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The rise of big data has brought major benefits for consumers. By pooling together

multidimensional user data and applying advanced analytics, platforms such as Google,

Amazon, Facebook, and ChatGPT can provide personalized products and services that would

otherwise be prohibitively costly. In finance, big data has enabled fintech lenders partnering

with these platforms to expand credit access to underserved borrowers (Allen, Gu, and

Jagtiani 2021; Berg, Fuster, and Puri 2022). Liu, Lu, and Xiong (2023) show how big tech

lenders use unique user data to extend loans to small businesses, while Parlour, Rajan, and

Zhu (2022) and He, Huang, and Zhou (2023) analyze how open banking’s data-sharing rules

affect bank–fintech competition.

Yet the same data practices raise unprecedented challenges for consumer protection and

privacy. While personalization can improve services, it can also exploit behavioral biases,

encouraging overspending—for example, by bundling credit with online purchases. Reports

by the Stigler Committee (2019), Helberger et al. (2021), OECD (2021), and the FTC (2022)

warn that digital platforms are especially effective at exploiting individual vulnerabilities.

The rapid growth of unsecured credit via “buy now, pay later” (BNPL) lenders illustrates

this concern. Di Maggio, Katz, and William (2022) find BNPL access substantially boosts

spending beyond standard substitution effects. Using data on 10.6 million U.S. consumers,

DeHaan et al. (2024) show BNPL adoption leads to spikes in overdraft charges and credit

card fees, while Larrimore et al. (2024) find that financially vulnerable consumers overextend

themselves when BNPL is offered.

A related concern is the prevalence of “dark patterns” that manipulate consumers into

unwanted purchases or debt. A 2019 survey found that 24% of 1,760 websites employed

such practices (OECD 2021). Mathur et al. (2019) identify dark patterns on 11.1% of

11,000 shopping sites and document third-party providers that design them. Johannesson

(2021) found that two leading Swedish BNPL lenders used at least ten deceptive designs to

encourage borrowers to take on debt with credit installments to increase profits. The FTC

fined Epic Games $520 million in 2022 for using dark patterns to induce unwanted Fortnite

purchases.

Protecting consumer data privacy is central to addressing these risks. As Zarsky (2019)

and Spencer (2020) note, the problem lies less in manipulation per se than in the internet’s

capacity for intensive data collection, personalization, and real-time execution. Platforms like

TikTok tailor content feeds to maximize engagement, a design linked to addiction and mental
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health issues among youth (BBC 2022).1 In response, governments have enacted sweeping

privacy regulations, including the EU’s General Data Protection Regulation (GDPR, 2018)

and California’s Consumer Privacy Act (CCPA, 2020), both emphasizing informed consent

and data safeguards.

Motivated by these observations, we develop a model of digital platforms to study how on-

demand credit and data sharing affect both aggregate and cross-sectional consumer welfare.

Platforms use shared data to match consumers with desirable goods and financing, but

the same data expose vulnerable consumers to impulse spending and predatory lending.

Our analysis shows that the ability of platforms, intermediaries, and vendors to profit from

behavioral weaknesses creates costs of data sharing that fall unevenly across consumers.

The resulting divide—between those who benefit and those who are exploited—gives rise to

“algorithmic inequality,” a new form of inequality in the digital age.2

To anchor our analysis, we focus on limited self-control as a key vulnerability shaping

consumers’ data-sharing decisions. Consumers with self-control problems may struggle to

resist impulse purchases promoted by digital platforms through BNPL credit schemes. These

schemes, often targeted at credit-constrained consumers, encourage borrowing up to the

limit, downplay the costs of debt, and obscure late fees and interest charges (World Bank

Group 2021). Ultimately, they may impose harm through fees, higher interest, and financial

distress (DeHaan et al. 2024). Recognizing their vulnerability, such consumers may opt to

withhold data to avoid being targeted, even at the cost of losing access to desirable goods

and services.

We adopt the temptation utility framework of Gul and Pesendorfer (2001) to analyze the

data-sharing choices of vulnerable consumers. Weak-willed consumers incur mental costs

from resisting predatory financial products and therefore prefer smaller menus that exclude

such options. Their data sharing, together with sellers’ advertising, shapes these menus and,

in turn, their privacy preferences on digital platforms. Unlike prior work that treats the

cost of privacy as exogenous (e.g., Jones and Tonetti 2020; Cong, Xie, and Zhang 2020; He,

Huang, and Zhou 2023), we microfound it. This approach not only allows consumers to

distinguish between beneficial and harmful data sharing—absent in earlier models—but also

1https://www.bbc.com/news/uk-wales-62720657.
2Our concept of “algorithmic inequality” differs from concerns about algorithmic bias arising from sta-

tistical discrimination (e.g., Cowgill and Stevenson 2020; Cowgill and Tucker 2020). For instance, Luguri
and Strahilevitz (2021) show that dark patterns disproportionately affect less educated consumers, leading
to adverse distributive outcomes.
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generates novel data-sharing externalities through the endogeneity of privacy costs.

Our model considers an online platform—such as Google, TikTok, or Facebook—that

collects consumer data and shares it with sellers. The platform hosts N normal goods,

which provide consumers with utility, and J predatory goods, whose sellers exploit vulnerable

consumers through dark patterns to induce impulse purchases. Because such purchases are

excessive, they require financing provided by a fintech lender partnering with the platform

via a BNPL scheme. This financing exposes consumers to default risk through late fees and

interest on missed payments. Both normal and predatory sellers can advertise to potential

consumers, but doing so entails a convex cost, capturing the increasing difficulty of reaching

a wider audience.

There are two types of consumers: strong-willed, who always resist predatory goods, and

weak-willed, who may succumb to them. Both types derive utility from normal goods, but

only weak-willed consumers are vulnerable to purchasing predatory goods financed through

BNPL schemes. Such purchases expose them to the risk of financial distress.

While consumers might prefer their data to be shared only with sellers of normal goods,

in practice the same data can also be accessed by predatory sellers. Although data’s non-

rivalry is often celebrated as a strength of the digital economy, we emphasize a problematic

dimension: the lack of exclusivity in its use. This arises both because it is difficult to draft

narrowly tailored data authorization agreements and because consumers fail to internalize

the externalities of their data-sharing decisions.

Strong-willed consumers, who can resist predatory goods, are indifferent to such adver-

tising and thus favor broader product menus and data sharing that enhances targeting of

normal goods. Weak-willed consumers, by contrast, face a sharper trade-off: while data

sharing improves targeting of normal goods, it also heightens their exposure to predatory

marketing. This tension is central to our model. Recognizing their vulnerability, weak-willed

consumers may withhold data to protect themselves, even at the cost of losing beneficial tar-

geting.

We analyze three data-sharing schemes.

� No data sharing: Resembling traditional advertising, sellers face a dark pool of

consumers and can only reach a random subset. This shields weak-willed consumers

from predatory goods but also limits access to normal goods for everyone.

� Full data sharing: Sellers observe each consumer’s type and target ads precisely.
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This improves access to normal goods but heightens weak-willed consumers’ exposure

to predatory goods. The welfare gap between strong- and weak-willed consumers—our

measure of algorithmic inequality—is always larger under full data sharing. If the harm

from predatory goods is severe, full data sharing may also reduce total welfare relative

to no data sharing.

� Opt-in/opt-out (GDPR-style): Strong-willed consumers always opt in, while weak-

willed consumers weigh the benefits of better targeting against the risk of predation,

following a cutoff rule: the most tempted opt out, others opt in. Their decisions shape

the composition of opt-in and opt-out pools, which in turn affect sellers’ targeting.

One might expect opt-in/opt-out to dominate the other two schemes, since consumers choose

optimally. But data-sharing externalities complicate the comparison: when one consumer

opts in, sellers also learn about others. As a result, full data sharing maximizes welfare if

weak-willed consumers’ self-control problem is mild; no data sharing dominates if it is severe;

and opt-in/opt-out is best when the problem is intermediate. Regardless of the ranking, full

data sharing always produces the greatest algorithmic inequality, since it offers the least

protection to weak-willed consumers.

Because the cost of privacy is endogenous, the opt-in/opt-out regime can generate mul-

tiple equilibria. In particular, if all consumers opt in, even the most tempted weak-willed

consumers lose the protection of opting out and are effectively forced to share data, collaps-

ing the scheme into full data sharing. Such multiplicity implies that small changes in the

environment can trigger sharp shifts in data-sharing outcomes, leading to extreme forms of

algorithmic inequality.

We calibrate the model using 2024 e-commerce revenues, advertising costs, and evidence

on GDPR efficacy to assess the severity of self-control problems on online platforms. The

calibration yields three equilibria: one with full opt-in by weak-willed consumers, one with

partial opt-in, and one with minimal opt-in. Among these, the full data-sharing equilibrium

delivers the highest utilitarian welfare—16.6% above the minimal data-sharing equilibrium—

but also widens algorithmic inequality between strong- and weak-willed consumers by 11.3%.

Thus, while data sharing generates substantial social benefits, it does so at significant cost to

vulnerable consumers. A dynamic extension shows that these problems intensify over time,

as today’s data sharing both improves the quality of normal goods and erodes consumers’

future ability to resist predatory goods.
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Recent advances in big data analytics and information technologies have profound im-

plications for financing on digital platforms. Our model shows that data sharing affects not

only the credit access of individual consumers but also the welfare of others. This perspective

complements existing work: He, Huang, and Zhou (2023) examine how open banking data

sharing shapes competition between banks and fintechs; Parlour, Rajan, and Zhu (2022) an-

alyze fintech competition in payment services when banks use payment data to infer credit

quality; and Berg et al. (2025) show how BNPL allows merchants to price discriminate

through zero-interest loans. None of these studies, however, address the potential harm to

vulnerable consumers, which is the focus of our analysis.

Our paper connects data privacy to the broader literature on exploiting consumer vulner-

abilities in financial markets. Evidence shows that vulnerable consumers are often targeted

through overpriced credit card debt and underpriced investment products such as health club

memberships (DellaVigna and Malmendier 2004, 2006), payday loans (Bertrand and Morse

2011; Melzer 2011), add-on pricing (Gabaix and Laibson 2006), and overdraft fees (Stango

and Zinman 2014). Digital technologies amplify these practices: for example, fintech lenders

exploit borrowers’ self-control problems using payment data (Di Maggio and Yao 2020).

The externalities we highlight build on the concept of social data (Acemoglu et al. 2019;

Bergemann, Bonatti, and Gan 2019; Easley et al. 2019). These studies show that one

consumer’s data can reveal information about others, depressing data prices and encouraging

excessive sharing. Galperti, Levkun, and Perego (2022) extend this logic to e-commerce

platforms using a mechanism design approach. We differ by focusing on a new form of

externality: when some consumers opt in, their data reveal the vulnerability of those who

opt out. Moreover, unlike models with symmetric consumers, ours distinguishes between

those with and without self-control problems. This allows us to show how data sharing can

simultaneously raise aggregate welfare and impose disproportionate costs on the vulnerable,

producing algorithmic inequality and motivating a policy role for data privacy regulation.

Finally, our analysis contributes to the macroeconomic literature on consumer data. Prior

work emphasizes the non-rivalry of data and its increasing returns (Jones and Tonetti 2020;

Cong, Xie, and Zhang 2020; Cong et al. 2020; Cong and Mayer 2022) or its role in long-run

capital accumulation (Farboodi and Veldkamp 2020). These studies typically treat the cost

of data sharing as exogenous. Abis and Veldkamp (2021) provide an exception, showing that

AI adoption may reduce labor’s income share by 5%. Our contribution is to emphasize that
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data sharing not only matters for growth but also generates inequality across consumers.

1 A Model of Data Sharing

We examine a digital platform where consumers purchase goods from sellers using BNPL

credit provided by a fintech lender. The process unfolds in two stages. First, consumers

join the platform and decide whether to share their data. Second, over multiple years, the

platform collects digital histories—such as searches and purchases—subject to consent and

shares them with sellers. Using this information, sellers target consumers with offers, and

consumers can make purchases accordingly.

There are N > 1 normal goods, desirable to all consumers, and J predatory goods,

representing excessive or unnecessary expenditures, such as impulse purchases.3 Consumers

are liquidity constrained and must finance purchases with short-term BNPL loans from

the platform’s affiliated fintech lender. Importantly, predatory goods may lead to default,

reflecting their excessive nature: late fees and high interest on missed payments can trigger

financial distress. We index the N normal goods by n ∈ {1, .., N}, and the J predatory goods

by j ∈ {N + 1, ..., N + J}. While normal goods can also be BNPL-financed, we focus on

predatory goods to highlight how data sharing amplifies self-control problems—overspending

and debt accumulation.

There are two types of consumers: strong-willed, without self-control problems, and weak-

willed, who are subject to them. Following Ichihashi (2020), we assume each consumer desires

only one normal good, and each weak-willed consumer is tempted by a single predatory good.

Sellers therefore face a nontrivial matching problem, and consumer data sharing improves

matching efficiency.

Data is non-rival: the platform can share it with both normal and predatory sellers and

cannot commit to restricting access to the former. This creates a cost of data sharing.

Unlike prior work that treats this cost as exogenous (e.g., Jones and Tonetti 2020; Cong,

Xie, and Zhang 2020; Cong et al. 2020), we model it as endogenous and heterogeneous. For

strong-willed consumers the cost is zero, while for weak-willed consumers it is positive and

rises with the severity of their self-control problem. This captures the reality that consumers

3While our model focuses on goods, it also applies to ecosystems of online services. For instance, normal
services can represent conveniences include Google’s free search or X’s free news feeds, while predatory goods
capture harms from data sharing such as cryptocurrency scams or addictive content.
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cannot control how data is used—sharing data for beneficial purposes does not prevent its

exploitation for harmful ones.

1.1 Consumers

There is a total of one unit of consumers, divided into strong-willed (πS) and weak-willed

(πW ) types, with πS + πW = 1. We assume πS > 1
2
, consistent with survey evidence (e.g.,

Ameriks et al., 2007, Toussaert, 2018). Strong-willed consumers resist predatory goods,

while weak-willed consumers may not. Each consumer desires one normal good n, while

each weak-willed consumer is also tempted by one predatory good j. Let Sn denote the

strong-willed consumers who want normal good n, and Wnj the weak-willed consumers who

want normal good n and are tempted by predatory good j.

To buy good x, consumer i pays seller pi (x), which may be tailored to that consumer.

For predatory goods, pi (j) also reflects the severity of self-control problems among the

weak-willed. To focus on the role of BNPL credit in excessive expenditures, we assume

that consumers always have sufficient wealth to repay loans for normal goods. By contrast,

weak-willed consumers may face financial distress when repaying BNPL loans for predatory

goods.4 We treat normal and predatory purchases as separate accounts, consistent with

evidence on mental accounting (Gelman and Roussanov 2024) that consumers view credit

lines as nonfungible. Hence, each consumer chooses independently across advertised goods.5

Heterogeneity among weak-willed consumers is central to our model, as it provides camou-

flage under the opt-in/opt-out data-sharing scheme analyzed later. We focus on a symmetric

equilibrium with uniformly distributed preferences: each consumer is equally likely to prefer

any of the N normal goods, and each weak-willed consumer is equally likely to be tempted

by any of the J predatory goods. Both types consume according to their preferences and

the advertisements they receive.

To microfound data-sharing costs, we adopt the temptation utility framework of Gul

4Self-control problems are not confined to disadvantaged consumers. For example, Jike Zhang, a cele-
brated Chinese athlete and 2012 Olympic table tennis champion, reportedly accrued tens of millions of dollars
in gambling debt despite earning around $10 million in 2017. Pressured by creditors, he even resorted to re-
leasing private photos of his former movie-star girlfriend, causing severe reputational and commercial losses.
This illustrates that debt-related self-control issues can afflict even wealthy individuals.

5Adding a budget constraint would introduce an additional distortion: predatory goods might crowd out
normal consumption, further worsening algorithmic inequality by incentivizing normal-good sellers to favor
strong-willed consumers. We abstract from this to focus on the direct impact of data sharing. When a
consumer shares data, she gains better targeting of normal goods but also risks exposure to predatory ones.
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and Pesendorfer (2001), which axiomatizes self-control problems. Building on Kreps (1979),

this framework models preferences over menus. Standard utility theory predicts that rational

consumers strictly prefer larger menus, which expand their choice set and potential utility. By

contrast, the temptation utility framework captures that a larger menu including tempting

but predatory options may reduce welfare for consumers with self-control issues.

The consumer’s preference for a menu M is given by:

max
x∈M

[u(x) + v(x)− pi (x)]− max
x′∈M

v(x′), (1)

where x is a choice from menu M, and u (x), v (x) , and pi (x) denote the commitment utility,

temptation utility, and price, respectively.6 The consumer’s actual choice is determined by

the first maximization in Equation (1):

x∗ = argmax
x∈M

[u(x) + v(x)− pi (x)] , (2)

which compromises between commitment and temptation utilities. If x∗ ̸= argmaxx′∈M v(x′),

the consumer exercises self-control. The cost of self-control arises from the gap maxx′∈ v(x
′)−

v(x∗): even unchosen tempting goods impose a welfare loss. If v (x) = 0, the model collapses

to standard Von Neumann–Morgenstern utility.

The menu M depends on sellers’ advertising strategies, themselves shaped by the plat-

form’s data-sharing scheme and the consumer’s data-sharing choice.7 A consumer’s ex ante

utility is thus the expected utility over all possible menus.

Temptation utility specification A consumer of type τi ∈ {Sn,Wnj} has commitment

and temptation utilities from consuming normal good n, alternative normal goods n′ ̸= n,

6Following Gul and Pesendorfer (2004), we exclude prices from temptation utilities, though one could
argue that higher prices and default risk reduce temptation. A modified formulation to capture this is:

max
x∈M

[u (x) + v (x)− 2pi (x)]− max
x′∈M

[v (x′)− pi (x
′)] ,

without qualitatively impacting our key insights. For expositional simplicity, we use the first specification.
We thank Shaowei Ke for this observation.

7Our analysis builds on the random temptation utility framework of Stovall (2010), a special case of
random Strotz (1955) utility as characterized by Bénabou and Pycia (2002) and Dekel and Lipman (2012).
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predatory good j, and alternative predatory goods j′ ̸= j:

strong-willed weak-willed

x uSn (x) vSn (x) uWnj
(x) vWnj

(x)

n ũn > 0 0 ũn > 0 0

n′ ̸= n 0 0 0 0

j uB < 0 0 uB < 0 γiv̄ − uB > 0

j′ ̸= j uB < 0 0 uB < 0 0

(3)

Here, both types draw a random utility ũn ∼ U [0, ū] from a uniform distribution with ū > 0

as the maximal utility. This random utility can be interpreted as a transient taste for the

normal good—for example, a temporary desire for clothing or a durable good on a given day.

Predatory goods, financed through BNPL, entail possible financial distress from late

fees and interest. Although consumers may enjoy some immediate utility ui > 0, with

probability δ (independent across consumers) they default, incurring a loss C. Following

Berg et al. (2025), we treat δ as exogenous.8 We define expected commitment utility as

uB = ui − δC < 0, reflecting the net harm of predatory goods.

Strong-willed consumers derive no temptation utility from predatory goods (vSn (j) = 0)

and never use them. Weak-willed consumers, however, receive temptation utility γiv̄ − uB,

where v̄ > 0 measures the overall temptation strength, and γi ∼ U [0, 1] captures hetero-

geneity in susceptibility.

The weak-willed consumer’s choice problem reduces to:

max
x∈{j,∅}

[
uWnj

(x) + vWnj
(x)− pi (x)

]
= max {γiv̄ − pi (j) , 0} .

Thus, consumer i buys predatory good j if γi ≥ pi (j) /v̄. We interpret γi as a behavioral

weakness making consumers susceptible to marketing and credit offers they may later regret.

Note that temptation is persistent (γi is consumer-specific), whereas commitment utility

for normal goods is random. This asymmetry prevents discrimination by normal-good sellers,

8Empirically, DeHaan et al. (2024) show that BNPL users face significantly higher overdraft charges,
credit card interest, and late fees. Industry reports suggest similar risks: four in ten BNPL users report
late payments, and most suffer credit-score declines (https://www.icba.org/newsroom/blogs/main-street-
matters/2022/07/11/bnpl-and-the-illogical-argument-for-credit-card-interchange-fee-regulation).
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even with complete information, but allows predatory sellers to target and price-discriminate

effectively. This structure lets us focus on how data access amplifies temptation-driven

exploitation of weak-willed consumers, rather than on normal-good price discrimination,

which is well studied in prior work.

Menu preference The menu M that a consumer faces is determined by the advertise-

ments she receives from sellers. A menu may contain none, one, or multiple normal and/or

predatory goods. Each consumer has additive utilities from normal and predatory good

consumption and may choose any combination of goods. We denote the menu for a normal

product n as Mn
i ∈ {{n, ∅} , ∅}, where ∅ means the good is not advertised and {n, ∅} means

it is. Similarly, Mj
i ∈ {{j, ∅} , ∅} is the menu for a predatory good j.

Given the framework in Equation (1), the choices of a consumer of type τi ∈ {Sn,Wnj}
from menus Mn′

i and Mj′

i are:

xτi

(
Mn′

i

)
= arg max

x∈Mn′
i

[ũτi (x)− pi (x)] , (4)

zτi

(
Mj′

i

)
= arg max

z∈Mj′
i

[uτi (z) + vτi (z)− pi (z)] , (5)

where pi (x) and pi (z) may reflect price discrimination, depending on whether the seller

knows the consumer’s type. Consumers take sellers’ advertising and pricing policies as given.

The consumer’s ex ante preference for the full menu is then

Uτi

(
{Mn

i }
N
n=1 ,

{
Mj

i

}N+J

j=N+1

)
=

N∑
n=1

ũτi (xτi (Mn
i ))− pi (i, xτi (Mn

i ))

+
N+J∑

j=N+1

uτi

(
zτi
(
Mj

i

))
+ vτi

(
zτi
(
Mj

i

))
− pi

(
i, zτi

(
Mj

i

))
− max

z′∈Mj
i

vτi (z
′) . (6)

This formulation allows us to study how data sharing shapes consumer menus via sellers’

advertising.

Our use of temptation utility to model self-control problems parallels an alternative

approach based on present bias (Laibson 1997; O’Donoghue and Rabin 1999; DellaVigna

and Malmendier 2004). Hyperbolic discounting leads consumers to overweight the immediate
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gratification from predatory goods while undervaluing future repayment costs. Sophisticated

consumers, anticipating this conflict, may prefer to keep predatory goods off their menus.

Benabou and Pycia (2002) show that temptation utility is equivalent to a multiple-selves

formulation, making it consistent with sophisticated present-biased consumers. We adopt

temptation utility for its simplicity, as it captures menu preference without requiring a

dynamic setup, even if the present-bias approach offers sharper positive predictions.

In our model, weak-willed but sophisticated consumers make fully rational data-sharing

decisions, despite their lack of self-control in consumption. This provides a solid foundation

for normative analysis of data-sharing schemes and privacy regulation (e.g., Attanasio and

Weber 2010). We abstract from näıve present-biased consumers, who are unaware of their

self-control problem and therefore fail to use opt-out options to protect themselves. While

sophisticated consumers’ choices may affect the welfare of näıve ones, incorporating the latter

group poses a conceptual challenge: doing so requires paternalistic welfare judgments that

conflict with their expressed preferences.

1.2 Sellers

There are N + J sellers on the platform, one representative seller n for each normal good

and one seller j for each predatory good. For simplicity, we assume each seller faces zero

marginal production cost but incurs a convex advertising cost of − (1− ϕ) c log(1 − y) to

reach a measure y of consumers, where (1− ϕ) c > 0. As in Grossman and Shapiro (1984),

the convexity reflects the increasing difficulty of reaching a broader audience.9 Limited

consumer attention implies advertisers avoid flooding users with ads, requiring progressively

higher fees to expand reach.10

Normal-good sellers aim to target both strong- and weak-willed consumers who prefer

their good, while predatory-good sellers target only weak-willed consumers tempted by their

product. Their ability to discriminate depends on the platform’s data-sharing scheme and

9This cost can be microfounded as follows. Similar to Grossman and Shapiro (1984), suppose each
advertisement is seen by a consumer with probability η. If a seller sends out q ads, a consumer sees them
with probability 1 − (1 − η)q, so by the Weak LLN, exactly a fraction yk = 1 − (1 − η)q of consumers see
the ad. Let ξ = − log(1− η). To reach yk measure of consumers, the seller must buy q = −(1/ξ) log(1− yk)
ads. If the platform charges f per ad, the cost is fq = −(f/ξ) log(1 − yk) = − (1− ϕ) c log(1 − yk), giving
an effective cost parameter (1− ϕ) c.

10See Chen (2022) for a model of targeted advertising under limited attention and Roussanov et al. (2021)
for evidence of its importance in mutual fund selection.
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consumers’ data-sharing choices. Sellers provide BNPL through the affiliated fintech lender

by charging a discount equal to a fraction ϕ ∈ (0, 1) of the purchase price.

Because consumers are risk-neutral and ultimately receive seller profits, sellers maximize

expected profit. Seller k ∈ {1, ..., N + J} chooses its advertising set Yk and consumer-specific

prices pi (k)i∈Yk
to solve:

Πk = sup
{pi(k),Yk}

(1− ϕ)E
[∫

i∈Yk

pi (k)1{x(i)=k}di+ c log (1− yk)

∣∣∣∣ Ik

]
, (7)

where yk is the measure of consumers in Yk, 1{x(i)=k} indicates whether consumer i uses good

k, and Ik is seller k’s information set. If a consumer is not advertised to, the good does not

appear on her menu.

Sellers are strategic but lack commitment: they can condition advertising and pricing only

on their information sets and must find it optimal to carry out their announced strategies

after consumers choose data sharing. This will matter under the opt-in/opt-out arrangement,

as it rules out self-confirming equilibria supported only by off-equilibrium beliefs (as in

Perfect Bayesian equilibria).

Sellers face participation constraints:

pi (n) ≤ ū, pi (j) ≤ v̄, (8)

since charging above these thresholds would result in no sales.

1.3 Fintech Lender

There is a BNPL fintech lender affiliated with the digital platform, similar to Klarna or

Afterpay. It provides short-term loans to consumers to facilitate purchases of both normal

and predatory goods. Consistent with practice, the BNPL lender assumes all borrower

default risk on the platform and is compensated through a merchant fee: the merchant

remits a discounted amount of the purchase price to the lender (OCC, 2023).

The lender charges sellers a merchant fee equal to a fraction ϕ of the consumer’s purchase

price. In practice, BNPL lenders typically conduct only a soft or no credit check before issuing

loans for online purchases. Their primary source of revenue is merchant fees, which scale

12



with purchase size, supplemented by late fees and interest on unpaid balances. If a consumer

defaults—which, in our model, occurs only for predatory goods purchases—with probability

δ, the lender recovers only a fraction 1 − ξ of the loan balance. This recovery reflects late

fees, partial repayments, and proceeds from delinquent loans to collection agencies. By the

Weak Law of Large Numbers, exactly a fraction δ of weak-willed consumers will default.

The fintech lender is ultimately owned by households and faces a cost of capital R for its

lending activities. Its expected profits are:

ΠF =(1−R (1− ϕ))E

[
N+J∑
k=1

∫
i∈Yk

pi (k)1{x(i)=k}di

]
−δξ (1− ϕ)E

[
N+J∑

k=N+1

∫
i∈Yk

pi (k)1{x(i)=k}di

]
,

(9)

which equals the effective fee revenue from all purchases minus expected losses from default.

The lender is willing to provide loans on the platform as long as

ϕ ≥ 1−
E
[∑N+J

k=1

∫
i∈Yk

pi (k)1{x(i)=k}di
]

RE
[∑N+J

k=1

∫
i∈Yk

pi (k)1{x(i)=k}di
]
+ δξE

[∑N+J
k=N+1

∫
i∈Yk

pi (k)1{x(i)=k}di
] .

In what follows, we assume ϕ ≥ 1− 1
R+δξ

, the fee that would be required if all purchases

carried default risk, so that this participation constraint is always satisfied. In practice,

BNPL merchant fees are roughly double those charged by credit cards for equivalent services,

and late fees can reach up to 25% of the transaction value, which explains BNPL lenders’

greater tolerance for consumer default.11 As such, the lender’s incentives are aligned with

sellers in promoting larger consumer purchases, even when default risk is significant. Al-

though we focus data sharing between platform and sellers for convenience, BNPL lenders in

practice also collect consumer data to maximize incremental sales and the lifetime revenue

that they can extract through tailored product offerings, marketing campaigns, and product

experiences, and to induces some consumers to borrow more than they can repay (CFPB,

2022).

11See https://www.icba.org/newsroom/blogs/main-street-matters/2022/07/11/bnpl-and-the-illogical-
argument-for-credit-card-interchange-fee-regulation.

13



1.4 Sequential Rational Expectations Equilibrium

We examine the effects of different data-sharing schemes on consumers and sellers, abstract-

ing from the platform’s own incentives. Implicitly, we assume that the platform shares all

consumer data with sellers, subject to each consumer’s sharing preferences. In Section 2, we

analyze two benchmark data-sharing regimes: (i) no sharing and (ii) full sharing. In both

cases, consumers have no individual choice over whether their data is shared. In Section 2.3,

we consider a GDPR-inspired scheme that allows each consumer to decide whether to share

their data with the platform, which then passes on the authorized data to sellers.

Under each of these data-sharing schemes, an equilibrium consists of:

� Consumer optimization: Given each seller’s advertising and pricing policies, each con-

sumer i chooses an optimal data-sharing choice si and then follows a purchasing policy{
{xτ (Mn

i )}
N
n=1 ,

{
yτ
(
Mj

i

)}N+J

j=N+1

}
over a menu set {Mn

i ,M
j
i}.

� Seller optimization: Given consumers’ optimal choices, each seller k selects an adver-

tising policy Yk and a pricing policy pi (k)i∈Yk
for its good. These must be sequentially

rational when consumers authorize data sharing.

For welfare analysis, we assume sellers pay the platform for advertising services. Hence ad-

vertising costs and fintech merchant fees are treated as zero-sum transfers between sellers,

the platform, and the fintech lender—all ultimately owned by consumers. Because prefer-

ences are quasi-linear in expenditures, we can aggregate consumer utilities and seller, lender,

and platform profits to obtain utilitarian welfare:

W =
1

N

N∑
n=1

∫
ũn

(
πS1{n∈Mn

Sn
∩ xSn=n} + πW1{n∈Mn

Wn
∩ xWn=n}

)
dH (ũn) (10)

+
πW

J

N+J∑
j=N+1

∫ (
uB1{

j∈Mj
Wj

∩ xWj
=j

} + (uB − γiv̄)1{
j∈Mj

Wj
∩ xWj

=∅
}) dG (γi) ,

The first term reflects the commitment utility of both strong- and weak-willed consumers

from consuming normal goods. The second captures the social impact of predatory goods:

weak-willed consumers who succumb incur negative commitment utility uB, while those who

resist suffer the mental cost uB − γiv̄.

As noted in Equation (1), when a weak-willed consumer buys a predatory good, temp-

tation utility is fully offset, leaving zero net temptation utility. Interest payments do not
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affect social welfare because they are transfers to sellers. Welfare losses instead arise from (i)

the negative commitment utility uB when weak-willed consumers borrow to buy predatory

goods, and (ii) the disutility of resisting temptation when such goods appear on menus but

are not consumed.

Equation (10) highlights a central trade-off in data sharing. On one hand, sharing im-

proves matching for normal goods, raising welfare; on the other, it exposes weak-willed

consumers to predatory goods, reducing welfare. Unlike standard data privacy models,

which focus on how data increases total surplus through better matching and redistributes

it between consumers and sellers, our framework shows that weak-willed consumers value

privacy not to secure better prices but to avoid exploitation and the harms of overspending—

amplified by BNPL-style credit that fosters indebtedness.

Our model thus underscores that the costs and benefits of data sharing are distributed un-

evenly. Strong-willed consumers gain from better access to normal goods, while weak-willed

consumers face heightened risks due to behavioral vulnerabilities. A representative-agent

cost function misses this heterogeneity and, therefore, the critical role of privacy regulation

in addressing algorithmic inequality.12

We measure this inequality as the welfare gap ∆, defined as the difference between

the average utility of strong- and weak-willed consumers after accounting for the costs of

purchasing normal and predatory goods:

∆ =
1

N

N∑
n=1

∫
(ũn − pũn (n))

(
πS1{n∈Mn

Sn
∩ xSn=n} − πW1{n∈Mn

Wn
∩ xWn=n}

)
dH (ũn) (11)

−πW

J

N+J∑
j=N+1

∫ (
(uB − pi (j))1{

j∈Mj
Wnj

∩ xWnj=j
} + (uB − γiv̄)1{

j∈Mj
Wnj

∩ xWnj=∅
}) dG (γi) ,

where pũn (n) indicates that for normal good n, consumers type is the random utility draw

ũn.

To anchor the welfare analysis of different data-sharing schemes, we first consider the

12Related work, such as Ali and Benabou (2020) and Jann and Schottmüller (2020), emphasizes privacy
as protection against social discrimination: public observability of actions allows inferences about private
traits, which fosters conformity at the expense of individual preferences. Tirole (2021) further warns that
absent privacy protections, governments could use social rating systems—linking political stances with social
networks—to control society without overt repression. By contrast, in our setting, vulnerable consumers
value privacy primarily as a shield against exploitation of their behavioral weaknesses rather than against
discrimination.
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planner’s problem of maximizing social welfare in (10). Since advertising entails no social

cost, the planner would want sellers of normal goods to advertise to all consumers, strong-

and weak-willed alike. In contrast, predatory advertisements impose costs on weak-willed

consumers, whether they succumb to temptation or resist it. Thus, the planner prefers that

predatory sellers do not advertise to anyone. In this ideal outcome, there is no algorithmic

inequality.13

Proposition 1 In the first-best outcome, sellers of normal goods advertise to all consumers,

while sellers of predatory goods advertise to none.

The first-best outcome might suggest banning predatory financial products altogether.

However, such products are often intertwined with desirable goods and services. For ex-

ample, Larrimore et al. (2024) show that BNPL is used not only by financially vulnerable

consumers prone to overextension but also by more financially secure consumers who use

it to smooth payments and avoid interest charges. A product like BNPL may therefore

be welfare-improving for some consumers but harmful for others, depending on what it fi-

nances.14 These overlaps highlight why defining “predatory lending” in legal or regulatory

terms is difficult, and why banning either use or advertising may be infeasible.15

2 Data-Sharing Equilibrium

In this section, we analyze the data-sharing equilibrium. To frame the main scheme in which

consumers can opt in or out of sharing, we first consider two benchmarks: no sharing and full

sharing. We then evaluate consumer welfare across these schemes and provide a calibrated

analysis using realistic parameters. Proofs of the key propositions appear in the Appendix,

with additional proofs in the Internet Appendix.

13If instead uB > 0, predatory sellers would advertise to all weak-willed consumers in the first best. This
contrasts with standard price-discrimination models, where reducing search frictions through data sharing
always improves social surplus. Here, data sharing improves matching for normal goods but can reduce
welfare when it facilitates exposure to predatory goods.

14Our model can be adapted so that each predatory good is a variant of a normal good—tempting only
for specific weak-willed consumers, leading to negative commitment utility for them. While this complicates
consumer inference, the core mechanism is unchanged.

15An alternative policy is to impose strict borrowing limits to protect vulnerable consumers. Yet BNPL
schemes are deliberately designed to bypass traditional safeguards, limiting recourse for borrowers and using
alternative data to extend credit to consumers who would not qualify under conventional underwriting.
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2.1 Consumer Choice

We begin by analyzing individual consumer choices from a given menu of goods. A strong-

willed consumer who prefers normal good n will purchase it if the seller’s price is below the

consumer’s reservation value, and always reject other goods. A weak-willed consumer who

prefers normal good n but also desires predatory good j behaves similarly for n: they buy if

the price is below their reservation value. In addition, they may buy predatory good j if their

temptation coefficient γi is sufficiently high relative to the price. The following proposition

summarizes these choices.

Proposition 2 A strong-willed consumer with commitment utility ũn for normal good n

purchases it if pũn (n) ≤ ũn, and rejects all other products. A weak-willed consumer with

commitment utility ũn for normal good n and temptation coefficient γi for predatory good j

purchases good n if pũn (n) ≤ ũn, and purchases product j if γi ≥ pi(j)
v̄

.

This proposition shows that both strong- and weak-willed consumers might reject good

n if their random utility draw falls below the posted price. Consequently, seller of good

n cannot perfectly price discriminate.16 As a result, all strong- and weak-willed consumers

prefer to receive advertisements for good n, as this allows them to benefit when their realized

utility is high. This creates a motive for consumers to share their data with the platform.

2.2 Two Benchmarks

To analyze the equilibrium with individual data-sharing choices, we first consider two bench-

mark schemes: one with no data sharing and one with full data sharing.

In the no-sharing (NS) benchmark, the platform neither collects nor shares consumer

data. Sellers thus lack information about consumer types and face a “dark pool” for adver-

tising, with each advertisement reaching its target consumers only with the unconditional

probability. This setting reflects market practices prior to the era of big data. The equilib-

rium is characterized as follows:
16Much of the literature on data sharing emphasizes its role in enabling price discrimination. For example,

Taylor (2004) and Acquisti and Varian (2005) show that using past purchase data is optimal for sellers when
consumers are naive about how information is used, but not when they are sophisticated. Ali, Lewis, and
Vasserman (2019) find that disclosure choices can intensify competition and lower prices, while Ichihashi
(2020) shows that multi-product sellers may prefer not to use data for pricing, allowing consumers to reveal
preferences and improve matching. A recent review is provided by Goldfarb and Tucker (2019). Our analysis
departs from this literature by focusing on data privacy as protection against consumer vulnerabilities rather
than as a constraint on price discrimination.
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Proposition 3 With no data sharing (NS), there exists a unique equilibrium with the fol-

lowing properties:

1. Normal good seller n randomly advertises to a mass

yNS
n = max

{
1− 4N

c

ū
, 0
}
, (12)

at a uniform price: pNS (n) = 1
2
ū.

2. Predatory good seller j randomly advertises to a mass

yNS
j = max

{
1− 4

J

πW

c

v̄
, 0

}
, (13)

at a uniform price: pNS (n) = 1
2
v̄.

In this regime, undirected advertising generates inefficiency. Normal good sellers restrict

advertising to only a fraction of potential buyers. As Equation (12) shows, seller n’s adver-

tising intensity yn falls with the cost parameter c, and rises with 1
N

(the share of intended

consumers in the population) and ū (which determines the good’s price). Since sellers fail

to advertise to all consumers who value the good—contrary to the first-best—matching is

inefficient, motivating demand for greater data sharing.

At the same time, Equation (13) shows that anonymity discourages predatory sellers

from targeting all weak-willed consumers, which creates a source of welfare gain. Lacking

information about reservation values, both normal and predatory sellers set uniform prices:

pNS (n) = 1
2
ū and pNS (j) = 1

2
v̄, which means their advertisements are accepted by intended

consumers only half of the time.

The second benchmark represents the opposite extreme, where the platform collects

consumer data and can fully infer each consumer’s type. This setting mirrors the practices

of many digital platforms prior to the introduction of privacy regulations. For simplicity,

we assume the platform can identify whether a consumer is strong- or weak-willed and, in

the latter case, observe the consumer’s temptation coefficient γi. While this may overstate

current capabilities, rapid advances in data analytics make this an informative limiting case.

By sharing data with sellers, the platform enables them to tailor advertising and pricing

strategies to specific consumer types, particularly vulnerable ones (Nadler and McGuigan
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2018; Stigler Committee Report 2019).17

Since strong- and weak-willed consumers behave identically with respect to normal good

n, seller n need not differentiate them. Proposition 4 characterizes the measure of consumers

targeted, yFS
n , and the equilibrium price pFS (n). Data sharing improves efficiency by allowing

seller n to avoid advertising to consumers who would never purchase, so yFS
n ≥ yNS

n . Thus,

both strong- and weak-willed consumers face a higher probability of being reached. As seller

n still cannot observe reservation values, it charges a uniform pricepFS (n) = 1
2
ū.

By contrast, access to consumer data enables predatory seller j to perfectly target weak-

willed consumers and price discriminate based on temptation severity. Each consumer is

charged their full reservation value, pγi (j) = γiv̄. This motivates the seller to concentrate its

advertising on the most tempted consumers, i.e., those with γi ≥ γ̂FS. As a result, full data

sharing leads to both precise targeting and perfect price discrimination against vulnerable

consumers.

Proposition 4 With full data sharing (FS), there exists a unique equilibrium with the fol-

lowing properties:

1. Normal good seller n advertises to yFS
n measure of strong- and weak-willed consumers

that desire the good:

yFS
n = min

{
max

{
1− 4

c

ū
, 0
}
,
1

N

}
(14)

and charges a uniform price pFS (n) = 1
2
ū.

2. Predatory good seller j advertises to all weak-willed consumers that desire the good with

γi ≥ γ̂FS = 1− J
πW

yFS
j (v̄), where yFS

j (v̄) is the total advertising by seller j:

yFS
j (v̄) =


1+πW /J

2
−
√(

1−πW /J
2

)2
+ πW c

Jv̄
if v̄ > c

0 if v̄ ≤ c

, (15)

and sets consumer-specific prices pγi (j) = γiv̄.

17Our model abstracts from the full complexity of how platforms target vulnerabilities in practice. In real-
ity, platforms use real-time analytics to infer not only cognitive and affective states but also the timing when
consumers are most susceptible. Some strategies even deplete willpower—through aggressive advertising or
continuous engagement—thus proactively inducing vulnerability. Social media platforms, for example, cus-
tomize nudges and content to maximize engagement, occasionally bordering on addictive behavior (Allcott
et al. 2020).
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Full data sharing clearly benefits strong-willed consumers by improving access to normal

goods. For weak-willed consumers, however, it creates a trade-off: better access to normal

goods but increased exposure to predatory goods. This makes the welfare comparison be-

tween no sharing and full sharing non-trivial. As Proposition 6 shows, when weak-willed

consumers’ vulnerability is sufficiently severe (i.e., uB is sufficiently negative), full data shar-

ing reduces overall social welfare relative to no sharing.

Policymakers have long worried about these risks. A 2013 U.S. Senate review of the

data broker industry revealed that firms were selling products explicitly designed to identify

financially vulnerable consumers, exposing them to high-cost loans and other risky financial

products.18 Such risks have only intensified on digital platforms, whose access to consumer

data is unprecedented.

2.3 Opt-in/Opt-out

We now analyze the main data-sharing scheme, modeled after the European Union’s General

Data Privacy Regulation (GDPR) and the California Consumer Privacy Act (CCPA). These

regulations safeguard consumer privacy by granting individuals the right to decide whether

to share their data with digital platforms,19 thus offering the potential to achieve a Pareto

efficient outcome as each consumer can make the most suitable choice for herself. Under such

a scheme, which we refer to as GDPR, strong-willed consumers can opt-in and benefit from

data sharing, while severely tempted consumers can opt-out to avoid exposure to predatory

goods. 20

Strong-willed consumers benefit from sharing their data with normal goods sellers and

have no concern about predatory goods sellers. Hence, they all opt in. Weak-willed con-

sumers, however, face a trade-off: opting in improves access to normal goods but also in-

18The report specifically states on page ii: “One company reviewed sells a marketing tool that helps to
“identify and more effectively market to under-banked consumers” that the company describes as individu-
als including “widows” and “consumers with transitory lifestyles, such as military personnel” who annually
spend millions on payday loans and other “non-traditional” financial products. The names, descriptions and
characterizations in such products likely appeal to companies that sell high-cost loans and other financially
risky products to iii populations more likely to need quick cash, and the sale and use of these consumer pro-
files merits close review.” See https://www.commerce.senate.gov/services/files/0d2b3642-6221-4888-a631-
08f2f255b577 for the report.

19Similar laws—such as Virginia’s Consumer Data Protection Act (VCDPA), Colorado’s Privacy Act
(CPA), and Utah’s Consumer Privacy Act (UCPA)—follow the same framework.

20These regulations also have measurable effects in practice. Goldberg et al. (2019), for example, find
that spending and visits by EU consumers fell by up to 7% in 2018 relative to 2017 following GDPR
implementation, with the decline especially pronounced for smaller sellers.
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creases exposure to predatory goods. As a result, severely tempted consumers tend to opt

out, while less tempted consumers opt in. To simplify notation, we use in subscripts for

consumers in the opt-in pool and out for those in the opt-out pool. For example, pGDPR
in (n)

denotes the price changed by normal good seller n to opt-in consumers, while pGDPR
out (j)

denotes the price charged by temptation good seller j to the opt-out pool.

Opting out does not fully shield vulnerable consumers. The degree of protection depends

on the diversity of the opt-out pool, which creates “noise” that dilutes targeting by predatory

sellers. Thus, each weak-willed consumer’s decision to opt in or out depends on others’

choices. We conjecture the existence of a cutoff temptation level γ∗: consumers with with

γi ≥ γ∗ opt out, while those with γi < γ∗ opt in. This threshold is symmetric across all

temptation types.

Conditional on this cutoff γ∗, the utility of a weak-willed consumer with γi who opts in

is:

UGDPR
W,in (γi) =

yGDPR
n,in N

πS + πWγ∗

∫ ū

0

max
{
ũnt − pGDPR

in (n) , 0
}
dH (ũn) (16)

+
yGDPR
j,in (γi) J

πWγ∗

uB − pGDPR
γi,in

(j)1{
γi≥

pGDPR
γi,in

(j)

v̄

} − γiv̄1{
γi<

pGDPR
γi,in

(j)

v̄

}
 ,

where yGDPR
n,in is the total advertising of seller n to the opt-in pool at price pGDPR

in (n), while

yGDPR
j,in (γi) is the advertising intensity of seller j targeting opt-in consumers with temptation

γi at price pGDPR
γi,in

(j). The consumer’s utility reflects the conditional probability of being

targeted by both sellers,
yGDPR
nin

(πS+πW γ∗)/N
and

yGDPR
j,in (γi)

πW /J
.

By contrast, the utility of opting out is:

UGDPR
W,out (γi) =

yGDPR
n,out

πW (1− γ∗)

∫ ū

0

max
{
ũn − pGDPR

out (n) , 0
}
dH (ũn) (17)

+
yGDPR
j,out

πW (1− γ∗)

(
uB − pGDPR

out (j)1{
γi≥

RGDPR
out (j)

v̄

} − γiv̄1{
γi<

pGDPR
out (j)

v̄

}
)
,

where yGDPR
n,out is the total advertising by normal good seller n to the opt-out pool at price

pGDPR
out (n), and yGDPR

j,out is the total advertising by predatory good seller j to the opt-out pool

at price pGDPR
out (j) .
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A weak-willed consumer opts in if and only if

UGDPR
W,in (γi) ≥ UGDPR

W,out (γi) , (18)

with equality holding for the marginal consumer with γi = γ∗ who is indifferent between the

two choices.

The following proposition characterizes the equilibrium under the GDPR. Define

γ ≡ 1

2

(
1−

√
1− 1

J

)
, (19)

the lowest feasible cutoff value for γ∗. If γ∗ were below γ, predatory sellers would not target

the opt-in pool, rendering such a cutoff invalid.

Proposition 5 There exists an equilibrium under the GDPR with the following properties:

1. Consumer choice. All strong-willed consumers opt in. A weak-willed consumer opts

in if γi < γ∗ and opts out if γi ≥ γ∗.

2. Normal goods. Seller n charges the same price in both opt-in and opt-out pools:

pGDPR
in (n) = pGDPR

out (n) = 1
2
ū, and follows a water-filling advertising strategy that

prioritizes the opt-in pool:

yGDPR
n,in = min

{
1− 4

c

ū
,
1− πW (1− γ∗)

N

}
, (20)

yGDPR
n,out = min{max{πW (1− γ∗)− 4N

c

ū
, 0}, πW (1− γ∗)}. (21)

3. Predatory goods. Seller j also uses a water-filling strategy. If γ∗ > γ, it prioritizes

the opt-in pool, targeting a measure yGDPR
j,in (Equation (A.56)) of the more-tempted

consumers and charging their reservation utility: pGDPR
γi,in

(j) = γiv̄. It may then extend

advertising to a measure yGDPR
j,out (Equation (A.57)) of the opt-out pool at a fixed price:

pGDPR
out (j) = max

{
1
2
, γ∗} v̄.21

21In the knife-edge case that γ∗ = γ, it prioritizes the opt-out pool by targeting a measure yGDPR
j,out , given

in Equation (A.54), of the consumers in the opt-out pool by charging pGDPR
out (j) = 1

2 v̄, and it may also target
an additional measure yGDPR

j,in , given in Equation (A.55), of the more-tempted consumers in the opt-in pool

and charging them: pGDPR
γi,in

(j) = γiv̄.
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Figure 1: Illustration of the relative benefit for the marginal weak-willed consumer with temptation
index γ∗ to opt-in, UGDPR

W,in (γ∗)−UGDPR
W,out (γ∗), for four values of v̄. The parameters are N = 10, J =

3, πW = 0.25, and the rest are listed in Table 1.

4. Equilibrium cutoff. The cutoff γ∗ ≥ γ has the following properties:

(a) If v̄ < ū
8
min

{(
1− 4c

ū

)
N, 1

}
+ uB or v̄ >

(
1− πW

J
+ πW

J2

)−1
Jc, there is a full

data-sharing equilibrium in which all weak-willed consumers opt in (γ∗ = 1).

(b) For v̄ < v∗∗∗ (Equation (A.71)) and c > ū
N
πW

1−γ

4
, there exists an interior cutoff

γ∗ ∈
(
γ, 1
)
, solving Equation (A.69). If, in addition, v̄ >

(
1− πW

J
+ πW

J2

)−1
Jc,

multiple equilibria exist, including the full data-sharing equilibrium γ∗ = 1.

Proposition 5 shows that weak-willed consumers follow a cutoff strategy in deciding

whether to share their data. Predatory sellers exploit this by perfectly targeting and price

discriminating against the more tempted opt-in consumers, while only imperfectly targeting

the opt-out pool. The equilibrium cutoff γ∗ is therefore shaped by the relative incentives of

predatory sellers to search across the two pools, as detailed in part 4.

Figure 1 illustrates the equilibrium by plotting the equilibrium cutoff γ∗ against the net

benefit for the marginal consumer to opt-in, UGDPR
W,in (γ∗)− UGDPR

W,out (γ∗) , for different values

of v̄. An interior equilibrium arises when this difference equals zero. A full data-sharing

equilibrium (γ∗ = 1) occurs when the difference is positive at γ∗ = 1, while a minimum

data-sharing equilibrium (γ∗ = γ) occurs when this difference is negative at γ∗ = γ. The

sustainability of full data sharing depends on whether predatory sellers find it optimal to
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search the opt-out pool, which in turn requires those opting out to be sufficiently tempted.

� Small v̄. When v̄ is low (e.g., the top dotted line in Figure 1 with v̄ = 600), the cost to

weak-willed consumers of being targeted by predatory sellers is small and outweighed

by the benefits of sharing data with normal goods sellers. Consequently, all consumers

opt in, and predatory sellers target only the most tempted consumers in the opt-in

pool.

� Moderate v̄. When v̄ is moderate (e.g., the solid black line in Figure 1 with v̄ = 1500),

a unique interior equilibrium emerges where the curve intersects the x-axis. Here,

predatory sellers prioritize advertising to the opt-in pool but do not fully cover the

opt-out pool.

� Large v̄. When v̄ is large (e.g., the thick dot-and-dashed line in Figure 1 with v̄ = 3307,

also used in our calibration exercise in Section 3), multiple equilibria exist: two interior

solutions plus full data sharing. This multiplicity arises because the incentives of

predatory sellers to search the opt-out pool are non-monotonic in γ∗: profits from

targeting the most tempted in the opt-in pool rise with γ∗, but for sufficiently large γ∗,

profits from targeting the opt-out pool also rise. The relative benefit curve thus crosses

zero twice, producing three equilibria. This non-monotonicity generates a coordination

problem among weak-willed consumers: the most tempted may still opt in because they

fail to coordinate on one of the two lower interior cutoffs. Moreover, as v̄ increases,

the minimal and intermediate cutoffs behave differently: fewer weak-willed consumers

opt in at the minimal cutoff, but more do so at the intermediate cutoff, reflecting the

shape of the relative benefit curve.

� Very large v̄. When v̄ is extremely large (e.g., the dashed line in Figure 1 with v̄ =

7000), all consumers once again opt in. In this case, weak-willed consumers’ temptation

is so severe that even if they opt out, predatory sellers still target them in the opt-out

pool. Thus, opting in becomes strictly preferable despite their vulnerability.22

22A subtle but important observation is that our full data-sharing equilibria do not rely on off-equilibrium
beliefs that opting out would automatically expose consumers to predatory targeting with probability one,
even when it is not in sellers’ best interest. Instead, these equilibria arise because, in equilibrium, predatory
sellers find it profitable to fully search the opt-out pool whenever any positive mass of weak-willed consumers
opts out. Thus, full data sharing is not guaranteed: it emerges only when searching the opt-out pool is
sufficiently profitable.
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Our analysis highlights a crucial data-sharing externality. To avoid targeting by predatory

sellers, the most tempted consumers may opt out and attempt to hide within the opt-out

pool. Yet the opt-in decisions of others—such as strong-willed and moderately tempted

consumers—undermine this protection. Their exit from the opt-out pool reduces its “cam-

ouflage,” raising the probability that the remaining weak-willed consumers are targeted by

predatory sellers. In this sense, the opt-in choices of strong- and moderately weak-willed

consumers impose a negative externality on the most vulnerable, as they do not account for

the harm their decisions create.

This mechanism echoes the concept of social data emphasized by Acemoglu et al. (2019),

Bergemann, Bonatti, and Gan (2019), and Easley et al. (2019), who show that one individ-

ual’s data can reveal information about others. In contrast, in our setting it is a consumer’s

behavior that reveals information about herself to the platform. Thus, the externality we

identify is distinct: it stems not from cross-person inference but from how individual choices

alter the effectiveness of concealment for others. The presence of this externality suggests

that simply granting consumers the ability to opt in or out of data sharing may be insufficient

to protect the most vulnerable.

The existence of multiple equilibria with different cutoffs γ∗ is a sharp manifestation of

this data-sharing externality. When v̄ lies in an intermediate range, several cutoffs can be

self-consistent with consumers’ optimal data-sharing policies, including full data sharing.

These multiple equilibria, and the associated coordination challenges, do not arise in models

with reduced-form cost functions for data sharing (e.g., Jones and Tonetti, 2020) or in models

of data markets (e.g., Acemoglu et al., 2019; Bergemann, Bonatti, and Gan, 2019; Easley et

al., 2019).

The uneven impact of the data-sharing externality on strong- and weak-willed consumers

underscores the presence of algorithmic inequality on the platform. While data sharing ben-

efits strong-willed consumers, it can harm weak-willed consumers by eroding the camouflage

provided by the opt-out pool and thereby intensifying their temptation problem.

Empirical evidence on how consumers make data-sharing choices remains limited because

of the scarcity of detailed individual-level data. A central finding is the so-called data privacy

paradox: although consumers often express concerns about privacy, they nevertheless share

their data with sellers and digital platforms. Survey-based studies—including Gross and

Acquisti (2005), Goldfarb and Tucker (2012), and Athey et al. (2017)—document this
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paradox, which the literature typically attributes to behavioral biases such as present bias

(see Acquisti, Brandimarte, and Loewenstein 2020 for a review). Our model provides a novel

explanation without invoking such biases: even severely tempted consumers may still choose

to share data because the opt-out pool offers insufficient protection, making opting in the

better choice.

Chen et al. (2021) survey Alipay users about their privacy concerns when sharing data

with third-party mini-programs. Nearly half (49%) cite worries about seductive advertising

and temptation consumption as reasons for hesitation. Paradoxically, however, users with

stronger privacy concerns authorize data sharing with more mini-programs—a pattern the

authors attribute to these users’ greater demand for digital services, reflecting the core

trade-off emphasized in our model. Moreover, the study finds that privacy-concerned users

expand their data sharing over time. While our model is not designed to capture this specific

behavior, the coordination problem it highlights—where each consumer’s choice depends on

the decisions of others—offers a rationale for why data sharing may increase even among

privacy-concerned individuals.

Additional evidence shows that data sharing affects both firms and consumers. De Matos

and Adjerid (2021), in a field experiment with a major telecommunications provider, find that

new data authorizations improve targeting, leading to higher sales, more effective marketing,

and stronger contractual lock-ins. Similarly, Aridor et al. (2020) show that GDPR’s opt-

in requirement reduced the number of observable consumers in the online travel industry

by 12.5%, yet those who opted in could be tracked more persistently and targeted more

efficiently.

2.4 Welfare Comparison

In this subsection, we compare the welfare consequences of the three data sharing schemes

analyzed: no data sharing, full data sharing, and the opt-in/opt-out scheme. Social welfare

is given by the aggregate utility of strong- and weak-willed consumers over their purchases

(Equation (10)), while welfare gap is defined as the difference in the welfare between strong-

and weak-willed consumers (Equation (11)).

Proposition 6 The social ranking of full data sharing, no data sharing, and the GDPR-style

opt-in/opt-out scheme has the following properties:
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� Full data sharing yields the highest social welfare when the temptation problem is mild,

i.e., when uB is close to zero.

� No data sharing yields the highest social welfare when the temptation problem is severe,

i.e., when uB is sufficiently negative.

� For intermediate values of uB, the opt-in/opt-out scheme may deliver the highest social

welfare.

� Regardless of the ranking, no data sharing delivers the lowest welfare gap.

Proposition 6 highlights the trade-off at the heart of data sharing: improving matching

efficiency for normal goods versus protecting weak-willed consumers from predatory goods.

Full data sharing maximizes matching efficiency but provides the least protection; no data

sharing does the reverse. The opt-in/opt-out scheme lies between these extremes. Accord-

ingly, full data sharing is optimal when temptation is minor (uB ≈ 0), while no data sharing

is optimal when temptation is severe (uB << 0). No data sharing also minimizes the welfare

gap, since it reduces the harm suffered by weak-willed consumers from predatory goods.

The opt-in/opt-out scheme can dominate in an intermediate range of uB, balancing the

benefits and costs of data sharing. However, it may face coordination problems: if too

many weak-willed consumers opt in, the protective value of the opt-out pool erodes. When

multiple equilibria exist under the opt-in/opt-out scheme, the equilibrium on which weak-

willed consumers coordinate determines the precise region of uB where this scheme yields

the highest welfare. This coordination issue affects the location of the intermediate region

but not the overall welfare ranking of the three schemes.

3 A Calibration Exercise

We now present a calibration exercise to examine consumer welfare within the opt-in/opt-out

data-sharing scheme. As shown in Proposition 5, the equilibrium cutoff γ∗ may take one or

three values depending on parameter choices. Our goal is to examine the possible equilibria

using parameters calibrated to reflect a realistic economic environment. Given limited data

availability on e-commerce and online consumer lending, we rely on aggregate statistics to

discipline the model.
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Parameter Value Target Data Model

πW 0.25

c 713.5 Advertising Revenue 945.52 945.52
ū 1557.7 Normal Goods Seller Revenue 3894.19 3894.19
v̄ 3808.3 Predatory Goods Seller Revenue 456.86 456.86
uB -432.8 Equilibrium Cutoff γ∗ 0.40 0.40

Table 1: This table displays the parameters for our numerical experiment, the data moments to
which they are targeted, and the model simulated values of these targets.

3.1 Parameters

We calibrate the model to annual online spending by U.S. consumers. Reflecting data-

sharing practices in the U.S. in 2021—where regulation on sellers’ use of consumer data was

limited—we assume all consumers share their data. The calibrated parameters are reported

in 1.

We set the number of normal goods to N = 10 and predatory goods to J = 3. The

fraction of weak-willed consumers is set to πW = 0.25, consistent with survey evidence:

Ameriks et al. (2007) estimate that 10–30% of respondents exhibit self-control problems,

while Toussaert (2018) reports 23-36%.

Three of the four remaining parameters, c, ū,and v̄, are pinned down by targeting mo-

ments from 2021 U.S. e-commerce data. To align with the unit mass of consumers in our

model, we normalize all quantities by the number of U.S. online shoppers, about 273.5 million

(see Prose Media, 2025).23

� Advertising cost c. We target annual online advertising revenue in 2024, reported as

$258.6 billion in IAB’s 2025 Internet Advertising Revenue Report. Normalized per

online shopper, this yields $945.52.

� Utility from normal goods ū and maximal temptation v̄. We use U.S. annual e-

commerce revenue in 2024, reported by the U.S. Census Bureau at $1.19 trillion.

Dividing by the number of U.S. online shoppers yields per capita annual spending

of $4,351.05. Assuming 25% (πW ) of this expenditure comes from weak-willed con-

sumers, strong-willed consumers account for $3,263.29 and weak-willed consumers for

$1,087.76. We choose v̄ so that predatory sellers capture 42% of weak-willed consumers’

23See, for instance, https://www.prosemedia.com/blog/ecommerce-shoppingstatistics-2025/.
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Equil. Cutoff Strong-Willed Weak-Willed Gap Utilitarian
aggregate per consumer aggregate per consumer

γ∗ = 1.0 1460.3 1947.1 -54.8 -219.1 1515.1 5756.6
γ∗ = .60 1460.3 1947.1 21.5 86.0 1374.3 5201.2
γ∗ = .40 1460.3 1947.1 100.1 400.2 1360.2 4937.4

Table 2: This table displays strong- and weak-willed consumer welfare, their difference, and util-
itarian welfare for the full, opt-in/opt-out, and no data-sharing schemes for the parameters listed
in Table 1.

spending, consistent with 2019 survey evidence from Slickdeals.net showing that 42% of

monthly discretionary spending exceeds budgeted amounts.24 This implies predatory

sellers earn $456.86 annually from weak-willed consumers. We then set ū to match rev-

enue from normal goods, equal to $3,263.29 from strong-willed consumers plus $630.90

from weak-willed consumers, or $3,894.19 in total.

� Utility cost of predatory goods uB. We set uB so that 15% of consumers opt out when

the U.S. moves from full data sharing to the minimal opt-in/opt-out equilibrium (i.e.,

the equilibrium with the lowest γ∗). This matches the 15% reduction in web traffic

observed after the GDPR’s introduction, as reported by Congiu et al. (2022). We

rely on this indirect measure because privacy preferences are malleable, making direct

evidence difficult to interpret. This calibration implies a cutoff value of γ∗ = 0.40 in

the minimal data-sharing equilibrium.

With four parameters and four moments, we match the data perfectly.25

3.2 Consumer Welfare

Interestingly, under our calibrated parameters from Table 1, the opt-in/opt-out scheme ad-

mits three possible equilibria. As illustrated by the dashed line in Figure 1, these correspond

to cutoffs of .40, .60, and 1.00 (i.e., full data sharing) for the marginal consumer. For each

equilibrium, Table 2 compares the welfare of strong-willed and weak-willed consumers, both

in the aggregate and on a per-consumer basis. Since utility is linear, these welfare values

can be interpreted directly as dollar surpluses, measuring consumption-equivalent welfare.

24Slickdeals.net conducts annual surveys of unintended spending by polling 2,000 U.S. consumers.
25Additional analyses show that raising the number of predatory goods J mainly increases the calibrated

value of v̄, while increasing the number of normal goods N increases the calibrated cost of advertising c.
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Across the three equilibrium, utilitarian welfare rises monotonically with the extent of

data sharing: social welfare is highest under full data sharing (γ∗ = 1.00) and lowest under

the minimal data-sharing equilibrium (γ∗ = 0.40), with a difference of 16.6% in consumption-

equivalent welfare. This pattern echoes Jones and Tonetti (2020), who emphasize that

because data are non-rival, greater sharing enhances social welfare. They estimate a 40%

welfare loss between the no data-sharing equilibrium and the planner’s optimum.

Despite this monotonic increase in social welfare, the distribution of gains is uneven:

� First, the welfare of strong-willed consumers remains constant across equilibria. Be-

cause the calibrated advertising cost c is relatively low, normal goods sellers always

cover the entire opt-in pool, regardless of the cutoff.

� Second, the welfare of weak-willed consumers declines monotonically with data sharing.

Their aggregate utility is highest (100.1) under the minimal data-sharing equilibrium

(γ∗ = 0.40) and lowest (-54.8) under full data sharing (γ∗ = 1.00). Increased sharing

exposes more weak-willed consumers to predatory goods, lowering their welfare. As

a result, the welfare gap between strong- and weak-willed consumers is largest under

full data-sharing equilibrium (∆ = 1515.1) and smallest under minimal sharing (∆ =

1360.2), a difference of 11.4%.

� Third, the upward-sloping social welfare pattern is driven largely by the rising gains

of sellers. Utilitarian welfare also includes seller payoffs. Greater data sharing enables

predatory sellers to target weak-willed consumers more effectively, increasing predatory

sales even as those consumers’ welfare declines.

� Finally, there is substantial heterogeneity among weak-willed consumers. Figure 2

illustrates how different equilibria affect consumers of varying temptation. Under full

data sharing (γ∗ = 1.00, dashed line), the least tempted weak-willed consumers benefit,

but the most tempted suffer sharply, as reflected in the downward slope. Under minimal

data sharing (γ∗ = 0.40, solid line), welfare is improved for the most tempted: neither

normal nor predatory sellers advertise to the opt-out pool, effectively setting a floor

at zero utility. The intermediate data-sharing equilibrium (γ∗ = 0.60, dotted line)

favors mildly weak-willed consumers, who are less covered by normal sellers than under

γ∗ = 0.40, but harms the more severely tempted, who are now exposed to predatory

targeting in the opt-out pool.
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Figure 2: Heterogeneous welfare among weak-willed consumers under the three possible (High,
Medium, and Low) GDPR cutoff equilibria for the parameters listed in Table 1.

As discussed in Section 2.3, these equilibria reflect a coordination problem among weak-

willed consumers. Even without changes in the underlying environment, data sharing can

generate significant welfare losses for the most vulnerable consumers, despite rising aggregate

welfare. We refer to this unequal burden as “algorithmic inequality.”

The multiplicity induced by coordination also underscores the importance of default

options in privacy regulation. By guiding consumers toward either a minimal- or maximal-

sharing equilibrium, default rules can serve as a coordination device. Thaler and Sunstein

(2008) highlighted the powerful role of defaults in shaping welfare, and the Stigler Committee

Report (2019) similarly emphasized their importance for protecting inattentive or biased

consumers.

In Appendix B, we extend the model to a dynamic setting where platforms and sellers use

accumulated data to improve their goods over time. In this dynamic framework, opt-in/opt-

out decisions generate an intertemporal externality: today’s data sharing affects the future

quality of normal goods and the attractiveness of predatory goods. Simulations assuming

coordination on the minimal-sharing equilibrium show that the opt-in/opt-out scheme re-

duces algorithmic inequality by 13.8% but lowers overall social welfare by 15.5% compared

to full data sharing. This highlights a central trade-off of the digital economy: efficiency

gains from greater data sharing versus the rising costs of algorithmic inequality.
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4 Conclusion

This paper takes a novel approach to consumer privacy by emphasizing protection against

individuals’ own behavioral vulnerabilities. Data sharing with digital platforms improves

matching efficiency for normal goods but also exposes weak-willed consumers to advertis-

ing that encourages excessive spending, often through BNPL and other potentially preda-

tory products. Privacy regulations such as GDPR and CCPA provide opt-in and opt-out

choices, yet they may fail to protect the most vulnerable because of data-sharing externali-

ties and coordination problems that generate multiple equilibria with very different sharing

outcomes. Greater data sharing can thus widen the welfare gap between strong- and weak-

willed consumers—what we call algorithmic inequality—even as it raises overall welfare by

improving goods quality over time. The result is a fundamental trade-off between efficiency

and inequality in the digital economy.

Our analysis highlights how the data economy affects not only what goods and financ-

ing consumers receive but also the welfare of others. Externalities arise because platforms

bundle data sharing with both normal and predatory sellers, making it costly for vulnerable

consumers to opt out: the benefits of sharing with normal sellers often outweigh the risks of

predatory targeting. In practice, platforms like Apple reinforce this bundling by offering free

services such as messaging and mobile payments, further complicating efforts to regulate or

unbundle data sharing.

Alternative remedies—banning predatory products, expanding legal recourse, or pro-

moting platform competition—face serious limitations. Predatory products are difficult to

define, as what harms one consumer may help another. Exploitation, unlike fraud or mis-

representation, is hard to measure and rarely policed under existing legal frameworks (Calo,

2013; Sunstein, 2015). And greater platform competition may worsen consumer outcomes

by intensifying the race to design addictive content and exploitative practices (Stigler Com-

mittee, 2019; Ichihashi and Kim, 2021). Despite its imperfections, ex ante protection of data

privacy remains the most effective safeguard for consumers in the digital marketplace. Such

insights are relevant as states, such as New York, pass laws to regulate BNPL lenders.26
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Appendix

A Proofs of Propositions

A.1 Proof of Proposition 2

We first consider a strong-willed consumer, that is, τ (i) = Sn, who has the following prefer-

ences over different menus:

US ({n, ∅}) = max {ũn − pi (n) , 0} , (A.1)

US ({j, ∅}) = 0. (A.2)

Consequently, consumer Sn will buy good n if ũn ≥ pi (n) .

Consider now a weak-willed consumer, τ (i) = Wnj, with the following preferences:

UW ({n, ∅}) = max {ũn − pi (n) , 0} , (A.3)

UW ({j, ∅}) = uB +max {−pi (j) ,−γiv̄} . (A.4)

Choosing j from the menu {j, ∅} is optimal if buying j delivers higher utility: −pi (j) > −γiv̄,

which is equivalent to γi >
pi(j)
v̄

.

A.2 Proof of Proposition 3

Given the advertising and pricing strategies of normal good seller n, Proposition 2 implies

that the quantity of goods sold that are financed by seller n is

QNS
n =

1

N
yNS
n

(
1−H

(
pNS (n) /ū

))
, (A.5)

and consequently the seller’s profit net of the advertisement cost is

ΠNS
n = pNS (n)

1

N
yNS
n

(
1−H

(
pNS (n) /ū

))
+ c log

(
1− yNS

n

)
. (A.6)
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Similarly, the quantity of goods sold by the predatory good seller j is

QNS
j =

πW

J
yNS
j

(
1−G

(
pNS (j) /v̄

))
, (A.7)

and the net profit of seller j is

ΠNS
j = pNS

j

πW

J
yj
(
1−G

(
pNS (j) /v̄

))
+ c log

(
1− yNS

j

)
. (A.8)

Technological feasibility requires that yNS
n ≥ 0 and yNS

j ≥ 0.

The first-order condition of Equation (A.6) with respect to yNS
n is

pNS (n)QNS
n = c

yNS
n

1− yNS
n

. (A.9)

Then, we have that

ΠNS
n = pNS (n)QNS

n + c log
(
1− yNS

n

)
= c

yNS
n

1− yNS
n

+ c log
(
1− yNS

n

)
. (A.10)

Similarly, the first-order condition with respect to yNS
j is

pNS (j)QNS
j = c

yNS
j

1− yNS
j

, (A.11)

which further implies that

ΠNS
j = c

yNS
j

1− yNS
j

+ c log
(
1− yNS

j

)
. (A.12)

The first-order conditions for the goods prices set by the two sellers are

QNS
n =

pNS (n)

ū

1

N
yNS
n 1{0≤pNS(n)≤ū}, (A.13)

QNS
j =

pNS (j) πWyNS
j

Jv̄
1{0≤pNS(j)≤v̄}. (A.14)

Note that the expected quantities sold by both sellers, QNS
n and QNS

j , are nonnegative, and
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the net profits with respect to prices are concave, since

d2ΠNS
n

d (pNS (n))2
= −2

ū

1

N
yNS
n h

(
pNS (n) /ū

)
1{0≤pNS(n)≤ū} ≤ 0, (A.15)

d2ΠNS
j

d (pNS (j))2
= −2

πW

J
yNS
j g

(
γNS
∗
) 1
v̄
1{0≤pNS(j)≤v̄} ≤ 0. (A.16)

It follows that the optimal price will always be nonnegative. Since

d2ΠNS
n

d (yNS
n )2

= − c

(1− yNS
n )2

< 0, (A.17)

and d2ΠNS
n

dpNS(n)dyNS
n

= 0, it follows that the Hessian for seller n’s optimization with respect to(
pNS (n) , yNS

n

)
is negative definite and that the FOCs are sufficient.

For strong-willed consumers, there are two possibilities: pNS (n) ∈ [0, ū] or pNS (n) ̸∈
[0, ū] . If RNS (n) ̸∈ [0, ū] , then either pNS (n) = 0 or pNS (n) > ū, neither of which generates

revenue for seller n, and advertising is costly. Consequently, it must be the case that pNS
n ∈

[0, ū] . Then, Equations (A.9) and (A.13) imply that pNS (n) = 1
2
ū.

Similarly, for seller j, if pNS (j) ̸∈ [0, v̄] , then either pNS (j) = 0 or pNS (j) > v̄. Neither

case generates any revenue, but advertising is costly. If pNS (j) ∈ [0, v̄] , then Equations

(A.11) and (A.14) imply pNS (j) = 1
2
v̄.

From the FOCs for yNS
n and yNS

j , it then follows that

yNS
n = 1− 4Nc

ū
, and yNS

j = 1− J

πW

4c

v̄
. (A.18)

Thus, the equilibrium is unique. Note that if yNS
n ≤ 0, then seller n advertises to zero

consumers. Similarly, if yNS
j ≤ 0, then seller j advertises to zero consumers.

A.3 Proof of Proposition 4

With full data sharing, sellers can now separately advertise to strong-willed and weak-willed

consumers. We first consider the optimal advertisement and pricing policies of normal good

seller n. It shall be clear that seller n target both strong-willed and weak-willed consumers

that prefer good n. We denote yFS
n as the measure of strong-willed and weak-willed con-
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sumers, to which seller n advertises, and pFS
n as the price the seller sets.

Proposition 2 implies that strong-willed and weak-willed consumers use the same thresh-

old pFS
n /ū in their random utility ũn for purchasing good n. Thus, the sales by the seller

associated with good n is

QFS
n = yFS

n

[
1−H

(
pFS (n) /ū

)]
, (A.19)

and the net profit is

ΠFS
n = pFS (n) yFS

n

[
1−H

(
pFS (n) /ū

)]
+ clog

(
1− yFS

n

)
. (A.20)

Following the same proof for Proposition 3, it is optimal for seller n to set a price pFS (n) =

1
2
ū. The first-order condition with respect to yFS

n implies that

yFS
n = 1− 4

c

ū
. (A.21)

Like before, if 1− 4 c
ū
≤ 0, it is optimal for the seller to advertise to no consumers. That is,

yFS
n = 0. Furthermore, if 1− 4 c

ū
> 1

N
, then yFS

n = 1
N
.

We now consider the policies of the predatory good seller j. Seller j will advertise only to

weak-willed consumers. Since seller j can discriminate by temptation types, it will exercise

first-degree price discrimination by charging a weak-willed consumer his full reservation

value: pFS
γi

(j) = γiv̄. It can also make its advertising strategy yFS
j dependent on γi. Since

consumers with stronger temptation are willing to pay more, seller j optimally prioritizes

strong temptation consumers:

dẑFS
j c =

 0, if γi < γ̂FS

πW

J
dγi, if γi ∈

(
γ̂FS, 1

] . (A.22)

Thus, seller j’s profit is

ΠFS
j = v̄

∫ 1

0

γiy
FS
j (dγi) + c log

(
1− yFS

j

)
with yFS

j =

∫ 1

0

yFS
j (dγi) ∈ [0, πW/J ] , (A.23)
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where
∫ 1

0
γiy

FS
j (dγi) is understood as a Riemann-Stieljes integral.

Note that the expected revenue of seller j reduces to v̄
∫ 1

γ̂FS
jt

πW

J
γidγi = v̄ πW

J

1−(γ̂FS
j )

2

2
,

where γ̂FS
j = 1 − yFS

jt

πW /J
, since yFS

j ∈ [0, πW/J ] . The expected revenue of seller j is then

v̄yFS
j

(
1− 1

2

yFS
jt

πW /J

)
, which is determined by the seller’s total advertising yj. Consequently,

we can rewrite seller j’s maximization problem as choosing yFS
j :

ΠFS
j = v̄yFS

j

(
1− 1

2

yFS
j

πW/J

)
+ c log

(
1− yFS

j

)
with yFS

j ∈ [0, πW/J ] . (A.24)

The first-order condition for yFS
j is

(
1−

yFS
j

πW/J

)
v̄ − c

1− yFS
j

≤ 0, (A.25)

which has an interior solution when v̄ > c. This leads to a quadratic equation:

(
yFS
j

)2 − (1 + πW/J) yFS
j +

πW

J

(
1− c

v̄

)
= 0, (A.26)

which has the following solutions:

yFS
j =

1 + πW/J

2
±

√(
1− πW/J

2

)2

+
πW c

Jv̄
. (A.27)

We select the negative root because to a first-order approximation the positive root is greater

than 1:

yFS
j =

1 + πW/J

2
+

√(
1− πW/J

2

)2

+
πW c

Jv̄
≈ 1 +

πW/J

1− πW/J

c

v̄
> 1. (A.28)

Consequently, we have that

yFS
j =

1 + πW/J

2
−

√(
1− πW/J

2

)2

+
πW c

Jv̄
. (A.29)

Again, if this solution to the first-order condition moves outside the feasible range [0, πW/J ],
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it is optimal for the seller to advertise at the corner value. Consequently, the equilibrium is

again unique.

Letting pFS
n = pFS

n (ū) , pFS
j = pFS

j (v̄) , yFS
n = yFS

n (ū) and yFS
j = yFS

j (v̄) , we arrive at

the statement of the proposition.

A.4 Proof of Proposition 5

In what follows, we search for a symmetric opt-in/opt-out strategy in which all weak-willed

follow the same cutoff opt-in/opt-out strategy. Specifically, we conjecture that all weak-

willed consumers will opt-in if their temptation index γi is less than some critical γ∗, and

opt-out otherwise.

To avoid an uninteresting problem, we assume sellers for normal good do not have the

capacity to advertise to all consumers even with data-sharing. Otherwise, there is no trade-

off to opting-out for weak-willed consumers.

Sellers: We first characterize the optimal strategies of sellers of both normal and preda-

tory goods taking the opt-in cutoff of weak-willed consumers γ∗ as given. We start with the

optimal strategy of normal good seller n. Suppose that seller n advertises to yGDPR
n,in measure

of strong-willed and weak-willed consumers in the opt-in pool at price pGDPR
in (n) and yGDPR

n,out

measure of consumers in the opt-out pool at price pGDPR
out (n). Then, the seller’s expected

profit, by the law of large numbers, is given by

Πn =
1

N
pGDPR
out (n) yGDPR

n,out

(
1− pGDPR

out (n)

ū

)
+ pGDPR

in (n) yGDPR
n,in

(
1− pGDPR

in (n)

ū

)
+c log

(
1− yGDPR

n,out − yGDPR
n,in

)
, (A.30)

where yGDPR
n,out ∈ [0, (1− γ∗) πW ] and yGDPR

n,in ∈ [0, πS + γ∗πW ] /N. Note that an advertisement

to the opt-in pool reaches a strong or weak-willed consumer who desires the good with perfect

precision, while one to the opt-out pool reaches a weak-willed consumer (who desires the

good) at a probability of 1/N .

If yGDPR
n,in > 0 and yGDPR

n,out > 0, the FOCs for pGDPR
in (n) and pGDPR

out (n) reveal that

pGDPR
in (n) = pGDPR

out (n) =
1

2
ū. (A.31)
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Then, the seller’s profit becomes

Πn =
ū

4N
yGDPR
n,out +

ū

4
yGDPR
n,in + c log

(
1− yGDPR

n,out − yGDPR
n,in

)
. (A.32)

The marginal profit from yGDPR
n,in is strictly higher than that from yGDPR

n,out , as the advertising

efficiency to the opt-in pool is higher. Thus, seller n gives higher priority to the opt-in pool.

The first-order condition with respect to yGDPR
n,in gives

ū

4
− c

1

1− yGDPR
n,out − yGDPR

nn,in



< 0 if yGDPR
n,in = 0

= 0 if yGDPR
n,in ∈ (0, πS + γ∗πW ) /N

> 0 if yGDPR
n,in = (πS + γ∗πW ) /N

(A.33)

The parameter restriction c < ū
4
ensures that yGDPR

n,in > 0. As yGDPR
n,in has higher priority than

yGDPR
n,out , we have

yGDPR
n,in = min

{
1− 4

c

ū
, (πS + γ∗πW ) /N

}
. (A.34)

If yGDPR
n,in = (πS + γ∗πW ) /N , the seller may have capacity to cover the opt-out pool. The

first-order condition for yGDPR
n,out in this scenario gives

yGDPR
n,out = min{max{πW (1− γ∗)− 4N

c

ū
, 0}, πW (1− γ∗)}. (A.35)

Since seller n gives a higher priority in advertising to the opt-in pool, we can directly

prove that each strong-willed consumer would prefer opt-in to opt-out. For simplicity, we

skip the proof here.

We now analyze the optimal advertising strategy of predatory seller j. Suppose that seller

j advertises with intensity yGDPR
j,in (γi) to weak-willed consumers in the opt-in pool at price

pGDPR
γi,in

(j) = γiv̄ and yGDPR
j,out measure of consumers in the opt-out pool at price pGDPR

out (j).

Note that an advertisement to the opt-out pool reaches, with probability of 1
J
, a weak-willed

consumer, who desires the good, and whether this weak-willed consumer buys the good or not

depends on whether his temptation coefficient γi is above pGDPR
j,out /v̄. A further complication
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is that only weak-willed consumers with γi above γ∗ are in the opt-out pool. Thus, the

seller’s profit is

Πj = c log
(
1− yGDPR

j,out − yGDPR
j,in

)
+ v̄j

∫ γ∗

0

γidy
GDPR
j,in (γi)

+
1

(1− γ∗) J
yGDPR
j,out pGDPR

out (j)

·
[(
1− pGDPR

out (j) /v̄
)
1{RGDPR

j,out ≥γ∗v̄} + (1− γ∗) 1{RGDPR
j,out <γ∗v̄}

]
, (A.36)

where yGDPR
j,out ∈ [0, (1− γ∗) πW ] and yGDPR

j,in =
∫ γ∗

0
yGDPR
j,in (dγi) ∈ [0, γ∗πW/J ] is the total

advertisement to the opt-in pool.

If yGDPR
j,out > 0, then the first-order condition for pGDPR

out (j) gives the following:

If γ∗ ≤ 1

2
,
(
1− 2pGDPR

out (j) /v̄
)
1{pGDPR

out (j)≥γ∗v̄} = 0,

If γ∗ >
1

2
, pGDPR

out (j) = γ∗v̄. (A.37)

Thus, the optimal price satisfies

pGDPR
out (j) =


1
2
v̄ if γ∗ ≤ 1

2

γ∗v̄ If γ∗ > 1
2

= max

{
1

2
, γ∗
}
v̄. (A.38)

Since consumers with stronger temptation are willing to pay more with pGDPR
γi,in

(j) = γiv̄,

it is optimal for seller j to prioritize consumers with higher γi:

dyGDPR
j,in (γi) =

 0 if γi < γ̂GDPR

πW

J
dγi if γi ∈

(
γ̂GDPR, γ∗] . (A.39)

Therefore, the expected revenue of seller j from the opt-in pool reduces to v̄
∫ γ∗

γ̂GDPR
πW

J
γidγi =

v̄ πW

J

(γ∗)2−(γ̂GDPR)
2

2
. As γ̂GDPR = γ∗ − yGDPR

j,in

πW /J
by definition, the expected revenue of seller j

from advertising to the opt-in pool is determined by the seller’s total advertising to the
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opt-in pool yGDPR
j,in : v̄yGDPR

j,in

(
γ∗ − 1

2

yGDPR
j,in

πW /J

)
. Thus, the expected profit of seller j becomes

Πj =
1

(1− γ∗) J

[
1

4
−
(
γ∗ − 1

2

)2

1{γ∗> 1
2}

]
v̄yGDPR

j,out

+yGDPR
j,in

(
γ∗ − 1

2

yGDPR
jt,in

πW/J

)
v̄ + c log

(
1− yGDPR

j,out − yGDPR
j,in

)
, (A.40)

and the seller’s choice reduces to choosing yGDPR
j,in and yGDPR

j,out .

Which pool has priority depends on which has higher marginal revenue. The marginal

revenue from the opt-in pool v̄
(
γ∗ − yGDPR

j,in

πW /J

)
is decreasing with yGDPR

j,in and has the highest

value of v̄γ∗ when yGDPR
j,in = 0. The marginal revenue from the opt-out pool is constant:

1
(1−γ∗)J

[
1
4
−
(
γ∗ − 1

2

)2
1{γ∗> 1

2}
]
v̄.

The first-order condition for yGDPR
j,in is

v̄

(
γ∗ −

yGDPR
j,in

πW/J

)
− c

1− yGDPR
j,out − yGDPR

j,in



< 0 if yGDPR
j,in = 0

= 0 if yGDPR
j,in ∈ (0, πWγ∗/J)

> 0 if yGDPR
j,in = πWγ∗/J

, (A.41)

and the first-order condition for yGDPR
j,out is

1

(1− γ∗) J

[
1

4
−
(
γ∗ − 1

2

)2

1{γ∗> 1
2}

]
v̄ − c

1− yGDPR
j,out − yGDPR

j,in

< 0 if yGDPR
j,out = 0

= 0 if yGDPR
j,out ∈ (0, (1− γ∗) πW )

> 0 if yGDPR
j,out = (1− γ∗) πW

.(A.42)

When γ∗ < 1
2
, the opt-in pool has priority whenever γ∗ > 1

4
1

(1−γ∗)J
, which is equivalent
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to γ∗ ∈ 1
2

[
1−

√
1− 1

J
, 1 +

√
1− 1

J

]
, which exists and has its upper end above 1

2
. When

γ∗ > 1
2
, it is direct to verify that the opt-in pool has priority. Taken together, the opt-in

pool has priority if and only if27

γ∗ > γ =
1

2

(
1−

√
1− 1

J

)
. (A.43)

If γ∗ ≤ γ, the opt-out pool has priority. In this case, the seller first targets the consumers

in the opt-out pool until it covers the full pool of πW (1− γ∗). Before it hits the corner, the

interior choice is the first order condition in Equation (A.42) with yGDPR
j,in = 0, which gives

yGDPR
j,out = 1− 4cJ

v̄
(1− γ∗) . (A.44)

If 1 − 4cJ
v̄

(1− γ∗) ≥ πW (1− γ∗) , which is equivalent to γ∗ ≥ 1 −
(
4cJ
v̄

+ πW

)−1
, then

yGDPR
j,out = ȳout = πW (1− γ∗) and yGDPR

j,in is given by the first order condition in Equation

(A.41): (
γ∗ − J

πW

yGDPR
j,in

)(
1− ȳout − yGDPR

j,in

)
=

c

v̄
. (A.45)

This equation takes the advertising to the opt-out pool yGDPR
j,out = ȳout as given and solves for

the advertising to the opt-in pool yGDPR
j,in . Generically, we define yin∗(x) as the solution to

the following equation: (
γ∗ − J

πW

y

)
(1− x− y) =

c

v̄
, (A.46)

which gives y the optimal amount of advertising to the opt-in pool for a given level of

advertising x to the opt-out pool. This leads to

y2 −
(πW

J
γ∗ + (1− x)

)
y +

πW

J
γ∗ (1− x)− πW

J

c

v̄
= 0. (A.47)

27We also recognize that c
v̄ is the minimum γ∗ at which predatory goods sellers advertise a positive

amount to the opt-in pool. This value is recovered by recognizing at zero advertising to the opt-in pool (i.e.,
yGDPR
j,in = 0), the first-order condition is v̄γ∗ − c, which is nonpositive if γ∗ ≤ c

v̄ . Notice, however, the seller
financing the predatory good also chooses zero advertising for the opt-out pool because γ∗ > γ, and the
marginal revenue of the opt-in is always higher than that of the opt-out pool.
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As the larger root of this equation is larger than 1, we choose the smaller root:

yin∗(x) =
1

2

(
(1− x) +

πW

J
γ∗
)
−
√

1

4

(
(1− x)− πW

J
γ∗
)2

+
πW

J

c

v̄
. (A.48)

Thus, in this case, yGDPR
j,in = yin∗ (ȳout) .

We now consider the case γ∗ > γ. In this case, the opt-in pool has priority. Before the

marginal revenue of the opt-in pool drops down to that of the opt-out pool, we have an

interior solution for yGDPR
j,in = yin∗ (0) with yGDPR

j,out = 0.

These two marginal revenues will intersect at a unique level yin∗∗ for yGDPR
j,in , where

yin∗∗ (γ
∗) =

πW

J
γ∗ −

(πW

J

)2 1
4
−
(
γ∗ − 1

2

)2
1{γ∗> 1

2}
(1− γ∗) πW

, (A.49)

which is positive whenever γ∗ ≥ γ. We can further simplify

yin∗∗ (γ
∗) =


πW

J

(
γ∗ − 1

4J
1

1−γ∗

)
if γ ≤ γ∗ ≤ 1

2

πW

J
γ∗ (1− 1

J

)
if γ∗ > 1

2

. (A.50)

Note if yin∗ (0) rises above yin∗∗ (γ
∗), it becomes profitable for the seller to target the opt-out

pool together with the opt-in pool. In this situation, yGDPR
j,in = yin∗∗ (γ

∗), then the first-order

condition in Equation (A.41) determines the interior level of yGDPR
j,out = yout∗(x) for a given

level of yGDPR
j,in = x with

yout∗ (x) = min

{
max

{
1− c

v̄

(
γ∗ − x

πW/J

)−1

− x, 0

}
, πW (1− γ∗)

}
. (A.51)

In this expression, yGDPR
j,out is bounded from above by the size of the opt-out pool πW (1− γ∗).

Consequently, substituting Equation (A.51) with Equation (A.50)

yout∗ (yin∗∗ (γ
∗)) = min {max {z, 0} , πW (1− γ∗)} . (A.52)
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where

z =


1− 4Jc

v̄
(1− γ∗)− πW

J

(
γ∗ − 1

4J
1

1−γ∗

)
if γ ≤ γ∗ ≤ 1

2

1− Jc
γ∗v̄

− πW γ∗

J

(
1− 1

J

)
if γ∗ > 1

2

. (A.53)

If yGDPR
j,out is constrained at its upper bound ȳout = πW (1− γ∗), then the first-order con-

dition in Equation (A.41) gives an interior level of yGDPR
j,in , with yGDPR

j,out = ȳout. That is

yGDPR
j,in = yin∗ (ȳout).

Taken together, if γ∗ ≤ γ, the opt-out pool has priority:

yGDPR
j,out = min

{
1− 4cJ

v̄
(1− γ∗) , ȳout

}
, (A.54)

and

yGDPR
j,in =


0 if yGDPR

j,out < ȳout

yin∗ (ȳout) if yGDPR
j,out = ȳout.

(A.55)

If γ∗ > γ, the opt-in pool has priority:

yGDPR
j,in =



yin∗ (0) if yin∗ (0) < yin∗∗ (γ
∗)

yin∗∗ (γ
∗) if yin∗ (0) ≥ yin∗∗ (γ

∗) and yout∗ (yin∗∗ (γ
∗)) < ȳout

yin∗ (ȳout) if yout∗ (yin∗∗ (γ
∗)) ≥ ȳout

, (A.56)
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and

yGDPR
j,out =



0 if yin∗ (0) < yin∗∗ (γ
∗)

yout∗ (yin∗∗ (γ
∗)) if yin∗ (0) ≥ yin∗∗ (γ

∗) and yout∗ (yin∗∗ (γ
∗)) <ȳout

ȳout if yout∗ (yin∗∗ (γ
∗)) ≥ ȳout

. (A.57)

Weak-willed customers: We first verify if other weak-willed customers follow the

conjectured cutoff strategy with cutoff γ∗, it is optimal for a weak-willed consumer with

temptation γi to follow the same cutoff strategy. We then characterize the equilibrium cutoff

γ∗.

Consider a weak-willed consumer with temptation index γi. Following Equation (16), his

expected utility from opt-in is

UGDPR
W,in (γi) =

yGDPR
n,in N

πS + γ∗πW

ū

8
+

yGDPR
j,in (γi) J

πW

(uB − γiv̄) . (A.58)

This expression shows that UGDPR
W,in increases with yGDPR

n,in but decreases with yGDPR
j,in (γi).

Following Equation (17), his expected utility from opt-out is

UGDPR
W,out (γi) =

yGDPR
n,out

(1− γ∗) πW

ū

8
+

yGDPR
j,out

(1− γ∗) πW

uB −
yGDPR
j,out

(1− γ∗)πW

·
[
max

{
1

2
, γ∗
}
1{γi>max{ 1

2
,γ∗}} + γi1{γi≤max{ 1

2
,γ∗}}

]
v̄, (A.59)

which increases with yGDPR
n,out and decreases with yGDPR

n,out . Then,

V (γi) = UGDPR
W,in (γi)− UGDPR

W,out (γi) (A.60)

=

[
yGDPR
n,in N

πS + γ∗πW

−
yGDPR
n,out

(1− γ∗) πW

]
ū

8
+

(
yGDPR
j,in (γi)

πW/J
−

yGDPR
j,out

(1− γ∗) πW

)
(uB − v̄γi)

−
yGDPR
j,out

(1− γ∗) πW

v̄

(
γi −max

{
1

2
, γ∗
})

1{γi>max{ 1
2
,γ∗}}

50



Note that
yGDPR
n,in N

πS+γ∗πW
≥ yGDPR

n,out

(1−γ∗)πW
from our earlier analysis of seller n’s strategy. Therefore,

whether UGDPR
W,in (γi) − UGDPR

W,out (γi) crosses zero depends on the second and third terms. In

the second term, whether
yGDPR
j,in (γi)

πW /J
− yGDPR

j,out

(1−γ∗)πW
is positive or not depends on whether γ∗ is

higher or lower than γ.

We first show that in equilibrium γ∗ cannot be lower than γ. We use contradiction.

Suppose that γ∗ < γ. Then,
yGDPR
j,in (γi)

πW /J
≤ yGDPR

j,out

(1−γ∗)πW
because the predatory goods sellers

give higher priority to opt-out pool. It is then clear that V (γi) > 0 for γi slightly above

γ∗, implying that this consumer would choose opt-in. This contradicts with γ∗ being the

equilibrium threshold so that consumers with γi above γ∗ all choose opt-out.

For γ∗ ≥ γ, define the (adjusted) net benefit to opt-in for the marginal weak-willed

consumer when she follows the conjectured cutoff strategy:

C (γ∗) ≡ 1

v̄

(
UGDPR
W,in (γ∗)− UGDPR

W,out (γ∗)
)

(A.61)

=
ū

8v̄

(
yGDPR
n,in N

πS + γ∗πW

−
yGDPR
n,out

(1− γ∗) πW

)

+
(uB

v̄
− γ∗

)(yGDPR
j,in (γ∗)

πW/J
−

yGDPR
j,out

(1− γ∗) πW

)
.

For γ∗ to be the equilibrium cutoff, there are three possibilities:

γ∗


= γ if C

(
γ
)
< 0

∈
(
γ, 1
)

if C (γ∗) = 0

= 1 if C (1) > 0

. (A.62)

Corner Solution for γ∗ = 1: We consider this corner as a limiting case. There are two

reasons why all consumers would choose opt-in.

First, the severity of temptation v̄ may be so high that predatory goods sellers will search

the opt-out pool on the margin if all weak-willed consumers opt-in. Suppose a fraction ε

of weak-willed consumers opt-out, i.e., γ∗ = 1 − ε, then substituting for yGDPR
n,in , Equation
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(A.61) reduces t

C (1− ε) =
ū

8v̄

(
min

{(
1− 2

√
c

ū

)
N

1− επW

, 1

}
−

yGDPR
n,out

επW

)
+
(uB

v̄
+ ε− 1

)(
1−

yGDPR
j,out

επW

)
.

(A.63)

Recognizing that unless normal goods sellers can cover all consumers, they will eschew the

opt-out pool (yGDPR
n,out = 0) with a επW mass of consumers because it has lower expected

revenue. Even though predatory sellers give priority to the opt-in pool, a seller financing

predatory good j may still cover the opt-out pool if yin∗ (0) rises above yin∗∗ (γ
∗ = 1− ϵ),

which is given by Equation (A.50). This condition ϵ → 0 is equivalent to

v̄ ≥ v∗∗ ≡
c(

1− πW

J

)
1
J
+ πW

J3

. (A.64)

Second, the severity of temptation v̄ may be so low that all weak-willed consumers choose

opt-in for the benefit of matching with normal goods sellers despite the cost of being targeted

by predatory goods sellers. In this case, predatory goods sellers do not also advertise to the

opt-out pool (
yGDPR
j,out

επW
= 0) and C (1− ε) reduces to

C (1− ε) =
ū

8v̄
min

{(
1− 4

c

ū

) N

1− επW

, 1

}
+

uB

v̄
+ ε− 1. (A.65)

Then C (1− ε) is positive as ϵ → 0 if

v̄ <
ū

8
min

{(
1− 4c

ū

)
N, 1

}
+ uB, (A.66)

and again all weak-willed consumers opt-in. Similarly, if v̄ < c, then predatory goods sellers

never advertise to the opt-in pool because the marginal revenue v̄ is always less than the

marginal cost, c. As such, all weak-willed consumers opt-in if

v̄ < min c,
ū

8
min

{(
1− 4c

ū

)
N, 1

}
+ uB (A.67)

Note that the conditions v̄ ≤ v∗ and Equation (A.67) may overlap. When this happens,

there are two equilibria. In the equilibrium with γ∗ = 1, all weak-willed consumers choose
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opt-in to maximize matching with normal product sellers. In this case, the opt-out pool offers

no protection for the severely tempted consumers. In the other equilibrium with γ∗ = γ, only

a fraction of weak-willed consumers choose opt-in, and the opt-out pool provides substantial

protection for the most tempted consumers. The complementarity in the consumers’ opt-out

decision contributes to the rise of multiple equilibria.

Interior Solution for γ∗ ∈
(
γ, 1
)
: Note that V (γi) in Equation (A.60) is monotonically

decreasing with γi. Given that V (γ∗) = C(γ∗) = 0, consumers with γi < γ∗ want to opt-in

and those with γi > γ∗ want to opt-out, confirming the optimality of the cutoff strategy for

weak-willed consumers.

Given the non-linearity of C (γ∗) , there may be multiple values in
(
γ, 1
)
with C (γ∗) = 0,

and consequently multiple equilibria. In this case, note that
yGDPR
j,in (γ∗)

πW /J
= 1 and

yGDPR
j,out

πW (1−γ∗)
<

1. The optimal advertising policy of seller j for the opt-in and opt-out pools is given by

Equations (A.56) and (A.57). Substituting for yGDPR
n,in and yGDPR

n,out with Equations (A.34)

and (A.35), we recognize

yGDPR
n,in N

πS + γ∗πW

−
yGDPR
n,out

πW (1− γ∗)

= min

{
1− 4 c

ū

1− πW (1− γ∗)
N, 1

}
−max

{
1−

4N c
ū

πW (1− γ∗)
, 0

}
, (A.68)

and substituting this into Equation (A.61) gives

C (γ∗) =
ū

8v̄

(
min

{
1− 4 c

ū

1− πW (1− γ∗)
N, 1

}
−max

{
1−

4N c
ū

πW (1− γ∗)
, 0

})
+
(uB

v̄
− γ∗

)(
1−

yGDPR
j,out

πW (1− γ∗)

)
, (A.69)

where yGDPR
j,out is given by Equation (A.57).

The first term is continuous and positive on γ∗, and not equal to zero because 1 > 4 c
ū
by

assumption. Whenever the max term is positive, the min term must be 1. The second term

is continuous in γ∗ because
yGDPR
j,out

πW (1−γ∗)
∈ [0, 1] is (piece-wise) continuous in γ∗ from Equation

(A.57). Consequently, C (γ∗) is continuous in γ∗ on
[
γ, 1
]
.

Thus, by the Intermediate Value Theorem, there exists a γ∗ ∈
(
γ, 1
)
such that C (γ∗) = 0,
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and an interior equilibrium exists. Notice

C
(
γ
)
>

ū

8v̄

(
min

{
1− 4 c

ū

1− πW

(
1− γ

)N, 1

}
−max

{
1−

4N c
ū

πW

(
1− γ

) , 0})+
uB

v̄
− γ. (A.70)

It is sufficient that c > ū
N
πW

1−γ

4
(i.e., normal goods sellers ignore the opt-out pool and

advertise only to the opt-in pool) and

v̄ < v∗∗∗ ≡
uB

γ
+

ū

γ
min

{
N − πW

(
1− γ

)
1− πW

(
1− γ

) , 1} , (A.71)

for C
(
γ
)
> 0. Consequently, it is sufficient that c > ū

N
πW

1−γ

4
and v̄ < v∗∗∗ to ensure there

is an interior equilibrium.

When, in addition, v̄ > v∗∗, then there are multiple equilibrium in which full data-sharing

is an equilibrium.
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Internet Appendix for Data Privacy and Algorithmic
Inequality

Internet Appendix A: Additional Proofs of
Propositions and Results

Proof of Proposition 6

We first compare social welfare under three data sharing schemes: no data sharing, full data

sharing, and the GDPR. Under a specific data-sharing scheme, social welfare is determined

by the aggregate utility of strong- and weak-willed consumers, as indicated by Equation (10).

This is based on the assumptions that the marginal cost of goods production is zero, and

the price of goods and advertising costs are zero-sum transfers within the population. As

the seller financing normal good n cannot price discriminate against its customers because

of the consumers’ random utility for normal products, it always sets a price of ū/2 for its

good. Consequently, only half of the intended consumers with random utility above ū/2

consume the good. Thus, consumers’ net utility gain from good n is 3
8
ūρn, where ρn is the

measure of strong-willed and weak-willed consumers receiving seller n’s advertising. For a

predatory good j, weak-willed consumers who borrow (with a measure of ρj) experience a

negative utility of uB < 0. Meanwhile, those who receive advertising from seller j but resist

the temptation (marked in a set Sj) suffer a mental cost of uB − γiv̄. Note that ρn, ρj, and

Sj are determined by the sellers’ advertising and pricing strategies under each of the data

sharing schemes.

Taken together, the social welfare is

W =
3

8

N∑
n=1

ūρn +
N+J∑

j=N+1

[
uBρj +

∫
i∈Sj

(uB − γiv̄) dG (γi)

]
. (IA.1)

Across the data sharing schemes, the key trade-off is between the first term (the benefit

from normal goods) and the second and third terms (the cost from predatory goods). Note

that these terms only account for the consumers’ utility from the normal and predatory

goods without including the price to sellers for the goods, which are transfers within the

population.
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No data sharing: The social welfare is

WNS =
N∑

n=1

1

N
yNS
n

∫ ū

Rn

un
dun

ū
+

N+J∑
j=N+1

πW

J
yNS
j uB

∫ 1

pNS(j)/v̄

dγi

+
N+J∑

j=N+1

πW

J
yNS
j

∫ RNS(j)/v̄

0

(uB − γiv̄) dγi

=
3

8
ūyNS

n + πWyNS
j

(
uB − 1

8
v̄

)
=

3

8
ūyNS

n + πWyNS
j

(
uB − v̄

8

)
. (IA.2)

Full data sharing: The social welfare is

W FS =
3

8

N∑
n=1

ūyFS
n +

N+J∑
j=N+1

πW

J
uB

∫ 1

γ̂FS
j

dγi =
3

8
NūyFS

n + JyFS
j uB. (IA.3)

GDPR: From a social welfare perspective, we have

WGDPR =
(
NyGDPR

n,in + yGDPR
n,out

) 3
8
ū+

(
JyGDPR

j,in + yGDPR
j,out

)
uB − yGDPR

j,out

(
1

8
− γ∗2

2

)
v̄1γ∗< 1

2
,

(IA.4)

where the last term reflects that the least tempted weak-willed in the opt-out pool suffer a

temptation cost if γ∗ < 1
2
.

We first compare full data sharing to no data sharing:

W FS −WNS = < πW

(
yFS
j

πW/J
− yNS

j

)
uB +

1

8
πWyNS

j v̄ +
3

8
ū
(
NyFS

n − yNS
n

)
< 0,(IA.5)

if uB < uB∗∗, where

uB∗∗ = −
3

πW
ū
(
NyFS

n − yNS
n

)
+ v̄yNS

j

8
(

yFS
j

πW /J
− yNS

j

) . (IA.6)

That is, social welfare is lower with full data sharing than with no data sharing.

We now compare the GDPR to no data sharing:

WGDPR −WNS =
(
NyGDPR

n,in + yGDPR
n,out − yNS

n

) 3
8
ū+

(
JyGDPR

j,in + yGDPR
j,out − yNS

j

)
uB

+ πWyNS
j

v̄

8
− yGDPR

j,out

(
1

8
− γ∗2

2

)
v̄1γ∗< 1

2
, (IA.7)
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where yNS
n and yNS

j are independent of uB. The first term in WGDPR−WNS is positive, rep-

resenting the improved matching with normal goods sellers under opt-in/opt-out, while the

second is negative, reflecting the increased exposure of weak-willed consumers to predatory

goods sellers.

Notice when uB = 0, it must be the case WGDPR > WNS because of the improved

matching with normal goods sellers. When uB < 0 however, the most-tempted weak-

willed consumers suffer from lack of camouflage because not only all strong-willed, but

also the more-mildly tempted weak-willed, consumers opt-in. Because the social benefit

of GDPR from increased matching with normal goods sellers is bounded from above by(
NyGDPR

n,in − yNS
n

)
3
8
ū, it follows for sufficiently negative uB that WGDPR < WNS. Since the

objectives are continuous, there exist critical values of uB, uB∗, such that WGDPR < WNS

when uB ≤ uB∗.

We now compare the GDPR with the full data sharing. The difference in the social

welfare is given by

WGDPR −W FS =
(
NyGDPR

n,in + yGDPR
n,out −NyFS

n

) 3
8
ū+

(
JyGDPR

j,in + yGDPR
j,out − JyFS

j,out

)
uB

− yGDPR
j,out

(
1

8
− γ∗2

2

)
v̄1γ∗< 1

2
. (IA.8)

Note that under full data sharing, normal goods sellers have higher advertising efficiency and

therefore are able to better cover their intended consumers, that is, the first term is negative.

It is further clear that total advertising by predatory goods sellers under opt-in/opt-out is

less than that under full data sharing, JyGDPR
j,in + yGDPR

j,out − JyFS
j < 0. Because predatory

goods sellers are less efficient at targeting the most-tempted customers, the coefficient of

uB in the second term is negative, i.e., the second term is positive. Consequently, there

may exist a critical uB∗∗∗ such that WGDPR > W FS if uB ≤ uB∗∗∗ (and WGDPR < W FS

otherwise).

Ranking the three schemes: Suppose uB is sufficiently severe (uB < min {uB∗, uB∗∗}),
then no data sharing delivers the highest social welfare. Further, if uB is in an intermediate

range (uB < uB∗∗∗ and uB > uB∗), GDPR delivers the highest social welfare.

Comparing the welfare gap: We now consider the welfare gap ∆. From Equation
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(11), the welfare gap under no data sharing is given by:

∆NS =
N∑

n=1

πS − πW

N
yNS
n

∫ ū

p(n)

un
dun

ū
−

N+J∑
j=N+1

πW

J
yNS
j

(
uB − pNS (j)

) ∫ 1

pNS(j)/v̄

dγi

−
N+J∑

j=N+1

πW

J
yNS
j

∫ RNS
j /v̄

0

(uB − γiv̄) dγi =
1

8
(πS − πW ) ūyNS

n − πWyNS
j

(
uB − 3

8
v̄

)
.(IA.9)

The welfare gap under full data sharing is

∆FS =
1

8
(πS − πW )

N∑
n=1

ūyFS
n −

N+J∑
j=N+1

πW

J

∫ 1

γ̂FS
j

(uB − γiv̄) dγi

=
1

8
N (πS − πW ) ūyFS

n − JyFS
j uB + Jv̄yFS

j

(
1− 1

2

yFS
j

πW/J

)
. (IA.10)

It then follows:

∆FS −∆NS =
1

8
(πS − πW ) ū

(
NyFS

n − yNS
n

)
− πW

(
yFS
j

πW/J
− yNS

j

)
uB

+ πW

(
yFS
j

πW/J

(
1− 1

2

yFS
j

πW/J

)
− 3

8
yNS
j

)
v̄ ≥ 0, (IA.11)

and the welfare gap is always positive because the first two terms are nonnegative (recall

uB < 0) and the last term is strictly positive (recall the revenue of predatory product sellers

is always higher with full data-sharing).

We now establish that the welfare gap is also higher under GDPR than no data-sharing.

First, notice the welfare gap from Equation(11 is divided into two pieces: the difference

in utility from normal goods ∆n
GDPR and the drag on weak-willed consumer welfare from

predatory goods ∆j
GDPR. Because there are fewer weak-willed than strong-willed consumers,

and some weak-willed consumers opt-out, strong-willed consumers differentially benefit more

from improved access to normal goods by opting-in. As such, the first term in the welfare

gap ∆n
GDPR > 0 is higher under GDPR than no data sharing, i.e., ∆n

GDPR > ∆n
NS. In

addition, because predatory goods sellers can better target weak-willed consumers when a

subset opts-in, ∆j
GDPR < 0 is also more negative under GDPR (i.e., the profits of predatory
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goods sellers are higher), or ∆j
GDPR > ∆j

NS. Consequently:

∆GDPR = ∆n
GDPR +∆j

GDPR > ∆n
NS +∆j

NS = ∆NS. (IA.12)

As such, the welfare gap is smallest under no data sharing.
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Internet Appendix B: A Dynamic Model of Data
Sharing

Motivated by the analysis of Jones and Tonetti (2020), Cong, Xie, and Zhang (2020),

and Abis and Veldkamp (2021) on the long-term effects of data sharing on economic growth,

we extend our model to a dynamic setting in this section. We demonstrate that data sharing

not only helps to boost long-run growth but may also exacerbate algorithmic inequality.

Specifically, we first highlight a dynamic externality of data sharing on the platform, in

which today’s data sharing by consumers impacts the quality of goods offered by sellers to

future consumers. We then use a calibrated exercise to examine the long-run implications of

data sharing.

Suppose now that time is discrete with t = 0, 1, 2, ... In each period, there is a new

generation of consumers that join the platform. There are two sub-periods in each date that

correspond to the two stages in our static model. In the first sub-period, consumers join the

platform and make their data-sharing decisions with the platform. In the second sub-period,

consumers can borrow from sellers, which target their intended customers based on the data

they receive from the platform about the consumers. Similar to our static model, we assume

the platform shares the consumer data authorized by consumers with sellers.

A key feature of the dynamic model is that more data allow each seller to enhance its

good over time. That is, normal goods can improve in quality over time, and predatory

goods can be made more tempting. If a seller financing normal good n collects data on a

mass dnt of the strong-willed and weak-willed consumers who prefer product n at time t,

then the firm linked to the seller increases the quality of its product ūt according to an AR(1)

process

log ūt+1 = (1− θ) log ū+ θ log ūt + dnt, (IA.13)

where θ ∈ [0, 1] is the rate of mean reversion. That the impact of data on good quality

decays over time reflects the idea that old data becomes obsolete, as discussed in Jones and

Tonetti (2020) and Abis and Veldkamp (2021).

Similarly, data enables predatory goods firms linked to predatory sellers to make their

products more enticing by utilizing big-data analytics to identify and exploit the behavioral

vulnerabilities of their customers. For example, by analyzing the attention and clicking

patterns of weak-willed consumers on their platform, these firms and sellers can tailor their

marketing strategies to cater to these tendencies, enhancing the effectiveness of their offerings
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in attracting such consumers. In other words, if the company gathers data on a mass djt of

the weak-willed customers who desire product j at time t, it can improve not only the allure

of its good v̄t, but also the potential harm uB,t, according to the following AR(1) processes:

log v̄t+1 = (1− θ) log v̄ + θ log v̄t + djt, (IA.14)

log (−uB,t+1) = (1− θ) log (−uB) + θ log (−uB,t) + djt. (IA.15)

In each period, the equilibrium follows what is characterized in Proposition 5 for the

opt-in/opt-out scheme with ū, v̄,and uB being replaced by ūt, v̄t, and uB,t. The fraction of

weak-willed consumers that opt in γ∗
t evolves over time, and can exhibit path dependence

when consumers must coordinate over multiple potential opt-in/opt-out equilibria.

Dynamic Data-sharing Externality

Through the enhancement of the quality of both normal and predatory goods, data sharing

by one generation of consumers may impose both positive and negative externalities on future

generations of consumers. While data sharing by consumers contributes to better normal

goods tomorrow, data sharing by weak-willed consumers also contributes to more-tempting

predatory goods tomorrow. Consumers do not internalize this feedback loop between their

data-sharing decisions and the quality of both types of goods, which can result in more weak-

willed consumers opting in tomorrow, exacerbating algorithmic inequality. This creates a

virtuous cycle for consumers and normal goods sellers, and a vicious cycle for consumers

and predatory goods sellers. Although data advances the technological frontier over time, as

illustrated by Jones and Tonetti (2020) and Abis and Veldkamp (2021), such improvements

are not necessarily beneficial for all consumers and may worsen algorithmic inequality.

This feedback loop also highlights a dynamic aspect of the non-rivalry of data. Because

the platform cannot commit to withholding its data from predatory goods sellers, normal

goods sellers subsidize the data accumulation of predatory products sellers through the

voluntary data sharing of strong-willed and moderately tempted consumers. Conversely,

for predatory goods impede the data accumulation of normal goods sellers because of the

opt-out decisions of severely-tempted consumers.
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Full Sharing Intermediate Sharing Minimal Sharing
ū∞ 20564.3 19888.0 19824.0
v̄∞ 4800.3 4293.9 4248.0
uB,∞ -534.2 -477.8 -472.7
γ∗
∞ 1.0 0.52 .47

Strong-willed aggregate 1927.9 1864.5 1858.5
per consumer 2570.5 2486.0 2478.0

Weak-willed aggregate -54.3 126.4 150.2
per consumer -217.1 505.8 600.8

Gap aggregate 1982.2 1738.0 1708.3
Utilitarian 7599.4 6514.2 6415.7

Table 3: This table displays the steady-state values for ūt, v̄t, and uB,t, strong- and weak-willed
consumer welfare, their difference, and utilitarian welfare for the full, intermediate, and minimal
data-sharing equilibria under the parameters in Table 1.

A Calibrated Assessment

Under the opt-in/opt-out data-sharing scheme, multiple equilibria with vastly different lev-

els of data sharing by consumers may exist because of the coordination problem among

consumers discussed in Section 2.3. We now conduct a numerical exercise using the model

parameters calibrated earlier to evaluate how various equilibrium paths might impact data

accumulation and, consequently, consumer welfare in the long-run.

We initialize our economy at t = 0 with the parameters from Table 1, and choose an

AR(1) parameter θ of 0.64 based on the observation of Abis and Veldkamp (2020) that

standard accounting practices amortize data warehouses over 36 months. We then simulate

the economy under the opt-in/opt-out scheme until it converges to the steady state. If

multiple equilibria emerge, we assume consumers coordinate on the same cutoff over time.

Table 3 presents the simulation results, showing significant differences in the steady-

state across the three equilibrium paths, which includes full data sharing, intermediate data

sharing and minimal data sharing, as determined by the three levels of the equilibrium cutoff

of weak-willed consumers. As consumer data accumulates over time, good quality increases,

particularly in the full data-sharing path where all consumers share their data. For example,

normal goods are 3.7% more valuable in the full data-sharing path compared to the minimal

sharing path (higher ū∞), while predatory goods are 13.0% more tempting (higher v̄∞) and

13.0% more harmful (more negative uB,∞). Because of the dynamic good quality, 47% of

weak-willed consumers opt-in in the steady-state of the minimal sharing path, compared
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to 40% in the static equilibrium analyzed earlier. In contrast, only 52% of weak-willed

consumers opt-in in the steady-state of the intermediate data-sharing path compared to

60% in the static equilibrium because of the behavior of the intermediate cutoff discussed in

Section 2.3. Strong-willed consumers fare worse under the intermediate and minimal sharing

paths, as less data is shared, leading to lower normal good quality in the long-run compared

to the full data-sharing path.

Interestingly, the minimal sharing path mitigates algorithmic inequality compared to the

full sharing path by reducing the welfare gap between strong- and weak-willed consumers by

13.8%, even though full data sharing results in 18.4% higher overall welfare. Data accumu-

lation raises both utilitarian welfare and the welfare gap by 32.0% and 30.8% under the full

data-sharing path and 29.9% and 25.6% under the minimal data-sharing path compared to

the static equilibrium reported in Table 2. These magnitudes are of a similar order of mag-

nitude to what Jones and Tonetti (2020) find across data sharing schemes in a representative

agent production economy. Thus, more data sharing, both within and across time, not only

raises efficiency and social welfare, but also increases algorithmic inequality.
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