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Introduction

A vibrant frontier in macroeconomics incorporates rich cross-sectional heterogeneity in dynamic general

equilibrium. Recent numerical advances have remarkably accelerated the computation of impulse

response functions up to first-order perturbations in leading incomplete credit market models (Ahn

et al., 2018, Auclert et al., 2021). Yet, a conceptual framework rationalizing these numerical techniques

and expanding their applicability has remained elusive. What is the relationship between economic

fundamentals and equilibrium outcomes in perturbations of heterogeneous agent models? How to

handle settings that fall beyond the natural scope of these methods, such as frictional labor markets

or dynamic discrete choice? Are higher order perturbations that include nonlinearities and aggregate

risk feasible?

In this paper, I propose answers to these questions using a new conceptual framework for per-

turbations in heterogeneous agent economies. I propose a representation of dynamic economies with

heterogeneity that is analytic, low-dimensional, handles flexible general equilibrium feedbacks between

the distribution and individual decisions, and applies systematically to perturbations of any order.

These results rely on two key ideas. First, I use a state-space approach and treat the distribution of

underlying heterogeneity as an explicit state variable in individual decisions. A single value function

equation set on the space of distributions summarizes the equilibrium: the ‘Master Equation.’ Second,

I take analytic—instead of numerical—perturbations of the Master Equation in the distribution and

aggregate shocks and characterize the directional derivatives of the value function.

Specifically, the first core idea in this paper is to represent dynamic general equilibrium economies

in fully recursive form. For concreteness, consider a standard incomplete market model as in Aiyagari

(1994) and Krusell and Smith (1998). Households face uninsurable idiosyncratic labor productivity

risk, and may borrow and save in a risk-free asset. A representative firm rents capital and hires labor.

Abstract from aggregate shocks for now: the economy simply starts out of steady-state. Households’

forward-looking consumption and savings decisions are fully determined by the sequence of future

interest and wage rates. These prices in turn depend on the underlying distribution of asset holdings

and idiosyncratic productivity through the firms’ decision and market clearing. The distribution of

assets and productivity evolves over time according to the optimal savings decisions of individuals.

The classic difficulty in characterizing this economy is that individual decisions are forward-looking in

time, while the evolution of the infinite-dimensional distribution is backward-looking in time. Prices

are the fixed point of this forward-backward system that clear the capital and labor market.

I include the underlying distribution of heterogeneity as an explicit state variable in households’

decision problem. Knowledge of the distribution fully characterizes prices. Households know the law

of motion of the distribution. Thus, they forecast the future path of the distribution and hence prices.

Households’ decision problem then depends on the distribution just as on any other state variable.

The only notable difference is that the distribution is an infinite-dimensional object, rather than a

finite-dimensional state vector.
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The resulting representation of the economy is the Master Equation. It was recently characterized

in the mathematics mean field games literature by Cardaliaguet et al. (2019). It consists of a single

Bellman equation that describes the entire behavior of a system of interacting agents. In the Krusell

and Smith (1998) example, the Master Equation defines a value function that depends on a given

household’s idiosyncratic states—assets and productivity—as well as the underlying distribution of

assets and productivity of all other households of the economy. The Master Equation is a Markovian

representation of the economy because it includes as a state variable all the necessary information to

forecast the evolution of the economy. It merges the fixed point on decisions, prices and the distribution

into a single object.

The logic underpinning the Master Equation representation is more general than the Krusell and

Smith (1998) example. At the same time, the analysis in Cardaliaguet et al. (2019) imposes restrictions

that are at odds with most economic applications of interest. Therefore, I expand the scope of the

Master Equation to encompass a large class of continuous-time dynamic general equilibrium economies

that nest many applications of interest. In particular, I introduce the formalism of weak derivatives to

handle mass points symmetrically to a smooth density.1

The second core idea is to simplify the Master Equation by focusing on local perturbations around

a deterministic steady-state. Consider an impulse in the distribution, that moves the economy away

from its steady-state. I explicitly perturb the Master Equation along any such distributional impulse.

To do so, I make use of Fréchet derivatives, which are generalized derivatives in infinite-dimensional

spaces. I preserve the full nonlinearity of individual decisions with respect to idiosyncratic states. In

contrast to numerical techniques that first discretize and next linearize, I take an analytic perturbation

first, before any computational discretization is applied. The use of continuous time streamlines the

mapping between individual decisions and the evolution of the distribution. It also makes handling

binding borrowing constraints easier: in continuous time, the first-order optimality condition continues

to hold with equality, sidestepping Lagrange multipliers.

The First-order Approximation to the Master Equation (FAME) without aggregate shocks results

in a Bellman equation with five key properties. First, it is low-dimensional. Its solution, the ‘Impulse

Value’, consists of the directional derivatives of the value function with respect to the distribution. It

encodes how individuals value changes in the distribution. In the FAME, the Impulse Value depends on

only twice the number of idiosyncratic states, down from infinity in the fully nonlinear Master Equation.

In the Krusell and Smith (1998) example, the Impulse Value has dimension four. This drastic dimension

reduction is a feature of the local perturbation. To know their Impulse Value, individuals must know

their own idiosyncratic states—for instance assets and productivity. Individuals must also know where

the distributional impulse is happening—at another possible pair of assets and productivity. Thus,

they must keep track of another set of idiosyncratic states that index which distributional impulse they

1Individual states follow controlled jump-diffusion processes that are flexible functionals of the underlying distribution
to handle job search and dynamic discrete choice models. Idiosyncratic states face constraints, to handle occasionally
binding borrowing constraints. Mass points develop in the distribution, consistently with borrowing constraints.
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are contemplating.

Second, the FAME depends in closed form on known and interpretable steady-state objects through

a systematic structure. The FAME depends on the steady-state law of motion of idiosyncratic states,

such as assets and productivity. It also depends on the direct impact of distributional impulses on

individual utility and transition probabilities between states. Finally, the FAME depends on the

general equilibrium response of all individuals in the economy through its effect on the law of motion

of the distribution. By virtue of the local perturbation, these objects all have explicit expressions that

are linked together in equilibrium by the FAME.

Third, the FAME applies equally well to settings in which few or many prices summarize feedback

between the general equilibrium and individual decisions. For instance, in dynamic spatial models,

households must keep track of several prices per location to decide where to migrate. In search

and matching models with job-to-job search, the entire distribution of wage offers matters directly for

workers. Because the FAME is a perturbation with respect to the entire distribution, it applies directly

to those examples. For instance, Bilal and Rossi-Hansberg (2023) use the FAME to evaluate the cost

of climate change in a model of the U.S. economy disaggregated into over 3,000 counties.

Fourth, the FAME provides a block-recursive representation of equilibrium and impulse response

functions. The FAME inherits the block-recursivity from the Master Equation, in that it merges the

value function and the distributional fixed points. Once the Impulse Value is known, the evolution of

the distribution over time is obtained without solving any additional fixed point.

Fifth, the FAME offers a streamlined and efficient implementation using standard finite difference

methods. Building on the analytic representation of the the FAME, I show that it displays a specific

separability structure because an individual’s own idiosyncratic state and the distributional impulse

propagate symmetrically but independently. Once discretized, the FAME takes the form of a modified

Sylvester matrix equation for which standard routines exist. In the Krusell and Smith (1998) example,

computation typically takes a tenth of a second and requires a couple dozen lines of code.

The FAME extends readily to the presence of aggregate shocks. A similar perturbation approach

delivers two key insights. To first order, the Impulse Value splits into two distinct components. The

first component is simply the Impulse Value from the deterministic FAME, the ‘deterministic Impulse

Value’. The second component is the ‘stochastic Impulse Value’. The latter represents how individuals

value an aggregate shock. It satisfies a similar FAME to the distributional Impulse Value and may be

solved analogously. The economy remains block-recursive because the deterministic Impulse Value is

independent from aggregate shocks. The linearized law of motion of the distribution evolution equation

now features an additional component that represents the response of individual decisions to aggregate

shocks.

The sixth key property of the FAME characterizes dynamics with aggregate shocks. The FAME

provides, to the best of my knowledge, the first stability criteria and a description of the stochastic

steady-state in heterogeneous agent economies. Leveraging the closed-form mapping between steady-

state objects and the law of motion in the FAME, I show that dynamic stability and exponential
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convergence back to steady-state obtain when the steady-state transition probabilities satisfy either

a mixing condition or a Lyapunov function condition. Crucially, if these conditions fail, checking the

dominant eigenvalue in numerically discretized economies can be misleading about true convergence

rates: the numerical dominant eigenvalue will converge to zero as the discretization becomes finer if the

underlying law of motion exhibits a continuous spectrum that includes zero. The mixing or Lyapunov

conditions rule out this possibility and ensure a spectral gap in the law of motion of the economy.

Building on these stability conditions and the linearity of the law of motion in the FAME, I further

characterize the conditional average of the distribution in the stochastic steady-state. It satisfies a

linear equation that, after discretization, is a standard Sylvester matrix equation.

The Master Equation provides a systematic approach to perturbations of increasing order. Concep-

tually and practically, the Second-order Approximation to the Master Equation (SAME) is the same

as the FAME. I show that the SAME defines a value function that depends again only on steady-state

objects in closed form. Its solution now depends on three times the number of idiosyncratic states

because pairwise impulses in the distribution matter to second order. I show how to compute the

solution to the SAME using tensor Sylvester equations. I further characterize second moments of

the stochastic steady-state distribution and provide a formula for welfare in the SAME. In sum, the

SAME is well-suited for applications that focus on non-linearities, aggregate risk or asset pricing which

requires second-order perturbations to depart from certainty equivalence. The Master Equation can

handle third and higher-order perturbations as well, although I do not explicitly derive them in this

paper.

I illustrate the Master Equation approach with two distinct applications. The first application

shows how to use the FAME and the SAME in a workhorse incomplete market economy à la Aiyagari

(1994) and Krusell and Smith (1998). I evaluate the cost of business cycles in a setup similar to the

one in Krusell et al. (2009) that adds countercyclical income risk. By contrast however, I use a low-

liquidity, high-Marginal Propensity to Consume (MPC) calibration that targets an average MPC of

0.2 and a volatility of aggregate consumption of 0.032 as in Lucas (1987). I find that the combination

of countercyclical income risk and incomplete markets leads to an aggregate cost of business cycles of

2.3% of steady-state consumption, 23 times larger than Lucas (1987)’s seminal calculation. Crucially,

losses are concentrated on the low-wealth and unemployed individuals, who can gain over 10% from

the elimination of business cycles. Calculating the solution to the FAME and the SAME to reach these

conclusions takes a couple seconds on a laptop.

The second application shows how the use the FAME and the SAME in a dynamic spatial model.

I consider the United States (US) economy disaggregated into 381 Metropolitan Statistical Areas

(MSAs). Individuals can migrate between MSAs and face bilateral migration costs and idiosyncratic

preference shocks. Individuals spend their wage on a final good and housing which is locally supplied.

Locations are differentially exposed to an aggregate productivity shock. This setting defines a het-

erogeneous agent economy in which a household’s current location is an individual state variable, and

the population distribution is an aggregate state variable. The FAME and the SAME take a couple
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seconds to solve on a laptop. After estimating the framework on US data, I show that the response

of population and welfare across all locations is virtually identical in the FAME and the SAME for

aggregate shocks up to 30%. This result indicates that first-order perturbations are sufficient for many

applications of interest.

This paper relates to four strands of literature. First, I build on the mathematics mean field games

literature and its Master Equation formulation in Cardaliaguet et al. (2019).2 I complement this

literature by proposing a flexible formulation of the Master Equation that is amenable to a wide class

of economic applications, and by characterizing explicitly its first- and second-order perturbations.

Second, this paper relates to the set of papers that characterize impulse response functions ana-

lytically in specific heterogeneous agent models by studying their spectral properties (Gabaix et al.,

2016, Alvarez and Lippi, 2021, Liu and Tsyvinski, 2020). I complement this literature by providing

sufficient conditions for stability and the emergence of a spectral gap that can be checked in a wide

class of economies.

Third, this paper connects to literature proposing computational methods for first-order pertur-

bations of impulse response functions in heterogeneous agent economies in state space form (Reiter,

2009, Ahn et al., 2018). These methods first discretize, then linearize to first order, an economy with

heterogeneity. They treat the resulting finite but high-dimensional system as a standard rational expec-

tations system. By reversing the order—linearizing first, discretizing next—the FAME is the internally

consistent foundation for this computational approach.3 The FAME provides an economic interpreta-

tion of numerical output that may be otherwise difficult to see through and simplifies implementation.

Crucially, the Master Equation approach also delivers a systematic approach to higher order pertur-

bations such as the SAME.4 Since this paper was first circulated in 2021, Bhandari et al. (2023) have

developed complementary techniques to compute perturbations in discrete time heterogeneous agent

economies.

Fourth, the Master Equation approach relates to numerical linearization techniques that leverage

the sequence-space representation of the economy (Boppart et al., 2018, Auclert et al., 2021). These

sequence-space approaches are designed for first-order perturbations, in contrast to the Master Equa-

tion approach that scales to any order. In a companion paper (Bilal, 2023) I derive and charaterize

analytic sequence-space Jacobians in continuous time and describe their connection to the FAME.

Fifth, the Master Equation approach connects to numerical methods to solve heterogeneous agent

2Mean-field games were first introduced in sequential form by Lasry and Lions (2006) and Huang et al. (2006). The
Master Equation was initially discussed in Lions (2011). See also Carmona and Delarue (2018a) and Carmona and
Delarue (2018b) for the dual, probabilistic approach to mean-field games and the Master Equation.

3I discuss the connection in more detail in Section 1.7. Ahn et al. (2018) mention the Master Equation in their
Appendix as a possible justification for numerical state-space approaches but do not establish the connection formally.

4The analytic nature of perturbations in the FAME and the SAME relate to the analytic perturbation approach
in Bhandari et al. (2021). They also propose first and second-order perturbation of heterogeneous agent economies.
However, they require that all shocks, both aggregate and idiosyncratic, are small enough. The FAME and the SAME
instead preserve full nonlinearity with respect to idiosyncratic uncertainty by only requiring that aggregate shocks are
small. Childers (2018) proposes a hybrid approach where some differentiation is analytic but does not recover smaller-
dimensional Bellman equations as in the FAME.
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models globally. Schaab (2021) also uses the Master Equation to propose a global, adaptative sparse

grid strategy that builds on Brumm and Scheidegger (2017). Kahou et al. (2021), and Azinovic

et al. (2022) use neural networks to obtain global solutions. Global methods do not rely on local

perturbations, but can be delicate to implement and more time-consuming. This paper instead proposes

an analytic perspective on local perturbations of the Master Equation.

The remainder of this paper is organized as follows. Section 1 presents the intuition behind the

Master Equation approach in the context of the Krusell and Smith (1998) economy and a dynamic

migration model. Section 2 defines the Master Equation for a general economy. Section 3 derives

the FAME. Section 4 describes the SAME. Section 5 presents the two applications. The last section

concludes. Proofs and additional details may be found in the Appendix.

1 Motivating examples

This section illustrates the Master Equation approach in two specific economies. I start with the

Krusell and Smith (1998) economy as an expositional device. Therein, I show how to use the Mas-

ter Equation approach to solve for impulse response functions, and derive connections with existing

numerical methods. In the last part of this section, I provide another example in a dynamic discrete

choice setting.

1.1 Setup

The setup follows closely the continuous-time version of the Krusell and Smith (1998) economy in

Achdou et al. (2021). Time t ≥ 0 is continuous and runs forever. There are no aggregate shocks

for now, but the economy may start out of steady-state. Individuals are endowed with idiosyncratic

time-varying productivity ytwhich follows a stationary stochastic process. This process is independent

across individuals and is defined by its generator M(y)—a functional operator that encodes conditional

expectations under the income process. For instance, if productivity follows a diffusion, dyt = µ(yt)dt+

σ(yt)dWt, then the generator is the functional operator M(y)[V ] = µ(y)V ′(y)+ σ(y)2

2 V ′′(y). Households

are endowed with initial asset holdings a0.

Households solve a standard income fluctuation problem by deciding how much to consume and

save every period in a single risk-free asset a. For brevity, I denote by x = (a, y) the pair of idiosyncratic

states of households. The value function of households Vt(x) satisfies the Hamilton-Jacobi-Bellman

equation:5

ρVt(x) = max
c≥0

u(c) + Lt(x, c)[Vt] +
∂Vt
∂t

(x) , Lt(x, c)[V ] ≡ (rta+ wty − c)
∂V

∂a
(x) +M(y)[V ]. (1)

Lt(x, c)[V ] is the continuation value from changes in assets at that evolve according to the budget

constraint dat = (rtat +wtyt− ct)dt, and changes in productivity that follows its exogenous stochastic

5The value function is restricted to have at most linear growth as assets and income approach infinity. This restriction
is the recursive analogue to the No-Ponzi condition in the sequential formulation of problem (1).
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process. The functional operator Lt(x, c) is the generator of the stochastic process for the pair of

idiosyncratic states of households x = (a, y). Denote by ĉt(x) the optimal consumption decision of

households.

A representative firm operates a production technology Y = Z̄KαN1−α and rents assets from

households at the interest rate rt. The firm transforms assets into productive capital K. For expo-

sitional simplicity, capital does not depreciate. The optimality conditions of the firm together with

market clearing imply that the real interest rate rt and the wage rate wt clear the capital and labor

market:

rt = α

(∫∫
ygt(x)dx∫∫
agt(x)dx

)1−α
≡ R(gt) ; wt = (1− α)

(∫∫
agt(x)dx∫∫
ygt(x)dx

)α
≡ W(gt), (2)

where gt(x) is the probability distribution function of households over assets and income at calen-

dar time t. The functionals R,W capture how the interest and wage rates depend on the current

distribution of households.

The distribution gt(x) evolves over time according to its law of motion, the Kolmogorov Forward

equation:

∂gt
∂t

(x) = L∗t (x, ĉt(x))[g] , L∗t (x, ĉt(x))[g] ≡ − ∂

∂a

(
st(x)gt(x)

)
+M∗(y)[gt], (3)

and st(x) = rta+ wty − ĉt(x) denotes the equilibrium savings rate. M∗ is the adjoint of the operator

M , which is the functional equivalent of the matrix transpose. Similarly, the operator L∗ is the adjoint

of the operator L.

1.2 The Master Equation

The Master Equation approach considers the individual decision problem (1) in state-space, or recur-

sive, form. This approach is distinct from the sequential view of (1), that takes the path of interest

and wage rates (rt, wt), t ≥ 0 as an input.

Viewing the individual decision problem (1) in the state space requires defining the value function

on the relevant state space: the space of distributions g. While the distribution is infinite-dimensional,

it may be viewed as a larger analog of any other finite-dimensional state variable. Just as with any

other state variable, including the distribution g as an explicit state variable requires knowing its

evolution over time. Crucially, the Kolmogorov Forward equation (3) encodes precisely that law of

motion.

I build towards the Master Equation in three steps. The first step is to recognize how the value of

a household depends on equilibrium objects. In this example, the value depends only on the interest

and wage rates rt, wt.

The second step is to express prices and any other equilibrium objects that may enter the value

function, as functionals of the underlying primitive distributions that define the relevant aggregate

state. In this example, interest and wage rates rt = R(gt), wt = W(gt) depend on the ratio of
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marginals of the joint distribution of assets and wealth from the capital and labor market clearing

conditions (2). Thus, the capital and labor market clearing conditions (2) provides the required map

directly through the functionals R,W. Substituting into the value of households, I obtain

ρVt(a, y) = max
c
u(c) + L(x, c, gt)[Vt] +

∂V

∂t
(a, y), (4)

where L(x, c, gt)[V ] = (R(gt)a+W(gt)y−c)∂V∂a (a, y)+M(y)[V ]. So far, the transformation of the Bell-

man equation (1) into (4) is mostly notational: I have substituted the time-dependent price sequence

with the distribution-dependent price functionals.

The cornerstone of the Master Equation approach lies in the third step: replacing the time depen-

dence of the value function itself by an explicit dependence on the distribution g. This substitution

amounts to a change of variables: Vt(x) ≡ V (x, gt). Using this identity, the decision problem becomes

fully recursive by re-expressing the time derivative in the Bellman equation (4). The first step is to

recognize that, by the chain rule:

∂Vt
∂t

(a, y) =

∫
∂V

∂g
(x, x′, gt)

∂gt
∂t

(x′)dx′ ≡
〈
∂V

∂g
(x, gt),

∂gt
∂t

〉
. (5)

The chain rule in (5) is one that applies in infinite-dimensional spaces. It involves slightly more notation

than the usual chain rule in finite dimension, but follows the exact same logic.

The brackets 〈·, ·〉 denote an inner product in the appropriate functional space. In this application,

the inner product turns out to be 〈ϕ,ψ〉 =
∫
ϕ(a, y)ψ(a, y)dady on the Hilbert space of square integrable

functions. This inner product is the natural generalization of the Euclidean inner product 〈ϕ,ψ〉 =∑N
n=1 ϕnψn when dealing with functions rather than vectors.

The derivative of the value with respect to the distribution, ∂V
∂g , must be understood in an appro-

priate space for the distribution g. The relevant notion in most economic applications turns out to

be that of Fréchet derivative, the natural generalization of derivatives in finite-dimensional spaces to

infinite-dimensional Hilbert spaces.

To gain intuition, suppose temporarily that the possible set of assets and wages was discrete and

finite, indexed by n. The value function would become a vector (Vn)Nn=1, and the derivative ∂V
∂g would

simply represent the gradient of the value vector with respect to the mass at each ones of these points.

Namely, one could write g ≡ (gn)Nn=1, and thus ∂V
∂g =

(
∂Vn
∂g1

, ..., ∂Vn∂gN

)N
n=1

.

The Fréchet derivative extends the notion of gradient to the case when the underlying idiosyncratic

state space is continuous rather than discrete. In particular, the Fréchet derivative ∂V
∂g (x, x′, g) is

itself a function of the direction in which the derivative is taken, x′—just as with a finite dimensional

gradient.6

The second step to remove the time derivative is to recognize that the change in the distribution,
∂gt
∂t is precisely given by the law of motion (3). Because prices are functionals of the distribution g,

6I use this notation to empahsize this functional dependence, rather than the notation ∂V
∂g(x′) (x, g) that would be

more directly analogous to the discrete case. The notation ∂V
∂g

(x, g) in the inner product implicitly omits the dependence

on x′, but I also write explicitly ∂V
∂g

(x, x′, g) when needed.
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the savings rate writes st(x) ≡ s(x, gt) = R(gt)a + w − ĉ(x, gt). Hence, the evolution equation (3)

also only depends on the distribution g. Thus, I change variables in the functional operator that

encodes the evolution of the distribution L∗t (x, ĉt(x)) ≡ L∗(x, gt) similarly to the value function. The

dependence on the distribution g is both explicit through the interest rate, and implicit through the

optimal consumption decision:7

∂gt
∂t

(x) = L∗(x, gt)[gt]. (6)

Combining the chain rule (5) with the law of motion of the distribution (6), I finally obtain

∂Vt
∂t

(x) =

∫
∂V

∂g
(x, x′, gt)L

∗(x′, gt)[gt]dx
′.

Combining the previous observations, I rewrite the Bellman equation (4) as

ρV (x, g) = max
c
u(c) + L(x, c, gt)[V ] +

∫
∂V

∂g
(x, x′, gt)L

∗(x′, gt)[gt]dx
′. (7)

Equation (7) is the Master Equation. Arriving at the representation (7) has required many

definitions, but the payoff is substantial: the Master Equation (7) is a state-space—or recursive—

representation of the household problem.

Inspection of the Master Equation (7) reveals that there is no need to keep track of a separate

law of motion for the distribution. This law of motion has precisely been incorporated into the value

function through its last term
∫
∂V
∂g (x, x′, gt)L

∗(x′, gt)[gt]dx
′. As a result, the Master Equation (7)

is the only equation that needs be solved to characterize the equilibrium. This property has lead it

to be called the ‘Master Equation’ in the mathematics mean field games literature. In practice, the

representation of the equilibrium is now block-recursive: the evolution of the distribution along any

particular equilibrium realization follows ex-post, once the solution to the Master Equation is known.

The recursive nature of the Master Equation allows to leverage standard recursive methods to

characterize and compute the solution to (7). However, the fully nonlinear Master Equation (7) is

defined on a infinite-dimensional state space that includes the distribution g. Therefore, it remains

difficult to handle nonlinearly in practice.

To overcome this practical difficulty, I combine the Master Equation (7) with local perturbation

methods. It turns out that this combination provides a powerful closed form characterization of the

linearized Master Equation, and drastically reduces the dimensionality of the problem.

1.3 The FAME

I start from a locally isolated steady-state of the economy. It is given by a steady-state value function

V SS(x) and a steady-state distribution gSS(x). I then consider the First-order Approximation to the

Master Equation (FAME) around the steady-state distribution gSS . Specifically, I only require that

deviations in the distribution—that I denote by h = g−gSS and call distributional impulses—are small

7The dependence of the coefficients of the operator L∗ on the distribution gt runs through the parenthesis: gt 7→
L∗(x, gt)[·]. The action of the operator holding the coefficients fixed runs through the square brackets: gt 7→ L∗(x, ·)[gt].
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in the mean squared error norm. I do not require that idiosyncratic uncertainty is small. Instead, the

present approximation preserves the full nonlinearity of decisions with respect to individual states.8

The main innovation in this paper is to take the perturbation analytically instead of numerically.

The critical observation in the FAME is that the value function V (x, g) then becomes, to a first

order, a linear functional of the distributional impulse h. Namely, to first order:

V (x, gSS + h) = V SS(x) +

∫
v(x, x′)h(x′)dx′. (8)

The function v(x, x′) encodes how the value function evaluated at the point x = (a, y) responds to

small impulses in the distribution around the steady-state. To first order, only the effect of the impulse

direction by direction need be considered, and the expansion is additive in the impulse h. The pairwise

effects of the impulses are second order and thus drop out to first order.

I call the function v(x, x′) the ‘determinstic Impulse Value Function’ or simply the Impulse Value.

This terminology is motivated by the observation that v(x, x′) exactly encodes how the value function

responds to a small impulse h in the underlying distribution relative to steady-state. It is the general

equilibrium effect of adding one household at x′ on the value of a household at x.

By construction, the Impulse Value coincides with the steady-state directional derivative: v(x, x′) =
∂V
∂g (x, x′, gSS). To build intuition, the analogue of equation (8) with a finite state space would be

Vn(g) = V SS
n +

∑N
k=1 vnkhk with vnk = ∂Vn

∂gk
(gSS). The integral in equation (8) generalizes this notation

to settings with a continuous state space.

The goal of the FAME is to derive restrictions that determine the Impulse Value. To that end, I

follow a similar strategy to perturbation methods in representative agent economies such as the Real

Business Cycle (RBC) model. I substitute the definition of the Impulse Value (8) into the nonlinear

Master Equation (7). I then take a first-order approximation in the distributional impulse h. Since

the Master Equation must hold for all h, the final step uses the method of undetermined coefficients.

When linearizing the RBC model, there is a finite number of coefficients to identify—for instance

one coefficient for how the value function depends on impulses in the aggregate capital stock. With

heterogeneity, the only difference is that the ‘coefficients’ are themselves functions, such as the Impulse

Value v(x, x′) itself.

The calculation described above leads to the FAME:

ρv(x, x′) = u′(cSS(x))D(x, x′)︸ ︷︷ ︸
Direct price impact

+ L(x)[v(·, x′)]︸ ︷︷ ︸
Partial equilibrium:
continuation value
from shocks to x

+ L(x′)[v(x, ·)]︸ ︷︷ ︸
General equilibrium:
continuation value
from propagation
of impulse at x′

+

∫
v(x, x′′)G(x′′, x′, v)dx′′︸ ︷︷ ︸

General equilibrium:
weighted average of changes in

savings rates of other households x′′

in response to impulse at x′

, (9)

8My approach is similar in spirit to Reiter (2009), Ahn et al. (2018) or Auclert et al. (2021). See Preston and Roca
(2007), Mertens and Judd (2017), and Bhandari et al. (2021) for perturbation methods that additionally require that
idiosyncratic shocks are small.
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where

D(x, x′) =
(
R0a

′ +R1y
′)a+

(
W0a

′ +W1y
′)y , L(x) = L(x, cSS(x), gSS)

G(x′′, x′, v) = − ∂

∂a′′

(
gSS(x′′)

(
D(x′′, x′)− 1

u′′(cSS(x′′))

∂v

∂a′′
(x′′, x′)

))
and R0,R1,W0,W1 are constants that depend only the steady-state distribution and are given in

Appendix A.1.

Equation (9) is the FAME. Its right-hand-side has four components. Each one encodes a particular

force that affects how the value of household x = (a, y) changes in equilibrium when an additional

household enters the economy at x′ = (a′, y′).

The first component in the FAME is the direct price impact. When the distribution changes, prices

also change. The movement in prices affects households’ disposable income as encoded in the price

impact function D(x, x′). The price impact function D depends linearly on the household’s state: a

household with more assets benefits more from a rise in the interest rate. The price impact function D

also depends linearly in the point x′ in the state space where the distributional impulse is occurring—

where household x is contemplating an excess mass of other households x′. A given distributional

impulse at x′ affects the interest rate more if a′ is high or if y′ is high. Therefore, the function D is

larger at larger a′ and y′. A similar logic underlies the impact of the distributional impulse through

the wage rate. The impact of the distributional impulse on households’ consumption drops out due

to the envelope condition—the first-order optimality condition always holds in continuous time. By

virtue of the local perturbation, households then convert changes in disposable income into utils using

their steady-state marginal utility of consumption.

The second component in the FAME encodes a partial equilibrium force, similar to households’

continuation value in (1). Even out of steady-state, households form expectations about their own

assets and labor market productivity. Crucially, by virtue of the first-order perturbation, household

need only evaluate those expectations using steady-state prices and consumption policy functions.

Thus, they use the steady-state continuation value operator L that involves only steady-state transition

probabilities. This operator acts on the first argument x of the Impulse Value, that represents the

dependence of their value on their own own state variable.

The third component in the FAME represents a first general equilibrium force. When contemplat-

ing the effect of an additional household at x′ on the economy, households at x expect this additional

household at x′ to behave just as any other household. Household x′ consumes, saves and receives

labor market shocks. Thus, the additional household at x′ travels through the state space. Keeping

track of where they go matters to project the economy forward in time and evaluate what tomor-

row’s distribution will be. The FAME shows that this expectation is summarized by the steady-state

expectation operator L. Once more, because of the local perturbation, only steady-state transition

probabilities matter to first order. Crucially, the steady-state operator L acts on the second argument

x′ of the Impulse Value value, that represents the effect of an additional household at x′ on the value

12



of household x.

The fourth component in the FAME encodes a second general equilibrium force. It represents how

household x values changes in the law of motion of the distribution that arise because of an additional

household at x′. Why would the law of motion change? An additional household at x′ affects prices.

Because prices change, all households in the economy change their savings behavior—represented by

the integral over x′′. This change in savings behavior affects the law of motion of the distribution to

first order, and thus affects any given household x after weighting by the steady-state distrbution gSS

and converting to utils using the Impulse Value v(x, x′′). The change in savings rates of any other

household x′′ is then given by the innermost bracket. It involves the price impact function D net of the

first-order change in consumption
∂a′′v(x′′,x′)
u′′(cSS(x′′))

. This expression for the consumption response follows

from linearizing the first-order condition for consumption. It is a ‘distributional Marginal Propensity

to Consume’ (dMPC): it represents how consumption changes in response to a distributional impulse.

Despite its notational complexity, the FAME is in fact remarkably simple. It has four key features,

which Section 3 shows hold much more broadly than in the present example.

1.4 Properties of the FAME

The first property of the FAME is that it is a standard Bellman equation in finite dimension. The

dimensionality of the Impulse Value is simply twice that of the original problem, instead of being

infinite-dimensional like the nonlinear Master Equation (7). This drastic simplification stems from the

local perturbation. Households located at x in the state space need only consider isolated impulses

at any other possible x′ in the distribution, since any pairwise impulses would lead to a second-order

deviation in the value function.

The second property of the FAME is that it depends on the steady-state in closed form. By virtue

of the analytic nature of the perturbation, all the objects entering in the FAME are explicitly linked

to the steady-state. Hence, once the nonlinear steady-state of the model is known, no additional

calculation is needed to write down and solve the FAME.

The third property of the FAME is block-recursivity, that it inherits from the Master Equation.

The FAME is the only fixed point that must be solved to know individual behavior along any impulse

response. There is no additional price or distributional fixed point to solve because such fixed points

have already been embedded into the Master Equation. The FAME uncovers that this joint fixed point

has a simple structure that may be solved efficiently.

In fact, once the Impulse Value is known, it is straightforward to apply a similar perturbation

argument to the law of motion of the distribution (3).9 To first order,

∂ht
∂t

(x) = L∗(x)[ht] + G(x)[ht] , G(x)[h] ≡
∫
G(x, x′, v)h(x′)dx′. (10)

Equation (10) encodes the time evolution of any impulse h in the distribution over time. Its two

9In fact, equation (10) is already known. It follows immediately from the linearization of the last component in (7).
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components represent distinct forces that mirror those that the FAME (9) uncovered.

The first term L∗[h] represents the partial equilibrium evolution of the impulse h. This partial

equilibrium evolution is computed holding transition probabilities fixed at their steady-state values.

The second term G[h] represents the general equilibrium response of the economy. It encodes

changes in savings behavior of all households in response to the distributional impulse. These changes

in behavior are embedded in the price impact and dMPCs that enter the definition of the kernel G.

The kernel G coincides with the expression in the general equilibrium component of the FAME (9)

because both represent changes in savings rates.

The fourth property of the FAME is that it lends itself to an efficient numerical solution method.

Due to its standard Bellman equation structure, the FAME can be solved efficiently using standard

finite dimension schemes. Inspection of equation (9) reveals that a discretized version of the Impulse

Value, vij = v(xi, xj) on a grid (xi)i satisfies the nonlinear Sylvester matrix equation

ρv = D + Lv + vLT + vGv,

where D is a matrix that discretizes u′(cSS)D, L is a matrix that discretizes the steady-state transition

operator L, LT denotes the transpose of L, and G is a matrix that discretizes the operator G. This

Sylvester equation can be readily solved using standard routines and an iterative scheme. I describe

this solution method in more detail in Section 3.7.

1.5 Aggregate shocks with the FAME

So far, there were no aggregate shocks in order to focus on the role of the distribution. I now introduce

aggregate shocks in the economy. Aggregate productivity Z is no longer constant, but fluctuates over

time: Zt = Z̄eεzt . Log productivity follows a continuous-time AR(1) process: dzt = −µztdt + dWt

with associated generator A(z) = −θz∂z + 1
2∂zz. The parameter ε > 0 represents the overall scale of

aggregate shocks.

The Master Equation (7) enriched with aggregate shocks becomes

ρV (x, z, g) = max
c
u(c) + L(x, c, εz, g)[V ] +

∫
∂V

∂g
(x, x′, εz, g)L∗(x′, εz, g)[g]dx′ +A(z)[V ]. (11)

Relative to the Master Equation without aggregate shocks (7), the Master Equation with aggregate

shocks (11) now depends on aggregate productivity εzt. This dependence is explicit in the operator

L through the price functionals that now depend on aggregate productivity. In addition, households

expect aggregate productivity to fluctuate over time. These expectations result in the additional

continuation value A(z)[V ]. It is also possible to consider deterministic transitional dynamics in

response to a one-time shock. In that case, one needs simply to keep track of time t instead of the

aggregate productivity state z.10

10In that case, the Master Equation approach simply removes the contribution to the time derivative in the individual
decision problem coming from the distribution gt, but keeps the time derivative coming from the aggregate shock.
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The law of motion of the distribution (3) also extends with aggregate shocks:

dgt(x) = L∗(x, εzt, gt)[gt] dt. (12)

The law of motion in (12) is now a stochastic version of the Kolmogorov forward equation (3).11

With the Master Equation (11) at hand, I extend the perturbation argument in the deterministic

FAME to aggregate shocks. There are now two objects that are small. The first one is, as before, the

deviation in the distribution g−gSS . The second object is the scale of aggregate shocks ε. The natural

benchmark is that both objects are of the same scale, when εh ≡ g − gSS has scale ε.12

When ε is small, the first-order approximation to the value function is:

V (x, z, gSS + εh) = V SS(x) + ε

{∫
v(x, x′)h(x′)dx′ + ω(x, z)

}
. (13)

ω is the ‘stochastic Impulse Value’: the direct effect of aggregate shocks on the value function.13

Just as in any Taylor expansion, the first-order approximation is additive in the response to a

distributional impulse h and the aggregate shock z. Any pairwise perturbation involving an impulse in

the aggregate shock together with an impulse in the distribution h is of scale ε2, and thus second-order.

The separability in equation (13) is critical and represents certainty equivalence. It implies that

the deterministic Impulse Value v(x, x′) with respect to the distributional impulse h satisfies the

deterministic FAME (9) evaluated at Z = Z̄. In particular, the deterministic Impulse Value x can

be solved for independently from aggregate shocks. This observation mirrors the linearization of

representative agent models such as the RBC model. There too, the deterministic component in the

value function is independent from the stochastic component.

I identify coefficients on the aggregate shock after substituting the first-order expansion (13) into the

nonlinear Master Equation (7), similarly to the derivation of deterministic FAME (9). The stochastic

Impulse Value ω(x, z) then satisfies the stochastic FAME:

ρω(x, z) = zΩ(x)u′(cSS(x))︸ ︷︷ ︸
Direct price impact

+ L(x)[ω(·, z)]︸ ︷︷ ︸
Partial equilibrium:
continuation value
from shocks to x

+ A(z)[ω(x, ·)]︸ ︷︷ ︸
Continuation value from

aggregate shocks z

+

∫
v(x, x′′)S(x′′, z, ω)dx′′︸ ︷︷ ︸

General equilibrium:
weighted average of changes in

savings rates of other households x′′

in response to aggregate shock z

,(14)

11It is a stochastic partial differential equation. The coefficients of the operator L∗ change stochastically following
shocks to aggregate productivity zt, and thus define a stochastic partial differential equation. The logic underlying the
law of motion (12) is entirely similar to that of finite-dimensional evolution equations. For instance, the law of motion
for assets for employed individuals is a unidimensional stochastic differential equation dat = st(xt)dt. The law of motion
(12) is an analogue, but in infinite dimension. The only addition is that interactions between the entries of the infinite-
dimensional vector gt(x) that are relevant for its time dynamics are picked up by cross-sectional derivatives. The Master
Equation (11) is non-stochastic, while the SPDE (12) is, because the Master Equation (11) conditions on the current
value of the aggregate shock z, while the SPDE (12) takes the sequence of realized aggregate shocks zt as given.

12In the stochastic steady-state, provided it is stable, gt will remain in a neighborhood of gSS of typical size ε because
the typical size of aggregate shocks is ε.

13Depending on the stochastic process for aggregate productivity z, the stochastic Impulse Value ω need not be linear
in z. In this section’s example, it turns out that it can be easily proven because the productivity process is an unrestricted
diffusion process. However, when there are reflecting boundaries or non-symmetric jump terms in the productivity process,
ω is no longer linear in general. By contrast, the process for the distribution is always an unrestricted diffusion process,
and thus the distribution always enters as a linear functional.
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where Ω(x) ≡ R2a+W2y, R2,W2 are constants that depend only on gSS and are given in Appendix

A.1, and

S(x, z) = − ∂

∂a

(
gSS(x)

(
Ω(x)z − 1

u′′(cSS(x))

∂ω

∂a
(x, z)

))
.

The structure of the stochastic FAME (14) mirrors that of the deterministic FAME (9). The main

difference is simply the expression for the direct price impact of aggregate shocks Ω. As with the

deterministic FAME, all the objects that enter into the stochastic FAME (14) are evaluated at the

deterministic steady-state. They are thus immediately known given given the steady-state.

As with the deterministic FAME, the stochastic FAME (14) is a standard Bellman equation that

may again be solved with standard methods. A crucial property is that the deterministic Impulse

Value v is known by the time one solves the stochastic FAME. Thus, inspection of (14) reveals that

the stochastic FAME is a linear equation in ω. By contrast, the deterministic FAME (9) is a quadratic

equation in v.14

With both Impulse Values v, ω at hand, I turn back to the law of motion of the distribution and

obtain the evolution of the impulse ht in the distribution up to a first order:

dht(x) =
{
L∗(x)[ht] + G(x)[ht] + S(x, zt)

}
dt. (15)

Equation (15) is the linearized version of the SPDE in (12). Iterating forward on (15) for a given

sequence of aggregate shocks zt then delivers any desired impulse response function.

1.6 Dynamic discrete choice

I now provide a second example of the FAME. I illustrate its flexibility with a dynamic discrete choice

setting in which there are multiple prices per locations. This example also clarifies the link between

perturbations with respect to a continuous distribution and perturbations with respect to a finite-

dimensional vector. For concreteness, I interpret the framework as a dynamic location choice setting

with migration, but the framework may be more broadly interpreted as an industry, occupation or

product choice problem.

A dynamic migration setup is a natural environment to use the FAME because there are typically

several prices per location. Thus, the state-space approach at the heart of the Master Equation is

well-suited to handle the complexity of such a framework.15

Consider a unit mass of individuals who choose in which location i ∈ {1, ..., I} to live. Individuals

have flow CRRA preferences over a consumption index C(c, h): u(C) = C1−γ−1
1−γ , where γ denotes

relative risk aversion. The consumption index is a Cobb-Douglas aggregator of a freely traded final

good c, used as the numeraire, and of housing h with share β: C(c, h) = (c/(1− β))1−β(h/β)β.

14This observation mirrors the linearization of the RBC model, in which the deterministic component solves a quadratic
scalar equation, while the stochastic component solves a linear equation given the solution to the deterministic component.

15By contrast, sequence space methods that linearize with respect to a sequence of prices require higher-dimensional
calculations. If there are I locations, n prices per location and T discretized time periods, the FAME requires solving for
a I × I matrix, while sequence-space Jacobians have dimension (nIT )× (nIT ).
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Individuals discount the future at rate ρ. In every location, individuals work for a unit measure of

identical firms that produce the final good using labor and are subject to decreasing returns to scale.16

The local wage is denoted wit, and the housing rental rate rit. Individuals consume their income each

period and face a flow budget constraint c+ rith = wit.

Individuals are allowed to move at rate µ, in which case they draw extreme-value distributed

idiosyncratic preference shocks for potential destinations, with dispersion parameter ν. If they move,

they pay a bilateral moving cost τij . Locations are endowed with a local productivity Zit, a fixed

supply of land Hi whose rents are paid to absentee landlords, and a housing supply curve Hit = Hir
η
it.

Output in location i is thus Yit = ZitN
1−α
it .

There is a common aggregate productivity shock zt which follows a continuous-time AR(1) process

in logs: dzt = −θztdt + σdWt, where dWt is a Brownian motion. Denote A(z) = −θz∂z + σ2

2 ∂zz the

associated generator. Each location is exposed to this aggregate shock with a location-specific slope

χi: Zit = Zie
εχizt .17

Maximizing out the housing and optimal location choices, and clearing labor and housing markets,

individuals solve

ρVit = Ui(zit, Nit) + Li[V ] + E
[
dVit
dt

]
, Li[V ] ≡ µ

1

ν
log

∑
j

eν(Vj−τij)

− Vi
 (16)

I provide details for all derivations in Appendix D.1. The flow payoff is Ui(zit, Nit) = C0iN
−ξ
it , where

ξ = α + β(1−α)
1+η , and C0i is a location-specific constant. The expectation operator Li[V ] is nonlinear

because of the presence of idiosyncratic taste shocks. Crucially, its action on a small perturbation of

the value dV still coincides with the adjoint (tranpose) of the operator L∗i : Li[V SS + dV ] = Li[V
SS ] +

Li(V SS)[dV ]. Location decisions are given by the conditional choice probabilities

πijt(V ) =
eν(Vit−τij)∑
k e

ν(Vkt−τik)
. (17)

The population distribution evolves according to the law of motion:

∂Njt

∂t
= µ

(∑
k

πkjt(V )Nkt −Njt

)
≡ L∗i (V )[Nt]. (18)

In this discrete choice setting, the operator L∗i (V ) is simply the matrix µ(πt(V )T − Id). The Master

Equation writes

ρVi(z,N) = Ui(z,N) + Li[V ] +
∑
j

∂Vi
∂Nj
L∗j (V )[Nt] +A(z)[Vi] (19)

16Profits are distributed to absentee owners.
17The block-recursivity and separability properties of the FAME allow to easily consider shocks that are location-

specific: Zit = Zie
εzit , where each zit follows an AR(1) process.
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I seek a first-order solution to the Master Equation of the form

Vi(z,N) = V SS
i + ε

∑
j

vijnj + ωiz

 .

In Appendix D.2, I show that a similar substitution to the Krusell and Smith (1998) example delivers

the deterministic FAME, a matrix equation for v:

ρv = −ῡ +Mv + vMT + vGv, (20)

where ῡ = ξdiag
(
u′(CSSi )CSSi /NSS

i

)
, M = L(V SS) = µ(m − Id) where m denotes the steady-state

matrix of migration shares, and G = µν
(
diag(NSS)−mTdiag(NSS)m

)
.

The stochastic FAME takes the form of a vector-valued equation:

(ρ+ θ)ω = $ + (M + vG)ω, (21)

where $i = ζ
(
u′(CSSi )CSSi

)
χi, ζ = 1+η−β

1+η .18

Finally, the linearized law of motion of the distribution satisfies:

∂nt
∂t

= MTnt +G(nt + ωzt). (22)

The combination of the stochastic FAMEs (21) and the law of motion (22) reveal that transitional

dynamics in this economy with one aggregate shock per location only require solving a linear system—

given the deterministic Impulse Value v—and a running a single time iteration.

1.7 Connection with existing numerical methods

Having described the FAME, I relate to existing first-order approaches that build either on a state-space

or a sequence-space representation.

1.7.1 State-space methods

The FAME is by nature a state-space approach. It provides the foundation for the computational state-

space approach in Reiter (2009) and Ahn et al. (2018). Specifically, the distributional Impulse Value

v is the analytic counterpart to the matrix Dvg in their notation. The aggregate shock Impulse Value

ω is the analytic counterpart to the matrix DvZ in their notation. Ahn et al. (2018) rely on automatic

differentiation of the nonlinear discretized Bellman equation and law of motion of the distribution

to obtain a linear rational expectations system that stacks the linearized Bellman equation and the

linearized law of motion of the distribution. They then perform a Blanchard and Kahn (1980) stable

root-finding procedure to extract the relevant matrices from the associated Schur decomposition.19

18When each location is subject to its own shock Zit = Zie
εzit instead, the stochastic FAME becomes ρω•j =

$•j + (M + vG)ω•j − θjω•j , where $ij = ζu′(CSSi )CSSi .
19Note that in such a high-dimensional setting, there is no a priori guarantee that the stable hyperplane coincides

with the true value function.
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By contrast, the FAME reveals that linearizing the Bellman equation and the law of motion of

the distribution analytically is feasible. Linearizing the economy before discretizing it uncovers a

systematic structure that delivers standard Bellman equations that may be solved using standard and

fast recursive methods.

The FAME unveils a further block-recursivity property. The deterministic FAME can be solved

first, independently from the stochastic FAME. The stochastic FAME can be solved independently in a

second step, leveraging a much smaller linear system. This property is particularly useful for estimation

of parameters that affect only the stochastic FAME, such as the process for aggregate shocks. In this

case, moment-matching estimation only requires to solve the stochastic FAME repeatedly, bypassing

the computational need to solve for the deterministic FAME.

1.7.2 Sequence-space methods

Auclert et al. (2021) show that sequence-space linearization is highly efficient in contexts in which

the equilibrium is summarized by a few equilibrium prices. In general, depending on the structure of

the model, a state-space or a sequence-space approach may be preferable. When many moments of

the distribution enter individual decisions, such as in dynamic spatial models as in Section 1.6 or in

search-and-matching models, a state-space approach is more natural and is likely to perform better

numerically because it is lower-dimensional. When only a few prices enter individual decisions such as

in the Krusell and Smith (1998) economy, a sequence-space approach is likely to be more efficient.

In a companion paper (Bilal, 2023), I derive a continuous-time analytic counterpart to Auclert

et al. (2021) without relying on numerical differentiation of the individual value function. I show that

the linearized individual decisions satisfy a simple Bellman equation that maps into steady-state in

closed form. I characterize the properties of analytic sequence-space Jacobians, use them to establish

an existence and uniqueness criterion, describe the connection with the FAME and provide efficient

algorithms for direct computation.

This section developed the main ideas and benefits of the FAME in the context of the Krusell and

Smith (1998) example and in a dynamic discrete choice example. In Sections 2 and 3, I generalize the

approach to nest many possible economic settings.

2 The Master Equation

This section builds on Section 1 and develops a general formulation of the Master Equation.

2.1 State space

This section sets up the notation for the remainder of the paper, most of which is to handle mass

points in the distribution symmetrically to a smooth density.
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Time t ≥ 0 is continuous and runs forever. The economy is populated by a unit measure of agents.

Agents are characterized by their individual state vector x ∈ X̄0 ⊂ RDX , where X0 = (x1, x1) × ... ×
(xDX , xDX ) is a DX -dimensional hypercube.20 X̄0 denotes its closure in the Euclidean norm. X̄0 is

endowed with the Borel σ−algebra, and a base measure η. Individuals may choose a control variable

c ∈ Γ ⊂ RDC .21

The base measure η plays a key role in the sequel. It encodes a priori information about where

the distribution is absolutely continuous, and where it may develop mass points. If the example of

Section 1 was enriched with an occasionally binding borrowing constraint a ≥ a, one would define

dη(a, y) = (da+ δ{a}(da))⊗ dy, where δ{a} denotes the Dirac measure at a, and ⊗ denotes the tensor

product of measures. This definition then allows for the possibility of a mass point at the borrowing

constraint a.

The base measure allows to handle only densities with respect to that base measure, and thus

treats mass points and smooth densities symmetrically.22 In the sequel, I always impose that the base

measure is a product measure of marginal measures. The marginal measure along dimension i in turn

consists of the Lebesgue measure together with a countable set of possible mass points. These possible

mass points are located on a DX − 1-dimensional manifold B that may include parts of the boundary

of X0—for instance when there are credit constraints—and may also include points in the interior of

X0—for instance when there are kinks in the interest rate. I assume that this manifold intersects any

direction i at a countable number of points {xin} only. I denote by X = X0 ∪ B the domain of the

state x as the union of the open domain X together with the set of possible mass points B.

Assumption 1. (Base measure)

dη(x) = dη1(x1) ⊗ ... ⊗ dηDX (xDX ), where, for all i = 1...DX and all Borel-measurable subset Z ⊂
[xi, xi], ηi(Z) = `(Zi) +

∑
n 1{xin ∈ Z}, where `(Z) denotes the Lebesgue measure of Z.

2.2 Evolution of individual and aggregate states

Agents’ state xt evolves over time according to a controlled jump-diffusion process

dxt = b0t(xt, ct)dt+ σ0t(xt, ct) · dWt +

∫
(y − xt)f0t(xt, ct, y)dη(y)N(dt). (23)

b0t is the RDX -valued drift of the process. It may depend directly on calendar time t, the current state

xt, as well as the control ct. Similarly, σ0 is the RDX×DW -valued function volatility of the process.

20Working with a hypercube is not strictly necessary for most of the results below. However, it makes the notation
much lighter—in a relative sense—to handle mass points. Without mass points, virtually all the results below go through
for a general open domain X without additional notation.

21To keep the exposition as concise as possible, discussion of filtrations and adaptedness are omitted. See Carmona
and Delarue (2018a) for an in-depth exposition.

22In principle, it is possible to work without a base measure. In that case, the law of motion of the distribution is
set in the space of measures. Consequently, one needs to develop the formalism of derivatives with respect to general
measures in the Wassertstein space. See Cardaliaguet et al. (2019) for details. Introducing this formalism is beyond the
scope of this paper, and is also irrelevant for many economic applications of interest in which a priori knowledge of where
mass points may develop is often available.
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It governs how individual states respond to the RDW -valued Brownian motion W . Importantly, W is

independent across agents. The Poisson jump measure N encodes the frequency of jump increments.

The density f0 captures the density of increments and their frequency over the base measures η,N . In

the notation is implicit that jumps are also independent across agents. I assume that the stochastic

process (23) is a Feller process, which encompasses a wide range of continuous-time Markov processes

typically found in applications.

The state xt may include discrete indicators for different types of agents, for instance employed

workers and unemployed workers, workers and firms, regions or countries. The process xt is assumed

to remain within X, either through reflection at the boundary of X, or through an appropriate com-

bination of drift and volatility at the boundary.

I use the notion of weak derivatives to handle mass points in the distribution.23 When a η-

measurable function f is continuously differentiable, the weak derivative coincides with the classical

derivative. When f has a jump in direction i at some x0 ∈ X, then the weak derivative in the sense

of generalized functions is a measure: it is a Dirac mass point multiplied by the size of the jump:
∂f
∂xi

(x0)dx ≡
(

limε↓0 f(x0 + ετi) − limε↓0 f(x0 − ετi)
)
δx0(dx), where τi is the unit vector pointing in

direction i. In that case, f admits a weak derivative only if x0 ∈ Mi. Then, the weak derivative as a

η-measurable function is the size of the jump at x0: limε↓0 f(x0 + ετi)− limε↓0 f(x0− ετi). Thus, I can

work only with densities with respect to the base measure.

Two functional spaces are useful in the sequel. The first is the space of square-integrable functions

with respect to the base measure η. The second is the second Sobolev space:

L2 =

{
f : X → R is η-measurable

∣∣∣ ∫ f(x)2dη(x) <∞
}
, H2 =

{
f ∈ L2

∣∣∣∂f
∂x
,
∂2f

∂x2
∈ L2

}
.

The notation L2 should not be confused with the notation for the generator of the process, L. The

second Sobolev space H2 consists of all square-integrable functions that have square-integrable first

and second weak derivatives.

I now define two functional operators related to the state process xt. The first operator L0t is the

generator L0t of the state process and encodes conditional expectations of functions of xt. For any

V ∈ H2, define:24

L0t(x, c)[V ] =

DX∑
i=1

b0,i,t(x, c)
∂V

∂xi
(x) +

1

2

DX∑
i,j=1

Σ0,ij(x, c)
∂2V

∂xi∂xj
(x) +

∫
f0t(x, c, y)

(
V (y)− V (x)

)
dη(y)

where Σ0t(x, c) = σ0t(x, c)σ0t(x, c)
T , and recall that the T superscript denotes the matrix transpose.

The second operator is the formal adjoint operator L∗0t.
25 It encodes how the cross-sectional

23See Online Appendix E for details
24For points on the boundary of X, x ∈ ∂X, it is understood that derivatives are taken with respect to the interior

directions to X, and all functions are extended by 0 outside of X.
25Appendix E.2 shows that L∗0t is the actual adjoint of L0t only when there are no mass points in the distribution.
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probability distribution of the process xt evolves over time. For any g ∈ H2, define:

L∗0t(x, c)[g] = −
DX∑
i=1

∂

∂xi

(
g(x)b0,i,t(x, c)

)
+

1

2

DX∑
i,j=1

∂2

∂xi∂xj

(
Σ0,ij(x, c)g(x)

)
+

∫
f0t(y, c, x)g(y)dη(y)− g(x)

∫
f0t(x, c, y)dη(y)

Aggregate shocks take the form of a stationary and Feller Markov process zt with values in Z ⊆ RDZ

and generator A. Z is compact and A is such that the process zt has a unique invariant distribution

that admits a density φ(z). Aggregate shocks are scaled by a scalar parameter ε ≥ 0 when entering

individual decisions and market clearing conditions.

2.3 Individual optimization and evolution of the distribution

Armed with the notation above, I define agents’ decision problem. They solve the following time-

dependent Bellman equation with possible constraints on the state variable:

ρVt(x) = max
c∈Γ

u0t(x, c, Vt) + L0t(x, c)[Vt] + Et
[
dVt
dt

(x)

]
s.t. C0t

(
x, Vt(x),

∂Vt
∂x

(x)

)
≥ 0, x ∈ B. (24)

In equation (24), the flow payoff u0t may depend on time, the current state, but also the value function

V directly. This formulation embeds recursive preferences such as Epstein-Zin, as well as bargaining

models of the labor market.26

The function C0t captures constraints on the state xt when it lies at a possible mass point inside

B.27 For instance, consider adding a credit constraint at ≥ a to the economy of Section 1. In that case,

a mass point may develop at a. Consumption c must be such that ra+wy−c ≥ 0, i.e. c ≤ ra+wy. This

constraint on the control may equivalently be re-stated on the value function by ∂Vt
∂a ≥ u′(rta + wy).

Therefore, C0t

(
a, y, Vt,

∂Vt
∂a

)
= ∂Vt

∂a − u
′(rta+ wy) for a = a.

Similarly, consider adding a kink in the interest rate at a∗ in the interior of X to the economy of

Section 1. For instance, suppose rt(a) = rt for a ≥ a∗, and rt(a) = rt + r̄ > rt for a < a∗. In that

case, a mass point may develop at a∗. In this case, consumption c must be such that ra∗+wy− c = 0,

which delivers the same state constraint as for the credit constraint: ∂Vt
∂a − u

′(rta+ wy) for a = a∗.

It is useful to define the evolution of the distribution in terms of the density gt(x) with respect to

the base measure η in order to accommodate the presence of possible mass points. gt satisfies the law

of motion:

∂gt
∂t

(x) = L∗0t(x, ĉt(x))[gt]. (25)

The notion of weak derivative with respect to the base measure η is key to systematically handle mass

26For Epstein-Zin preferences, set ut(x, c, V ) = ρV (x) + ρ 1−γ
1−ψV (x)

[(
c
/

((1− γ)V (x))
1

1−γ
)1− 1

ψ − 1

]
and set ρ = 0 in

the left-hand-side of (24). Note also that it is straightforward to include shocks to the discount rate ρ, which I omit here
for brevity.

27See Fleming and Soner (2006) for more details.

22



points in the evolution of the distribution. As long as mass points develop only where η allows them

to, the weak derivative is well-defined in the space H2: for all g ∈ H2, L∗0t(x, ĉt(x))[g] ∈ L2.

When the economy is stationary, the Bellman equation (24) becomes

ρV (x) = max
c∈Γ

u0(x, c, V ) + L0(x, c)[V ] s.t. C0

(
x, V (x),

∂V

∂x
(x)

)
≥ 0, x ∈ B. (26)

Similarly, the law of motion of the distribution (25) becomes

0 = L∗0(x, ĉ(x))[g]. (27)

2.4 General equilibrium

I now specify how the flow payoff ut as well as the process for the productivity process L0t depend on

the underlying distribution gt and aggregate shocks zt.
28

Assumption 2. (Dependence on aggregates)

There exist functionals u, b, σ, f, C such that u0 and the coefficients of L0 satisfy

u0t(x, c, Vt) = u(x, c, εzt, gt, Vt), b0t(x, c) = b(x, c, εzt, gt, Vt), σ0t(x, c) = σ(x, c, εzt, gt, Vt),

f0t(x, c, y) = f(x, c, y, εzt, gt, Vt), C0t

(
x, V,

∂V

∂x

)
= C

(
x, V,

∂V

∂x
, εzt, gt

)
In addition, u, b, σ, f, C are continuously L2-Fréchet-differentiable in g and V , and continuously differ-

entiable in z.

I impose Assumption 2 in the rest of the paper. It captures how prices and other general equilibrium

forces feed back into individual decisions. Assumption 2 is typically mediated through market clearing

conditions. It is widely satisfied in applications as in Section 1, in which the dependence on calendar

time is a shorthand for dependence on the the distribution of individual states g. The dependence on

Vt captures typical dependences in labor market models, in which vacancy creation depends on the

distribution of surpluses across jobs. For the flow payoff u, dependence on V captures dependence on

the individual’s own value (e.g. for Epstein-Zin preferences) and dependence on the distribution of

values of other agents.

Importantly, Assumption 2 allows for a much more flexible dependence of the individual decision

problem than only a few prices. There can be any arbitrary number of prices that matter, as in Section

1.6. The distribution can also matter directly for individual decisions, as in a search-and-matching

model with job-to-job search. I now define an equilibrium of the economy.

Definition 1. (Equilibrium in sequential form)

An equilibrium in sequential form of the economy consists of a path of distributions (gt)t≥0 ∈ H2, a

path of values (Vt)t≥0 ∈ H2 such that (24) and (25) holds for all times t ≥ 0, and g0 is given.

28To keep the exposition minimal, I assume that time dependence runs only through the distribution gt as in Section
1. It is not difficult to let time affects the economy deterministically. In that case, one need only treat time as another
state variable.
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There is no need to require any market to clear, since market clearing is embedded in Assumption 2.

Similarly, a steady-state equilibrium is defined as follows.

Definition 2. (Steady-state equilibrium)

A steady-state equilibrium of the economy consists of a distribution gSS ∈ H2, a value V SS ∈ H2 such

that (26) and (27) hold.

2.5 From the time-dependent problem to the Master Equation

Now turn to the Master Equation. Under Assumption 2, the economy may be represented fully

recursively as a value function defined on idiosyncratic states as well as the space of distributions

X ×H2. As in Section 1, the key step is to change variables from calendar time t to the distribution

gt by writing Vt(x) ≡ V (x, gt, zt).

Fréchet derivatives are well-defined in L2 because it is a Hilbert space when equipped with the

inner product 〈f, g〉 =
∫
f(x)g(x)dη(x). Suppose for now that g 7→ V (x, g) admits a Fréchet derivative

for η-almost all x. It consists of a linear bounded operator from L2 onto itself. Using the Riesz

representation theorem, it may in turn be represented by an L2 function. Denote this L2 function by

x′ 7→ ∂V
∂g (x, x′, g, z).

The same change of variables as in Section 1, using the chain rule for Fréchet derivatives and the

law of motion of the distribution (25) in the Bellman equation (24), delivers the Master Equation.

Definition 3. (Master Equation)

The Master Equation is defined by

ρV (x, z, g) = max
c∈Γ

u(x, εz, c, V, g) + L(x, εz, c, g)[V ]

+

∫
∂V

∂g
(x, x′, z, g)L∗(x′, εz, ĉ(x′), g)[g]dη(x′) +A(z)[V ]

s.t. C

(
x, V (x, z, g),

∂V

∂x
(x, z, g), εz, g

)
≥ 0, x ∈ B,

for functions X ×Z ×H2×R+ 3 (x, z, g) 7→ V (x, z, g) that are Fréchet-differentiable in g η-a.e. in x.

The Master Equation in Definition 3 delivers a natural definition of a recursive equilibrium.

Definition 4. (Equilibrium in recursive form)

An equilibrium in recursive form consists of a solution V to the Master Equation in Definition 3.

Definition 4 emphasizes that a value function that solves the Master Equation is the only object

that is needed to describe the equilibrium. By construction, both notions of equilibrium coincide

whenever defining a solution to the Master Equation is possible as shown in Proposition 1.

Proposition 1. (Coincidence of recursive and sequential competitive equilibrium)

Suppose that there exists an equilibrium in recursive form given by a solution V (x, g) to the Master
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Equation in Definition 3. Define Vt(x) ≡ V (x, gt), and let gt solve (25). Then the pair (Vt, gt) defines

an equilibrium in sequential form.

A natural and important question is of course when does a solution to the Master Equation exist

at all. Several set of assumptions have been proposed recently in the mathematics mean field games

literature. Since this literature is still growing, the set of assumptions is still limited at the time of

writing. In particular, typical assumptions exclude several key economics applications, such as the

presence of a credit constraint or multiplicative interactions between prices and states in the savings

rate. Therefore, I do not list those assumptions in this paper, and merely point to existing results.29

These assumptions also guarantee that the value function V (x, g, z) is L2-Fréchet-differentiable in the

distribution g up to second order. In addition, these assumptions are typically the same as those

required for existence and uniqueness of an equilibrium in sequential form.

It is not the purpose of this paper to attempt expanding the set of assumptions leading to existence

and uniqueness results for the fully non-linear Master Equation—though one may hope that such

results will eventually become available for most setups of economics interest. Instead, this paper is

concerned with the more practical question of local approximations to the Master Equation conditional

on the existence of at least one isolated steady-state equilibrium. Therefore, I impose the following

assumption in the sequel.

Assumption 3. (Existence, local uniqueness and regularity)

There exists one isolated steady-state equilibrium V SS , gSS. There exists a solution V (x, z, g) to the

Master Equation in a neighborhood of (gSS , z = 0) that is continuously Fréchet-differentiable in g ∈ H2

around g = gSS, and continuously differentiable in ε around ε = 0, η-almost everywhere in x. The

DX − 2-dimensional boundary of B such that the state constraint holds with equality is continuously

Fréchet-differentiable in g around g = gSS, and differentiable in z around z = 0, η-almost everywhere

in x.

Assumption 3 paves the way for local perturbations of the the Master Equation, which is the subject

of the next section.

3 The FAME

This section derives the FAME, highlights its properties and derives its implications for the local

stability of the steady-state and for the stochastic steady-state. Finally, this section proposes an

efficient numerical implementation to compute the solution to the FAME.

29See for instance Theorem 2.4.2. p. 39 in Cardaliaguet et al. (2019) or Theorem 4.2.1. p. 295 in Carmona and
Delarue (2018b).
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3.1 Impulse Values and optimal control

Start by fixing a locally isolated steady-state equilibrium gSS , V SS , which I will refer to as “the”

steady-state for brevity in the rest of the paper. Consider a small perturbation of the distribution

around the steady-state, g = gSS + εh. I seek a first-order solution to the nonlinear Master Equation

in the form:

V (x, z, gSS + εh) = V SS(x) + ε

{∫
v(x, x′)h(x′)dη(x′) + ω(x, z)

}
. (28)

As in Section 1, v(x, x′) is the deterministic Impulse Value, i.e. the directional derivative of the value

function with respect to the distribution g, evaluated at steady-state gSS : v(x, x′) = ∂V
∂g (x, x′, gSS , 0).

ω(x, z) is the stochastic Impulse Value: the derivative of the value function with respect to aggregate

shocks.

The linearization of the value function in (28), leads to the linearization of the optimal control:

ĉ(x, gSS + εh, z) = cSS(x) + ε

{∫
M(x, x′, v)h(x′)dη(x′) +M(x, z, ω)

}
(29)

The kernel M(x, x′, v) is the distributional Marginal Propensity to Control (dMPC). The component

M(x, z, ω) is the stochastic MPC (sMPC). I express them below. They encode how individual controls

for individuals at x respond to a small distributional impulse h(x′) and to a small aggregagets shock.

I need the following regularity condition, satisfied in most applications of interest, e.g. when the

individual decision problem is strictly concave.

Assumption 4. (Control regularity)

The first-order optimality condition for the optimal control ĉ(x, g, z) holds with equality for ||g−gSS ||L2

and ε small enough. U(x) ≡ uSScc (x) + Lcc(x)[V SS ] is an invertible matrix for η-a.a. x.

Crucially, in continuous time as opposed to discrete time, the first order optimality conditions typically

hold with equality in applications, even with credit constraints (Achdou et al., 2021), so that Assump-

tion 4 holds. Thus, it suffices to differentiate the first-oder optimality condition without carrying

Lagrange multipliers. I impose Assumption 4 in the rest of the paper.

3.2 The deterministic FAME

In light of Section 1, it is natural to expect the deterministic Impulse Value to satisfy a Bellman

equation—the deterministic FAME. To define that Bellman equation as concisely as possible, it is useful

to denote objects evaluated at steady-state functions by a script letter. For instance, denote L(x) ≡
L(x, cSS(x), V SS , gSS). Similarly, denote partial usual or Fréchet derivatives by the corresponding

subscript. For instance, denote ug(x, x
′) ≡ ∂u

∂g (x, x′, V SS , gSS , 0). Denote also by B the set of states

x such that the state constraint holds with equality in the steady-state. Appendix A.2 details the

remaining notation.
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The first step towards the deterministic FAME is to express how the optimal control in equation

(29) responds to changes in the distribution.

Proposition 2. (Deterministic optimal control)

M(x, x′, v) = −U(x)−1

(
m0(x, x′) + Lc(x)[v(·, x′)] +

∫
m1(x, y)v(y, x′)dη(y)

)
m0(x, x′) ≡ ucg(x, x

′) + Lcg(x, x′)[V SS ] , m1(x, x′) ≡ ucV (x, x′) + LcV (x, x′)[V SS ].

Proof. See Appendix B.1.

Proposition 2 characterizes how individuals’ controls respond to a distributional impulse h. The

dMPC depend on the concavity of the utility function as well as the concavity of the generator L. The

dMPC also depends on the corresponding cross-derivatives. I provide more specific expressions for the

dMPC for specific generators in Proposition 4, Appendix B.1.

With Proposition 2 at hand, the deterministic FAME obtains.

Theorem 1. (Deterministic FAME)

The deterministic Impulse Value v satisfies for all x ∈ X\B and all x′ ∈ X:

ρv(x, x′) =

Direct impact︷ ︸︸ ︷
ug(x, x

′) +

∫
uV (x, y)v(y, x′)dη(y) + Lg(x, x′)[V SS ] +

∫
LV (x, y)[V SS ]v(y, x′)dη(y)

+ L(x)
[
v(·, x′)

]︸ ︷︷ ︸
Partial equilibrium:

continuation value from
shocks to x

+ L(x′)
[
v(x, ·)

]︸ ︷︷ ︸
General equilibrium:

continuation value from
propagation of impulse at x′

+

∫
v(x, x′′)G(x′′, x′, v)dη(x′′)︸ ︷︷ ︸

General equilibrium: weighted average
of changes in decisions of other agents x′′

in response to impulse at x′

,

together with, for all x ∈ B and x′ ∈ X:

0 = Cg(x, x′) + CV (x)v(x, x′) + C∂V (x) · ∂v
∂x

(x, x′), all x ∈ B, all x′,

and where

G(x′′, x′, v) = L∗g(x′′, x′)[gSS ] +

∫
v(y, x′)L∗V

(
x′′, y

)
[gSS ] dη(y) + L∗c

(
x′′,M(x′′, x′, v)

)
[gSS ].

Proof. See Appendix B.2.

The structure of the FAME in Theorem 1 generalizes equation (9) in Section 1. The main addition

is the linearization of the state constraint. The state constraint binds in the first-order approximation

exactly at points where it binds in steady-state. It is natural to expect the state constraint to bind out

of steady-state in a neighborhood of the points where it binds in steady-state. Perhaps surprisingly,

these set of points turn out to coincide exactly. This conclusion arises because changes in where the

state constraint binds in response to an impulse h result in a second-order contribution when interacted

with the state constraint itself.
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3.3 The stochastic FAME

With the deterministic FAME at hand, I turn to the stochastic FAME. As for the deterministic

component, I first express how the optimal control in equation (29) responds to aggregate shocks.

Proposition 3. (Stochastic optimal control)

M(x, z, ω) = −U(x)−1

(
m0(x) · z + Lc(x)[ω(·, z)] +

∫
m1(x, y)ω(y, z)dη(y)

)
m0(x) ≡ ucZ(x) + LcZ(x)[V SS ] , m1(x, y) ≡ ucV (x, y) + LcV (x, y)[V SS ].

Proof. Follow the same steps as in the proof of Proposition 2.

With Proposition 3, I obtain the stochastic FAME.

Theorem 2. (Stochastic FAME)

The stochastic Impulse Value ω satisfies for all x ∈ X\B and all x′ ∈ X:

ρω(x, z) = z ·
{
uZ(x) + LZ(x)[V SS ]

}
+ L(x)[ω(·, z)] +A(z)[ω(x, ·)] +

∫
v(x, x′)S(x′, ω, z)dη(x′),

together with, for all x ∈ B and all z ∈ Z:

0 = CV (x)ω(x, z) + C∂V (x) · ∂ω
∂x

(x, z),

and where

S(x′, z, ω) = L∗c
(
y,M(y, z, ω)

)
[gSS ]

)
+

∫
L∗V
(
x′, y, ω(y, z)

)
[gSS ]dη(y)

Proof. Follow the same steps as in the proof of Theorem 1.

As in Section 1, the economy is block-recursive. The deterministic Impulse Value v is independent

from the stochastic Impulse Value ω. One only needs to solve for the stochastic Impulse Value ω after

having solved for the deterministic Impulse Value v.

In many applications such as Section 1, the generator A of aggregate shocks scales as: A(z)[ϕ] =

zB[ϕ] when ϕ is linear. In this case, it is straightforward to guess and verify that the stochastic Impulse

Value scales linearly in z: ω(x, z) = ω0(x) · z. In that case, ω0 satisfies the simpler stochastic FAME

ρω0(x) = uz(x) + Lz(x)[V SS ] + L(x)[ω0] + +B[ω0] +

∫
v(x, x′)S0(x′, ω0)dη(x′),

with S0 defined analogously to S.

3.4 Impulse response functions

Equipped with the deterministic and stochastic Impulse Values, I characterize impulse response func-

tions in this economy.

28



Theorem 3. (Evolution of the distribution)

To first order, following a path of aggregate shocks {zt}∞t=0, the impulse in the distribution ht follows

the SPDE

dht(x)

dt
= L∗(x)[ht] + G(x)[ht] + S(x, zt),

where G(x)[h] =
∫
G(x, x′, v)h(x′)dη(x′), S(x, zt) = S(x, zt, ω), and h0 is given.

Proof. Follow the steps in the proof of Theorems 1 and 2.

Theorem 3 shows that the first-order dynamics of the distribution follow a linear law of motion. As

expected, the evolution depends on the steady-state transition probabilities embedded in the generator

L∗(x). This contribution to the law of motion represents the partial equilibrium response of aggregate

dynamics to an impulse h in the distribution.

The evolution of the distribution also depends on the general equilibrium feedback of the economy,

as highlighted by the integral operator G(x). The action of this operator on the distribution embeds the

first-order response of individual controls ĉ to an impulse in the distribution, through the dMPCs and

the direct impact of a distributional impulse on transition probabilities. Finally, the evolution of the

distribution depends on the impact of aggregate shocks, summarized in S(x, zt). As aggregate shocks

hit the economy, individuals change their decisions, which affects the law of motion of the distribution.

3.5 Dynamic stability

Theorem 3 is particularly useful to obtain stability and convergence conditions. I seek conditions under

which ||ht||1 → 0 at an exponential rate, where ||ht||1 =
∫
|ht(x)|dη(x). To that end, it is useful to

first consider the partial equilibrium stochastic process xPEt given by the generator L. The partial

equilibrium process xPEt corresponds to the dynamics of the state xt when prices are held constant

at their steady-state values and controls are chosen accordingly. Denote by Pt(x, χ) the probability

that this process reaches the set χ starting from x after time t.30 Starting from an initial impulse in

the distribution h0, denote by hPEt the resulting impulse after time t. By Theorem 3, hPEt satisfies

∂th
PE
t = L∗(x)[hPEt ].

Theorem 4. (Partial equilibrium stability)

Suppose that either one of the following condition holds:

(i) There exists a time τ > 0 and a constant α > 0 such that Pτ (x, χ) ≥ α
∫
χ g

SS(x′)dη(x′), for all

x ∈ X and χ ⊂ X. xPEt is an aperiodic process.

(ii) There exists a function W : X → [1,+∞) and a constant β > 0 such that for all x ∈ X,

L(x)[W ] ≤ −βW (x).

Then there exists γ > 0, R > 0 such that ||hPEt ||1 ≤ Re−γt||h0||1 for all h0 that integrates to 0.
30Pt is called the semigroup with generator L.
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Proof. See Appendix B.3.

Theorem 4 provides two possible sufficient conditions under which the steady-state, partial equi-

librium process converges back to its steady-state distribution gSS at an exponential rate. In both

cases, the rate of convergence γ is related to the constants α or β, but in general no direct mapping is

available.

Why is Theorem 4 useful? When the state space is finite dimensional (as in the RBC model,

or the New Keynesian model), standard linear algebra techniques suffice to characterize convergence.

In particular, if the second largest eigenvalue of the counterpart of L∗—the transition matrix—has a

negative real part in continuous time, then the partial equilibrium dynamics are stable.31 This property

continues to hold in numerically discretized frameworks that represent economies with an underlying

continuum of agents, with an important caveat.

When the underlying state space is truly continuous, the theoretically exact dynamics are given

by transition operators such as L∗ that act in infinite-dimensional spaces. There, it turns out that

much of the finite-dimensional spectral theory fails. The main difficulty consists in the possibility of

a continuous spectrum: the possibility that L∗ has a continuum of eigenvalues that includes 0. In

that case, convergence would be slower than exponential. If this is the case, even finite-dimensional

numerical discretizations of L∗ and their eigenvalues are a poor indicator of convergence because they

deliver a second largest eigenvalue very close to 0. Crucially, the value of this eigenvalue approaches

zero as the discretization becomes finer.

Thus, simply checking the second largest eigenvalue of the numerically discretized economy is not

enough to characterize exponential convergence back to steady-state in heterogeneous agent economies.

To avoid this difficulty, one must ensure a spectral gap, that is, the property that the second-largest

eigenvalue of L∗ is strictly negative. This is what conditions (i) or (ii) do.

Condition (i) is often called Doeblin’s condition. It ensures that the process is mixing enough, by

stating that transition probabilities are uniformly bounded below by a multiple of the steady-state

distribution. It is related to conditions D and M in Stokey et al. (1989), which also ensure convergence

of Markov processes back to their invariant distribution. Note, however, that condition D only ensures

convergence of the Cesaro means of hPEt . Condition M ensures convergence of the actual distribution

but requires a uniform lower bound on transition probabilities that is unlikely to hold in settings in

which transition probabilities to certain parts of the state space become arbitrarily low. Condition (i)

in Theorem 4 allows for that possibility by scaling the lower bound by the invariant distribution itself.

Because α can be arbitrarily small, condition (i) is likely to hold in many settings of interest.

When it is difficult to check condition (i), one can turn to condition (ii). The function W in

condition (ii) is called a Lyapunov function, or an energy function. The inequality in condition (ii)

guarantees that W (xPEt ) decreases at a geometric rate on average, which in turn ensures exponential

stability of the partial equilibrium process.

31In discrete time, if the second largest eigenvalue is inside the unit circle.
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It may be tempting to use the value function V SS as a candidate Lyapunov function. For it to

satisfy the inequality, one needs β ≤ infx∈X
uSS(x)
V SS(x)

− ρ. In practice however, the infimum on the

right-hand-side is often negative. To circumvent this difficulty, a mixture of conditions (i) and (ii)

can also be used.32 If condition (i) holds for x ∈ ∆ ⊂ X, and condition (ii) holds for x ∈ X\∆,

then the conclusions of Theorem 4 continue to hold. In particular, the steady-state value function is

a Lyapunov function if it is strictly positive and β ≤ infx∈X\∆
uSS(x)
V SS(x)

− ρ, where the infimum now

excludes ∆. Thus, one can replace low values of the right-hand-side with enough mixing.

Theorem 4 characterizes stability of the partial equilibrium dynamics. The general equilibrium

dynamics in Theorem 3 depend on the general equilibrium feedback encoded in the operator G. The

following result provides condition for stability of the general equilibrium dynamics.

Theorem 5. (General equilibrium stability)

Suppose that the conditions of Theorem 4 are satisfied, with R, γ controlling convergence.

(i) If G is bounded and is dissipative, i.e. for all h ∈ H2, 〈h,Gh〉 ≤ 0, then the general equilibrium

dynamics satisfy exponential convergence at rate γ when zt = 0 for all t: ||ht||1 ≤ Re−γt||h0||1
for all h0 that integrates to 0.

(ii) If the deterministic FAME depends continuously on ug+Lg[V SS ] in ||·||1, then for ||ug+Lg[V SS ]||1
small enough, the general equilibrium dynamics satisfy exponential convergence at rate γ′ ∈ (0, γ)

when zt = 0 for all t.

In both cases, ht remains bounded in the presence of bounded aggregate shocks.

Proof. See Appendix B.4.

Theorem 5 provides two conditions under which the general equilibrium dynamics are stable and

lead to exponential convergence back to steady-state in the absence of aggregate shocks.

Condition (i) states that when general equilibrium forces stabilize the economy and pull it back to

steady-state, the convergence happens at least as fast as in partial equilibrium. The stabilizing effect

of general equilibrium forces is encoded in the condition that G is dissipative. In the Krusell and Smith

(1998) economy of Section 1, it is possible to show that G is indeed dissipative, and so convergence

back to steady-state is exponential.33 In richer settings however, it can be challenging to check whether

G is dissipative because it depends on the deterministic Impulse Value v. In some settings, general

equilibrium forces may even be de-stabilizing. In that case, when can there be convergence back to

steady-state?

Condition (ii) provides an answer when general equilibrium forces cannot be shown to be stabi-

lizing, but can be shown to be small. When this is the case and the deterministic Impulse Value

depends smoothly on the direct impact functions, then exponential convergence holds because the

partial equilibrium stabilizing effect dominates.

32See Appendix B.3 for the proof.
33To see this, exploit the relationship between the constants Ri,Wi and concavity of the utility function.
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In the presence of aggregate shocks, the distributional impulse ht remains bounded because the

general solution to the law of motion in Theorem 3 is

ht = Qth0 +

∫ t

0
Qt−sS(zs)ds, (30)

where Qth0 denotes the solution to ∂tkt = (L∗ + G)kt, k0 = h0 and is called the semigroup associated

with L∗ + G. This solution remains bounded as soon as ||Qth0||1 ≤ R′e−γ
′t||h0||1 for some R′, γ′ > 0

as guaranteed by Theorem 5.

Having established conditions under which the distribution ht(x) of individuals across states x

remains bounded, I characterize its own probability distribution across possible values h: the stochastic

steady-state.

3.6 Stochastic steady-state

It is useful to view the linearized KF equation in Theorem 3 as a law of motion for the density ht.

Theorem 3 defines a SDE in the infinite-dimensional space of functions ht ∈ L2. Denote by P(dh, dz)

the joint probability measure of the deviation in the distribution, ht, and the aggregate shock, zt, in

the stochastic steady-state guaranteed by Theorem 5.

In general, P is a complex and high-dimensional object because it takes as argument a distribution,

h. However, because it represents the density of the solution to a SDE, it turns out that P itself satisfies

a ‘meta’ Kolmogorov Forward equation. I specify it in Appendix B.5. Attempting to solve this ‘meta’

KF equation runs into the curse of dimensionality, because P is a function of a distribution h.

Crucially however, the ‘meta’ KF equation aggregates because of the linearity of the law of motion

elucidated in Theorem 3. Thus, it is possible to tightly determine the conditional average of ht under

P given z: h̄(z) = EP [h|z], which is itself a L2 function for each z. Hence, I also write h̄(z) ≡ h̄(x, z).

Denote J (x) = L∗(x) + G(x).

Theorem 6. (First moments in the stochastic steady-state)

Suppose that the conditions of Theorem 5 hold and that S is continuous in z. Then, there exists

an invariant measure P(dh, dz) in the stochastic steady-state, and the conditional average of such a

distribution in the stochastic steady-state is given by h̄(x, z) = ĥ(x, z)/φ(z), where ĥ satisfies:

0 = J (x)[ĥ(·, z)] +A∗(z)[ĥ(x, ·)] + S(x, z)φ(z).

Proof. See Appendix B.5.

Theorem 6 reveals that the conditional distribution h̄(x, z) satisfies a standard KF equation that

only depends on konwn steady-state objects. Thus, it can be solved with standard techniques. In fact,

once the KF equation in Theorem 6 is discretized, ĥ(x, z) satisfies a standard Sylvester equation.

The same logic also holds for higher-order moments of the distribution in the stochastic steady-

state. Denote by H(x, x′, z) = EP [h(x)h(x′)|z].
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Theorem 7. (Second moments in the stochastic steady-state)

Under the conditions of Theorem 6, H(x, x′, z) = Ĥ(x, x′, z)/φ(z), where Ĥ satisfies:

0 = J (x)[Ĥ(·, x′, z)] + J (x′)[Ĥ(x, ·, z)] +A∗(z)[Ĥ(x, x′, ·)] + S(x, z)ĥ(x′, z) + S(x′, z)ĥ(x, z).

Proof. See Appendix B.5.

Theorem 7 delivers a simple equation that determines second-order moments of the distribution P.

These second moments can thus be easily used as inputs in an estimation routine. They are also key

to characterizing the welfare cost of aggregate risk in the SAME in Section 4.3.

3.7 Solution method

Three key properties of the FAME facilitate the computation of impulse responses. The first property

is block-recursivity: first solve the deterministic FAME from Theorem 1, then solve the stochastic

FAME of Theorem 2, and finally simulate an Impulse Response using Theorem 3.

The second property is that the FAMEs in Theorems 1 and 2 have the structure of a standard jump-

diffusion Bellman equation in finite dimension. In particular, the general equilibrium effects enters the

FAMEs in Theorems 1 and 2 just as a collection of standard diffusion terms would. Therefore, readily

available and highly efficient discretization schemes apply.

The third property is that the FAME provides a closed-form mapping between steady-state objects

and all the elements of the Bellman equation to solve. These observations lead to the following

numerical scheme, described in pseudo-code below. I focus on the case uV , LV = 0 and no state

constraint for simplicity, but it is straightforward to extend the scheme when these partial derivatives

are not zero or the state constraint binds.

Corollary 1. (Numerical implementation)

Define grids {xi}Ii=1, {zk}Kk=1, {z`}L`=1 and a time step ∆. Define the matrices vij = v(xi, xj) ∈ RI×I

and ωik = ω(xi, zk) ∈ RI×K . Then:

1. Deterministic FAME. Let L, ug,M,N and Pv discretize L, ug,Lg(x, x′)[gSS ],L∗(x, x′)[gSS ] and

L∗c(x,M(x′′, x′, v)[gSS ] respectively. Then:

• Guess v0

• Given vn, update vn+1 by solving the standard Sylvester equation:(
ρId− L

)
vn+1 − vn+1

(
LT + M + Nvn

)
= ug.

• Stop when vn+1 and vn are close enough.

2. Stochastic FAME. Let uZ ,Q, A discretize zuZ(x), zLZ(c)[V SS ],A respectively. Then ω solves

the Sylvester equation (
ρId− L− vP

)
ω − ωAT = uZ + Q
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3. Impulse response functions. Let G = M + Nv discretize the operator G. Let St discretize

S(·, zt) for any t. Given h0 and a time step ∆, the discretized distributional impulse ht solves

the recursion

ht+∆ = ht + ∆
{

LTht + Ght + St

}
.

4. Stochastic steady-state. Let h̄, ĥ, φ,A,S discretize h̄, ĥ, ϕ,A, S. ĥ, φ solve the Sylvester and

linear equations, respectively:

0 = (LT + G)ĥ + ĥA+ S , 0 = ATφ,

and set h̄i` = ĥi`/φ`.

Corollary 1 provides a simple way of computing Impulse Values and impulse response functions to

first order. The discretization of steady-state operators into matrices follows standard finite difference

rules as described in Achdou et al. (2021).

At the heart of Corollary 1 lies the specific structure of the FAME in Theorem 1. Once discretized,

the deterministic FAME becomes a modified Sylvester matrix equation. A standard Sylvester matrix

equation is a linear system with a specific structure, so that it may be written as a function of a matrix

unknown Y that satisfies AY + Y B = C for known matrices A,B,C. Of course, it is always possible

to stack this linear system and solve it without exploiting the Sylvester structure. However, doing so

would abstract from useful information about the structure of the linear system. Instead, standard

routines such as Matlab’s sylvester.m function solve the standard Sylvester equation more efficiently

than the stacked system.

The deterministic FAME however leads to a Sylvester equation with a quadratic term. Thus,

Corollary 1 proposes an iterative scheme leveraging a sequence of standard Sylvester equations. A

key observation is to treat the quadratic component vNv consistently with implicit schemes. The first

Impulse Value v in the quadratic component represents household’s x own Impulse Value. Thus, it is

natural to treat it as implicit—solve for it endogenously at every iterative step. The second Impulse

Value v in the quadratic component represents the change in control of all other households x′′. Thus,

it is natural to treat it as explicit—exogenous from the perspective of a given iterative step.34

There is an alternative calculation of the deterministic Impulse Value. Rather than solving the

deterministic FAME directly, one can view as a linear system in (vt, ht) and solve for v using linear

rational expectation techniques by imposing stability as in Ahn et al. (2018). Theorem 5 provides

sufficient conditions under which stability occurs. When these conditions are satisfied, both solution

methods deliver the same outcome. I provide more details in Appendix B.6.

Once the solution to the deterministic Impulse Value is known, the stochastic Impulse Value satisfies

a standard Sylvester equation from Theorem 2. When the generator for aggregate shocks scales A[ϕ] =

34A formal proof of convergence is beyond the scope of this paper. Yet, this implicit-explicit structure leads to robust
convergence in practice. By contrast, reversing which Impulse Value is treated as implicit or explicit leads to systematic
divergence of the scheme.
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zB[ϕ] for ϕ linear, then the stochastic FAME defines a linear vector equation, which solves more

efficiently than the more general Sylvester equation. With both Impulse Values at hand, iterating

forward on the linearized law of motion in Theorem 3 is straightforward.

In addition to providing a systematic approach to first-order perturbations, the Master Equation

is uniquely suited to obtain higher-order perturbations.

4 The SAME

This section develops the Second-order Approximation to the Master Equation (SAME).

4.1 Setup

To obtain the SAME, the strategy is the same as for the FAME. When ε is small enough, the second-

order approximation to the value function is

V (x, z, gSS + εh) =

Steady-state︷ ︸︸ ︷
V SS(x) +

First order︷ ︸︸ ︷
ε

{∫
v(x, x′)h(x′)dη(x′) + ω(x, z)

}
(31)

+
ε2

2

{∫∫
V(x, x′, x′′)︸ ︷︷ ︸

2nd-order effect
of distribution

h(x′)h(x′′)dη(x′)dη(x′′) + 2

∫
Γ(x, x′, z)︸ ︷︷ ︸
Cross effect
of ag. shock.

& distrib.

h(x′)dη(x′) + Ω(x, z)︸ ︷︷ ︸
2nd-order
effect of

ag. shock

}

︸ ︷︷ ︸
Second order

.

The structure of the second-order approximation to the value function mirrors that of the first order

approximation. The second-order deterministic Impulse Value V(x, x′x,′′ ) encodes how deviations in

the distribution affect values up to second-order. In contrast to the first order, pairwise deviations at

x′ and x′′ now matter. Formally, V(x, x′, x′′) = ∂2V
∂2g

(x, x′, x′′, 0, gSS) is the directional Hessian of the

value function with respect to the distribution, understood as Fréchet derivatives.

Aggregate shocks matter up to second order as well, as encoded in the second-order stochastic

Impulse Value Ω(x, z). Up to second order, the cross-effect between deviations in the distribution and

aggregate shocks also enters in the cross component Γ(x, x′, z).

4.2 Values and law of motion

I follow the same strategy as in the FAME to characterize the unknown derivatives V,Γ,Ω. I substitute

the second-order approximation (31) into the nonlinear Master Equation in definition 3, and identify

‘coefficients’ that are again functions. To keep the exposition simple, I focus on the case of drift control

only and no state constraint. It is straightforward to incorporate these additional features. It is useful

to define k(x) = 1
u′′(cSS(x))

and kp(x) = u′′′(cSS(x))
u′′(cSS(x))2

.

To state the SAME as concisely as possible, I define by analogy to the matrix product, for any

functions ϕ(x, x′), ψ(x′), the operator ϕ(x, ·)[ψ] =
∫
ϕ(x, x′′)ψ(x′)dx′. I further define τ(x, x′) =
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∂x′
(
k(x′)vx′(x, x

′)gSS(x′)
)

, σ(x, x′) = −∂x′
[
gSS(x′)(bg(x

′, x)−M(x′, x, v))
]
, σ(z, x′) = −∂x′

[
gSS(x′)(zbz(x

′)−
M(x′, z, ω))

]
, as well as the operators Lτ (x) = L(x) + τ(x, ·), Lσ(x) = L(x) + σ(x, ·) and Lσ(x, z) =

L(x) + σ(z, ·).

Theorem 8. (SAME)

The deterministic SAME is:

ρV(x, x′, x′′) = TV(x, x′, x′′) + Lτ (x)[V(·, x′, x′′)] + Lσ(x′)[V(x, ·, x′′)] + Lσ(x′′)[V(x, x′, ·)].

The cross SAME is:

ρΓ(x, x′, z) = TΓ(x, x′, z) + Lσ(x)[Γ(·, x′, z)] +A(z)[Γ(x, x′, ·)].

The stochastic SAME is:

ρΩ(x, z) = TS(x, z) + L2τ (x)[Ω(·, z)] +A(z)[Ω(x, ·)].

TV , TΓ and TS are independent from V,Γ,Ω respectively, and are given in equations (38),(39) and (40)

respectively in Appendix C.1.

Proof. See Appendix C.1.

The structure of the SAME for the deterministic Impulse Value in Theorem 8 is analogous to the

one found in the deterministic FAME of Theorem 1. When the generator A scales, it is once more

straightforward to guess and verify that the cross SAME scales in z, and hence that Γ(x, x′, z) ≡
Γ0(x, x′) · z, where Γ0 satisfies a simpler cross SAME described in Appendix C.1.1.35

Given the second-order Impulse Values, the law of motion of distribution follows immediately.

Theorem 9. (Law of motion to second order)

To second order in ε,

dht
dt

(x) = L∗(x)[ht] + G(x)[ht] + S(zt) + εQ(ht, zt)

where the quadratic form Q has a closed-form expression given in equation (41), Appendix C.2, that

depends on the solutions to the FAME and the SAME.

Proof. See Appendix C.2.

4.3 Welfare cost of aggregate risk

The SAME can be fruitfully combined with the characterization of the stochastic steady-state in

Section 3.6. Together, they determine the welfare cost of aggregate risk.

35With some additional structure, the stochastic SAME scales quadratically in z, and so Ω(x, z) = zT ·Ω0(x) ·z, where
Ω0 satisfies a simpler stochastic SAME as well.
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To characterize the welfare consequences of aggregate risk, I integrate the second-order expansion

of the value function in equation (31) against the invariant distribution in the stochastic steady-

state P(dh, dz). Denote by V (x, z) = EP [V (x, z, ·)|z] the expected value of agents in the stochastic

steady-state. The key observation is that I only need to keep track of the first- and second-order

moments of the stochastic steady-state distribution to integrate the second-order Impulse Values.

When integrating the first-order Impulse Values, I also need to characterize the second-order expansion

of EP [h(x)|z] = h(x, z) + εh̃(x, z). I do so using Theorem 9 and the same techniques as in Theorem 6.

Theorem 10. (Welfare consequences of aggregate risk)

Under the conditions of Theorems 7 and 8, to a second order,

V (x, z) = V SS(x) + ε

{∫
v(x, x′)h(x′, z)dx′ + ω(x, z)

}
+

ε2

2

{∫∫
V(x, x′, x′′)H(x′, x′′, z)dx′dx′′ + 2

∫
Γ(x, x′, z)h(x′, z)dx′ + 2

∫
v(x, x′)h̃(x′, z)dx′ + Ω(z)

}
,

where h̃(x, z)φ(z) satisfies the same equation as in Theorem 6 after replacing S with Š given in equation

(42), Appendix C.3, which depends on Q, H and h.

Proof. See Appendix C.3

The welfare cost of aggregate risk is given by the first- and second-order changes in the aggregate

shocks and in the distribution, weighted by the Impulse Values.

4.4 Solution method

The closed-form expressions in Theorem 8 also deliver an efficient algorithm to compute the solution

to the SAME. The determinstic and cross SAMEs in V,G are the only non-standard equations to solve

in the SAME. The stochastic SAME is a standard matrix equation that can be solved with standard

methods. I start by describing the solution method for the deterministic SAME, before turning to the

cross and stochastic SAME and impulse response functions.

Denote by Vijk ≡ V(xi, xj , xk) the discretization of the second-order deterministic Impulse Value V
on a grid and into a tensor (a three-dimensional array). Inspection of the SAME reveals that V solves

a linear Sylvester tensor equation after discretization:

V ×1 Lτ + V ×2 Lσ + V ×3 Lσ = TV . (32)

In equation (32), Lτ and Lσ denote standard square matrices. TV denotes a three-dimensional tensor,

that is, a three-dimensional array. The matrices and tensor Lτ ,Lσ and TV map into steady-state

and first-order objects in closed form using Theorem 8. ×i denotes the standard tensor product

along dimension i, which is a direct generalization of matrix products. For instance,
(
V ×2 Lσ

)
ijk

=∑
` Vi`kLσ,`j . See Online Appendix F for details and properties of tensor operations.
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I seek a solution V that is also symmetric in its last two coordinates. As a square matrix, Lτ is

generically diagonalizable in complex numbers. Let Lτ = P−1DτP , where Dτ ≡ diag(dτ,i) is diagonal

and possibly complex. P is invertible and also possibly complex. Using the results in Online Appendix

F, I transform equation (32) into:

E = W ×1 Dτ +W ×2 Lσ +W ×3 Lσ.

where I define W = V ×1 P as the new unknown and E = D ×1 P . W and E are still symmetric in

their last two coordinates. Evaluating at (i, •, •), I obtain:

Ei•• = CiWi•• +Wi••(C
′
i) , Ci ≡

dτ,i
2

Id + Lσ, (33)

where C ′i denotes the matrix transpose of Ci. For each i, equation (33) defines a standard Sylvester

matrix equation. Solving a Sylvester equation relies on an underlying Schur or diagonal decomposition

of the left- and right-multiplying matrices, Ci and C ′i. Crucially, I only need to compute the diagonal

form of Lσ once, and it delivers the diagonal form of each Ci.

Specifically, denote the diagonal form of Lσ by Lσ = Q−1DσQ if it exists, with Dσ = diag(dσ,i)

diagonal. Then Ci = Q−1CiQ, where Ci = Dσ +
dτ,i
2 Id is diagonal, and C ′i = Q′Ci(Q′)−1. The Sylvester

equation (33) then rewrites in diagonal form:

Fi = CiXi +XiCi =⇒ Xi;jk =
Fi;jk

dτ,i + dσ,j + dσ,k
. (34)

where the unknown is a matrix Xi = QWi••Q
′ and Fi = QEi••Q

′ for each i, and last equality

obtains after evaluating at (j, k). Equation (34) also provides a sufficient condition for the discretized

deterministic SAME to have a solution: when Lτ ,Lσ admit a diagonal form, and dτ,i + dσ,j + dσ,k 6= 0

for all i, j, k.

Corollary 2. (Numerical implementation of the deterministic SAME)

Define grids {xi}Ii=1. Define the matrices Lτ ,Lσ and the tensor TV based on Theorem 8. Then:

1. Compute the possibly complex diagonal form of Lτ , Lτ = P−1DτP . Compute the possibly complex

diagonal form of Lσ: Lσ = Q−1DσQ.

2. For each i, obtain Xi by solving equation (34).

3. Recover Wi•• = Q−1Xi(Q
′)−1 and V = W ×1 P

−1.

Having established how to compute the solution to the deterministic SAME, I turn to the cross and

stochastic SAME. Theorem 8 reveals that, once discretized, the cross SAME also satisfies a Sylvester

tensor equation:

Γ×1 Lτ + Γ×2 Lσ + Γ×3 A = TΓ.

The alogrithm in Corollary 2 does not rely on the symmetry of the deterministic SAME. It is straight-

forward to adapt it to solve for the cross SAME. When the cross SAME scales with z, Γ(x, x′, z) =
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Γ0(x, x′)z, the discretized cross SAME boils down to a linear Sylvester equation (Lτ +B)Γ+ΓLσ = TΓ,

which can be solved directly. The discretized stochastic SAME takes the form of a standard Bellman

equation and can thus also be solved with standard methods.

Together, Theorems 8 and 9 as well as Corollary 2 demonstrate that taking second-order pertur-

bations of the Master Equation is conceptually no more difficult than taking first-order perturbations.

This property of the Master Equation approach makes it particularly well-suited to studying settings

with aggregate shocks in which nonlinearities and aggregate risk matter, as well as environments with

asset pricing.

5 Applications

5.1 The welfare cost of business cycles with incomplete markets

In this section I solve the SAME in the Krusell and Smith (1998) model of Section 1. I enrich the

economy with two key features: I introduce an occasionally binding borrowing contraint, and I add

countercyclical income risk. I characterize the welfare cost of business cycles.

I derive the FAME using Theorems 1 and 2. I obtain the SAME using Theorem 8. The law of

motion of the distribution follows from Theorems 3 and 9. I characterize the first and second moments

of the stochastic steady-state distribution using Theorems 6 and 7. I calculate the welfare cost of

business cycles using Theorem 10.

I calibrate the economy at an annual frequency. The discount rate is set to ρ = 0.05, and risk-

aversion to γ = 2. The two-state income process captures employment and non-employment. Income

during non-employment is half of income during employment. The baseline transition rate out of

non-employment is λ1 = 0.5, and the transition rate out of employment is λ2 = 0.1, which leads to a

non-employment rate of 17%. These rates are cyclical: λit = λi +λ′izt: a 10% aggregate shock doubles

the out-flow rate from non-employment, and divides in half the inflow rate into non-employment. The

borrowing constraint is set to a = 0. Aggregate shocks have a half-life of 1 year so that θ = 0.69.

The labor share is α = 0.3. I also let capital depreciate at 10% annually, and introduce foreign capital

owners that hold a quantity Kf of the domestic capital stock.

I target two key statistics to calibrate the volatility of aggregate shocks σ and foreign holdings

of capital Kf . I depart from Krusell et al. (2009) and use a high-MPC, low-liquidity calibration. I

target a steady-state average MPC of 0.2. I achieve this value by adjusting the stock of foreign-held

capital to Kf = 4.4. Finally, I obtain σ = 0.06 by targeting the volatility of aggregate consumption of

0.032 used in Lucas (1987). The computational speed inherent to the FAME and the SAME facilitates

calibration: solving the FAME takes 0.23 seconds and solving the SAME takes 4.3 seconds on a laptop

with 100 grid points for assets.36

36All calculations are run on a MacBook Pro laptop with 2.4 GHz 8-Core Intel Core i9 processors and 64 GB 2667
MHz DDR4 memory.
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Figure 1: Wealth distribution and welfare cost of risk

(a) Wealth distribution in the stochastic steady-state
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Note: Panel (a): invariant distribution in the steady-state gSS (solid lines), and invariant distribution EP [h|z] in the stochastic
steady-state (dashed and dotted lines). Wealth expressed in multilples of steady-state average annual labor market income. Boom
and bust correspond to a one standard deviation aggregate shock z = ±1σ. Panel (b): welfare cost of aggregate risk in consumption-
equivalent percent, by wealth, income and in the aggregate.

Figure 1(a) shows the invariant distribution in the stochastic steady-state. Contrary to Krusell et

al. (2009), there is no need to simulate the model for many periods to calculate it: Theorem 6 provides

a direct formula. Due to countercyclical income risk, the share of employed individuals rises and

the share of unemployed individuals falls in booms. Absent countercyclical income risk, the cyclical

movements in the distribution are much less pronounced because the consumption-savings decision

alone leads to slow internal transitional dynamics. With countercyclical income risk however, the

distribution moves substantially over the business cycle and hence all the components in Theorem 10

are necessary to accurately evaluate the cost of business cycles.

Figure 1(b) displays the cost of aggregate risk by wealth and labor market status. Again, there is

no need to simulate the model for many periods: Theorem 10 directly delivers the relevant expression.

The aggregate cost of business cycles is 2.3% of steady-state aggregate consumption, 23 times the

value reported in Lucas (1987)’s seminal contribution. Both cyclical income risk and high MPCs play

a role. Without cyclical income risk, the welfare cost of business cycles is roughly half, at 1.3%. The

absence of Arrow-Debreu credit markets delivers the rest of the amplification. Quantitatively, these

magnitudes are also twice as large than those in Krusell et al. (2009) because the high-MPC, low-

liquidity calibration further amplifies the cost of business cycle risk. This amplification is particularly

salient at the bottom of the wealth distribution.

Figure 1(b) shows that for low-wealth individuals, the cost of business cycles is between 12%

and 14% in consumption-equivalent terms. These individuals face particularly high costs of business

cycles because they have a limited ability to self-insure against income shocks. These costs are about

halved without countercyclical income risk. Because non-employed individuals have lower wealth than
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employed individuals, as a group they face a cost of business cycles of 10%. By contrast, employed

individuals do not gain or lose substantially on average, although there is substantial heterogeneity by

wealth.

These results highlight how to use the FAME and the SAME to efficiently characterize the role

of aggregate risk in the workhorse incomplete credit market heterogeneous agent model. The next

section shows how to use the FAME and the SAME for a different class of heterogeneous agent models:

dynamic spatial models.

5.2 A dynamic migration model with aggregate shocks

In this section I solve the SAME in the dynamic migration model of Section 1.6 and characterize

the welfare cost of risk for each location in a calibrated version to 381 Metropolitan Statistical Areas

(MSAs).

As in Section 4, I seek a solution to the second-order approximation of the value function, similarly

to (31):

V = V SS + ε(vn+ zω) +
ε2

2
(V ×2 n

∗ ×3 n
∗ + 2zΓn+ Ω(z)) .

V ∈ RI×I×I denotes the second-order deterministic Impulse Value and is a 3-dimensional tensor.

Γ ∈ RI×I denotes the second-order cross Impulse Value and is a square matrix. Ω denotes the second-

order stochastic Impulse Value, and will take the form Ω(z) = z2∆ + Λ, with ∆,Λ ∈ RI vectors.

As in Section 4, the SAME takes the form of a sequence of matrix equations. Appendix D.3 details

the derivations and results. The deterministic SAME takes the form of a tensor-valued Sylvester

equation in the unknown V:

V ×1 A+ V ×2 B + V ×2 B = D, (35)

where A,B are known square matrices and D is a known three-dimensional tensor. I use the algorithm

from Corollary 2 to solve the deterministic SAME.

Having solved the deterministic SAME, the cross SAME takes the form of a standard Sylvester

matrix equation in the unknown Γ:

(A− θId)Γ + ΓB∗ = C,

where C denotes a known matrix. As the FAME, the cross SAME can thus be solved with standard

Sylvester equation routines.

Having solved the cross SAME, the stochastic SAMEs for ∆ and Λ take the form of standard

vector-valued equations that may be solved in sequence:

(A− 2θId)∆ = E , AΛ = −σ2∆,

where E is a known vector. To compute an impulse response in this economy, I use the second-order
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Figure 2: Population change 5 years out in the FAME and the SAME (%)

(a) 1 s.d. shock
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Note: Each blue circle represents an MSA. Both axes represent percent deviations from steady-state 5 years after the shock first
occurs. The size of circles is proportional to steady-state population. Panel (a) compares the FAME and the SAME following a
time-0 1 standard deviation shock z0 = σ that mean-reverts according to dzt = −θztdt. Panel (b) increase the initial value to
z0 = 5σ, and panel (c) to z0 = 10σ.

expansion of the law of motion that underlies the derivation of the SAME and is detailed in Appendix

D.3.8.

I calibrate the model to 381 MSAs of the US economy.37 To calibrate shifters Zi and Hi, I follow

the inversion procedure in Bilal and Rossi-Hansberg (2023) and use the same preference and technology

parameters except risk-aversion which is set to γ = 2 as in the previous example. I estimate the local

exposure coefficients χi by indirect inference: I match the regression coefficient of local output on

aggregate output. I set the standard deviation of aggregate shocks to 0.06 as in the previous example,

and set and its mean-reversion θ such that the half-life of a shock is 1 year.

Solving for the steady-state takes 1.2 seconds on a laptop. Solving the FAME takes 0.2 seconds,

and solving the SAME takes 2.1 seconds with the algorithm in Section 4.4. Computing an impulse

response function with 100 periods in the FAME takes 0.2 seconds, and in the SAME it takes 4.2

seconds.

Figure 2 compares the population response in the FAME and the SAME for three different aggregate

shocks in all MSAs. All the shocks follow the aggregate shock’s stochastic process. The only difference

is the initial magnitude of the shock. The response of population 5 years after the shock in all locations

is strikingly similar in the FAME and the SAME for an aggregate shock of 5 standard deviations—an

extreme event since it occurs less frequently than every million years. Even for an aggregate shock

of 10 standard deviations (that has probability equal to 0 up to machine precision), the response of

population in the SAME is very close to the FAME. Thus, for usual aggregate productivity shocks,

the FAME provides a good approximation to the SAME for population responses.

Next, Figure 3 compares consumption-equivalent welfare changes in the FAME and the SAME for

37To include all of the US economy, I attribute any county initially not in an MSA to its nearest MSA.
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Figure 3: Initial welfare impact in the FAME and the SAME (consumption-equivalent %)

(a) 1 s.d. shock
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Note: Each blue circle represents an MSA. Both axes represent percent deviations from steady-state when the shock first occurs.
The size of circles is proportional to steady-state population. Panel (a) compares the FAME and the SAME following a time-0 1
standard deviation shock z0 = σ that mean-reverts according to dzt = −θztdt. Panel (b) increase the initial value to z0 = 5σ, and
panel (c) to z0 = 10σ.

the same three aggregate shocks at impact. The welfare impact of aggregate shocks is remarkably

similar for aggregate shocks of 1 standard deviation. Even for an extreme 1-in-a-million-years, 5

standard deviation shock, the welfare change in the SAME remains very close to the FAME. For a

10 standard deviation shock, the welfare change in the SAME starts to deviate markedly from the

FAME. However, such a large shock would virtually never materialize in the stochastic steady-state of

the economy.

Hence, is the FAME always sufficient to understand this economy for usual aggregate productivity

shocks? Figures 2 and 3 indicate that for population and welfare changes in response to a particular

shock, the FAME may be enough given the calibration. However, the FAME always misses an impor-

tant time-invariant margin: the value of aggregate risk. The value of aggregate risk for location i is

encapsulated in the stochastic SAME through the intercept Λi.

Figure 4 displays the consumption-equivalent value of aggregate risk for every MSA in the US. To

benchmark this value, I map it as a fraction of the welfare impact of an 1 standard deviation aggregate

productivity shock. Throughout the US, the cost of aggregate risk ranges from 20% to 191% of the

value of a 1 standard deviation positive aggregate shock. Thus, the SAME is crucial to accurately

assess the welfare cost of aggregate risk.38

38Compared to the previous example, this spatial economy lacks individuals whose consumption can fluctuate by as
much as 30% over the business cycle. Here, consumption fluctuations are closer to 5% despite the lack of a savings
technology. Thus, the welfare cost of risk is closer to the magnitude found in Lucas (1987)’s calculation.
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Figure 4: Welfare cost of aggregate risk

Note: Welfare cost of aggregate risk Λi, represented in consumption-equivalent percent, as a fraction of the consumption-equivalent
welfare impact of a 1 standard deviation aggregate shock for the same MSA i. Counties in white: missing data. Cost of risk
winsorized at 1% and 99% for display.

Conclusion

This paper proposes a new representation of dynamic general equilibrium economies with cross-

sectional heterogeneity. By treating the underlying distribution as an explicit state variable in decision-

makers’ problem, the economy becomes fully recursive and is characterized by the Master Equation.

I show that local perturbations of the Master Equation in aggregates deliver interpretable, block-

recursive and easily computable representations of equilibrium: the FAME and the SAME. They

further deliver stability and convergence results, together with a characterization of the stochastic

steady-state.

I highlighted the versatility of the FAME and the SAME in two heterogeneous agent economies:

an incomplete credit market model and dynamic spatial model. The FAME and the SAME apply to

many more economic settings. For instance, the FAME could be used to study the impact of aggregate

shocks in job ladder models of the labor market. The SAME could be used to investigate asset pricing

with cross-sectional heterogeneity, as well as the cost of climate change risk in multi-location settings.
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Kahou, Mahdi Ebrahimi, Fernández-Villaverde, Jesús, Perla, Jesse, and Sood, Arnav (2021). Exploiting

Symmetry in High-Dimensional Dynamic Programming. Working Paper 28981. National Bureau of

Economic Research.
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Appendix

A Notation

A.1 Additional notation for Section 1

Define Y =
∫∫

ygSS(a, y)dady and A =
∫∫

agSS(a,w)dady, and:

R0 = −α(1− α)Z̄

(
Y

A

)1−α
A−1 R1 = α(1− α)Z̄

(
Y

A

)1−α
Y −1

W0 = α(1− α)Z̄

(
A

Y

)α
A−1 W1 = −α(1− α)Z̄

(
A

Y

)α
Y −1.

Define also

R2 = αAα−1Y 1−α W2 = (1− α)AαY −α.

A.2 Additional notation for the FAME

Denote

L(x) = L(x, cSS(x), V SS , gSS), C(x) = C
(
x, V SS ,

∂V SS

∂x
, gSS

)
)

ug(x, y) =
∂u

∂g
(x, y, V SS , gSS), uV (x, y) =

∂u

∂V
(x, y, V SS , gSS)

Lg(x, y) =
∂L

∂g
(x, y, cSS(x), V SS , gSS), LV (x, y) =

∂L

∂V
(x, y, cSS(x), V SS , gSS)

Cg(x, y) =
∂C

∂g
(x, y, V SS ,

∂V SS

∂x
, gSS), CV (x, y) =

∂C

∂V
(x, y, V SS ,

∂V SS

∂x
, gSS)

C∂V (x, y) =
∂C

∂p
(x, y, V SS , pSS , gSS)

∣∣∣
p= ∂V SS

∂x

the Fréchet differentials of the flow payoff u, the generator L and the state constraint C with respect

to either the distribution or the value. ∂/∂p denotes the derivative of C with respect to ∂V/∂x.

B Proofs for Section 3

B.1 Proof of Proposition 2

B.1.1 Special case

To gain intuition, it is useful to specify additional structure that is often satisfied in applications.

Denote by Ldiff the diffusion part of the generator L, and Lint the integral part.

Assumption 5. (Payoff and generator structure)

There are two sets of indices E1, E2 that partition {1, ..., DX} such that for i ∈ E1, bi(x, g, c, V ) =
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bi(x, g, V )−ci, and for i ∈ E2, Linti (x, c, g, V ) = ciL
int(x, g, V ). In addition, u(x, c, g, V ) = u0(x, g, V )+∑

i∈E1
u1i(ci)−

∑
i∈E2

u2i(ci). uki are strictly concave and satisfy Inada conditions, and Γ̄i = [0,+∞).

Assumption 5 ensures that Assumption 4 holds, and that

∀i ∈ E1, ĉi = (u′1i)
−1

(
∂V

∂xi
(x)

)
, ∀i ∈ E2, ĉi = (u′2i)

−1
(
Linti (x, g, V )[V ]

)
.

Denote U1i(x) = 1
u′′1i(∂xiV

SS(x))
and U2i(x) = 1

u′′2i(L
int
i (x,gSS ,V SS [V SS ])

. Armed with this notation, I obtain

the first-order perturbation in individuals’ optimal control in response to a small distributional impulse.

Proposition 4. (Optimal control)

Under Assumption 5,

Mi(x, x
′, v) =

 U1i(x)∂xiv(x, x′), i ∈ E1

U2i(x)
[
Linti (x)[v(·, x′)] + Lintg,i (x, x′)[V SS ] +

∫
LintV,i(x, y)[V SS ] v(y, x′)dη(y)

]
, i ∈ E2.

Proof. The linearized FOCs are

∀i ∈ E1, dci(x) =
1

u′′1i(c
SS
i (x))

∂xidv(x)

∀i ∈ E2, dci(x) =
1

u′′2i(c
SS
i (x))

(∫
h(x′)dη(x′)∂gLinti (x, x′) +

∫
dv(y)dη(y)∂V Linti (x, y)

)
where now ci denote steady-state controls. Substituting out dv yields the result.

B.1.2 General case

I now prove Proposition 2 in the general case. The first-order optimality condition is

uc(x, ĉ, V, g) + Lc(x, ĉ, g, V )[V ] = 0.

Totally differentiating this condition, I obtain

〈ucg, h〉+ uccĉ+ 〈ucV , 〈v, h〉〉+ Lcc[V SS ]ĉ+ 〈Lc[v], h〉+
〈
Lcg[V SS ], h

〉
+
〈
LcV [V SS ], 〈v, h〉

〉
Hence,

ĉ(x) = U(x)−1
(
〈ucg, h〉+

〈
Lcg[V SS ], h

〉
+ 〈Lc[v], h〉+ 〈ucV , 〈v, h〉〉+

〈
LcV [V SS ], 〈v, h〉

〉)
Writing ĉ(x) =

∫
M(x, x′, v)h(x′)dη(x′) and identifying coefficients delivers the equation in Proposition

2.

B.2 Proof of Theorem 1

I focus on the deterministic FAME, since the stochastic FAME follows from the same derivations.

Since none of the forcing terms in u, L depend directly on the derivatives of g, it is enough to look for a

Fréchet derivative of V that only loads on h. To ease notation, denote partial derivatives by ∂g, ∂c, ∂V ,
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or directly with the corresponding subscript. Also denote X · Y ≡ 〈X,Y 〉. Since c is always interior,

taking the FOC and substituting back into the Master Equation in Definition 3, I obtain

ρV (x, g)︸ ︷︷ ︸
≡M0

= u(ĉ(x, V, g), x, g, V )︸ ︷︷ ︸
≡M1

+L(x, ĉ(x, V, g), g, V )[V ]︸ ︷︷ ︸
≡M2

+

∫
∂gV (x, x′′, g)L∗(x′′, ĉ(x′′, V, g), g, V )[g]dη(x′′)︸ ︷︷ ︸

≡M3

I will sometimes omit arguments of function to ease notation. In that case, they are evaluated at

x, g, V, ĉ(x, V, g). I sometimes denote by dv(x) =
∫
v(x, x′)h(x′)dη(x′) and dc(x) the first-order change

in controls. I now expand each component of the Master Equation up to first order.

M0M0M0. The first-order contribution of an impulse in h to M0 is

M0 = ρ

∫
v(x, x′)h(x′)dη(x′).

M1M1M1. The flow gain is, up to first order,

M1 =

∫
ug(x, x

′)h(x′)dη(x′) + uc(x) · dc(x) +

∫
uV (x, y)dv(y)dη(y)

=

∫
ug(x, x

′)h(x′)dη(x′) + uc(x) · dc(x) +

∫ (∫
uV (x, y)v(y, x′)dη(y)

)
h(x′)dη(x′).

Now note that u depends on V partly through c. So the FOC implies, for all g, V ,

0 = uc(x) + Lc(x, dc(x))[V ]

M2M2M2. The continuation value term is

ME2 = Lc(x, dc(x))[V ] +

∫
Lg(x, x

′)[V ]h(x′)dη(x′) +

∫
LV (x, y)[V ]dv(y)dη(y) + L(x)[dv].

Passing the operator L(x) inside the integral for the last term,

L(x)[dv] =

∫
L(x)[v(·, x′)]h(x′)dη(x′)

Similarly, ∫
LV (x, y)[V ]dv(y)dη(y) =

∫ (∫
LV (x, y)[V ]v(y, x′)dη(y)

)
h(x′)dη(x′)

M1 +M2M1 +M2M1 +M2. An envelope argument obtains where the contributions of ∂c cancel out:

M1 +M2 =

∫ {
ug(x, x

′)h(x′) +

∫
uV (x, y)v(y, x′)dη(y) + Lg(x, x

′)[V ]

+

∫
LV (x, y)[V ]v(y, x′)dη(y) + L(x)[v(·, x′)]

}
h(x′)dη(x′)
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M3M3M3. To expand the continuation value from changes in the distribution, I use Proposition 2. Hence:

M3 =

∫ (
v(x, x′′) +O(||h||)

)(
L∗(x′′)[g] +

∫
L∗g(x

′′, x′)[g]h(x′)dη(x′)

+

∫∫
L∗V (x′′, y)[g]v(y, x′)h(x′)dη(y)dη(x′)

+L∗c

(
x′′,

∫
M(x, x′, v)h(x′)dη(x′)

)
[g] + L∗(x′′)[h]

)
dη(x′′)

So far, I have considered a local perturbation around any point. To make progress, I now make use of

the observation that, in steady-state, L∗(x′′)[g] = 0 for all x′′ by definition. Thus, I can negelect the

O(||h||) term to first order.

I also make use of the adjoint property between L and L∗ developed in Online Appendix E.2:∫
L(x)[φ]ψ(x)dη(x) =

∫
φ(x)L∗(x)[ψ]dη(x) + B̄, where B̄ is an integral over a measure η̄ that only

loads on the mass points in B. Thus, I can express the last term as an integral over h. Together, these

observations imply that to first order around a steady-state:

M3 =

∫ {
L(x′)[v(x, ·)] +

∫
v(x, x′′)

(
L∗g(x′′, x′)[gSS ] +

∫
L∗V (x′′, y)[gSS ]v(y, x′)dη(y)

+L∗c(x′′,M(x′′, x′, v))[gSS ]

)
dη(x′′)

}
h(x′)dη(x′) + B̄

Deriving the FAME. Equate M0 = M1 + M2 + M3 at g = gSS + h. This equality must hold for

all functions h conditional on x. Hence, the associated vector that integrates against h(x′) must be

zero in L2 (“identifying coefficients”). This identity delivers the FAME in Theorem 1. Crucially, one

can only “identify coefficients” for x ∈ X\B: on B, the additional components in B̄ imply that the

associated linear form is not an integral over hdη.

State constraint. Expanding the state constraint for x ∈ B, I obtain for all h:

C(x) +

∫
Γ(x, x′)h(x′)dη(x′) ≥ 0 , Γ(x, x′) = Cg(x, x′) + CV (x)v(x, x′) + C∂V (x, x′)

∂v

∂x
(y, x′).

If C(x) = 0, then Γ(x, x′) = 0 for the state constraint inequality to hold for all h. When C(x) > 0, the

state constraint inequality holds as long as ||h|| is small enough. Thus, the set of x where the state

constraint holds with equality may in principle depend on h.

Consider a point x a point on the boundary of {x ∈ B : C(x) > 0} when seen as a manifold

in RDX−2. Under Assumption 3, I can parametrize the boundary as the set of points X(h) = x +∫
ψ(x, x′)h(x′)η(x′) for a function ψ(x, x′) ∈ RDX . Recall that x is on the boundary of the domain.

Thus, ψj(x, x
′) = 0 for some direction j that depends on which boundary x is located on. Without

loss of generality, assume that this coordinate is j = 1. Evaluate the state constraint at x and expand
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in h to a first order: ∫ (DX∑
i=2

Cxi(x)ψi(x, x
′) + Γ(x, x′)

)
h(x′)dη(x′) ≥ 0.

Therefore, the boundary of the constrained set changes as per

Γ(x, x′) + ∂xC(x) · ψ(x, x′) = 0

where · denotes here the inner product in RDX . Because x is on the border of the constrained set

{y : C(y) = 0}, by continuity Cx(x) = 0 and Γ(x, x′) = 0. Thus, the first-order approximation does not

place additional restrictions on ψ nor Γ, and thus v.

B.2.1 Scaled stochastic FAME

When the generator of aggregate shocksA scales, I guess and verify ω(x, z) = ω0(x)z. Then Proposition

3 becomes

M(x, z, ω) = −U(x)−1

(
m0(x) + Lc(x)[ω0] +

∫
m1(x, y)ω0(y)dη(y)

)
· z ≡M0(x, ω0) · z.

Then

S(x, z, ω) =

{
L∗c
(
y,M0(y, ω0)

)
[gSS ]

)
+

∫
L∗V
(
x′, y, ω0(y)

)
[gSS ]dη(y)

}
· z ≡ S0(x, ω0) · z.

Hence, the stochastic FAME becomes:

ρω0(x) = uz(x) + Lz(x)[V SS ] + L(x)[ω0] + B[ω0] +

∫
v(x, x′)S0(x′, ω0)dη(x′).

B.3 Proof of Theorem 4

Condition (i) implies condition (iv) in Theorem 16.0.2. in Meyn and Tweedie (1993b). Condition (ii)

implies condition (viii) in Theorem 16.0.2. in Meyn and Tweedie (1993b). Thus, under either condition

(i) or condition (ii), condition (ii) in Theorem 16.0.2. in Meyn and Tweedie (1993b) holds, which

ensures geometric convergence of the total variation norm of gPEt dη− gSSdη, where gPEt = gSS +hPEt .

To conclude, note that given the base measure η, the total variation norm is equal to the L1 norm of

the density hPEt .

To use the steady-state value function as a Lyapunov function, recall that L(x)[V SS ] = ρV SS(x)−
uSS(x). If there is β such that V SS satisfies the Lyapunov inequality, then ρV SS − uSS ≤ −βV SS ,

which implies the stated inequality. For the relaxed Lyapunov inequality, see conditition (viii) in

Theorem 16.0.2. in Meyn and Tweedie (1993b) with C = ∆, and note that condition (i) holding for

x ∈ ∆ implies that ∆ is a petite set in the terminology of Meyn and Tweedie (1993b).

As shown in Meyn and Tweedie (1993a) and Hairer (2021), these results do not depend on the

discrete vs. continuous time setting.
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B.4 Proof of Theorem 5

Part (i) of Theorem 5 is a direct application of Corollary 3.3 p. 82 in Pazy (1983). To see this, consider

the semigroup associated with L∗ defined on Y = L1(η) ∩ {h ∈ L1 :
∫
hdη = 0}, which is a Banach

space when equipped with || · ||1. By Theorem 4, on Y , the semigroup associated with L∗ + γId is a

contraction semigroup. Thus, we can apply Corollary 3.3 p. 82 in Pazy (1983), and so the semigroup

associated with L∗+ γId +G is a contraction semigroup. Hence, the semigroup associated with L∗+G
has a growth bound −γ.

Part (ii) of Theorem 5 is a direct application of Theorem 1.1 p. 76 in Pazy (1983). To see this,

consider the same semigroup as above. Its growth bound is (R,−γ). Thus, the semigroup associated

with L∗ + G has growth bound −γ + R|||G|||, where |||G||| is the operator norm of G. Under the

assumptions (ii), as ||ug+Lg[V SS ]||1 → 0, ||v||1 → 0 and |||G||| → 0. Hence, when ||ug+Lg[V SS ]||1 → 0

is small enough, the growth bound −γ +R|||G||| is strictly positive.

In the presence of aggregate shocks, use the solution to the law of motion in Theorem 3:

ht = Qth0 +

∫ t

0
Qt−sS(zs)ds,

where Qt is semigroup associated with L∗ + G. Theorem 5 ensures that ||Qth0||1 ≤ R′e−γ
′t||h0||1 for

some R′, g′. So as long as aggregate shocks remain bounded, and so ||S(zs)||1 ≤ s̄ <∞, I have

||ht||1 ≤ R′e−γ
′t||h0||1 +R′

∫ t

0
e−γ

′(t−s)||S(zs)||1ds ≤ R′||h0||1 +
R′s̄

γ′
<∞.

B.5 Proof of Theorem 6

B.5.1 Existence

The existence proof leverages Brouwer’s fixed point theorem.

I first argue that the space of distributions in the stochastic steady-state is compact. To see this,

start from the observation that the state space X is compact. Hence, Prokhorov’s theorem ensures

that the space of probability measures on X with respect to the measure η, M(X), is also compact

for the Prokhorov metric d that metrizes weak convergence. I now consider the space of probability

measures on the space of probability measures, M(M(X) × Z). Since (M(X), d) is compact, the

same argument applies and (M(M(X)× Z), D) is compact, where D is Prokhorov’s metric when the

underlying space is M(X)× Z.

I next argue that the law of motion of (zt, ht) defines a continuous operator. I start by defining this

operator. The SPDE in Theorem 3 defines a SDE for htdη inM(X). Denote by Pt ∈M(M(X×Z)) the

probability measure of htdη. Fix some τ > 0, and consider the operator T : P0 → Pτ . T defines a linear

map from (M(M(X)× Z), D) into itself. Associate to T the map Q :M(X)× Z →M(M(X)× Z)

that maps an initial condition (h0, z0) to the probability measure Pτ over possible (hτ , zτ ).

I now show continuity of the operator T . By Theorem 19.14 p. 631 in Aliprantis and Border (2006),

continuity of T is equivalent to continuity of Q. To establish continuity of Q, consider two starting
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distributions h0, h
′
0. Denote by g0 = gSS + h0, g′0 = gSS + h′0. Consider two corresponding sequences

zt, z
′
t of aggregate shocks that start at different points z0, z

′
0. Equation (30) and Theorem 5 imply that

||gτ − g′τ ||1 ≤ C1||g0 − g′0||1 + C2

∫ τ

0
||S(zs)− S(z′s)||1ds (36)

where the Ci are positive constants. Equation (36) defines a bound on the gτ−g′τ gap that is stochastic

because it depends on the realization of the paths {zs, z′s}0<s≤τ . The probability distribution of the

path {zs}0<s≤τ is continuous in z0 because of the Feller property. Hence, equation (36) implies that

the probability distribution Q of (gτ , zτ ) is continuous in (g0, z0), and so T is continuous.

T being continuous and mapping into a compact convex space, Brouwer’s theorem (Corollary 17.56

p. 583 in Aliprantis and Border, 2006) ensures that it has a fixed point. A fixed point of T is an

invariant stochastic steady-state measure P(dh, dz).

B.5.2 Conditional average

Denote by ∆(x, h, z) = L∗(x)[h] + G(x)[h] + S(x, ω, z) the ‘drift’ in the ‘meta’-KF equation, so that

dht = ∆(·, ht, zt)dt.

Finite-dimensional case. To build intuition, consider first a finite-dimensional case. Here, I

assume that the state space is finite and index x ≡ xi. In that case, L∗ and G are matrices. Then

dhit = ∆(xi, ht, zt)dt.

The ‘meta’-KF equation for the density P(h, z) over the vector (ht, zt) is then

0 = −
∑
i

∂

∂hi

(
∆(xi, h, z)P(h, z)

)
+A∗(z)[P].

Denote by ĥk(z) =
∫
hkP(h, z)dh. Multiply the KF equation by hk, integrate over h, and integrate by

parts the first component. All terms drop out except the one for i = k:

0 =

∫
∆(xk, h, zt)P(h, z)dh+A∗(z)[ĥk].

Exploiting that the drift ∆ is linear in h, I obtain

0 =

∫ (
L∗k•h+ Gk•h+ Sk(z)

)
P(h, z)dh+A∗(z)[ĥk] = L∗k•ĥ(z) + Gk•ĥ(z) + Sk(z)φ(z) +A∗(z)[hk]

Hence, I have obtained

0 = L∗ĥ(z) + Gĥ(z) + S(z)φ(z) +A∗(z)[ĥ(·)]

Infinite-dimensional case. To handle the infinite-dimensional case, I work with the dual form

of the ‘meta’-KF equation. Denote by P(dh, dz) an invariant measure associated with the (ht, zt)
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process. The dual form of the ‘meta’-KF equation is (see Bogachev et al., 2015) writes:∫ {∫
∆(x, h, z)

∂f(h, z)

∂h(x)
dη(x) +A(z)[f(h, ·)]

}
P(dh, dz) = 0 , ∀h, z,

for all smooth functions f(h, z). Fix some x0 and evaluate this equation at f(h, z) = ϕ(z)Ψ(h),

Ψ(h) =
∫
h(x)ψ(x)dη(x) for some smooth functions ϕ,ψ. I obtain:∫ {∫

∆(x, h, z)ϕ(z)ψ(x)dη(x) + Ψ(h)A(z)[ϕ]

}
dP(h, z) = 0.

Although there is no Lebesgue measure in infinite-dimensional settings, if the aggregate shock process

has a density, I may write P(dh, dz) = Q(dh, z)dz. Define ĥ(z) =
∫
hQ(dh, z) ∈ L2, and so I will also

write ĥ(x, z). I then obtain

0 =

∫ {∫ [
(L∗ + G)[ĥ(·, z)] + S(z)φ(z)

]
ϕ(z)ψ(x)dη(x) +

(∫
ĥ(x, z)ψ(x)dη(x)

)
A(z)[ϕ]

}
dz

=

∫∫ {[
(L∗ + G)[ĥ(·, z)] + S(z)φ(z)

]
ϕ(z) + ĥ(x, z)A(z)[ϕ]

}
ψ(x)dη(x)dz

=

∫∫ {
(L∗ + G)[ĥ(·, z)] + S(z)φ(z) +A∗(z)[ĥ(x, ·)]

}
ϕ(z)ψ(x)dη(x)dz

where the last line integrates by parts the term in A(z) over z. Since this equation must hold for all

test functions ϕ,ψ, I obtain for all x, z:

0 = (L∗ + G)[ĥ(·, z)] + S(z)φ(z) +A∗(z)[ĥ(x, ·)].

B.5.3 Second moments

I provide a proof only in the finite-dimensional case. The infinite-dimensional case follows the same

steps, with notations as in the previous section. Here, I assume that the state space is finite and index

x ≡ xi. In that case, L∗ and G are matrices. Start again from the ‘meta’-KF equation for the density:

0 = −
∑
i

∂

∂hi

(
∆(xi, h, zt)P(h, z)

)
+A∗(z)[P].

Denote by Ĥk`(z) =
∫
hkh`P(h, z)dh.

Consider first k 6= `. Multiply the KF equation by hkh`, integrate over h, and integrate by parts

the first component. All terms drop out except the ones for i = k and i = `:

0 =

∫
∆(xk, h, zt)h`P(h, z)dh+

∫
∆(x`, h, zt)hkP(h, z)dh+A∗(z)[h̄k`].

Exploiting that the drift ∆ is linear in h, I obtain

0 =

∫ (
L∗k•h+ Gk•h+ Sk(z)

)
P(h, z)h`dh+

∫ (
L∗`•h+ G`•h+ S`(z)

)
P(h, z)hkdh+A∗(z)[h̄k`]

= (L∗k• + Gk•)Ĥ•,`(z) + (L∗`• + G`•)Ĥ•,k(z) + Sk(z)ĥ`(z) + S`(z)ĥk(z) +A∗(z)[Ĥk`]
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Using that Ĥ is symmetric, and denoting J = L∗ + G, I obtain, for x 6= x′

0 = J (x)[Ĥ(·, x′, z)] + J (x′)[Ĥ(x, ·, z)] +A∗(z)[Ĥ(x, x′, ·)] + S(x, z)ĥ(x′, z) + S(x′, z)ĥ(x, z),

which, once discretized, defines a Sylvester tensor equation.

Now consider k = `. Multiply the KF equation by h2
k, integrate over h, and integrate by parts the

first component. All terms drop out except the ones for i = k:

0 = 2

∫
∆(xk, h, zt)hkP(h, z)dh+A∗(z)[h̄kk].

The same arguments as above imply that, for x = x′,

0 = 2J (x)[Ĥ(·, x′, z)] +A(z)[Ĥ(x, x′, ·)] + 2S(x, z)ĥ(x, z),

which concludes the proof.

B.6 Linear system approach

Consider the setup of Corollary 1. Denote vt(x) =
∫
v(x, x′)ht(x

′)dη(x′). Then the FAME and the KF

equation write:

∂vt(x)

∂t
= ρvt(x)−

∫
ug(x, x

′)ht(x)dη(x)− L(x)[vt]

∂ht(x)

∂t
= L∗(x)[ht] + G(x, v)[ht] ≡ L∗(x)[ht] + G1(x)[ht] + G2(x)[vt],

where I denoted G(x, v) = G1(x) + G2(x)[v]. Stacking this linear system, I obtain

∂

∂t

(
vt

ht

)
=

(
ρId− L(x) ug(x, ·)
G2(x) L∗(x) + G1(x)

)(
vt

ht

)
.

Following standard linear rational expectations techniques, consider the discretized version of the

system. Imposing dynamic stability, the deterministic Impulse Value v must be such that the system

is stable, and so vt =
∫
v(x, x′)ht(x

′)dη(x′) must lie in the vector space spanned by the stable roots

of the system. In particular this must hold at time 0 for all possible starting distributions h0, which

determines v.

C Proofs for Section 4

C.1 Proof of Theorem 8

To shorten notation, I denote h(dx) ≡ h(x)dη(x) in the sequel. I use the same notation M0 =

M1 +M2 +M3 as in Appendix B.2.

I also allow for the state process to be affected by the aggregate shock through other channels than

through the drift. Namely, I write L[V ] = b∂xV + L0[V ] + εzΛ[V ], with Λ, L0 exogenous.
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M1 +M2M1 +M2M1 +M2. To first order,

d[M1 +M2] =

(∫
bg(x, x

′, g, z)h(dx′) + bz(x, g, z)z

)
Vx(x) + zΛ[V ] + L(x, ĉ, g, z)[dV ]

To second order and evaluating at steady-state,

d2[M1 +M2]SS = V SS
x (x)

(∫∫
bgg(x, x

′, x′′) h(dx′)h(dx′′) + 2

∫
bgz(x, x

′)zh(dx′) + bzz(x)z2

)
+ 2

(∫
bg(x, x

′, g, z)h(dx′) + bz(x, g, z)z

)
dVx(x)− dc(x)dVx(x) + L(x)[d2V ] + 2zΛ[dV ]

To leading order,

dV (x) =

∫
v(x, x′′)h(dx′′)′ + ω(x, z)

d2V (x) =

∫∫
V(x, x′, x′′)h(dx′)h(dx′′) + 2

∫
Γ(x, x′, z)h(dx′) + Ω(x, z)

Therefore, to second order,

d2[M1 +M2]SS = V SS
x (x)

(∫∫
bgg(x, x

′, x′′) h(dx′)h(dx′′) + 2

∫
bgz(x, x

′)zh(dx′) + bzz(x)z2

)
+ 2

(∫
bg(x, x

′)h(dx′) + bz(x)z

)(∫
vx(x, x′′)h(dx′′) + ωx(x, z)

)
−

(∫
M(x, x′, v)h(dx′) +M(x, z, ω)

)(∫
vx(x, x′′)h(dx′′) + ωx(x, z)

)
+

∫∫
L(x)[V(·, x′, x′′)]h(dx′)h(dx′′) + 2

∫
L(x)[Γ(·, x′, z)]h(dx′) + L(x)[Ω(·, z)]

+ 2z

∫
Λ[v(·, x′)]h(dx′) + 2zΛ[ω(·, z)]

Re-arranging and changing integration indices to symmetrize the second-order terms in h only, I obtain

d2[M1 +M2]SS = V SS
x (x)

(∫∫
bgg(x, x

′, x′′) h(dx′)h(dx′′) + 2

∫
bgz(x, x

′)z h(dx′) + bzz(x)z2

)
+

∫ (
bg(x, x

′)vx(x, x′′) + bg(x, x
′′)vx(x, x′)

)
h(dx′)h(dx′′) + 2bz(x)zωx(x, z)

+ 2

∫ (
bg(x, x

′)ωx(x, z) + bz(x)zvx(x, x′)
)
h(dx′)

− u′′(cSS(x))

{∫∫
M(x, x′, v)M(x, x′′, v) h(dx′)h(dx′′)

+

∫
M(x, z, ω)M(x, x′, v) h(dx′′) +M(x, z, ω)2

}

+

∫∫
L(x)[V(·, x′, x′′)] h(dx′)h(dx′′) + 2

∫
L(x)[Γ(·, x′, z)] h(dx′) + L(x)[Ω(·, z)]

+ 2z

∫
Λ[v(·, x′)]h(dx′) + 2zΛ[ω(·, z)]
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M3M3M3. To first order,

M3 =

∫ (
v(x, x′′) + dVg(x, x

′′)
)(

L∗(x′′)[g] + d
(
L∗(x′′)[g]

))
dη(x′′)

where

d
(
L∗(x′′)[g]

)
= −∂x′′

((∫
bg(x

′′, x′)h(dx′) + zbz(x
′′)− dc(x′′)

)
g(x′′)

)
+ L∗(x′′)[h]

+ zΛ∗(x′′)[g]

To second order and evaluating at steady-state,

d2
[
L∗(x′′)[g]

]SS
= −2∂x′′

((∫
bg(x

′′, x′)h(dx′) + zbz(x
′′)− dc(x)

)
h(x′′)

)
− ∂x′′

((∫∫
bgg(x

′′, x′, y)h(dx′)h(dy) + 2

∫
zbgz(x

′′, x′)h(dx′) + z2bzz(x
′′)− d2c(x)

)
gSS(x′′)

)
+ 2zΛ∗(x′′)[h]

Using that u′′′(cSS(x))(dc(x))2 + u′′(cSS(x))d2c(x) = d2Vx(x), I obtain

d2
[
L∗(x′′)[g]

]SS
= −2∂x′′

((∫ (
bg(x

′′, x′)−M(x′′, x′, v)
)
h(dx′) + zbz(x

′′)−M(x′′, z, ω)

)
h(x′′)

)
(37)

− ∂x′′

((∫∫
bgg(x

′′, x′, y)h(dx′)h(dy) + 2

∫
zbgz(x

′′, x′)h(dx′) + z2bzz(x
′′)

)
gSS(x′′)

)
+ ∂x′′

(
gSS(x′′)

u′′(cSS(x′′))

(∫∫
Vx′′(x′′, x′, y) h(dx′)h(dy) + 2

∫
Γx′′(x

′′, x′, z) h(dx′) + Ωx′′(x
′′, z)

− u′′′(cSS(x′′))(
u′′(cSS(x′′))

)2
[∫∫

vx′′(x
′′, x′)vx′′(x

′′, y)h(dx′)h(dy)

+2

∫
vx′′(x

′′, x′)ωx(x′′, z)h(dx′) + ωx(x′′, z)2

]))
+ 2zΛ∗(x′′)[h]

Finally, to leading order,

dVg(x, x
′′) =

∫ (
V(x, x′, x′′) + V(x, x′′, x′)

)
h(dx′) + 2Γ(x, x′′, z)

Now, to a leading order,

d[M3] =

∫
v(x, x′′)× d2

(
L∗(x′′)[g]

)
dη(x′′)︸ ︷︷ ︸

≡M31

+

∫
dVg(x, x

′′)× d
(
L∗(x′′)[g]

)
dη(x′′)︸ ︷︷ ︸

≡M32

.
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Starting with the first component,

M31 = 2

∫∫
vx′′(x, x

′′)
(
bg(x

′′, x′)−M(x′′, x′, v)
)
h(dx′)h(dx′′) + 2

∫
vx′(x, x

′)
(
zbz(x

′′)−M(x′, z, ω)
)
h(dx′)

+

∫∫ (∫
vy(x, y)bgg(y, x

′, x′′)gSS(dy)

)
h(dx′)h(dx′′) +

∫ (
2

∫
vy(x, y)zbgz(y, x

′)gSS(dy)

)
h(dx′)

+

∫
vy(x, y)z2bzz(y)gSS(dy)

−
∫∫ (∫

vy(x, y)gSS(dy)k(y)

[
Vy(y, x′, x′′) + kp(y)vy(y, x

′)vy(y, x
′′)

])
h(dx′)h(dx′′)

− 2

∫ (∫
vy(x, y)gSS(dy)k(y)

[
Γy(y, x

′, z) + kp(y)vy(y, x
′)ωy(y, z)

])
h(dx′)

−
∫
vy(x, y)gSS(dy)k(y)

[
Ωy(y, z) + kp(y)ωy(y, z)

2

]

+ 2z

∫
Λ[v(x, ·)]h(dx′′)

where I denoted

k(y) =
1

u′′(cSS(y))
, kp(y) = − u′′′(cSS(y))(

u′′(cSS(y))
)2 .

The second component is, to leading order,

M32 =

∫ (∫
V(x, x′, x′′)h(dx′) + 2Γ(x, x′′, z)

)
×

{
− ∂x′′

((∫ (
bg(x

′′, x′)−M(x′′, x′, v)
)
h(dx′) + zbz(x

′′)−M(x′′, z, ω)

)
gSS(x′′)

)

+ L∗(x′′)[h]

}
dη(x′′)

=

∫∫ (
L(x′′)[V(x, x′, ·)] + L(x′)[V(x, ·, x′′)] +

∫
Vy(x, y, x′′)

(
bg(y, x

′)−M(y, x′, v)
)
gSS(dy)

)
h(dx′)h(dx′′)

+

∫ {
2L(x′)[Γ(x, ·, z)] + 2

∫ [
Γy(x, y, z)

(
bg(y, x

′)−M(y, x′, v)
)

+
(
zbz(y)−M(y, z, ω)

) (
Vy(x, x′, y) + Vy(x, y, x′)

)]
gSS(dy)

}
h(dx′)

+ 2

∫
Γy(x, y, z)

(
zbz(y)−M(y, z, ω)

)
gSS(dy)

Putting these equations together and identifying coefficients,39 I obtain the SAMEs.

39In the case of the second-order expansion, ‘identifying coefficients’ corresponds to the results stating that if a
quadratic form defined by a symmetric operator is equal to another quadratic form defined by a symmetric operator,
then both operators must be equal. When either one of the operators is not symmetric, then only their symmetric parts
are equal.
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Deterministic SAME.

ρV(x, x′, x′′) = u′(cSS(x)bgg(x, x
′, x′′) + bg(x, x

′)vx(x, x′′) + bg(x, x
′′)vx(x, x′)

− u′′(cSS(x))M(x, x′, v)M(x, x′′, v) + L(x)[V(·, x′, x′′)]

+ vx′′(x, x
′′)
(
bg(x

′′, x′)−M(x′′, x′, v)
)

+ vx′(x, x
′)
(
bg(x

′, x′′)−M(x′, x′′, v)
)

+

∫
vy(x, y)

{
bgg(y, x

′, x′′)− k(y)
[
Vy(y, x′, x′′) + kp(y)vy(y, x

′)vy(y, x
′′)
]}
gSS(dy)

+ L(x′′)[V(x, x′, ·)] + L(x′)[V(x, ·, x′′)]

+

∫ [
Vy(x, y, x′′)

(
bg(y, x

′)−M(y, x′, v)
)

+ Vy(x, x′, y)
(
bg(y, x

′′)−M(y, x′′, v)
)]
gSS(dy)

I define

TV(x, x′, x′′) = bgg(x, x
′, x′′)u′(cSS(x))︸ ︷︷ ︸

Direct price

+ bg(x, x
′)vx(x, x′′) + bg(x, x

′′)vx(x, x′)︸ ︷︷ ︸
Cross price-continuation value

+u′′(cSS(x))M(x, x′, v)M(x, x′′, v)︸ ︷︷ ︸
Cross consumption-continuation value

+
[
vx′(x, x

′)
(
bg(x

′, x′′)−M(x′, x′′, v)
)

+ vx′′(x, x
′′)
(
bg(x

′′, x′)−M(x′′, x′, v)
)]

︸ ︷︷ ︸
GE: cross: others’ savings-impulse ≡ change in propagation of impulse due to change in savings

+

∫
vy(x, y)gSS(y)

[
bgg(y, x

′, x′′)− k(y)kp(y)vy(y, x
′)vy(y, x

′′)
]
dy︸ ︷︷ ︸

GE: 1st-order valuation of 2nd-order changes in others’ savings

(38)

and

σ(y, x) = −∂y
((
bg(y, x)−M(y, x, v)

)
gSS(y)

)
, τ(x, y) = ∂y

(
vy(x, y)k(y)gSS(y)

)
so that the deterministic SAME re-writes

ρV(x, x′, x′′) = T (x, x′, x′′) + L(x)[V(·, x′, x′′)] + L(x′)[V(x, ·, x′′)] + L(x′′)[V(x, x′, ·)]

+

∫ (
V(x, y, x′′)σ(y, x′) + V(x, x′, y)σ(y, x′′)

)
dy +

∫
V(y, x′, x′′)τ(x, y)dy.

Cross SAME. The cross SAME writes

ρΓ(x, x′, z) = u′(cSS(x))bgz(x, x
′)z + bg(x, x

′)ωx(x, z) + bz(x)zvx(x, x′)− u′′(cSS(x))M(x, z, ω)M(x, x′, v)

+ vx′(x, x
′)
(
zbz(x

′)−M(x′, z, ω)
)

+

∫
vy(x, y)zbgz(y, x

′)gSS(dy)

+ zΛ[v(·, x′)]

+ L(x)[Γ(·, x′, z)] + L(x′)[Γ(x, ·, z)] +A(z)[Γ(x, x′, ·)]

−
∫
vy(x, y)gSS(dy)k(y)

[
Γy(y, x

′, z) + kp(y)vy(y, x
′)ωy(y, z)

]
+

∫ [
Γ(x, y, z)σ(y, x′) + V(x, x′, y)σ(y, z)

]
dy.

where

σ(y, z) = −∂y
(
gSS(y)

(
zbz(y)−M(y, z, ω)

) )
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Thus, define

TΓ(x, x′, z) = u′(cSS(x))bgz(x, x
′)z + bg(x, x

′)ωx(x, z) + bz(x)zvx(x, x′)− u′′(cSS(x))M(x, z, ω)M(x, x′, v)

+ vx′(x, x
′)
(
zbz(x

′)−M(x′, z, ω)
)

+

∫
gSS(y)vy(x, y)

[
zbgz(y, x

′)− k(y)kp(y)vy(y, x
′)ωy(y, z)

]
+

∫
V(x, x′, y)σ(y, z)dy

+ zΛ[v(·, x′)]. (39)

The cross SAME then becomes

ρΓ(x, x′, z) = TΓ(x, x′, z) + L(x)[Γ(·, x′, z)] + L(x′)[Γ(x, ·, z)] +A(z)[Γ(x, x′, ·)]

+

∫ (
τ(x, y)Γ(y, x′, z) + Γ(x, y, z)σ(y, x′)

)
dy.

Stochastic SAME. The stochastic SAME writes

ρΩ(x, z) = u′(cSS(x))bzz(x)z2 + 2bz(x)zωx(x, z)− u′′(cSS(x))M(x, z, ω)2 +

∫
Γ(x, y, z)σ(y, z)dy + 2zΛ[ω(·, z)]

+ 2zΛ[ω(·, z)]

+ L(x)[Ω(·, z)] +A(z)[Ω(x, ·)]

+ 2

∫
vy(x, y)z2bzz(y)gSS(dy)

− 2

∫
vy(x, y)gSS(dy)k(y)

[
Ωy(y, z) + kp(y)ωy(y, z)

2

]

+ 2

∫
Γy(x, y, z)

(
zbz(y)−M(y, z, ω)

)
gSS(dy).

Define

TS(x, z) = u′(cSS(x))bzz(x)z2 + 2bz(x)zωx(x, z)− u′′(cSS(x))M(x, z, ω)2

+ 2

∫
Γ(x, y, z)σ(y, z) +

∫
vy(x, y)gSS(y)

(
bzz(y, z)− k(y)kp(y)ωy(y, z)

2
)
dy

+ 2zΛ[ω(·, z)]. (40)

The stochastic SAME becomes

ρΩ(x, z) = TS(x, z) + L(x)[Ω(·, z)] +A(z)[Ω(x, ·)] + 2

∫
τ(x, y)Ω(y, z)dy.

C.1.1 Scaled cross SAME

When A[ϕ] = z · B[ϕ] for ϕ linear, it is straightforward to guess and verify that Γ0 solves:

ρΓ0(x, x′) = TΓ0(x, x′) + Lτ (x)[Γ0(·, x′)] + Lσ(x′)[Γ0(x, ·)] + B[Γ0(x, x′)],

61



where

TΓ0(x, x′) = u′(cSS(x))bgz(x, x
′) + bg(x, x

′)ω0,x(x) + bz(x)vx(x, x′)− u′′(cSS(x))M0(x, ω0)M(x, x′, v)

+ vx′(x, x
′)
(
bz(x

′)−M0(x′, ω0)
)

+

∫
gSS(y)vy(x, y)

[
bgz(y, x

′)− k(y)kp(y)vy(y, x
′)ω0,y(y)

]
+

∫
V(x, x′, y)σ0(y)dy,

and

σ0(y) = −∂y
(
gSS(y)

(
bz(y)−M0(y, ω0)

) )
.

C.2 Proof of Theorem 9

I may read off the perturbation of the law of motion of the distribution from the derivation of the

SAME, in particular equation (37). I denote:

σ∗(x, x′) = σ(x′, x)

θ(x, x′, x′′) = −∂x
(
gSS(x)

[
bgg(x, x

′, x′′)− kp(x)vx(x, x′)vx(x, x′′)− k(x)Vx(x, x′, x′′)
])

θ(x, x′, z) = −∂x
(
gSS(x)

[
zbzg(x, x

′)− k(x)Γx(x, x′, zt)− k(x)kp(x)vx(x, x′)ωx(x, zt)
])

Θ(x, z) = −∂x

(
gSS(x)

(
z2
t bzz(x)− k(x)Ωx(x, zt)− k(x)kp(x)ωx(x, zt)

2
))

Then:

dht(x)

dt
= L∗(x)[ht] + G(x)[ht] + S(zt)

+ ε×

{
2∂x (ht(x)σ∗(x, ·)[ht]) +

∫∫
θ(x, x′, x′′)ht(dx

′)ht(dx
′′)

+ ∂x

(
σ(x, zt)ht(x)

)
+ 2

∫
θ(x, x′, zt)ht(dx

′) + Θ(x, zt)

+ 2zΛ∗(x)[h]

}
I define the quadratic form in (h, z):

Q(h, z) = 2∂x (h(x)σ∗(x, ·)[h]) +

∫∫
θ(x, x′, x′′)h(dx′)h(dx′′)

+ ∂x

(
σ(x, zt)h(x)

)
+ 2

∫
θ(x, x′, z)h(dx′) + Θ(x, z)

+ 2zΛ∗(x)[h]. (41)

Then, I obtain

dht(x)

dt
= L∗(x)[ht] + G(x)[ht] + S(zt) +

ε

2
Q(ht, zt).
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C.3 Proof of Theorem 10

C.3.1 Characterizing h̃

The first step is to use Theorem 9 to characterize h̃. Using Dirac measures, one can write

Q(x, h, z) =

∫∫
Qhh(x, x′, x′′)h(dx′)h(dx′′) +

∫
Qhz(x, x′, z)h(dx′) +Qzz(x, z).

I follow the same steps as in Appendix B.5 and use a finite-dimensional notation once more for brevity.

Denote by ĥk,ε =
∫
hkP(dh, dz) in the (second-order) stochastic steady-state. Similarly, denote Ĥk`,ε =∫

hkh`P(dh, dz). I obtain

0 = Jk•ĥε + Skφ+ ε

{∑
j,`

Qhhkj`Ĥj`,ε + ĥTε Qhzk +Qzzk

}
+A∗(z)[ĥk,ε]

= Jk•ĥε + Skφ+ ε

{∑
j,`

Qhhkj`Ĥj` + ĥTQhzk +Qzzk

}
+A∗(z)[ĥk,ε]

where the second equality replaces ĥε, Ĥε by ĥ, Ĥ to leading order. Hence, ĥε satisfies the linear

equation

0 = J (x)[ĥε(·, z)] +A∗(z)[ĥε(x, ·)] + S(x, z)φ+ εŠ(x, z),

where

Š(x, z) =

∫∫
Qhh(x, x′, x′′)Ĥ(x′, x′′, z)dx′dx′′ +

∫
Qhz(x, x′, z)ĥ(x′, z)dx′ +Qzz(x, z)φ(z)

}
. (42)

Hence, denoting ĥε = ĥ+ εȟε, I obtain

0 = J (x)[ȟε(·, z)] +A∗(z)[ȟε(x, ·)] + Š(x, z).

C.3.2 Welfare cost of aggregate risk

With h̃(x, z) = ȟ(x, z)/φ(z) in hand, the derivation is a direct second-order approximation and is

omitted for brevity.

D Details and proofs for examples and applications

D.1 Derivations for Section 1.6: Master Equation

D.1.1 Static equilibrium

The wage wit in location i satisfies the firm’s first-order condition wit = (1−α)ZitN
−α
it . Local demand

for housing clears the housing market βwitNit = ritHit. The rental rate clears the housing market:
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β(1− α)ZitN
1−α
it = Hir

1+η
it , and so rit =

(
β(1−α)Zit

Hi
N1−α
it

) 1
1+η

. Summarizing,

wit = (1− α)ZitN
−α
it = (1− α)Zi︸ ︷︷ ︸

≡w0i

eεχiztN−αit

rit =

(
β(1− α)Zit

Hi
N1−α
it

) 1
1+η

=

(
β(1− α)Zi

Hi

) 1
1+η

︸ ︷︷ ︸
≡r0i

e
1

1+η
χiztN

1−α
1+η

it . (43)

The consumption index (the real wage) in location i is

Cit =
wit

rβit
=

(1− α)ZitN
−α
it(

β(1−α)Zit
Hi

N1−α
it

) β
1+η

= β
− β

1+η [(1− α)Zi]
ζH

β
1+η

i︸ ︷︷ ︸
≡C0i

eζχiztN−ξit (44)

where ζ = 1+η−β
1+η and ξ = α+ β(1−α)

1+η . Flow utility in location i at time t:

u

(
wit

rβit

)
= u

(
C0ie

ζχiztN−ξit

)
≡ Ui(zt, Nit) (45)

D.1.2 Migration

Individuals solve

ρVit −
E[∂tVit]

dt
− Ui(zt, Nit) = µ

1

ν
log

∑
j

eν(Vjt−τij)

− Vit
 ≡Mi[V ] (46)

Mi[V ] is the nonlinear continuation value operator. Crucially, while this operator is nonlinear, its

action on a small perturbation of the value dV still coincides with the adjoint (tranpose) of the

operator M∗: M[V SS +dV ] =M[V SS ]+M(V SS) ·dV. Location decisions are given by the conditional

choice probabilities (migration shares):

mijt(V ) =
eν(Vj−τij)∑
k e

ν(Vk−τik)
. (47)

The population distribution evolves according to the KF equation

∂Nit

∂t
= µ

(∑
k

mki(Vt)Nkt −Nit

)
≡ µ

((
m∗(Vt)− Id

)
Nt

)
i
. (48)

In equation (48), m∗ denotes the matrix transpose of the matrix m. m denotes the matrix of migration

shares mij(Vt). Denote by M∗(V ) = µ
(
m∗(V )− Id

)
the matrix that collects migration shares and the

identity matrix, so that (48) becomes, in matrix notation, ∂Nt∂t = M∗(V )Nt. The Master Equation (19)

follows.

64



D.2 Derivations for Section 1.6: FAME

To solve the FAMEs, I expand around the initial steady-state. I look for a solution

Vi ≈ V SS
i + ε

∑
j

vijnj + ωiz


where ε is small, and I denote N = NSS + εn.

D.2.1 Flow payoffs

The flow payoffs become, to first order,

Uit − USSi
ε

= u′(CSSi )CSSi ·

(
ζχizt − ξ

ni

NSS
i

)
=⇒ ε−1(Ut − USS) = zt$ − ῡnt.

D.2.2 Continuation value from migration

The continuation value from migration becomes to first order M[V ]−M[V SS ]
ε = MvNn + zMω. where

henceforth M denotes the steady-state matrix L(V SS).

D.2.3 Continuation value from changes in population distribution

To linearize the law of motion of population, first note that

∂mji

∂Vk
=

{
−νmjimjk if i 6= k

νmji(1−mji) if i = k

and so

M∗ij(V + dV ) = M∗ij(V ) + µ
∑
k

∂mji

∂Vk
dVk = M∗ij(V ) + µνmji

{
dVi −

[
m · dV

]
j

}
Then

M∗i (V + dV )[NSS ] = M∗i (V )[NSS ] + µν
∑
j

mji

{
dVi −

[
m · dV

]
j

}
NSS
j

= M∗i (V )[NSS ] + νµ
[(

diag(m∗NSS)−m∗diag(NSS)m
)
· dV

]
i

≡ M∗i (V )[NSS ] + (G · dV )i

where

G = νµ
(
diag(m∗NSS)−m∗diag(NSS)m

)
. (49)

In vector notation,

ε−1

∑
j

∂Vi
∂Nj

(M∗(V )N)j


i=1....I

= vNM∗n+ vG
(
vn+ zω

)
(50)
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D.2.4 FAME equation

Combining the previous elements, the linearized master equation for the worker value becomes, in

vector notation,

ρ
(
vn+ zω

)
= $z − ῡn+M

(
vn+ zω

)
+A(z)[zω] + vM∗n+ vG

(
vn+ zω

)
Identifying coefficients on n and z, and using expression for the generator of the AR(1) process, I

obtain the deterministic and stochastic FAMEs:

ρv = −ῡ +Mv + vM∗ + vGv

(ρ+ θ)ω = $ + (M + vG)ω (51)

D.2.5 Linearized KFEs

I obtain, in vector notation

dnt
dt

= M∗nt +G
(
vnt + ztω

)
(52)

D.3 Derivations for Section 5.2: SAME

For the second order approximation, I look for a solution V = V SS + εv1 + ε2

2 v2, where N = NSS + εn.

The first-order term for V , v1, is given as before by v1i =
∑

j vijnj + zω. The second-order term, v2,

is given by:

v2i =
∑

j

∑
s Vijsnjns + 2

∑
j Γijznj + ∆iz

2 + Λi,

where V,Γ,∆,Λ are the unknowns of interest. To ease calculations, it will be convenient to define

Ω(z) = 1
z2

{
∆z2 + Λ

}
so that v2i =

∑
j

∑
k Vijknjnk+2

∑
j Γijznj +Ωi(z)z

2. Written in matrix form:

v1 = vn+ zω , v2 = V ×3 n
∗ ×2 n

∗ + 2zΓn+ z2Ω,

where ×3 and ×2 are the 3-node and 2-node tensor products, respectively, and the super index ∗ denotes

the transpose operator. Tensor products simply generalize matrix products to higher-dimensional

arrays. I recall basic properties of tensor operations in Appendix F.

D.3.1 Flow payoffs

The second-order effects are

∂2Uit
∂N2

it

∣∣∣∣
SS

=
ξCSSi

[
ξu′′

(
CSSi

)
CSSi + (1 + ξ)u′

(
CSSi

)]
(NSS

i )2

1

ε

∂2Uit
∂z∂Nit

∣∣∣∣
SS

= −
ξζχiC

SS
i

[
u′′
(
CSSi

)
CSSi + u′

(
CSSi

)]
NSS
i

1

ε2

∂2Uit
∂z2

∣∣∣∣
SS

=
{
u′
(
CSSi

)
CSSi + u′′

(
CSSi

) (
CSSi

)2 }
(ζχi)

2.
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Therefore, I obtain the second-order term of the flow payoff:

1

ε2

(
Uit − USSi

)∣∣∣
2

=
1

2
DUNN ×3 n

∗ ×2 n
∗ −DUNZn+

1

2
z2DUZZ ,

where DUNN is a diagonal tensor defined as:

DUNN = ξdiag3

(
CSSi

[
ξu′′

(
CSSi

)
CSSi + (1 + ξ)u′

(
CSSi

)]
(NSS

i )2

)
,

and where diag3 is the 3-dimensional diagonal operator. Moreover, the matrix DUNZ and the vector

DUZZ are defined as:

DUNZ = diag

(
ξζχiC

SS
i

[
u′′
(
CSSi

)
CSSi + u′

(
CSSi

)]
NSS
i

)
DUZZ = vec

({
u′
(
CSSi

)
CSSi + u′′

(
CSSi

) (
CSSi

)2 }
(ζχi)

2
)

D.3.2 Continuation value from migration

The second-order expansion of the continuation value from migration is:

Li(Vt)− Li(V SS) = ∇[Li](V
SS)(V − V SS) +

1

2
(V − V SS)TH [Li] (V SS)(V − V SS),

where ∇[Li](·) and H [Li] (·) are the gradient and the Hessian of Li, respectively. Up to a second

order, V − V SS = εv1 + ε2

2 v2. Therefore, omitting the dependence on V SS , the expression writes:

Li(Vt)− Li(V SS) = ε [Mv1]i +
ε2

2
[Mv2]i +

1

2
(εv1 +

ε2

2
v2)TH [Mi] (V SS)(εv1 +

ε2

2
v2)

= ε [Mv1]i +
ε2

2
[Mv2]i +

ε2

2
(v∗1Hv1)i (53)

Focus on the second-order term Mv2 + 1
2v
∗
1Hv1 and consider the first component:

Mv2 = M
(
V ×3 n

∗ ×2 n
∗ + 2zΓn+ z2MΩ

)
= V ×1 M ×3 n

∗ ×2 n
∗ + 2zMΓn+ z2MΩ

For the second component of the second-order term, I first express the Hessian matrix. It is straight-

forward to see that:

H [Li] (V SS) = µ

[
∂mik(V

SS)

∂Vh

]
hk

,

which we have already calculated in the first-order analysis in Section D.2.3. In fact, we have

Hikh = µν

{
−mikmih if k 6= h

mik(1−mik) if k = h
= µν(mik1k=h −Mikh) ≡ H, (54)

where M is a tensor defined as Mikh = mikmih. I obtain

(v∗1Hv1)i=1...I = H×3 v
∗
1 ×2 v

∗
1.
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Using Lemma 1 and Lemma 2 in the appendix, I obtain:

H×3 v
∗
1 ×2 v

∗
1 = H×3 v

∗ ×2 v
∗ ×3 n

∗ ×2 n
∗ + 2zH×2 v

∗ ×3 ω
∗ ×2 n

∗ + H×3 ω
∗ ×2 ω

∗

Collecting all terms, the second-order term of the continuation value of migration is given by

1

ε2

(
M(Vt)−M(V SS)

)∣∣∣
2

=
1

2

[
V ×1 M + H

]
×3 n

∗ ×2 n
∗

+ z
[
MΓ + H×2 v

∗ ×3 ω
∗]×2 n

∗

+
1

2
z2
[
MΩ + H×3 ω

∗ ×2 ω
∗] (55)

D.3.3 Continuation value from aggregate shocks

Recall that A(z) = −θz∂z + σ2

2 ∂zz and that z2Ω = z2∆ + Λ. I have:

A(z)[dv] = A(z)

[
εzω +

ε2

2
(2zΓn+ z2∆ + Λ)

]
= −εθzω +

ε2

2

(
− θz(2Γn+ 2z∆) +

σ2

2
(2∆)

)
= ε

{
− θzω

}
+
ε2

2

{
σ2∆− 2θzΓn− 2θz2∆

}
.

D.3.4 Continuation value from changes in the population distribution

The continuation value for workers from changes in the population distribution is given by:

∑
j

∂Vi
∂Nj

µ

(∑
k

mkj(V )Nk −Nj

)
=
∑
j

∂Vi
∂Nj

(M(V )∗N)j

I approximate individual terms and then take the product. First, note that:(
∂Vi
∂Nj

)
ij

= v +
ε

2
(V ×2 n

∗ + V ×3 n
∗ + 2zΓ) .

Now, fixing j and k, obtain:

M∗jk(V
SS + dv) = Mjk(V

SS)∗ +∇[M∗jk](V
SS)dv +

1

2
dv∗H

[
M∗jk

]
(V SS)dv.

I have already derived the gradient component in equation (54). To ease notation, define Gjkh =

Hkjh, so that
(
∇[M∗jk](V

SS)dv
)
jk

= G ×3 dv
∗. For the Hessian, I have H

[
M∗jk

]
hs

= µ
∂2mkj
∂Vh∂Vs

. It is

dtraightforward to check that

∂2mkj

∂2Vh
= ν2mkj (2mkhmkh −mkh) for h 6= j

∂2mkj

∂Vh∂Vs
= ν2mkj (2mkhmks) for h 6= s and h, s 6= j

∂2mkj

∂Vh∂Vj
= ν2mkj (2mkjmkh −mkh) for h 6= j

∂2mkj

∂2Vj
= ν2mkj(1−mkj) (1− 2mkj) .
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Define

Hjkhs = µ
∂2mkj

∂Vh∂Vs
(56)

a four-dimensional tensor. Using these expressions, one obtains:(
dv∗H

[
M∗jk

]
dv
)
jk

= H×3 dv
∗ ×4 dv

∗.

Then, to leading order (the 0th order term drops out in steady-state):

(M(V )∗N)j =
∑
k

(
M∗jk + Gjk• ×3 dv

∗ +
1

2
Hjk•• ×3 dv

∗ ×4 dv
∗

)
(Nk + εnk)

= Gj•• ×2 N
∗ ×3 dv

∗ + ε(M∗n)j

+ εGj•• ×2 n
∗ ×3 dv

∗ +
1

2
Hj••• ×2 N ×3 dv

∗ ×4 dv
∗

= ε
{
Gj•• ×2 N

∗ ×3 v
∗
1 + (M∗n)j

}
+ ε2

{1

2
Gj•• ×2 N

∗ ×3 v
∗
2 + Gj•• ×2 n

∗ ×3 v
∗
1 +

1

2
Hj••• ×2 N ×3 v

∗
1 ×4 v

∗
1

}
≡ εMj + ε2Nj

where 3rd order terms drop out to get to the second line and to the third line. I further obtain

M = G×2 N
∗ ×3 v

∗
1 +M∗n = (G×2 N

∗ ×3 v
∗)n+ z(G×2 N

∗ ×3 ω
∗) ≡ F1n+ zF2,

where F1 = G×2 N
∗ ×3 v

∗ +M∗ and F2 ≡ G×2 N
∗ ×3 ω

∗. Thus, again to leading order,∑
j

∂Vi
∂Nj

(M(V )∗N)j =
∑
j

{
vij +

ε

2

[
Vi•j ×2 n

∗ + Vij• ×3 n
∗ + 2zΓij

]}{
εMj + ε2Nj

}
Hence, the second-order term is

1

ε2

∑
j

∂Vi
∂Nj

(M(V )∗N)j

∣∣∣
2

=
1

2

∑
j

[
Vi•j ×2 n

∗ + Vij• ×3 n
∗ + 2zΓij

]
Mj +

∑
j

vijNj

The first component satisfies∑
j

[
Vi•j ×2 n

∗ + Vij• ×3 n
∗ + 2zΓij

]
Mj = V ×2 n

∗ ×3M∗ + V ×3 n
∗ ×2M∗ + 2zΓF1n+ 2z2ΓF2

=
{
V ×2 F∗1 + V ×3 F∗1

}
×2 n

∗ ×3 n
∗ + 2z

{
1

2
(V ×2 F∗2 + V ×3 F∗2) + ΓF1

}
n+ 2z2ΓF2
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The second component satisfies∑
j

vijNj ≡ vN =

(
1

2
G×1 v ×2 N

∗
)

︸ ︷︷ ︸
≡X

v2 +
(
G×1 v

)
︸ ︷︷ ︸
≡Y

×2n
∗ ×3 v

∗
1 +

(
1

2
H×1 v ×2 N

∗
)

︸ ︷︷ ︸
≡Z

×2v
∗
1 ×3 v

∗
1

= (V ×1 X)×2 n
∗ ×3 n

∗ + 2zXΓn+ z2XΩ

+ (Y×3 v
∗)×2 n

∗ ×3 n
∗ + z(Y×3 ω

∗)n

+ (Z×2 v
∗ ×3 v

∗)×2 n
∗ ×3 n

∗ + 2z
(
Z×2 v

∗ ×3 ω
∗)n+ z2Z×2 ω

∗ ×3 ω
∗

=
{
V ×1 X + Y×3 v

∗ + Z×2 v
∗ ×3 v

∗
}
×2 n

∗ ×3 n
∗

+ 2z
{
XΓ +

1

2
Y×3 ω

∗ + Z×2 v
∗ ×3 ω

∗
}
n

+ z2
{
XΩ + Z×2 ω

∗ ×3 ω
∗
}

where for the second-to-last equality I have used the symmetry of H in its last two coordinates, which

implies the symmetry of Z in its last two coordinates.

Collecting all terms, the second-order term of the continuation value from changes in the population

distribution is given by:

1

ε2

∑
j

∂Vi
∂Nj

(M(V )∗N)j

∣∣∣
2

=
{
V ×1 X + V ×2 F∗1 + V ×3 F∗1 + Y×3 v

∗ + Z×2 v
∗ ×3 v

∗
}
×2 n

∗ ×3 n
∗

+ 2z

{
1

2
(V ×2 F∗2 + V ×3 F∗2) + ΓF1 + XΓ +

1

2
Y×3 ω

∗ + Z×2 v
∗ ×3 ω

∗
}
n

+ z2
{

2ΓF2 + XΩ + Z×2 ω
∗ ×3 ω

∗
}

D.3.5 Deterministic SAME

I now apply the method of identifying coefficients. I obtain the following equations for the SAME.

Collecting terms,

ρ
1

2
V =

1

2
DUNN +

1

2

[
V ×1 M + H

]
+
{
V ×1 X + V ×2 F∗1 + V ×3 F∗1 + Y×3 v

∗ + Z×2 v
∗ ×3 v

∗
}
.

Re-arranging, and denoting the unknown deterministic Impulse Value V in bold orange,

V ×1 (ρId−M − 2X)− V ×2 (2F1)∗ − V ×3 (2F1)∗ = DUNN + H + 2(Y×3 v
∗ + Z×2 v

∗ ×3 v
∗),

which is a standard tensor Sylvester equation. Re-arranging,

V ×1 A+ V ×2 B + V ×3 B = D, (57)

where

A = M + 2X− ρId, B = 2F∗1, −D = DUNN + H + 2(Y×3 v
∗ + Z×2 v

∗ ×3 v
∗).
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D.3.6 Cross SAME

Collecting terms,

(ρ+ θ)Γ = −DUNZ +MΓ + H×2 v
∗ ×3 ω

∗) + (V ×2 F∗2 + V ×3 F∗2) + 2ΓF1 + 2XΓ + Y×3 ω
∗ + 2Z×2 v

∗ ×3 ω
∗.

Re-arranging, and denoting the unknown cross Impulse Value Γ in bold orange and the now known

deterministic Impulse Value V in bold blue,

((ρ+ θ)Id−M − 2X)Γ− Γ(2F1)

= −DUNZ + H×2 v
∗ ×3 ω

∗ + (V ×2 F∗2 + V ×3 F∗2) + Y×3 ω
∗ + 2Z×2 v

∗ ×3 ω
∗,

which is a standard matrix Sylvester equation. Re-arranging,

(A− θId)Γ + ΓB∗ = C,

where

−C = −DUNZ + H×2 v
∗ ×3 ω

∗ + (V ×2 F∗2 + V ×3 F∗2) + Y×3 ω
∗ + 2Z×2 v

∗ ×3 ω
∗.

D.3.7 Stochastic SAME

I first identify coefficients for the combined term Ω.

ρ
1

2
Ω =

1

2
DUZZ +

1

2

[
MΩ + H×2 ω

∗ ×3 ω
∗)
]

+ 2ΓF2 + XΩ + Z×2 ω
∗ ×3 ω

∗ +
1

2

{
σ2Ω

z2
− 2θΩ

}
.

Now I separately identify coefficients for ∆ and Λ. I start with ∆. Collecting terms,

ρ
1

2
∆ =

1

2
DUZZ +

1

2

[
M∆ + H×2 ω

∗ ×3 ω
∗)
]

+ 2ΓF2 + X∆ + Z×2 ω
∗ ×3 ω

∗ − θ∆.

Re-arranging, and denoting the unknown stochastic Impulse Value ∆ in bold orange and the now

known cross Impulse Value G in bold blue,

((ρ+ 2θ)Id−M − 2X)∆ = DUZZ + 4ΓF2 + Z×2 ω
∗ ×3 ω

∗,

which is a standard vector equation. Re-arranging,

(A− 2θId)∆ = E, −E = DUZZ + 4ΓF2 + Z×2 ω
∗ ×3 ω

∗.

Now for Λ, collecting terms,

ρ
1

2
Λ =

1

2
σ2∆ +

1

2
MΛ + XΛ.

Re-arranging, and denoting the unknown (intercept) stochastic Impulse Value Λ in bold orange and

the now known (slope) stochastic Impulse Value ∆ in bold blue,

AΛ = −σ2∆,

which is again a standard vector equation.
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D.3.8 KFE

The law of motion for population is given by (48). I already computed its second-order expansion in

Section D.3.4. I obtain:

dnt
dt

=

first-order term︷ ︸︸ ︷
M∗nt +Gv1,t +

second-order term︷︸︸︷
ε

2
Nt ,

Nt =
1

2
G×2 N

∗ ×3 v
∗
2,t + G×2 n

∗
t ×3 v

∗
1,t +

1

2
H×2 N

∗ ×3 v
∗
1,t ×4 v

∗
1,t,

where we construct the first- and second-order components of the value function vector v1,t and v2,t in

each period.

To interpret the impulse response of the sole effect of a shock, it is important to adjust the steady-

state welfare by Λ, which is a constant and does not depend on the time path of the shock. Otherwise,

the interpretation of the impulse response is that of a news shock on top of the actual shock, whereby

individuals learn of aggregate risk at the same time as a shock hits.
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Online Appendix

E Weak derivatives and duality

E.1 Weak derivatives

Let f be a η-measurable function. Its weak derivative ∂f
∂xi

is, when it exists, defined by duality. Suppose

that there exists a η-measurable function wi such that∫
f(x)

∂ϕ

∂xi
(x)dη(x) = −

∫
wi(x)ϕ(x)dη(x)

for all continuously differentiable functions ϕ that vanish on ∂̂X. In that case, define its weak derivative
∂f
∂xi

to be wi.

Unidimensional case. Consider a domain (−1, 1) with a possible mass point at 0. Compute, for a

smooth function ϕ such that ϕ(−1) = ϕ(1) = 0,

〈
f, ϕ′

〉
=

∫ 0−

−1
f(x)ϕ′(x)dx+ f0ϕ

′
0 +

∫ 1

0+
f(x)ϕ′(x)dx

where I denote evaluation at the mass point by subscripts to emphasize the role of (non-)smoothness

at the possible mass points. Assuming f is differentiable on (−1, 0) and (0, 1), obtain 〈f, ϕ′〉 =

f(0−)ϕ(0−)−
∫ 0−

−1 f
′(x)ϕ(x)dx+ f0ϕ

′
0 − f(0+)ϕ(0+)−

∫ 1
0+ f

′(x)ϕ(x)dx. Finally, make 〈f ′, ϕ〉 appear:

〈f, ϕ′〉 = f(0−)ϕ(0−) + f ′0ϕ0 + f0ϕ
′
0− f(0+)ϕ(0+)−〈f ′, ϕ〉 ≡ J0−〈f ′, ϕ〉. The key object of interest is

therefore J0 ≡ f(0−)ϕ(0−) + f ′0ϕ0 + f0ϕ
′
0 − f(0+)ϕ(0+). The duality property requires that the sum

of terms around 0, J0, is equal to zero.

Smooth ϕ. When ϕ is continuously differentiable on (−1, 1), and in particular is smooth around 0,

then J0 =
[
f ′0 −

(
f(0+) − f(0−)

)]
ϕ(0) + f0ϕ

′
0. So clearly, for J0 to be zero and f to have a weak

derivative, one needs

f ′0 ≡ f(0+)− f(0−) , ϕ′0 ≡ 0 = ϕ(0+)− ϕ(0−).

Thus, the definition of the weak derivative w.r.t. the base measure η imposes that the value of the

derivative at possible mass points is equal to the jump there. In particular, if a function is continuous

at a possible mass point, then the derivative there that enters into the inner product (but not around)

is endogenously 0. It need not be a requirement.

Multidimensional case. This argument generalizes straightforwardly to multiple dimensions.
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E.2 Borrowing constraints and duality

For concreteness, consider the Aiyagari (1994) economy with a borrowing constraint a ≥ a. The asset

domain is [a, a]. For simplicity, focus only on the asset dimension. Consider the operators associated

with the asset drift L ≡ s(a)∂a and L∗ ≡ −∂as(a), where s denotes the savings rate. Consider a

base measure dη(a) = δa(a) + da. A distribution is given by a density {g(a); g(a), a > a}, so that

the probability measure that represents the distribution of individuals is g(a)δa(a) + g(a)da. For any

function f , I denote by f(a+) = lima↓a f(a).

A mass point arises at a if s(a) ≤ 0 in a neighborhood of a. The borrowing constraint imposes

s(a) = 0. The presence of a mass point requires that g(a+) = +∞ so that the (asset-induced) inflow

into the mass point, (sg)(a+), is finite and non-zero. Then the weak derivative of sg at a (with respect

to the base measure η) is:

∂a(s(a)g(a)) =

{
(sg)(a+) if a = a

the classical derivative ∂a(s(a)g(a)) if a > a

Thus, for any smooth test function and any g, g′ that vanish at a = a:∫ a

a
ϕ(a)L∗(a)[g]dη(a) = −ϕ(a)s(a)g(a)−

∫ a

a+
ϕ(a)∂a(s(a)g(a))da

=

∫ a

a+
s(a)g(a)∂aϕ(a)da+ (sg)(a+)ϕ(a)− ϕ(a)s(a)g(a)

=

∫ a

a+
L(a)[ϕ]g(a)da+ (sg)(a+)ϕ(a)− ϕ(a)s(a)g(a)

=

∫ a

a
L(a)[ϕ]g(a)dη(a) + (sg)(a+)ϕ(a)− s(a)g(a)

(
ϕ(a+) + ϕ(a)

)︸ ︷︷ ︸
=0 because s(a)=0

=

∫ a

a
L(a)[ϕ]g(a)dη(a) + (sg)(a+)ϕ(a)

=

∫ a

a
L(a)[ϕ]g(a)dη(a) +

∫ a

a
(sg)(a+)ϕ(a)δa(da),

where the first line uses the definition of dη(a) and the expression for the weak derivative of sg. The

second line integrates the second term by parts. The third line uses the definition of L and of the weak

derivative of ϕ at a with respect to η. The fourth line uses the definition of η. The last line uses the

identity 1 =
∫ a
a δa(da).

A similar derivation delivers the duality formula when there are kinks in the interior of the domain.

In that case, (sg)(a+) must be replaced with (sg)(a+)− (sg)(a−).
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F Tensor Algebra

F.1 Conventions

We choose the convention that when we mutliply a tensor by a matrix, the summation is with respect

to the second entry of the matrix. In addition, we put the remaining index of the matrix in the position

that corresponds to the product index. That is,

(T×1 A)ijk =
∑
`

Ai`T`jk

(T×2 A)ijk =
∑
`

Aj`Ti`k

(T×3 A)ijk =
∑
`

Ak`Tij`

F.2 Basic results

Lemma 1. Let T ∈ RI×I×I be a tensor, and let x and y be vectors in RI . Then:

T×3 (x+ y)∗ ×2 (x+ y)∗ = T×3 x
∗ ×2 x

∗ + (T + T∗)×3 x
∗ ×2 y

∗ + T×3 y
∗ ×2 y

∗,

where T∗ is the transpose of T with respect to its last two coordinates. Moreover, if T is symmetric

in its last two coordinates we will have that:

T×3 x
∗ ×2 y

∗ = T×3 y
∗ ×2 x

∗, T×3 x
∗ ×2 y

∗ = T×2 x
∗ ×3 y

∗

and

T×3 (x+ y)∗ ×2 (x+ y)∗ = T×3 x
∗ ×2 x

∗ + 2T×3 x
∗ ×2 y

∗ + T×3 y
∗ ×2 y

∗,

Lemma 2. Let T ∈ RI×J×K be a tensor. Let A ∈ RP×I be a matrix and x ∈ RJ and y ∈ RK be

vectors. Then:

A (T×3 x
∗ ×2 y

∗) = (T×1 A)×3 x
∗ ×2 y

∗

Lemma 3. Let T ∈ RI×J×K be a tensor. Let A ∈ RK×P , B ∈ RJ×L be a matrices and x ∈ RP and

y ∈ RL be vectors. Then:

T×3 (Ax)∗ ×2 (By)∗ = T×3 A
∗ ×2 B

∗ ×3 x
∗ ×2 y

∗
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