising by predatory goods sellers under opt-in/opt-out is
GDPR _

Yj.out Jyi® < 0. Because predatory

less than that under full data sharing, JyGPPR + ;

7,in
goods sellers are less efficient at targeting the most-tempted customers, the coefficient of
up in the second term is negative, i.e., the second term is positive. Consequently, there
may exist a critical upgy., such that WEPPE S WES if 45 < up. (and WEPPE - 1 FS

otherwise).

Ranking the three schemes: Suppose up is sufficiently severe (up < min {up., Up.}),
then no data sharing delivers the highest social welfare. Further, if ug is in an intermediate
range (up < Upss and up > up,), GDPR delivers the highest social welfare.

Comparing the welfare gap: We now consider the welfare gap A. From Equation



, the welfare gap under no data sharing is given by:

al Mg — T u du R !
Ays = —Wyivs/ Up— — —LyNS (up — p™* (j))/ d;
;1 N pm) U j%;l S PNS () /5
N+J RNS/'T)
s J 1
- 7W?/JNS/ (up = 70) dyi = g (ms — mw) ayy S = mwyp (UB —(%ﬁ>9)
j=N+1 0
The welfare gap under full data sharing is
1 N N+J T 1
_ _ FS W _
AFS—§<7TS_7TW>Zuyn - Z 7/FS (up — 7i0) dvi
n=1 j=N+1 75
1 _FS FS S 1 y®
= gN(7TS —Tw) Uy, " — Jy; “up + Joy; 7 | 1 - Srwid | (IA.10)
It then follows:
A Ane — 1 o (NyFS — NS y; NS
FS — Ns—g(ﬂs—ﬂw)u( Yn —Un )_7TW ﬂ_W/J_yj Up
FS FS
Y; 1y 3 Ns) -
1—-— — = >0 IA.11
T+ <7TW/J < 27TW/J> gli V=" (TA-11)

and the welfare gap is always positive because the first two terms are nonnegative (recall
up < 0) and the last term is strictly positive (recall the revenue of predatory product sellers
is always higher with full data-sharing).

We now establish that the welfare gap is also higher under GDPR than no data-sharing.
First, notice the welfare gap from Equation is divided into two pieces: the difference
in utility from normal goods Af,pp and the drag on weak-willed consumer welfare from
predatory goods Aé ppr- Because there are fewer weak-willed than strong-willed consumers,
and some weak-willed consumers opt-out, strong-willed consumers differentially benefit more
from improved access to normal goods by opting-in. As such, the first term in the welfare
gap Atppr > 0 is higher under GDPR than no data sharing, i.e., Afppr > ARg. In
addition, because predatory goods sellers can better target weak-willed consumers when a

subset opts-in, Aé ppr < 0 is also more negative under GDPR (i.e., the profits of predatory



goods sellers are higher), or Aé DPR > Ag\,S. Consequently:
Aaprr = Abppr + Abppr > As + Mg = Ans. (I1A.12)

As such, the welfare gap is smallest under no data sharing.



Internet Appendix B: A Dynamic Model of Data
Sharing

Motivated by the analysis of Jones and Tonetti (2020), Cong, Xie, and Zhang (2020),
and Abis and Veldkamp (2021) on the long-term effects of data sharing on economic growth,
we extend our model to a dynamic setting in this section. We demonstrate that data sharing
not only helps to boost long-run growth but may also exacerbate algorithmic inequality.
Specifically, we first highlight a dynamic externality of data sharing on the platform, in
which today’s data sharing by consumers impacts the quality of goods offered by sellers to
future consumers. We then use a calibrated exercise to examine the long-run implications of
data sharing.

Suppose now that time is discrete with ¢t = 0,1,2,... In each period, there is a new
generation of consumers that join the platform. There are two sub-periods in each date that
correspond to the two stages in our static model. In the first sub-period, consumers join the
platform and make their data-sharing decisions with the platform. In the second sub-period,
consumers can borrow from sellers, which target their intended customers based on the data
they receive from the platform about the consumers. Similar to our static model, we assume
the platform shares the consumer data authorized by consumers with sellers.

A key feature of the dynamic model is that more data allow each seller to enhance its
good over time. That is, normal goods can improve in quality over time, and predatory
goods can be made more tempting. If a seller financing normal good n collects data on a
mass d,; of the strong-willed and weak-willed consumers who prefer product n at time t,
then the firm linked to the seller increases the quality of its product u; according to an AR(1)
process

log 1 = (1 —0)logu + 0loguy + dyy, (IA.13)

where 6 € [0,1] is the rate of mean reversion. That the impact of data on good quality
decays over time reflects the idea that old data becomes obsolete, as discussed in Jones and
Tonetti (2020) and Abis and Veldkamp (2021).

Similarly, data enables predatory goods firms linked to predatory sellers to make their
products more enticing by utilizing big-data analytics to identify and exploit the behavioral
vulnerabilities of their customers. For example, by analyzing the attention and clicking
patterns of weak-willed consumers on their platform, these firms and sellers can tailor their

marketing strategies to cater to these tendencies, enhancing the effectiveness of their offerings



in attracting such consumers. In other words, if the company gathers data on a mass d;; of
the weak-willed customers who desire product j at time ¢, it can improve not only the allure

of its good @, but also the potential harm up,, according to the following AR(1) processes:

logtp1 = (1—6)logv+ 0logov, + dj, (TA.14)
log (—ups+1) = (1—6)log(—ug)+0log(—up,) + dj:. (IA.15)

In each period, the equilibrium follows what is characterized in Proposition [5| for the
opt-in/opt-out scheme with u,v,and up being replaced by , vy, and up,. The fraction of
weak-willed consumers that opt in 4; evolves over time, and can exhibit path dependence

when consumers must coordinate over multiple potential opt-in/opt-out equilibria.

Dynamic Data-sharing Externality

Through the enhancement of the quality of both normal and predatory goods, data sharing
by one generation of consumers may impose both positive and negative externalities on future
generations of consumers. While data sharing by consumers contributes to better normal
goods tomorrow, data sharing by weak-willed consumers also contributes to more-tempting
predatory goods tomorrow. Consumers do not internalize this feedback loop between their
data-sharing decisions and the quality of both types of goods, which can result in more weak-
willed consumers opting in tomorrow, exacerbating algorithmic inequality. This creates a
virtuous cycle for consumers and normal goods sellers, and a vicious cycle for consumers
and predatory goods sellers. Although data advances the technological frontier over time, as
illustrated by Jones and Tonetti (2020) and Abis and Veldkamp (2021), such improvements
are not necessarily beneficial for all consumers and may worsen algorithmic inequality.
This feedback loop also highlights a dynamic aspect of the non-rivalry of data. Because
the platform cannot commit to withholding its data from predatory goods sellers, normal
goods sellers subsidize the data accumulation of predatory products sellers through the
voluntary data sharing of strong-willed and moderately tempted consumers. Conversely,
for predatory goods impede the data accumulation of normal goods sellers because of the

opt-out decisions of severely-tempted consumers.



Full Sharing Intermediate Sharing Minimal Sharing

Uoo 20564.3 19888.0 19824.0
Voo 4800.3 4293.9 4248.0
UB,00 -534.2 -477.8 -472.7
vi 1.0 0.52 AT

Strong-willed aggregate 1927.9 1864.5 1858.5
per consumer 2570.5 2486.0 2478.0

Weak-willed aggregate -54.3 126.4 150.2
per consumer -217.1 505.8 600.8

Gap aggregate 1982.2 1738.0 1708.3
Utilitarian 7599.4 6514.2 6415.7

Table 3: This table displays the steady-state values for @, v, and upy, strong- and weak-willed
consumer welfare, their difference, and utilitarian welfare for the full, intermediate, and minimal
data-sharing equilibria under the parameters in Table

A Calibrated Assessment

Under the opt-in/opt-out data-sharing scheme, multiple equilibria with vastly different lev-
els of data sharing by consumers may exist because of the coordination problem among
consumers discussed in Section We now conduct a numerical exercise using the model
parameters calibrated earlier to evaluate how various equilibrium paths might impact data
accumulation and, consequently, consumer welfare in the long-run.

We initialize our economy at ¢ = 0 with the parameters from Table [I, and choose an
AR(1) parameter 6 of 0.64 based on the observation of Abis and Veldkamp (2020) that
standard accounting practices amortize data warehouses over 36 months. We then simulate
the economy under the opt-in/opt-out scheme until it converges to the steady state. If
multiple equilibria emerge, we assume consumers coordinate on the same cutoff over time.

Table |3 presents the simulation results, showing significant differences in the steady-
state across the three equilibrium paths, which includes full data sharing, intermediate data
sharing and minimal data sharing, as determined by the three levels of the equilibrium cutoff
of weak-willed consumers. As consumer data accumulates over time, good quality increases,
particularly in the full data-sharing path where all consumers share their data. For example,
normal goods are 3.7% more valuable in the full data-sharing path compared to the minimal
sharing path (higher @), while predatory goods are 13.0% more tempting (higher 0,) and
13.0% more harmful (more negative up ). Because of the dynamic good quality, 47% of

weak-willed consumers opt-in in the steady-state of the minimal sharing path, compared



to 40% in the static equilibrium analyzed earlier. In contrast, only 52% of weak-willed
consumers opt-in in the steady-state of the intermediate data-sharing path compared to
60% in the static equilibrium because of the behavior of the intermediate cutoff discussed in
Section 2.3} Strong-willed consumers fare worse under the intermediate and minimal sharing
paths, as less data is shared, leading to lower normal good quality in the long-run compared
to the full data-sharing path.

Interestingly, the minimal sharing path mitigates algorithmic inequality compared to the
full sharing path by reducing the welfare gap between strong- and weak-willed consumers by
13.8%, even though full data sharing results in 18.4% higher overall welfare. Data accumu-
lation raises both utilitarian welfare and the welfare gap by 32.0% and 30.8% under the full
data-sharing path and 29.9% and 25.6% under the minimal data-sharing path compared to
the static equilibrium reported in Table 2 These magnitudes are of a similar order of mag-
nitude to what Jones and Tonetti (2020) find across data sharing schemes in a representative
agent production economy. Thus, more data sharing, both within and across time, not only

raises efficiency and social welfare, but also increases algorithmic inequality.



