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1 Introduction

From a traditional Keynesian Phillips-curve viewpoint, there is an established link be-
tween inflation and unemployment. However, during the Great Moderation, the empirical
evidence supporting a connection between real economic activity and inflation diminished
(Stock and Watson, 2020). This shift prompted economists to reconsider the core principles
of New Keynesian models. Recent contributions offer explanations for the weakening of this
empirical relationship (Del Negro et al., 2020, McLeay and Tenreyro, 2020) or modifications
to the New Keynesian model to improve its empirical fit (Gust et al., 2022, Farmer and
Nicolo, 2018, 2019). Other authors abandon the New Keynesian framework and develop
business-cycle theories that abstract from inflation (Beaudry et al., 2020; Basu et al., 2024)
or in which shocks driving the business-cycle are reminiscent of demand shocks but have
no inflationary effects (Beaudry and Portier, 2013; Angeletos et al., 2018).

An important empirical justification for these alternative theoretical frameworks is pro-
vided by Angeletos et al. (2020). In their seminal contribution, the authors follow an
extensive literature that uses vector autoregressions (VARs) as a “model free,” but still
structural approach to the data. Using a VAR applied to post-WWII US data, they iden-
tify a “business-cycle” shock that accounts for the largest share of variation in GDP or
unemployment at business-cycle frequencies. This shock explains most of the cyclical fluc-
tuations in various measures of real activity but has little impact on the business-cycle
variation of inflation. The authors conclude that their findings contradict the New Keyne-
sian framework, which posits a strong link between inflation and economic slack.

As we argue next, the approach of using a VAR to identify shocks in the frequency
domain has some limitations when the goal is to assess the business-cycle relationship
between real and nominal variables over the US post-WWII period. The main reason is
that a standard fixed-coefficient VAR might be unable to correctly disentangle business-
cycle and low-frequency movements in those variables over a relatively short period of
time that features structural breaks (Clarida et al., 2000; Sims and Zha, 2006; Bianchi,
2013; Bianchi and Tlut, 2017). In a VAR, a single set of parameters and shocks need to
accommodate the variation at all frequencies observed over a relatively short period. As
a result, a procedure that uses the estimated parameters to identify variation at business-
cycle frequency might be biased. The problem is particularly severe if one of the variables
of interest shows significant variation at low frequency, as it is the case with inflation.

Ultimately, the identified shock might fail to capture a business-cycle relationship between



the two variables even when such a relation is in fact in the data. To remedy this limitation
of the VAR for the specific question at hand, we adopt a more flexible model that explicitly
extracts business-cycle movements in the variables of interest. Specifically, we argue that a
Trend-Cycle VAR (TC-VAR) is better suited to analyze the business-cycle relation between
inflation and real activity.

We start by presenting simple, but insightful, evidence that serves as motivation for our
analysis. We consider a measure of inflation—the GDP deflator—and two measures of real
economic activity—real GDP per capita and unemployment—over the period between 1960
and 2019. Using a bandpass filter, we extract movements in those measures at frequencies
between 6 and 32 quarters—Ilabeled “business-cycle frequencies”—and between 8 and 30
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years—labeled “medium-cycle frequencies.” At business-cycle frequencies, the correlation
between inflation and real GDP per capita (unemployment) is positive (negative) and
roughly equal to about 0.2 (negative 0.4). The correlations become larger (in absolute
value) when considering the relationship between current inflation and lagged measures of
real economic activity, peaking at about 0.45 (negative 0.45) when considering real GDP
per capita (unemployment) lagged by four (two) quarters. In addition, over the medium
cycle, these correlations can be nearly 50% larger than at business-cycle frequencies. This
evidence is puzzling in light of the existing literature because it suggests that inflation is
related to real activity at business-cycle frequencies, at least to some extent.

Motivated by this analysis, we adopt a more rigorous empirical framework and estimate
a multivariate Trend-Cycle VAR building on the work of Watson (1986), Stock and Watson
(1988, 2007), Villani (2009) and Del Negro et al. (2017). We consider the sample between
1960 and 2019 using seven time series. The first four time series are commonly used in
previous studies: GDP growth, unemployment, the federal funds rate (FFR), and infla-
tion. We then include three additional variables. First, to better capture low-frequency
movements in inflation, we add ten-year-ahead inflation expectations. Agents’ long-term
inflation expectations are informative about the current level of trend inflation, even if
not necessarily good predictors of future inflation. Second, we use one-year-ahead inflation
expectations as a variable that should respond to business cycle variation in inflation and
be less affected by transitory shocks. Third, we include one-year-ahead expectations of
unemployment to inform the estimates of the latent trend of unemployment.

Given that a TC-VAR already separates trends from cycles, we identify the shock that
maximizes the variation of the latent cyclical component of unemployment, and we study

its contribution to the volatility of all cyclical components. A series of important results



emerge from our analysis. First, under our baseline specification, the shock targeting unem-
ployment explains about 70% of the unemployment cycle and close to 40% of the inflation
cycle. This large share suggests that it is important to account for the low-frequency move-
ments in real and nominal variables when studying their cyclical relationship. Second, the
unemployment-identified shock explains about 55% of the inflation expectations cycle. This
result provides further support for the notion that business-cycle movements in inflation are
in fact related to real activity, given that expected inflation is obviously related to actual
inflation, but less affected by high-frequency fluctuations due to transitory shocks. In line
with this reasoning, when we focus on frequencies that correspond to cyclical fluctuations
with duration of at least 1.5 years, the results become stronger. In this case, the shock iden-
tified targeting unemployment explains a higher percentage of the business-cycle volatility
of inflation (44%) and inflation expectations (58%) compared to when all frequencies are
considered. Finally, the results are very similar if we use GDP instead of unemployment to
identify the real-activity shock.

A TC-VAR has four clear advantages relative to a VAR when identifying shocks in the
frequency domain (Uhlig, 2003, Giannone et al., 2019b). First, the inference exercise auto-
matically separates trends and cycles. Second, cyclical variation is controlled by a different
set of parameters with respect to low-frequency variation. Third, we do not need to take a
stance on the typical length of the business cycle. This is important in light of the fact that
expansions have become progressively longer in the sample under consideration. Finally, by
allowing for changes in trend growth, trend inflation, and long-run unemployment, a TC-
VAR accommodates the notion that what matters for cyclical movements in inflation is the
output or unemployment gap, while at the same time nesting a typical VAR specification
if the data do not feature significant variation in the trend component.

A standard VAR cannot easily recover the business-cycle relationship between nominal
and real variables even if we use the same data. To illustrate this point, we estimate a VAR
with two lags, following Angeletos et al. (2020). We explore different priors, starting with
flat priors, followed by optimized Minnesota priors, and finally optimized Minnesota priors
combined with long-run restrictions @ la Giannone et al. (2019a). For each specification,
we identify a max-share shock that targets unemployment at business-cycle frequencies.
As in Angeletos et al. (2020), the contribution of the shock to the variability of inflation at
the same frequencies is very low, ranging from about 13% when using a Minnesota prior to
about 17% when also assuming long-run priors.

We then lay out theoretical arguments for why the two methodological approaches reach



such different conclusions. We demonstrate that a fixed-coefficient VAR estimated over a
period of time that presents low-frequency variation is misspecified, if the goal is to assess
the commovement at business-cycle frequency. The misspecification problem associated
with the use of a VAR to describe a data generating process characterized by both low-
and high-frequency movements cannot be resolved. An econometrician would need infinite
data to reconstruct the VAR representation of a TC-VAR. Even in that case, the reduced-
form innovations that she would recover would map into the innovations affecting the
latent persistent and stationary components as well as the estimation error associated
with the latent components. In reality, these issues are exacerbated by the fact that the
VAR parameters estimated over a finite sample would be distorted because a single set of
parameters needs to account for both trend and cycle fluctuations.

We conclude the paper by providing an illustration of these issues with a simple model of
unemployment and inflation. We generate Monte Carlo simulations of the two series using
a TC-VAR. We then show that if the simulated data contain low-frequency variation in
any of the two series, the VAR fails to recover a relation between the two variables even
when the inflation cycle is exclusively driven by the unemployment cycle. In contrast, if
the model does not feature any relation between output and inflation, a TC-VAR would
correctly uncover the absence of commovement.

Our analysis connects to Sargent and Sims (1977) that shows that macro data can be well
explained by two factors, one of which captures low-frequency movements in nominal vari-
ables. The factor-analysis literature has repeatedly confirmed this key insight (Giannone
et al., 2006; Watson, 2004; Stock and Watson, 2011; Forni et al., 2025). Related branches of
the literature use unobserved component models to measure long-run inflation (Stock and
Watson, 2007; Mertens, 2016) and long-run interest rates (Laubach and Williams, 2003,
2015; Lubik and Matthes, 2015; Del Negro et al., 2017; Del Negro et al., 2019; Holston
et al., 2017; Lewis and Vazquez-Grande, 2019; and Johannsen and Mertens, 2021).

Our results are consistent with the findings of Hazell et al. (2022). These authors show
that a stable relation between real activity and inflation can be recovered from the data
when controlling for long-term inflation expectations. Their evidence is based on a cross-
sectional analysis across US states, while we take a time-series approach. Ascari and
Sbordone (2014) emphasize the importance of controlling for trend inflation when analyzing
the conduct of monetary policy. Our findings also relate to the work of Hall and Kudlyak
(2024) who suggest that the flat Phillips curve is an illusion caused by assuming that natural

unemployment has little or no movement over the business cycle. Ascari and Fosso (2024)



use a methodology similar to the one adopted in this paper to study the role of imported
intermediate goods in explaining the lack of sensitivity of inflation to a business-cycle shock
in the post-Millennial period. In line with our results, they find a stronger link between
inflation and real activity compared to Angeletos et al. (2020). Our paper provides an
explanation to reconcile these differences.

Our findings align with the evidence presented by Stock and Watson (2010) for the US
and Smets (2010) for the Euro Area, indicating that the relationship between inflation
and unemployment is more pronounced during recessions, when the cyclical component is
likely more significant. Accounting for a relevant inflation-output relationship can improve
inflation forecasts as shown in Stock and Watson (2008) for the US and Smets (2010) and
Giannone et al. (2014) for the Euro Area. Similar results hold also in data-rich environments
(Baribura et al., 2015; Crump et al., 2025).

The literature has proposed various approaches to address the long-standing problem of
dealing with trends in the data (Elliott, 1998). Using structural VARs, Fernald (2007)
argues that the introduction of trend breaks in the level of labor productivity yields the ro-
bust empirical finding that hours worked fall on impact following a technology improvement.
Relatedly, Bergholt et al. (2024) discuss how the poor identification of the deterministic
component of VARs can translate into imprecise estimates of historical shock decomposi-
tions. Other recent approaches relay on the Beveridge-Nelson decomposition for the study

of macroeconomic dynamics (Berger et al., 2023; Morley et al., 2024).

2 Motivating evidence

In this section, we provide motivating evidence for our subsequent empirical analysis. We
aim to show that even a simple detrending exercise suggests that inflation and real activity
are related over the business cycle once we control for their trends. The goal of this simple
exercise is to set the stage for the more rigorous multivariate time series analysis that we
pursue in the rest of the paper.

We consider inflation—measured as the log difference in the GDP deflator—and two
measures of real economic activity—the log real GDP per capita and unemployment—over
the period 1955:QQ1-2019:Q4. Using a bandpass filter (Christiano and Fitzgerald, 2003),
we extract the corresponding filtered time series over two frequency bands: the business
cycle—defined as fluctuations between 6 and 32 quarters—and the medium cycle—defined
as fluctuations between 8 and 30 years.

Panel (A) of Figure 1 plots business-cycle fluctuations for inflation and real GDP per



Figure 1: Inflation and real economic activity at business- and medium-cycle frequencies

(A) Business-cycle frequencies (6-32 quarters)
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(B) Medium-cycle frequencies (8-30 years)
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Notes: Inflation is defined as the log difference in the GDP deflator. For the two measures of real economic
activity, we consider the log of real GDP per capita and unemployment. Data sample is from 1955:Q1
to 2019:Q4. Using the bandpass filter proposed by Christiano and Fitzgerald (2003), we extract the
corresponding filtered time series over two frequency bands: the business cycle—defined as the period
between 6 and 32 quarters—and the medium cycle—defined as the period between 8 and 30 years.



capita as well as for inflation and unemployment. Panel (B) of Figure 1 plots the cor-
responding medium-cycle fluctuations. The plots offer two main empirical facts. First,
inflation appears correlated with both measures of real economic activity at both business-
cycle and medium-cycle frequencies. As expected, inflation is positively correlated with real
GDP per capita and negatively correlated with unemployment. Second, movements in both
measures of real economic activity lead changes in the inflation dynamics at business-cycle
and medium-cycle frequencies. High (low) levels of real GDP per capita (unemployment)
are associated with subsequent high levels of inflation, and vice versa.

To formalize the notion that cyclical fluctuations in inflation commove with real activity,
Table 1 reports the correlations between current filtered inflation and current and lagged
filtered real GDP per capita and unemployment at time (¢ — j) for j = {0,2,6,8}. We
consider both business-cycle and medium-cycle frequencies. Over the business cycle, the
positive (negative) correlation of inflation peaks with real GDP per capita (unemployment)
lagged by four (two) quarters at about 0.47 (negative 0.44). Over the medium cycle, the
correlation of inflation with real GDP per capita (unemployment) lagged by eight quarters
peaks at 0.64 (negative 0.54). The results are very similar if instead of the band-pass filter,
we employ the filtering approach advocated by Hamilton (2018).

The empirical evidence presented in this section motivates us to adopt a dynamic, multi-
variate framework that allows to study the relationship between inflation and real economic
activity over the business cycle while controlling for low-frequency variation in those vari-

ables. We discuss the adopted framework in the next section.

3 The Trend-Cycle VAR

In this section, we present the TC-VAR used to model the joint dynamics of GDP, un-
employment, the FFR, and inflation, as well as three expectations measures: the one-year-
ahead unemployment expectations and the one- and ten-year-ahead inflation expectations.

Our baseline specification has four trends and six cycles. Unemployment u; evolves as
Ut = Tyt + Cugts (1)

where 7,; and ¢, are the trend and cyclical components, respectively.
In line with the typical approach employed in structural macroeconomic models, we
assume that real GDP per capita follows a process of the form Y; = Y; exp(c, ), where c,

represents the cyclical movements of real GDP around a stochastic trend Y;. By definition,



Table 1: Correlations of inflation with lagged measures of real economic activity

Business-cycle frequencies (6-32 quarters)

J=8 j=6 j=4 j=2 ;=0
Output 0.15 036 047 042 0.22
Unemployment 0.09 -0.13 -0.34 -0.44 -0.36

Medium-cycle frequencies (8-30 years)

Output 0.64 0.61 054 045 0.33
Unemployment -0.54 -0.50 -0.44 -0.36 -0.25

Notes: Inflation is defined as the log difference in the GDP deflator. For the two measures of real economic
activity, we consider the log level of real GDP per capita and unemployment. Data sample is from 1955:Q1
to 2019:Q4. Using the bandpass filter proposed by Christiano and Fitzgerald (2003), we extract the
corresponding filtered time series over two frequency bands: the business cycle—defined as the period
between 6 and 32 quarters—and the medium cycle—defined as the period between 8 and 30 years. We
provide the correlations between current (filtered) inflation and current and lagged (filtered) levels of real
GDP per capita and unemployment at time (¢ — j) for j = {0, 2,6, 8}.

real GDP per capita growth, g, = In (Y;/Y;_1), can then be expressed as

9e = Tgi + (Cys — Cyi1), (2)

where 7,4 = In (Yt / 57,5_1) is the trend component of GDP growth. It is worth emphasizing
that we model the cycle in real GDP, as opposed to GDP growth, because what matters
for inflation and unemployment dynamics is the output gap, not output growth.
One-year-ahead unemployment expectations share a common trend with realized unem-
ployment, while also following a separate cyclical component
uft =7+ Coot- (3)

Assuming that the Fisher relation holds in the long run, the FFR evolves as

o= (Trs + Tot) + Cpu, (4)

where 7, ; and 7, ; are the trends of the real interest rate and inflation, respectively. Inflation

and the one- and ten-year-ahead inflation expectations are decomposed as



Tt = Trg + Crty (51>

e, ly e

T = Tt + C7r,t7 (52)
e,10 e,10

Y = Trt T 5Ci,t + Nt Y, (5.3)

thus sharing a common trend 7,;. We assume that the cyclical component for expected

€

inflation, ¢ ,,

is shared across the one- and ten-year-ahead inflation expectation surveys.
Because the ten-year inflation expectation 7} 10 is fairly stable over time, we estimate its
loading with the belief that it is less than one: ¢ < 1. This parameterization is consis-
tent with the definitions of one-year-ahead and ten-year-ahead inflation expectations that
measure expected average inflation over the respective horizons. We allow for idiosyncratic
errors in the ten-year-ahead inflation expectations, nfr’;oy.

For ease of exposition, we collect observables and state variables in vectors

/
_ e,ly ely _el0y _ ! _ e e \/
2t = {gtautaut’ a.]lllfa'rrta"-(t7 77Tt’ , Tt = {Tg,t;Tu,taTr,taTTr,t} y Ct = {Cy,tacu,tvCu7tacf,tvc7l',tvc7r7t} y

— €,10y _ / _ e e /
= 777|-,t ) ET,t - {ET,g,ta 57’,u,t7 €T,r,t7 ETJr,t} ) Ec,t - {Ec,y,h Ec,u,ta €cyu7ta Ec,f,t; Ec,ﬂ,tu 50,71-715} .
The dynamics of the trend 7; and cyclical component ¢; are given as

Tt = Ti—1t+Erg, (6.1)

G = @10,5_1 + q)QCt_Q + ...+ q)pct—p + ?T(L;lgﬂt) + 5073. (62)

-~

Ec,t

We allow for correlation in the innovations of the trend e, and cycle €., components:

e ol | =, L,®
&t = ' ~ N ) ’ ’ ) (7)
Eot ol |®.L. &0 +3.

where the matrices X, and X, are conforming positive definite matrices associated with e,

and €., respectively, which are orthogonal to each other; and L is a lower triangular matrix
resulting from the Cholesky decomposition of .. We use the matrix ®, to parameterize the
correlation between cycle and trend innovations. This parameterization does not affect the
identification strategy based on the max-share variance described below, but it facilitates
inference. If we set @, = 0, we obtain a model in which trend and cycle innovations are
uncorrelated, the typical setup studied in the literature. Morley et al. (2003) show that a
necessary condition for the equivalence between the univariate trend-cycle representation

with correlated shocks and an ARIMA process is that p > 2. This condition can be



generalized to the multivariate case and it holds for the specification considered below.
The model can be recast into state-space form. Let n be the number of observables which
can be decomposed into n, trends and n. cycles, where 0 < n, < n and 0 < n, <n.

Measurement equation. The measurement equation can be expressed as

2t = A:pxt + Annt = AT"ET,t + Acxc,t + Anntu (8)

/
_ / r _ _ ) / _ 610y
where x; = {xﬂt,xqt}, Trp = Tty Lot = YCu Gt Cpry [+ T = Tt - The con-

formable matrices A;, A., and A, map the trend, cycles, and observation error into the
observables. The matrix A, is defined as A, = [A.o, ..., Acp—1]. Finally, A, = [A;, A].

State-transition equation. The transition equation for the state x; is given by

Ty = CI):L't,1 + Rt’ft, (9)
or equivalently,
Trt . I 0 Trt—1 + I 0 gT,t
xc,t B 0 (I)c xc,tfl 0 7?'c 5c,t 7
h
where O, Dy ... B, I
I O 0 0
ch - . 5 7?’c -
0 :
0 I O 0

The initial conditions are distributed as o ~ N (7,V;) and z.o ~ N(0,V,) where V; is

an identity matrix and V. is the unconditional variances of z. based on (7).

4 Inference

We describe the data, the priors, and the methodology employed in our empirical analysis.

4.1 Data

We estimate the TC-VAR with tho lags (p = 2) using the following seven quarterly time
series which are expressed at annualized rates: i) the growth rate of real GDP per capita, g;;
ii) unemployment, u,; iii) the median four-quarter-ahead SPF unemployment expectations,
ud', iv) the FFR f; by treating observations at the zero lower bound as missing following
Del Negro et al. (2017); v) inflation m;, measured as the log difference in GDP deflator
(PGDP); vi) the median four-quarter-ahead average PGDP inflation expectations, 70",

from the SPF; vii) a measure of average ten-year-ahead inflation expectations, my 1% which,

10



following Del Negro and Schorfheide (2013), we construct by combining survey expectations
on average ten-year-ahead CPI inflation from the SPF and Blue Chip Economic Indicators
survey, and adjusting it for the historical difference between CPI and PGDP inflation. We
use the period between 1955:Q1 and 1959:Q4 as pre-sample and estimate the TC-VAR over
the period from 1960:Q1 to 2019:Q4. Appendix A provides the definitions, sources, and

transformations for the data series.

4.2 Priors and initial conditions

For the initial conditions and priors, we mainly follow Del Negro et al. (2017). We

consider standard priors for covariance matrices >, and Y. and for the VAR coefficients

p(E;) =IW (ks (kr + 1, +1)5; ), (10.1)
p(Ee) =IW (K, (e +ne +1)E ), (10.2)
P(9E) =N (6,2 ®Q2)1(¢), (10.3)

where ¢ = vec [Py, ..., P,, ®,] collects the vectorized matrices of VAR coefficients, ZW =
(k, (k +n+1)X) corresponds to the inverse Wishart distribution with mode ¥ and & de-
grees of freedom, and Z(¢) is an indicator function equal to 1 if the VAR in (9) is stationary.

The prior means for the initial conditions of the trends 7 are centered on the pre-sample
means of the respective variables. Specifically, the annualized trends for real GDP growth
and unemployment are set to 1% and 5%, respectively, while those for the real interest rate
and inflation are centered at 0.1% and 2.5%.

We center the prior for the covariance matrix of the shocks to the trends 3, on a diagonal
matrix. The priors are such that the standard deviation of the expected change in annual-
ized trend real GDP growth and unemployment is 1% over 10 years. For all the remaining
variables, we assume a 1% standard deviation for the expected change in their trends over
5 years. As in Del Negro et al. (2020), we assume a tight prior by setting , to 100.

The prior for the covariance matrix of the shocks to the cyclical components ¥, is also
centered on a diagonal matrix. We calibrate the standard deviation of the shocks affecting
the stationary components of annualized real GDP per capita and unemployment to 5%
and 1.1%, reflecting their pre-sample standard deviations. The standard deviation of the
shocks affecting the cycles of the nominal interest rate and inflation are also set to their
pre-sample standard deviations of 0.8% and 1.5% respectively. We also need to specify

the priors on the standard deviations of the cyclical component of the one-year-ahead

11



unemployment expectations and of the common cyclical component of the two inflation
expectation measures. As these surveys are unavailable for the pre-sample period, we set
the standard deviations of unemployment and inflation expectations to 1.1% and 1.5%,
respectively, matching the standard deviations of realized unemployment and inflation. As
in Kadiyala and Karlsson (1997) and Giannone et al. (2015), we set k. = n. + 2.

For the prior of the VAR coefficients ¢ in (10.3), we assume a conventional Minnesota
prior, in line with Giannone et al. (2015). Because the cyclical component in (6.2) is
assumed to be stationary, we center the prior for each variable’s own lag on 0, rather
than 1. Recall that we have augmented ¢ = vec|[®4, ..., ®,, ®,] to include @,, the vector
controlling the correlation between innovations to the trend and cycle components. Thus,
the Minnesota prior also implies a prior centered on the case of no-correlation between
cycle and trend innovations, a natural a-priori hypothesis. Three elements comprise §2 in
(10.3): the hyperparameters governing the overall tightness and lag decay of the Minnesota
prior, set to 0.2 and 2, respectively, and the prior standard deviation for ®.. For this last
parameter, we choose a value that implies that a-prior: the correlation in the innovations
falls within +0.1 with 68% probability. Our baseline prior allows for correlation while
limiting parameter uncertainty and overfitting. Looser priors produce stronger but more
uncertain results (see the Online Appendix).

We employ a Gibbs sampling algorithm to draw from the posterior of the TC-VAR
parameters. Details on the Bayesian algorithm and robustness exercises with respect to

the priors are reported in the Online Appendix.

4.3 Identifying shocks that drive business-cycle fluctuations

To identify the business-cycle shock, we adopt the max-share identification strategy pro-
posed by Faust (1998) and Uhlig (2003) and implemented in the frequency domain by
Giannone et al. (2019b), Angeletos et al. (2020), and Basu et al. (2024), among others.
The approach identifies a shock, or a combination of shocks, by finding the linear combi-
nation of the reduced-form residuals that maximizes its contribution to the volatility of a
particular variable over a particular frequency band.

The TC-VAR delivers a decomposition between trends and cycles. Given that the cyclical
components are already cleaned of low-frequency movements, we do not need to remove the
low-frequency variation by using spectral analysis. Instead, we look for the combination of
reduced-form shocks that explains the largest possible share of unemployment or output

cycles, without having to take a stance on which frequencies correspond to the business
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cycle. In our baseline analysis, we ask how much the unemployment-identified or output-
identified shock contributes to the volatility of the cyclical component of the other variables,
with a special focus on inflation and inflation expectations. As a robustness check, we also
ask if the results are sensitive to further removing high-frequency movements in the cycles.
In this second case, we ask how much the unemployment-identified shock contributes to the
volatility of the cyclical component of the other variables at frequencies that correspond
to fluctuations with duration of at least 1.5 years. Thus, in this second methodology we
take into account that the cyclical component of the variables could present some residual
high-frequency movements that are not related to the business cycle.

Formally, in our TC-VAR, the vector of states x; evolves as in (9), where the innovations
of the trend e,; and cycle e.; components are correlated as described in (7). Therefore,

the dynamics of the state vector can be expressed as

Ty = W(L)&ft (]_1)
where (L) = (I — ®L)"'R is an infinite matrix polynomial in the lag operator L. To

extract the dynamics of the cyclical components, we specify the mapping

Ct — szt = quj(L>€t7 (12)
where M, = [0,,.xn, L. xn.]- The residuals £, can then be written as
Er = SPut, (13)

where S is the lower-triangular Cholesky decomposition of the covariance matrix associated
with the innovations &;, the matrix P is an orthonormal matrix such that P’ = P~!, and
u; are i.i.d. “structural” shocks such that F(u,u;) = I.

Combining equations (12) and (13), the cyclical components evolve as
C = [MZA(L>] Put, (].4)

where A(L) = U(L)S is an infinite matrix polynomial. Equation (14) expresses the cycles
as a linear combination of the structural shocks while accounting for the possibility that
shocks to the trends and cycles are correlated. This representation is used to implement
the max-share identification strategy. The objective is to identify a shock by maximizing
its contribution to the volatility of a particular variable over a given frequency band. In our
model, the effect of any structural shock j € {1,...,dim(g;)} on any cyclical component
ke {1,...,n.} at any horizon [ € {0,1,...} corresponds to Mz[,k]Al p, where M¥ selects
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the k—th row of the matrix A; and p denotes the j—th column of the orthonormal matrix
P. Then, the responses of the k—th cyclical component to the j—th structural shock
correspond to the sequence { M z[k]Al p}i2o- This implies that its contribution to the spectral

density of the cyclical component over the frequency band w € |w, @] is

(1]

p Z(k,w o) p, (15)

where

2k, w,®) = / MFA (e=)MFA (e7)
€lw,w]

is the covariance matrix of the overall volatility of the k—th cyclical component over the
specified frequency band and for any vector o, we denote by @ its transpose.

Equation (15) can be written for any structural shock. The shock is therefore identified
by maximizing its contribution to the volatility of the chosen cyclical component. This
identification strategy corresponds to finding the vector p that maximizes (15) subject to
the constraint pp = 1. In the literature, it is well known that such vector is the eigenvector

—_
—

associated to the largest eigenvalue of the matrix Z(k,w,@) that can be obtained by the
estimation of the TC-VAR.

In the context of our TC-VAR, the estimation of our model extracts cycles that are
already cleaned of frequencies other than business cycles. So, when targeting a cyclical
component for the shock identification in (15), we consider all frequencies or remove high
frequencies. Instead, in the case of a VAR, the model does not automatically isolate the
cycle component. We therefore follow Angeletos et al. (2020) and identify the combination

of shocks that explain the largest share of variability at cycles between 6 and 32 quarters.

5 Results

In this section, we discuss the main results of the paper. We first present the decom-
position of the variables in trends and cycles. We then analyze the extent to which the
unemployment-identified shock accounts for the cyclical fluctuations in inflation and infla-

tion expectations, and how it influences both real and nominal variables.

5.1 Estimated latent trends and cycles

Panel (A) of Figure 2 plots the data (orange lines) over the 1960-2019 period as well as
the posterior median of their latent trends (blue lines) and the corresponding 90-percent

posterior-coverage intervals (shaded blue area). Panel (B) of Figure 2 plots the posterior
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Figure 2: Data, trends and cycles
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Notes: The figure plots the data (orange lines) used for the estimation of the TC-VAR over 1960-2019
period as well as the posterior median of their latent trends (blue lines) in panel (A) and latent cycles
(blue lines) in panel (B) and the corresponding 90-percent posterior-coverage intervals (shaded blue areas).
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The results confirm some stylized facts about the US economy that are commonly ac-
cepted. In the 1960s and 1970s the US economy experienced an increase in trend inflation.
This was possibly caused by the attempt of policymakers to counteract a break in pro-
ductivity that manifested itself with an increase in natural unemployment or to partially

accommodate the inflationary pressure resulting from a large increase in spending that oc-
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curred starting from the mid-1960s (Bianchi et al., 2023). These stylized facts are captured
by an increase in the trend components of inflation and unemployment, and a slowdown in
trend growth. Based on the median, trend growth moved from a peak of 3.4% in 1965:Q4,
to a minimum of 1.7% at the end of the 1970s, while the trend component of unemploy-
ment rose from 4.8% in 1965:Q4 to a peak of 7.9% in 1981:Q1, a change in line with the
results presented for natural unemployment in Crump et al. (2019). At the same time,
trend inflation moved from a minimum of 2.4% in 1965:QQ4 to a peak of 6.0% in 1981:Q1.

The appointment of Volcker marked a change in the conduct of monetary policy. Trend
inflation declined, and so did long-term inflation expectations. The inflation trend and
long-term inflation expectations largely coincide, with the corresponding cycle displaying
relatively small fluctuations. Thus, including long-term inflation expectations helps to
separate trend and cycle fluctuations. During the same years, the trend component of
unemployment also declined steadily, while trend growth experienced an acceleration in
the 1990s, consistent with the narrative associated with the productivity improvements
brought forward by the Internet revolution. Finally, trend unemployment rose during the
Great Financial Crisis to levels consistent with estimates of natural unemployment reported
by Hall and Kudlyak (2024) and Crump et al. (2019) and based on the New Keynesian
model of Gali et al. (2011). During that period, trend inflation stayed relatively stable due
to the anchoring of long-term inflation expectations.

The behavior of the cycles reported in Panel (B) suggests a pattern consistent with a
popular view of how the economy behaves over the business cycle. Unemployment increases
during recessions and smoothly declines over time as the economy recovers. Based on a
cursory look at the cycles, inflation seems to behave as the New Keynesian framework
would suggest: Declining during a recession, when unemployment is high, and increasing
during an expansion, when unemployment is low. This is especially visible when focusing
on inflation expectations at the one-year horizon: its cyclical component behaves very much

like inflation, but it is smoother. In what follows, we formalize this hypothesis.

5.2 Inflation and unemployment over the business cycle

We now move to formally study the relation between the real economy and inflation over
the business cycle. We use the estimated TC-VAR to identify the unemployment-cycle
shock using the method described in Subsection 4.3. Specifically, the shock is identified by
maximizing its contribution to the volatility of the cyclical component of unemployment.

As explained above, we consider two cases. In the first case, the shock is chosen to maximize
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Table 2: Variance contributions of unemployment shock

All frequencies (0 — oo quarters)

Unemployment ~ Output  Unemployment  Interest Inflation  Inflation
exp.(ly) rate exp.(ly)
71.6 57.9 68.8 63.9 39.4 54.7

60.9,84.8]  [47.2,71.6]  [56.5,81.1]  [40.1,84.3] [16.9,66.9] [28.3,81.4]

All-but-short-run frequencies (6 — oo quarters)

Unemployment ~ Output  Unemployment  Interest Inflation  Inflation
exp.(ly) rate exp.(ly)
72.4 57.9 72.4 64.9 44 .4 57.8

61.586.2]  [46.5,72.4]  [59.1,86.0]  [40.0,85.8] [19.2,72.7] [30.2,84.9]

Notes: The shock is identified by maximizing its contribution to the volatility of the unemployment cycle.
We consider two cases. In the first case, the shock is chosen to maximize the fraction of the volatility over
all the frequencies of the cycle, while in the second case we exclude frequencies that imply cycles less than
1.5 years. We report the median contribution and the corresponding 68-percent posterior-coverage interval
of the identified shock to the variance of the cycle of all variables over the corresponding frequencies.

the fraction of the volatility over all the frequencies of the cycle, while in the second case
we exclude frequencies that imply cycles less than 1.5 years.

The top panel of Table 2 reports the median and the 68% posterior-coverage interval for
the contribution of the identified shock to the variance of the cycle of all the other variables.
In the second panel, we repeat the exercise by excluding frequencies that imply cycles less
than 1.5 years. Not surprisingly, the shock can explain a large share of the fluctuations
of the unemployment cycle. However, the shock can also explain a sizable fraction of
the cyclical component of inflation. In the baseline scenario, the unemployment-identified
shock can explain nearly 40% of the inflation cycle. When excluding cycles shorter than
1.5 years, the unemployment-identified shock explains more than 44% of inflation cyclical
variability. These are large shares when considering that the unemployment shock explains
around 72%, rather than the entirety, of unemployment cyclical fluctuations.

The results are even stronger when focusing on the cyclical component of inflation expec-
tations: approximately 55% in the baseline scenario—or 58%, in the alternative scenario—
of the business-cycle variability of inflation expectations is explained by the unemployment-
identified shock. Given that the cycle of inflation expectations appears to be a smoother
version of the cycle of realized inflation, this result corroborates the finding that inflation

moves in a way consistent with the New Keynesian framework over the business cycle.
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Table 3: Variance contributions of GDP business-cycle shock

All frequencies (0 — oo quarters)

Unemployment ~ Output  Unemployment  Interest Inflation  Inflation
exp.(ly) rate exp.(ly)
61.9 66.0 58.2 55.3 49.0 58.3

[45.1,77.9]  [57.5,76.7]  [41.0,74.3]  [11.8,91.7] [12.2,78.4] [12.9,89.9]

All-but-short-run frequencies (6 — oo quarters)

Unemployment ~ Output  Unemployment  Interest Inflation  Inflation
exp.(ly) rate exp.(ly)
61.3 66.9 59.8 58.9 54.9 64.1

[44.3,79.1]  [p7.6,77.2]  [42.2,78.0]  [13.2,92.6] [13.9,83.0] [15.7,93.1]

Notes: The shock is identified by maximizing its contribution to the volatility of the cyclical component
of real GDP (in loglevels). We consider two cases. In the first case, the shock is chosen to maximize the
fraction of the volatility over all the frequencies of the cycle, while in the second case we exclude frequencies
that imply cycles less than 1.5 years. We report the median contribution and the corresponding 68-percent
posterior-coverage interval of the identified shock to the variance of the cycle of all variables over the
corresponding frequencies.

When comparing the results of the baseline and alternative cases, we find that the con-
tribution for inflation and inflation expectations goes visibly up when removing the short
cycles. This implies that there is likely to be some residual high-frequency variation in
these variables that it is not related to the business cycle. In addition, the shock explains
about 64% of the volatility of the nominal interest rate cycle over both frequency bands.
Combined with the previous two findings, this result implies that the shock also explains
the volatility of the cyclical component of the real interest rate, defined as the difference
between the FFR and expected inflation.

Finally, the shock explains a large portion of the volatility of the GDP cycle over all
frequencies and also when excluding cycles shorter than 6 quarters. The shock also explains
a share of the volatility of the cyclical component of expected unemployment similar to the
corresponding share for realized unemployment. These findings support the evidence that
the identified shock is the main driver of the business-cycle.

The results are similar when using GDP to identify the business-cycle shock. Table
3 reports the median contribution—and the corresponding 68-percent posterior-coverage
interval—of the shock identified targeting the cycle of real GDP to the variance of the

cycles of all the variables. As before, we consider two cases. In the first case, we identify
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Figure 3: Impulse responses to unemployment shock
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Notes: The figure shows the response to the unemployment-identified shock of the cyclical component of
all the variables over a period of 20 quarters. The figure plots the posterior median (blue lines) and the
corresponding 68-percent posterior-coverage intervals (shaded blue area).

the shock and compute its contributions based on all frequencies of the cycles. In the
second case, we consider frequencies that imply fluctuations of at least 1.5 years. As in the
case of unemployment, the shock can explain a large share of the cyclical fluctuations of
real GDP. In line with the results for the unemployment-identified shock in Table 2, the
shock also explains a sizable fraction of the cyclical component of realized and expected
inflation as well as realized and expected unemployment. Additionally, the contribution of
the output-identified shock for the variability of the realized and expected inflation increases
noticeably when movements at frequencies shorter than 1.5 years are excluded. Given that
the results are similar across the two specifications, in the rest of the paper we focus on
the unemployment-identified shock.

Figure 3 plots the median response—and corresponding 68-percent posterior-coverage
intervals—of each cyclical component to the unemployment-identified shock over a period
of 20 quarters. The resulting interpretation of the unemployment-identified shock is in
line with a demand shock in a canonical New-Keynesian model. Unemployment decreases
about 0.2% percent on impact and subsequently returns to its initial level after about 3
years. The response of one-year-ahead unemployment expectations is quantitatively and
qualitatively similar to that of unemployment. Considering real GDP, the shock causes
an increase by nearly 3% on impact, and its effect gradually vanishes after about 2 years.
When considering the nominal variables, the shock leads to a contemporaneous increase

of about 0.3% and 0.2% in the cyclical components of realized and expected inflation,
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respectively. Both variables slowly decline back to their initial levels over about 5 years.
Finally, the nominal interest rate peaks at nearly 0.7% after about a year and gradually
returns to its initial value thereafter.

To summarize, the responses of the real side of the economy are consistent with the
findings of Angeletos et al. (2020) who point to the presence of a main shock driving the
fluctuations of real economic activity over the business cycle. However, differently from
their findings, the unemployment shock that we identify has significant effects also on the
nominal side of the economy. In the Online Appendix, we consider a series of robustness

checks that show how these results are robust to different model specifications.

6 VARs and the link between inflation and real activity

In this section, we show that the use of a standard VAR, as opposed to a TC-VAR, can
lead to very different conclusions about the link between real activity and inflation over the
business cycle. We check whether this discrepancy disappears when imposing alternative
priors or when considering different variables. We find that while long-run priors help, the
results are still very different from our baseline analysis based on the TC-VAR.

We proceed to estimate a VAR with two lags. Given that a VAR does not automatically
separate trends from cycles, we follow Angeletos et al. (2020) and identify the business-cycle
unemployment shock in the frequency domain using the method described in Subsection
4.3. Specifically, we look for the combination of shocks that explains the largest share
of unemployment fluctuations for cycles between 1.5 and 8 years. We then compute the
contribution of the shock to the volatility of inflation over the same frequencies.

To understand the role of different priors, we consider three specifications. In the first
case, we use a flat prior on all VAR parameters. In the second case, we follow Angeletos
et al. (2020) and use an optimized Minnesota prior in which hyperparameters are optimized
for shrinkage. In the third specification, we combine a long-run prior ¢ la Giannone et al.
(2019a) with a Minnesota prior and jointly optimize them. The cointegrating relationships
that we assume in this case are in line with those of Giannone et al. (2019a) and are
described in the Online Appendix. We allow for separate shrinkage for each active row of
the matrix that captures the cointegrating relationship among the variables.

To understand the role of different datasets, we consider two different sets of variables.
In the first case, we use exactly the same variables used in the TC-VAR, while in the
second case we use the same variables used in Angeletos et al. (2020). The most noticeable

difference is that the dataset used in this paper also includes expectations. Consistently
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Table 4: Shocks targeting u;: VAR analysis

Baseline data Angeletos et al. (2020) data

Unemployment Inflation Unemployment Inflation

Flat prior 72.0 13.6 71.2 10.4
[62.7,81.0] 6.4, 24.3] [63.7,78.8] [4.4,19.1]

Optimized Minnesota prior 72.9 12.8 73.0 7.7
[64.6,80.7] 6.8, 21.6] [66.5,79.4] [3.5,13.3]

Optimize Minnesota 78.1 16.8 91.9 10.3

+ Long-run prior [69.7,85.0] 8.4,26.4] [88.7,94.3] [4.9,16.8]

Notes: We identify the max-share unemployment shock using a VAR based on frequencies corresponding
to cycles between 6 and 32 quarters. Optimizing hyperparameters for the long-run prior involves estimating
the degree of shrinkage for each active row of H individually. The first two columns use the same data
and estimation sample as the baseline TC-VAR. In this case, the VAR is estimated in state-space form to
handle missing observations, such as survey expectations largely absent in the early part of the estimation
sample and nominal interest rates during the zero lower bound period. The third and fourth columns
report results using the same variables of Angeletos et al. (2020).

with the approach used for the TC-VAR, when using the baseline dataset, the VAR is
estimated in state-space form to handle missing observations, such as survey expectations
in the early part of the sample and the FFR during the zero lower bound period.

The first two columns of Table 4 report the contributions of the max-share shock for the
cyclical fluctuations of unemployment and inflation when using the TC-VAR data series.
The last two columns report results using the same series used in Angeletos et al. (2020).
Across the different rows, we assess how the results change based on the priors. The results
indicate that when using a VAR, the contribution of the business-cycle shock to the cyclical
fluctuations of inflation is greatly reduced with respect to what obtained with a TC-VAR.
Comparing the first two columns, with the third and fourth columns, we notice that when
using the same series of Angeletos et al. (2020), the business-cycle shock has a negligible

impact on inflation. The contribution is larger when using the baseline dataset that includes
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Figure 4: Impulse responses to unemployment shock
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Notes: The figure shows the response of all variables to the max-share unemployment shock identified using
a VAR and over frequencies corresponding to cycles between 6 and 32 quarters. The VAR is estimated
using the same data and estimation sample as the baseline TC-VAR, an optimized Minnesota priors as in
Angeletos et al. (2020), and relying on a state-space form to handle missing observations, such as survey
expectations largely absent in the early part of the estimation sample and nominal interest rates during
the zero lower bound period. The figure plots the posterior median (blue lines) and the corresponding
68-percent posterior-coverage intervals (shaded blue area). The figure also reports the posterior median
contributions (dashed black lines) for the baseline TC-VAR and plotted in Figure 3.

expectations, but still lower than when using the TC-VAR.

For both datasets, the results modestly improve when combining the Minnesota priors
with long-run priors, but the contribution to inflation cycles is still around a third of what
obtained with the TC-VAR. The contribution of the business-cycle shocks to the cyclical
fluctuations of inflation is visibly reduced under the Optimized Minnesota priors used in
Angeletos et al. (2020). Figure 4 reports impulse responses for this last case (solid lines).
In line with the results shown in Table 4, a larger response in unemployment corresponds
to a smaller response in inflation compared to the TC-VAR (dashed lines).

In summary, a TC-VAR and a VAR yield significantly different outcomes when exam-
ining whether a shock that largely influences cyclical fluctuations in unemployment also
contributes substantially to cyclical volatility in inflation. As previously discussed, the
TC-VAR has logical advantages for this type of analysis because it is designed to isolate
cyclical fluctuations. Nonetheless, it would be beneficial to demonstrate that the TC-VAR
has good properties for the data at hand beyond the specific research question addressed
in this paper. With this goal in mind, we assess whether the TC-VAR provides better
forecasts for unemployment, inflation, and GDP growth than the VAR.

We recursively estimate the TC-VAR and different VAR specifications varying the sample
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Figure 5: Relative log-determinant differentials across models
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Notes: The figure reports the log-determinant differentials of different models with respect to the baseline
TC-VAR. A negative value favors the baseline TC-VAR over alternative models. Forecasts for inflation,
unemployment, and GDP growth are produced using recursive sample from 1960:Q1-2000:Q2 to 1960:Q1-
2016:Q4. We consider VARs with Minnesota (MN) and Minnesota and Long Run (MN-LR) priors. We
report results for the baseline dataset and an alternative dataset based on Angeletos et al. (2020).

from 1960:Q1-2000:Q2 to 1960:Q1-2016:Q4. We then compute out-of-sample forecasts up
to 12 quarters ahead. To summarize the multivariate forecast performance, we use the
scaled log-determinant differential (LDD) of the forecast error covariance matrix (Doan

et al., 1984; Schorfheide and Song, 2015):
Alt.
)]

where (; represents forecast errors, the factor 2 converts mean-squared errors into root mean

TC-VAR 1 T
) —In ( T 7 Z GGy
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T
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square errors, NV, averages across variables in (;, and the factor 100 converts the differential
into percentages. The metric (16) compares the baseline TC-VAR with alternative models
with 7 = 2000:Q2, T = 2016:Q4, and N, = 3. For a given horizon, a negative value of the
LDD implies that the overall forecasting power of the corresponding model is inferior to
the forecasting power of the TC-VAR.

Figure 5 reports the results. All different VAR specifications produce forecasts that are
overall inferior to the TC-VAR forecasts. Furthermore, the ranking in the forecasting per-
formance of the different VAR specifications aligns with their ability to recover a significant
relation between the unemployment and inflation cycles. The forecasting performance of

the VAR is particularly weak when using the same data used in Angeletos et al. (2020).
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The forecasting performance improves when using the dataset that includes expectations.
However, in all cases, the TC-VAR returns better forecasts at all horizons. The best VAR
specification still implies a 10% loss in forecasting power with respect to the TC-VAR.

7 Reconciling VAR and TC-VAR Results

In this section, we first provide theoretical arguments that explain the large discrep-
ancy between the TC-VAR and VAR results. We then consider a series of Monte Carlo

simulations to elucidate the theoretical arguments.

7.1 Trend-Cycle models and their VAR(c0) representation

In what follows, we show that a fixed-coefficient VAR estimated over a period of time
that presents low-frequency variation is misspecified, if the goal is trying to assess the
commovement at business-cycle frequency. The misspecification problem associated with
the use of a VAR to describe a data generating process characterized by both low- and high-
frequency movements cannot be easily resolved.! This is because the VAR parameters need
to account at the same time for the low-frequency and business-cycle frequency variation
observed in the data with a finite number of observations. Even if an econometrician could
correctly reconstruct the VAR representation of the TC-VAR, the parameter estimates of
the misspecified model would confound low-frequency movements associated with the trend
with those at business-cycle frequencies related to the cycle. Moreover, the reduced-form
innovations would capture not only the innovations to the latent persistent and stationary
components, but also the estimation errors associated with the latent components.

Our goal is to map the state-space representation introduced in Section 3 into a VAR.
In doing so, we follow the approach proposed in Fernandez-Villaverde et al. (2007). We
provide the key steps, while we leave the details for the Online Appendix. For convenience,

we report here the state-space representation of our baseline TC-VAR model:

Zt = A:Exb (171)
Ty = q).Tt_l—‘—Rf:‘t, (172)

where ¢, = Quy, E (ww;) = I, and E (ge;) = X. For all the specifications considered

"'Watson (1986) discusses the equivalence between an unobserved component model and its autoregres-
sive, integrated, moving average (ARIMA) representation, thus pointing to the misspecification problem
characterizing an AR representation of a TC-AR model.
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in our analysis, the overall number of shocks of the TC-VAR is strictly larger than the
number of observables. Equivalently, dim (w;) = (n, + n.) > n = dim (z;). As aresult, the
‘poor man’s invertibility condition’ proposed in Fernandez-Villaverde et al. (2007) cannot be
tested because it requires the number of shocks and observables to coincide. We therefore
seek to find the ‘innovation representation’ of (17).

Because the innovation representation results from the application of the Kalman filter to
the state-space representation, we first ensure the suitability of the filter for our purpose and
more specifically its asymptotic stability and convergence. Clearly, these properties of the
filter depend on the properties of (17) and should not be taken for granted in our setup: In
the transition equation (17.2), the cyclical components are assumed to be stationary, while
trends follow unit-root processes. We follow Anderson and Moore (1979) who suggest to
verify two conditions: i) the pair (®, R(Q) is stabilizable; ii) the pair (®’, A,) is detectable—
or equivalently, the pair (®', A) is stabilizable. Both conditions are satisfied for each draw
from the posterior of the TC-VAR presented in Section 3.

Having verified the suitability of the Kalman filter, we derive the innovation representa-

tion. We first express (17) as

Ti41 — ACL’t + Bwtﬂ, (181)
Zt+1 = Cl’t + DU}t_’_l7 (182)

where A = &, B = RQ, C = A,A, D = A,B and E (ww)) = I. Defining the linear
projection of z; on z' = {Zj};ﬂ as &; = F (ry|2"), the one-step-ahead error associated
with the forecast of 2,11 as Dy 11411, and the term updating the filtered state for the next
period Z; . as BtJertJrl; the application of the Kalman filter to (18) delivers the innovation

representation . R A
P Ty = AR+ Bt (19.1)

2yl = Ci‘t—i-ﬁtHVtH, (19.2)

where zg ~ (Zg,$2) and v; ~ (0,I). Under this representation, the number of shocks and
observables coincide. Because the innovation v, is fundamental for z; by definition, it is
uncorrelated with z;_, and ultimately v,_, for any s > 0.

The innovation representation shows that, with a finite sample {zt}thl , T < 00, it is not
possible to derive a VAR representation because the matrices B, and D, depend on time ¢.
As a result, we consider the limit case for T" approaching infinity. Because the asymptotic

stability and convergence of the Kalman filter hold, the matrices B, and D, also converge
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to their time-invariant counterparts B and D. We then derive the VAR(co) representation

o0
241 = Z C (A — ED_IC)S BD 'z, + ﬁvt+1. (20)
5=0

Equation (20) leads us to three significant conclusions. First, the state-space representa-
tion of the TC-VAR in (17) maps into the infinite-order VAR representation in (20) under
the assumption that infinite data are available. As a result, a finite-order VAR with finite
data cannot capture the dynamics described by the decomposition of the observables z;
into trends and cycles. Second, even if infinite data were available, equation (20) clarifies
that estimates of the autoregressive parameters associated with the VAR(co) representa-
tion confound movements of z; 1 that are driven by both the trend and cycle. Equivalently,
the VAR(00) representation cannot disentangle movements of z;,; at low frequencies from
those at cyclical frequencies. Finally, as shown in Fernandez-Villaverde et al. (2007), the in-
novations associated with the VAR (o0) representation, Du,,1, capture not only the shocks
to the latent trends and cycles, Dw;.1, but also the error associated with the estimate of
those latent components, C' (z; — ;). In the Online Appendix, we provide an analytical

example based on Stock and Watson (2007) to further illustrate these points.
These results are not meant to establish the unconditional superiority of a TC-VAR over
a VAR. Over the past four decades, economists have used VARs as extremely flexible econo-
metric models capable of uncovering a variety of enlightening empirical results. However,
for the specific question of assessing the strength of the relation between inflation and real

activity over the business cycle, a TC-VAR appears to be a more effective tool.

7.2 Monte Carlo simulations of a bivariate TC-VAR

To illustrate the implications of the theoretical results of Subsection 7.1, let us assume
that the data generating process for unemployment and inflation, z; = {u;, 7}, is described
by the measurement equation z; = 73 + ¢; and the transition equations:

Tt = Ti—1+Erg, (21.1)
G = q)lct—l + Ec,ty (212)

where 7, = {Tu,ta Tw,t}ly G = {Cu,tu Cw,t}/a Ert = {57,u,t7 6T,7r,t}, and Eet = {€c,u,t7 €c,7r,t}/~ In this

example, we assume that (21.2) is
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implying that, while the cyclical component of unemployment only depends on its lag,
the cyclical component of inflation depends on its lag as well as on the lagged cyclical

component of unemployment. We assume that the shocks are #id:

T 0 27— 0 T.U O Cc,u 0
€ = e ~N ) , U= o ;o Y= 7e .
Ecit 0 0 . 0 o, 0 ocr

Within this framework, we consider four cases of interest. In the first case, unemploy-

ment does not feature low-frequency variation and it is only driven by its business-cycle
movements, while inflation also features changes in the trend. We consider different degrees
of low-frequency variation for inflation, while always maintaining the assumption that its
cycle is only driven by the unemployment cycle. Specifically, for unemployment, we set
the autoregressive parameter p,, to 0.95, normalize the standard deviation of the shock
to the cycle 0., to 1, and turn off the shocks to its trend (o,,=0). For inflation, we
assume prr = 0, K = 1, and 0., = 0. We then consider three values for the standard
deviation of the shock to the inflation trend (o, ,). Relative to the standard deviation of
the unemployment-cycle shock, the standard deviation of the inflation trend shock is one
order of magnitude smaller (o, = 0.1), equivalent (o, =1) or twice as large (o, ,=2).
For each calibration, we produce long Monte Carlo simulations that we use to fit a VAR,
identify the shock targeting unemployment at business-cycle frequencies, and compute the
median contribution of the identified shock to the variance of both series over the same
frequencies.? Table 5 reports the median and 68% intervals of the median contributions of
the identified shock. As expected, the identified shock fully explains the cyclical movements
of unemployment regardless of the chosen calibration. However, the explanatory power of
the unemployment-identified shock for inflation varies with the extent of low-frequency
fluctuations in inflation. The higher the low-frequency variation, the lower the degree to
which the unemployment-identified shock explains business-cycle movements in inflation.
This conclusion holds even with long data samples and in presence of strong assumptions

about the cyclical relationship between unemployment and inflation. In line with our

2We generate 500 Monte Carlo simulation of 50,000 observations of which we keep the last 1,000.
We choose the lags with the lowest Bayesian Information Criterion (BIC), use a Minnesota prior as in
Angeletos et al. (2020), and keep the last 1,000 of 50,000 draws to identify the shock.
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Table 5: Variance contribution of unemployment shock (data simulated with o, = 0)

Orn Unemployment  Inflation
0.1 100.0 98.8
[100.0,100.0]  [98.7,98.9]
1 100.0 17.9
[100.0,100.0]  [15.3,20.4]
2 100.0 4.5

[100.0,100.0]  [3.3,6.1]

Notes: The shock is identified by maximizing its contribution to the volatility of unemployment over
business-cycle frequencies (6-32 quarters). We report the median and the corresponding 68-percent interval
of the median contributions of the shock to the variance of all variables over the same frequencies. To
simulate the data, we use the following calibrations. For unemployment, we set p,, = 0.95, 0., = 1 and
07, = 0. For inflation, we set prr =0, Kk =1, and o, r =0 and o, = {0.1,1,2}.

results above, the identification of the shock at business-cycle frequencies does not succeed
in extracting the cyclical relationship between unemployment and inflation because the
fixed-coefficient VAR fails to separate cycle and trend innovations in inflation.

The results of the other three cases are briefly presented here, while we discuss the details
in the Online Appendix. In the second exercise, we introduce low-frequency movements
in unemployment, while inflation only follows the unemployment cycle. In the third case,
the underlying true data generating process features trends in both inflation and unem-
ployment. The results for these two cases confirm the importance of controlling for low-
frequency movements in both inflation and unemployment to appropriately extract their
business-cycle relationship. In the fourth and last case, unemployment and inflation cycles
are assumed to be unrelated, and we ask whether the TC-VAR can correctly recover the
truth. To this end, we simulate a model with independent persistent processes for inflation
and unemployment and then fit the TC-VAR on the simulated data. We find that a bi-
variate TC-VAR correctly recovers the disconnect between the two simulated series. Thus,
the fact that the model has the flexibility of separating trends from cycles does not mean

that it would automatically try to recover commovement between the two cycles.

8 Conclusions

In this paper, we adopt a TC-VAR to study the relation between inflation and real activity
over the business cycle. A TC-VAR has the virtue of removing low-frequency movements

in inflation and real activity that can contaminate inference when using a fixed-coefficient
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VAR. We show that at business-cycle frequencies, fluctuations of inflation are in fact related
to movements in real activity. We explain why evidence based on VARs can be misleading.
We see three directions for future research: first, to investigate the drivers of low-frequency
movements in the macroeconomy; second, to allow for the possibility of multiple shocks at
business-cycle frequencies to separate demand-driven and supply-driven fluctuations; third,
to apply the same methods to study the cyclical behavior of other key macroeconomic
variables that feature trends, such as the employment-to-population ratio (Fukui et al.,
2023) and the share of employment in middle-skilled jobs (Jaimovich and Siu, 2020).

The literature has proposed alternative ways to control for changes in the statistical
properties of macroeconomic variables. A popular approach involves the use of models
with smoothly time-varying parameters (Cogley et al., 2010; Gali and Gambetti, 2009;
Debortoli et al., 2020). We opt for a time-invariant TC-VAR because it is well-suited to
separating trends and cycles and conducting a max-share analysis of cyclical fluctuations. A
natural extension would allow for time-varying volatility (Stock and Watson, 2007; Gali and
Gambetti, 2009, Debortoli et al., 2020; Johannsen and Mertens, 2021). Such an extension
would make the application of the max-share approach more subtle, as the covariance
structure would change over time. The max-share could be computed under an “anticipated
utility assumption” in which future parameter instability is disregarded. Alternatively,
parameter instability could be modeled with regime changes (Sims and Zha, 2006; Bianchi,
2013; Bianchi and Ilut, 2017). In this case, the spectrum could be calculated taking into
account the possibility of regime changes (Bianchi, 2016). We regard this as a promising

direction for future research.
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A Data

The following data series are from the Federal Reserve Economic Database (FRED) main-
tained by the Federal Reserve Bank of St. Louis:

e Real GDP per capita, A939RX0Q048SBEA, quarterly frequency. We transform the
series by taking quarterly growth rates at annual rate and express these rates in

percentages.

e Unemployment rate, UNRATE, monthly frequency. We transform the series by taking

quarterly averages.

e Inflation, GDPDEF, quarterly frequency. We transform the series for the GDP price
index by taking quarterly growth rates at annual rate and express these rates in

percentages.

e Effective federal funds rate, FEDFUNDS, monthly frequency. Because the series is

already expressed at annual rate, we take quarterly averages.

The following data series are available from the Real-Time Data Research Center main-
tained by the Federal Reserve Bank of Philadelphia:®

e One-year-ahead inflation expectations, INFPGDP1YR, quarterly frequency. The se-
ries corresponds to the median forecast for one-year-ahead annual average inflation
measured by the GDP price index. The series starts in 1970:Q2.

e Ten-year-ahead inflation expectations. We follow Del Negro and Schorfheide (2013)
to construct this time series. Specifically, we combine longer-run inflation expec-
tations from the SPF and the Blue Chip Economic Indicators survey. We use the
ten-year-ahead Consumer Price Index (CPI) inflation expectations from the Blue
Chip survey—from 1979:Q4 to 1991:QQ3 and available twice a year—and those from
the SPF (INFCPI10YR)—available each quarter starting from 1991:Q4. To com-
bine the measures, we subtract from the ten-year-ahead CPI inflation expectations
the historical average difference between CPI and GDP annualized inflation over the

estimation period.

3The data may contain missing observations. More details are available at the webpage:
https://www.philadelphiafed.org/surveys-and-data /real-time-data-research /inflation-forecasts.



e One-year-ahead unemployment expectations, UNEMPG6 | quarterly frequency. The
series corresponds to the median forecast for one-year-ahead unemployment. The
series starts in 1968:Q4.
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