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1 Introduction

Empirical regularities involving nominal interest rates, asset prices
and inflation are determined by the role and effects of money in
the economy. In this paper we ask whether or not popular models
of money and asset prices can help to interpret those regularities.
The models we employ are general equilibrium, stochastic mod-
els. They are ideally suited to describe explicitly and to evaluate
the distortions produced by monetary policy. They cannot, how-
ever, be solved analytically, given any realistic assumptions about
the stochastic behavior of exogenous shocks. The general Markov
structure that we assume for the forcing variables does not allow
us to perform comparative dynamics analysis without resorting to
numerical simulations. Our strategy is to develop an algorithm for
computing equilibria produced by the models, to simulate them,
to ask whether or not the simulated data resemble the actual data,
and to intepret differences between reality and simulations.

The main virtues of general equilibrium, stochastic models of
money and asset prices are their internal consistency and the sim-
plicity of their structure. Their potentially serious diawback, of
course, is a lack of “realism”. The simple structure of markets and
transactions underlying the equations can at best be considered ap-
proximations to reality. Qur objective in this paper is to determine
whether these “approximations” are acceptable for the purpose of
interpreting the comovements of inflation, interest rates, and stock
returns. We think it is useful to evaluate the empirical predictions
of these models for two reasons. First, their simplicity allows us to
interpret the results of numerical simulations more easily. Second,
as Prescott (1986) stresses, once internal consistency is regarded
as a necessary condition, it is better to start from simple models:
their ability to explain empirical regularities may help to sort out
what are the important effects that macroeconomic models should
include, and what omissions or approximations are acceptable.

The models we simulate are the representative-agent, cash-in-
advance models developed by Lucas (1982) and by Svensson (1985).
Our choice is mainly motivated by our intention to provide the clos-
est formal analog to real models of asset prices commonly used to
interpret US data, which employ the infinite-horizon, representative-
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agent specification. Furthermore, alternatives like the overlapping-
generations models rely on assumptions very similar to those we
employ to make agents willingly hold an asset, like money, that is
dominated by other real assets.! Finally, it is known that cash-in-
advance models and money-in-the-utility-function models can be
reconciled by appropriately parametrizing tastes and technology.?

This paper is complementary to that of Hodrick, Kocherlakota
and Lucas (1989), who ask whether models from the same family
as those we study can explain the observed behavior of the veloc-
ity of money in the United States, and to those of Kydland (1987)
and Cooley and Hansen (1988), who study the effects of introduc-
ing money in real business cycle models. Like the papers of Leroy
(1984a,b), Danthine and Donaldson (1986) and Marshall (1988),
our paper discusses the ability of representative-agent monetary
models to explain correlations between inflation, nominal interest
rates, and stock returns. Leroy (1984a,b) first formally applied
general-equilirbium models of money in the utility function to an-
alyze the relations between inflation and asset returns. He consid-
ers only two-state models where the source of randomness is either
the endowment process or the money supply process. Danthine
and Donaldson also study a similar model of money in the utility
function with a more general stochastic structure, where inflation
uncertainty is a function of endowment uncertainty, but money
growth is nonstochastic: hence, in their model, all sources of fluc-
tuation of the price level are money demand shocks. Marshall
employs a model where money demand arises from a transactions
costs function in the budget constraint. By contrast, we consider
an economy where money supply is stochastic, and money demand
arises from a cash-in-advance constraints. While Marshall studies
his model under simplifying assumptions on the forcing variables’
processes, we assess the predictive power of our models by simulat-
ing them with processes for the forcing variables that are estimated

1See, for example, Sargent and Wallace (1982).

2This result is due to Feenstra (1986). As Ostroy and Starr (1988) peint out, however, that
equivalence relies on the assumption that for every dollar received for sales of labor there is a
dollar with which to buy commodities—i.e. that money buys goods and services, but goods
and services do not buy other goods and services. It thus appears mare adequate to make the
constraint explicit through cash-in-advance equations.



from the US data.? v

Section 2 presents the data set and the empirical regularities we
choose to discuss. Section 3 describes the models and establishes
the notation. Section 4 constructs an algorithm that solves both
models. Section 5 discusses the results of the simulations. Section
6 contains a few concluding remarks.

2 Data and Empirical Regularities

Our objective is to point to empirical facts that are sufficiently
“general” and, broadly speaking, largely independent of changes
in monetary institutions, since the model we use to assess these
regularities are clearly ill-equipped to deal with the institutional
changes underlying many important episodes of US monetary his-
tory. For this reason, we chose the long sample of Grossman and
Shiller (1981) and Mehra and Prescott (1985), and augment it with
the estimates of the US money stock provided by Friedman and
Schwartz (1982).
The data set includes:

o Annual Average S&P Composite Stock Price Indez. 1889~
1975 from the Mehra-Prescott data set.! 1976-1987 from
Citibank Database.

o Annual Dividends from S&P Series. 1889-1975 from the Mehra-
Prescott data set. 1976-1987 from Citibank Database.

¢ Nominal Yield on Short Term Securities. 60- and 90-day
prime commercial paper prior to 1920, Treasury certificates
for the 1920-1930 period, and 90-day Treasury Bills for the
1931-1975 period (Mehra-Prescott data). 1976-1987: 90-day
Treasury Bills from Citibank Database (annual averages).

¢ Per Capita Consumption of Nondurables. Kuznets-Kendrik
USNIA.1889-1975 from the Mehra-Prescott data set. 1976-
1987 from Citibank Database.

3The differences between our solution algorithm and those employed by Marshall and
Hodridk, Kocherlakota and Lucas will be highlighted below. The basic logic of our algorithm
is similar to the one by Danthine and Donaldson.

4We thank Rajnish Mehra for kindly providing us with the data set.




o Consumption Deflator, measured in 1972 dollars, from Kuznets-
Kendrik USNIA. 1889-1975 from the Mehra-Prescott data
set. 1976-1987 from Citibank Database.

o Money Stock. Sums of currency held by the public plus ad-
justed deposits at all commercial banks less large negotiable
CDs since 1961, divided by population. 1889-1958 from Fried-
man and Schwartz (1982): annual averages of monthly data.
The data for 1958-1987 are constructed following the meth-
ods outlined in Friedman and Schwartz (1970). We use the
definition of M2 from the Statistical Releases of the Board of
Governors of the Federal Reserve System which is available
in the Citibank Database (series MS2), and subtract from
it “smzll denomination time deposits-at thrift institutions”
(series MSTT) and “savings deposits at thrift institutions”
(series MSVT). The monthly data are averaged to obtain an-
nual data. The rates of growth of this series match very closely
those of the corresponding series from Friedman and Schwartz
in the years of overlap: 1959 to 1975. As Friedman (1988)
points out, however, in 1983 the money supply series calcu-
lated this way displays exceptional rates of growth, largely be-
cause of shifts out of savings accounts and into money-market
accounts. These shifts net out in the Federal Reserve defi-
nition of M2. Following Friedman (1988) we correct for this
problem by updating the net-of-savings-accounts series con-
structed above with the growth rate of the Fed M2 series from
1983.

The choice of the broader monetary aggregate is justified by
two considerations. First, as Friedman and Schwartz (1963, 1982)
convincingly argue, M2 is preferr=d because it has undergone fewer
redefinitions over the sample period. Second, as Hodrick, Kocher-
lakota and Lucas (1989), among others, have pointed out, at least
in the second postwar period, M1 velocity clearly displays nonsta-
tionarity, a feature inconsistent with the basic assumptions of the
models we are exploring. The nonstationarity of M1 velocity might
be due to the redefinitions of that aggregate, but also to techno-
logical progress in the transactions technology, a feature that our
model does not capture.



There is, of course, no firm criterion to determine—in a sample
that includes annual data from 1889 to 1987—uwhat represents an
empirical regularity. Indeed, it could be argued that, over such
a long historical period, very few phenomena of interest involving
money and asset prices have maintained the same characteristics
from start to end. Our choices do not conform to a single crite-
rion. We regard some of the phenomena we look at as important
because of the statistical significance of certain correlations in the
data, while other phenomena are—in our view—equally interest-
ing for the opposite reason: certain correlations are statistically
insignificant. Furthermore, several of the phenomena we study
are included because of the great interest they have aroused in
finance and monetary theory, even though they might have previ-
ously been studied on much shorter sample intervals. The reason
why we include them is that many of the theories offered to explain
them are largely independent of institutional factors.® Finally, we
let the data suggest the appropriateness of studying subsets of our
sample period, by simple visual examination of the plots of all
series.

These plots are contained in Figures 1 to 4. Figure 1 shows
realized nominal returns on stocks and the nominal interest rate.
Except for the large swings in stock returns in the 1930s, these
data do not display appreciable patterns over the sample.

Figures 2 and 3 report growth rates in real per-capita consump-
tion and per-capita money balances. The variance of the consump-
tion data decreases remarkably after World War II. To some extent,
the variance of money supply growth also appears to decrease in
the second postwar. While the models we study can, in principle,
produce marked changes in conditional variances of money growth
and consumption growth, we interpret these figures as suggesting
the presence of potentially important differences in the data be-
fore and after the end of World War II. Hence we evaluate the
predictions of the monetary models both over the whole sample
and, separately, for the second postwar period.®

$This, however, is not true in many important cases, including all models of nominal
nonneutralities based on features of the US tax system.

$This strategy is further justified by the work of Romer (1986), suggesting the presence
higher sampling errors in the pre-war consumption data.



Figure 4 reports the rates of growth of velocity (in terms of
nondurables consumption). Once again we observe some differ-
ences before and after World War II: while the average growth
rate of velocity is close to zero over the whole sample, it is lower
in the first half than in the second half.

Table 1 reports summary statistics from the data in our sam-
ple. One remarkable fact documented in the Table is the simi-
larity of the summary statistics in the whole sample with those
in the second part of the sample, despite the significant changes
in economic and monetary institutions in the recent years. The
more recent period, however, is characterized by higher and more
volatile inflation, higher and less volatile stock returns, and higher
and more volatile nominal interest rates. Consumption velocity
has on average hardly changed, although the variability of veloc-
ity (as measured by the standard error) in the second part of the
sample is half of that in the whole sample. This decrease in the
variability of velocity is consistent with the decrease in volatility
of consumption growth and money growth documented in Figures
2 and 3. One important feature of the data in Table 1 is the dif-
ference between the average realized real return on stocks (7.16
percent in the whole sample, and 7.83 percent in the second post-
war) and the average realized real interest rate (1.03 in the whole
sample, and 0.36 percent in the second postwar years). This dif-
ference, also called “equity premium”, is 6.13 percent in the whole
sample, and 7.47 percent in the second postwar period. Mehra and
Prescott (1985) showed that traditional asset pricing models can
generate equity premia that are only a small fraction (of the order
of 1-tenth) of those observed in the data. Mehra and Prescott used
a “real” (that is without money) version of the models we study
here. We wish to determine vhether the introduction of money
modifies the conclusions of Mehra and Prescott.

We turn next to the comovements of interest rates, stock re-
turns, and inflation. Table 2 describes the covariation of realized
real interest rates and stocks returns with inflation. These are con-
temporaneous correlations: inflation, real stock returns and real in-
terest rates are all measured from time t to ¢t + 1. The Table shows
that, when inflation is high, realized real stock returns and interest



rates are low and viceversa. The relationship between realized real
interest rates and inflation is documented, for the postwar period,
by Fama and Schwert (1977) and Mishkin (1981) (among others).
Ibbotson and Sinquefield (1976) and Summers (1983) document
it over the period 1926-74 and 1860-1979, respectively. The co-
efficients in Table 1 largely confirm the results of these authors.
In particular, the larger negative correlation between real interest
rates and inflation in the years before World War II is noted by
Summers (1983). The relationship between realized stock returns
and inflation is documented by Fama and Schwert (1977), Jaffe
and Mandelker (1976), Nelson (1976), Schwert (1981), and Sum-
mers (1983) for the second postwar period. Summers (1983) also
looks at the period 1870-1979, Kaul (1987) studies the 1930’s.
These findings are again consistent with ours. Summers (1983)
claims that, over low frequencies, the negative relation between
stock returns and inflation is much stronger in the 1970s, a decade
characterized by historically high inflation, and a depressed stock
market.” This fact is reflected in the difference between the esti-
mated coefficients in the two semples: the (negative) response of
realized stock returns to inflation in the second postwar period is
more than three times larger than in the whole sample.

In Table 3 we document the relation between nominal inter-
est rates and subsequent inflation and nominal stock returns. We
regress inflation and nominal stock returns from year ¢t to ¢t + 1
on the nominal interest rate in year t. Without theoretical pri-
ors, these regressions can be thought of measuring the forecasting
ability of nominal interest rates, a question of interest in its own
right. Under the assumption that economic agents correctly use
the available information to form expectations, so that inflation
and stock-returns innovations are orthogonal to agents’ expecta-
tions (the rational-expectations assumption), these regressions pro-
vide information about the comovements of of ex-ante real interest
rates and stock returns and expected inflation. The relation be-

tween interest rates and subsequent inflation is discussed by Fama
(1975), Fama and Gibbons (1982), Mishkin (1981, 1989) and Sum-

TSummers uses band-spectral regressions which filter out frequencies shorter than § years.
Indeed, he estimates positive coefficients in a regression (estimated over 1870-1940) of inflation
on realized stock yields.




mers (1983). The pre-war evidence is studied by Barski (1987)
(who emphasizes, like Mishkin (1989) the shifts in the stochas-
tic properties of inflation) and Summers (1983). Our evidence is
again consistent with the findings in the literature: the coefficient
of the nominal interest rate is significantly less than 1. Under the
rational expectations hypothesis, this evidence suggests that real
interest rates are not constant over time, and might be negatively
correlated with expected inflation.®. Indeed, nominal interest rates
appear to be an unbiased predictor of subsequent inflation only in
certain periods (in particular during the years from 1951 to 1979)
but the relation is not stable over longer samples: the low values
of the Durbin-Watson statistics in Table 3 suggest the presence
of in-sample instability of the equation. The bottom panel of the
Table reports regressions of nominal stock returns (from time ¢ to
time ¢t + 1) on the nominal interest rate at time t. The estimated
coefficients are negative but insignificant. The R-square statistics
indicate that nominal interest rates are very poor predictors of
stock returns. Similar results have been reported by Fama and
Schwert (1977), who use monthly and quarterly data from 1953 to
1977, and Giovannini and Jorion (1987) who use weekly data from
1973 to 1984. These authors estimate negative, but significant
coefficients; their R-square statistics never exceed 3 percent.

3 The Models

The two monetary models we simulate are Lucas’s (1982) and
Svensson’s (1985). The models are characterized by representa-
tive agents maximizing a time-separable isoelastic utility function,
subject to a liquidity constraint, which compels them to buy goods
with money, and a wealth constraint. Endowment is stochastic and
exogenous and growing over time. There is no storage or invest-
ment technology available. Money supply is also exogenous and
stochastically growing, and is distributed lump-sum to the agent.
The crucial difference between the two models is in the timing of
transactions in goods and asset markets.

$In section 5 we identify and discuss all the components in the slope coeflicients of these
regressions.



In Lucas'’s model individuals can acquire money after observ-
ing the state of the economy but before purchasing the consump-
tion good; hence—given their risk and return characteristics—
money and assets are equally suitable to intertemporal consump-
tion smoothing. In Svensson’s model, by contrast, individuals be-
gin the period with predetermined money balances, which they
need to purchase the consumption good. This feature introduces
a wedge between the marginal utility of consumption and the
marginal utility of wealth. Money is not perfectly substitutable
with other assets for the purpose of intertemporal consumption
smoothing, it is more “liquid” than other assets.®

Formally, the consumer’s problem in the Lucas model is:

= 1
max 6'—c"’] 1
{c.g..M,qE“ g p_ (1)
subject to:
C S M‘d"rg | (2)

n
Mg‘"’z +2zq < (‘—L‘yt—l + qe)ze-1 + (we — V)M +

-1

(MLym — Ct—ll) (3)
LESS|

The notation is the standard one: notice, in particular, that we
use 7 to indicate the inverse of the price level, i.e. the purchasing
power of money; z stands for the shares of the productive asset—a
claim to future dividends—held and demanded by the consumer.
Equation (2) is the liquidity constraint while equation (3) is the
wealth constraint. The evolution of exogenous variables is:

Yo = Tl (4)
M, = wM._, (5)

The timing of transactions is as follows. At the beginning of a
period, individuals learn the realizations of the monetary and en-
dowment shocks, respectively w and 71, and receive their monetary

?See Giovannini (1989). For this reason the modd gives rise to a form of “precautionary”
money demand.



transfer, which in real terms is (w; — 1)M,_,x,. In the assets mar-
ket, they obtain dividend payments from “firms”, z,_, '—:'ﬁy,_,, and
the value of their stock holdings, g,z,_;.!°

They use these resources to purchase money balances and stocks.
In the goods market they use currency to purchase the consump-
tion good. Notice that the money balances turned over by con-
sumers to the “firm” are held by it until the asset market opens at
the beginning of the next period. Hence the inflation tax is levied
directly on the firm.

The market clearing conditions are:

G = W (6)
Mtd = M, . (7)
zz =1 (8)

In the Svensson model, the monetary transfer, which is observed
at the beginning of each period, is received in the assets market.
However, goods trade occurs before asset trade. Consumers use
their money belances at the beginning of the period to purchase
the consumption good, and then enter the assets market with any
remaining cash balances. The money stock evolves as:

M, =w 1M, (9)

which implies that at time ¢ agents know the nominal stock of
money available to purchase goods at time ¢ + 1. The consumer’s
problem is:

© 1
max E 6'——cl°"J 10
feoaMs) Lz:(:, 1-4" (10)
subject to:
¢ < ‘Mgd"’t (11)
M:,,;"’z + 20 < (v +@)za] + (we - )M 7 +
(Min, - c) (12)

The sequence of market equilibrdum conditions is, of course,
identical to equations (6) to (8). :

10This interpretation differs from Lucas's, where equities’ dividend payments occur in the
same period, although they can be spent only in the next period.
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4 Solution Methods

In this section we derive the first-order necessary conditions and
sufficient conditions for existence and uniqueness of the equilib-
rium. These conditions are the basis for the algorithm used to
compute the equilibrium realizations of the model-determined vari-
ables. Both versions of the model can be formulated as a dynamic
program with unbounded returns.

Since the endowment is growing over time and the isoelastic
utility function is unbounded, the maximization problem posed
in equations (1) and (10) may not be well defined because total
expected utility may be infinite. To ensure finite expected utility,
we assume that:

Lim 8'Eoyl " =0 (13)

An equilibrium for either version of the model is a set of func-
tions: ¢, m, a value function, and associated multiplier functions u
(the liquidity constraint multiplier) and A (the wealth constraint
multiplier). Given the 7 and ¢ functions, a representative agent
can solve his maximization problem. For each set of price func-
tions, standard arguments can be used to show that there is a
unique, continuous and bounded value function, which can then
be used to construct the multiplier functions associated with the
problern The main task is then to compute the pair of ethbnum
price functions.

For notational consistence, we denote the state of the economy
at time t as s;. For the Lucas version of the model, any pair of equi-_
librium price functions must satisfy the first order conditions of the
individual optimization problem together with the market equilib-
rium conditions. Substituting market equilibrium conditions into
the first order conditions with respect to ¢;, M? and z, we have:

ye | = A(sy) (14)
A8)7(3e) = EE [A(8e41)7(8e41)] + p(se)7(se) (15)
A(si)g(se) = 6E, [/\(St+1)(¢1(3t+1) +y— Tt )] (16)

Since A is already determined by (14), we use (15) and the cash-
in-advance constraint to compute 7. This information is then used
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to determine the equilibrium equity price function from (16).
We start by defining implicitly a function K as the inverse of
velocity:

ytK(St)
M,

By the implicit function theorem, we can study the properties
of the function K as well as the function 7 since y and M are
strictly positive and are determined exogenously. The cash-in-
advance constraint (2) implies that the value of the function K
for any state cannot fall below unity (since this violates the lower
bound on the inverse of the price level imposed by the constraint).
- If K(s,) exceeds 1, the cash-in-advance constraint is nonbinding at
s; while, if K(s;) equals 1, the constraint is binding.

Substituting for 7 in (15) and using (14) we obtain after some
simplification,

w(s¢) =

'hl;;yK(‘sH'l) ) (17)

Wi+l

K(sJu(s) = v (K(a) _E, [

Our iterative procedure is based on equation (17). If the cash-
in-advance constraint is not binding, y; = 0,

'hl:fK(-’wl)
Wi

K(s,) = 8E, [ (18)

On the other hand, if the cash-in-advance constraint is binding at
8¢, [l¢>0, K(5¢)=18.I_1d -

1]‘1;1"}\’(3”,1) ) (19)

Wist

B(se) =y (1 - SE, [

This reasoning suggests that the function K at s, is:

" K(s;) = max (1,5E, [M ) (20)

W

To study the properties of the function K, we start by defining
the operator S by:
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1-y
5,K(s,) = 6E, [M("L‘)] : (21)
Wig1
If K is a continuous, bounded, and nonnegative function, then
the operator in (21) is well defined. We define a second operator
T by
TK(s;) = max(1, K(s,)), (22)

‘so that the composite operator is:

T - 5, K(s;) = max(1, 5, K(s;)) = max (1 §E, ["tﬂ K(st41) )

Wiyl
(23)
Let H, denote the compcsnte operator T - S. The following the-
orem shows that, under certain conditions, the composite operator
H! (the operator applied n times) is a contraction mapping. Let (
denote the space of continuous, bounded functions that are defined
over the state space, which has a supremum norm associated with
it. The properties of the solution to the functional equation (23)
are described by the following

Theorem 1 If E, [Z—:%] < %, there ezists ezactly one continuous

bounded function K that solves equation (23).

Proof: See the Appendix.

In the proof we show that H, is a contraction, hence we can use
the method of successive approximations to find the fixed point K.
Once the fixed point is found, the equilibrium purchasing power of
money is determined as

"(31) = ytlb({(jt) )

where K is the fixed point of Hy. The function 7 is used in (15)
to determine the equilibrium multiplier function u.
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An important property of the solution is that the fixed point K
is a function of a subset of the state space, namely (n,w), and is
not a function of the levels of the endowment or of the money stock
(see the proof in the Appendix). This property greatly simplifies
the computation of the equilibrium.

Furthermore, the condition used to establish the existence and
uniqueness of the fixed point provides some valuable insight into
the sufficient conditions for the existence of an equilibrium where
money is valued. If E,[r]H,;' Jwege1] < 1/6 for all states, the cash-
in-advance constraint is always binding. If the unconditional ex-
pectation, Eg[ne;y /wes] > 1/6, a monetary equxlxbnum does not
exist because the cash-in-advance constraint is never binding. For
an equilibrium to display variable velocity (alternating between a
binding and a nonbinding cash-in-advance constraint), the argu-
ment above suggests that Eofn; 1 /wi+1] < 1/6 must be true, but
Einest Jwisr] > 1/6 should hold in some states.

The equilibrium K function is then used to construct the equi-
librium equity price. The equity price function q must satisfy the
functional equation:

v7a(s) = B [yiilalen) +u ). (29)

Using the definition of K, we have

1-~ -
4i7a(s0) = 8B, (vta(oun) + 65 | (2 ) Pl (o

Wegt

Factoring out y;~” from the two sides of the equation, and letting
& = q:/y: (the price/earnings ratio), we have:

e | K Si+1
€(s0) = 8E: (nli7€(sur)) + S [("'*‘ ) T e

Wi

We iterate on the function £. Define the operator T as

Tié(s:) = 8E, (miiT6(senr)) + 6E, [("‘;‘7) K,f{:;) . @)

W41
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The mapping T, takes continuous bounded functions into con-
tinuous bounded functions. If we start with an initial guess that
is in the space of continuous bounded functions, the application
of the operator T results in a function that is an element of the
same space. The operator T} is monotone but does not display
the discounting property when applied to any arbitrary function
in (. When Tj is applied repeatedly there is some positive integer
n such that T} is a contraction mapping. The stock price function
can now be solved in two steps. In the first step we use equation
(26) to solve for the price/earnings ratio, the function . Notice
that, once again, we are able to limit the domain of £ to a subset
of the state space. Finally we obtain the stock price simply by
multiplying £ times y.

For the Svensson version of the model, the first-order conditions
and the market equilibrium conditions imply:

ye | = p(se) + A(se) (28)
As)m(s¢) = SE[(A(se41) + p(8e41))7(8e41)) (29)
As)g(se) = SE [AM(see1)(9(8e41) + yeur)] (30)

Substituting our definition of K into equation (29), we have

6!/:

A(s()K(se) =

['7:1+;I‘ (8e41))- (31)

Multiplying both sides of (28) by K(s,), and substituting from
(31), we have the basic recursive equation in K:

E, :-;K SH'!‘
K(s)p(s) =y (m)-s sk )) (32)

wi
If “(31) = 0)

K(St) = “%Et [’h+1 K(3t+1)] (33)
If u(s¢) >0, K(s) =1, and:
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6y!-.’ 1=y grs k
@y Et[’?t+1 K(31+1)] (34)

Hence, in equilibrium, the function K satisfies the following:

/\(81) =

K(s¢) = max (la G%E,[U:I;K(s,“)]) (35)

A comparison of equations (35) and (20) demonstrates that we
apply an essentially identical solution procedure to both models.
The only difference between the two equations is in the timing of
the nominal shock w: this difference reflects the basic assumption
that, in the Svensson model, individuals start every period with a
predetermined money stock and have to acquire money balances
for purchases in the future periods.

As above, we define the composite operator operator H, as

HiK(s:) = max(1, S;K(s,)) = max (1, “%E:[n.‘I{’K(sm)l) (36)

The proof of Theorem 1 (in the Appendix) can be used to verify
that H7 is a contraction mapping for some positive integer n, and
hence H; is a contraction. Once the function K is computed, A
can be obtained by solving equation (31).

To compute stock prices, we start by rewriting the first-order

condition (30) in terms of the price/dividend ratio £(s,):

£(st) = 8E, (/\%lmnf(sm)) + 6E, (i\%l"ltﬂ) (37)

The function A was determined earlier. We iterate on the func-
tion £, and the associated mapping can be shown—with arguments
similar to those used above—to be a contraction.

Our procedure to solve the two models significantly differs from
those applied by Hodrick, Kocherlakota and Lucas (1989), and
Marshall (1988), who also simulate general equilibrium monetary
models. Hodrick, Kocherlakota and Lucas examine only equilib-
rium functions that are separable in the endowment. They show
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that the mapping converges to a stationary equilibrium if one ex-
ists, but do not prove that it is unique.!’? Marshall approximates
the conditional expectations in the first-order conditions with an
exponential function of a polynomial. The approximation error
becomes arbitrarily small as the order of the polynomial tends to
infinity. The mapping he defines is not necessarily a contraction.

5 Simulation Results

We use the consumption series and money stock series described in
section 2 to compute the growth rates of the endowment (1) and of
the money supply (w). Since the realization of the monetary shock
is observed at different times in the two versions of the model,
the bivariate autoregressive systems that we estimate are carefully
constructed to reflect this difference. We estimate first-order and
second-order bivariate autoregressive processes for the two versions
of the model over both the full sample and second postwar sample.
We then apply a likelihood-ratio test to determine the order of
the system; in all cases we cannot reject the hypothesis that the
bivariate autoregressions are first-order.

We then fit a Markov process by discretizing the state space
(the space of n and w) and using Tauchen’s quadrature method.!?
The properties of this procedure are described by Tauchen (1986).
In particular, the law of motion of the simulated discrete process

11Using our notation their algorithm for the Lucas version of the model is described as
follows. Define a function m(n,w) as follows: -

m(ne,we) = -:1'*_1:

If the cash-in-advance constraint is binding, m(n,w:) = n¢, otherwise m(n¢,wi)} > n. The
equilibrium first-order condition (15) becomes:

v _ T TE m(ng1 wie)
“(ﬂl.‘ﬂ):n.’— : 'U":Il'h.ugi =+

An initial guess m° = n=7 is used in the right-hand-side of this equation to determine u°.
Depending on the sign of 4° (evaluated for each (n,w)) the algorithm is terminated if 4° < 0
for all states or u® > O for all states. Or else a new function u! s computed such that for all
those (n¢,we) for which u® < 0, m in the denominator insures that the whole expression equal
to zero. For all other states, m! = m®. This procedure is repeated until there is convergence
to a fixed point.

12The algorithm was kindly supplied to us by George Tauchen.
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is constructed to approximate closely the estimated law of mo-
tion. Tauchen’s quadrature method results in conditional transi-
tion probabilites and a state space grid for  and w. In our simu-
lations there are 64 possible realizations of these two variables.

Simulated series of n and w can then be used, together with
initial values of M and y to obtain realization of the money-stock
and endowment processes. The endowment and money-stocks se-
ries are used to compute the equity price, the price level and other
endogenous variables. The price level is determined by evaluating
the function K as described in section 4.

In the simulations we vary the utility discount rate from 1 %
per annum to 3 % per annum. The elasticity parameter in the
utility function ranges from 0.5 to 10. The size of the simulated
samples is 100.

5.1 Average Returns and Inflation

Tables 4a and 4b, 5a and 5b report summary statistics for in-
flation, velocity, real stock returns and real interest rates for the
two models and the two samples, respectively. The first column
in these tables reports the coefficient of variation of velocity. We.
find that velocity is much less volatile, relative to its average, than
in the sample data. This just confirms the findings of Hodrick,
Kocherlakota, and Lucas (1989), who studied the Svensson model
(and others) over the second postwar period. Tables 4a and 5a
show that, when the model is calibrated with data from the longer
sample, velocity displays greater variability, that is, the liquidity
constraint is binding more frequently in the simulations based on
the second postwar period. Furthermore, the liquidity constraint
appears to be binding more frequently in the Lucas model than in
the Svensson model. This difference is consistent with the mod-
els’ predictions about nominal interest rates. The Lucas model
implies that only when the liquidity constraint is binding are nom-
inal interest rates positive. Since the model is calibrated using
consumption and money data exclusively, and since nominal inter-
est rates are positive in the data, the model’s predictions are, in
this sense, correct.

The second column of these tables reports simulated means and
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standard errors of the inflation rate. Notice that these statistics
are largely independent of the values of the preference parameters.
While there are differences in the means (ranging from 1 percent
to 2 percent), the standard errors of inflations are very similar to
the sample values in the case of the Lucas model, and only slightly
higher in the case of the Svensson model.

The last three columns in the tables report real returns on stocks
and one-period bonds, and the equity premium. To interpret the
results, recall that, in these models, both nominal bonds and stocks
are risky assets (in real terms). As we showed in Section 4, the
equilibrium expected returns on these assets have to satisfy the
following conditions:

A
1 = [ ‘+‘R'+1] (38)
\ _ _
1 = §E|&2Y 1,] (39)
At

where R is the real return on stocks, and R" the -eal return on
nominal bonds. Similarly, we can derive the rate of return on
an indexed bond (the risk free rate), which has to be equal to
the reciprocal of the marginal rate of substitution of present and
future wealth. Substituting for the definition of R® in (39), and

rearranging, we obtain the familiar asset-pricing equations:
COV (%2, Riyr)
E(32)
COV(2aL 1n)

A 2w 41
E(%t) (41

E(Re) - R (40)

E(Ry) - R = —(1+i)

where ¢ represents the nominal interest rate. While in the Lucas
model the risk free rate only depends on the distribution of real
shocks, in the case of the Svensson model, the marginal utility
of wealth, and hence the risk free rate, are affected by monetary
shocks. Stochastic inflation affects risk premia in the Lucas model
by affecting payoffs to stocks and bonds and through the covariance
of nominal and real disturbances. By contrast, in the Svensson
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model nominal shocks change the marginal rate of substitution
between present and future wealth even if they are independent of
real disturbances.!?

The estimated equity premia in Table 4a range from .42 percent
to 1.91 percent. Simulating over the second postwar sample (Table
4b), we find that equity premia are virtually unchanged, ranging
from .62 percent to 1.54 percent. These values are much larger
than those reported by Mehra and Prescott (1985) but fall well
below the data (the tables report the actual values of the statistics
in the first row). Tables 5a and 5b show that, in the Svensson
model, equity premia can be negative.'* They range from -1.23
percent to 1.23 percent.

Equations (40) and (41) indicate that the equity premium is
“small” ‘when the risk premia on stocks and bonds are of com-
parable size, either large or small. To interpret this evidence we
compute both premia choosing v = 2, a utility discount factor
equal to 3 percent, and the processes for the forcing variables cor-
responding to the full sample.’® Figures 5 and 7 report the ex-ante
real returns ou stocks, nominal bonds, and indexed bonds, in the

13Stochastic inflation also affects the equilibrium stock prices. In the Lucas model, solving
equation (16) recursively, and using (14) we obtain:

L]
1 4
=] E : 41,=7 4141
= -TE' & Veg j41Vt4s -
Y =0 +

In the Svensson model, we solve recursively equation (30) and substituting for A.4; from
equation (29}, we obtain:

[ -]
1 N L
- 41 -y 4141 )
T SE.y I E. 26 —(Vl+-+l et ) Vigi

t41 = i)

[ (]

In both models, real stock prices are affected by the discounted future path of the rate of
deflation. The difference between the two models is, as we pointed out above, in the timing of
transactions in the money market. This difference is highlighted by the effects of next-period
expected inflation on current stock prices. In the Lucas model, inflation levies a direct tax on
dividend payments. In particular, expected inflation, other things equal, lowers the expected
return on stocks. In the Svensson model, inflation does not aflect dividend payments directly,
but affects the marginal utility of wealth. In particular, other things equal, expected inflation
increases the marginal rate of substitution between present and future wealth (since current
wealth is, in part, accounted for by money balances that will be given at the beginning of next
period) hence the expected retum on stocks is lowered, through an increase in the current
stock prices. By contrast, the marginal rate of substitution is unchanged in the Lucas model.

1 This does not occur, as equations (40) and (41) demonstrate, when the equity premium
is computed using indexed bonds. See Labadie (1989).

130ther parameter combinations do not change the evidence in any appreciable way.
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Lucas and Svensson models, respectively. The figures show that
the expected return on the three assets is nearly identical. To high-
light the behavior of risk premia, we plot them directly in Figures
6 and 8. The striking implication of the four figures is that the
only important factor in the fluctuation of ex-ante asset returns
appears to be the marginal rate of substitution in wealth. Fluctu-
ations in expected returns generated by these models are generally
not due to fluctuations in risk premia. Shiller (1982), among oth-
ers, has emphasized that asset pricing models like those we study
need to explain the wide fluctuations in ex-ante returns of differ-
ent assets.!® Our results confirm the observation of Weil (1988),
who simulated a model without money, and concluded that the
“equity premium puzzle” is really a puzzle about the differences
between the behavior of real interest rates and the marginal rates
of substitution generated by asset pricing models (the “risk free
rate puzzle”).

5.2 Inflation, Stock Returns and Real Interest Rates

Tables 6a and 6b and 7a and 7b contain the regression coefficients
of realized real returns on stocks and 1-period bonds on contem-
poraneous inflation. The value of the slope coefficient of stock
returns on inflation is equal to, by definition, the covariance be-
tween ex-ante real stock returns and expected inflation, plus the
covariance between innovations in stock returns and inflation in-
novations, divided by the variance of inflation. Stocks are good
“inflation hedges” whenever the covariance between innovations
in stock returns and inflation innovations is positive. This occurs
in the Lucas model, when simulated using postwar data, and in
the Svensson model, for high values of gamma. The results of the
simulations in the Lucas model contrast with the data, where the
negative relation between realized real stock returns and inflation
is more apparent especially in the second postwar period. The pos-
itive coefficients observed in the simulations of the Svensson model
in Tables 7a and 7b correspond to the cases where the equity pre-
mium turns to negative values, and, at least in part, explain that

1$See also Barsky (1986).
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phenomenon. Since stocks are good hedges against inflation, they
command a very small or negative inflation premium, and, as a
consequence, their ex-ante returns are driven towards the ex-ante
real returns on nominal bonds.

The two columns on the right of Tables 6 and 7 contain the
estimated covariations between ex-post real interest rates and in-
flation. By definition these are equal to the covariance between the
ex-ante real interest rate and expected inflation, minus the vari-
ance of the inflation innovation, divided by the variance of inflation.
Hence the numbers would be negative whenever the covariance be-
tween ex-ante real rates and expected inflation, if positive, does not
exceed the variance of inflation innovations. This condition is met
by most models, in the majority of cases.

5.8 Interest Rates as Predictors of Inflation and Nominal Stock
Returns

Finally Tables 8a and 8b, 9a and 9b contain regressions of inflation
on nominal interest rates, and of realized nominal stock returns on
nominal interest rates. The coefficient of the interest rates in the
- ‘inflation equation equals the covariance between the ex-ante real
-~ interest rate and expected inflation, plus the variance of expected
inflation, divided by the variance of the nominal interest rate. It
tends to 1 whenever the variance of expected inflation accounts for
the largest fraction of the total variation of the nominal interest
rate, i.e. the variance of the real rate is small (hence its covariance
with the expected rate of inflation is also small). In the data, it
appears that, if the rational expectations hypothesis is true, either
the variance of the real interest rate is significant, or the covariance
between the ex-ante real interest rate and expected inflation is
negative, or both propositions are true. In the simulations, most
regressions coefficients tend to cluster around the values estimated
by Fama (1975) and others using data from the early fifites until
the late seventies. As Figures 5 and 7 indicate, however, ex-ante
real interest rates vary significantly. The estimated coefficients
are then due to very low correlations between ex-ante real interest
rates and expected inflation.

Finally, probably the most striking results of our simulations
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appear in the regressions of ez-post nominal stock returns on the
nominal interest rate. We find the nominal interest rate to be an
extremely good predictor of subsequent nominal stock returns. All
estimated coefficients are very close to unity, and, surprisingly, the
R-square statistics in the regressions can be as high as 97 percent.
These results just confirm our observations above: most of the co-
variation between interest rates and stock returns is driven by their
common factor—the reciprocal of the marginal rate of substitution
of wealth, that is the risk free real interest rate. Any time varying
risk premia between the two financial assets are far too small to
explain the data.

6 Concluding Remarks

We have calibrated two standard cash-in-advance models to US
data to determine their ability to reproduce important empirical
regularities affecting asset returns and inflation. The most impor-
tant result of our analysis is that the models predict a very high
covariation between ex-ante returns on stocks and nominal bonds:
accounting for money-supply uncertainty does not add significantly
to the variation of conditional risk premia. The high covariation
of ex-ante returns explains our findings that, in the data generated
by the model (assuming that the money growth and consumption
growth processes resemble those observed in the US economy), the
equity premium is only a small fraction of that observed in the US
data. It also explains. why nominal interest rates implied by the
models turn out to predict nominal stock returns extremely well.
Finally, we find that the real returns on stocks are not in many
cases negatively related to inflation—as they are in the data (es-
pecially in the more recent years), and that ex-ante real interest
rates are uncorrelated with expected inflation.
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Appendix A Proof of Theorem 1

The steps are to show first that H, takes bounded continuous func-
tions into bounded continuous functions and, second, that H, is a
contraction. .

Both T and S, are linear operators. If K° € ¢ then $;K° is an
element of ( since E is a continuous linear operator. The operator
T is bounded and, because a linear operator is bounded if and
only if it is continuous [Luenberger (1969, page 144)], it is also
continuous. This establishes that, H; takes bounded continuous
functions into bounded continuous functions.

The next step is to verify Blackwell’s sufficient conditions (mono-
tonicity and discounting property) for a contraction mapping. For

. 1—v
notational convenience, let z, denote ":‘% To determine if the
composite operator is monotone, notice that, for any f > ¢, S, f(s) >

S19(s) for all s. When T is applied,
(T-81)f(s¢) = max(1, S$1f(8e41)] 2 (T- S1)g(se) = max(1, S19(8141)],

hence the composite operator is monotone.

To determine whether or not the composite mapping has the dis-
counting property, notice that, because 6 E,z,,, may exceed unity,
application of the composite operator to an arbitrary function in
¢ generally will not have the discounting property because

H\(f +a)(s) max[1, $i(f + a)(s;)] = max(1, E;ze41( f(3141) + a)]

< max(176Eziy, f(3¢41)] + max[l, a6 E;z44)

where the coefficient for a in the last term may exceed unity. Since
z is by assumption a stationary process, there exists an N; such
that

6E32¢+N. <1l

Let N denote the maximum over the N; . Start with an initial
guess K° € ( and define
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K'(s) = H,K%s,) = (T - S1)K°(s¢)
= max[l,éEtzt+l(K0(3t+1))]'

Applying H, again,

HIKI(.S;) = maX[l,éEgIH.](Kl(-SH.I))]
= m&X[l,6Eg.’tg+1T(&EH,IIH.QKO(SH,Q))].

When H, is applied M times,

(T - $)MK%(s,) = max[1, 6Eczrar (KM (s041))]
= (¢t S)M ' max(1, 6Eze41(K°(3041))]-

HMKO(s,)

To determine if HM has the discounting property, define

HM(K® +a)(s:) = (T -SOM(K®+a)(s:)
= (T SI)M-l max(1, $E i1 (K%(3t11) + a))
< (T . S1)M-l max[l, 6Eg£¢+1(K0(8¢+1 )] + (6EtI!+M)a

If M > N then 6E,z,,pa = Ba where 0 < f < 1, and hence HM
has the discounting property. By theorem 2 of Luenberger (1969,
page 275), if HM is a continuous mapping from a closed subset
of a Banach space into itself and if HM is a contraction for some
positive integer M, then H, is a contraction.Q.E.D.
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1889 to 1987 1947 to 1987

Mean Std.Dev. Mean Std.Dev.

Nominal interest rate (percent) 3.89 (2.73) 4.79 (3.27)
Nominal stock return (percent) 10.02 (16.23) 12.26 (13.35)
Inflation rate (percent) 2.86 (5.20) 4,43 (3.02)
Equity premium (percent) 6.32 (16.57) 7.60 (13.87)
Velocity 1.44 (0.30) 1.28 (0.15)

See text for data sources.
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Comovements of Inflation and
-Po t Rate

Regression Equation Constant Term Slope Coeff. R-Square D.W. SEE

and Sample Period

Real Stock Returns

On Inflation

1890 to 1987: .10 -.78 .06 1.76 .16
(.02) (.32)

1947 to 1987: .19 -2.48 .26 1.87 .13
(.04) (.67)

Real Interest Rate

On Inflation

1890 to 1987: .04 -.93 .76 .24 .03
(.003) (.05)

1947 to 1987: .02 -.45 .18 .37 .03
(.01) (.15)

See text for data sources. Standard Errors

in parentheses.
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m e e
Inflation and Nowinal Stock Returns
Regression Equation Constant Term Slope Coeff. R-Square D.VW. SEE
and Sample Period
Inflation on
Nominal Interest Rate
1890 to 1987: .02 .26 .02 1.00 .05
(.01) (.19)
1947 to 1987: .02 .45 .25 .75 .03
(.04) (.13)

Nominal Stock Returns on
Nominal Interest Rate

1890 to 1987: 11 -.20 .001 1.72 .16
(.03) (.61)

1947 to 1987: _ .13 -.13 .001 1.75 14
(.04) (.64)

See text for data sources. Standard Errors in parentheses.
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t e \'/ -in-Adv
Simulations Qver the Whole Sample
(in percent)
Returns:
Velocity Inflation Stock Returns Interest Rate Equity
(Coef.Var.) rate Real Real Premium
Data: 20.45 2.86 (5.20) 7.34(16.71) 1.02 (5.56) 6.32(16.57)
Simulations:
1% )
(.01,.5) 0.63 5.06 (5.63) 2.42 (3.22) 1.25 (5.05) 1.17 (6.095)
(.01, 1) 0.66 5.06 (5.64) 3.37 (3.32) 2.34 (5.24) 1.03 (5.01)
(.01, 2) 0.78 5.07 (5.68) $.26 (4.86) 4.43 (5.89) 0.83 (3.30)
(.01, 5) 1.31 5.09 (5.99) 10.81(11.81) 10.33 (9.23) 0.49 (4.36)
(.01,10) 2.90 $.21 (7.45) 19.08(23.87) 18.66(17.10) 0.42(11.8¢)
(.03,.95) 0.19 5.06 (5.50) 4.64 (3.19) 3.41 (4.89) 1.23 (5.76)
(.03, 1) 0.23 5.06 (5.51) 5.62 (3.38) 4.50 (5.10) 1.12 (4.76)
(.03, 2) 0.36 5.06 (5.54) 7.57 (4.97) 6.64 (5.77) ©.94 (3.08)
(.03, 5) 0.89 5.07 (5.72) 13.31(11.89) 12.69 (9.18) 0.62 (4.27)
(.03,10) 2.26 S5.14 (6.80) 21.92(23.97) 21.26(17.15) 0.67(11.90)
(.05,.5) 0.00 5.06 (5.50) 7.05 (3.745 5.88 (5.10) 1.17 (5.84)
(.05, 1) 0.00 5.06 (5.51) 3.54 (3.87) 2.49 (5.47) 1.05 (5.17)
(.05, 2) 0.00 5.06 (5.54) 5.20 (5.22) 4.16 (6.26) 1.04 (3.62)
(.05, 3) 0.52 5.07 (5.72) 9.62(12.09) 8.43(10.07) 1.18 (3.79)
(.05,10) 1.77 5.14 (6.80)  14.36(24.82) 12.45(19.28) 1.91(10.55)
p = 1/6-1. Standard Errors in Parentheses.
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Sample weans and standard deviations
v -in- nc od
Simulations Over the Second-Postwar Sample
(in percent)
Returns:
Velocity Inflation Stock Returns Interest Rate Equity
(Coef.Var,) rate Real Real Premium

Data: 11.49 4.43 (3.02) 7.83(14.64) 0.23 (3.20) 7.60(13.87)
Simulations:

(.1

{.01,.5) 0.21 5.36 (3.53) 2.04 (1.59) 1.43 (2.64) 0.62 (3.25)
(.01, 1) 0.05 - 5.35 (3.49) 3.00 (1.42) 2.36 (2.58) 0.64 (2.94)
(.01, 2) 0.00 5.35 (3.48) 4.93 (1.22) 4.24 (2.62) 0.69 (2.50)
(.01, 5) 0.00 5.35 (3.48) 10.80 (1.83) 9.92 (2.91) 0.88 (1.51)
(.01,10) 0.00 5.35 (3.48) 20.77 (4.02) 19.59 (3.84) 1.18 (1.22)
(.03,.5) 0.00 5.35 (3.48) 4.28 (1.56) 3.55 (2.55) = 0.72 (3.05)
(.03, 1) 0.00 5.35 (3.48) 5.26 (1.42) 4,50 (2.57) 0.75 (2.84)
(.03, 2) 0.00 5.35 (3.48) 7.23 (1.27) 6.41 (2.63) 0.82 (2.44)
(.03, 5) 0.00 5.35 (3.48) 13.23 (1.93) 12.20 (2.94) 1.04 (1.52)
(.03,10) 0.00 5.35 (3.48) 23.43 (4.10) 22.06 (3.99) 1.36 (1.25)
(.05,.5) 0.00 5.35 (3.48) 6.51 (1.55) 5.67 (2.56) 0.84 (2.97)
(.05, 1) 0.00 5.35 (3.48) 7.52 (1.43) 6.64 (2.58) 0.88 (2.77)
(.05, 2) 0.00 5.35 (3.48) 9.54 (1.33) 8.58 (2.64) 0.96 (2.40)
(.05, 5) 0.00 5.35 (3.48) 15.67 (2.03) 14.48 (2.98) 1.19 (1.54)
(.05,10) 0.00 5.35 (3.48) 26.08 (4.20) 24.54 (3.97) 1.54 (1.30)

p = 1/6-1, Standard Errors in Parentheses.
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Vi -in- e
Sipulations Qver the Whole Sample
(in percent)
Returns:

Velocity Inflation Stock Returns Interest Rate Equity

(Coef.Var.) rate Real Real Premium
Data: 20.45 2.86 (5.20) 7.34(16.71) 1.02 (5.56) 6.32(16.57)
Simulations:
(.7
(.01,.5) 2.62 4.61 (6.12) 2.67 (5.71) 1.44 (3.77) 1.23 (6.99)
(.01, 1) 2.64 4,61 (6.12) 3.55 (4.90) 2.45 (3.67) 1.10 (6.14)
(.01, 2) 2.74 4.61 (6.15) 5.30 (3.60) 4.46 (3.67) 0.85 (4.58)
(.01, S) 3.54 4.63 (6.46) 10.35 (4.64) 10.22 (5.32) 0.12 (1.56)
(.01,10) 6.12 4.80 (8.19) 17.69(12.66) 18.80(11.18) -1.11 (5.42)
(.03,.5) 1.16 4.60 (6.02) 4.71 (5.59) 3.65 (3.20) 1.05 (6.04)
(.03, 1) 1.24 4.60 (6.01) 5.62 (4.83) 4.69 (3.08) 0.94 (5.26)
(.03, 2) 1.44 4.60 (6.02) 7.44 (3.58) 6.73 (3.05) 0.71 (3.80)
(.03, 5) 2.37 4.61 (6.15) 12.67 (4.41) 12.64 (4.63) 0.03 (1.23)
(.03,10) 4.91 4.70 (7.31) 20.32(12.14) 21.49(10.41) -1.17 (5.61)
(.05,.5) 0.58 4.60 (6.05) 6.77 (5.50) 5.80 (3.08) 0.97 (5.64)
(.05, 1) 0.62 4.60 (6.05) 7.71 (4.75) 6.85 (2.92) 0.86 (4.86)
(.05, 2) 0.75 4.60 (6.04) 9.58 (3.53) 8.94 (2.81) 0.64 (3.41)
(.05, S) 1.54 4.60 (6.05) 14.97 (4.36) 15.00 (4.31) -0.03 (1.09)
(.05,10) 3.82 4.65 (6.75) 22.91(11.79) 24.14 (9.89) -1.23 (5.87)

p = 1/§-1. Standard Errors in Parentheses.
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Sample means and stapdard deviations
v .
Simulations Qver the Second-Postwar Sample
(in percent)
Returns:

Velocity Inflation Stock Returns Interest Rate Equity

(Coef.Var.) Real Real Premium
Data: 11. .43 (3.02) 7.83(14.64) (3.20) .60(13.87)
Simulations:
(3% )]
{.01,.5) 1. 5. . 33) 2.30 (3.61) 1. 2.00) 0.69 .47)
(.01, 1) 1. 5. .32) 3.21 (3.17) 2. (1.85) 0.59 .96)
(.01, 2) 0. 5. .32) 5.04 (2.44) 4. (1.61) 0.41 .01)
{.01, 5) 0. 5. .31 10.73 (2.13) 10. (1.65) -0.04 .76)
(.01,10) 0. 5. .30) 20.63 (5.12) 21. (3.51) -0.60 .49)
(.03,.5) 0. 5. .30) 4.38 (3.42) 3. (1.77) 0.62 .06)
(.03, 1) 0. 5. .3 5.31 (3.02) 4. (1.65) 0.54 .62)
(.03, 2) 0. 5. . 30) 7.20 (2.38) 6. (1.47) 0.38 .81)
(.03, 5 0. 5. .30) 13.04 (2.16) 13. (1.67) -0.03 .48)
(.03,10) 0. 5. .3 23.16 (5.12) 23. (3.65) -0.58 .41)
(.05,.5) 0. 5. .30) 6.47 (3.33) 5. (1.69) ° 0.59 .88)
(.05, 1) 0. 5. .30) 7.43 (2.97) 6. (1.59) 0.51 .47)
(.05, 2) 0. 5. .30) 9.37 (2.37) 9. (1.44) 0.36 .70)
(.05, 5) 0. 5. .3 15.34 (2.21) 15. (4.31) -0.03 .74)
(.05,10) 0. 5. .3 25.69 (5.15) 26. (3.78) -0.56 .32)
p = 1/6-1. Standard Errors Parentheses.
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Comovementa of Inflation and
Ex-Post Real Stock Returns and Real luterest Ractes
b d -{n-
Simulations Over the Whole Sample
Real Stock Returns Real Interest Rate
Slope Coeff. R-Square Slope Coeff. R-Square

Data: -.78 .06 -.93 .76
Simulations:
(.7
(.01,.5) -.02 .00 -.72 .65
(.01, 1) -.11 .03 -.69 .56
(.01, 2) -.35 .17 -.64 .38
(.01, 5) -.96 .24 -.52 .11
(.01,10) -1.60 .25 -.61 .07
(.03,.5) .0l .00 -.70 .62
(.03, 1) -.11 .03 -.67 .52
(.03, 2) -.35 .15 -.60 L34
(.03, 5) - -.95 .21 .44 .08
(.03,10) -1.63 .21 _ -.46 .03
(.05,.5) .01 .00 -.69 .60
(.05, 1) -.11 .03 -.65 50
(.05, 2) -.3 .13 -.57 30
(.05, 5) -.93 .19 -.38 05
(.05,10) -1.65 .18 -.30 01
p=1/6-1
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Copovements of Inflation and
Ex-Post Real Stock Returns and Real Interest Rates
e \' -{n-Adv.
Simulations Over the Second-Postwar Sample
‘Real Stock Returns Real Interest Rate
Slope Coeff. R-Square Slope Coeff. R-Square

Data: -2.48 .26 -.45 .18
Simulations:
(r,7)
(.01,.5) .02 .00 -.47 .40
(.01, 1) .00 .00 -.43 L3
(.01, 2) -.00 .00 -.40 .29
(.01, 5) .01 .00 -.31 .13
(.01,10) .11 .01 -.13 .01
(.03,.5) .02 00 -.43 35
(.03, 1) .01 .00 -.42 .33
(.03, 2) .01 .00 -.39 .27
(.03, 5) 03 00 -.29 12
(.03,10) 16 02 - -.11 01
(.05,.5) .03 .00 -.43 34
(.05, 1) .02 .00 -.41 31
(.05, 2) .03 .00 -.38 25
(.05, 5) .06 01 -.28 11
(.05,10) .20 03 -.09 01
p=1/8-1.
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Real Stock Returns Real Interest Rate

Slope Coeff. R-Square Slope Coeff. R-Square
Data: -.78 .06 -.93 .76
Simulations:
(r,7)
(.01,.5) -.12 .02 -.51 .69
(.01, 1) -.12 .02 -.46 .59
(.01, 2) -.11 .03 -.36 .37
(.01, S5) -.12 .03 -.16 .04
(.01,10) -.52 .11 -.31 .05
(.03,.5) -.22 .06 -.42 64
(.03, 1) -.19 .05 -.37 52
(.03, 2) -.13 .04 -.26 26
(.03, 5) N .00 03 00
(.03,10) - .28 .03 -.01 00
(.05,.5) -.25 .08 -.40 62
(.05, 1) -.21 .07 -.34 49
(.05, 2) -.13 .05 -.21 21
(.05, 5) .09 .01 .14 .04
(.05,10) .0l .00 .30 .04
p = 1/6-1.
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Copovepents of Inflation and
Ex-Post Real Stock Returns and Real Interegt Rates
'L - -
Simulations Qver the Second-Postwar Sample
Real Stock Returns Real Interest Rate
Slope Coeff. R-Square Slope Coeff. R-Square

Data: -2.48 .26 -.45 .18
Simulations:
(.7

.01,.5) -.32 15 -.38 67
(.01, 1) -.30 16 -.33 59
(.01, 2) -.24 .17 -.23 37
(.01, 5) -.01 .00 07 03
(.01,10) -.46 .15 61 56
(.03,.5) -.33 17 -.33 66
(.03, 1) -.30 18 -.29 56
(.03, 2) -.22 .17 -.19 32
(.03, 5) .02 .00 .10 .07
(.03,10) .50 .18 .64 .57
(.05,.5) -.3 .18 -.31 .63
(.05, 1) -.29 .18 -.27 .53
(.05, 2) -.22 .16 -.17 .27
(.05, 5) .03 .00 .12 .09
(.05,10) .53 .20 .67 .58
s = 1/8-1.
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Inflation

Nominal Stock Returns

Slope Coeff. R-Square Slope Coeff. R-Square
Data: .24 .02 -.20 .00
Simulations:
(2.7)
(.01,.5) .77 .21 .80 .17
(.01, 1) .64 .20 .86 .31
(.01, 2) .45 .16 .93 .68
(.01, 5) .21 .10 1.02 .82
(.01,10) .08 .03 1.05 .69
(.03,.5) .77 .23 .84 .20
(.03, 1) .64 .21 .89 .36
(.03, 2) .45 .18 .96 .72
(.03, 5) .21 12 1.03 .84
(.03,10) .08 -04 1.05 .70
(.05,.5) .76 .23 .86 .23
(.05, 1) .63 .22 .91 .39
(.05, 2) .45 .19 .89 .76
(.05, 5) .21 .13 1.04 .85
(.05,10) .08 .06 1.06 .71
p=1/6-1.
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Inflation and Nominal Stock Returns
v -in-Adv
Inflation Nominal Stock Returns
Slope Coeff. R-Square Slope Coeff. R-Square
Data: .45 .25 -.13 .00
3imulations:
(r,7)
(.01,.5) 86 .45 82 33
(.01, 1) 83 .47 84 41
(.01, 2) 79 47 89 54
(.01, 5) 64 L4 1.01 .86
(.01,10) 45 .39 1.12 .96
(.03,.5) .85 48 85 39
(.03, 1) 83 .48 88 45
(.03, 2) 77 47 92 58
(.03, 5) 63 YA 1.03 86
(.03,10) 44 .39 1.13 97
(.05,.5) .84 48 88 43
(.05, 1) .81 .48 90 75
(.05, 2) .76 47 94 60
(.05, 5) .61 AN 1.04 87
(.05,10) .43 .39 1.14 97
p=1/5-1.
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ble 9a:

e d o
Inflation and Nominal Stock Returns

n _the Sv on V -in-Adv. e Mode

Inflation Nominal Stock Returns

Slope Coeff. R-Square Slope Coeff. R-Square
Data: .24. .02 -.20 .00
Simulations:
(r,7)
(.01,.5) 1.37 .67 .96 20
(.01, 1) 1.23 .66 .96 29
(.01, 2) 1.01 .64 .96 .51
(.01, 5) .62 .52 .95 .96
(.01,10) .31 .21 .93 .82
(.03,.5) 1.33 .76 .98 29
(.03, 1 1.20 .76 98 40
(.03, 2) 1.00 .74 .97 64
(.03, 5) .63 .65 - .96 .98
(.03,10) .33 .32 .94 .82
(.05,.5) 1.31 .79 .99 34
(.05, 1) 1.19 .79 .99 46
(.05, 2) 1.00 .78 .98 .71
(.05, 5) .64 .73 .97 .98
(.05,10) .35 .45 .94 .82
p=1/6-1.
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Nominal Interest Ratea as Predictors of
Inflation and Nominal Stock Returns
A4 - -
Simulations Qver the Second-Postwar Sample
Inflation Nominal Stock Returns
Slope Coeff. R-Square Slope Coeff. R-Square
Data: : .45 .25 -.13 .00
Simulacions:
(r,7)

.01,.5) 1.36 85 .95 39
(.01, 1) 1.28 86 .96 51
(.01, 2) 1.13 87 .96 75
(.01, 5) .83 89 96 98
(.01,10) .56 90 96 80
(.03,.5) 1.33 .89 97 48
(.03, 1) 1.25 .89 97 59
(.03, 2) 1.11 89 97 79
(.03, 5) .82 - .90 96 98
(.03,10) .55 90 97 82
(.05,.5) 1.30 89 97 52
(.05, 1) 1.22 .89 97 63
(.05, 2) 1.08 .89 97 82
(.05, 5) 80 89 97 98
{

-05.10) 54 .90 97 .83

p = 1/5-1.
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