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1 Introduction

A significant part of income taxes in developed countries is paid by households that consist of

several adult members. For example, in the U.S., over 70 percent of federal individual income

taxes are collected from married couples. Yet, the theory of optimal taxation of family income

is poorly understood. What economic forces determine the shape and magnitude of the optimal

joint earnings tax schedule? How should one member’s taxes depend on the earnings of the

other member? Is it ever optimal to tax each individual in a couple separately or to use total

family income as a base for earnings taxation?

In this paper, we aim to make progress in answering these questions. To this end, we

consider a canonical unitary household model. Each household comprises two spouses who

choose their labor supplies and earnings to maximize joint utility. Productivities of spouses

are heterogeneous and are drawn from some joint distribution. We consider the problem of

designing a joint tax of earnings of each spouse that maximizes the sum of couples’ utilities

weighted with Pareto weights that are some decreasing function of couples’ productivities.

We use the mechanism design approach in our study. The optimal tax problem can be

equivalently cast as a problem of a fictitious mechanism designer who chooses allocations for

all couples based on reports about their productivities subject to the incentive compatibility

constraints. Since the vector of productivities is two-dimensional, our model falls into the class

of multi-dimensional screening problems. The properties of solutions to such problems are not

well understood.

We make progress in studying such problems in two directions. Firstly, we explore condi-

tions under which our problem can be simplified by restricting attention to only local incentive

constraints, the so-called first-order approach (FOA). The FOA has been the standard tech-

nique to analyze uni-dimensional tax models since the seminal work of Mirrlees (1971), but it

is not clear whether it is valid in higher dimensions.1 In the special case of our economy – in

which productivity draws are independent between spouses and Pareto weights are separable

in spousal productivities – we can explicitly characterize the necessary and sufficient condi-

1For example, in their classic study of the optimal taxation of couples, Kleven et al. (2009) write (p. 538)
“very few studies in the optimal tax literature have attempted to deal with multidimensional screening problems.
The nonlinear pricing literature in industrial organization has analyzed such problems extensively. A central
complication of multidimensional screening problems is that first order conditions are often not sufficient to
characterize the optimal solution. The reason is that solutions usually display “bunching” at the bottom
(Armstrong (1996), Rochet and Chone (1998)), whereby agents with different types are making the same
choices.” To sidestep this perceived difficulty, Kleven et al. (2009) further restrict agents’ choices by allowing
one of the spouses to make only binary labor supply decisions. They explain (p. 538) “Our framework with a
binary labor supply outcome for the secondary earner along with continuous earnings for the primary earner
avoids the bunching complexities and offers a simple understanding of the shape of optimal taxes based on
graphical exposition.”
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tions that the primitives of our economy need to satisfy for the FOA to be valid. We compare

these conditions to the analogous conditions in the uni-dimensional version of our model and

show that the former set is strictly larger, so the FOA is more likely to hold in bi-dimensional

settings.2 For our general economy, in which productivity draws may not be independent and

social weights may not be separable, we show that a sufficient condition for the FOA to hold

is that Pareto weights are not, in a certain sense, too redistributive.

Secondly, we explore the properties of the optimal joint taxes under the assumption that

the FOA is valid. Optimal taxes are characterized by the solution to a certain second-order

non-linear partial differential equation. While there are no known techniques to solve this

equation explicitly, we show that this roadblock can be partially side-stepped using a mathe-

matical result known as the Coarea formula. It allows us to derive closed-form expressions for

various conditional moments that the optimal taxes must satisfy. These moments isolate main

economic forces determining optimal taxes and yield sharp comparative statics results. We

show that, in a very broad sense, all these conditional moments are determined by a trade-off

between benefits from redistribution, captured by Pareto weights, and deadweight costs of

taxation, captured by two sets of elasticities: the pair of elasticities of labor supplies of the

spouses, and various elasticities of the joint distribution of spousal productivities. Different

distribution elasticities capture different aspects of the optimal joint taxes.

We use this general formula to obtain insights about various properties of the optimal

tax schedule. First, we study its implication for the optimal average distortions3 that an

individual of any given productivity faces. We show that these distortions are generally higher

when couples are matched more assortatively in their productivities, with the strength of

assortativeness captured by the standard positive quadrant dependence (PQD) order. This

also implies that in the economy in which single and married households co-exists, the optimal

taxes on married individuals should be lower than on single individuals, assuming same labor

supply elasticites, redistributory objectives, and distribution of productivities for all, single or

married, individuals.

These results are driven by the equity-efficiency trade-off. Our formulas show that average

deadweight costs of tax distortions for any spouse depend only on spouse-specific characteristics

but not on how they are matched with their partners. In contrast, average redistributive

2This result also allows us to explain that the failure of the FOA in multi-dimensional settings that was
observed by Armstrong (1996) and Rochet and Chone (1998) is driven not by incentive constraints per se but
by their interaction with participation constraints, which are typically absent in public finance applications.

3As it is standard in the optimal tax literature since the work of Mirrlees (1971), we characterize properties

of the monotone transformation of the marginal tax rates, ∂
∂yi

T (y1, y2)
/(

1− ∂
∂yi

T (y1, y2)
)

, where T is the

tax function and yi is earnings of spouse i. We refer to this object as the optimal tax distortion.
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benefits of taxation depend on matching patterns. When individuals form couples, they pool

their resources, implicitly redistributing resources within families. It is costly to crowd out this

intra-family redistribution through distortionary taxation. The more random the matching is,

the more redistribution occurs within families and the smaller tax rates the planner sets.

Second, we use our general formula to study jointness, i.e., how marginal tax rates of one

spouse should depend on earnings of the other. We show that various average measures of

optimal jointness depend on two moments of the joint distribution of spousal productivities,

which can be written as elasticities of copula and the survival copula of this distribution.

These moments have specific economic interpretation as they capture additional distortions

that jointness introduces relative to any separable tax schedule (i.e., a tax schedule under

which taxes of earnings of one spouse are independent of earnings of the other spouse).

Optimal jointness is determined by several competing forces. Positive jointness facilitates

redistribution by targeting taxes to the richest couples at the costs of exacerbating tax distor-

tions from separable taxes, which are summarized by the respective survival copula elasticity.

On the other hand, negative jointness facilitates redistribution by targeting transfers to the

poorest couples at the costs of exacerbating distortions from phase-outs of transfers from sepa-

rable taxes, which are captured by the copula elasticity. Despite complex interaction of various

forces, optimal average jointness in the tails, for the richest and poorest couples, is determined

essentially by one property of the joint distribution of productivities – its tail (in)dependence.

When the joint distribution is tail dependent (so that both copula and survival copula elas-

ticities are small), very productive or unproductive individuals are likely to be matched with

other very productive or unproductive individuals.4 In this case, the redistributive motives

dominate and optimal jointness is positive at the top and negative at the bottom. If the joint

distribution is tail independent, so that such extreme parings are unlikely, then the distortion-

reducing motive dominates. With the exception of several special cases that we discuss in the

text, the optimal jointness for tail independent distributions is negative at the top and positive

at the bottom.

Third, we also derive expressions that characterize optimal average family distortions and

that compare distortions between two spouses in the same couple. We use these expressions

to describe conditions under which taxation based on total family earnings is optimal and

conditions under which secondary earners face on average higher or lower distortions than

4A symmetric joint distributions of two variables w1, w2 is right- (left-) tail independent if
limt→∞ P (w2 ≥ t|w1 ≥ t) = 0 (if limt→0 P (w2 ≤ t|w1 ≤ t) = 0), it is right- and/or left- tail dependent if these
limits are strictly positive. To give an example, a joint log-normal distribution is always tail-independent, a
distribution with the perfectly assortative matching in the tails is tail dependent. In Section 4.3 we define tail
dependence and independent formally for arbitatrary joint distributions and discuss some of their implications.
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primary earners.

Finally, we characterize optimal taxes if the planner is exogenously restricted to imposing

taxes that are simpler than the fully unrestricted joint tax schedule. We consider three kinds

of such taxes: anonymous taxes, taxes that are separable in spouses’ earnings, and taxes

that depend only on total family earnings. We show that these optimal restricted taxes can

be analyzed by imposing additional measurability restrictions on our unrestricted mechanism

design problem. Moreover, we prove that the optimal distortions under restricted taxes are

always equal to the average distortions under optimal unrestricted taxes. This result helps us

clarify sources of additional welfare gains that more sophisticated taxes attain.

In the last part of the paper, we characterize optimal taxes numerically. We use data on

the earnings of married households and the U.S. tax schedule to obtain the joint distribution of

productivities. We show that a Gaussian copula with Pareto-lognormal marginal distributions

can well approximate this distribution. We then consider optimal taxes under a rich family

of Pareto weights. We find that our analytical formulas provide excellent guidance about nu-

merical properties of the optimal tax schedule. In the U.S. data, spousal productivities are

positively but not perfectly dependent, so optimal taxes on married individuals are higher than

in the economy with random matching but lower than in the uni-dimensional models such as

Diamond (1998). The Gaussian copula is tail independent, so consistent with our analytical

results, optimal jointness is positive for low earners and negative for high earners. The quanti-

tative magnitude of this optimal jointness is small, so individual earnings-based taxes provide

a good approximation to the optimal unrestricted tax schedule. In contrast, taxation based

only on total family earnings is generally quite far from the unrestricted optimum, even when

Pareto weights are chosen to explicitly favor family earnings-based taxation.

Our paper is related to several strands of literature. Small literature in public finance uses

the multi-dimensional mechanism design approach to study optimal taxation. Mirrlees (1986)

was perhaps the first to derive the partial differential equation that characterizes such taxes

under the assumption that the FOA is valid but noted that it is much more difficult to solve

than its uni-dimensional analog. Several authors imposed additional assumptions to simplify

the multi-dimensional tax environment. For example, Kleven et al. (2009) studied taxation of

couples but restricted one spouse to make only binary labor supply choices. Frankel (2014)

considered the case in which a binary distribution describes spouses’ productivities. Ales and

Sleet (2022) studied couples taxation in a discrete choice environment. Moser and de Souza e

Silva (2019) analyzed paternalistic savings policies in a model with two-dimensional discrete

heterogeneity. Alves et al. (2021) considered the optimal tax problem of couples but imposed
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enough structure to collapse it into a uni-dimensional problem. Golosov et al. (2013) and

Lockwood and Weinzierl (2015) pursued a similar approach in labor and commodity taxation

with preference heterogeneity. Hellwig and Werquin (2022) discussed the generalization of their

ideas of redistributional arbitrage to multi-dimensional type spaces. In a series of papers, Roth-

schild and Scheuer (2013; 2014; 2016) developed a mechanism design approach to study optimal

taxation in models with multi-dimensional private information but with uni-dimensional tax

instruments. In contrast to these papers, we develop an approach that allows us to analytically

characterize properties of optimal taxes in a fairly unrestricted multi-dimensional environment

and shed light on economic forces that are hard to see in more specialized settings.5

The most closely related to our study is the unpublished Section 3 of the working paper

by Kleven et al. (2007), henceforth KKS. In that section, KKS considered an economy similar

to ours and made several very insightful observations. They noted that one should expect the

FOA to hold in optimal tax settings when the planner is close to utilitarian, derived a formula

that is analogous to our formula for the optimal average distortion, and characterized the sign

of optimal jointness under the assumption that spousal productivity draws are independent.

Our work systematically builds on these insights and allows us to obtain many novel results,

such as a comparison of conditions for the validity of FOA in uni- and bi-dimensional settings,

comparative statics results, implications of productivity dependence on optimal taxation, com-

parison of optimal tax rates for single and married individuals or spouses in the same couple,

identification of the key conditions for optimality of separable taxation and taxation of family

income.

Several authors, such as Golosov et al. (2014), Spiritus et al. (2022), Ferey et al. (2022)

study optimal multidimensional taxation using an alternative, variational approach. They

consider perturbations of tax schedules and derive expressions for optimal rates in terms of

sufficient statistics. While their approach has many appealing features, its key limitation for

our purposes is that the optimal tax rates are expressed in terms of endogenous objects that

are themselves functions of the optimal tax schedule. This makes it difficult to use those

expressions to understand how the model’s structural parameters affect optimal taxes. In

contrast, our formulas are in terms of exogenous primitives, which allows us to prove sharp

5In addition to these papers, our work is also related to the New Dynamic Public Finance literature (see., e.g.,
Golosov et al. (2003), Albanesi and Sleet (2006), Farhi and Werning (2013), Golosov et al. (2016), Stantcheva
(2017), Ndiaye (2018)) that studies optimal nonlinear taxes in dynamic environments in which information is
revealed over time. In those models, optimal taxes in a given period are a nonlinear function of earnings in
previous periods, but the dynamic nature of information revelation allows collapsing the mechanism design
problem to a sequence of problems with uni-dimensional incentive constraints. Also related is the recent work
by Kushnir and Shourideh (2022) who explore alternative ways to relax multidimensional mechanism design
problems.
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theoretical results. That being said, we show in the paper how our formulas can be obtained

using variational techniques by constructing perturbations that allows one to express optimal

taxes in terms of model’s primitives. Those perturbations differ from ones typically considered

in the literature and should be of independent interest.

Gayle and Shephard (2019) and Spiritus et al. (2022) use numerical methods to study the

optimal joint taxation of couples. Boerma et al. (2022) developed techniques to tackle multi-

dimensional mechanism design problems when the FOA fails. Our work is complementary to

theirs. Analytical results we derive provide insights about forces that determine optimal taxes

that are often hard to see with numerical work.

The rest of the paper is organized as follows. In Section 2, we present our environment. In

Section 3, we describe the mechanism design approach and conditions for the validity of the

FOA. Section 4 characterizes optimal taxes. Section 6 provides calibration and quantitative

analysis. Section 7 concludes.

2 Environment

We consider an economy with a continuum of couples. Each couple consists of two persons,

whom we refer to as spouse 1 and spouse 2. Each couple is characterized by vector w =

(w1, w2), which we call type, where wi is the productivity of spouse i. We denote the distribution

of types by F and its domain by W . We assume that W is a closed, simply-connected subset

of R2
+ with a Lipshitz boundary ∂W and a non-empty interior W o, and that it satisfies any of

the following conditions: W is either (i) compact, or (ii) W = R2
+, or (iii) there exists some

w > 0 such that w ≥ w for all w ∈ W . We assume that F has density f that is strictly

positive on W o, continuous on W , and continuously differentiable on W o. We use G1, G2

and g1, g2 to denote marginals of F and f . If the domain is unbounded from above, then

we require limwi→∞−d lnwi/d ln (1−Gi (wi)) < ∞; and, if the domain includes 0, then we

assume limwi→0 d lnwi/d lnGi (wi) <∞. Finally, we use fi (·|w−i) and Fi (·|w−i) to denote the

density and the distribution of productivities of spouse i conditional on the productivity of

spouse −i being w−i. These definitions imply that f(w) = fi (wi|w−i) g−i (w−i) for all w.

Spouse i = 1, 2 supplies earnings yi > 0, and both spouses share consumption c. Let

y = (y1, y2) be the vector of earnings of a couple. The utility of couple w from bundle (c,y)

is given by

v = c− γ1
(
y1
w1

)1/γ1

− γ2
(
y2
w2

)1/γ2

, (1)
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where elasticity parameters6 γ = (γ1, γ2) satisfy γi ∈ (0, 1) for each i. We assume that F and

γ satisfy

E
[
w

1/(1−γ1)

1 + w
1/(1−γ2)

2

]
<∞, (2)

which ensures that the surplus is finite in our economy.

Couples choose jointly (c,y) to maximize preferences (1) subject to the budget constraint

c 6 y1 + y2 − T (y1, y2) , (3)

where T : R2
+ → R∪{∞} is a tax function. We are interested in characterizing properties of tax

functions that maximize social welfare. Social welfare is defined as
∫
W v (w)α (w) f (w) dw,

where α : R2
+ → R+ is a decreasing, continuous and bounded function satisfying E [α] = 1.

We refer to α as Pareto weights. A tax function is said to be budget-feasible if the total tax

revenue collected from couples is non-negative7 and optimal if it is budget-feasible and there

is no other budget-feasible tax function under which social welfare is strictly higher.

We postulate that T is a function of labor earnings y but not productivities w. This

restriction can be micro-founded if we assume that w is unobservable to the government.

However, the analysis is the same if the government is exogenously restricted to use taxes that

are a function only of earnings y, irrespective of whether couples’ productivities are observable.

Thus, we keep this slightly more general formulation to be agnostic about observability of w.

Our paper’s primary focus is understanding properties of the optimal tax schedule T ∗

without imposing any further ad-hoc restrictions on this joint tax function. The economy is

purposefully designed to focus on the simplest bi-dimensional model of taxation. The joint

distribution of types F is given exogenously so that neither formation nor dissolution of couples

is affected by taxes. Moreover, our model abstracts from income effects, bargaining within

couples, and home production. While all these extensions are interesting and important, we

focus in this study on the specification that allows us to highlight key mechanisms and trade-

offs in designing optimal joint taxation most transparently. As a part of our analysis, we also

discuss conditions under which this unrestricted tax function satisfies additional properties.

We say that a tax function is anonymous if T (y1, y2) = T (y2, y1), individual earnings-based

if T (y1, y2) = T̃1 (y1) + T̃2 (y2) for some functions T̃1 and T̃2, and family earnings-based if

T (y1, y2) = T (y1 + y2) for all y. In Section 5, we ask the opposite question of how to design

optimal taxes that are exogenously restricted also to be anonymous, individual earnings-based,

6Note that the elasticity of earnings of spouse i is γi/(γi − 1), so it is monotonically increasing in γi.
7Formally, T is budget-feasible if one can construct (Borel) measurable functions (c,y) : W → R× R2

+ such
that for each w, the pair (c (w) ,y (w)) is an optimal choice of couple w and

∫
W
T (y (w)) f (w) dw ≥ 0.

7



or family earnings-based, and we uncover a tight relationship between optimal restricted and

unrestricted taxation.

Our general economy is characterized by a triple (F, α,γ). Several special cases of this

economy will be particularly useful. We call Pareto weights α separable if they can be written

as

α (w) = β1α̃1 (w1) + β2α̃2 (w2) , (4)

where (α̃1, α̃2) are non-negative, non-increasing, continuous, bounded functions that, without

loss of generality, satisfy E [α̃i] = 1, βi ≥ 0 for all i and β1 + β2 = 1. We call an economy

(F, α,γ) symmetric if F and α are symmetric and γ1 = γ2, and benchmark if it is symmetric

and Pareto weights are separable. Any (bi-dimensional) benchmark economy (F, α,γ) has a

corresponding uni-dimensional economy, parameterized by (G, α̃, γ), that is essentially the one

studied by Diamond (1998).8

The benchmark economy is a useful case to consider for at least two reasons. The first

reason is that non-separable, in particular super- and sub-modular Pareto weights, sometimes

have opposing implications for the value of redistribution in different parts of productivity

space. The benchmark economy, with its separable weights and no intrinsic distinction between

spouses, presents a natural starting point for the analysis. The second reason is that the

benchmark economy allows for a simple and natural comparison of our results to the existing

results about optimal taxation in uni-dimensional settings. Consider an economy in which all

individuals have the same elasticity of labor supply and draw productivities from the same

distribution G, and in which some individuals remain single while others form couples with

joint distribution F . If the relationship between Pareto weights for single-person households α̃

and married-persons households α is given by α(w1, w2) = 1
2 α̃(w1) + 1

2 α̃(w2) then the optimal

taxes on couples coincide with optimal taxes in our benchmark economy (F, α,γ) while optimal

taxes on singles coincides with the optimal taxes in the corresponding uni-dimensional economy

(G, α̃, γ). See the appendix for the formal description of this environment and proofs.

2.1 Dependence concepts and copulas

As we shall see, optimal taxes depend crucially on how individuals are matched into couples,

which is captured by properties of the joint distribution F . Recalling several standard de-

pendence concepts for bi-variant random variables will be useful.9 Types are independent if

8Like us, Diamond focuses on the economy without income effects. Unlike our model, he allows for the general

disutility of earnings ν
(
y
w

)
rather than the constant elasticity specification γ

(
y
w

)1/γ
. He describes welfare by

social welfare functions rather than Pareto weights. Our specification with constant labor supply elasticity and
Pareto weights allows us to obtain a sharper characterization of optimal taxes.

9See Nelsen (2006), Shaked and Shanthikumar (2007), or Balakrishnan and Lai (2009) for textbook treatment.
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F (w) = G1 (w1)G2 (w2) for all w ∈ W (or F = G1G2, for short) and positively dependent

(also known as positively quadrant dependent or PQD) if F ≥ G1G2. Positive dependence is

equivalent to the condition that Cov (φ1 (w1) , φ2 (w2)) ≥ 0 for any two increasing functions φ1

and φ2. A distribution F b is more dependent than F a if F a and F b have the same marginals

and F b ≥ F a. We denote this by F b ≥PQD F a. We write F b >PQD F a when F b ≥PQD F a

but not F a ≥PQD F b. Any F satisfies bounds F ∗ ≥PQD F ≥PQD F∗, where F ∗ and F∗ are

distributions under perfect positive and negative assortative matching given marginal G1, G2.

Any distribution F has corresponding functions C and C, called copula and survival copulas,

that satisfy C (G1 (t1) , G2 (t2)) = P (w ≤ t) and C (1−G1 (t1) , 1−G2 (t2)) = P (w ≥ t) for

all t ∈ W , respectively. Conceptually, C (u1, u2) is the joint probability that the productivity

of spouse 1 is in the uth1 quantile of her marginal distribution and the productivity of spouse 2 is

in the uth2 quantile. Copulas allow one to isolate dependence properties of F from properties of

marginal distributions G1, G2 in general settings. There exists many families of copulas that

are used to model dependence between two variables with arbitrary marginals, e.g., FGM,

Gaussian, or t-copulas.10

3 The mechanism design problem

We study our optimal tax problem using the mechanism design approach. Consider a direct

mechanism, in which a fictitious mechanism designer asks each couple their type w and allo-

cates bundles (c,y) directly as a function of these reports, subject to feasibility and incentive

compatibility of these allocations. A direct mechanism that maximizes social welfare can be

written as a choice of functions (v, c,y) that solve the following problem:

max
(v,c,y)

∫
W
v (w)α (w) f (w) dw (5)

subject to y ≥ 0,

v (w) = c (w)− γ1
(
y1 (w)

w1

)1/γ1

− γ2
(
y2 (w)

w2

)1/γ2

∀w ∈W, (6)

10The FGM copula is defined by C (u1, u2) = u1u2 [1 + ρ (1− u1) (1− u2)]. The Gaussian and
t-copulas generalize notions of bi-variate normal and Student t-distribution to arbitrary marginals.

They are defined as C (u1, u2) ∝
∫ Φ−1(u1)

−∞
∫ Φ−1(u2)

−∞ exp

[
− (s2−2ρst+t2)

2(1−ρ2)

]
dsdt and C (u1, u2) ∝

∫ Γ−1(u1;ν)

−∞
∫ Γ−1(u2;ν)

−∞

[
1 +

(s2−2ρst+t2)
ν(1−ρ2)

]− ν+2
2

dsdt respectively, where Φ (·) is the standard normal distribution

and Γ (·; ν) is the Student t-distribution with ν degrees of freedom. Note that bi-variate log-normal distributions
are a special case of the Gaussian copula. For all three copulas, the parameter ρ ∈ (−1, 1) captures dependence,
with a higher value of ρ corresponding to stronger dependence in the PQD sense.
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∫
W

(y1 (w) + y2 (w)− c (w)) f (w) dw ≥ 0, (7)

and

c (w)−
2∑
i=1

γi

(
yi (w)

wi

)1/γi

≥ c (ŵ)−
2∑
i=1

γi

(
yi (ŵ)

wi

)1/γi

∀w, ŵ ∈W, (8)

where maximization is over the space of functions measurable on W . The last two equations

are feasibility and incentive compatibility, respectively.11 The close connection between the

optimal tax problem and the mechanism design problem is described by the following lemma.

Lemma 1. For any budget-feasible tax function T , an optimal choice (c,y) must satisfy (6)

and (8). Conversely, for any (c,y) that satisfy (7) and (8), there exists a budget-feasible T

under which (c (w) ,y (w)) is an optimal choice for every couple w.

The proof of this lemma is standard and given in the appendix. It shows that we can

characterize optimal taxes in two steps: first solve the mechanism design problem (5) to find

optimal allocations, then use these allocations to find a tax function that supports them as an

equilibrium. Due to Lemma 1, this tax function is budget-feasible, and there cannot be any

other budget-feasible tax function that yields higher welfare. Therefore, this characterizes the

optimal tax function. We say that such T decentralizes (v, c,y). It is easy to show that in a

symmetric economy such T can be constructed to be anonymous.

Let ∇v := (∇1v,∇2v) be the gradient of v. Constraints (6), (7) and (8) imply the following

result.

Lemma 2. Suppose (v, c,y) satisfy (6), (7) and (8). Then, v is (i) increasing and bounded

below, (ii) locally Lipshitz continuous on W o, (iii) both weakly and a.e. differentiable on W o,

satisfies (iv)
∫
W |v (w)| f (w) dw <∞, (v)

∫
W

∑2
i=1w

1+γi
i (∇iv (w))γi f (w) dw <∞ and (vi)∫

W

∑2
i=1 γiwi∇iv (w) f (w) dw <∞. The (weak) gradient of v is given by

∇v (w) =

(
y

1/γ1
1 (w)

w
1+1/γ1
1

,
y

1/γ2
2 (w)

w
1+1/γ2
2

)
. (9)

Conditions (i)-(vi) are smoothness, monotonicity, and boundedness conditions that will be

useful in various parts of our analysis. We use V to denote the space of functions that satisfy

these conditions. While v may not be differentiable everywhere in the classical sense, it must

be weakly differentiable so that its gradient can be used in integration similar to the classical

derivatives.12 Equation (9) gives the explicit expression for this gradient. This gradient can

11Slightly abusing notations, we set yi (w) /wi = 0 for all w with wi = 0.
12In Section B of the appendix, we overview the main properties of weak derivatives and Sobolev spaces that

are used in our analysis.
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be interpreted as local incentive constraints as it captures the marginal effect of misreporting

their type by either of the spouses. It is a bi-dimensional version of the condition familiar from

the uni-dimensional analysis.

We now can use Lemma 2 to simplify the mechanism design problem (5). Observe that at

the optimum the feasibility constraint (7) must hold with equality. We can use equations (6)

and (9) to substitute for c and y, respectively. Bringing the feasibility constraint (7) into the

objective function, problem (5) can be re-written as13

max
v∈V

∫
W
v (w) (α (w)− 1) f (w) dw +

∫
W

2∑
i=1

(
w1+γi
i

(
∇iv (w)

)γi
− γiwi∇iv (w)

)
f (w) dw

(10)

subject to

v (w) > v (ŵ) +

2∑
i=1

γiŵi∇iv (ŵ)

((
ŵi
wi

)1/γi

− 1

)
∀w, ŵ ∈W. (11)

The objective function in this reformulated problem depends only on function v, and we can

refer to this functional as Υ (v). Thus, the mechanism design problem can be written succinctly

as

max
v∈V

Υ (v) s.t. (11). (12)

Observe that all the local incentive constraints are already inside the functional Υ, so

constraints (11) can affect the solution to this maximization problem only if some of the non-

local constraints bind. The relaxed problem is the mechanism design problem in which these

constraints are dropped, i.e., the problem defined as

max
v∈V

Υ (v) . (13)

Let v∗ be a solution to the relaxed problem (13). We say that the first-order approach (FOA)

is valid if v∗ is also a solution to (12).

3.1 Validity of the FOA

The analysis of the mechanism design problem substantially simplifies when the FOA is valid.

In uni-dimensional settings, essentially all analytical characterization of optimal taxation as-

sumes that the FOA holds (seminal papers by Mirrlees (1971), Diamond (1998), and Saez

(2001) all fall into this category). While it is known that the FOA may fail in uni-dimensional

13The solution to this problem is defined up to a constant, i.e., if v is a solution, then for any b ∈ R, v + b is
also a solution. Once this problem is solved, the specific value of b can be found from the resource constraint
(7).
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settings for some parameter values, those cases appear to be rare in realistic applications that

verify FOA validity numerically (see, e.g., Farhi and Werning (2013), Golosov et al. (2016),

or Heathcote and Tsujiyama (2021)). One common concern, exemplified by the quote from

Kleven et al. (2009) given in the introduction, is whether the first-order approach is ever valid

in multi-dimensional settings. In this section, we examine conditions for validity of the FOA

in our bi-dimensional settings and compare them to condition for validity of the FOA in a

uni-dimensional version of our model.

One way to check the validity of the FOA in our model is to consider a transformation

of space W into space X defined as X :=
{(
w
−1/γ1

1 , w
−1/γ2

2

)
|w ∈W

}
. The relationship

between our function v on space W and its transformation vx on space X is given by vx (x) :=

v
(
x−γ1
1 , x−γ2

2

)
. The advantage of this transformation is that utility of couples is linear in types

in the X-space,

vx (x) = cx (x)− γ1x1 (yx1 (x))1/γ1 − γ2x2 (yx2 (x))1/γ2 ,

and the incentive constraint (11) becomes

vx(x) > vx(x̂) +
2∑
i=1

∇ivx(x)(xi − x̂i) ∀x, x̂ ∈ X. (14)

A well-known result by Rochet (1987) gives a simple geometric interpretation of this constraint.

Lemma 3. (Proposition 2 in Rochet (1987)) Suppose that W is such that X is a convex set.

Let vx,∗ (x) := v∗
(
x−γ1
1 , x−γ2

2

)
for all x ∈ X. The FOA is valid if and only if vx,∗ is convex.

This lemma shows that validity of the FOA is equivalent to convexity of vx,∗, and the rest

of this section focuses on conditions under which this convexity can be verified.14

We first examine validity of the FOA in one special case of our environment: the benchmark

economy with independent types. In this case, we can solve (13) analytically and directly

describe necessary and sufficient conditions that the primitives must satisfy for vx,∗ to be

convex. These conditions can then be compared to their analogues in the uni-dimensional

economy.

Proposition 1. Consider the benchmark economy with independent types and W = [w,w]2,

where 0 ≤ w < w ≤ ∞. Suppose λ̃ (t) :=
∫ w
t (1−α̃(w))g(w)dw

γtg(t) is continuously differentiable with

bounded derivatives.

14In uni-dimensional settings, Mirrlees (1971) showed that the FOA is valid if earning function y∗ (w), implied
by the solution to the relaxed problem, is increasing in w. It can be shown that Mirrlees’s result is equivalent
to convexity of vx,∗.
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(2D). The FOA is valid if and only if

x ·
(

1 +
1

2
λ̃
(
x−γ

))
is increasing in x. (15)

(1D). In the corresponding uni-dimensional economy, the FOA is valid if and only if

x ·
(

1 + λ̃
(
x−γ

))
is increasing in x. (16)

In particular, (15) holds whenever (16) holds.

Proposition 1 fully describes the set of (G,α, γ) under which the FOA holds and does not

hold in both uni-dimensional and bi-dimensional settings with independent types. Examination

of these conditions reveals that the set of parameters under which the FOA is valid is strictly

larger in the bi-dimensional economy. Therefore, the FOA is more likely to hold in bi- than in

uni-dimensional settings.

It is useful to consider the economic interpretation of these conditions. We start with the

uni-dimensional case. Condition (16) can equivalently be written as[
1 + λ̃ (w)

(
1 + γ

∂ ln (wg (w))

∂ lnw

)]
+ [1− α̃ (w)] ≥ 0 for all w. (17)

The term in the first square brackets is typically positive; the term in the second square brackets

is negative for low w and positive for high w. Thus, inequality (17) is violated if the second

term is sufficiently negative relative to the first, which occurs if the planner puts sufficiently

high Pareto weights on some low types. In other words, the FOA holds in the uni-dimensional

settings if the planner is not “too redistributive” in the precise sense given by equation (17).

In the bi-dimensional economy, the analog of condition (17) is similar but allows for a larger

set of weights α̃. We discuss the intuition for this result once we characterize optimal taxes in

Section 4.

The conclusion that the set of parameters for which FOA holds is strictly larger in a bi-

dimensional economy depends on the assumption that α̃ is a continuous function. This result

does not extend to the cases when α̃ is discontinuous on the boundary of the domain of G.

One example of such weights is Rawlsian, α̃R, represented by the Dirac delta function that

puts all the mass on the lowest type. With Rawlsian weights, the FOA typically fails in the

bi-dimensional settings but holds for all (G, γ) that satisfy (16) on the interior of the domain

of G in the uni-dimensional settings. However, the Rawlsian case in uni-dimensional settings

is quite singular since the FOA fails for all continuous weights α̃ that are close to α̃R (such

13



weights must necessarily violate equation (17)). We provide formal statements and proofs of

these results in the appendix.15

It is harder to check validity of the FOA for arbitrary (F, α). As we show in the next

section, v∗ (or its transformation vx,∗) is characterized by a non-linear second-order elliptic

PDE with Neumann boundary conditions, and convexity of solutions to even linear problems

of this type is an open question in the theory of partial differential equations. Instead, we build

on the ideas presented in the working paper by Kleven et al. (2007). KKS pointed out that

the FOA must always hold for the utilitarian weights, α0 ≡ 1, since, in this case, the planner

does not value redistribution and the laissez-faire allocation, which trivially satisfies the FOA,

is optimal. KKS suggested that the Implicit Function Theorem can be used to establish the

validity of the FOA for Pareto weights that are close to utilitarian.

To make these ideas operational, we need to overcome two technical challenges. First,

we must verify the invertibility conditions required by the Implicit Function Theorem at the

utilitarian solution. Second, we must ensure that convergence implied by the Implicit Function

Theorem preserves convexity.

Proposition 2. Suppose that W ⊂ R2
++ is compact, and the corresponding space X is convex.

Suppose that F and ∂X are in C 2,a for some a ∈ (0, 1]. Take any sequence of weights (αε)ε

parameterized by ε ≥ 0 such that αε is in C 0,a, α0 is identically equal to one, and αε → α0 in

the C 0,a-norm. Then, the FOA is valid in the (F, αε,γ) economy for all ε small enough.

In this proposition, we overcome the two challenges mentioned above in the following way.

First of all, we formulate our problem in Hölder space16 C 2,a. This is the “largest” Banach

space that includes twice continuously differentiable functions and for which general results

concerning existence of solutions to elliptic PDEs (Schauder Theory) are available.17 The

15This discussion is also pertinent for understanding the relationship between our results in Proposition 1 and
the results of Rochet and Chone (1998) on failure of the FOA in multi-dimensional non-linear pricing models.
An important difference between our model (as well as most models of optimal taxation) and non-linear pricing
models is the existence of participation constraints. In our model, the participation constraint is absent. The
government imposes taxes to maximize agents’ welfare, and agents cannot walk away from their tax obligations.
In non-linear pricing models, the participation constraint plays a central role. Monopolist aims to extract
maximum surplus from consumers, and only consumers’ ability to walk away from the contract restricts the
amount of resources the monopolist can extract. The Lagrange multipliers on participation constraints act like
Pareto weights in our settings. Since private information implies that more productive types can always attain
the utility of less productive types, only the Lagrange multiplier on the lowest type can bind. So, Lagrangians
in non-linear pricing models with participation constraints resemble our model with Rawlsian weights.

16In Section B of the appendix, we overview Hölder and other functional spaces that will be used in the
sequel. Space C k,a is a space of k-times continuously differentiable functions with sufficiently well-behaved
(i.e., a-Hölder continuous) derivatives. Every (k + 1)-times continuously differentiable function with bounded
derivatives belongs to Hölder space C k,a.

17It is well-known that even the simplest PDE ∇11v + ∇22v = φ might fail to admit a twice continuously
differentiable solution if φ is merely continuous.
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utilitarian solution vx,∗,0 can be easily found explicitly. It is smooth and strongly convex,

which ensures both that vx,∗,0 ∈ C 2,a and that all other functions in the neighborhood of vx,∗,0

(in C 2,a space and its norm topology) are strongly convex as well. The Implicit Function

Theorem for Banach spaces then establishes the conclusion of Proposition 2. The hardest part

is checking the invertibility conditions necessary for applying the Implicit Function Theorem.

This condition is equivalent to showing that a solution to a certain linear PDE exists. We

show it by using results in Nardi (2015), and smoothness and compactness assumptions given

in Proposition 2 are sufficient conditions for his results to hold.

The general message that emerges from Propositions 1 and 2 is that, similarly to the uni-

dimensional models, the FOA is valid in our settings as long as the social planner is not too

redistributive. Motivated by this finding, for the rest of the paper, we assume that the FOA

is valid and describes properties of the optimal taxes implied by the solution to the relaxed

problem (13).

3.2 Optimality conditions to the relaxed problem and optimal taxes

We now describe the necessary and sufficient conditions that solutions to the relaxed problem

(13) must satisfy. To streamline the exposition, we do not provide formal statements of the

results in this section but present all conditions heuristically, implicitly assuming that all func-

tions are sufficiently smooth and well-behaved. The appendix provides all formal statements

and proofs.

It is more convenient to derive optimality conditions not for v itself but for its transforma-

tion λ = (λ1, λ2), which we define by

λi (w) := (∇iv (w)) γi−1wγii − 1. (18)

Transformation λ has a natural economic interpretation. If v is incentive compatible then the

tax function T that decentralizes this allocation satisfies the following condition:

∇iT (y (w))

1−∇iT (y (w))
= λi (w) . (19)

Thus, λi (w) is a monotone transformation of the marginal taxes on earnings of spouse i in

the couple of type w. Moreover, this equation shows that dependence of the marginal tax

rate of spouse i on earnings of spouse −i is captured by the dependence of λi on w−i. In

particular, equation (19) implies that sign (∇12T (y (w))) = sign (∇−iλi (w)). We say that

taxes are positively (negatively) jointed at w if this sign is positive (negative). We also refer

to separable taxes, for which this sign is also zero, as disjointed.
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We use v∗ to denote the solution to the relaxed problem (13), and λ∗ is the transformation

of v∗. We refer to the λ∗ as to the optimal distortions. The optimal marginal tax rates can be

backed out from λ∗ using (19).

Standard variational arguments can be used to show that if a solution v∗ to the relaxed

problem (13) is sufficiently smooth, then is must satisfy

2∑
i=1

∇i
(
λ∗i (w) γiwif (w)

)
= (α (w)− 1) f (w) on W o, (20)

with a corresponding boundary condition

2∑
i=1

λ∗i (w) γiwini (w) f (w) = 0 on ∂W, (21)

where n(w) is the outward unit normal to ∂W at w. Moreover, cross-partials of v∗ must agree,

in the sense that ∇1∇2v
∗ = ∇2∇1v

∗, which, using λ∗ transformation, can be written as

∇2

(
(1 + λ∗1 (w))

1/(γ1−1)w
γ1/(γ1−1)

1

)
= ∇1

(
(1 + λ∗2 (w))

1/(γ2−1)w
γ2/(γ2−1)

2

)
on W o. (22)

These conditions are not only necessary but also sufficient, in the sense that if there exists any

smooth function v∗ ∈ V that satisfies (20), (21), and (22), then there cannot be any other

v ∈ V , smooth or not, that gives higher welfare than Υ (v∗).

The optimality conditions show that the solution to the relaxed can be equivalently char-

acterized either as a second-order non-linear partial differential equation in v∗ or a system of

first-order non-linear partial differential equations in λ∗ subject to Neumann boundary con-

dition. Equations (20) and (21) are generalizations of optimality and boundary conditions of

uni-dimensional problems; equation (22) does not have a uni-dimensional analog.

Various versions of these conditions appeared in previous literature (e.g., Mirrlees (1986),

Kleven et al. (2007), Renes and Zoutman (2017), Spiritus et al. (2022)). Unfortunately, solving

such equations explicitly is hard, except in a few special cases, since mathematical literature

about such equations is not well-developed.18 Our approach is to sidestep the difficult task

of characterizing λ∗ analytically at every point w. Instead, we exploit the fact that equation

(20) is a relatively tractable linear differential equation in λ∗. As such, conditions (20) can

be integrated over various subsets of W . The Divergence Theorem and the Coarea Formula

allow then us to find various conditional averages of distortions λ∗ on the boundaries of these

18Renes and Zoutman (2017) show that if λ∗ is a conservative vector field (i.e., it is a gradient of some
function so that ∇2λ

∗
1 = ∇1λ

∗
2) then it can be characterized in some cases using so-called Green functions.

Unfortunately, there is no reason in general for λ∗ to be such a field; instead, the relevant auxiliary condition
is (22) which equivalent to requiring that ∇v is a conservative vector field. This equation is highly non-linear
which makes it difficult to find λ∗ or to use Green functions.
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subsets. As we shall see, these conditional averages contain much information about forces

that determine the optimal taxation of couples; provide insights about how taxes on married

individuals depend on earnings of their spouses and how those taxes compare to optimal taxes

on single persons; describe conditions under which separable taxation of each spouse’s income

or taxation of the joint family income are optimal; characterize dependence of taxes on the

correlation structure in productivities of spouses and on social weight. We collaborate on

these insights in Section 6, in which we numerically solve for the optimal taxes in a calibrated

economy.

4 Optimal taxes under the first order approach

In this section, we study implications of equations (20), (21), (22) for optimal taxation of

couples. To streamline our exposition, throughout this section we assume that the first order

approach is valid, W = R2
+, and the optimal distortions are continuous and bounded on W

with derivatives that are continuous and bounded on W o.

The uni-dimensional version of our model provides a natural point of comparison, and we

first review existing results about optimal taxation in such a economy. We use λsng,∗ to denote

the optimal distortions in the uni-dimensional model (G, α̃, γ).

Proposition 3. λsng,∗ is non-negative and satisfies

λsng,∗ (t) =

∫ t
0 (α̃ (w)− 1) g (w) dw

γtg (t)
=

∫∞
t (1− α̃ (w)) g (w) dw

γtg (t)
. (23)

Proof. In the uni-dimensional case, equation (20) is an ordinary differential equation. Integrate

it on [0, t] using the boundary condition λsng,∗ (0) = 0 to obtain the first equality in (23). The

rest follows from the fact that α̃ is decreasing and integrates to one.

Equation (23) is a version of Diamond’s “ABC” formula. To understand its intuition,

consider the following thought experiment. Suppose individuals face some, not necessarily

optimal, tax schedule T̃ (y) and let y (w) be earnings of type w under that schedule. Let’s

perturb T sng by increasing the marginal tax rate for all types on some interval [t, t+ dt] by

dτ . We assume that dτ and dt are small and allow dτ to take any sign. Equivalently, this

perturbation can be described as increasing tax rates on earnings in the [y (t) , y (t) +∇y (t) dt]

interval by dτ . Panels (a) and (b) of Figure 1 show it graphically in both w- and y-spaces.

This perturbation has two effects: (i) it reallocates resources from agents with produc-

tivities w > t to agents w < t, and (ii) it reduces earnings of the agents around w = t

threshold. We refer to these effects as benefits of redistribution and costs of distortions. To

17



t wit+ dt

Mass: g(t)dt

Mass: P(w ≥ t)
Value: E[α̃|w ≥ t]

(a)

y(t) y(t) +∇y(t)dt

y

T (y)

Slo
pe

: ∇
T (
y(
t))

+
dτ

(b)

t wit+ dt

Mass: g(t)dt

Mass: P(w ≤ t)
Value: E[α̃|w ≤ t]

(c)

Figure 1: Perturbations describing intuition for equation (26).

compute the benefits of redistribution, observe that we increased the tax level of all individuals

w > t by dτ∇y (t) dt without changing their tax rates. In the absence of income effects, earn-

ings of such individuals remain unchanged and, therefore, the government collects additional

dτ∇y (t) dt
∫∞
t g(w)dw in tax revenues. These revenues are returned in an equal amount to all

households. The social value of $1 in the hands of an average household is normalized 1 and the

social value of $1 in the hands of type w is α (w). Therefore, the net benefit of redistribution

is

B = dτ∇y (t) dt

[∫ ∞
t

g(w)dw −
∫ ∞
t

α̃ (w) g(w)dw

]
.

To calculate the cost of distortion, first observe that each type in the [t, t+ dt] interval

reduces their earnings19 by δdτ , where

δ =
γt∇y (t)

1−∇T̃ (y (t))
. (24)

This decreases the amount of taxes that each individual pays by ∇T̃ (y (t)) δdτ . There are

g (t) dt of such individuals, so the total reduction in tax revenues collected from them is

C = dτ∇y (t) dtγtg (t)
∇T̃ (y (t))

1−∇T̃ (y (t))
.

The net welfare effect of this perturbation is given by the difference between costs and

benefits,

B− C = dτ∇y (t) t

[∫ ∞
t

(1− α̃ (w)) g (w) dw − γtg (t)
∇T̃ (y (t))

1−∇T̃ (y (t))

]
. (25)

If the tax system is optimal then there can be no perturbation that improves welfare and,

therefore, the expression in square brackets must be zero. This gives the first equality in

equation (23).

19To show this result, differentiate the optimality condition 1−∇T̃ (y (w)) = (y (w))
1/γ−1 /w

1/γ .
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We could have considered an alternative perturbation of T̃ whereby we increase transfers

to all agents w < t, phased them out linearly on the interval [t, t+ dt], and adjust lump-tax

taxes to satisfy the government budget constraint. This perturbation, depicted in Figure 1(c)

in the w-space, directly leads to the second equality in equation (23). It yields no additional

insights in uni-dimensional settings as it is equivalent in the y-space to the perturbation shown

in panel (b).

Let θ (t) := −∂ ln(1−G)
∂ ln t and θ (t) := ∂ lnG

∂ ln t and observe that (23) can be written as

λsng,∗ (t) =
1− E [α̃|w ≥ t]

γθ (t)
=

E [α̃|w ≤ t]− 1

γθ (t)
. (26)

Thus, optimal distortions in the uni-dimensional case are given by the ratio of benefits of

redistribution, captured by 1 − E [α̃|w ≥ t] (or, equivalently, E [α̃|w ≤ t] − 1) to the costs of

distortions, captured by the product two elasticities: the labor supply elasticity parameter γ

and the elasticity of marginal distribution of productivities θ (t) (or, equivalently, θ (t)).

The key difficulty in transitioning from uni- to bi-dimensional analysis lies in the fact

that the optimality conditions (20), (21), and (22) no longer yield closed-form expressions

for λ∗, except in some special cases discussed below. We sidestep this difficulty by focusing

on equations (20) and (21). Systematically working with them, one can obtain a variety of

insightful conditional averages that describe λ∗. The unified treatment of all these conditional

averages can be obtained by using the Coarea Formula. This formula states that for any

function Q : R2
++ → R++ that satisfies mild technical restriction (see appendix for the details

and proofs) equations (20) and (21) imply

E

[
2∑
i=1

λ∗i γi
∂ lnQ

∂ lnwi

∣∣∣Q = t

]
=

1− E [α|Q ≥ t]
−∂ lnP (Q ≥ t) /∂ ln t

=
E [α|Q ≤ t]− 1

∂ lnP (Q ≤ t) /∂ ln t
. (27)

Formula (27) shows that optimal distortions in the bi-dimensional case can be represented

in the very general sense by the same trade-off between the benefits from redistribution and

the costs of distortions. The benefits of redistribution are captured by 1 − E [α|Q ≥ t] or

E [α|Q ≤ t]− 1. The costs of distortions are captured by a pair of labor elasticity parameters

γ and various elasticities of the joint distribution F , summarized by ∂ lnP (Q ≤ t) /∂ ln t or

−∂ lnP (Q ≥ t) /∂ ln t. Equation (27) should hold for any function Q, and by considering

various such functions, one can obtain a rich characterization of optimal distortions.

The intuition for (27) can be obtained by studying perturbations of the joint tax function

T whereby we increase tax levels by $ε for all couples w that satisfy Q (w) > q (or, alterna-
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tively, Q (w) < q) and adjust the lump sum tax component to satisfy the government budget

constraint. We illustrate examples of such perturbations later in this section.

4.1 Optimality of individual earnings-based taxation

Before considering the general implications of (27), it will be useful to discuss one special case

when optimal taxes can be found explicitly: the benchmark economy with independent types.

This is the same economy that we considered in Proposition 1. It is easy to verify that λ̃ given

in that proposition satisfies equations (20), (21), and (22) and, therefore, it is the optimal

distortion. Examining it yields the following result.

Proposition 4. In the benchmark economy with independent types, λ∗i is independent of w−i

and satisfies

λ∗i (t, w−i) =
1

2
λsng,∗ (t) ,

where λsng,∗ is the optimal distortion in the corresponding uni-dimensional economy. Optimal

taxes are separable, i.e., individual earnings-based.

This proposition shows two insights useful to understand intuition for our discussion below.

First, optimal distortions on married individuals are precisely one-half of those on single indi-

viduals. The intuition for this result can be understood from our discussion of the costs and

benefits of taxation. The costs of tax distortion for any individual with productivity t depends

only on the characteristics of that individual: her labor supply elasticity, productivity, and the

total mass of individuals with such productivity; it does not depend on how individuals match.

In contrast, the benefits of redistribution depend crucially on matching patterns because mar-

ried individuals share earnings with their spouses. When matching is random, every person t

marries, in expectation, an average person. This reduces the benefits of redistribution exactly

in half, leading to the result in Proposition 4.

The second insight of Proposition 4 is that optimal taxes in the benchmark economy with

independent types are disjointed. Before discussing the intuition for this result, it will be useful

to extend this insight first to non-benchmark economies. To state this result, we let θi and θi

denote the elasticities of marginals Gi defined by analogy with θ and θ in equation (26).

Corollary 1. In any economy with independent types and separable Pareto weights, λ∗i is

independent of w−i and satisfies

λ∗i (t, w−i) = βi
1− E [α̃i|wi ≥ t]

γiθi (t)
.

The optimal taxes are separable, i.e., individual earnings-based.
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This corollary shows that individual earnings-based taxation is optimal if Pareto weights

are separable and types are independent. Separable social weights treat each individual the

same irrespective of their partner’s identity, embedding implicit social preferences for indi-

vidual earnings-based taxation. Despite this preference, individual earnings-based taxation is

generally not optimal unless matching is random. If there is some assortativeness, the planner

would like to sacrifice pure individual earnings-based taxation in favor of some jointness in the

tax system, as this jointness can facilitate redistribution across individuals. This will be the

focus of our analysis in Section 4.3.

4.2 Average distortions

In this section, we study the optimal average distortions that we define as E
[
λ∗i

∣∣∣wi = t
]

=∫∞
0 λ∗i (t, w−i)F (dw−i|t). Economically, this is the mean optimal level of distortion of spouse

i with productivity t. Graphically, these are the distortions of individuals along the line

wi = t in the w-space, as shown in Figure 2. When W is compact, the expressions for the

optimal distortions can be easily obtained by integrating (20) over a half-plane {w : wi ≤ t}
or {w : wi ≥ t}, solving for the value of the integral on the boundary using the Divergence

Theorem, and simplifying using the boundary condition (21).20 The Divergence Theorem does

not directly apply when W is unbounded, but we can still obtain expressions for the average

distortions by setting Q (w) = wi in formula (27):

E
[
λ∗i
∣∣∣wi = t

]
=

1− E [α|wi ≥ t]
γiθi (t)

=
E [α|wi ≤ t]− 1

γiθi (t)
. (28)

Equation (28) is remarkably similar to the formula (26) in the uni-dimension case. The

intuition for it can be understood either by considering either a perturbation that raises $ε of

tax revenues from couples in the half-plane {w : wi > t} or by a perturbation that gives $ε of

transfers to couples in the half-plane {w : wi < t}, with appropriate adjustment of the rest of

the tax system,21 see Figure 2. The benefits from redistribution of the first perturbation is

1−E [α|wi ≥ t]. This is the social value of $1 in the hands of an average couple minus the value

of $1 in the hands of couples in the half-plane {w : wi > t}. The cost of distortion per dollar

20Kleven et al. (2007) used this approach to derive similar expression in their model.
21In the appendix, we formally describe this perturbation and use this perturbation to provide an alternative

derivation of (28). The crucial step is to perturb joint tax T in such a way that we change marginal tax rates
only on spouses in the [ti, ti + dt] interval in the w-space. This interval in the w-space maps into a non-trivial
band in the y-space that we characterize in the appendix. This is needed in order to express optimal tax
distortions in terms of the exogenous parameters of the model. This contrasts with perturbations considered
by Golosov et al. (2014) or Spiritus et al. (2022), which can be described as perturbations of taxes on some
[yi, yi + dy] interval in the y-space. Effects of such perturbations are easier to derive but lead to formulas that
express optimal distortions in terms of endogenous conditions, such as moments of earnings distribution that
depend on the optimal tax code. This makes them less suitable for conducting the comparative statics analysis.
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Figure 2: Perturbations describing intuition for equation (28)

of revenue is γiθi (t) = γitgi (t) /P(wi ≥ t). This cost depends on the labor supply elasticity,

the productivity of spouse i, and the ratio of the density of spouses i with productivity t to

the total mass of couples whose spouse i has productivity wi > t.

We first use equation (28) to study how optimal average distortions depend on the assor-

tativeness of matching. We start with the benchmark economy, where analysis is particularly

transparent, before extending our results to the general economy. In the benchmark economy,

Pareto weights are separable, and we can explicitly unpack integral 1− E [α|wi ≥ t] as

1− E [α|wi ≥ t] =
1

2

∫ ∞
t

(1− α̃ (wi))
dG (wi)

1−G (t)
+

1

2

∫ ∞
0

(1− α̃ (w−i)) dF (w−i|wi ≥ t) , (29)

where F (w−i|wi ≥ t) :=
∫∞
t F (w−i|wi) dG(wi)

1−G(t) . This equation decomposes the redistributive

benefit from a marginal tax on individual wi into two components: the benefit of extracting tax

revenues from individuals wi > t (the first term on the right-hand side of (29)) and the benefit

of extracting revenues from their spouse (the second term on the right-hand side of (29)).

This second term is zero when matching as random, as it was in the economy considered in

Proposition 4. More generally, this term suggests that the redistributive benefits and optimal

distortions should be higher in economies with more assortative matching between spouses.

The following proposition formalizes this intuition.

Proposition 5. Consider benchmark economies
(
F b, α,γ

)
and (F a, α,γ) with F a ≤PQD F b.

Then,

Ea
[
λa,∗i |wi = t

]
≤ Eb

[
λb,∗i |wi = t

]
≤ λsng,∗ (t) for all t,

where λsng,∗ are optimal distortions in the corresponding uni-dimensional economy.

Proposition 5 shows that optimal average distortions are ranked by dependence, so stronger

dependence implies higher average distortions. The average distortions are lowest and high-

est in economies with perfect negative and positive assortative matching; in the latter case,
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they also coincide with distortions in the corresponding uni-dimensional economy. As long as

matching is not perfectly positive assortative, optimal distortions for a married person are, on

average, lower than for a single person of the same productivity. Some redistribution occurs

within couples even in the absence of taxation, and it is costly to crowd it out via distortionary

taxation.

Proposition 5 extends directly to any economy with separable Pareto weights:

Corollary 2. Consider economies
(
F b, α,γ

)
and (F a, α,γ) with F a ≤PQD F b and separable

α. Then,

Ea
[
λa,∗i |wi = t

]
≤ Eb

[
λb,∗i |wi = t

]
for all t.

We now focus on understanding the role of non-separability of social weights. We fo-

cus on implications of super- and sub-modularity, which restricts the cross-partial derivatives

of α to have the same sign. Mathematically, α is (strictly) supermodular if the difference

α (w′′, ·) − α (w′, ·) is (strictly) decreasing for all w′′, w′ with w′′ ≥ w′; submodularity is de-

fined analogously through increasing difference. Economically, supermodularity means that

the social planner puts similarly low weights on couples with both very productive spouses;

submodularity means that the social planner puts similarly high weights on couples with both

very unproductive spouses. Thus, supermodularity favors raising revenues from couples in the

upper right orthants; submodularity implicitly favors targeting transfers to couples in the lower

left orthants.

We now characterize implications of dependence for super- and sub-modular planners. Note

that F and α are related through the normalization E [α] = 1. Therefore, in order to compare

two distributions with different degree of dependence we need to re-normalize Pareto weights

to ensure that they integrate to one. We say that αb ∼ αa if αa, αb are the same up to the

normalization constant, that is if the ratio αb (w) /αa (w) is independent of w. Note that this

re-normalization is not needed when α is separable, since in that case Ea [α] = Eb [α] for any

F a, F b with the same marginals.

Corollary 3. Consider economies
(
F b, αb,γ

)
and (F a, αa,γ) with F a ≤PQD F b and αb ∼ αa.

Then,

lim
t→∞

Eb
[
λb,∗i |wi = t

]
Ea
[
λa,∗i |wi = t

] ≥ 1 if αa is supermodular,

lim
t→0

Eb
[
λb,∗i |wi = t

]
Ea
[
λa,∗i |wi = t

] ≥ 1 if αa is submodular.

Moreover, both inequalities are strict if F a <PQD F b and super- and sub-modularities are

strict.
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When social weights are non-separable, the results of Proposition 5 apply in the tails.

A supermodular planner has a strong desire to extract resources from couples in orthants

{w : w > t} with large t. When productivities are more dependent, there are more couples

in those orthants and hence larger redistributive benefits of raising taxes from spouses with

high ti. On the other hand, a submodular planner has a strong desire to transfer resources to

couples in orthants {w : w < t} with small t. Stronger dependence means that there are more

couples in those orthants and hence larger benefits of transfers to spouses with low ti. Higher

transfers, in turn, lead to higher optimal distortions when those transfers are phased-out.

We finish this section by considering the effect of redistributiveness of Pareto weights

on optimal average distortions. We say that weights αb are more redistributory than αa if

αa (w′)αb (w′′) ≥ αb (w′ ∨w′′)αa (w′ ∧w′′) for all w′,w′′. A reader might recognize that this

definition is the multivariate likelihood order.22 It is a multi-dimensional generalization of a

more familiar uni-dimensional version that states that α̃b dominates in likelihood order α̃a if

the ratio α̃b (w) /α̃a (w) is decreasing in w.

Proposition 6. Consider economies
(
F, αb,γ

)
and (F, αa,γ) and suppose that f is log-

supermodular. If either αb are more redistributory than αa, or the economies are benchmark

and α̃b are more redistributory than α̃a, then

E
[
λa,∗i |wi = t

]
≤ E

[
λb,∗i |wi = t

]
for all t.

This proposition shows that more redistributive planners generally choose higher optimal

average distortions. Log-supermodularity of f is satisfied by many common distributions, e.g.,

by the bivariate log-normal distribution with a non-negative correlation parameter (see Karlin

and Rinott (1980) for other examples and proofs).

4.3 Average jointness

In this section, we discuss jointness of the optimal tax schedule. We focus on the following

measure of jointness,

Ji (t) =
E[λ∗i |wi = ti, w−i ≥ t−i]
E[λ∗i |wi = ti, w−i ≤ t−i]

− 1, (30)

which we refer to as average jointness. This measure is positive (negative) if distortions of

spouse i increase (decrease) in the productivity of their partner. If separable taxes are optimal,

then Ji ≡ 0 for both spouses. A useful device to analyze jointness are functions Hi and H i

defined as

Hi (t) :=
E [λ∗i |wi = ti, w−i ≤ t−i]

E [λ∗i |wi = ti]
, H i (t) :=

E [λ∗i |wi = ti, w−i ≥ t−i]
E [λ∗i |wi = ti]

.

22See Chapter 6.E of Shaked and Shanthikumar (2007) for a discussion of this order and its properties.
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These functions compare conditional average distortions (e.g., the average distortion of spouse

i with productivity ti conditional on their partner’s productivity being either less or more

than t−i) and unconditional average distortions. Clearly, Ji = H i/Hi − 1 and sign (Ji(t)) =

sign
(
H i(t)− 1

)
= sign (1−Hi(t)).

As the first step to our characterization, use Q(w1, w2) = max{k1w1, k2w2} for some k ∈
R2
++ in formula (27). By setting ti = t/ki, it implies that∑

i

γiθi (ti) ηi (t)E [λ∗i |wi = ti, w−i ≥ t−i] = 1− E [α|w ≥ t] , (31)

∑
i

γiθi (ti) ηi (t)E [λ∗i |wi = ti, w−i ≤ t−i] = E [α|w ≤ t]− 1, (32)

where ηi(t) := P(w−i≥t−i|wi=ti)
P(w−i≥t−i|wi≥ti) and ηi(t) := P(w−i≤t−i|wi=ti)

P(w−i≤t−i|wi≤ti) .

Two statistics η and η play an important role in determining optimal jointness. We refer

to these statistics as copula and survival copula elasticities since they can be represented as

ηi(t) =
∂ lnC(u)

∂ lnui
= 1 +

∂ ln [C(u)/ui]

∂ lnui
, (33)

ηi(t) =
∂ lnC(u)

∂ lnui
= 1 +

∂ ln
[
C(u)/ui

]
∂ lnui

,

where derivatives of copulas are evaluated at quantiles of t, i.e., {ui = G(ti)} and {ui = 1−G(ti)},
respectively. The copula representation is helpful as it highlights the economic intuition behind

these elasticities: ηi is the percentage change of the conditional quantile of the spouse −i’s pro-

ductivity, C/ui, when the quantile of spouse i’s productivity, ui, increases by 1%; similarly, ηi

is the percentage change of the conditional survival quantile, C/ui. These elasticities are equal

to one when types are independent and are decreasing in the strength of orthant dependence.23

4.3.1 Average jointness in the benchmark economy

Before analyzing the general case, it will be helpful to consider optimal jointness in the bench-

mark economy along the diagonal t1 = t2 = t. This case illustrates forces determining optimal

23Recall (see, e.g., Chapter 9.B in Shaked and Shanthikumar (2007)) that F b dominates F a in the lower
orthant decreasing ratio order (LORD), F a ≤LODR F b, if F a and F b have the same marginals and the ratio
of corresponding copulas Cb(u)/Ca(u) is decreasing in u. Similarly, F b dominates F a in the upper orthant
decreasing ratio order (UORD), F a ≤UODR F b, if the same relationship holds for their survival copulas. LORD
or UORD order implies PQD order, so these notions of dependence are somewhat stronger than PQD. It is easy
to verify the following relationship between orthant dependence and copula elasticities for all w:

F a ≤LODR F b =⇒ ηa(w) ≥ ηb(w),

F a ≤UOIR F b =⇒ ηa(w) ≥ ηb(w).
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Figure 3: Perturbations describing effects of introducing jointness in upper right (panel (a)) and lower left
(panel (b)) orthants.

jointness in a transparent way. In the benchmark economy, we can explicitly solve for H(t, t).

Indeed, invert (31) to obtain

E [λ∗i |wi = t, w−i ≥ t] =
1− E [α|w ≥ (t, t)]

2η(t, t)γθ(t)
. (34)

Then, combine equations (34) and (28) to get the following expression for H(t, t):

H (t, t) =
1

2η(t, t)

1− E [α|w ≥ (t, t)]

1− E [α|wi ≥ ti]
. (35)

Equation (35) highlights the main trade-off determining optimal jointness. To develop the

intuition for this expression, consider the following thought experiment. Take a disjointed

tax schedule T (y1, y2) = T̃ (y1) + T̃ (y2) and slightly perturb it introducing jointness. Specifi-

cally, increase the level of taxes by some amount ε for all couples whose productivities satisfy

min{w1, w2} > t and adjust the lump sum component of the tax schedule to satisfy the govern-

ment budget constraint. Such perturbation increases marginal taxes for all individuals on the

boundary of orthant {w : w > (t, t)} by dτ (see Figure 3(a)). Jointness is positive if dτ > 0

and negative if dτ < 0.

This perturbation has redistributory benefits and distortionary costs. The redistributive

benefits are calculated by the analogy with the example at the beginning of Section 4 and can

be written as

B = ∇y(t)dtdτ

∫ ∞
t

∫ ∞
t

(1− α(w))f(w)dw.

The distortionary costs arise because of behavioral responses. To calculate these costs, observe

that, since we started with a disjointed tax schedule, the reduction in earnings of every distorted

individual equals to δdτ , where δ is the same as in the uni-dimensional case (see equation (24)).

There are 2g(t)(1 − F (t|t))dt of distorted individuals. Therefore, the total cost of distortions
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is

C = ∇y (t) dtdτγt2g(t)(1− F (t|t)) ∇T̃ (y(t))

1−∇T̃ (y(t))
.

The net welfare effect of introducing jointness is the difference between benefits and costs:

B− C = ∇y(t)dtdτP (w ≥ (t, t)) (36)

×

(1− E [α|w ≥ (t, t)])− 2P(wi ≥ t)P(w−i ≥ t|wi = t)

P(w−i ≥ t, wi ≥ t)︸ ︷︷ ︸
=2η(t,t)

tg(t)

1−G(t)︸ ︷︷ ︸
=θ(t)

γ
∇T̃ (y(t))

1−∇T̃ (y(t))

 .
In this formula, θγ captures distortions from the separable tax schedule T̃ and is familiar from

Section 4.2. The new term, 2η, measures additional distortions introduced by jointness.24 The

numerator of 2η captures the number of couples distorted by jointness, while the denomina-

tor is the number of couples paying higher average taxes due to jointness. Thus, 2η reflects

distortions from jointness in the similar way g/(1 −G) captures distortions from taxing indi-

vidual. As formula (36) shows, positive jointness can improve welfare by targeting taxes to

the richest couples, negative jointness can improve welfare by reducing distortions associated

with separable taxes T̃ .

Formula (36) applies to an arbitrary separable tax schedule. To see the connection to

equation (35), evaluate (36) at the optimal separable tax, T̃ ∗. While we study such taxes

formally in Section 5, it is easy to use perturbational arguments to show that T̃ ∗ must satisfy

∇T̃ ∗(y(t))

1−∇T̃ ∗(y(t))
=

1− E [α|wi ≥ t]
γθ(t)

. (37)

Substitute equation (37) into (36) and re-arrange to obtain that B− C is proportional to

1

2η(t, t)

1− E [α|w ≥ (t, t)]

1− E [α|wi ≥ ti]
− 1,

which is exactly the same as H(t, t)− 1 due to equation (35).

This thought experiment highlights that H(t, t) in equation (35) is a product of two terms:

the costs of additional distortions due to positive jointness, captured by 1/2η(t, t), and ad-

ditional benefits of redistribution that such jointness provides. When types are independent,

these additional benefits and costs exactly offset each other, so that H(t, t) = 1, and aver-

age jointness is zero.25 Positive dependence increases the redistributory benefits of jointness

24Elasticity η is multiplied by 2 because our perturbation introduced additional distortions on two individuals
simultaneously, spouse 1 with productivity t and spouse 2 with productivity t.

25In fact, it is zero everywhere as we showed in Proposition 4.
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1−E [α|w ≥ (t, t)], but at the same time it decreases its costs 2η(t, t). For a fixed tax schedule

T̃ , equation (36) shows that the net welfare effect of positive jointness is higher with stronger

dependence. However, as equation (37) and our analysis in Proposition 5 showed, higher de-

pendence also increases the optimal separable tax T̃ ∗ and hence the distortions associated with

it. Thus, whether positive dependence favors positive or negative jointness depends on which

of these two forces dominates. The answer to this question turns out to be closely related to

concepts of right-tail dependence and independence.

Recall that a joint distribution is right-tail independent (dependent) if limu→0C(u, u)/u

is equal to zero (strictly positive).26 Intuitively, if the probability that partners of extremely

productive spouses are also extremely productive goes to zero, then the distribution is right-tail

independent; if this probability is bounded away from zero then it is right-tail dependent. To

see the distinction, suppose that lnw1 and lnw2 are drawn from a standard bivariate normal

distribution with correlation parameter ρ > 0. Positive correlation implies that the joint

distribution of productivities is positively dependent, so that high value of wi implies that w−i

is likely to be high as well. However, the joint distribution is right-tail independent for any

ρ since limwi→∞ P(w−i ≥ t|wi ≥ t) = 0. Contrast this with the case of perfect assortative

matching, which can be informally thought of as a limit ρ = 1 in this example. Perfectly

dependent distributions are both positively dependent and right-tail dependent since for them

P(w−i ≥ t|wi ≥ t) = 1 for all wi.

Statistics κ := limu→0 lnu/ lnC(u, u) is used to measure the speed of convergence to the

right-tail independence. κ = 1 for right-tail dependent distributions and κ ∈ [12 , 1) for positively

dependent but right-tail independent distributions, with higher values of κ corresponding to

the slower speed of convergence.27

These definitions allows us to characterize jointness in the right tail. Observe, using

26See Nelsen (2006) or Shaked and Shanthikumar (2007) for overview of these concepts. To simplify our
illustrations, we implicitly focus on the case of symmetric distributions in this paragraph, which are the only
distributions that we consider in Section 4.3.1. This allows us to drop quantile representation and work with
conditional probabilities of productivities directly. Analogous discussions, just translated into quantile spaces,
apply to asymmetric distributions.

27Ledford and Tawn (1996, 1998) showed that under weak conditions, the right-tail behavior of a symmetric
distribution could be written as

P(w1 ≥ t, w2 ≥ t) ∼ L(t) ·
[
P(wi ≥ t)

]1/κ
as t→∞,

where L is some function such that L
(
G−1

(
e−1/t

))
is “slowly varying”, which is a certain generalization of

functions that converge as t → ∞. As can be seen from the above expression, larger values of κ ∈ [1/2, 1)
mean slower convergence to independence. Coles et al. (1999); Heffernan (2000); Hua and Joe (2014) discuss
the theoretical properties and empirical estimation of these statistics.
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L’Hostpital’s rule, that limt→∞ 1/2η(t, t) = κ and, therefore, equation (35) implies28

lim
t→∞

H (t, t) =
κ (1− α̃(∞))

1− 1
2 α̃(∞)− 1

2E [α̃(w−i)|wi =∞]
. (38)

Since E [α̃(w−i)|wi =∞] ∈ [α̃(∞), 1] for positively dependent distributions, we immediately

obtain the following result.

Lemma 4. Suppose F is positively dependent and α̃ is strictly decreasing.

If F is right-tail dependent, then limt→∞H (t, t) ≥ 1. This inequality is strict if F (·|∞) is

non-degenerate (as, e.g., in the case when F is given by a t-copula).

If F is right-tail independent and either κ = 1
2 or F (·|∞) is degenerate, then limt→∞H (t, t) ≤

1. This inequality is strict if either κ < 1 and F (·|∞) is degenerate (as, e.g, in the case when

F is given by a Gaussian copula) or if κ = 1
2 and F is strictly first-order dominated by G (as,

e.g., in the case when F is given by an FGM copula).

This lemma shows that the sign of optimal jointness is essentially determined by tail-

(in)dependence. For right-tail dependent distributions, very productive spouses are married

to very productive partners with positive probability. In this case, the benefits of additional

redistribution outweigh the cost of distortions and optimal average jointness is positive for

very productive couples. For right-tail independent distributions, generally the opposite is the

case.29

Our discussion so far has focused on how jointness helps the planner to target taxes to

the richest couples. We can alternatively consider how jointness helps to target transfers to

the poorest couples (see panel (b) of Figure 3). As can be expected, our previous discussions

apply directly with minor modifications. For example, we would consider H(t, t) rather than

H(t, t), left-tail (in)dependence captured by the value of limu→0C(u, u)/u, and the speed of

convergence κ := limu→0 lnu/ lnC(u, u). Despite many parallels, there is one critical difference.

While targeting of taxes to the richest couples is facilitated by positive jointness, targeting of

transfers to the poorest couples is facilitated by negative jointness. This implies that the

pros and cons of jointness flip: the redistributive benefits of transfer-targeting favor negative

jointness while the reduction in the costs of distortions from separable transfers favors positive

jointness. We summarize the results for both tails in the following proposition.

28We use α̃(∞) and E [α|wi =∞] to denote limits of α̃(t) and E [α|wi ≥ t] as t→∞. Such limits exist since
α (and α̃) are continuous, bounded, and decreasing. Similarly, F (·|∞) denotes the limit of F (·|t), in the weak
convergence sense. We say that F (·|∞) is degenerate if F (t|∞) = 0 for all finite t. Analogous definitions and
considerations apply also to the left limit, t→ 0.

29Lemma 4 does not include cases of right-tail independent distributions for which κ ∈ ( 1
2
, 1) and F (·|∞) is

non-degenerate. For such distributions, the average jointness may take either sign. While such distributions
exist, they are scarce in the sense that most commonly used copulas satisfy one of the conditions listed in
Proposition 7 (see Hua and Joe (2011, 2014) for details).
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Proposition 7. Consider a benchmark economy with F ≥PQD G ·G.

If F is right-tail dependent (left-tail dependent), then the redistributive benefit of jointness

dominates, and optimal average jointness is positive at the top, limt→∞ J (t, t) ≥ 0 (negative

at the bottom, limt→0 J (t, t) ≤ 0).

If F is right-tail independent (left-tail dependent) and either the speed of convergence is 1
2

or the limiting distribution is degenerate, then the distortion costs of jointness dominates, and

optimal average jointness is negative at the top, limt→∞ J (t, t) ≤ 0 (positive at the bottom,

limt→0 J (t, t) ≥ 0).

While Proposition 7 describes jointness in the tails, in some cases we can characterize it

more generally. The next proposition shows that if F is given by the FGM copula then there

is a unique point on the diagonal at which average jointness switches its sign from positive to

negative:

Corollary 4. Consider a benchmark economy in which α̃ is strictly decreasing and F is given

by the FGM copula with ρ > 0. Then, there exists some t̂ > 0 such that J (t, t) > 0 for all

t < t̂ and J (t, t) < 0 for all t > t̂.

4.3.2 Average jointness in general

We now turn to our general economy and show that most of the insights from Section 4.3.1

continue to hold. We show this results in two steps: Corollary 5 considers implications for

average jointness along the diagonal t = (t, t) for symmetric economies with super- and sub-

modular Pareto weights, while Corollary 6 extends those results to the general case.

Corollary 5. Consider a symmetric economy with F ≥PQD G ·G.

If α is supermodular, then all conclusions of Proposition 7 hold except that the sign of

limt→0 J (t, t) is ambiguous if F is left-tail independent and κ = 1
2 .

If α is submodular, then all conclusions of Proposition 7 hold except that the sign of

limt→∞ J (t, t) is ambiguous if F is right-tail independent and κ = 1
2 .

The main takeaway from this corollary is that all but one result from Proposition 7 continue

to apply to sub- and supermodular social weights. The intuition for this parallels that of

Corollary 3: supermodularity strengthens the redistributive benefits from targeting taxes to

couples in upper right quadrants but has an ambiguous effect on these benefits in bottom left

quadrants; submodularity strengthens the redistributive benefits from targeting transfers to

couples in lower left quadrants. Keeping these observations in mind, the analysis of different

cases considered in Proposition 7 goes through with minimal changes.
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Conclusions of Corollary 5 extend to the general economy for at least one spouse, provided

that appropriate limits are well-behaved along any ray.

Corollary 6. Consider a general economy and fix s ∈ R2
++.

(a). If
(
H i (tu) , Hi (tu)

)
i=1,2

, where tu =
(
G−1i (1− siu)

)
i=1,2

, converges as u → 0 and

each ∇iC (u) is non-decreasing in ui in a neighborhood of 0, then conclusions of Proposition

7 and Corollary 5 hold for at least one spouse.

(b). If
(
H i (tu) , Hi (tu)

)
i=1,2

, where tu =
(
G−1i (siu)

)
i=1,2

, converges as u → 0 and each

∇iC (u) is non-decreasing in ui in a neighborhood of 0, then conclusions of Proposition 7 and

Corollary 5 hold for at least one spouse.

The monotonicity conditions for ∇iC and ∇iC are sufficient to ensure that the copula and

the survival copula of F are well-behaved in the limits along rays. These conditions are often

encountered in the extreme value theory (see, e.g., Hua and Joe (2011)) and hold for FGM,

Gaussian, and t-copulas when ρ > 0.

Relationship to KKS

The results in Corollary 5 are related to the analysis of jointness in Section 3 of the working

paper by Kleven et al. (2007). Those authors focus on independent distributions and welfare

captured by social welfare functions (SWFs). They show that the optimal jointness takes the

opposite sign from the third derivative of the SWF. In our setting, it can be re-stated in terms

of modularity of Pareto weights (see the appendix for details): in the symmetric economy with

independent types, Ji (t) ≤ 0 and ∇−iλ∗i (t) ≤ 0 for all t (J (t) ≥ 0 and ∇−iλ∗i (t) ≥ 0 for all

t) if α is supermodular (submodular).

This result hinges critically on the assumption of independence and can break down even

with small positive dependence. To see that, consider the Gaussian copula. First, suppose that

ρ = 0, so that types are independent. In this case, the limiting distribution F (·|0) satisfies

F (·|0) = G (·) and, therefore, limt→0H (t, t) = α(0,0)−1
2(E[α(·,0)]−1) . By independence and symmetry,

we have

2 (E [α (·, 0)]− 1)− (α (0, 0)− 1) = E [α (w1, 0) + α (0, w2)− α (0, 0)− α (w1, w2)] ≤ 0,

where the last inequality follows from the definition of supermodularity. As a result, limt→0 J (t, t) ≤
0 and average jointness at the bottom is negative when types are independent. Contrast that

with the case when there is any positive dependence, ρ > 0. In this case, since the condi-

tional distribution F (·|0) is degenerate, limt→0H (t, t) = 1+ρ
2

α(0,0)−1
α(0,0)−1 < 1. This implies that

limt→0 J (t, t) > 0, so that strictly positive jointness at the bottom is optimal.
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4.4 Distortions within and across families

In Sections 4.2 and 4.3, we focused on comparing distortions across married individuals. We

now turn our attention to comparing distortions within couples. To make our analysis more

transparent, we focus here on the case when γ1 = γ2, leaving the discussion of the general case

to the appendix.

It will be convenient to change coordinates that describe the type-space W . Define new

coordinates (r, ι) using a bijection

(r, ι)↔
((

w
1/(1−γ)

1 + w
1/(1−γ)

2

)1−γ
,
w2

w1

)
:= (R (w) , I (w)) .

In these new coordinates, r is a measure of total family productivity, and ι is the relative

productivity of the two spouses. We use L (r, ι) to denote the joint distribution of productivities

in the (r, ι)-space, and Lr (r) and Lι (ι) to denote the two marginals of L. We use θr, θr and

θι, θι to denote elasticites of Lr (r) and Lι (ι). We say that α is measurable only w.r.t. r if it

takes the form α (w) = α̃ (R (w)) for some function α̃ : R+ → R+.

In what follows, we use our general formula (27) to derive implications for average and

relative distortions for couples. By setting Q (w) = R (w) and Q (w) = I (w) respectively, we

obtain

E

[
2∑
i=1

w
1/(1−γ)

i

w
1/(1−γ)

1 + w
1/(1−γ)

2

λ∗i

∣∣∣∣∣R = r

]
=

1− E
[
α|R ≥ r

]
γθr (r)

(39)

and

E
[
λ∗2 − λ∗1

∣∣I = ι
]

=
1− E

[
α
∣∣I ≥ ι]

γθι (ι)
. (40)

Formula (39) derives the expression for the average distortion of couples that have total

productivity r, where the distortion of each spouse is weighted with a measure of their relative

productivity, or earnings, w
1/(1−γ)

i

/(
w

1/(1−γ)

1 + w
1/(1−γ)

2

)
. The expectation is taken over all

couples with the total productivity of r. Formula (40) describes how these average distortions

are allocated optimally between the two spouses. Both formulas resemble the expression for the

optimal average distortions of individuals, equation (28), but each time a different elasticity of

the joint distribution of productivities summarizes the relevant measure of deadweight losses.

The optimal average distortions of individuals are determined by the elasticity of marginal

distribution of individual productivity, θ; whereas the optimal average distortions of couples

are determined by the elasticity of the marginal distribution of total couple productivity, θr,

and the optimal relative distortions of the spouses are determined by the elasticity of the

marginal of their relative productivities, θι.
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Equation (40) allows us to compare distortions between the two spouses and study con-

ditions under which the primary and the secondary earner (i.e., the spouse with higher and

lower productivity, respectively) face identical marginal taxes.

Proposition 8. Consider an economy with γ1 = γ2 and in which limt→0 θι (t) , θr (t) and

limt→∞ θι (t) , θr (t) are well-defined and finite.

(a). If α (w, 0) ≥ 1 for all w, then limι→0 E
[
λ∗2 − λ∗1

∣∣I = ι
]
≥ 0;

(b). Suppose that α is measurable only w.r.t. r, that r and ι are independent, and that

λ̃ (r) :=
∫∞
r (1−α̃(r))lr(s)ds

γrlr(r)
is continuously differentiable with a bounded derivative. Then, the

optimal tax system is family earnings-based, and it satisfies λ∗2 (w) = λ∗1 (w) = λ̃ (R (w)) for

all w.

(c). Consider any two economies,
(
Lb, α,γ

)
and (La, α,γ) with α measurable only w.r.t.

r. If La ≤PQD Lb, then Eb
[
λb,∗2 − λ

b,∗
1

∣∣I = ι
]
≥ Ea

[
λa,∗2 − λ

a,∗
1

∣∣I = ι
]

for all ι.

Proposition 8 provides several sets of conditions that shed light on how distortions are

allocated within families. Part (a) considers the case in which the social planner values some

redistribution to couples with a very unproductive spouse, captured by the condition α(·, 0) ≥
1. In this case, the optimal distortion on the secondary earner is on average higher than

on the primary earner, provided that the gap in their productivities 1/ι is sufficiently large.

The secondary earner faces higher distortions because of the phasing out of transfers. Under

conditions of part (a), the planner would like to target some transfers to couples with a very

low-earning spouse. As the productivity of that spouse increases, it is optimal to phase such

transfers out, leading to high distortions for the secondary earner.

Parts (b) and (c) explore different social weights, the ones that value each couple only based

on their total productivity r. Part (b) shows that in this case the optimal tax system is family

earnings-based if the total productivity r and the relative productivity ι are independent.

When these productivities are not independent, family earnings-based taxation is typically

suboptimal, and part (c) of Proposition 8 shows how the strength of dependence affects the

magnitude of the relative distortions, λ∗2 − λ∗1.
The results in parts (b) and (c) of Proposition 8 bear a strong resemblance to the results

of Propositions 4 and 5. In Propositions 4 and 5, we considered separable Pareto weights.

Such social weights favor individual earning-based taxation. Despite preference for such taxa-

tion, the planner chooses individual earnings-based taxes only if individual productivities are

independent. Similarly, the planner in parts (b) and (c) of Proposition 8 inherently favors

family-based taxation but finds it optimal to depart of it if total family productivity r is not

independent from the relative productivity ι of the spouses.

33



5 Optimal restricted taxation

In Sections 3 and 4, we considered properties of the optimal taxes T ∗ (y) where tax function

T ∗ have no further ad-hoc restrictions. We showed conditions under which this unrestricted

T ∗ is anonymous, individual, or family earnings-based. One may want to consider the opposite

question: how should the planner set taxes optimally that are exogenously restricted to satisfy

any of these conditions? Such taxes are frequently used in practice, and knowing how they can

be optimally designed is valuable.

As in Section 4, we assume that the first-order approach is valid, W = R2
+, and the optimal

distortions are continuous and bounded onW with derivatives that are continuous and bounded

on W o. The following lemma shows that adapting our techniques to study the optimal form

of such restricted taxes is remarkably easy.

Lemma 5. Consider an economy with γ1 = γ2.

(a) Optimal anonymous taxes are characterized by (13) with an additional restriction that

v is symmetric;

(b) Optimal individual earnings-based taxes are characterized by (13) with an additional

restriction that v is separable;

(c) Optimal family earnings-based taxes are characterized by (13) with an additional re-

striction that v is measurable only w.r.t. r.

To understand the economic implications of these measurability restrictions, consider case

(a). In the unrestricted case, the tax system allows the planner to condition taxes on the

identity of spouse i. Thus, if the planner observes a vector of earnings (y1, y2), she knows that

it is supported by the marginal distribution F (w1, w2) and applies Pareto weights α(w1, w2).

However, when taxes are anonymous, the planner cannot distinguish between vectors (y1, y2)

and (y2, y1). Thus, conditional on observing (y1, y2), the planner only knows that productivities

were drawn from the unconditional probability F anon(w1, w2) = 1
2F (w1, w2) + 1

2F (w2, w1) and

can only use the unconditional weights

αanon (w1, w2) =
α (w1, w2) f (w1, w2) + α (w2, w1) f (w2, w1)

f (w1, w2) + f (w2, w1)
.

As a result, the mechanism design problem that characterizes optimal anonymous taxes and

its necessary and sufficient conditions are the same as (13) and (20), (21), (22) respectively,

except F and α are replaced with F anon and αanon. Similar logic applies to (b) and (c).

Let λanon,∗, λind,∗, and λfam,∗ be optimal distortions under anonymous, individual earnings-

and family earnings-based taxation. As before, θ
anon

denotes the right tail elasticity of the

marginal of F anon.
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Proposition 9. Consider an economy with γ1 = γ2 and suppose that both expressions in (42)

and (43) are bounded from below by some λ > −1.

(a) Optimal distortions of anonymous taxes satisfy

E
[
λanon,∗i

∣∣∣wi = t
]

=
1− Eanon [αanon|wi ≥ t]

γθ
anon

(t)
. (41)

(b) Optimal distortions of individual earnings-based taxes satisfy

λind,∗i (t) =
1− E

[
α
∣∣wi ≥ t]

γθi (t)
. (42)

(c) Optimal distortions of family earnings-based taxes satisfy

λfam,∗ (r) =
1− E[α|R ≥ r]

γθr (r)
. (43)

This proposition derives expressions for the optimal distortions under restricted taxation.

One of the key observations is that the right-hand sides of equations (41), (42) and (43) bear

a strong resemblance to optimality conditions for unrestricted taxes, equations (28) and (39).

Comparing these conditions, we conclude that optimal distortions under restricted taxation

are the same on average as under unrestricted taxation.

Corollary 7. Under the condition of Proposition 9, the relationship between optimal restricted

and unrestricted taxes is

E
[
λanon,∗i

∣∣∣wi = t
]

=
2∑
i=1

gi (t)

g1 (t) + g2 (t)
E
[
λ∗i
∣∣∣wi = t

]
,

λind,∗i (t) = E
[
λ∗i
∣∣∣wi = t

]
,

λfam,∗ (r) = E

[
2∑
i=1

w
1/(1−γ)

i

w
1/(1−γ)

1 + w
1/(1−γ)

2

λ∗i
∣∣∣R = r

]
.

This corollary shows that the analysis of unrestricted taxes also provides insights into the

design of restricted taxes. The unrestricted and restricted optimal marginal taxes are chosen

to equalize benefits from redistribution to costs of distortions due to changes in labor supply.

The main difference is that the unrestricted planner can perturb taxes flexibly; as a result,

the optimal marginal taxes can be tagged to (w1, w2), equalizing benefits and costs point-wise.

In contrast, the restricted planner cannot freely perturb taxes because certain couples cannot

be distinguished and must be bunched; thus the optimal taxes equalize benefits and costs on

average.
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6 Quantitative analysis

In this section, we illustrate theoretical implications of our analysis using a quantitative model.

6.1 Calibration

To calibrate our model, we use data on earnings of couples from 2020 CPS survey. We restrict

attention to couples in which both individuals are between 25 and 65 years old and worked at

least 20 weeks in 2019. We invert the joint distribution of earnings to obtain the distribution

of productivities. In order to do so, we assume that the environment is symmetric and set

γ = 1/4, so that the implied labor supply elasticity of 1/3 is the mid-range of values considered

by Diamond (1998). Following Guner et al. (2014) and Heathcote et al. (2017), who argue

that the U.S. tax schedule is such that family post-tax earnings are approximately a log-

linear function of family pre-tax earnings, we assume that households in the data face taxes

of the form T (y1, y2) = (y1 + y2)− ν (y1 + y2)
1−τ , where τ and ν are parameters. We refer to

this functional form as the HSV tax schedule. With such taxes, the relationship between an

observed vector of earnings y and an unobserved vector of productivities w is given by

w
1/γ
i =

1

(1− τ) ν
y

1/γ−1
i (y1 + y2)

τ . (44)

To invert this mapping, we use the value of (τ, ν) that Guner et al. (2014) estimate for the

U.S. married couples.

We choose a parsimonious representation of the marginal and joint distribution of w. Con-

sistent with earlier literature (e.g., Badel et al. (2020) or Golosov et al. (2016)), we find that

the marginal distribution of productivities G can be well approximated by a Pareto lognormal

(PLN) distribution.30 We choose its three parameters (µ, σ, a) to match the mean level of pro-

ductivity, its Gini coefficient, and the tail parameter. These three moments can be expressed

analytically in terms of parameters (µ, σ, a) so that these parameters can be obtained by a

simple inversion of those equations (see appendix for the details). Panel (a) of Figure 4 shows

the empirical and calibrated distribution G.

Our theory emphasizes several key statistics of the joint distribution F that determine

the optimal shape of taxes: the degree of dependence in productivities, right- and left-tail

(in)dependence, and the speeds of convergence κ, κ. In the data, both observed earnings and

backed-out productivities are positively dependent, with Kendell’s tau measure of dependence

30The PLN family was introduced in Colombi (1990) as as a model of the income distribution, and
since then, it has been used extensively in various studies. It is defined as G(t) = Φ

(
ln t−µ
σ

)
−

t−a exp
(
aµ+ a2σ2/2

)
Φ
(

ln t−µ−aσ2

σ

)
, where Φ is the standard normal distribution.
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(a) Marginal distributions, G(t) (b) Loci of copulas quantiles (u1, u2) satisfying C(u1, u2) = q
for q ∈ {0.1, ..., 0.9}

(c) Left-tail statistics C(u,u)
u

(lines with markers) and
lnu

lnC(u,u)
(lines without markers)

(d) Right-tail statistics C(u,u)
u

(lines with markers) and
lnu

lnC(u,u)
(lines without markers)

Figure 4: Empirical and calibrated joint distributions of productivities

for productivities equaling 0.21.31 The joint distribution appears to be both left- and right-

tail independent, but the rate of convergence to independence is fairly low. Panels (c) and

(d) illustrate this by plotting in dashed lines the value of the empirical copula C(u, u)/u for

difference percentiles of productivities (red line), and the value of lnu/ lnC(u, u) (blue lines).

Consistent with left tail-independence, C(u, u)/u approaches zero for low u; consistent with

the slow speed of convergence lnu/ lnC(u, u) remains much above 1/2. Panel (d) plots similar

statistics summary statistics for the right tails, using moments of the empirical survival copula.

We experimented with different families of copulas to capture these patterns and found

that the Gaussian copula fits the data very well. Its parameter ρ, when chosen to match

the Kendell’s tau dependence coefficient,32 also fits well the measures of left- and right-tail

dependence and speeds of convergence. This can be seen from panels (c) and (d) of Figure

4, where in solid lines we plot the counterparts of calibrated Gaussian copula of the empirical

objected plotted in dashed lines. Black dots show the speeds of convergence for the Gaussian

31Kendell’s tau is the standard measure of strength dependence of two variables (see Chapter 5 in Nelsen
(2006)). Kendell’s tau measure has an advantage over Pearson’s correlation coefficient because it is independent
of the marginal distributions. In our data, Pearson’s correlation coefficients of earnings and productivities are
0.21 and 0.25, respectively.

32The relationship between Kendell’s tau and parameter ρ of the Gaussian copula is given by Kendell’s tau =
2 arcsin ρ

π
.
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Parameter Value Definition Target

γ 0.25
Measure of labor supply

elasticity
Elasticity of labor supply, 0.33

a 2.95 Pareto tail of PLN cdf
Pareto statistics at 99% of individual

productivities, 2.95

µ -0.71
Location parameter of PLN

cdf
Mean individual productivity, 0.81

σ 0.40
Shape parameter of PLN

cdf
Gini of individual productivities, 0.31

ρ 0.33
Correlation parameter of

Gaussian copula

Kendell’s tau of spousal productivities,

0.21

Table 1: Calibrated parameters

copula, κ = κ = 1+ρ
2 . Panel (b) of Figure 4 shows the “isoquants” of both empirical and

calibrated joint distribution, where each line plots, for a given q, all pairs (u1, u2) that satisfy

C(u1, u2) = q. Table 1 summarizes all our parameters and their empirical counterparts.

We want to make several remarks. If one were to assume that the HSV tax schedule applies

to individual rather than family earnings, then calibration of the unobservable distribution of

productivities using the observed distribution of earnings is particularly simple and transpar-

ent. If the joint distribution of earnings is PLN-Gaussian and individuals face HSV taxes,

then the joint distribution of productivities is also PLN-Gaussian. Moreover, the parameters

of (µ, σ, a, ρ) of this distribution of productivities can be expressed in closed form as functions

of mean, Gini, Pareto tail, and Kendell’s tau measures of the joint distribution of earnings, as

well as parameters (τ, ν) of the HSV tax function. Thus, the entire calibration can be done

using the moments of the raw data directly, sidestepping the need for the inversion described

in equation (44). The calibration approach we present in the text is more general and uses

a more realistic specification of the tax function. In any case, we tried both approaches and

obtained very similar results.

Secondly, in the appendix we show how the optimal taxes would change if the joint dis-

tribution were given by the FGM rather than the Gaussian copula, calibrated to match the

same Kendell’s tau coefficient. The calibrated FGM copula, like the Gaussian copula we use,

fits empirical isoquants reasonably well and is tail independent. However, it converges to tail

independence much faster, with κ, κ equal to 1
2 that are clearly rejected by our data. Thus,

comparing the results reported in the text for the Gaussian copula with those reported in the

appendix for the FGM copula highlights the role of the speed of convergence of tail dependence

for optimal taxation.
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(a) i’s marginal tax given y−i (b) i’s marginal tax given y−i

yi

Figure 5: U.S. taxes implied by the estimated HSV schedule

6.2 Optimal taxes in the calibrated economy

To study optimal taxes, we consider a family of Pareto weights given by α̃ (w) = e−mw
1/(1−γ)

and α (w) ∝
[
1
2 α̃ (w1)

k + 1
2 α̃ (w2)

k
]1/k

, where k,m are parameters. This rich family allows us

to illustrate how optimal taxes are affected by various properties of Pareto weights. Parameter

m measures the strength of the redistributive motive, with higher values of m corresponding

to more redistributive planners. Parameter k measures the strength of modularity. Weights

α are submodular when k ≥ 1 and supermodular when k ≤ 1. Weights are separable when

k = 1, corresponding to a benchmark economy. The case k = 0 corresponds to weights α

being measurable only w.r.t. to r, i.e., the case when the planner has an inherent preference

for family earnings-based taxation.

To compute the optimal taxes, we first solve the relaxed problem (13) and then verify that

the solution satisfies global incentive constraints. In all cases, which we report here and in the

appendix, we found that the FOA was valid. We provide additional computational details in

the appendix. We summarize properties of the optimal marginal taxes in two sets of figures.

The first set reports the marginal taxes ∇iT ∗ (yi, y−i) as a function of yi, holding y−i fixed

at different levels. The second set reports ∇iT ∗ (yi, byi) as a function of yi, holding ratio of

earnings y−i/yi fixed at different values of b. For ease of comparison, Figure 5 reports these

statistics of the U.S. tax schedule implied by the estimated HSV functional form.

We now discuss the optimal taxes. We start with a benchmark economy, which restricts

k = 1. We set the parameter m to 0.35, which in our calibration implies that the average

optimal marginal tax rate coincides with the average marginal tax rate in the data. This way,

the total amount of redistribution is similar in our model and the data. Figure 6 reports the

optimal taxes in the same format as Figure 5. It also plots, in gray lines, optimal tax rates for

two alternative assumptions about dependence of productivities: perfect dependence (dashed-

dotted) and independence (solid). As discussed in Section 4, the optimal taxes under perfect

39



(a) i’s marginal tax given y−i (b) i’s marginal tax given y−i

yi

Figure 6: Optimal taxes, m = 0.35 and k = 1

dependence can also be interpreted as the optimal tax on single individuals. The optimal taxes

with independent types are separable and thus do not depend on the other spouse’s earnings.

Optimal taxes in the calibrated economy lie between the two gray lines, consistent with

the comparative statics results we established in Proposition 5. One can also see from Figure

5 that the optimal marginal taxes are positively jointed for low earners since the marginal tax

∇iT ∗ (yi, y−i) is increasing in y−i for low values of yi. This result follows from Proposition 7.

The same proposition also established that the optimal taxes must be negatively-jointed for

high-earners.33 This occurs at much higher earnings levels (>$8.5 mln) than the scale of the

x-axis we use. That being said, optimal jointness is very modest for all earnings levels, with

marginal taxes for one spouse changing by, at most, several percentage points as a function

earnings of the other spouse. This feature is driven by the properties of the Gaussian copula.

In the appendix, we plot the optimal taxes for the FGM copula and show that optimal jointness

is much more pronounced in that case. This is consistent with our discussion in Section 4.3,

where we showed that a slower pace of convergence to tail independence implies a smaller force

for positive jointness at the bottom (negative jointness at the top), that eventually switched

to negative (positive) jointness for tail-dependence distributions. The Gaussian copula, with

its lower speed of convergence, implies smaller jointness than the FGM copula.

The optimal tax schedule shares properties implied by our analytical formulas, both qual-

itatively and quantitatively. In particular, in the appendix, we plot the optimal distortions

λ∗ (·, w−i) where wages of the spouse w−i are held at the 50th percentile of the productivity

distribution. These distortions align very closely with the analytical expression for the average

distortions E
[
λ∗i

∣∣∣wi = t
]

that we derived in equation (28).

Formula (28) together with the bounds established in Propositions 4 and 7 allow us to

33Spiritus et al. (2022) solved numerically a related optimal joint taxation problem and also found that optimal
jointness may be positive or negative.
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(a) i’s marginal tax given y−i, m = 1.5
and k = 1

(b) i’s marginal tax given y−i, m = 0.35
and k = 2

(c) i’s marginal tax given y−i, m = 0.35
and k = 0

(d) i’s marginal tax given y−i

yi
, m = 1.5

and k = 1

(e) i’s marginal tax given y−i

yi
, m = 0.35

and k = 2

(f) i’s marginal tax given y−i

yi
, m = 0.35

and k = 0

Figure 7: Optimal taxes, robustness to m and k

understand some quantitative properties of the optimal tax schedule shown in Figure 6. On the

left tail, the bounds established in Propositions 4 and 7 imply that distortions from the optimal

taxes should be between 1
2γθ (0) (α̃ (0)− 1) and γθ (0) (α̃ (0)− 1), where θ (0) := limt→0 θ (t).

The PLN distribution has a thin left tail, which implies that θ (0) = 0 and, therefore, optimal

marginal taxes must go to zero as yi → 0, at least when averaged over y−i. This explains why

the optimal marginal tax rates go to zero as yi → 0 in panel (b) of Figure 6. The right tail

of the PLN distribution is thick, with limt→∞ θ (t) = a > 0. This implies that the limiting

average distortions in our calibrated economy, using formula (28), are

lim
t→∞

E
[
λ∗i
∣∣∣wi = t

]
=

1

γa
≈ 1.35,

corresponding to the average tax rate on high-earner to be around 0.55. However, this limit is

reached very slowly as the convergence rate of θ (t) to a is low. The slow speed of convergence

explains why the optimal marginal tax rates in Figure 6 are substantially lower than this limit,

even for individuals with earnings of $300K.

In Figure 7, we explore sensitivity of these results to parameters governing Pareto weights.

In the top row we plot the optimal taxes for the benchmark economy (k = 1) but with a much

more redistributive planner (m = 1.5). The optimal taxes are higher, reflecting a stronger

desire for redistribution. Negative jointness now occurs at much lower earnings levels than

in Figure 6 and can be easily seen on the graphs. Nonetheless, the level of optimal jointness

remains low.

The second and third columns in Figure 7 plot optimal taxes for (m, k) = (0.35, 2) and for

(m, k) = (0.35, 0) illustrating effects of sub- and super-modularity. The level of the optimal
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marginal tax rates in these two cases is broadly similar to our starting point, (m, k) = (0.35, 1).

Consistent with Corollary 5, submodularity amplifies the benefits of positive jointness at the

bottom, so the positive jointness is now much more visible and substantial, especially in panel

(b). On the other hand, supermodularity decreases these benefits and amplifies gains from

the negative jointness at the top. As a result, both negative jointness at the bottom and

positive jointness at the top are now clearly visible. Nonetheless, the optimal magnitude of

this jointness is very low, and the optimal taxation is close to the individual earnings-based

tax schedule. This remains the case even when k = 0, i.e., social weights explicitly favor family

earnings-based taxation.

Figure 7 also plots the optimal tax rate under perfect dependence and independence. The

optimal tax schedule is no longer separable with independent types when k 6= 1. Therefore,

in the last two columns of Figure 7, we use several gray lines to plot optimal tax rates under

independent types. One can easily see from these graphs that under independence optimal

taxes are positively (negatively) jointed if α is submodular (supermodular), consistent with

the results in Kleven et al. (2007) and our discussion in Section 4.3.

The U.S. tax system is family earnings-based, and the departure of the optimal taxation

from the family earnings-based one is difficult to see from Figures 6 and 7. To make this com-

parison easier, we represent the optimal tax schedule in the form T ∗ (y) = T fam,∗ (Y (y) , τ (y)),

where Y (y) = y1 +y2 are the total family earnings and % (y) = min {y1, y2} /Y (y) is the share

of a secondary earner in total earnings. In Figure 8 we plot ∂
∂Y T

fam,∗ (·, %) for different values

of %. Panel (a) uses this representation to show the U.S. tax code implied by the estimated

HSV function. Since U.S. tax schedule is family earnings-based, ∂
∂Y T

fam,US (·, %) is the same

for all %. In panels (b)-(f) we plot the optimal tax on family earnings for the same specifications

that we used in Figures 6 and 7. The marginal tax rates vary substantially with the share of

earnings of the secondary earner, with a higher share corresponding to a lower marginal family

tax. In all cases, pure family earnings-based taxation is a poor approximation of the optimal

tax code.

7 Conclusion

Multidimensional screening problems are ubiquitous in public finance applications. In this

paper, we consider one of the simplest versions of such problems - the optimal taxation of joint

earnings of couples. We show that despite superficial similarity to multidimensional screening

problems in industrial organization, our problem is much easier to analyze and can often be

studied using the first-order approach. We identify the lack of participation constraints in our
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(a) U.S. taxes implied by the estimated HSV model (b) Optimum, m = 0.35 and k = 1

(c) Optimum, m = 1.5 and k = 1 (d) Optimum, m = 0.35 and k = 2 (e) Optimum, m = 0.35 and k = 0

Figure 8: Marginal taxes on family earnings

application as the key reason for this simplification.

We also characterize the optimal taxes in these settings. Such taxes are a solution to a

second-order partial differential equation, which is very complex and does not generally have

an analytical solution. We show that this problem can be overcome by focusing on various

conditional average moments of taxes. These conditional moments are very illuminating about

the economic mechanisms that drive the shape of the optimal tax schedule, both qualitatively

and quantitatively.

In the calibrated economy, we find that the optimal taxes are negatively jointed at the

bottom and positively at the top. However, this jointness is small, and the optimal taxes can

be well approximated by separable, individual earnings-based taxation. In contrast, family

earnings-based taxes provide a poor approximation to the optimal tax code, even when Pareto

weights explicitly favor this type of taxation.
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Appendix

A Motivation for the benchmark economy

In this section, we formalize the results discussed in Section 2 about the relation between

optimal taxes on single and married individuals. Formally, consider the following economy,

which we refer to as extended. There is a measure one of individuals who all draw their

productivities from the same marginal distribution G and have the same labor supply elasticity

γ. Each individual, independently from his or her productivity, enters the marriage market

with probability µ ∈ (0, 1) and with probability 1−µ stays single. All individuals who entered

the marriage market are matched so that F gives the joint distribution of productivities of

married individuals. By construction, G is the marginal of F .

The utility ṽ of a single individual with productivity w is ṽ = c− γ
( y
w

)1/γ
, and utility v of

two married individuals with productivities w = (w1, w2) is given by (1). The social planner

chooses taxes on single individuals T̃ (y) and married individuals T (y) to maximize a weighted

average of their utilities

(1− µ)

∫ w

w
ṽ (w) α̃ (w) g (w) dw +

µ

2

∫
W
v (w)α (w) f (w) dw,

where α̃ (w) and α (w) = 1
2 α̃ (w1) + 1

2 α̃ (w2) are Pareto weights on singles and couples respec-

tively, i.e., α̃ is decreasing, bounded, continuous and satisfies
∫
α̃(w)dG(w) = 1.

Lemma 6. For any µ ∈ (0, 1), the optimal tax on married individuals coincides (up to a

constant) with the optimal tax in the benchmark economy (F, α, (γ, γ)) and the optimal tax

on single individuals coincides (up to a constant) with the optimal tax in the corresponding

uni-dimensional economy (G, α̃, γ).

Proof. Let T̃ and T be tax functions that are budget-feasible in the extended economy. Denote

the corresponding earnings chosen by single and married individuals by y and y = (y1, y2).

Since welfare in the first-best allocation is finite due to (2), the total expected tax revenue is

finite. Define two new tax functions T̃new and Tnew as follows:

T̃new ≡ T̃ − µE
[
T̃ (y (w))

]
− µ

2
E [T (y (w))] ,

Tnew ≡ T + (1− µ)E
[
T̃ (y (w))

]
−
(

1− µ

2

)
E [T (y (w))] .
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It is easy to see that welfare is the same under these new taxes due to the relationship

between α̃ and α. By construction, Tnew is budget-feasible in the benchmark economy, and

T̃new is budget-feasible in its uni-dimensional counterpart. As a result, the optimal taxes for

married households are the same (up to a constant) as in the benchmark economy, and the

optimal taxes for single individuals are the same (up to a constant) as in the uni-dimensional

economy.

Lemma 6 establishes that in the extended economy with Pareto weights that satisfy α (w) =

1
2 α̃ (w1) + 1

2 α̃ (w2) the optimal marginal taxes are the same irrespective of how individuals are

matched into couples, i.e., µ and F . It can be shown that this condition is also necessary in

the following sense. Consider the extended economy but follow for general Pareto weights α

on married individuals. Then, the optimal marginal taxes are the same for all µ and F only if

α (w) = 1
2 α̃ (w1) + 1

2 α̃ (w2) for all w.

B Mathematical preliminaries

This section lists some basic mathematical concepts necessary to characterize a solution to

the taxation problem. We refer the reader to Evans (2010) and Rindler (2018) for additional

background reading.

Let U ⊆ R2 be open. A function v : U → R is compactly supported in U if it is zero outside

some compact C ⊂ U . A measurable v : U → R is locally integrable on U if
∫
C |v (w)| dw <∞

for every compact C ⊂ U , and it is called integrable on U if
∫
U |v (w)| dw <∞. A measurable

v : U → R is said to be essentially bounded on U if there exists m such that |v (w)| ≤ m a.e.

on U .

A locally integrable function v : U → R is weakly differentiable on U if there exists a locally

integrable vector field ∇v : U → R2 such that for all infinitely differentiable φ with a compact

support in U , ∫
U
∇iφ (w) v (w) dw = −

∫
U
φ (w)∇iv (w) dw.

The vector field ∇v is called a weak gradient, it is unique up to a set of zero measure. If v is

differentiable, it is weakly differentiable, and its weak gradient coincides with the classical one.

In the sequel, we will need the following Sobolev spaces:

W 1,1(U) := {v : U → R|v weakly differentiable s.t. v and ∇v are integrable} ,

W 1,∞(U) := {v : U → R|v weakly differentiable s.t. v and ∇v are essentially bounded} .
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Clearly, for bounded U , W 1,1 (U) ⊃ W 1,∞ (U) ⊃ C 1
(
U
)
, where C 1

(
U
)

is the space of con-

tinuously differentiable functions with derivatives that are uniformly continuous on bounded

subsets. In general, we will use C k (U) to denote the space of k-times continuously differentiable

functions. If a function admits continuous derivatives of all orders, it will be called smooth.

Similarly, C k
(
U
)

will be used for the space of k-times continuously differentiable functions with

derivatives that are uniformly continuous on bounded subsets. In addition, for every a ∈ (0, 1],

C k,a
(
U
)

stays for the space of k-times continuously differentiable functions with derivatives

that are a-Hölder continuous on U , i.e., v is in C 0,a
(
U
)

if supw,ŵ∈U,w 6=ŵ
|v(w)−v(ŵ)|
‖w−ŵ‖a <∞. To

simplify notations, when referring to various functional spaces we may omit a domain if it is

clear from the context, no confusion should arise.

We will oft manipulate integrals by integrating by parts and changing variables of integra-

tion. The Divergence Theorem is a multidimensional analogue of integration by parts, and the

Coarea Formula is a generalization of change of variables in an integral.

If v ∈ C 1
(
U
)
, then v|∂U is well-defined by definition. In general, for v ∈ W 1,1 (U), v|∂U

stays for a trace of v on ∂U , which is defined uniquely for bounded U with a Lipshitz boundary,

i.e., the boundary that can be thought of as locally being the graph of C0,1 function. More

generally, a boundary is said to be C k,a with a ∈ (0, 1] if it can be locally represented as a graph

of C k,a function (Definition 1.2.1.2 in Grisvard (2011)). For sets with a Lipshitz boundary,

Theorem 1.5.1.3 in this book asserts that there exists a unique continuous operator T from

W 1,1 (U) onto the space of integrable functions on ∂U ; thus, we set v|∂V := T (v).

It is well known that for φ ∈ W 1,∞ (U) and v ∈ W 1,1 (U), the product φv in an element of

W 1,1 (U) with ∇ (φv) = ∇φv + φ∇v. Then, the following identity, known as the Divergence

Theorem (Theorem 1.5.3.1 in Grisvard (2011)), is satisfied for any bounded U with a Lipshitz

boundary: ∫
U
∇i (φ (w) v (w)) dw =

∫
∂U
φ (w) v (w)ni (w) dσ (w) ,

where ni (w) is the i-th component of the outward unit vector to ∂U at w and σ is the Lebesgue

measure on ∂W .

The Coarea Formula for Sobolev spaces is Theorem 11 in Haj lasz (1999). Let Q : R2
++ →

Rn, where n is either one or two, be an element of W 1,1(R2
++ ∩Bo

r ), where Br is a closed ball

of radius r, for each r > 0. Then, for every (Borel) measurable v : R2
+ → R that is either

non-negative or is such that v · JQ is integrable, where JQ (w) is the Jacobian of Q at w,∫
v(w) · JQ(w)dw =

∫ (∫
Q−1(q)

v(w)dH(w)

)
dq,
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where H is the so called Hausdorff measure. As explained in Chapter 2 of Evans and Garzepy

(2018), the Hausdorff measure coincides with the standard Lebesgue measure for "nice" sets,

i.e., n = 1 and Q−1 (q) is a plane curve. On the other hand, if n = 2 and Q is injective, then

the Hausdorf measure is a counting measure; thus, the inner integral on the right-hand side is

v
(
Q−1 (q)

)
, and we recover the standard change of variables formula.

C Proofs for Section 2

C.1 Proof of Lemma 1

Proof. First of all, c (w) = y1 (w)+y2 (w)−T (y (w)) for all w ∈W due to optimality of (c,y),

and (7) directly follows from non-negativity of E [T (y (w))]. Since for every couple w ∈ W ,

each pair (c (ŵ) ,y (ŵ)) with ŵ 6= w is feasible but not chosen, equation (8) ensues.

Conversely, take any (c,y) that satisfies (7) and (8) and choose the tax function T as follows.

For any y for which there exists w ∈ W such that y = y (w), set T (y) := y1 + y2 − c (w);

otherwise, set T (y) :=∞. This assignment uniquely defines T because c (w) = c (ŵ) whenever

y (w) = y (ŵ) due to (8). By (8), (c (w) ,y (w)) is an optimal choice of every couple w, and

the non-negativity of taxes follows from (7).

C.2 Proof of Lemma 2

Proof. Use (6) to substitute for c (w) in (7) and (8) to obtain∫
W

(
2∑
i=1

(
yi(w)− γi

(
yi (w)

wi

)1/γi
)
− v (w)

)
f (w) dw ≥ 0, (45)

v (w) ≥ v (ŵ)−
2∑
i=1

γi (yi (ŵ))
1/γi
(
w
−1/γi
i − ŵ−1/γi

i

)
∀w, ŵ ∈W. (46)

(i). Monotonicity of v follows directly from (46) and y ≥ 0. As for boundedness, if

W = R2
+, then v (w) ≥ v (0) for all w ∈W due to monotonicity of v.

The other cases are more subtle, and we shall prove boundedness of v by contradiction.

Suppose v is unbounded from below, i.e., there exists some sequence (wn) ⊂ W such that

v (wn) → −∞ as n tends to ∞. If every limit point of this sequence is bounded away from

∂R2
+, which is trivially true when there exists w > 0 such that every point in W lies above w,

then (46) gives

−∞ = lim
n→∞

v (wn) ≥ v (ŵ)− lim sup n→∞
2∑
i=1

γi (yi (ŵ))
1/γi
(

(wni )−1/γi − ŵ−1/γi
i

)
︸ ︷︷ ︸

<∞

∀ŵ.

52



This is a clear contradiction.

The only case that hasn’t been covered is one in which W is compact. Given such W , let

ŵ be a limit point of (wn) that lies on ∂R2
+. By compactness, ŵ is an element of W . Recall

our convention that yi(ŵ)/ŵi = 0 whenever ŵi = 0, thus taking a limit along the subsequence

(wnk) that gives ŵ, the following contradiction ensues:

−∞ = lim
n→∞

v (wn) = v (ŵ)− lim
k→∞

2∑
i=1

γi (yi (ŵ))
1/γi
(

(wnki )−1/γi − ŵ−1/γi
i

)
.︸ ︷︷ ︸

<∞

(ii). Using the transformation onto space X, which is discussed in Section 3.1, for every

closed ball B ⊂ X,

vx (x) ≥ vx (x̂)−
2∑
i=1

γi

(
yi

(
x̂−γ1
1 , x̂−γ2

2

))1/γi
(xi − x̂i) ∀x, x̂ ∈ B. (47)

The right-hand side of this equation is a collection of functions affine in x, therefore vx restricted

to B is a pointwise maximum of affine functions, thus convex. By Theorem 10.4 in Rockafellar

(2015), convexity implies that vx is Lipshitz on B. Since the change of coordinates x ∈ B 7→
w ∈

{(
x−γ1
1 , x−γ2

2

)
|x ∈ X

}
is a continuous diffeomorphism, v is Lipshitz on the pre-image of

B. Finally, since v is Lipshitz continuous for every closed ball that is contained in X, it is

locally Lipshitz on the interior of W .

(iii). By Theorem 6 in on p. 296 (Rademacher Theorem) in Evans (2010), v is differentiable

a.e. on W o due to local Lipshitz continuity. Then, Theorem 5 and Remark on p. 295 in Evans

(2010) imply that v is weakly differentiable on W o. Since v is differentiable a.e., the envelope

theorem applied to (47) together with the fact that the maximum on the right-hand side is

attained at x̂ = x establishes that (9) holds at every point of differentiability.

(iv). As shown above, v is bounded from below by some v. On the other hand, the surplus

is lower than what can be obtained by pointwise optimization, i.e.,

2∑
i=1

(
yi(w)− γi

(
yi (w)

wi

)1/γi
)
≤

2∑
i=1

(1− γi)w
1/(1−γi)
i =: S (w) ,

which is integrable (with respect to f) due to (2). Combining both bounds, equation (45) gives∫
W

[
2∑
i=1

(
yi(w)− γi

(
yi (w)

wi

)1/γi
)
− S (w)

]
f (w) dw +

∫
W

[v − v (w)] f (w) dw+

+

∫
W

(
S (w)− v

)
f (w) dw ≥ 0,
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where we used integrability of S and the fact that each term in the square brackets is non-

positive to interchange integration and summation. It follows that v is integrable with respect

to f .

(v). The argument in (iv) also implies that the surplus is integrable (with respect to f),

thus (7) is equivalent to the following:∫
W

2∑
i=1

(
yi(w)− γi

(
yi (w)

wi

)1/γi
)
f (w) dw ≥

∫
W
v (w) f (w) dw > −∞. (48)

Consider the following auxiliary problem parameterized by b > 0:

S1 (b) := max
ỹ≥0

∫
W

2∑
i=1

ỹi (w) f (w) dw − b s.t.

∫
W

2∑
i=1

γi

(
yi (w)

wi

)1/γi

f (w) dw = b.

It is easy to see that limb→∞ S1 (b) = −∞, thus (48) implies
∫
W

∑2
i=1 γi

(
yi(w)
wi

)1/γi
f (w) dw <

∞. To get (v), use (9) to substitute ∇iv (w) for yi (w).

(vi). It can be shown similarly to (v) by considering the following auxiliary problem:

S2 (b) := max
ỹ≥0

b−
∫
W

2∑
i=1

γi

(
yi (w)

wi

)1/γi

f (w) dw s.t.

∫
W

2∑
i=1

ỹi (w) f (w) dw = b

and noting that limb→∞ S2 (b) = −∞.

C.3 Optimality conditions

In this section, we formally derive conditions that are necessary and sufficient for optimality

in the relaxed problem.

Proposition 10. (Necessity). Suppose v∗ ∈ C 1 (W o), the corresponding λ∗ is essentially

bounded on W o ∩ Bo
r and (λ∗i (w) γiwif (w))i=1,2 is an element of W 1,1(W o ∩ Bo

r ), where Br

is a closed ball of radius r > 0 centered at 0, for all r. Then,

2∑
i=1

∇i (λ∗i (w) γiwif (w)) = (α (w)− 1) f (w) on W o, (49)

2∑
i=1

λ∗i (w) γiwini (w) f (w) = 0 on ∂W, (50)

∇2

(
(1 + λ∗1 (w))

1/(γ1−1)w
γ1/(γ1−1)

1

)
= ∇1

(
(1 + λ∗2 (w))

1/(γ2−1)w
γ2/(γ2−1)

2

)
on W o, (51)

where all derivatives are weak, n(w) is the outward unit normal to ∂W at w on the boundary

and the term in the brackets in (50) is understood in the trace sense. In addition, if λ∗ is in

C 0 (W ) ∩ C 1 (W o), then the above partial differential equations hold in the classical sense.
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(Sufficiency). Suppose v ∈ C 0 (W )∩C 1 (W o), the corresponding λ is an essentially bounded

element of W 1,∞ (W o ∩Bo
r ) for all r > 0, satisfies λ ≥ (λ, λ) for some λ > −1 and (49), (50),

(51) hold. Then,

Υ (v) ≥ Υ (v̂) ∀v ∈ V,

thus v∗ = v.

The necessity part of this proposition shows that if v∗ is sufficiently well-behaved, it is

characterized by equations (49), (50), and (51). The sufficiency part looks at the converse of

this statement demanding in addition λ∗ and its weak derivatives to be essentially bounded

(boundedness of ∇λ∗ on compact subsets is enough). The additional requirement of λ ≥ (λ, λ)

is a sufficient condition for the function v to be an element of V , and it can be substantially

weakened. This result shows that if one can find sufficiently well-behaved v such that the

corresponding λ solves these equations, then that v must be a solution to the relaxed problem.

Proof. Let φ : R2 → R be continuously differentiable such that ∇v∗ + ε∇φ ≥ 0 on W o for all

sufficiently small ε > 0. It is easy to see that v∗ + εφ is in V for all sufficiently small ε > 0,

and so we will refer to such φ as admissible.

Since v∗ is a solution to the relaxed problem, Υ (v∗ + εφ)−Υ (v∗) ≤ 0, where

Υ (v∗ + εφ)−Υ (v∗)
ε

=

∫
W
φ (w) (α (w)− 1) f (w) dw −

∫
W

2∑
i=1

∇iφ (w) γiwif (w) dw+

+

∫
W

2∑
i=1

(∇iv∗ (w) + ε∇iφ (w))γi − (∇iv∗ (w))γi

ε
w1+γi
i f (w) dw.

Since v∗ ∈ V , it is increasing; therefore, its weak gradient is non-negative a.e. Monotonicity

and concavity of w 7→ wγi implies that if ∇iφ (w) ≷ 0, then the integrand in the last line is

non-negative (non-positive) for all ε > 0, and it is increasing (decreasing) in ε > 0. By the

Monotone Convergence Theorem, the limit can be taken under the integral sign, thus

0 ≥
∫
W
φ (w) (α (w)− 1) f (w) dw +

∫
W

2∑
i=1

∇iφ (w)λ∗i (w) γiwif (w) dw,

In particular, if φ is compactly supported on some closed ball B and −φ is also admissible,

then we must have

0 =

∫
W∩B

φ (w) (α (w)− 1) f (w) dw +

∫
W∩B

2∑
i=1

∇iφ (w)λ∗i (w) γiwif (w) dw. (52)
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Due to our assumptions on λ∗, the function φ (w)λ∗i (w) γiwif (w) belongs to W 1,1 (W o ∩Bo).

As a result, the second term in (52) can be transformed by the Divergence Theorem as follows:∫
W∩B

∇iφ (w)λ∗i (w) γiwif(w)dw =

∫
∂W∩B

φ (w)λ∗i (w) γiwini(w)f (w) dσ (w) +

+

∫
W∩∂B

φ (w)λ∗i (w) γiwini (w) f (w) dσ (w)︸ ︷︷ ︸
=0

−
∫
W∩B

φ(w)∇i (λ∗i (w) γiwif (w)) dw. (53)

Finally, note that the first term in the second line in (53) is zero due to φ vanishing on ∂B.

Necessity, equation (49). Take a closed ball B ⊂W o. Since ∂W ∩B = ∅, the second term

in (53) is zero. Combine (52) and (53) to obtain

0 =

∫
B
φ (w)

(
(α (w)− 1) f (w)−

2∑
i=1

∇i (λ∗i (w) γiwif (w))

)
dw, (54)

which has to hold for all admissible φ ∈ C 1
(
R2
)

that are compactly supported on B such that

−φ is admissible.

We claim that every continuously differentiable function φ that vanishes on outside of B is

admissible. Indeed, invert (18) to obtain

∇iv∗ (w) = (1 + λ∗i (w))
1/(γi−1)w

γi/(γi−1)

i . (55)

Since λ∗i is essentially bounded on B, and v is continuously differentiable, ∇iv is bounded away

from 0 on B due to (55).

Taking all pieces together, since equation (54) holds for all continuously differentiable

(hence for all smooth) φ that vanish on ∂B, the Fundamental Lemma of Calculus of Variations

(Lemma 3.10 in Rindler (2018)) gives that the term in the brackets in (54) is zero a.e. on Bo.

Since this is true for every closed ball contained in W o, (49) follows.

Necessity, equation (50). Let ŵ be a point on ∂W and take some closed ball B centered

at ŵ. Combine (52), (53) and (54) to obtain

0 =

∫
∂W∩B

φ (w)

(
2∑
i=1

λ∗i (w) γiwini (w) f (w)

)
dσ (w) , (56)

which has to hold for all admissible φ ∈ C 1
(
R2
)

that are compactly supported on B such that

−φ is admissible.

If ŵ ∈ R2
++, then by shrinking B (if necessary), we can ensure B ⊂ R2

++. By exactly the

same argument as above, ∇iv∗ is bounded away from 0 on B due to (55). As a result, every
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continuously differentiable φ supported on B is admissible, and the Fundamental Lemma of

Calculus of Variations gives that the term in the brackets in (56) is zero a.e. on Bo. This

proves equation (50) for the portion of ∂W that doesn’t intersect ∂R2
+

If ŵ ∈ ∂R2
+, then the argument is more subtle. Consider ŵ = (0, ŵ−i) 6= 0 that admits

some closed ball B of radius r > 0 such that B \ {ŵ} has a non-empty intersection with

exactly one of the axis, i.e., the set of the form
{
w ∈ R2

+|wi = 0
}

. This restriction on w is

without loss of generality because the set of w’s that belong to ∂R2
+ ∩ ∂W but don’t satisfy

the aforementioned property has a Lebesgue measure zero (with respect to ∂W ) when either

W = R2
++ or W is compact and ∂W is Lipshitz.

Shrinking B (if needed), we can ensure that w−i is bounded away from 0 on B; thus,

∇−iv∗ is again bounded away from 0 on B. It follows that every continuously differentiable φ

supported on B such that ∇iφ = 0 on B ∩
{
w ∈ R2

+|wi = 0
}

is admissible. In particular, φ of

the following kind will do:

φ(w) =

{
φ1 (w−i)φ2

(
(wi)

2

r2−(w−i−ŵ−i)2
)

if ‖w − ŵ‖ < r,

0 otherwise,

where φ2 is continuously differentiable, non-increasing satisfying φ2 (w) = 1, φ′2 (w) = 0 for

w ≤ 0, φ2 (w) = φ′2 (w) = 0 for w ≥ 1 and φ1 is smooth and supported on [ŵ−i − r, ŵ−i + r]. It

is routine to verify that every φ of this form is admissible and φ (0, w−i) = φ1 (w−i) on ∂W ∩B,

therefore (56) simplifies to

0 =

∫ ŵ−i+r

ŵ−i−r
φ1 (w)λ∗−i (0, w) γ−iwf (0, w) dw. (57)

The Fundamental Lemma of Calculus of Variations applied to (57) gives that λ∗−i (0, w) γ−iwf (0, w)

is 0 a.e. on [ŵ−i − r, ŵ−i + r].

Combining two cases together, equation (50) ensues.

Necessity, equation (51). Since λ∗ is weakly differentiable, equation (55) implies twice

weak differentiability of ∇v∗. As discussed in Chapter 5.2.1 in Evans (2010), weak derivatives

commute, i.e., ∇12v
∗ = ∇21v

∗, which gives (51).

Sufficiency, step 1. We shall show first that v is in V . By assumption, ∇v ≥ 0 on W o, thus

v is increasing on Wdue to continuity. By (55) and λi (w) ≥ λ > −1, thus for some m > 0,

∇iv (w)wi =

(
wi

1 + λi (w)

)1/(1−γi)

≤ mw1/(1−γi)
i ,

which proves (vi) in the definition of V due to (2). Property (v) can be shown similarly.
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Finally, extending v to all of R2
+ by 0 (if necessary), obtain that for all w, ŵ ∈W ,

v (w)− v (ŵ) =

∫ 1

0
∇v (tw + (1− t)ŵ) · (w − ŵ) dt ≤

≤ m
∫ 1

0

2∑
i=1

(twi + (1− t)ŵi) γi−1 (wi − ŵi) dt = m

∫ wi

ŵi

2∑
i=1

wγi−1dw.

Letting ŵ be the point of the minimum of v, which exists due to continuity of v, (2) gives∫
W

(v (w)− v (ŵ)) f (w) dw ≤ m
2∑
i=1

(1− γi)
(
E
[
w

1/(1−γi)
i

]
− ŵ1/(1−γi)

i

)
<∞.

Sufficiency, step 2. In order to show optimality of v, we shall first rewrite the functional

Υ (v̂) as a function of derivatives of v̂. By equation (49),∫
W∩Br

v̂ (w) (α (w)− 1) f (w) dw =

∫
W∩Br

v̂ (w)

2∑
i=1

∇i (λi (w) γiwif (w)) dw. (58)

Since λ is an element of W 1,∞ (W o ∩Bo
r ) and (v̂ (w) γiwif (w))i=1,2 is in W 1,1 (W o ∩Bo

r )

due to (iv) and (vi) in the definition of V , (v̂ (w)λi (w) γiwif (w))i=1,2 is an element of

W 1,1 (W o ∩Bo
r ). By the Divergence Theorem,∫

W∩Br

2∑
i=1

∇i (v̂ (w)λi (w) γiwif (w)) dw =,

= −
∫
W∩∂Br

v̂ (w)

(
2∑
i=1

λi (w) γiwini (w) f (w)

)
dσ (w) (59)

where we used equation (50) to show that the integral on the boundary of W must be zero.

By the Chain Rule for weak derivatives,

∇i (v̂ (w)λi (w) γiwif (w)) = ∇i (v̂ (w) γiwif (w))λi (w) + v̂ (w) γiwif (w)∇iλi (w) =

= ∇iv̂ (w)λi (w) γiwif (w) + v̂ (w)∇i (λi (w) γiwif (w)) .

Then, since v̂ ∈ V , γiwif (w) ∈ W 1,1 (W o ∩Bo
r ) and λi (w) ∈ W 1,∞ (W o ∩Bo

r ), the brackets

on the left-hand side in (59) can be unpacked to re-write (58) as follows:∫
W∩Br

v̂ (w) (α (w)− 1) f (w) dw = −
∫
W∩Br

2∑
i=1

∇iv̂ (w)λi (w) γiwif (w) dw+

+

∫
W∩∂Br

v̂ (w)

(
2∑
i=1

λi (w) γiwini (w) f (w)

)
dσ (w) . (60)
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We now study the limit of (60) as r → ∞. Consider the expression on the left-hand side

of equation (60). Since α is bounded, the Dominated Convergence Theorem applies, thus∫
W∩Br

v̂(w)(α(w)− 1)f(w)dw→r→∞

∫
W
v̂(w)(α(w)− 1)f(w)dw. (61)

Consider the second term on the right-hand side of (60). First of all, note that ∂Br is the

set of points such w2
1 +w2

2 = r2, therefore the outward unit normal is given by ni(w) = wi
r > 0.

Since λ is essentially bounded on W o, we have the following chain of inequalities:∣∣∣∣∣
∫
W∩∂Br

v̂ (w)

(
2∑
i=1

λi (w) γiwini (w) f (w)

)
dσ (w)

∣∣∣∣∣ ≤
≤
∫
W∩∂Br

|v̂ (w)|

∣∣∣∣∣
2∑
i=1

λi (w) γiwini (w) f (w)

∣∣∣∣∣ dσ (w) ≤

≤
∫
W∩∂Br

|v̂ (w)|
2∑
i=1

|λi (w) γi| |wini (w) f (w)| dσ (w) ≤

≤ λ
∫
W∩∂Br

|v̂ (w)| f (w) rdσ (w) . (62)

where λ is an essential upper bound on maxi |λiγi|. To obtain the last inequality in equation

(62), we substituted for n(w), i.e.,
∑2

i=1wini (w) = r. The expected value of |v̂| in the polar

coordinates reads as follows (see the Coarea Formula or Theorem 4 in Appendix C in Evans

(2010)): ∫
W
|v̂ (w)| f (w) dw =

∫ ∞
0

∫
W∩∂Br |v̂ (w)| f (w) rdσ (w)

r
dr. (63)

Since v̂ ∈ V , the expected value of |v̂| is finite, thus (63) implies that the denominator on the

right-hand side goes to zero as r →∞. Therefore, by (62),∫
W∩∂Br

v̂ (w)

(
2∑
i=1

λi (w) γiwini (w) f (w)

)
dσ (w)→r→∞ 0. (64)

Finally, since v̂ ∈ V , condition (vi) in the definition of V gives that the first term on the

right-hand side of (60) is bounded by an integrable function, so the Dominated Convergence

Theorem applies and∫
W∩Br

2∑
i=1

∇iv̂ (w)λi (w) γiwif (w) dw→r→∞

∫
W

2∑
i=1

∇iv̂ (w)λi (w) γiwif(w)dw. (65)

Taking all pieces together, using (60), (61), (64) and (65) we established∫
W
v̂ (w) (α (w)− 1) f (w) dw = −

∫
W

2∑
i=1

∇iv̂ (w)λi (w) γiwif (w) dw.

59



Sufficiency, step 3. As shown in step 2, the value of Υ (v̂) can be re-written as

Υ (v̂) =

∫
W

[
v̂ (w) (α (w)− 1) +

2∑
i=1

(
w1+γi
i

(
∇iv̂ (w)

)γi
− γiwi∇iv̂ (w)

)]
f (w) dw =

=

∫
W

[
2∑
i=1

(
w1+γi
i

(
∇iv̂ (w)

)γi
− γiwi (1 + λi (w))∇iv̂ (w)

)]
f (w) dw.

Note that the term in the square brackets is strictly concave in ∇iv̂ (w) and (pointwise) max-

imized at (∇iv̂ (w))
1/(γi−1) wγii = 1 + λi (w), which is nothing but the definition of ∇v. By

construction, λ satisfies equation (22) and ∇v is a (weak) gradient of v ∈ V . Therefore,

Υ (v̂) ≤ Υ (v).

We end this section by pointing out a certain well-known equivalence between v∗ and λ∗.

One can think equivalently of equations (49), (50) and (51) either as a second-order partial

differential equation describing the solution to the relaxed problem v∗, or as a system of joint

first order partial differential equations describing the optimal λ∗ implied by that v∗. Formally:

if
(

(1 + λ∗i (w)) 1/(γi−1)w
γi/(γi−1)

i

)
i=1,2

is an element of C 1 (W ) and (51) holds. Then, there exists

a unique (up to a constant) function v ∈ C 1 (W o) such that equation (18) holds for these v

and λ. This function can be then extended by uniform continuity to W due to boundedness

of ∇v on compact subsets of W .

C.4 On the first-order approach

C.4.1 Proof of Proposition 1

Proof. For v, which is a function of one variable, we use ∇v to denote the (weak) derivative

of v with respect to that variable.

(1D). Take ṽ ∈ V . Since a path of integration is unique in the uni-dimensional case, we

must have∫ w

w
ṽ (w) (α̃ (w)− 1) g (w) dw =

∫ w

w
(ṽ (w)− ṽ (w)) (α̃ (w)− 1) g (w) dw =

=

∫ w

w
∇ṽ (w) (G (w)−A (w)) dw,

where the first equality follows from the normalization of α and the second equality is implied

by integration by parts with A (t) :=
∫ t
w α̃(w)g(w)dw. Thus, Υ (ṽ) can be written as

Υ (ṽ) =

∫ w

w

(
(∇ṽ (w)) γw1+γ − γw∇ṽ (w)

(
1 +

A (w)−G (w)

γwg (w)

))
g (w) dw.
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Pointwise optimization of this equation yields

(∇ṽ (w)) γ−1wγ = 1 +
A (w)−G (w)

γwg (w)
= 1 + λ̃ (w) . (66)

By construction, the planner’s objective under ṽ is higher than under any other alternative

function in V . Since α̃ is decreasing, A is first-order scholastically dominated by G, thus λ̃ ≥ 0.

By the same argument as in the proof of the sufficiency part in 10, ṽ ∈ V , thus v∗ = ṽ.

To find conditions for validity of the first-order approach, we use Lemma 3. The space X

is convex, and by the chain rule, we have ∇vx,∗ (x) = −γ∇v∗ (x−γ)x−(γ+1). Monotonicity of

∇vx,∗ on the interior of X is equivalent to convexity of vx,∗. The claim follows from ∇vx,∗ (x) ∝
x ·
(

1 + λ̃ (x−γ)
)

due to (66).

(2D). Consider v ∈ V that is additively separable, i.e., v (w) = ṽ1 (w1) + ṽ2 (w2) for

some functions (ṽ1, ṽ2). If types are independently and identically distributed, then f (w) =

g (w1) g (w2). Following the same steps as in the proof of the previous part,∫
W
v (w) (α (w)− 1) f (w) dw =

∫ w

w

2∑
i=1

ṽi (wi)
1

2
(α̃ (wi)− 1) g (wi) dwi =

=
2∑
i=1

∫ w

w
∇ṽi (wi)

1

2
(G (wi)−A (wi)) dwi.

It follows that the value of Υ (v) for an additively separable v can be re-written as

Υ (v) =
2∑
i=1

∫ wi

wi

(
(∇ṽi (wi))

γ w1+γ
i − γw∇ṽi (wi)

(
1 +

1

2

A (wi)−G (wi)

γwig (wi)

))
g (wi) dwi.

Pointwise optimization of this equation yields

(∇ṽi (wi))
γ−1wγi = 1 +

1

2

A (wi)−G (wi)

γwig (wi)
= 1 +

1

2
λ̃ (wi) . (67)

Since both limits limw→w
G(w)
wg(w) and limw→w

1−G(w)
wg(w) are finite, the vector field

(
1
2 λ̃ (w1) ,

1
2 λ̃ (w2)

)
is a non-negative, bounded element of W 1,∞ (W o) and satisfies (18), (22). In view of the suf-

ficiency part of Proposition 10, we need to show that this vector field satisfies (49), (50). By

definition, A (w) = G (w) = 0 and A (w) = G (w) = 1 that proves (50). To see the remaining

equation, observe

2∑
i=1

∇i
(
1
2 λ̃ (wi) γiwig (w1) g (w2)

)
g (w1) g (w2)

=
2∑
i=1

α̃ (wi)− 1

2
= α(w)− 1.

By the same argument as in the proof of the sufficiency part in 10, v ∈ V , thus v∗ = v.
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To establish conditions for validity of the first-order approach, we again use Lemma 3.

Observe that vx,∗ (x) = v∗1
(
x−γ1

)
+ v∗2

(
x−γ2

)
, but then vx,∗ is convex on X if and only if each

∇vx,∗i is non-decreasing on the interior. It is easy to see that ∇ivx,∗ (x) ∝ x ·
(

1 + 1
2 λ̃ (x−γ)

)
due to (67).

The fact that the first-order approach is more likely to hold in the bi-dimensional model

than in the uni-dimensional setting can be seen from

x ·
(

1 +
1

2
λ̃
(
x−γ

))
− x̂ ·

(
1 +

1

2
λ̃
(
x̂−γ

))
≥ x

2
·
(

1 + λ̃
(
x−γ

))
− x̂

2
·
(

1 + λ̃
(
x̂−γ

))
∀x ≥ x̂.

C.4.2 Rawlsian planner (Section 3.1)

In this section, we look at the uni-dimensional model with the Rawlsian planner in more detail.

Formally, the Rawlsian weights α̃R corresponds to a linear functional on V defined by∫ w

w
ṽ (w) α̃R (w) g (w) dw = ṽ (w) .

This functional is well-defined and is proportional to the Dirac delta function at w = w provided

g (w) > 0.

Even though α̃R is not a continuous bounded function, optimal taxes can be obtained by

the integration by parts as in the proof in Section C.4.1. Since
∫ t
w α̃

R (w) g (w) ds ≡ 1, the

corresponding λ̃R,∗ is given by

λ̃R,∗ (w) =
1−G (w)

γwg (w)
.

The necessary and sufficient condition in Proposition 1 still applies here when w > 0 so that

λ̃R,∗ is finite at the bottom, and the set of G for which the FOA works is non-empty, i.e.,

G (w) = 1− (w/w)−a for some a > 1 will do.

We now show the first-order approach is necessarily violated irrespective of G for continuous

and bounded Pareto weights that are “close” to α̃R. Specifically, let (α̃n) be a sequence such

that for every function ṽ ∈ V ,∫ w

w
ṽ (w) α̃n (w) g (w) dw →n→∞ ṽ (w) . (68)

Let λ̃n,∗ be the optimum as defined in the proof in Section C.4.1, that is

λ̃n,∗ (t) =

∫ t
w α̃

n (w) g (w) dw −G (w)

γwg (w)
.
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Clearly, ṽ that equals to 1 for all w ≥ ŵ for some ŵ ∈ (w,w] and 0 otherwise is an

element of V . As a result, (68) implies that λ̃n,∗ pointwise converges to λ̃R,∗ on (w,w]. But,

since λ̃n,∗ (w) = 0 for all n when w > 0, the condition in Proposition 1 is always violated for

sufficiently large n.

C.4.3 Proof of Proposition 2

Proof. Step 1. Since validity of the first-order approach is easier to check in the transformed

space , we shall work mainly with it. Let (fx, αx) be transformations of density and Pareto

weights on space X. Since W is compactly contained in R2
++, and w 7→ x is a continuous

diffeomorphism, the sequence (fx, αx,ε) is a subset of C 1,a × C 0,a.

Given some transformations of utility and Pareto weights (vx, αx) ∈ C 2,a × C 0,a with

∇vx < 0 on X define Ξ (vx, αx) ∈ C 0,a × C 1,a as follows:

Ξ1 (vx, αx) (x) :=
2∑
i=1

∇i
(((
− 1
γi
∇ivx (x)

)
γi−1 − xi

)
fx (x)

)
− (αx (x)− 1) fx (x) ∀x ∈ Xo,

(69)

Ξ2 (vx, αx) (x) :=
2∑
i=1

((
− 1
γi
∇ivx (x)

)
γi−1 − xi

)
fx (x)nxi (x) ∀x ∈ ∂X, (70)

where nx is the outward unit normal to the boundary ∂X at x. Here C 1,a (∂X) stays for the

space of restrictions of functions in C 1,a (X) to the boundary of X.

This operator Ξ is just a different way to record two conditions that are necessary for

optimality, i.e., equations (49) and (50). To see it, note that xi = w
−1/γi
i , thus dxi

dwi
=

− 1
γi
w
−(1+γi)/γi
i = − 1

γi
xγi+1
i . Solve for ∇iv∗ as a function of ∇ivx,∗ and use (18) to obtain

λ∗i (w) =

((
− 1
γi
∇ivx,∗ (x)

)γi−1
− 1

)
x−1i .

By definition, f (w) = fx (x)
∏2
i=1

1
γi
xγi+1
i , thus

∇i (λ∗i (w) γiwif (w)) = ∇i
(((

− 1
γi
∇ivx,∗ (x)

)γi−1
− xi

)
fx (x)

) 2∏
j=1

1
γj
x
γj+1
j , (71)

where on the left-hand (right-hand) side ∇i stays for a derivative with respect to wi (resp. xi).

Substitute (71) into (49) and divide each side by
∏2
i=1

1
γi
xγi+1
i to obtain that vx,∗ is a solution

to Ξ1 (., αx,ε) = 0. Similarly, vx,∗ solves Ξ2 (., αx,ε) = 0.

By Proposition 10, for every ε ≥ 0, if the solution vε,∗ to the relaxed problem is sufficiently

well-behaved, then (49) and (50) hold or, equivalently, the function vx,ε,∗ is a root of Ξ (., αx,ε).
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Conversely, every sufficiently well-behaved root of Ξ (., αx,ε) defines the solution to the relaxed

problem.

Step 2. For ε = 0, the Pareto weights are utilitarian, i.e., α0 ≡ 1, and vx,0,∗ can be found

in a closed form from (69) and (70),(
− 1
γi
∇ivx,0,∗ (x)

)
γi−1 − xi ≡ 0. (72)

This suggests studying behavior of roots of the operator Ξ in a neighborhood of the utilitarian

objective. Specifically, we shall establish existence of twice continuously differentiable solutions

to Ξ (·, αx) and their continuity as a function of Pareto weights for economies with αx that is

close enough to α0. The main instrument is the Implicit Function Theorem, and to state it in

our context, we need certain Banach spaces and auxiliary notations.

Let U be the subspace of functions vx ∈ C 2,a such that
∫
X v

x (x) fx (x) dx=0, A be the

subspace of functions αx ∈ C 0,a such that
∫
X α

x (x) fx (x) dx = 1 and Φ be the subspace of

functions φ = (φ1, φ2) ∈ C 0,a (X)× C 1,a (∂X) such that∫
X
φ1 (x) dx =

∫
∂X

φ2 (x) dσ (x) .

Fix some closed ball B in U × A centered at
(
v0,x,∗, α0

)
and small enough so that for some

m > 0, we have

max
x∈X

max
i=1,2

− 1
γi
∇ivx (x) ≥ m ∀vx ∈ B,

which is clearly possible due to compactness of X ⊂ R2
++ and (72). It follows that Ξ : Bo → Φ

is well-defined.

We claim that Ξ is continuously (Frechet) differentiable on Bo. To see it, observe that for

every vx, v̂x ∈ B and n ≥ 1,(
− 1
γi
∇ivx (x)

)
γi−n −

(
− 1
γi
∇iv̂x (x)

)γi−n
=

=
(
n
γi
− 1
)(
− 1
γi
∇iv̂x (x)

)γi−(n+1)
(∇ivx (x)−∇iv̂x (x)) + o (|∇ivx (x)−∇iv̂x (x)|) (73)

and

∇i
((
− 1
γi
∇ivx (x)

)
γi−n −

(
− 1
γi
∇iv̂x (x)

)
γi−n

)
=

= ∇i
((

n
γi
− 1
)

(−γ∇iv̂x (x))γi−(n+1) (∇ivx (x)−∇iv̂x (x))
)

+ o (|∇ivx (x)−∇iv̂x (x)|) ,
(74)

where we used compactness of X ⊂ R2
++, twice continuous differentiability and boundedness

of ∇vx, ∇v̂x. Then, continuous (Frechet) differentiability of Ξ on Bo is due to (73), (74) and
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our restrictions on f . In particular, the partial derivative with respect to vx at
(
vx,0,∗, α0

)
is

given by

DΞ1 (vx) (x) :=
2∑
i=1

∇i
(
x

(γi+1)/γi
i ∇ivx (x) fx (x)

)
∀x ∈ X, (75)

DΞ2 (vx) (x) :=
2∑
i=1

x
(γi+1)/γi
i ∇ivx (x)nxi (x) fx (x) ∀x ∈ ∂X, (76)

which is a mapping from U to Φ.

Step 3. In view of Theorem 4.E in Zeidler (2012), if DΞ : U → Φ is a bijection, then

the equation Ξ (., αx) = 0 admits a unique solution on some closed ball Bα in A , which is

centered at α0. Moreover, this solution is a continuous function of α on Bα. Showing that DΞ

is bijective amounts to solving a second-order (uniformly) elliptic partial differential equation

with Neumann boundary conditions. Nardi (2015) pointed out that classical existence results

for an oblique derivative problem cannot be directly applied to the Neumann problem like ours;

thus, the latter needs a special treatment. We aren’t aware of a textbook treatment of this

existence result, and therefore follow Nardi, who suggested applying the Fredholm Alternative

to a certain compact operator to show that DΞ is invertible on Φ. For completeness, we will

sketch his argument.

To begin, consider the auxiliary problem:

DΞ (vx)− (vx, 0) = φ, (77)

where, of course, φ is an element of Φ. This auxiliary problem admits a unique solution in

C 2,a by Theorem 5.1 in Nardi (2015), because the homogeneous problem, i.e., φ ≡ 0, admits

only a trivial solution. The latter follows directly from Hopf’s Maximum Principle. See, for

example, Theorem 3.6 in Gilbarg et al. (1977).

Write V (φ) for the solution to (77) as a function φ. The solution to the original problem

can be identified with V (φ) as follows: for every vx ∈ U ,

DΞ (vx) = φ ⇐⇒ vx − V (−vx, 0) = V x (φ) . (78)

Moreover, it is easy to see that V (φ) is an element of U , that is∫
X
V x (φ) (x) dx =

∫
X

2∑
i=1

∇i
(
x

(γi+1)/γi
i ∇ivx (x) fx (x)

)
dx−

∫
X
φ1 (x) dx =

=

∫
∂X

2∑
i=1

x
(γi+1)/γi
i ∇ivx (x)nxi (x) fx (x) dσ (x)−

∫
X
φ1 (x) dx =

=

∫
∂X

φ2 (x) dσ (x)−
∫
X
φ1 (x) dx = 0,
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where the first line is due to (77), the second line follows from the Divergence Theorem and

the last line is due to (77) again. As a result, vx 7→ V (−vx, 0) is a well-defined operator that

maps U to itself. Since the homogenous problem DΞ (vx) = 0 admits only a trivial solution,

which is due to Hopf’s Maximum Principle, the Fredholm Alternative (Theorem 5.B in Zeidler

(2012)) implies that (78) has exactly one solution when V (−vx, 0) is compact.

Step 4. We shall now show compactness of V (−vx, 0) following Nardi (2015). First of all,

we need to devise a certain bound.

Let vx = V (φ), i.e., it solves (77), and suppose that vx (x) ≥ |vx (x̂)| ≥ 0 for all x̂ ∈ X. If

x is in the interior, then optimality requires ∇ivx (x) = 0 and ∇iivx (x) ≤ 0. Conversely, if x

is on the boundary, then optimality requires ∇1v
x (x)n1 (x)−∇2v

x (x)n2 (x) = 0. But, since

∇1v
x (x)n1 (x) +∇2v

x (x)n2 (x) = 0, which is the boundary condition in (77), the gradient is

identically 0 at x. By Lemma 3.3 in Nardi (2015), we again have ∇iivx (x) ≤ 0. In either case,

we obtain the following conclusion:

‖v‖C 0 = v (x) = DΞ1 (vx) (x)− φ1 (x) ≤ −φ1 (x) = |φ1 (x) | ≤ ‖φ1‖C 0 , (79)

where the inequality is due toDΞ1 (vx) (x) = x
(γi+1)/γi
i ∇iivx (x) fx (x) ≤ 0 and the next equality

follows from φ1 (x) = DΞ1 (vx) (x)− vx (x) ≤ 0.

The reader can verify that the bound in (79) holds if ‖vx‖ C 0,a is attained at some point of

minimum. As a result, (79) and the standard estimate (Theorem 6.30 in Gilbarg et al. (1977))

shows that the exists a number M , which is independent of vx, such that for every vx ∈ U ,

‖V (−vx, 0)‖ C 2,a ≤M ‖vx‖ C 0,a . (80)

Now, take some bounded sequence (vx,n) ⊂ U in the C 2,a-norm. By (80), the corre-

sponding sequence (V (−vx,n, 0)) is bounded in the C 2,a-norm. Let 2
2−a < p < 2, then clearly

(V (−vx,n, 0)) is a subset of the space W 2,p of twice weakly differentiable functions with deriva-

tives that are p-integrable. By Theorem 6 in Section 5.6.3 of Evans (2010), W 2,p can be con-

tinuously embedded into the Hölder space C 0,2−2/p. Since a < 2 − 2/p, the space C 0,2−2/p (X)

can be compactly embedded into C 0,a (X), see for example Section 5.6.2 in Zeidler (2013).

Combining all facts, we obtain that (V (−vx,n, 0)) admits a subsequence that converges in

the C 0,a-norm, which proves compactness of vx 7→ V (−vx, 0) and verifies the condition for the

Implicit Function Theorem.

Step 5. We now have all ingredients to prove that the FOA works for all sufficiently small

ε > 0. First of all, we established that equations (69) and (70) have exactly one solution,
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which turns out to be in C 2,a. Since W ⊂ R2
++ is compact, the sufficiency part of Proposition

10 applies here, and our constructed solutions are, in fact, optimal in the relaxed problem.

As a consequence of the Implicit Function Theorem (Theorem 4.E in Zeidler (2012)), the

sequence of solutions (vx,ε,∗) converges to vx,0,∗ in the C 2,a-norm. It is easy to see from (72)

that the latter is strongly convex, i.e., ∇2vx,0−µI is non-negative definite for some µ > 0, where

I is a 2× 2 identity matrix and ∇2vx,0 is the Hessian of vx,0. Since
∥∥vx,ε,∗ − vx,0,∗∥∥ C 2,a → 0,

the elements of (vx,ε,∗) are strongly convex; thus, the FOA holds due to Lemma 3, for small

ε > 0.

D Proofs for Section 4

Throughout this section, it is assumed that the first-order approach is valid, λ∗ is in C 0 (W )∩
C 1 (W o), bounded on W = R2

+, and its derivatives are bounded as well.

D.1 Proof of Proposition 3

Proof. Observe that λsng,∗ is the same as λ̃ used in Proposition 1. In the proof of the first

part of this proposition, we established that λ̃ corresponds to the solution to the relaxed

problem.

D.2 Proof of Corollary 4

Proof. To apply the sufficiency part of Proposition 10, we need to show that the vector field

in the claim satisfies (49), (50). Indeed,

2∑
i=1

∇i
(
βi

1−E[α̃i(w̃i)|w̃i≥wi]
γiθi(wi)

γiwig1 (w1) g2 (w2)
)

g1 (w1) g2 (w2)
=

2∑
i=1

βi (α̃i (wi)− 1) = α (w)− 1,

where we used independence of (w1, w2) and E [α̃1] = E [α̃2] = 1, β1 + β2 = 1. Since α̃i → 0

and tgi(t)/θi(t)→ 1 as t→ 0, equation (50) holds. It follows that(
β1

1− E [α̃1|w1 ≥ t]
γ1θ1 (t)

, β2
1− E [α̃2|w2 ≥ t]

γ2θ2 (t)

)
is the solution to the relaxed problem. By (19), optimal taxes are individual-based.

D.3 Conditional moments of optimal taxes

In this section, we formally state and prove equation (27) that computes averages of optimal

marginal taxes conditional on level curves of some function Q.
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Proposition 11. Let Q : R2
++ → R++ be a continuous function with the range

(
q, q
)

and

piecewise continuously differentiable level curves. Suppose that there exists m ∈ R2 \ {0} such

that t 7→ Qt (t) := Q
(
t
1/m1
1 , t

1/m2
2

)
is an element of W 1,1

(
R2
++ ∩Bo

r

)
, where Br is a closed ball

of radius r > 0 centered at 0, for each r > 0, and

E

[
2∑
i=1

wi |∇iQ|
∣∣∣Q ≤ q] <∞. (81)

Then,

E

[
2∑
i=1

γiλ
∗
i

∂ lnQ

∂ lnwi

∣∣∣Q = q

]
=

1− E [α|Q ≥ q]
−∂ lnP (Q ≥ q) /∂ ln q

=
E [α|Q ≤ q]− 1

∂ lnP (Q ≤ q) /∂ ln q
. (82)

Proof. Step 1. Since Q has piecewise continuously differentiable level curves, the boundary of

{w|Q (w) ≤ q} is Lipshitz. Then, our assumptions on λ∗ ensure that (49) can be transformed

by the Divergence Theorem. Repeating the argument described in the proof of the sufficiency

part of Proposition 10 and using (49), we obtain∫
Q−1(q)

2∑
i=1

λ∗i (w) γiwif (w)ni (w) dσ (w) =

∫
{w|Q(w)≤q}

2∑
i=1

∇i (λ∗i (w) γiwif (w)) dw,

= P (Q ≤ q)E [α− 1|Q ≤ q] , (83)

where n (w) is the outward unit normal to {ŵ|Q (ŵ) ≤ q} at w.

Step 2. To make further progress, it is convenient to work with the transformation of

productivities given by t := (wm1
1 , wm2

2 ) so that the transformed density is given by f t (t) :=

f
(
t
1/m1
1 , t

1/m2
2

)∏2
i=1

t
(1−mi)/mi
i
|mi| . By the Coarea Formula discussed in the mathematical appendix

for every (Borel) measurable function v : R2
++ → R that is integrable with respect to f on{

t|Qt (t) ≤ q
}

,

P
(
Qt ≤ q

)
E
[
v|Qt ≤ q

]
=

∫ q

q

(∫
(Qt)−1(s)

v (t) f t (t)
dσ (t)

‖∇Qt (t)‖

)
ds.

Then, by the definition of conditional expectation, for a.e. q,

E
[
v|Qt = q

]
=
d
(
P
(
Qt ≤ q

)
E
[
v|Qt ≤ q

])
dP (Qt ≤ q)

=

∫
(Qt)−1(q) v (t) f t (t) dσ(t)

‖∇Qt(t)‖

dP (Qt ≤ q)
/
dq

. (84)

It is easy to see that wi∇iQ (w) = miti∇iQt (t) and the unit normal vectors on the bound-

aries of {w|Q (w) ≤ q} and
{
t|Qt (t) ≤ q

}
are given by ni (w) = ∇iQ(w)

‖∇Q(w)‖ and nti (t) = ∇iQt(t)
‖∇Qt(t)‖ ,
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resp. Then, thanks to assumption (81), v (t) :=
∑2

i=1 λ
∗
i

(
t
1/m1
1 , t

1/m2
2

)
miγiti∇iQt (t) is inte-

grable with respect to f t on
{
t|Qt (t) ≤ q

}
. Thus, using (84) and changing variables from t to

w we obtain the following:

E

[
2∑
i=1

λ∗i γiwi∇iQ
∣∣∣Q = q

]
=

∫
(Qt)−1(q) λ

∗
i (w) γiwini (w) f (w) dσ (w)

dP (Q ≤ q)
/
dq

. (85)

Divide each side of (85) by Q and combine it with (83) to establish the second part of equation

(82).

Step 3. To see the first part of equation (82), use Bayes rule and E [α] = 1 to obtain

P (Q ≥ q)E [1− α|Q ≥ q] = P (Q ≤ q)E [1− α|Q ≤ q] .

And, the result follows from the second part of equation (82).

D.4 Perturbation describing average taxes (equation (28))

As in the text, fix some smooth T and let (y1 (w) , y2 (w)) be the optimal earnings of couple

with productivities w under this tax schedule. We shall (heuristically) construct a perturbation

of T in which taxes on all couples with wi > t some small amount, say ε. A way to do is to

increase marginal taxes on every couple with productivities w such that wi lies in some small

band [t, t+ dt] by (dτ1 (w−i) , dτ2 (w−i)). Of course, dτ aren’t arbitrary. First of all, differences

in taxes between couples (t, w−i) and (t+ dt, w−i) should be exactly ε. In addition, differences

in taxes between couples (t, w−i) and (t, w−i + dt) should be 0, thus

ε = dτ (w−i) · ∇iy(t, w−i)dt and 0 = dτ (w−i) · ∇−iy(t, w−i)dt. (86)

To calculate the benefit from redistribution B, observe that this perturbation collects ε from

each couple with wi > t. So, ignoring the behavioral response, the perturbation redistributes

P (wi ≥ t) in a lump-sum fashion so that

B = ε ·
∫ ∞
t

∫ ∞
0

(1− α (w)) f (w) dw−idwi. (87)

To calculate the costs of distortion C, let (δ1 (w−i) , δ2 (w−i)) be the reduction of earnings of

individuals with productivities w in the band so that their tax bill increases by ∇T (y (t, w−i))·
δ (w−i). Since there are gi(t)dt couples in this band,

C = ∇T (y (t, w−i)) · δ (w−i) gi (t) dt. (88)

69



It remains to relate δ (w−i), dτ (w−i) and ∇y(t, w−i) to each other. Recall the first-order

conditions defining earnings under the original tax, i.e., 1 − ∇jT (y (w)) =
y

(1−γj)/γj
j (w)

w
1/γj
j

for

j = 1, 2. First of all, totally differentiate the first-order conditions with respect to w to obtain

Σ (w)∇iy (w) =

[ 1
γi

(1−∇iT (y (w)))

0

]
and Σ (w)∇−iy (w)=

[
0

1
γ−i

(1−∇−iT (y (w)))

]
,

(89)

Second, adjust ∇T in these conditions by dτ to obtain

Σ (t, w−i) δ (w−i) = dτ (w−i), (90)

where

Σ (w) :=

[
∇iiT (y (w)) + 1−γi

γiyi(w)∇iT (y (w)) ∇12T (y (w))

∇12T (y (w)) ∇−i−iT (y (w)) + 1−γ−i
γ−iy−i(w)∇−iT (y (w))

]
.

Combine (86), (89) and (90) to obtain δi (w−i) = ε · γit
(1−∇iT (y(w))) , δ−i (w−i) = 0 and

dτi (w−i) = Σiiδi (w−i), dτ−i (w−i) = Σ12δi (w−i). As a result, by equations (87) and (88),

B− C = ε · P (wi ≥ t)
(

1− E [α|wi ≥ t]− γiθi (t)
∇iT (y (w))

1−∇iT (y (w))

)
.

And, the expression for average taxes follows from equation (28) by setting B− C = 0.

D.5 Average distortions

D.5.1 Proof of Proposition 5

Proof. By F a ≤PQD F b,

Pa (w−i ≤ t−i|wi ≤ ti) ≤ Pb (w−i ≤ t−i|wi ≤ ti) ∀t. (91)

Since α is decreasing, the first-order stochastic dominance relationship in (91) gives Ea [α|wi ≤ t] ≤
Eb [α|wi ≤ t]. Thus, by (28), Ea

[
λa,∗i |wi = t

]
≤ Eb

[
λb,∗i |wi = t

]
.

Finally, to obtain Eb
[
λb,∗i |wi = t

]
≤ λsng,∗i (t), observe E [α|wi = t] = α̃(wi) and repeat the

previous argument with F b ≤PQD F ∗

D.5.2 Proof of Corollary 2

Proof. Due to separability of α,

E [α|wi = t] = βiα̃i (t) + β−iE [α̃−i (w−i) |wi = t] = 1 + βi (α̃i (t)− 1) ,

where we also used independence of (w1, w2) and E [α̃1] = E [α̃2] = 1, β1 + β2 = 1. The rest of

the proof is identical to the proof of Proposition 5.
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D.5.3 Proof of Corollary 3

Proof. Observe that (u1, u2) ∈ (0, 1)2 7→ αa
(
G−11 (u1) , G

−1
2 (u2)

)
is non-decreasing, thus it can

be extended to a uniformly continuous function on [0, 1]2. Then,

lim
t→0

Ea
[
αa|wi ≤ t

]
= lim

t→0
Ea
[
αa(0, w−i)|wi ≤ t

]
≤ lim

t→0
Eb
[
αa(0, w−i)|wi ≤ t

]
, (92)

where the first equality is due to uniform continuity and the second inequality follows from

(91).

Since αa ∼ αb, these Pareto weights are related by αa(0, w−i) = Eb [αa]αb(0, w−i), where

Eb [αa] = Ea [αa]︸ ︷︷ ︸
=1

+

∫
W
αa (w) d

(
F a (w)− F b (w)

)
= 1 +

∫
W

(
F b (w)− F a (w)︸ ︷︷ ︸

≥0

)
dαa (w) .

(93)

And, equation (92) gives

lim
t→0

Ea
[
αa|wi ≤ t

]
= Eb [αa] lim

t→0
Eb
[
αb(0, w−i)|wi ≤ t

]
= Eb [αa] lim

t→0
Eb
[
αb|wi ≤ t

]
,

where the last equality is due to the same uniform continuity argument as above. Note that

for submodular αa, the term Eb [αa] is less than one; thus, by (28),

lim
t→0

Eb
[
λb,∗i θi|wi = t

]
Ea
[
λa,∗i θi|wi = t

] = lim
t→0

Eb
[
αb|wi ≤ t

]
Ea
[
αa|wi ≤ t

] =
1

Eb [αa]
≥ 1.

Clearly, Eb [αa] is strictly less than one when F b − F a > 0 is positive on a set of positive

measure and αa is strictly submodular, i.e., dαa < 0.

The rest of the proof can be shown similarly, therefore it is omitted.

D.5.4 Proof of Proposition 6

Proof. Consider first αb that is more redistributive than αa. As discussed in Chapter 6.E of

Shaked and Shanthikumar (2007), the distribution with density αaf first-order stochastically

dominates the distribution with density αbf . Then,

E
[
αa|wi ≥ t

]
=

∫
W 1[t,∞)(wi)α

a (w) f (w) dw

1−Gi (t)
≥

≥
∫
W 1[t,∞)(wi)α

b (w) f (w) dw

1−Gi (t)
= E

[
αb|wi ≥ t

]
,

and Ea
[
λa,∗i |wi = t

]
≤ Eb

[
λb,∗i |wi = t

]
follows from (28).

Consider next two benchmark economies such that α̃b that is more redistributory than α̃a.

Remark that the distribution with density α̃a(wj)f first-order stochastically dominates the
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distribution with density α̃b(wj)f for j = 1, 2. Applying the same argument as in the first part

of this proof,

E
[
αa|wi ≥ t

]
=

1

2
E
[
α̃a (wi) |wi ≥ t

]
+

1

2
E
[
α̃a (w−i) |wi ≥ t

]
≥

≥ 1

2
E
[
α̃b (wi) |wi ≥ t

]
+

1

2
E
[
α̃b (w−i) |wi ≥ t

]
= E

[
αb|wi ≥ t

]
.

By (28), Ea
[
λa,∗i |wi = t

]
≤ Eb

[
λb,∗i |wi = t

]
.

D.6 Average jointness

In this section, we study average jointness. It is assumed throughout that the following

coefficients measuring tail-dependence and speed of convergence to are well-defined: χ :=

limu→0
C(u,u)
u , χ := limu→0

C(u,u)
u and κ := limu→0

lnu
lnC(u,u)

, κ := limu→0
lnu

lnC(u,u) . Moreover,

both limiting distributions F (·|∞) and F (·|0) exist.

D.6.1 Proof of Lemma 4 and Proposition 7

Proof. We start with a preliminary observation that will be useful to sign the average joint-

ness at the extremes. Unpack E [λ∗i |wi = t] conditioning on spouse −i being more and less

productive than spouse i to get

E [λ∗i |wi = t] = E [λ∗i |wi = t ≤ w−i]P (w−i ≥ t|wi = t) +

+ E [λ∗i |wi = t ≥ w−i]P (w−i ≤ t|wi = t) . (94)

Observe that P (w−i ≤ t|wi = t) = 1
2
d(1−P(w≤(t,t)))
d(1−P(wi≤t)) . By L’Hôpital’s rule and symmetry,

lim
t→∞

P (w−i ≤ t|wi = t) = lim
t→∞

1

2

1− P (w ≤ (t, t))

1− P (wi ≤ t)
= 1− 1

2
lim
t→∞

P (w−i ≥ t|wi ≥ t) ,

which clearly equals to 1 − χ
2 . Then, dividing each side of (94) by E [λ∗i |wi = t] and taking t

to ∞, we obtain

1 = lim
t→∞

H (t, t)
χ

2
+ lim
t→∞

H (t, t)

(
1− χ

2

)
. (95)

We are now in position to prove Lemma 4 and Proposition 7. Suppose first that F is right-

tail dependent, i.e., χ 6= 0. As discussed in the text, κ = 1, and (38) implies limt→∞H (t, t) ≥ 1,

where the inequality is strict when F (·|∞) is non-degenerate as E [α̃ (w−i) |wi =∞] > α̃ (∞).

By (95), limt→∞H (t, t) ≤ 1 with a strict inequality when limt→∞H (t, t) > 1, and the result

follows.
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Suppose next that F is right-tail independent, i.e., χ = 0, and either κ = 1
2 or F (·|∞) ≡ 0.

It follows from (95) that limt→∞H (t, t) = 1. Clearly, limt→∞H (t, t) = κ ≤ 1 when F (·|∞) is

degenerate, and

lim
t→∞

H (t, t) =
1− α̃ (∞)

1− α̃ (∞) + 1− E [α̃ (w−i) |wi =∞]
≤ 1− α̃ (∞)

1− α̃(∞) + 1− E [α̃ (w−i)]

when κ = 1
2 . The inequality is due to monotonicity of α̃ and positive dependence of F so

that P (·|wi ≥ t) first-order stochastically dominates G. Then, since E [α̃] = 1 , the value

of limt→∞H (t, t) is not more than one and strictly less than one if F (·|∞) is first-order

stochatically dominated by G. In both cases jointness is negative at the top, and it is strictly

negative under the additional conditions mentioned in Lemma 4.

For the left corner, the analogues of (95) and (38) read as

1 = lim
t→0

H (t, t)
(

1− χ

2

)
+ lim
t→0

H (t, t)
χ

2
, lim
t→0

H (t, t) = κ
α (0)− 1

E [α|wi = 0]− 1
.

And, the result follows from the same argument as above.

D.6.2 Proof of Corollary 4

Proof. The analog of equation (34) for the bottom, which is due to (27), reads as

E [λ∗i |wi = t, w−i ≤ t] =
1

2

E [α|w ≤ (t, t)]− 1

γθ (t) η (t, t)
.

It follows that the the sign of J (t, t) is the same as the sign of φ (t), which is given by

φ(t) := γtg (t) (E [λ∗i |wi = t, w−i ≥ t]− E [λ∗i |wi = t, w−i ≤ t]) =

=

1
2

∫
{w∈W :w≥(t,t)} (1− α (w)) f (w) dw

1− F (t|t)
−

1
2

∫
{w∈W :w≤(t,t)} (α (w)− 1) f (w) dw

F (t|t)
.

We shall show that φ is positive (negative) below (resp. above) a certain threshold.

First of all, we note that f (w) = g (w1) g (w2) [1 + ρ (1− 2G (w1)) (1− 2G (w2))] for the

FGM copula; thus,

1
2

∫
{w∈W :w≥(t,t)}

(1− α (w)) f (w) dw =

∫
{w∈W :w≥(t,t)}

(
1
2 − α̃ (wi)

)
f (w) dw =

= (1−G (t))

∫ ∞
t

(
1
2 − α̃ (w)

)
dG (w)−ρG (t) (1−G (t))

∫ ∞
t

(
1
2 − α̃ (w)

)
(1− 2G (w)) dG (w) ,

and

1
2

∫
{w∈W :w≤(t,t)}

(α (w)− 1) f (w) dw =

∫
{w∈W :w≤(t,t)}

(
α̃ (wi)− 1

2

)
f (w) dw =

= G (t)

∫ t

0

(
α̃ (w)− 1

2

)
dG (w) + ρG (t) (1−G (t))

∫ t

0

(
α̃ (w)− 1

2

)
(1− 2G (w)) dG (w) .
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It is convenient to define ψ (t) :=
∫ t
0

(
1
2 − α̃ (w)

)
dG (w), which is non-positive with ψ (0) =

ψ (∞) = 0 and
∫∞
0 ψ (w) dG (w) < 0 whenever α̃ is non-constant. Using the fact F (t|t) =

G (t)+ρ (1− 2G (t))G (t) (1−G (t)) and two above expressions, φ can be succinctly re-written

as

φ (t) = 2ρG (t) (1−G (t))

(∫ t
0 ψ (w) dG (w)

F (t|t)
−
∫∞
t ψ (w) dG (w)

1− F (t|t)

)
.

The term in the brackets can be further unpacked as follows:∫ t
0 ψ (w) dG (w)

F (t|t)
−
∫∞
t ψ (w) dG (w)

1− F (t|t)
=
G (t)

∫∞
0 (−ψ (w)) dG (w)

F (t|t) (1− F (t|t))
×

×

(
F (t|t)
G (t)

−
∫ t
0 (−ψ (w)) dG (w) /G (t)∫∞

0 (−ψ (w)) dG (w)

)
.

By construction, there are numbers t 6 t such that ψ is strictly decreasing on (0, t),

constant on
(
t, t
)
, and strictly increasing on

(
t,∞

)
. It follows that t 7→

∫ t
0 (−ψ(w))dG(w)/G(t)∫∞

0 (−ψ(w))dG(w)

first monotonically increases from 0 to some number above 1, and then it decreases to 1. On

the other hand, t 7→ F (t|t)
G(t) = 1 + ρ (1− 2G (t)) (1−G (t)) first monotonically decreases from

1 + ρ > 1 to some number below 1, and then it increases to 1. The last point follows from the

fact that F (t|t)
G(t) > 1 if and only if G (t) 6 1

2 , and

∂ (F (t|t) /G (t))

∂t
= ρg (t) (4G (t)− 3) > 0 ⇐⇒ G (t) > 3

4 .

Taking both pieces together, we conclude that there is a unique threshold t̂ such that

F (t|t)
G (t)

−
∫ t
0 (−ψ (w)) dG (w) /G (t)∫∞

0 (−ψ (w)) dG (w)
≷ 0 ⇐⇒ t ≶ t̂,

which concludes the proof.

D.6.3 Proof of Corollary 5

Consider the right tail and note that separability of α was used in the proof of Proposition 7

only when χ = 0 and κ = 1
2 . However, under supermodularity (and symmetry) of α,

α (∞) ≥ −E [α] + 2E [α (∞, w−i)] .

As a result, since E [α] = 1 and E [α (∞, w−i)] ≤ E [α|wi =∞] due to positive dependence of

F ,

lim
t→∞

H (t, t) =
1− α (∞)

2− 2E [α|wi =∞]
≤ 1.

The claim then follows.
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As for the left tail, note that, under submodularity (and symmetry) of α,

α (0) ≤ −E [α] + 2E [α (0, w−i)] ,

which gives limt→0H (t, t) ≤ 1.

D.6.4 Proof of Corollary 6

Proof. To formally prove the corollary we need an auxiliary concept of tail order functions.

Following Hua and Joe (2011), define b : R2
++ → R+ as follows:

b(s1, s2) := lim
u→0

C (s1u, s2u)

C(u, u)
.

As explained in Hua and Joe (2011), under ultimate monotonicity of∇C, the tail order function

b is well-defined, differentiable, homogeneous of order κ and satisfies

lim
u→0

∂C (s1u, s2u)

∂si

/
C(u, u) = ∇ib(s1, s2). (96)

In what follows we will only consider the right tail, the other tail can be studied along the

same lines by defining b(s1, s2) := limu→0
C(s1u,s2u)
C(u,u) .

First of all, it follows from (96) that P
(
w−i ≥ tu−i|wi ≥ tui

)
= ∇iC (su) converges to χ∇ib (s)

as u→ 0. Using (94), the analog of equation (95) along (tu) ensues:

1 = lim
u→0

H i (tu)χ∇ib (s) +Hi (tu)
(
1− χ∇ib (s)

)
. (97)

Similarly, by (96), ηi (tu) = (siu)∇iC(su)

C(su)
converges to si∇ib(s)

b(s)
as u → 0. Using (31) and (28),

we obtain the following expression:

2∑
i=1

lim
u→0

H i (tu)
si∇ib (s)

b (s)
(1− E [α|wi =∞]) = 1− α(∞). (98)

We now have all ingredients to prove the corollary formally. Suppose first that χ 6= 0. Since

b is homogeneous of order κ = 1, equation (98) implies that limu→0H i (tu) ≥ 1 for at least one

spouse i. Remark that χ∇ib (s) < 1, because ∇iC (su) ≤ 1 for all u and d∇iC(su)
du > 0 for all

sufficiently small u due to our assumption of ultimate monotonicity, thus limu→0H i (tu) ≤ 1

by (97).

Suppose next that χ = 0 and either κ = 1
2 or (F1 (·|∞) , F2 (·|∞)) are degenerate. In the lat-

ter case, E [α|wi =∞] = α(∞); thus, by (98), limu→0H i (tu) ≤ 1 for some i. In the former case

with κ = 1
2 , if α is supermodular and F is positive dependent, then

∑2
i=1

1
2 (1− E [α|wi =∞]) ≥

1−α(∞) due to the argument used in the proof of Corollary 5. It again follows limu→0H i (tu) ≤
1 for some i. In both cases, since χ = 0, limu→0Hi (tu) = 1, and the result ensues.
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D.6.5 Relationship to Kleven et al. (2007)

In their working version of the paper, Kleven et al. (2007) (KKS for short) outlined how joint-

ness can be signed at each productivity vector under the assumption of independent types.

We now briefly (and heuristically) review their argument in the notations of the present pa-

per focusing for simplicity on a symmetric economy with supermodular Pareto weights. The

argument for submodular weights is identical.

When types are independent, equation (49) can be rewritten as

2∑
i=1

∇i (λ∗i (w) γwig (wi))

g (wi)
= α (w)− 1. (99)

Differentiate twice (99) to obtain

2∑
i=1

∇i
(
∇12 (λ∗i (w) γwig (wi))

g (wi)

)
= ∇12α (w) . (100)

Define the set of types U for which jointness is strictly positive as

U := {w ∈W |∇−iλi (w) γwig (wi) > 0} .

Due to the boundary conditions (50), the set U is contained in the interior of W .

KKS suggested to integrate (100) over U , assuming that it is non-empty, and then use the

Divergence Theorem to obtain∫
U
∇12α (w) dw =

∫
U

2∑
i=1

∇i
(
∇12 (λ∗i (w) γwig (wi))

g (wi)

)
=

=

∫
∂U

2∑
i=1

(
∇12 (λ∗i (w) γwig (wi))

g (wi)

)
ni (w) dσ (w) , (101)

where, as usual, n (w) is the outward unit normal to ∂U at w. Clearly, the expression on

the left-hand side is non-negative due to supermodularity of α. On the other hand, since

on ∇−i (λ∗i (w) γwig (wi)) > 0 on U but ∇−i (λ∗i (w) γwig (wi)) < 0 on the interior of its

complement, we must have ni (w) ∝ −∇12 (λ∗i (w) γwig (wi)). It follows that the second line

in (101) is non-positive. Conclude n (w) = 0, which a contradiction.

The KKS’s argument is powerful but assumes quite a bit of smoothness and regularity.

Using our techniques, under much milder smoothness, jointness can be shown to be negative

on average when α is strictly supermodular. The reader can verify that under independence of

w, supermodularity of α translates into supermodularity of its conditional expectation, that

is
∂2

∂t1∂t2
E [α|w ≤ t] ≥ 0 ∀t.
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Then, since η(t, t) ≡ 1 and E [α] = 1,

H (t, t) =
1
2E [α|w ≤ (t, t)]− 1

E [α|wi ≤ t]− 1
≥ 1 ∀t,

thus average jointness is non-positive.

D.7 Distortions within and across families

D.7.1 Proof of Proposition 8

Proof. (a). Since E [α] = 1, the Bayes rule gives

P (I ≤ ι) (E [α|I ≤ ι]− 1) = P (I ≥ ι) (1− E [α|I ≥ ι]) .

By the law of iterated expectations,

lim
ι→0

E [α|I ≤ ι] = E
[
lim
ι→0

E [α|I ≤ ι, R = r]
]

= lim
ι→0

E [α (R, 0) |I ≤ ι] .

To see the first equality, interchange lim and expectation operators using the Dominated con-

vergence theorem. To obtain the second one, first extend α by uniform continuity, then take ι

to 0 and interchange lim and expectation operators again. As a result, by (40), if α (·, 0) ≥ 1,

then

lim
ι→0

E [λ∗2 − λ∗1] ≥ lim
ι→0

Lι (ι)

ιlι (ι)

(
lim
ι→0

E [α (R, 0) |I ≤ ι]− 1
)
≥ 0.

(b) Since both limits limr→0
Lr(r)
rlr(r)

, limr→∞
1−Lr(r)
rlr(r)

are finite and α̃ is decreasing, the vec-

tor field
(
λ̃ (R (w)) , λ̃ (R (w))

)
is a non-negative, bounded element of W 1,∞ (W o) and sat-

isfies (18), (22). In view of the sufficiency part of Proposition 10, we need to show that

this vector field satisfies (49), (50). The reader can verify that w1 = r
(
1 + ι1/(1−γ)

)γ−1
,

w2 = ιr
(
1 + ι1/(1−γ)

)γ−1
and the density l satisfies l (r, ι) rι = f (w1, w2)w1w2, which gives

∑2
i=1∇i

(
λ̃ (r) γwif (w1, w2)

)
f (w1, w2)

= ∇λ̃(r)γr + λ̃(r)
γr∇r (l(r, ι)r)

l(r, ι)
. (102)

Since r and ι are independent, ∇r(l(r,ι)r)l(r,ι) = ∇r(lr(r)r)
lr(r)

and (102) implies that (49) is equivalent

to
∇r
(
λ̃(r)rlr(r)

)
lr(r)

= α̃ (r)− 1,

which is exactly how λ̃ is defined. Since λ̃ is bounded and ni (w) = 0 whenever wi = 0,

equation (50) holds due to wif(w1, w2) = 0.
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(c). By La ≤PQD Lb,

Pa (R ≥ r|I ≥ ι) ≤ Pb (R ≥ r|I ≥ ι) ∀ (r, ι) . (103)

Since α is measurable only with respect to r and decreasing in this variable, the first-order

stochastic dominance relationship in (103) gives Ea [α|I ≥ ι] ≥ Eb [α|I ≥ ι]. Thus, by (40),

Ea
[
λa,∗2 −λ

a,∗
1 |I = ι

]
≤ Eb

[
λb,∗2 −λ

b,∗
1 |I = ι

]
.We end this section with a remark about a general

economy. For any (γ1, γ2), let γ = γ (γ1, γ2) be the average family elasticity of labor supply,

e.g., γ = (γ1 + γ2) /2 or γ =
√
γ1γ2. Define the transformation (r, ι) ↔

(
w
γ/γ1

1 , w
γ/γ2

2

)
as in

the text, then formulas (39) and (40) extend as follows:

E

 2∑
i=1

(
w
γ/γi
i

)1/(1−γ)

(
w
γ/γ1

1

)1/(1−γ)

+
(
w
γ/γ1

1

)1/(1−γ)
λ∗i

∣∣∣∣∣∣∣R = r

 =
1− E

[
α|R ≥ r

]
γθr (r)

(104)

and

E
[
λ∗2 − λ∗1

∣∣I = ι
]

=
1− E

[
α
∣∣I ≥ ι]

γθι (ι)
. (105)

Proposition 8 then apply directly.

D.8 Optimal individual- and family-based taxation

D.8.1 Proof of Lemma 5

Proof. (a). Consider some anonymous tax schedule T , i.e., T (y1, y2) = T (y2, y1). When faced

with such taxes, couples with productivities (w1, w2) and (w2, w1) obtain the identical utility

v(w), because

v (w) = max
y≥0

2∑
i=1

(
yi − T (y)− 1

γ

(
yi
wi

)1/γ
)

= max
y≥0

2∑
i=1

(
yi − T (y)− 1

γ

(
yi
w−i

)1/γ
)
.

Conversely, let (v, c,y) be a direct mechanism that satisfies (6), (7), (8) and in which v is

symmetric. By Lemma 2 and symmetry of v, y1(w1, w2) = y2(w2, w1) for all w. Then, it is easy

to see that the tax function, which decentralizes (v, c,y), defined in Lemma 1 is anonymous.

(b). Consider some separable tax schedule T , i.e., T (y) = T̃1 (y1) + T̃2 (y2). In response

to this schedule, each couple with productivities w obtains utility v (w) that is additively

separable in w, that is

v (w) =
2∑
i=1

max
yi≥0

(
yi − T̃i (yi)−

1

γ

(
yi
wi

)1/γ
)

︸ ︷︷ ︸
=:ṽi(wi)

.

78



Conversely, let (v, c,y) be a direct mechanism that satisfies (6), (7), (8) and in which v

is additively separable, i.e., v (w) = ṽ1 (w1) + ṽ2 (w2). By Lemma 2, the spouse i’s earnings

is measurable only with respect to wi. Define individual-based taxes T̃1 (y1) and T̃2 (y2) that

decentralize (v, c,y) as follows: T̃i (yi) := yi−γ
(
yi
wi

)1/γ
− ṽi (wi) if yi = yi (wi) for some wi and

T̃i (yi) := ∞, otherwise. This assignment uniquely defines T (y) := T̃1 (y1) + T̃2 (y2) because

c (w) = c (ŵ) whenever y (w) = y (ŵ) due to (6) and (8).

(c). Consider some tax schedule on total earnings T , i.e., T (y) = T̃ (y1 + y2). In response

to this schedule, each couple with productivities w obtains utility v (w) that is measurable

w.r.t. r only, that is

v (w) = max
Y≥0

(
Y − T̃ (Y )− γ

(
Y

R (w)

)1/γ
)

︸ ︷︷ ︸
=:ṽ(R(w))

, (106)

where we used the fact that
(

Y
R(w)

)1/γ
is the minimal cost of obtaining aggregate earnings

Y = y1 + y2 for such couples. To see it, let’s minimize
∑2

i=1 γ
(
yi
wi

)1/γ
subject to Y = y1 + y2.

The reader can verify that the unique minimizer is yi
Y = w

1/(1−γ)

i

/(
w

1/(1−γ)

1 + w
1/(1−γ)

2

)
, and

(106) ensues.

Conversely, let (v, c,y) be a direct mechanism that satisfies (6), (7), (8) and in which v is

measurable w.r.t. r only. Consider w and ŵ with the same value of r, i.e., R (w) = R (ŵ),

then, by (8),

(y1 (ŵ))
1/γ

((
1 + ι

1/(1−γ)

)1/γ−1
−
(

1 + ι̂
1/(1−γ)

)1/γ−1)
+

+ (y2 (ŵ))
1/γ

((
1 + ι

1/(γ−1)

)1/γ−1
−
(

1 + ι̂
1/(γ−1)

)1/γ−1)
≥ 0,

where ι = w2/w1 and ι̂ = ŵ2/ŵ1. Letting ι to ι̂ from below and above, we obtain that on the

curve R (w) = r

(y1 (w))
1/γ
(

1 + ι
1/(1−γ)

)1/γ−2
ιγ−1 = (y2 (w))

1/γ
(

1 + ι
1/(γ−1)

)1/γ−2
ι
(2−γ)/(γ−1). (107)

By (107), yiw
1/(γ−1)

i is the same for both i = 1, 2, thus yi
Y = w

1/(1−γ)

i

/(
w

1/(1−γ)

1 + w
1/(1−γ)

2

)
,

where Y stays for aggregate earnings y1 + y2. As a result, Y and
∑2

i=1

(
yi
wi

)1/γ
=
(

Y
R(w)

)1/γ

are both measurable only with respect to r. So, define family-based taxes T̃ that decentralize

(v, c,y) as follows: T̃ (Y ) := Y − γ
(

Y
R(w)

)1/γ
− ṽ (R (w)) if Y = y1 (w) + y2 (w) for some w

and T̃ (Y ) := ∞, otherwise. This assignment uniquely defines T (y) := T̃ (y1 + y2) because

c (w) = c (ŵ) whenever y (w) = y (ŵ) due to (6) and (8).
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D.8.2 Proof of Proposition 9

Proof. (a). Let v ∈ V be symmetric. It is routine to verify that the functional Υ(v) satisfies

Υ(v) =

∫
W
v (w) (αanon (w)− 1) fanon (w) dw+

+

∫
W

2∑
i=1

(
w1+γi
i

(
∇iv (w)

)γi
− γiwi∇iv (w)

)
fanon (w) dw.

In other words, vanon,∗ solves the relaxed problem in the symmetric economy (F anon, αanon,γ).

The claim then follows from our derivations in Section 4.2, i.e., equation (28).

(b). Consider v ∈ V that is additively separable, i.e., v (w) = ṽ1 (w1) + ṽ2 (w2) for some

functions (ṽ1, ṽ2). Then,∫
W
v (w) (α (w)− 1) f (w) dw =

∫ ∞
0

2∑
i=1

ṽi (wi) (E (α|wi)− 1) g (wi) dwi =

=

2∑
i=1

∫ ∞
0
∇ṽi (wi) (G (wi)−A (wi)) dwi,

where A (t) :=
∫ t
0 E (α|wi = s) g(s)ds. It follows that the value of Υ (v) for an additively

separable v can be re-written as

Υ (v) =

2∑
i=1

∫ ∞
0

(
(∇ṽi (wi))

1/γ w
1+1/γ
i − w

γ∇ṽi (wi)

(
1 +

1

2

A (wi)−G (wi)

γwig (wi)

))
g (wi) dwi.

Pointwise optimization of this equation yields

(∇ṽi (t)) γ−1tγ = 1 +
A (t)−G (t)

γtg (t)
= 1 + λind,∗ (t) . (108)

Since λind,∗ is bounded from below by some λ > −1, by the exact same argument as in the

proof of the sufficiency part of Proposition 10, ṽ1 (w1) + ṽ2 (w2), which are defined by (108), is

an element of V .

(c). Consider v ∈ V that is measurable with respect to r only, i.e., v (w) = ṽ (R (w))

for some function ṽ. Direct calculations give ∇iv (w) = ∇ṽ (r)
(
wi
r

)γ/(1−γ)
. It follows that the

value of Υ (v) for v that depends on w only through r = R (w) can be re-written as

Υ (v) =

∫ ∞
0

ṽ (r) (E [α|R = r]− 1) lr(r)dr +

∫ ∞
0

(
(∇ṽ (r))γ r1+

1/γ −∇ṽ (r) r
)
lr(r)dr.

Integrate by parts as in the first part of this proof and pointwise optimize to obtain

(∇ṽ (r)) γ−1rγ = 1 +
A (r)− Lr (r)

γrlr (r)
= 1 + λfam,∗ (r) , (109)
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where A (r) :=
∫ r
0 E (α|R = s) lr(s)ds. Since λfam,∗ is bounded from below by some λ > −1, by

the exactly same argument as in the proof of the sufficiency part of Proposition 10, ṽ (R (w)),

which is defined by (109), is an element of V .

D.8.3 Proof of Corollary 7

Proof. To see the first part of the corollary, add up two equations (28) for E [λi|wi = t] pre-

multiplied by gi(t)
g1(t)+g2(t)

. The claim then follows from Part (a) of Proposition 9. As for the

last two parts of the corollary, they directly follow from equations (39), (40) and Proposition

(9).

E Quantitative analysis

E.1 Calibration

We use data from the 2020 CPS survey. In our dataset, we have pre-tax earnings of 11087

couples, each consisting of two individuals who (a) have a spouse in the same household, (b)

worked for at least 20 weeks in 2020, (c) are 25-65 years old. Our measure of earnings includes

only wage earnings. The sample is representative of approximately 42 million people.

We suppose that the data comes from a symmetric environment with γ = 1/4; thus, we

symmetrize the dataset by creating one more copy of every household in which the identities

of two spouses are interchanged. This gives us 2×11087 couples with identical distributions of

earnings for each spouse and the same dependence patterns as before. We normalize earnings

by 100 thousand so that the average value of individual earnings in the dataset equals 0.75.

Following Guner et al. (2014) and Heathcote et al. (2017) we assume that the data is

generated with the following tax function: T (y1, y2) = (y1 + y2)− ν(y1 + y2)
1−τ . Guner et al.

(2014) estimated (τ, ν) for married couples using the IRS data in which earnings are normalized

by 53 thousand. Since we normalize earnings by 100 thousand, we adjust their estimate, which

is τ = 0.06 and ν = 0.91, so that total tax bills in dollar terms are identical. The parameter τ

doesn’t need any adjustment but ν = 0.91× ( 53
100)τ .

Given the assumed log-linear tax schedule, each couple solves

max
(y1,y2)≥0

ν (y1 + y2)
1−τ −

2∑
i=1

γ

(
yi
wi

)1/γ

,

which allows us to express unobserved productivites as a function of observed earnings (equa-

tion (44)) and construct the empirical distribution of productivities.
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We calibrate a marginal distribution of productivities and their copula separately. Recall

that the marginal G is assumed to follow a PLN distribution with parameters (a, µ, σ) ∈
R++ × R× R++, that is

G(t) = Φ

(
ln t− µ
σ

)
− t−a exp

(
aµ+ a2σ2/2

)
Φ

(
ln t− µ− aσ2

σ

)
.

Our first target moment is the Pareto statistic (computed with 183 observations at t that

correspond to 99% percentile of the empirical cdf). In our sample this moment equals to 2.95,

and since

lim
t→∞

E [wi|wi ≥ t]
E [wi|wi ≥ t]− t

= a,

we set a to be 2.95. The second target moment is the Gini coefficient. It equals to 0.31 in the

dataset. It can be shown (e.g., see Colombi (1990)) for a PLN distribution it is given by

2Φ

(
σ√
2

)
− 1 + 2

ea(a−1)σ
2

2a− 1
Φ

(
(1− 2a)σ√

2

)
,

where Φ is the standard normal distribution. This gives us σ = 0.4.Our final target moment

is the mean value of individual productivities that equals 0.81 in the sample. Using the closed

form expression

E [wi] =
a

a− 1
eµ+σ

2/2,

we get µ = −0.71.

As for the copula of (w1, w2), we calibrate it using the Kendell’s tau dependence coefficient

(see Chapter 5 in Nelsen (2006)), which is a rank measure of concordance, theoretically:

P ((w1 − w̃1) (w2 − w̃2) > 0)− P ((w1 − w̃1) (w2 − w̃2) < 0) ,

where (w1, w2) and (w̃1, w̃2) are independent copies of productivities. Clearly, this statistic

only depends on the underlying copula, not on G, and closed form expressions are available for

many copulas. In our dataset, it equals to 0.21. We tried several copulas and found that the

Gaussian one fits the data very well. For the Gaussian copula, Kendell’s tau is given by 2 arcsin ρ
π ,

where ρ is its correlation parameter. This gives us ρ = 0.33. In Section E.4 of the appendix

we re-calibrate the model to the FGM copula, i.e., C (u1, u2) = u1u2 [1 + ρ (1− u1) (1− u2)],
for which Kendell’s tau is given by 2ρ

9 , thus ρ = 0.96.

E.2 Numerical approach

In this section, we overview the numerical approach that we used to find the optimal taxes.

First of all, we discretize the problem using a finite logarithmic grid of 399 equally spaced
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productivities. The grid is logarithmic in the sense that a ratio of two consecutive points is

constant. This allows to improve accuracy at the left tail and capture the thick right tail. Let{
w1, . . . , w400

}
, where w1 = 0.12 and w400 = 10, be this grid. The 400th point is added to

ensure that our discretized relaxed problem can approximate the original relaxed problem in

which the domain is unbounded. It will be convenient to also define w0 := 0.

We numerically solve a relaxed problem that only contains downward incentive constraints,

one for each spouse, that is

max
v,y≥0

400∑
n1,n2=1

v (wn1 , wn2) (α (wn1 , wn2)− 1) f (wn1 , wn2)+

+

2∑
i=1

400∑
n1,n2=1

(
yi (wn1 , wn2)− γ

(
yi (wn1 , wn2)

wni

)1/γ
)
f (wn1 , wn2)

subject to the following set of incentive constraints: for all ni = 2, . . . , 400, n−i = 1, . . . , 400

and i = 1, 2,

v (wni , wn−i) ≥ v (wni−1 , wn−i) + γyi
(
wni−1, wn−i

) ((
wni−1

)−1/γ − (wni)−
1/γ
)
.

In this problem f is set yo be

f (wn1 , wn2) =


P
(
wni−1 < wi ≤ wni ∀i

)
, ni, n−i < 400;

P
(
wni−1 < wi, w

n−i−1 < w−i ≤ wn−i
)
, ni = 400 > n−i;

P
(
wni−1 < wi ∀i

)
, ni = n−i = 400.

And, α is normalized so that
∑400

n1,n2=1 α (wn1 , wn2) f (wn1 , wn2) = 1.

The solution to the relaxed problem is easy to find, and it is always the case that all

incentive constraints are binding. Given this solution, we then numerically verify all remaining

(global) incentive constraints. In all cases, we found that the first-order approach holds.

E.3 Comparison of distortions

Figure 9 plots the optimal distortions λ∗i (·, w−i) when w−i is fixed at its median value, i.e., 0.66,

against the average distortions E [λ∗i |wi = t]. For both the Gaussian and FGM copulas, the

average distortions (red dashed lines) are very close to the optimal distortion with w−i = 0.66

(solid blue lines).
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(a) Gaussian copula (b) FGM copula

Figure 9: Comparison of average and pointwise distortions at 50th percentile

E.4 FGM copula

In this section, we report the optimal taxes when the empirical distribution of productivities

is calibrated to the FGM copula. Recall that the FGM copula is defined to be C(u1, u2) =

u1u2 [1 + ρ(1− u1)(1− u2)], where ρ ∈ [−1, 1]. We calibrate parameter ρ to be 0.96, matching

the Kendell’s tau statistic. Figure 10 shows the FGM copula fits isoquants of the empirical

distribution fairly well (Panel (b)), but it does not match the speed of convergence to tail-

independence (Panels (c) and (d)).

(a) Marginal distributions, G(t) (b) Loci of copulas quantiles (u1, u2) satisfying C(u1, u2) = q
for q ∈ {0.1, ..., 0.9}

(c) Left-tail statistics C(u,u)
u

(lines with markers) and
lnu

lnC(u,u)
(lines without markers)

(d) Right-tail statistics C(u,u)
u

(lines with markers) and
lnu

lnC(u,u)
(lines without markers)

Figure 10: Empirical and calibrated joint distributions of productivities
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(a) i’s marginal tax given y−i (b) i’s marginal tax given y−i

yi

Figure 11: Optimal taxes, m = 0.35 and k = 1

(a) i’s marginal tax given y−i, m = 1.5
and k = 1

(b) i’s marginal tax given y−i, m = 0.35
and k = 2

(c) i’s marginal tax given y−i, m = 0.35
and k = 0

(d) i’s marginal tax given y−i

yi
, m = 1.5

and k = 1

(e) i’s marginal tax given y−i

yi
, m = 0.35

and k = 2

(f) i’s marginal tax given y−i

yi
, m = 0.35

and k = 0

Figure 12: Optimal taxes, robustness to m and k

Figure 11 depicts the optimal taxes computed under the FGM copula in our baseline

specification with separable weights and not too redistributive planner. The optimal taxes are

much more negatively jointed at the top as compared to the optimal taxes computed under

the Gaussian copula (Figure 6). Consistent with Proposition 4 the sign of jointness flips at a

threshold, and it is negative (positive) for all large (small) wi.

Figure 12 illustrates robustness of the optimal taxes. Qualitatively, redistributiveness and

modularity of α have identical implications for the optimal taxes under the FGM copula and

the Gaussian copula (Figure 7). First, if the planner is more redistrubutive, then the optimal

taxes are larger and negative jointness occurs at lower levels. Second, supermodularity amplifies

negative jointness at the top, and submodularity amplifies positive jointness at the bottom.

Figure 13 plots the optimal taxes as a function of the total family earnings and the share

of the secondary earner. As in the case of the Gaussian copula (Figure 8), the optimal taxes

vary substantially with the share of the secondary earner.
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(a) U.S. taxes implied by the estimated HSV model (b) Optimum, m = 0.35 and k = 1

(c) Optimum, m = 1.5 and k = 1 (d) Optimum, m = 0.35 and k = 2 (e) Optimum, m = 0.35 and k = 0

Figure 13: Marginal taxes on family earnings
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