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1 Introduction

In this paper, we develop a revealed preference theory that allows us to use asset-market-based

evidence to detect investors’ preference for the timing of resolution of uncertainty. Our main

theorem states that the representative agent prefers early (late) resolution of uncertainty if

and only if claims to market volatility, which can be constructed from index options, require

a positive (negative) premium during the period when the informativeness of macroeconomic

announcements is resolved. Empirically, using evidence on the implied volatility of S&P 500

index options around Federal Open Market Committee (FOMC) announcements, we find

supportive evidence for investors’ preference for early resolution of uncertainty.

The notion of preference for the timing of resolution of uncertainty is formally developed in

Kreps and Porteus [32]. Models with preference for early resolution (PER) of uncertainty—in

particular, the recursive preference with constant elasticity—have been widely applied in the

asset pricing literature (see, e.g., Epstein and Zin [17, 19], Weil [48], Bansal and Yaron [5],

and Hansen, Heaton, and Li [23], among others). However, in the constant elasticity recursive

utility model and in most applied asset pricing models, PER is typically intertwined with

other aspects of preferences, such as risk aversion and intertemporal elasticity of substitution

(IES). As a result, the exact role for PER in asset pricing is not well understood. In addition,

the asset pricing implications of models with PER are typically similar to a broad class of

preferences that satisfy generalized risk sensitivity (Ai and Bansal [2]). The purpose of this

paper is to provide an equivalent characterization of PER in terms of asset prices and use

asset market data to identify investors’ preference for the timing of resolution of uncertainty.

Preferences are often the starting point of macroeconomic analysis and asset pricing

studies. Modern economic theory implies that asset prices are evaluated using marginal

utilities. Therefore, the empirical evidence from asset markets can potentially provide

valuable guidance for the choice of preferences in macroeconomic analysis in general and

in policy studies in particular. However, results that allow researchers to use relevant asset-

market-based evidence to identify exact properties of preferences are rare. In this paper,

we provide a general result that allows researchers to build such links and apply our result

to establish a necessary and sufficient condition for PER in terms of asset prices. We show

that the representative investor prefers early resolution of uncertainty if and only if claims to

market volatility require a positive premium during the period of resolution of information

quality (ROIQ), that is, the period during which the uncertainty about the informativeness

of macroeconomic announcements is resolved. We provide empirical evidence for investors’

preference for the timing of resolution of uncertainty based on our theoretical insights and
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find evidence supportive of PER.

Our main theorem builds on the notion of generalized risk sensitivity (GRS) developed

in Ai and Bansal [2]. Ai and Bansal [2] define GRS to be the class of all preferences in

which the marginal utility of consumption decreases with respect to continuation utility.

The theorem of generalized risk sensitivity in Ai and Bansal [2] demonstrates that a non-

negative announcement premium for all assets that are comonotone with continuation utility

is equivalent to GRS. However, GRS is a very general condition that includes many examples

of non-expected utility as special cases—for example, the Gilboa and Schmeidler [20] maxmin

expected utility, which is indifferent between an early or late resolution of uncertainty,

and the Kreps and Porteus [32] utility, which prefers early resolution of uncertainty. The

announcement premium itself does not allow us to identify PER.

The condition of GRS, however, implies that the ranking of the marginal utility of

consumption is the inverse ranking of the level of continuation utility and allows us to design

a thought experiment to identify PER from risk premia. PER implies that the utility level

of the representative agent is higher when she expects a more informative macroeconomic

announcement and lower when she expects a non-informative announcement. The key

insight of our paper is that under GRS, PER is equivalent to a negative comonotonicity

between marginal utility and the expected informativeness of the upcoming macroeconomic

announcement. Because more informative macroeconomic announcements are associated

with higher realized stock market volatility upon announcements, the risk premium on claims

to market volatility can be used to detect the ranking of marginal utility with respect to the

informativeness of macroeconomic announcements and, therefore, PER. The asset pricing

test implied by our theorem is easily implementable as claims to market volatility can be

replicated using a portfolio of options.

Based on the above insight, we design an empirical exercise to identify PER from asset

market data. Our empirical exercise contains two steps. The first step is to identify a

period of resolution of the information quality (ROIQ) of FOMC announcements, which is

when investors learn whether or not the upcoming announcement is informative. The second

step is to estimate the risk premium for claims to market volatility associated with FOMC

announcements to identify PER. Based on standard results from option pricing—for example,

Carr and Madan [11], Britten-Jones and Neuberger [9], Bakshi, Kapadia, and Madan [3],

and Jiang and Tian [27]—we construct a replicating portfolio for market volatility and find

evidence of a positive premium, which is consistent with preference for early resolution of

uncertainty. We find that standard straddle-based volatility trades also embed this positive

premium.
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Related literature Our theoretical work builds on the literature that studies decision

making under non-expected utility. We adopt the general representation of dynamic

preferences of Strzalecki [46]. The generality of our approach is important given that our

purpose is to identify the property of preferences from asset market data and given that

PER is often intertwined with other aspects of preferences in the popular recursive utility

formulation used in applied asset pricing work.1 In particular, the general setup allows

us to distinguish different decision-theoretic concepts such as generalized risk sensitivity,

uncertainty aversion, and preference for early resolution of uncertainty.

Our framework includes most of the non-expected utility models in the literature as

special cases, such as the maxmin expected utility of Gilboa and Schmeidler [20], the dynamic

version of which is studied by Chen and Epstein [12] and Epstein and Schneider [15]; the

recursive preference of Kreps and Porteus [32] and Epstein and Zin [17]; the robust control

preference of Hansen and Sargent [25, 26] and the related multiplier preference of Strzalecki

[45]; the variational ambiguity-averse preference of Maccheroni, Marinacci, and Rustichini

[35, 36]; the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji [30, 31]; and the

disappointment aversion preference of Gul [22].

Earlier work on the revealed preference approach for expected utility includes Green and

Srivastava [21] and Epstein [18]. More recently, Kubler, Selden, and Wei [33] and Echenique

and Saito [13] develop asset-market-based characterizations of the expected utility model.

Unlike our paper, none of these papers focus on GRS and aim to connect their results to

asset market data.

Our paper is related to several papers that study PER in asset pricing models. Ai [1]

demonstrates that in a production economy with long-run risk, most of the welfare gain from

knowing more information about the future is a result of PER, not because agents can use

the information to improve the intertemporal allocation of resources. Epstein, Farhi, and

Strzalecki [14] show that in the calibrated long-run risk model, the representative agent is

willing to pay more than 30% of her permanent income to resolve all future uncertainty,

and they argue that this magnitude is implausibly high by introspection. They also state,

“We are not aware of any market-based or experimental evidence that might help with a

quantitative assessment,”whereas our paper provides market-based empirical evidence for

PER without assuming a parametric utility function. Kadan and Manela [29] estimate the

value of information in a model with recursive utility. Schlag, Thimme, and Weber [43] find

suggestive evidence for PER using options market data. Both of these papers assume the

1For example, in the constant elasticity case, as shown in Ai and Bansal [2], PER is equivalent to risk
aversion being higher than IES, which is also equivalent to GRS.
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CES form of utility function and do not distinguish PER from GRS, or uncertainty aversion.

A vast literature applies the above non-expected utility models to the study of asset

prices and the equity premium. We refer readers to Epstein and Schneider [16] for a review

of asset pricing studies with the maxmin expected utility model, Ju and Miao [28] for an

application of the smooth ambiguity-averse preference, Hansen and Sargent [24] for the robust

control preference, Routledge and Zin [41] for an asset pricing model with disappointment

aversion, and Bansal and Yaron [5], Bansal [4], and Hansen, Heaton, and Li [23] for the

long-run risk model that builds on recursive preferences. Borovicka and Stachurski [8]

provide necessary and sufficient conditions for the existence and uniqueness of recursive

preferences with constant elasticities. Bhamara and Uppal [6] study the role of risk aversion

and intertemporal elasticity of substitution in portfolio choice problems. Bidder and Dew-

Becker [7] link ambiguity aversion to long-run risk models. Skiadas [44] provides an excellent

textbook treatment of recursive-preferences-based asset pricing theory.

Our paper is also related to the previous research on stock market returns on

macroeconomic announcement days. The previous literature documents that stock market

returns and Sharpe ratios are significantly higher on days with macroeconomic news releases

both in the United States (Savor and Wilson [42]) and internationally (Brusa, Savor,

and Wilson [10]). Lucca and Moench [34] find similar patterns and document a pre-

FOMC announcement drift. Mueller, Tahbaz-Salehi, and Vedolin [38] document an FOMC

announcement premium on the foreign exchange market and attribute it to compensation to

financially constrained intermediaries.

The rest of the paper is organized as follows. We begin with a simple example in Section 2

to illustrate the concept of preference for early resolution of uncertainty and generalized risk

sensitivity. In Section 3, we develop a thought experiment that allows us to identify PER

from the risk premia of claims to market volatility. Building on these theoretical insights,

in Section 4, we develop an identification strategy and present evidence for PER based on

option prices on S&P 500 index options. Section 5 concludes.

2 PER and GRS

In this section, we illustrate the concepts of preference for early resolution of uncertainty and

generalized risk sensitivity in a simple three-period model. We also provide simple examples

for both properties of preferences. To set up some notation, we consider an economy with

three periods, 0, 1, 2. Let (S,Σ, µ) be a finite probability space with equal probabilities.
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We denote S = {1, 2, · · ·n}, where µ (s) = 1
n

for s = 1, 2, · · · . Let (Ω,F ,µ) = (S,Σ, µ)3 be

the product space, and let L (Ω,F ,µ) be the set of real-valued random variables. A typical

realization of states is denoted as (s0, s1, s2), where for t = 0, 1, 2, st is the realization of the

state in period t. A consumption plan is denoted as C = [c0 (s0) , c1 (s0, s1) , c2 (s0, s1, s2)],

where consumption in each period is a measurable function of history: ct : (S,Σ)t → C, for

t = 0, 1, 2. Here, the feasible set of consumption, C is a subset of the positive orthant of the

real line R. To simplify notation, we use the convention that st = {s0, s1, · · · st} denotes the

history of s up to time t.

As in Ai and Bansal [2], we consider conditional preferences induced by a triple {u, β, I},
where u : C → R maps consumption into utility units, β is the discount rate, and

I : L (Ω,F ,µ) → R is a certainty equivalent functional that maps continuation utility,

which is a random variable, into the real line. In our setup, date-t utility is constructed

recursively using

Vt (C)
(
st
)

= u
(
ct
(
st
))

+ βI
[
Vt+1 (C)

(
st+1

)]
, (1)

for t = 0, 1, where the terminal utility on date 2 is given by V2 (C) = u (c2). Here, we use the

notation Vt (C) (st) for the date-t utility of the consumption plan C at history st.2 To simplify

notation, we will suppress C and simply write Vt (st) whenever the underlying consumption

plan is clear from the context.

2.1 Preference for early resolution of uncertainty

To provide a definition of preference for early resolution of uncertainty, we restrict our

attention to a simple class of consumption plans. We consider two consumption plans,

CE = [c̄0, c̄1, c2 (s1)] and CL = [c̄0, c̄1, c2 (s2)], where both c̄0 and c̄1 are constants, and

c2 : (S,Σ, µ) → C is a random variable that depends only on s but not its history. Note

that both plans, CE and CL, have the same unconditional distribution because s1 and s2

do. However, under CE, which represents early resolution, period-2 consumption, c2 (s1), is

known in period 1 because s1 is realized in period 1. By contrast, under CL, which represents

late resolution, the uncertainty in s2 only realizes in period 2.

A dynamic preference represented by {u, β, I} is said to satisfy preference for early

resolution of uncertainty if V0 (c̄0, c̄1, c2 (s1)) ≥ V0 (c̄0, c̄1, c2 (s2)) for all c̄0, c̄1, and all

measurable functions c2 (s). Our concept of PER is the same as Kreps and Porteus [32].

2Strictly speaking, to emphasize the dependence of It on period-t information, we should allow It :
L (Ω,F ,µ) → R to be a family of certainty equivalent functionals indexed by t. For each t, It maps

(S,Σ)
t+2

measurable functions into (S,Σ)
t+1

measurable functions.
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Figure 1 provides a graphic illustration of CE (top panel) and CL (bottom panel) for the

case in which c2(s) takes on only two values, cU and cD, where cU > cD. The squares represent

the consumption in each period, and the circles represent the agent’s information node. The

uncertainty is resolved early in period 1 in the top panel under consumption plan CE, where

the agent is able to distinguish nodes 1U and 1D. The bottom panel illustrates late resolution

of uncertainty under consumption plan CL, where the value of c2 (s2) is known only in period

2.

Figure 1: Early and late resolution of uncertainty
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Figure 1 illustrates the notion of PER. Both panels have identical unconditional distributions of consumption.
The top panel is a situation with early resolution, as the uncertainty about c2(s1) is resolved one period earlier
in period 1. The bottom panel corresponds to the case of late resolution because the value of c2(s2) is not
revealed to the consumer until period 2.

Recursion (1) allows us to compute the utility associated with CE and CL. Under CE,

there is no uncertainty at the end of period 1 because period-2 consumption is perfectly

predictable. Therefore, period-1 utility is computed as V1

(
CE
)

(s1) = u (c̄1) + βu (c2 (s1)).

The time-0 utility is given by

V0

(
CE
)

= u (c̄0) + βI [u (c̄1) + βu (c2 (s1))] . (2)

In the case of late resolution (bottom panel of Figure 1), because uncertainty is resolved

in period 2, we first need to aggregate over uncertain states of the world when computing

period-1 utility V1

(
CL
)

= u (c̄1) + βI [u (c2 (s2))], and simply aggregate over time in period
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0 to get

V0

(
CL
)

= u (c̄0) + β {u (c̄1) + βI [u (c2 (s2))]} . (3)

A comparison of equations (2) and (3) makes it clear that PER can be formulated as the

following property of the certainty equivalent functional:

I [u (c̄1) + βu (c2 (s1))] ≥ u (c̄1) + βI [u (c2 (s2))] . (4)

Below we provide simple examples of recursive preference that may satisfy preference for

early or late resolution of uncertainty depending on the value of the discount factor.

Examples In this section, we compute the utility level at node 0E for the case of early

resolution of uncertainty and that at node 0L for the case of late resolution of uncertainty for

several examples of preferences. Our first example is the expected utility, where I (u) = E [u].

Expected utility is indifferent toward the timing of resolution of uncertainty. The utility

associated with early resolution,

V0 (0E) = u (c̄0) + βE [u (c̄1) + βu (c2 (s1))] = u (c̄0) + βu (c̄1) + β2E [u (c2 (s1))] ,

and that associated with late resolution,

V0 (0L) = u (c̄0) + β {u (c̄1) + βI [u (c2 (s2))]} = u (c̄0) + βu (c̄1) + β2E [u (c2 (s2))] ,

are the same.

Our second example is the multiple-prior expected utility of Gilboa and Schmeidler [20]

and Chen and Epstein [12]. We assume that I (u) = minφ∈Φ E [φu], where Φ is a set of

probability densities. We assume that the I operator defined by Φ is distribution invariant.

That is, for any u and v, if u and v have the same probability distribution under P , then

minφ∈Φ E [φu] = minφ∈Φ E [φv]. The utility for early resolution at node 0E is

V0 (0E) = u (c̄0) +βmin
φ∈Φ

E [φ {u (c̄1) + βu (c2 (s1))}] = u (c̄0) +βu (c̄1) +β2Eφ∈Φ [φu (c2 (s1))] .

The utility associated with later resolution of uncertainty at node 0L can be computed as

V0 (0L) = u (c̄0) + β

{
u (c̄1) + βmin

φ∈Φ
E [u (c2 (s2))]

}
= V0 (0E) ,

where the last equality holds because c2 (s1) and c2 (s2) have the same distribution.
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Our third example is the multiplier robust control preference of Hansen and Sargent

[24]. Here we assume that u : C → R is strictly increasing and I (u) = −θ lnE
[
e−

1
θ
u
]

for

some parameter θ > 0. In the appendix, we show that this choice of the aggregator has

preference for early (late) resolution if β < (>) 1 and is indifferent toward the timing of

resolution of uncertainty if β = 1. To simplify computation, we assume that u (c) = ln (c)

and ln c2 (s) ∼ N (µ, σ2). To calculate the utility associated with early resolution,

V0 (0E) = ln c̄0 + βI [ln c̄1 + β ln c2 (s1)] (5)

= ln c̄0 − βθ lnE
[
e−

1
θ

[ln c̄1+β ln c2(s1)]
]

(6)

= ln c̄0 + β ln c̄1 + β2µ− 1

2θ
β3σ2. (7)

The utility associated with late resolution is

V0 (0L) = ln c̄0 + β ln c̄1 + β2I [ln c2 (s2)] (8)

= ln c̄0 + β ln c̄1 − β2θ lnE
[
e−

1
θ

ln c2(s2)
]

(9)

= ln c̄0 + β ln c̄1 + β2µ− 1

2θ
β2σ2. (10)

Clearly, if β < 1, then V0 (0E) > V0 (0L), and the above specified aggregator has preference

for early resolution. In fact, under the assumption of u (c) = ln c and β < 1, we have

V (t) = ln ct − θβ lnE
[
e−

1
θ
V (t+1)

]
. This is recognized as the Epstein-Zin preference with

unit IES and a risk aversion of 1 + θ. It is well known that the Epstein-Zin preference

has preference for early resolution if risk aversion is higher than the inverse of IES. In our

example, this condition is guaranteed by θ > 0.

If we assume β > 1, then V0 (0E) < V0 (0L), and the resulting preference has preference

for late resolution of uncertainty. The case β > 1 is typically not discussed in the literature,

but as we will see in the following section, the case β > 1 provides a convenient example that

has preference for late resolution of uncertainty and at the same time, satisfies generalized

risk sensitivity.

From a decision theory perspective, Kreps and Porteus [32] note that preference for

early resolution of uncertainty can be motivated either by pure preference or by un-modeled

planning. Epstein, Farhi, and Strzalecki [14] develop a thought experiment and compute

how much the representative agent is willing to pay to resolve all future uncertainty in long-

run risk models. In our setup, as a result of indifference toward the timing of resolution of

uncertainty, an expected utility maximizer and a multiple-prior expected utility maximizer
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are not willing to pay anything in exchange for information that they cannot act upon. Due

to preference for early resolution, an agent with the multiplier robust control preference with

β < 1 is willing to pay a positive amount for information about future consumption. Epstein,

Farhi, and Strzalecki [14] remark that there is no asset-market-based evidence to infer the

consumer’s preference for early resolution of uncertainty. The purpose of this paper is to

provide such evidence.

As shown in Strzalecki [46], general characterizations of property (4) in terms of the

functional form of I can be quite complicated. Directly testing the functional form of I from

asset prices seems to be extremely hard. The asset pricing test we propose in this paper

takes advantage of the notion of generalized risk sensitivity developed in Ai and Bansal [2],

which we briefly review in the following section.

2.2 Generalized risk sensitivity

To discuss the notion of generalized risk sensitivity, we first introduce some terminology. Let

X : (Ω,F , P ) → R and Y : (Ω,F , P ) → R be two random variables. Variable X is said to

first-order stochastically dominate Y if E [φ(X)] ≥ E [φ(X)] whenever φ is increasing, which

we denote as X �FSD Y . X strictly first-order stochastically dominates Y if X �FSD Y and

if E [φ(X)] > E [φ(X)] whenever φ is strictly increasing, which we denote as X �FSD Y .

X is said to second-order stochastically dominate Y if E [φ(X)] ≥ E [φ(X)] whenever φ is

concave, which we denote as X �SSD Y . X strictly second-order stochastically dominates

Y if X �SSD Y and E [φ(X)] > E [φ(X)] whenever φ is strictly concave.3 We denote

strict second-order stochastic dominance as X �SSD Y . In what follows, we will assume

that I is strictly increasing in first-order stochastic dominance. That is, I [X] ≥ I [Y ] if

X �FSD Y , and the inequality is strict if X �FSD Y . This assumption is a requirement of

the monotonicity of the preference.

An intertemporal preference represented by {u, β, I} is said to satisfy generalized risk

sensitivity if I is increasing in second-order stochastic dominance (see (Ai and Bansal [2]));

that is, I [X] ≥ I [Y ] if X �SSD Y . It satisfies strict generalized risk sensitivity if I is

strictly increasing in second-order stochastic dominance. Ai and Bansal [2] demonstrate that

generalized risk sensitivity provides a necessary and sufficient condition for the existence of

announcement premia in representative agent economies.

To illustrate the concept of GRS, we consider the top panel of Figure 1 and interpret the

3For other equivalent definitions of second-order stochastic dominance, see Rothschild and Stiglitz [40].
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event in period 1 that reveals the true value of c2 (s1) as an announcement. The utility of

the agent at time 0 can be computed in two steps:

V0 = u (c̄0) + βI [V1 (s1)] ,

where ∀s1 ∈ Ω, the continuation utility V1 (s1) is computed as

V1 (s1) = u (c̄1) + βu (c2 (s1)) . (11)

We compute the stochastic discount factor that prices the period-1 state-contingent payoff

into period-0 consumption units, denoted SDF (s0, s1). As in standard equilibrium models,

the stochastic discount factor can be constructed as the ratio of marginal utilities. Therefore,

if we interpret V1 = [V1 (1) , V1 (1) , · · ·V1 (n)] as a finite-dimensional vector and denote ∂I[V1]
∂V1(s1)

as the partial derivative of the certainty equivalent with respect to V1 (s1),

SDF (s0, s1) = β

1
µ(s1)

∂I[V1]
∂V1(s1)

u′ (c̄1)

u′ (c̄0)
∝ ∂I [V1]

∂V1 (s1)
,

where in the last step, we suppress the term β u
′(c̄1)
u′(c̄0)

, which does not depend on s1 and does

not affect the risk premium. We have also used the fact that µ (s) = 1
n

does not depend

on s. Clearly, if ∂I[V1]
∂V1(s1)

is a decreasing function of V1 (s1), then any payoff that is positively

correlated with the continuation utility, V1 (s1), will require a positive risk premium at the

announcement.

Formally, we consider an endowment economy in which aggregate consumption is of the

form C = [c̄0, c̄1, c2 (s1)]. We think of period 1 as the macroeconomic announcement period

during which the value of c2 (s1) is revealed. We consider a state-contingent payoff X (s1) and

denote the present value of X (s1) from the perspective of period 0 as P0 (X). We say that

asset X provides an announcement premium if E[X]
P0(X)

> Rf (0), where Rf (0) is the risk-free

rate between period 0 and period 1.

To establish a link between generalized risk sensitivity and the announcement premium,

for any two random variables X and Y , we define X and Y to be comonotone with respect

to each other if ∀s and s′ such that X (s) ·X (s′) 6= 0,

[X (s)−X (s′)] [Y (s)− Y (s′)] ≥ 0, (12)

and define X and Y to be negatively comonotone with respect to each other if (12) holds
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with ≤. Strict comonotonicity is defined similarly with condition (12) holding with strict

inequality. The following theorem is an extension of the theorem of generalized risk sensitivity

in Ai and Bansal [2].

Theorem 1. (Theorem of generalized risk sensitivity) Assuming that both u and I are strictly

increasing and continuously differentiable, the following statements are equivalent:

1. The announcement premium for any asset strictly comonotone with c2 (s1) is strictly

positive.

2. The certainty equivalent functional, I, is strictly increasing in second-order stochastic

dominance.

3. For any continuation utility, V : {Ω,F} → R, the vector of partial derivatives of I with

respect to V ,
{
∂I[V1]
∂V1(s)

}
s=1,2,··· ,n

, is strictly negatively comonotone with {V1 (s)}s=1,2,··· ,n.

The above theorem complements Theorem 2 of Ai and Bansal [2]. The discrete state

setup allows us to establish the equivalence between strict generalized risk sensitivity and a

strictly positive announcement premium, which is not covered by Theorem 2 of Ai and Bansal

[2] but is important for identifying preference for early resolution of uncertainty.4 Below we

discuss the generalized risk sensitivity property of the examples of preferences discussed in

Section 2.1.

Examples The expected utility does not satisfy strict generalized risk sensitivity. Clearly,

if I is the expectation operator, then I [u] = I [v] as long as E [u] = E [v] regardless of the

second-order stochastic dominance between u and v.

The multiple-prior expected utility satisfies generalized risk sensitivity and satisfies

strict generalized risk sensitivity if Φ is not a singleton. In fact, if u �SSD v, then

minφ∈Φ E [φu] ≥ minφ∈Φ E [φv], and the inequality is strict if u �SSD v.5

The multiplier robust control preference satisfies generalized risk sensitivity. Using

the result from Ai and Bansal [2], aggregators of the form I (u) = φ−1 (E [φ (u)]) satisfy

generalized risk sensitivity if φ is concave.6 It follows immediately that the example in the

last section, that is, I (u) = −θ lnE
[
e−

1
θ
u
]
, satisfies generalized risk sensitivity as long as

4The theorem in Ai and Bansal [2] focuses on weak inequalities.
5See Lemma 2 in Wasserman and Kadane [47].
6If u �SSD v, then E [φ (u)] ≥ E [φ (v)]. As a result, φ−1 (E [φ (u)]) ≥ φ−1 (E [φ (v)]) because φ is strictly

monotonic.
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θ > 0. As a result, this utility function may exhibit preference for early or late resolution of

uncertainty, depending on the value of β, but it always satisfies generalized risk sensitivity.

In the rest of the paper, we will restrict our attention to preferences that satisfy generalized

risk sensitivity. The assumption of generalized risk sensitivity is appealing in our setup

for two reasons. First, it is motivated by the empirical fact of positive macroeconomic

announcement premia. Second, it links the level of utility, which is a property of preference,

to marginal utilities, which can be conveniently tested from asset prices. In particular, under

the assumption of GRS, the ranking of the level of utility is exactly the reverse of the ranking

of continuation utility, a property that we exploit in the following sections.

3 An asset pricing test for PER

3.1 A thought experiment

In this section, we extend the three-period model above to construct a thought experiment in

which asset prices can be used to identify preference for early resolution of uncertainty. To do

so, we combine the early resolution of uncertainty case and the late resolution of uncertainty

case in Figure 1 and add a period −1 to construct a four-period model, as illustrated in

Figure 2.

In our four-period model, a general consumption plan is denoted as C =

[c−1, c0 (s0) , c1 (s0, s1) , c2 (s0, s1, s2)]. To identify PER, it is enough to restrict attention

to the class of consumption plans where C =
[
c̄−1, c̄0, c̄1, c2

(
sι(s0)

)]
, where as before,

c2 : (S,Σ, µ) → C is a random variable taking values in the consumption set C, and c̄t

are constants for t = −1, 0, 1. In addition, ι : (S,Σ, µ) → {1, 2} is a random variable that

takes a value of either 1 or 2. As illustrated in the previous example, ι (s0) = 1 represents the

case of early resolution of uncertainty and ι (s0) = 2 represents the case with late resolution

of uncertainty.

As illustrated in Figure 2, early or late resolution is a stochastic outcome to be learned

in period 0. We call period 0 the period of resolution of information quality (ROIQ), which

resolves the informativeness of the upcoming announcement in period 1. The node 0E

represents a situation with early resolution where ι (s0) = 1 and the continuation utility

of the agent, V0 (0E), can be calculated as in equation (2). The node 0L represents a

situation of late resolution where ι (s0) = 2 and V0 (0L) is calculated as in equation (3).

In period −1, before the resolution of information quality, the agent’s utility is calculated

12



Figure 2: Resolution of information quality
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Figure 2 represents our thought experiment of resolution of information quality. The node 0E is where
ι(s0) = 1 and the agent expects the uncertainty about c2(s1) to be resolved in period 1 with an informative
macroeconomic announcement that reveals s1. Node 0L represents the situation in which ι(s0) = 2, and
therefore the upcoming announcement is expected to be uninformative about c2(s2).

as V−1 = u (c̄−1) + βI [V0 (s0)]. In our model, the stochastic discount factor that converts

period 0 payoff into period −1 consumption units can be calculated as the marginal rate of

substitution of consumption between periods 0 and −1:

SDF (s−1, s0) =
β 1

µ(s0)
∂I[V0]
∂V0(s0)

u′ (c̄0)

u′ (c̄−1)
∝ ∂I [V0]

∂V0 (s0)
. (13)

By Theorem 1, under the assumption of generalized risk sensitivity, the ranking of the

level of utility is the inverse of the ranking of the marginal utilities. That is, for any s0 and s′0,

where s0 is more informative than s′0, preference for early resolution implies V (s0) ≥ V (s′0).

Under GRS, this is true if and only if ∂I[V0]
∂V0(s0)

≤ ∂I[V0]

∂V0(s′0)
. Conversely, preference for late

resolution is equivalent to ∂I[V0]
∂V0(s0)

≥ ∂I[V0]

∂V0(s′0)
.

Although the ranking of the level of continuation utility is hard to observe, the ranking of

marginal utilities can be detected from the asset market. Suppose we find a payoff X that is

increasing in informativeness; that is, X (s0) ≥ X (s′0) whenever s0 is more informative than

s′0. Then, under PER, X (s0) will be negatively correlated with SDF (s−1, s0), and therefore

the claim to X will receive a positive risk premium. Conversely, under PLR, X (s0) will be

positively correlated with SDF (s−1, s0), and therefore the claim to X will receive a negative
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risk premium. This is the basic intuition of our asset pricing test.

In our model, we have assumed that consumption in periods −1, 0, and 1 is constant and

does not depend on the signal. This assumption simplifies our analysis and allows us to prove

a theorem that identifies PER from asset prices. Empirically, we interpret the resolution of

uncertainty in period 1 as the arrival of macroeconomic announcements and interpret the

resolution of information quality as the few days before announcements during which the

informativeness of the upcoming announcement becomes known to the public. These events

happen at a daily or even hourly frequency, and it is impossible for aggregate consumption to

respond at this frequency. Our assumption of constant consumption before period 2 captures

this feature of the data, which we use to identify PER.

3.2 An equivalence result

Consider any asset with payoff X : Ω → R. The payoff X is said to be comonotone with

informativeness if for any s0 and s′0, [ι (s0)− ι (s′0)] [X (s0)−X (s′0)] ≤ 0; that is, the payoff is

higher in the case of early resolution (ι (s0) = 1) than in the case of late resolution (ι (s0) = 2).

Asset X is said to require a positive resolution of information quality premium if

E

[
X (s0)

P−1 [X (s0)]

]
> Rf (−1),

where Rf (−1) is the risk-free interest rate from the end of period −1 to period 0. That is, the

ROIQ premium is positive if the strategy of purchasing the asset right before the resolution

of information quality and selling it immediately afterward earns an expected return higher

than the risk-free interest rate.

Theorem 2. Assuming that both u and I are strictly increasing, continuously differentiable,

and satisfy strict GRS, the following statements are equivalent:

1. The premium for any asset comonotone with informativeness is positive (negative)

during the period of ROIQ.

2. The certainty equivalent functional, I, satisfies preference for early (late) resolution of

uncertainty.

Given the discussion in the last section, it is straightforward that under GRS, PER

implies a positive risk premium for payoffs increasing in the informativeness of the upcoming

announcement. The converse of this statement is non-trivial and is the theoretical basis for
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the identification exercise in this paper. If we have a rich set of assets with payoffs increasing

in informativeness, and the risk premium of these assets are positive, then we can safely

conclude that the representative agent prefers early resolution of uncertainty.

Figure 3: Evolution of utility levels and marginal utilities
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Figure 3 shows the evolution of the utility levels and marginal utilities through our thought experiment.
Here, Vt(st) and u2(c2) are utility levels, and MU0(s0) are marginal utilities.

The basic intuition for Theorem 2 can be illustrated using Figure 3, where we mark

the level of utility in period 0 and the marginal utility in the same period. The period-2

utilities are simply u(c2), while those in earlier periods are Vt(st) = u(ct) + βI [Vt+1(st+1)],

constructed using the recursive relation. As we explain in Section 2, preference for early

resolution implies that V0(0E) > V0(0L). The ranking of investors’ level of utility, however,

is typically not observable. Theorem 2 implies that under strict GRS, V0(0E) > V0(0L) is

equivalent to MU0(0E) < MU0(0L), and the ranking of marginal utility can be detected from

asset prices and risk premia. At the same time, if the agent is indifferent toward the timing

of resolution of uncertainty, V0(0E) = V0(0L) and MU0(0E) = MU0(0L). Because marginal

utility is constant in period 0, no asset will receive a risk premium from period −1 to period

0.

Examples We continue with the examples of preferences discussed in Section 2. Under

expected utility, I [V0] =
∑

s0
µ(s0)V (s0) and ∂I[V0]

∂V0(s0)
= 1

µ(s0)
. Using Equation (13),

SDF (s−1, s0) is equalized across s0, and there cannot be any preference for early resolution

premium.
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Under the multiple-prior expected utility, I [V0] =
∑

s0
µ(s0)φ∗(s0)V (s0), where φ∗ is the

minimizing probability density. Because we have already established in Section 2 that the

multiple-prior expected utility is indifferent toward the timing of resolution of uncertainty,

V (s0) does not depend on s0. As a result, any φ ∈ Φ can be used as a minimizing probability.

Therefore, SDF (s−1, s0) is not unique. This is a well-known property for multiple-prior

expected utility: it is a concave function, but the set of sub-gradients may not be a singleton.

As a result, a positive or a negative preference for early resolution premium can both be

consistent with equilibrium.

The multiplier robust control preference is a good example to illustrate the idea of our

asset-pricing-based test for PER because it always satisfies GRS but may or may not satisfy

PER depending on the value of β. Under the multiplier robust control preference, the SDF

can be computed as

SDF (s−1, s0) = β

(
c̄0

c̄−1

)−1
e−

1
θ
V0(s0)

E
[
e−

1
θ
V0(s0)

] . (14)

From the discussion in Section 2.2, generalized risk sensitivity corresponds to θ > 0, in which

case SDF (s−1, s0) is a strictly increasing function of V0(s0), as shown in Equation (14).

As a result, under generalized risk sensitivity, preference for early resolution of uncertainty

(i.e.,V0(0E) > V0(0L)) is equivalent to SDF (s−1, 0E) < SDF (s−1, 0L), and preference

for late resolution of uncertainty (i.e.,V0(0E) < V0(0L)) is equivalent to SDF (s−1, 0E) >

SDF (s−1, 0L). Below we show that option prices can be used to identify the ranking of

SDF (s−1, s0) and therefore investors’ attitude toward the timing of resolution of uncertainty.

An asset pricing test for PER We continue from the above example and assume

that the stock market is a levered claim to aggregate consumption: cφ2 , where φ > 1 is

a leverage parameter. We first derive the stock market price dynamics. Details on the

derivations in this subsection can be found in Appendix B. In period 1, in the case of

early resolution of uncertainty, the value of c2(s1) is known, and the price of the stock

is given by P1(s1) = βc̄1c2(s1)φ. In the case of late resolution, the period-1 price is

P1(s1) = βc̄1e
φ(µ+ 1

2
(φ− 2

θ
)σ2) and does not depend on the value of c2. The stock price in period

0 can be calculated accordingly. At the node where the agent expects early resolution, 0E,

P0(0E) = β2c̄0e
φ(µ+ 1

2
(φ− 2β

θ
)σ2), and at the node where the agent expects late resolution, 0L,

P0(0L) = β2c̄0e
φ(µ+ 1

2
(φ− 2

θ
)σ2).

Note that at node 0E, the upcoming announcement is expected to be informative. Let

Rf (0E) denote the one-period risk-free interest rate from 0E to period 1. It is straightforward
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to see that the announcement premium is positive; that is, E[P1(s1)]
P0(0E)

= βc̄1c2(s1)φ

β2c̄0e
φ(µ+1

2 (φ− 2β
θ

)σ2)
=

c̄1
βc̄0
e
φβ
θ
σ2

= Rf (0E)e
φβ
θ
σ2
> Rf (0E), as long as θ > 0, regardless of the value of β. That is,

regardless of investors’ attitude toward the timing of resolution of uncertainty, as long as

generalized risk sensitivity is satisfied, the announcement premium is positive. We display

the stock market dynamics in Figure 4.

Figure 4: Evolution of prices of consumption and variance claims
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Figure 4 plots the evolution of the prices of the leveraged consumption claim (in black) and the prices of the
claim to its period-1 return variance (in red).

To operationalize Theorem 2, we need a test asset with a payoff increasing in

informativeness. We show that the option-implied variance can serve as a test asset. Let

IV0→1 (s0) denote the variance of a one-period return from node s0 to the following node in

period 1; that is, IV0→1(s0) = V ar [ lnP1 − lnP0| s0]. Here, the subscript 0→ 1 indicates the

maturity of the return and s0 stands for the node at which the asset is traded. Consider an

asset that pays IV0→1(s0) at the end of period 0. Empirically, such a variance claim can be

constructed as a portfolio of options using the formula in Bakshi, Kapadia, and Madan [3].

At node 0E, the variance of a one-period forward-looking return is IV0→1(0E) =

V ar [ lnP1(s1)− lnP0(0E)| 0E] = φ2σ2. At note 0L, because investors anticipate no stochastic

movement of the stock market in period 1, IV0→1(0L) = V ar [ lnP1(s1)− lnP0(0L)| 0L] = 0.
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Then in period −1, the market value of this payoff can be computed as follows:

E [SDF (s−1, s0) · IV0→1(s0)] =
1

2
β

(
c̄0

c̄−1

)−1
e−

1
θ
V0(0E)φ2σ2

E
[
e−

1
θ
V0(s0)

] , (15)

where we assume that early and late resolution of uncertainty both happen with probability
1
2
. Clearly, the payoff of the above variance claim is increasing in informativeness. At node

0E, investors expect that the stock market will respond to the upcoming announcement

in period 1, and the option-implied variance is high. At node 0L investors do not expect

any stock market response to the (uninformative) announcement in the next period, and

the option-implied variance is zero. The variance claim therefore satisfies the condition in

Theorem 2 and can serve as a test asset.

To verify that the risk premium for the above variance claim identifies PER, denote the

return an investor receives by holding this variance claim from period −1 to period 0 as

RV ar(s−1, s0). That is, RV ar(s−1, s0) is the value of IV0→1 (s0) divided by the price computed

in (15). The risk premium on the return of the variance claim can be computed as:

E [RV ar(s−1, s0)]

Rf (−1)
− 1 =

1

2

(
e(1−β) β

2

2θ2
σ2

− 1

)
. (16)

Clearly, the risk premium is positive if and only if β < 1.

The above example illustrates the basic idea of Theorem 2: the risk premium for the

variance claim from period -1 to period 0 is positive if and only if the representative agent

prefers early resolution of uncertainty. The end of period -1 to period 0 is the period of

resolution of information quality. In period -1, investors do not know whether the upcoming

announcement in period 1 will be informative. Therefore, they assign a probability of
1
2

to an informative announcement and a probability of 1
2

to a completely uninformative

announcement. In period 0, at node 0E, early resolution realizes, and the agent expects the

upcoming announcement to be informative. At node 0L, late resolution realizes, and the

announcement in period 1 is expected to be uninformative. In the empirical analyses below,

we map this example to the data to implement an asset-market-based test for PER.
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4 Empirical evidence

4.1 Key elements for identifying PER

To operationalize our thought experiment and use financial market data to test PER,

we use monetary policy announcements made by the FOMC as our primary example of

announcements that reveal macroeconomic uncertainty. In order to test PER, we need to

identify the event of resolution of information quality (ROIQ) in the data and assets with

payoffs increasing in informativeness. Below we summarize the four key elements of our

identification exercise, which serve as a guide for the empirical sections that ensue.

Variations in informativeness First, we establish that the informativeness of

FOMC announcements changes over time. We interpret an FOMC announcement as the

announcement in period 1 in the example in Section 3. The thought experiment discussed

in the last section requires the informativeness of the announcement to be stochastic. More

informative announcements correspond to the case of early resolution and less informative

announcements to the case of late resolution.

To demonstrate the time-varying informativeness of FOMC announcements, we show

that the implied volatility reduction varies substantially across FOMC announcements.

Intuitively, when the announcement is informative, the forward-looking implied volatility

of the S&P 500 index will drop during the announcement, as macroeconomic uncertainty is

resolved. The variation in the implied volatility reduction across FOMC announcements is

therefore evidence of time-varying informativeness. To confirm the above intuition, we show

that i) the implied volatility of the S&P 500 index on average drops significantly over FOMC

announcements, and ii) such reduction shows substantial variation.

Predictability of informativeness Second, we demonstrate that the heterogeneity in

informativeness is perceived by the market and construct a market-price-based measure of

expected informativeness. The thought experiment in Section 3 requires that the market

must be able to distinguish early resolution (node 0E in Figure 2) from late resolution

(node 0L) so that expected asset payoffs can respond to the expected informativeness

of the upcoming announcement. We establish this empirically by showing that market

data successfully predict the amount of implied volatility reduction in the upcoming

announcement. Specifically, we use the ratio of short-term versus long-term implied volatility,

or the inverse slope of the term structure of implied volatility, as the predictor of the implied
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volatility drop. Our inverse slope variable is defined as

Inv Slope =
IV 9

IV 90
, (17)

where IV 9, representing short-term implied stock market volatility, is the CBOE implied

volatility index with 9 days to maturity, and IV 90 is the CBOE implied volatility index with

90 days to maturity and represents long-term implied volatility.

Implied volatility from option prices may be affected by changes in the volatility of

economic fundamentals (such as the volatility of aggregate productivity shocks) or by the

informativeness of macroeconomic news. Variation in the volatility of economic fundamentals

presumably happens at a much lower frequency, and its impact should extend beyond the few

days around FOMC announcements. Therefore, fundamental economic volatility is likely to

affect both short-term and long-term volatility. The inverse slope constructed above allows

us to control for the volatility of economic fundamentals. We show in the next section that

Inv Slope has significant predictive power for the implied volatility reduction on FOMC

announcement days.

Resolution of information quality The third element of our exercise is the

identification of the period of resolution of information quality (ROIQ)—the period during

which the market uncovers the informativeness of the upcoming FOMC announcements. The

key to our identification exercise is the calculation of the risk premium earned by the test

asset during the period of ROIQ. So, we first need to identify this period.

Empirically, we take advantage of the news data from RavenPack Analytics to

demonstrate that the period of ROIQ is roughly five weekdays before FOMC announcements.

We construct a direct measure of market attention to the Fed from the Fed-related news

counts in RavenPack. On these five days, we find a strong, positive relation between

change in inverse slope, which reflects market expectations of the informativeness of the

upcoming announcement, and the attention measure constructed from RavenPack. However,

such positive correlation does not exist in other periods. This procedure identifies the five

days before FOMC announcements as the period of ROIQ because in the period of ROIQ,

investors regularly form expectations about the informativeness of the upcoming FOMC

announcement, and higher expected informativeness feeds into both higher market attention

and a higher inverse slope. Outside the period of ROIQ this correlation does not exist because

there is no reliably detectable change in market expectations about the informativeness of

the upcoming announcement.
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Premium for claims to market volatility Having identified the period of ROIQ,

our final step is to estimate the risk premium earned by assets whose payoff is increasing

in the informativeness of the announcements. We use claims to market volatility with short

maturities. In the context of Figure 2, consider a claim to a stock market return variance

that expires at the end of period 1. At node 0E, the case of early resolution, the upcoming

announcement is expected to be informative, and the market is expected to react to the

announcement. Therefore at node 0E, the expected volatility of the market return over the

announcement is high. In contrast, at node 0L, the case of late resolution, the upcoming

announcement is expected to be uninformative. In this case, there is no news in period 1,

and the expected volatility of the announcement return at node 0L will be low. In fact, it

is zero in this example. Hence, as we have explicitly shown in Section 3.2, a claim to this

period-1 market return variance is a suitable testing asset for the purpose of detecting PER.

Motivated by the above observation, in the data, we use synthetic variance claims with

maturities after the announcements as the test asset. To construct the claim to the stock

market return variance, we follow Bakshi, Kapadia, and Madan [3], who show that under no

arbitrage, the second moment of log security returns under the risk-neutral measure can be

constructed from option prices in the following way:

1

T
ERN [(ln(ST )− ln(St))

2] =

erT

T
(

∫ St

0

2(1− ln(K
St

))

K2
Put[K]dK +

∫ ∞
St

2(1 + ln(K
St

))

K2
Call[K]dK) (18)

Here, ERN [·] is the risk neutral expectation, St is the price of the underlying security at time

t and ST the price at time T where t < T , and Put[K] and Call[K] are the prices of a

put and call option with the underlying security S, strike price K, and expiration T . The

formula expresses the risk-neutral squared log returns as integrals of options across strike

prices. Because the squared mean of returns is orders of magnitude smaller than the mean

of squared returns, Equation (18) practically measures the risk-neutral price of the return

variance.

Empirically, we use the weighted sum of options with different strikes to approximate the

above integral and construct the claims to the aggregate stock market variance. We also

construct the at-the-money straddles as a robustness check. While variance claims closely

align with our theory, straddles are simpler instruments that heavily load on volatility.

This empirical construct is consistent with the example in Section 3.2. As in the example,

a more informative announcement is associated with a higher realized variance upon the

21



announcement. Anticipating such a higher realized variance, the price of the variance claim in

Equation (18) will rise during the period of ROIQ. As a result, the price of this variance claim

is increasing in the informativeness of the upcoming announcement, and the risk premium of

such asset can be used to detect PER.

We empirically estimate the excess return of the above portfolios during the period of

ROIQ. Our Theorem 2 implies that an extra positive (negative) average return during the

period of ROIQ is indicative of investors’ preference for early (late) resolution of uncertainty.

4.2 Resolution of information quality

In this section, we first verify the four elements for the identification of PER we put forth

in the last section. We then provide an estimation of the risk premium for the claim to

the aggregate stock market variance in the period of ROIQ, which, according to Theorem 2,

identifies investors’ attitude toward the timing of resolution of uncertainty.

The option return data we use in our empirical exercises below come from OptionMetrics

and are daily from 1996 to 2019. The implied volatility data we use include the 9-day, 30-day

(VIX), and 90-day implied volatility indices on the S&P 500 from CBOE. The 30-day implied

volatility is the VIX index, which goes back to 1990. The 9-day and 90-day IV indices have

a shorter history going back to 2011 and 2007, respectively. These implied volatility indices

end in 2020.

The 9-day implied volatility index has the shortest maturity. Therefore, the test asset in

Equation (18) constructed using the 9-day implied volatility is less affected by measurement

error induced by the volatility on non-announcement days. It, however, has a much shorter

history than the 30-day implied volatility index. In what follows, we use the reduction in the

30-day implied volatility index as our baseline measure of realized informativeness and use

the 9-day index as an alternative measure for robustness analysis.

Reductions in implied volatility across announcements In support of the

hypothesis that FOMC announcements reduce uncertainty about the aggregate economy,

we first show that on average there is a significant reduction in implied volatility on FOMC

announcement days. The reduction in implied volatility is quite robust across all maturities.

In Figure 5, we plot the level of the log VIX index around FOMC announcement days with

the announcement-day log VIX normalized to zero. We denote the FOMC announcement

day as day 0, the day before the announcement day as day -1, the day after as day 1, and so
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Figure 5: Log VIX around FOMC announcements
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This figure illustrates the average log VIX index around FOMC announcements. We normalize the (end-of-

day) log VIX index to zero for the FOMC announcement day, which is represented by day 0. Other days are

labeled relative to the FOMC announcement day. The decline from 2.2 to 0 over day 0 means that the VIX

index experiences on average a 2.2% decline on FOMC announcement days.

on. All values of the VIX index are end-of-the-day values. Figure 5 shows a clear reduction

in VIX on FOMC announcement days on average. In Table 1, we present a formal regression

analysis for the reduction in the VIX index on announcement days controlling for the day-

of-the-week effect.7 The third column is the reduction in the 30-day implied volatility and

the fourth column is the reduction in the 9-day implied volatility. The reduction in the

VIX index on announcement days is significant with a point estimate of −1.89%. Because

the VIX index corresponds to the average volatility over 30 days, under the assumption that

stock returns are i.i.d., a −1.89% reduction roughly corresponds to a 50% higher volatility on

announcement days relative to non-announcement days.8 The estimate for the 9-day implied

volatility shows a similar pattern.

7As shown in Table 1, the VIX index has a significant day-of-the-week pattern. In particular, changes
in the VIX index are typically positive on Mondays and negative on Wednesdays and Fridays. Because
FOMC announcements are not evenly distributed across days of the week, we control for this effect out of
an abundance of caution.

8Assume that the daily volatility is σ on non-announcement days and (1 + x)σ on announcement

days. The 30-day volatility before announcements is

√
(1 + x)

2
σ2 + 29σ2, and the 30-day volatility after

announcement is
√

30σ2. A log difference of 2% between the above volatility measures translates into a value
of x = 49%.
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Figure 6: Histogram of changes in log VIX index on FOMC announcement days
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This figure plots the histogram of changes in the log VIX index around FOMC announcements. Changes

in the log VIX index are computed as the difference between the log of the VIX index at the end of the

announcement day and that on the day before the announcement day.

Our identification exercise requires that the informativeness of FOMC announcements

be time varying. Here, we provide consistent empirical evidence by demonstrating that the

amount of volatility reduction shows substantial variations across announcements. We plot

the histogram for the changes in the VIX index on FOMC announcement days in Figure 6.

Note the fairly wide range of implied volatility changes across announcements, indicating

that the informativeness of announcements does change over time.

Predictability of informativeness The second element of our identification exercise

is the predictability of informativeness. We establish this by demonstrating that the reduction

in volatility across announcements can be predicted by the inverse slope of the term structure

of implied volatility. To do this, we regress the changes in short-term implied volatility on

the inverse slope of the previous day, an FOMC announcement day dummy, an interaction

between the two terms, and control variables such as the day-of-the-week dummies:

∆ ln IVt = ξ0 +ξ1Inv Slopet−1 +ξ2I
FOMC
t +ξ3Inv Slopet−1 ·IFOMC

t +
5∑
d=1

δdI
DOW
d,t +εt. (19)
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Here, ∆ ln IVt is the one-day change in implied volatility from the end of t − 1 to t,

Inv Slopet−1 is the inverse slope defined in Equation (17) on day t − 1, and IFOMC
t is an

indicator variable that takes the value of 1 if day t is a pre-scheduled FOMC announcement

day. For d = 1, 2, · · · , 5, IDOWd,t is an indicator variable that takes the value of 1 if day t is

the dth day of the week. As explained earlier, we expect short-term volatility to be higher

relative to long-term volatility ahead of informative FOMC announcements because higher

informativeness of announcements, if anticipated by the market, should be associated with

larger reactions of stock market returns with respect to these announcements.

In Table 2, we report several versions of the above regression to demonstrate the

predictability of announcement-day volatility reductions. In column (1), the regression of

the volatility reduction on the inverse slope produces a significant coefficient of −6.57,

indicating that, in general, the inverse slope variable has significant predictive power for

volatility reductions. It is well known that volatility is mean reverting. As shown in column

(2), higher volatility on the previous day is associated with significantly larger volatility

reductions as well. However, whenever the inverse slope variable is included (columns (3),

(4) and (5)), the effect of the level of volatility on the previous day is subsumed. The

regression in column (4) includes only the 77 observations on FOMC announcement days. In

this case, the effect of the inverse slope is much larger in magnitude, although the t-statistic

is much smaller because of a much smaller sample. In column (5), we report the result of

the full regression. Here, Inv Slopet−1 has significant predictive power for implied volatility

reductions in general. More importantly, the coefficient on the interaction term of the FOMC

indicator and Inv Slopet−1 is significantly larger, indicating that the Inv Slopet−1 variable

has extra predictive power on FOMC announcement days. In the last column of the same

table, we report the results of regression (19), where the dependent variable is the reduction

in the 9-day implied volatility. This regression shows a similar pattern with a more negative

point estimate for ξ3. These results indicate that the option market correctly understands

the informativeness of the FOMC announcements ahead of time and expresses its view via

option prices. Anticipating an informative announcement, investors bid up the prices of the

short-horizon options relative to long-horizon ones, creating a large 9-day/90-day implied

volatility ratio before the announcement. In the next section, we investigate over which

periods investors come up with this expected informativeness.

Period of resolution of information quality The third step of our identification

exercise is to identify the period of resolution of information quality. As explained earlier, we

do this by first constructing a time series that measures the market’s attention to the Fed.
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We obtain the number of Fed-related new items from RavenPack Analytics. The measure is

the number of these news items issued on a given day divided by the average number in the

past 30 days. This division step keeps the measure stationary, whereas the number of news

items has an upward trend over time. We refer to this ratio as the news intensity.

Column (1) of Table 3 performs a daily time-series regression of the news intensity

measure on the contemporaneous daily change in the inverse slope. It shows that on average,

Fed-related news intensity does not strongly correlate with the inverse slope measure. As

explained earlier, there is no reason to expect these two measures to positively correlate,

except during the period of ROIQ. Column (2)-(6) perform the same regression on various

subsamples around FOMC announcement days. Column (2)-(3) show that during the five

weekdays before the FOMC announcements, the two measures are significantly positively

correlated. This finding suggests that during these five days, investors regularly form

expectations of the informativeness of the upcoming FOMC announcement (note that this

is the definition of the period of ROIQ), and higher expected informativeness corresponds to

both a higher inverse slope and more news about the Fed. Columns (4)-(6) are placebo tests

showing that there is no positive relation between the two time series on and after FOMC

announcement days. The negative coefficient on FOMC announcement days is because more

informative announcements see a higher reduction in the inverse slope and also receive more

news attention.

4.3 The PER premium

The last step of our identification exercise is the estimation of the premium of the claim

to market volatility constructed in Equation (18). Theorem 2 implies that if investors have

preference for early resolution, this premium must be positive during the period of ROIQ. In

the data, we must also take into account the premium that variance claims normally receive—

both within and outside the period of ROIQ. On an average day, variance claims provide

a valuable hedge against stock market crashes and adverse economic shocks in general. It

is therefore unsurprising that they receive a negative premium on average. Such protection

exists both within and outside the period of ROIQ. Consequently, we should not seek an

outright positive premium on variance claims over the period of ROIQ but rather a positive

premium relative to an average day.

To estimate the sign of this PER premium, we construct synthetic variance claims on

the S&P 500 index using put and call prices from OptionMetrics, the range of which is 1996

to 2019. The claims are constructed according to Equation (18) and are portfolios of out-
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of-money puts and calls. The construction details can be found in the data appendix. We

also construct the at-the-money straddles. With daily returns to these variability-paying

portfolios, we run the following regression:

rτ ,t = βIROIQt · IAftert (τ) + β1I
FOMC
t +

11∑
w=1

γwI
Maturity
w,t (τ) +

5∑
d=1

δdI
DOW
d,t + ετ ,t. (20)

This is a panel regression where rτ ,t is the log return realized on date t on a claim to market

volatility constructed using an options portfolio with maturity τ , IROIQt is an indicator

function that takes the value of 1 if date t is within the period of ROIQ of a pre-scheduled

FOMC announcement, and IAftert (τ) is an indicator function that takes the value of 1 if the

claim expires after the closest announcement in the future as of day t. Because the price of

options that expire before announcements will not be affected by the informativeness of these

announcements, we focus only on options that expire after the announcements. Here, IFOMC
t

is an indicator function that takes the value of 1 if day t is an FOMC announcement day.

We also include several control variables in the above regression: IMaturity
w (τ) is an indicator

function for the maturity of the options, which takes the value of 1 if the option is w weeks

to maturity, for w = 1, 2, · · · , 11. As before, IDOWd,t are indicator variables that control for

the day-of-the-week effect.

We present our regression results in Table 4, where we report the coefficient β, which

captures the average return of the variance claims over the period of ROIQ in excess of their

returns on an average day. Column (1) reports the excess return on the second moment

portfolios and column (2) that on the at-the-money straddles.

What is important for our theory is the coefficient β, which is what Table 4 shows. In

both columns, we observe a significantly positive coefficient. This finding indicates that these

variance-paying portfolios see high excess returns over the period of ROIQ, consistent with

a preference for early resolution of uncertainty.

It is worth mentioning that, first, these portfolios do not have a higher loading on market

excess returns over the period of ROIQ. Table 5 shows, if anything, that the market loading is

somewhat lower. Second, the market return is not higher during the period of ROIQ. In fact,

over this period, the market return is about 8 basis points lower than average. Given these

two empirical patterns, this premium on the variability-paying portfolios cannot be driven by

exposure to the market. Controlling for the market or the Fama-French three factors in the

regression of Table 4 does not appreciably change the coefficient β. This robustness check
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is useful because an important assumption that we make in our analysis is that the period

of ROIQ reveals the informativeness of the upcoming announcement, but not the news in

the announcement. The assumption seems consistent with the data because i) the market

itself does not earn a positive premium over the period of ROIQ, and ii) the premium of

the variance claims over the period of ROIQ is not explained by the market or common risk

factors.

4.4 Additional Results

A simple, commonly used instrument of variance claims is the VIX futures, which pay the

level of the VIX index on the expiration day. While the history of these futures is relatively

short, they are simple instruments that load on volatility. However, notice that because

they pay the VIX level as of the expiration day, a VIX future that expires after an FOMC

announcement is not exposed to the volatility over the announcement, which captures the

informativeness that is at the core of our theory. This is because the VIX index is a forward-

looking index that captures the expected volatility over the 30 days in the future and not

the past. The VIX futures therefore enable us to conduct a valuable placebo test.9

Table 6 repeats the regression from Table 4, except that now the dependent variables are

log returns on VIX futures. The table shows that VIX futures have no significant excess

returns during the period of ROIQ relative to an average day. This test is valuable because

VIX futures are similar to our synthetic variance claims in nature, but the subtle difference of

being forward-looking predicts that our theory should not apply to them. This evidence lends

further support to our theory by showing that the ROIQ premium pattern we see on variance

claims really stems from the exposure to market movements during the announcements.

While the FOMC announcements clearly resolve important systematic risks, there are

relatively few observations along these lines. Savor and Wilson (2016) demonstrate that

individual firms’ earnings announcements also resolve important systematic cash flow risks.

Within the 3-day window centering on the earnings announcement day, a stock earns on

average 25.8 basis points in excess of the market.10 The economic scale of this risk premium

is smaller than that earned by the aggregate market on FOMC announcement days but is

on the same order of magnitude. Furthermore, investors and analysts pay close attention

to these earnings announcements and make forecasts about the earnings outcome ahead of

9We thank Ian Dew-Becker for suggesting such a test in his discussion of this paper.
10The 25.8 basis point mean is weighted by the market value of the stock divided by the total market

values of all stocks in the cross section of the CRSP universe from 1971 to 2021.
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time.11 Additionally, firms’ management exercises considerable discretion in being vague

or precise during earnings calls, much like the Fed does during FOMC announcements. A

period of ROIQ may therefore also exist for these individual earnings announcements. Since

a 9-day implied volatility index for individual stock options cannot be constructed, we cannot

perform an analogous search for the period of ROIQ in this context. We therefore keep using

5 weekdays before the announcement and investigate whether the returns to the variance-

paying portfolios—now on individual stock options—are also abnormally high before the

earnings announcements. Table 7 shows exactly this.12 This piece of evidence lends additional

support to our results.

5 Conclusion

This paper develops a revealed preference theory for preference for the timing of resolution of

uncertainty based on asset pricing data and presents corresponding empirical evidence. Our

main theorem provides an equivalent characterization of the representative agent’s preference

for early resolution of uncertainty in terms of the risk premium of assets realized during the

period of resolution of information quality of macroeconomic announcements. Empirically,

we find support for preference for early resolution of uncertainty based on evidence on the

dynamics of the implied volatility of S&P 500 index options before FOMC announcements.

11A systematic dataset containing these forecasts is the I/B/E/S database, available at Wharton Research
Data Services (WRDS).

12Johnson and So (2018) show that the cost of trading negative news on stocks increases before earnings
announcements and that this leads to an increase in stock prices prior to announcements. This would lead to
elevated call prices and decreased put prices prior to the announcements because they embed long and short
positions in stocks, respectively. However, because our variance-paying portfolios roughly equally weight puts
and calls, these effects should largely cancel out each other.
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Table 1

Changes in VIX index on FOMC announcement days

(1) (2) (3) (4)

∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX9

IDOW1 1.94*** 1.94*** 5.99***

[10.20] [10.20] [8.86]

IDOW2 -0.26 -0.13 0.32

[-1.59] [-0.77] [0.64]

IDOW3 -0.48*** -0.33** -1.06*

[-3.17] [-2.12] [-1.86]

IDOW4 -0.04 -0.03 -0.56

[-0.22] [-0.17] [-1.05]

IDOW5 -1.00*** -1.00*** -3.74***

[-5.91] [-5.90] [-7.01]

IFOMC -2.20*** -1.89*** -2.43*

[-5.02] [-4.18] [-1.71]

N 7,766 7,766 7,766 2,477

R2 0.022 0.003 0.024 0.063

This table reports results from running the following daily time-series regression: ∆ ln IVt =∑5
d=1 δdI

DOW
d,t + ξIFOMC

t + εt, where ∆ ln IVt is the change in lnV IX on day t (in percentage
units), IDOWd,t is the indicator of whether day t is the dth weekday (e.g., IDOW1,t takes the value
of 1 when day t is Monday, and 0 otherwise), and IFOMC

t is the indicator of whether day t
is an FOMC announcement day. The dependent variable in columns (1)-(3) is based on the
30-day VIX, and that in column (4) is based on the 9-day VIX. Data are daily from 1990
to 2020 in columns (1)-(3) and from 2011 to 2020 in column (4). T-statistics are computed
with White standard errors and reported in square brackets.
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Table 2

Predictability of implied volatility reduction on FOMC announcement days

(1) (2) (3) (4) (5) (6)

∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX9

Inv Slopet−1 -6.57*** -5.37*** -15.84* -6.13*** -14.47***

[-4.23] [-2.85] [-1.87] [-3.94] [-6.65]

V IXt−1 -0.11*** -0.04 -0.13

[-4.11] [-1.24] [-0.64]

IFOMC
t 10.87 16.57**

[1.58] [2.08]

Inv Slopet−1 · IFOMC
t -13.42* -19.90**

[-1.73] [-2.21]

DOW Indicators Yes Yes Yes No Yes Yes

Constant No No No Yes No No

N 2477 2477 2477 77 2477 2477

R2 0.035 0.029 0.036 0.139 0.038 0.101

Column (5) of this table reports results from running the following daily time-series regression:
∆ ln IVt = ξ0+ξ1Inv Slopet−1+ξ2I

FOMC
t +ξ3Inv Slopet−1·IFOMC

t +
∑5

d=1 δdI
DOW
d,t +εt, where

∆ ln IVt is the change in log VIX on day t (in percentage units), Inv Slopet−1 is the inverse
slope, or the 9-day VIX divided by the 30-day VIX, on day t− 1, IFOMC

t is the indicator of
whether day t is an FOMC announcement day, and IDOWd,t are indicators of whether day t is
the dth weekday (e.g., IDOW1,t takes the value of 1 when day t is Monday, and 0 otherwise).
Columns (1) to (3) are the regressions with subsets of the independent variables and possibly
adding V IXt−1, which is the VIX level of day t − 1. Column (4) is restricted to FOMC
announcement days only. Column (6) has a different dependent variable, which is the change
in the 9-day VIX. Data are daily from 2011 to 2020. T-statistics are computed with White
standard errors and reported in square brackets.
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Table 3

News intensity and change in inverse slope over the period of ROIQ

News Intensityt

All t [−10,−6] [-5,-1] FOMC day [1,5] [6,10]

∆Inv Slopet -0.242 -0.209 1.076*** -2.132** 0.098 -0.382

[-1.13] [-0.69] [4.09] [-2.02] [0.16] [-1.50]

N 2,453 385 385 77 385 385

Column 1 of this table reports the results of the following time-series regression:
News Intensityt = α + β∆Inv Slopet + εt. Here, News Intensityt is the number of Fed-
related news items on day t divided by the average number of items in the past 30 days.
Inv Slopet is the 9-day VIX divided the by 90-day VIX. Columns (2) and (3) perform the
same regression conditioning on day t being 10 to 6 and 5 to 1 weekdays, inclusive, before
the FOMC announcements. Column (4) is on the FOMC announcement days. Columns (5)
to (6) are 5 weekdays and 6 to 10 weekdays after the FOMC announcements. Data are daily
from 2011 to 2020. T-statistics are computed using White standard errors and reported in
square brackets.
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Table 4

Excess returns of stock index options during the period of ROIQ

(1) (2)

2nd Moment Straddle

ROIQ premium β 1.085** 0.428***

[2.44] [2.25]

N 41,982 41,991

R2 0.101 0.054

This table reports the results of the following panel regression: rτ ,t = βIROIQt · IAftert (τ) +

β1I
FOMC
t +

∑11
w=1 γwI

Maturity
w,t (τ) +

∑5
d=1 δdI

DOW
d,t + ετ ,t, where rτ ,t is the log return of the option

portfolio with expiration τ on day t (in percentage units), IROIQt is an indicator of whether day

t is within the period of ROIQ, IAftert (τ) is an indicator of whether τ is after the next FOMC
announcement as of day t, IFOMC

t indicates whether day t is an FOMC announcement day,
IMaturity
w,t (τ) is an indicator of whether t is within w weeks of τ , and IDOWd,t is an indicator of

whether day t is the dth weekday (e.g., IDOW1,t takes the value of 1 when day t is Monday, and
0 otherwise). Regressions apply equal weight on each trading day (i.e., t). Column (1) includes
portfolios tracking the second moment of the underlying returns, and column (2) includes the at-
the-money straddles. The at-the-money strike price is the one closest to the underlying index level.
Data are daily from 1996 to 2019. T-statistics are computed using clustered standard errors by
trading day and reported in square brackets.
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Table 5

Market loadings of options prior to FOMC announcements

(1) (2)

2nd Moment Straddles

βmkt -7.492*** -1.122***

[-24.18] [-6.09]

βROIQmkt 0.591 0.217

[0.72] [0.50]

N 41,982 41,991

R2 0.246 0.054

This table reports the results of the following panel regression: rτ ,t = βmktmktt + βROIQmkt mktt ·
IROIQt · IAftert (τ) + βIROIQt · IAftert (τ) + β1I

FOMC
t +

∑11
w=1 γwI

Maturity
w,t (τ) +

∑5
d=1 δdI

DOW
d,t + ετ ,t,

where rτ ,t is the log return of the option portfolio with expiration τ on day t (in percentage units),

mktt is the log market return on day t in excess of the risk-free rate, IROIQt is an indicator of whether

day t is within the period of ROIQ, IAftert (τ) is an indicator of whether τ is after the next FOMC
announcement as of day t, IFOMC

t is an indicator of whether day t is an FOMC announcement
day, IMaturity

w,t (τ) is an indicator of whether t is within w weeks of τ , and IDOWd,t is an indicator of

whether day t is the dth weekday (e.g., IDOW1,t takes the value of 1 when day t is Monday, and 0
otherwise). Regressions apply equal weight on each trading day. Column (1) uses portfolios tracking
the second moment of the underlying returns, and column (2) uses at-the-money straddles. Data
are daily from 1996 to 2019. T-statistics are computed using clustered standard errors by trading
day and reported in square brackets.
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Table 6

Excess returns of VIX futures during the period of ROIQ

VIX futures

ROIQ premium β 0.033

[0.24]

N 10,598

R2 0.007

This table reports the results of the following panel regression: rτ ,t = βIROIQt · IAftert (τ) +

β1I
FOMC
t +

∑11
w=1 γwI

Maturity
w,t (τ)+

∑5
d=1 δdI

DOW
d,t +ετ ,t, where rτ ,t is the log return of the VIX future

with expiration τ on day t (in percentage units), IROIQt is an indicator of whether day t is within

the period of ROIQ, IAftert (τ) is an indicator of whether τ is after the next FOMC announcement

as of day t, IFOMC
t indicates whether day t is an FOMC announcement day, IMaturity

w,t (τ) is an

indicator of whether t is within w weeks of τ , and IDOWd,t is an indicator of whether day t is the

dth weekday (e.g., IDOW1,t takes the value of 1 when day t is Monday, and 0 otherwise). Regressions
apply equal weight on each trading day (i.e., t). Data are daily from 2004 to 2019. T-statistics are
computed using clustered standard errors by trading day and reported in square brackets.
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Table 7

Excess returns of stock options prior to earnings announcements

(1) (2)

2nd Moment Straddle

ROIQ premium β 1.276*** 0.773***

[6.62] [9.86]

N 660,519 1,301,995

R2 0.028 0.013

This table reports the results of the following panel regression: rτ ,i,t = βIROIQi,t ·IAfteri,t (τ)+β1I
EA
i,t +∑11

w=1 γwI
Maturity
w,t (τ) +

∑5
d=1 δdI

DOW
d,t + ετ ,t, where rτ ,i,t is the log return of the option portfolio

of stock i with expiration τ on day t (in percentage units), IROIQi,t is an indicator of whether day

t is within the period of ROIQ for stock i, IAfteri,t (τ) is an indicator of whether τ is after the next

earnings announcement as of day t, IEAi,t indicates whether day t is an earnings announcement day

for stock i, IMaturity
w,t (τ) is an indicator of whether t is within w weeks of τ , and IDOWd,t is an indicator

of whether day t is the dth weekday (e.g., IDOW1,t takes the value of 1 when day t is Monday, and
0 otherwise). Regressions apply equal weight on each trading day (i.e. t), and restrict to the S&P
500 universe. Column (1) includes portfolios tracking the second moment of the underlying returns,
and (2) are includes at-the-money straddles. The at-the-money strike price is the one closest to the
underlying index level. Column (1) requires that there are at least 10 instruments in the portfolio
and column (2) requires that the at-the-money strike price is chosen from at least 10 different strike
prices, and is neither the maximum nor the minimum among them. Data are daily from 1996 to
2019. T-statistics are computed using clustered standard errors by trading day and reported in
square brackets.
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Appendix

A Proof for Theorems 1 and 2

Proof for Theorem 1 Because the underlying probability space Ω is finite dimensional,

for any random variable V defined on Ω, we can identify V as a finite dimensional vector

V = [V (1), V (2), · · · , V (n)] and think of the certainty equivalent functional I as a function

from Rn to R. For s = 1, 2, · · · , n, we denote ∂
∂V (s)
I [V ] as the partial derivative of I

with respect to the sth element of V . The stochastic discount factor can be computed from

the marginal rate of substitution of the representative agent. Given the form of the utility

function in (1), the SDF is given by:

SDF (s0, s1) = β
1

µ (s1)

∂I[V1]
∂V1(s1)

u′ (c̄1)

u′ (c̄0)
= λ

∂I [V1]

∂V1 (s1)
, (21)

where λ = β 1
µ(s1)

u′(c̄1)
u′(c̄0)

is a constant that does not depend on s1. Recall that µ (s1) = 1
n

for

all s1 due to the assumption of equal probability.

To prove Theorem 1, we first set up some notation and introduce a useful lemma. Note

that given the SDF , no arbitrage implies that the price of any period-1 payoff X denominated

in period-0 consumption goods is given by P0(X) = E0 [SDF (s0, s1)X(s1)]. The one-period

risk-free rate paid in period 1 is Rf (0) = 1
E0[SDF (s0,s1))]

. The risk-premium for an asset with

payoff X is therefore given by E0

[
X

P0(X)

]
−Rf (0).

Lemma 1. Suppose that I : L (Ω,F , P ) → R is strictly increasing and continuously

differentiable. The following conditions are equivalent:

(i) The risk premium received in period 1 is non-negative for all payoffs that are

comonotone with respective to V1.

(ii) I is non-decreasing in second order stochastic dominance, that is, ∀ V and Ṽ ∈
L (Ω,F , P ), if V second order stochastic dominates Ṽ then I [V ] ≥ I

[
Ṽ
]
.

(iii) For any V ∈ L (Ω,F , P ),[
∂

∂V (s)
I [V ]− ∂

∂V (s′)
I [V ]

]
[V (s)− V (s′)] ≤ 0. (22)
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Proof. Here, we prove the equivalence between statements (i) and (iii). The equivalence

between (ii) and (iii) is based a characterization of Schur concavity that can be found in

Marshall, Arnold, and Olkin [37] or Muller and Stoyan [39].

First, we assume that statement (i) is true and prove (iii) by contradiction. Suppose there

exists V ∈ L (Ω,F , P ) and s, s′ such that

V (s) > V (s′), and
∂

∂V (s)
I [V ] >

∂

∂V (s′)
I [V ] . (23)

Consider the following payoff:

X (i) = V (i) for i = s1, s
′
1; X (i) = 0 otherwise.

Given condition (23), X is strictly positively correlated ∂I[V1]
∂V1(s1)

and, therefore, the SDF defined

in (21). As a result,

P0(X) = E [SDF (s0, s1)X (s1)] > E [SDF (s0, s1)]E [X (s1)] =
E [X (s1)]

Rf (0)
,

That is, the risk premium for X is strictly negative. However, by the definition of

comonotonicity in equation (12), X is comonotone with V1, a contradiction.

Next, we assume that statement (iii) in the lemma is true and prove (i). Take any X

that is comonotone with V1. By condition (22), X is negatively comonotone with respect to
∂I[V1]
∂V1(s1)

and the SDF defined in (21). As a result, X and SDF are negatively correlated and

P0(X) = E [SDF (s0, s1)X (s1)] ≤ E [SDF (s0, s1)]E [X (s1)] =
E [X (s1)]

Rf (0)

as needed.

It is straightforward to show that the strict inequality version of Lemma 1 also holds.

That is, the following under the same assumptions in Lemma 1, the following states are also

equivalent:

(i′) The risk premium received in period 1 is strictly positive for all payoffs that are strictly

comonotone with respective to V1.

(ii′) I is strictly increasing in second order stochastic dominance, that is, ∀ V and

Ṽ ∈ L (Ω,F , P ), if V strictly second order stochastic dominates Ṽ then I [V ] > I
[
Ṽ
]
.
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(iii′) For any V ∈ L (Ω,F , P ),[
∂

∂V (s)
I [V ]− ∂

∂V (s′)
I [V ]

]
[V (s)− V (s′)] ≤ 0. (24)

and the strict inequality holds as long as V (s) 6= V (s′).

To prove Theorem 1, we note that statement 2 in Theorem 1 is equivalent to statement

(ii) in Lemma 1. In addition, statement 3 in Theorem 1 is equivalent to statement (iii) in

Lemma 1. It is enough to show that statement 1 is equivalent to (i). Given that u is a

strictly increasing function, the definition of V1 in equation (11) implies that c2(s1) is strictly

comonotone with V1(s1). This establishes the equivalence between statement 1 in Theorem 1

and statement (i) in Lemma 1. The strict inequality version of the theorem can be similarly

proved by using the strict inequality version of Lemma 1.

Proof for Theorem 2 First, we assume condition 1 in Theorem 1 is true, that is the

risk premium for any asset with payoff comonotone with informativeness is non-negative. To

prove condition 2, it is enough to show that V0(s0) is comonotone with informativeness. We

prove by contradiction. Assume ∃s0 and s′0 such that ι(s0) < ι(s′0) and V0(s0) < V0(s′0).

Consider the following payoff:

X(i) =
1

ι(i)
if i = s0, s

′
0; X(i) = 0 otherwise. (25)

Clearly, X is comonotone with informativeness. By condition 1, the risk premium of X must

be non-negative. Note that X is also strictly negatively comonotone with V0(s0). By Lemma

1, we know that under the assumption of strict GRS, the risk premium for X must be strictly

negative, which is a contradiction.

Next, we assume that condition 2 in Theorem 1 holds and prove condition 1. Note

that preference for early resolution of uncertainty is equivalent to V0(s0) being comonotone

with respect to informativeness. As a result, any payoff that is comonotone with respect to

informativeness is also comonotone with V0(s0). By the assumption of GRS, we know that

the risk premium on this asset must be non-negative. The strict inequality version of this

theorem can be proved similarly.
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B Example
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B.1 Notations

We adopt the following general convention for notation. We use subscripts for the time

period, and write in parenthesis the node at which the quantity or price is calculated. Note

that all nodes in period -1, 0, and 1 in Figure 2, reproduced above, has a unique name. Below

we first set up the notations.

Utility

• Period -1: V−1 is the utility in period −1.

• Period 0: There are two nodes in period 0. The corresponding utilities are V0(0E) and

V0(0L), or V0(s0) in general.

• Period 1: There are three nodes in period 1. The corresponding utilities are V1(1U),

V1(1D), and V1(1), or V1(s1) in general.

SDF We also compute the SDF that prices one-period cash flows. We use the following

convention: SDF (nodet, nodet+1), which prices period t + 1 cash flow into period t

consumption units (note that we are looking at one-period SDFs). To be precise, the notation

(nodet, nodet+1) emphasizes that the SDF computes the price of a cash flow delivered at
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nodet+1 in terms of nodet consumption units. In this notation, nodet+1 must be a node that

immediately follows nodet.

• Pricing period 0 cash flow into period -1 consumption units: SDF (−1, s0). There is

only one node in period −1, and SDF (−1, 0E), SDF (−1, 0L) are the realizations of

the random variable SDF (−1, s0).

• Pricing period 1 cash flow into period 0 consumption units: SDF (0L, s1) and

SDF (0E, s1). There are two nodes in period 0. For 0E, SDF (0E, 1U) and SDF (0E, 1D)

are the two realizations of the random variable SDF (0E, s1). At node 0L, SDF (0L, 1)

is the only possible value, as there is only one following node.

• Pricing period 2 cash flow into period 1 consumption units: SDF (1U , s2), SDF (1D, s2),

and SDF (1, s2). There are three nodes in period 1. At node 1U : SDF (1U , 2U) is the

only possible realization of the SDF, as there is only one following node. At node 1D

it is SDF (1D, 2D), as again there is only one following node. At node 1: SDF (1, 2U)

and SDF (1, 2D) are the two realizations of the random variable SDF (1, s2).

Price Here, we calculate the price of a levered consumption claim paid in period 2: C1+φ
2 .

The prices below refers to the price of this consumption claim evaluated at different nodes.

We continue to adopt the same notation convention for evaluating utilities. That is, we will

use subscripts for the time period, and we will write in parenthesis the node at which the

prices are calculated.

• Period -1: P−1.

• Period 0: P0(0E), P0(0L).

• Period 1: P1(1U), P1(1D), P1(1).

Variance claims We calculate the price of a claim to stock market returns variance. The

stock market refers to the claim to the levered consumption as described above. We use

subscripts for the horizon of the variance, and we write in parenthesis the node at which

the expected variance is calculated. In general, IVt→t+1(st) denotes the st expectation of the

return variance from the end of period t to the end of t+ 1.
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B.2 Utility calculation

In period 1:

V1(1U) = ln c1 + β ln c2

V1(1D) = ln c1 − βθ lnE[e−
1
θ

ln c2 ]

= ln c1 + β(µ− 1

2

1

θ
σ2)

In period 0:

V0(0E) = ln c0 − βθ lnE[e−
1
θ
V1(s1)]

= ln c0 − βθ lnE[e−
1
θ

(ln c1+β ln c2)]

= ln c0 + β ln c1 + β2µ− 1

2

β3

θ
σ2

V0(0L) = ln c0 − βθ lnE[e−
1
θ

lnV1(s1)]

= ln c0 + βV1(1)

= ln c0 + β ln c1 + β2µ− 1

2

β2

θ
σ2

In period -1:

V−1 = ln c−1 − βθ lnE[e−
1
θ
V0(s0)]

B.3 SDF calculation

Pricing period 2 cash flow:

SDF (1U , s2) = β
e−

1
θ

ln c2

E[e−
1
θ

ln c2 ]
(
c2

c1

)−1 = β(
c2

c1

)−1

SDF (1D, s2) = β
e−

1
θ

ln c2

E[e−
1
θ

ln c2 ]
(
c2

c1

)−1 = β(
c2

c1

)−1

SDF (1, s2) = β
e−

1
θ

ln c2

E[e−
1
θ

ln c2 ]
(
c2

c1

)−1
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Pricing period 1 cash flow:

SDF (0E, s1) = β
e−

1
θ
V1(s1)

E[e−
1
θ
V1(s1)]

(
c1

c0

)−1

= β
e−

1
θ
β ln c2

E[e−
1
θ
β ln c2 ]

(
c1

c0

)−1

SDF (0L, 1) = β(
c1

c0

)−1

The risk-free rate from 0 to 1: Rf (0E) = 1
E[SDF (0E ,s1)]

= 1
β
( c1
c0

), Rf (0L) = 1
β
( c1
c0

).

Pricing period 0 cash flow:

SDF (−1, s0) = β
e−

1
θ
V0(s0)

E[e−
1
θ
V0(s0)]

(
c0

c−1

)−1

The risk-free rate from -1 to 0: Rf (−1) = 1
E[SDF (−1,s0)]

= 1
β
( c0
c−1

)

B.4 Asset pricing

Consider an asset that pays C1+φ
2 in the period 2, where φ > 0. We compute its price

throughout the tree.

In period 1:

P1(s1) = E[SDF (s1, s2)c1+φ
2 ]

= β(
c2

c1

)−1c1+φ
2 = βc1c

φ
2

P1(1) = E[SDF (1, s2)c1+φ
2 ]

= βc1e
φµ+ 1

2
(φ2−2φ

θ
)σ2
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In period 0:

P0(0E) = E[SDF (0E, s1)P1(s1)]

= β2c0e
φµ+ 1

2
(φ2−2φβ

θ
)σ2

P0(0L) = SDF (0L, 1)P1(1)

= β2c0e
φµ+ 1

2
(φ2−2φ

θ
)σ2

B.5 Announcement premium

Let’s focus on the returns from 0E to 1E. That is the announcement returns.

RA =
P1(s1)

P0(0E)
=

βc1c
φ
2

β2c0e
φµ+ 1

2
(φ2−2φβ

θ
)σ2

=
1

β

c1

c0

cφ2

eφµ+ 1
2

(φ2−2φβ
θ

)σ2

E[RA] =
1

β

c1

c0

e
φβ
θ
σ2

Note that Rf (0E) = 1
β
c1
c0

. Therefore E[RA]
Rf (0E)

= e
βφ
θ
σ2
> 1 as long as θ > 0.

B.6 Implied variance

Consider the claim to the variance of the return from the end of period 0 to the end of period

1. Since the payoff is known and paid out at the end of period 0, we have:

IV0→1(0E) = V ar[ln
P1(s1)

P0(0E)
]

IV0→1(0L) = V ar[ln
P1(1)

P0(0L)
]

Clearly,

IV0→1(0E) = φ2σ2

IV0→1(0L) = 0
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B.7 PER Premium

Consider the price of IV0→1(s0) at time −1. It is

E[SDF (−1, s0)IV0→1(s0)] = β(
c0

c−1

)−1 1

2

e−
1
θ
V0(0E)φ2σ2

E[e−
1
θ
V0(s0)]

The expected return of this asset is therefore

E[RV ar(s−1, s0)] =
1
2
φ2σ2

IV0→1(−1)
=

1

β
(
c0

c−1

)
E[e−

1
θ
V0(0E)]

e−
1
θ
V0(0E)

Therefore:

E[RV ar(s−1, s0)]

Rf (−1)
=

E[e−
1
θ
V0(0E)]

e−
1
θ
V0(0E)

=
1
2
e
β3

2θ2
σ2

+ 1
2
e
β2

2θ2
σ2

e
β3

2θ2
σ2

> 1 iff β < 1

C Data Appendix

Our VIX data come from CBOE’s website, and option data OptionMetrics. While the VIX

data are straightforward to use, the handling of the option data is more involved. Below we

describe our data construction process in detail.

Starting with a big panel of option prices, we first get the data to underlying-expiration-

strike price-put/call-day level, i.e. for a put or call option on a certain underlying that has

a certain expiration date and strike price we should have one price per day. There are some

cases where there are two prices per day.13 In those cases, we take the average of those two

available prices.

Having a panel at the underlying-expiration-strike price-put/call-day level, we take the

average of bid and ask to get the price of an option. This price can be missing, however, even

for large underlying such as the S&P 500 index. This is because price inquiries can be rare

for deeply in-the-money or out-of-money options. In the event that a price becomes missing

and reappear in a future date, we forward fill the price, assuming a return of zero. If the price

13Such cases are because there are two types of options, e.g. standard monthly options and weekly options,
that happen share the same underlying, expiration, strike price, and put/call and are both outstanding on
the same day.

49



becomes missing forever, we replace the first missing price with zero if the option is a call

and the last available call price is less than the put price of the same strike and expiration,

and with the last available price if the last available call price is greater than or equal to the

put price. Similarly, if the option is a put, we replace the missing price with 0 if its price is

less than the call with the same strike and expiration, and with the last available price if it

is the greater than the put price. This logic is to roughly impute a zero final return if the

option is in the money, and a return of -100% if it is out of money.14 While this operation is

conceptually importantly, our results are robust to alternative imputation methods such as

assuming all final returns are 0.

Having non-missing prices, we construct the synthetic variance claims using these S&P

500 options and compute their returns. We construct these variance claims following the

formulas in Bakshi et. al. (2003), with additional data cleaning procedures taken from the

construction of the VIX index, which are documented on the VIX white paper, available on

CBOE’s website. We also describe our methodology in detail below.

Overall, the portfolio on any given day consists of out-of-money options, which are call

options with strike prices higher than the previous close price of the underlying, and put

options with strike prices lower than that close price. Out-of-money options with zero bid

prices are excluded from the portfolio. Also, those with two consecutive zero bids between

them and the at-the-money strike price are also excluded. For instance, suppose a call with

strike 100 has a non-zero bid price, and on that day the at-the-money strike price is 30.

Let’s say the two strike prices immediately lower than 100 is 95 and 90, and calls with

those two strikes prices both have zero bids. Then the call option with strike price of 100

will be excluded even though it is an out-of-money option with a non-zero bid. These data

exclusion logic is adopted from the CBOE’s methodology in constructing the VIX index.

Additionally, we require that an equal number of puts and calls are included in our variance-

paying portfolio. This is to make sure that the portfolios are balanced between puts and calls

and do not have strong directional delta exposure.

Having the sample we now discuss the weight of each option in the portfolio of variance

swap. Say an option has a strike price of K, and the two nearby strike prices flanking K

for that underlying-expiration-day are K− and K+. Let the underlying’s close price on the

previous trading day be S. For the second moment portfolio, the relative weight on the

option with strike K is (K+−K−)
2

1−log(K/S)
K2 . If the strike price is the highest or the lowest

14In the context of individual stock options, this logic is expensive due to the size of the data. We instead
replace all final missing price with last day’s price, and additionally verify that our results do not change
appreciably if we replace all final missing prices with 0, of if we conditionally replace all missing prices with
0 or last day’s price based on whether last day’s price is greater than a dollar.
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for that underlying-expiration-day, the weight is then (K−K−)
2

1−log(K/S)
K2 or (K+−K)

2
1−log(K/S)

K2 ,

respectively. We then rescale these relative weights so that they add up to 1 for each

underlying-expiration-day. Weighted-returns on these portfolios are then computed. In the

context of S&P 500 option portfolios, these returns are used as is because the data can be

manually examined to make sure that they are free of influential data errors. For individual

stock options such manual examination is not possible. We instead winsorize these returns at

the 0.5 and 99.5 percentiles, and additionally verify that our results are robust to the chosen

percentiles.
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