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1 Introduction

According to the FDIC, deposits account for 83% of U.S. banks’ balance sheets at the

end of 2021. Time deposits with limited maturities account for only 6% of all deposits.

The remaining deposits are non-maturing: they have no explicit maturity date and

are typically not withdrawn for extended periods. Because these deposits can be

withdrawn at any time, their maturity varies with bank risk and market conditions.

In this paper, we bring to center stage this feature of bank liabilities and develop

a dynamic model of banks with endogenous deposit maturity. Banks create liquidity

through issuing deposits and are exposed to the risk of default. Depositors withdraw

from their accounts optimally by trading off between current and future risk-adjusted

liquidity benefits. We highlight the first-order effects the endogenous deposit maturity

has on bank dynamics.

In typical macro-finance banking models, deposits are modelled as one-period

debt. As such, when banks issue new deposits, there is no outstanding deposits that

can be diluted. With long-term debt, when new debt is issued, borrowers do not

internalize the reduction in value of the outstanding debt. This gives rise to debt

dilution. Recent studies have shown that dilution affects debt dynamics in major

ways (Gomes, Jermann and Schmid, 2016; Admati, DeMarzo, Hellwig and Pfleiderer,

2018).

In our model, there are frictional costs that prevent deposits from being with-

drawn and repriced every period. Depositors face liquidity shocks and they withdraw

only if the liquidity value net of withdrawal costs exceeds the expected future liq-

uidity benefit of the deposit. This converts redeemable deposits into long-term debt

with endogenous maturity, and thus exposes deposits to time-varying dilution. Banks

cannot credibly commit to not dilute depositors in the future. We show that bank

dynamics are affected by time-varying dilution in significant ways through the lens

of banks’ responses to interest rate shocks. Overall, our analysis suggests that ac-

counting for endogenous deposit withdrawals is important for modeling banks and

studying monetary policy transmission.

First, we find that an interest rate cut generates an initial reduction in bank

default risk but is followed by an extended period of significantly higher default
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risk and higher leverage. Endogenous maturity is key for such boom-bust dynamics.

Following a rate reduction, future liquidity benefits of deposits become more valuable.

Deposit withdrawals decline and lengthen the maturity, which gives rise to stronger

debt dilution incentives. Banks issue new deposits and drive up the subsequent default

risk.

A second finding is that such a delayed bust is more pronounced in a low interest

environment than in a high interest environment. In a low interest environment,

future liquidity benefits of deposits are large and deposit withdrawals are less sensitive

to marginal variations in banks’ default risk. As a result, when absorbing new deposits

and driving up the default risk, banks are less worried about existing depositors

pulling out their money. This means deposit dilution is less disciplined in a low

interest environment. Banks in this case would like to dilute more aggressively the

additional unwithdrawn deposits created by an interest rate cut, relative to banks in

a high interest environment.

It is important to notice that the key mechanism in the model—deposit dilution—

does not vanish with the presence of deposit insurance. The FDIC estimates 53.3%

of US bank deposits to be insured at the end of 2021. We extend our model to

include both uninsured and insured deposits. Issuing insured deposits does not dilute

the value of legacy insured depositors who are protected by the deposit insurance

against default. However, issuing insured deposits can dilute the value of uninsured

depositors because banks’ default decisions are also affected by the amount of insured

deposits. We show that giving banks the choice to substitute into insured deposits

can exacerbate the dilution of uninsured deposits and in turn amplify the increase in

bank risk following an interest rate cut.

Literature—Our paper contributes to the literature on dynamically modeling

banks. In particular, we study bank deposits with endogenous maturity and when

dilution is possible. Our work is related to several research areas.

Since the pioneering work by Farmer (1984), Williamson (1987), and Bernanke

and Gertler (1989), a large literature has emerged to study the macroeconomic im-

plications of financial markets and institutions, i.e. banks.1 While many papers in

1Recent work using macro-banking models for policy analyses includes e.g., Gertler and Karadi
(2011), Angeloni and Faia (2013), Gertler and Kiyotaki (2015), Davydiuk (2017), Brunnermeier
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the literature follow a tradition of modeling lending-side frictions, our focus is on the

liability side. Van den Heuvel (2008) and Begenau (2020) model the liquidity value

of bank liabilities for households through a deposit-in-utility setup. In more micro-

founded environments, Williamson (2012) highlights how bank liabilities facilitate

transactions, and Quadrini (2017) highlights how they provide insurance. Begenau

and Landvoigt (2020) propose a model where bank and shadow-bank liabilities pro-

vide different liquidity values. Egan, Hortaçsu and Matvos (2017) estimate a model

where banks compete for insured and uninsured deposits. Different from these pa-

pers, we model explicitly deposit withdrawals and our analysis highlights long-term

debt subject to dilution.

There are several studies that have emphasized the rich dynamics of long-term cor-

porate debt with dilution, for instance, Gomes, Jermann and Schmid (2016), Crouzet

(2017), Admati, DeMarzo, Hellwig and Pfleider (2018), Demarzo and He (2021),

Malenko and Tsoy (2021), and Jungherr and Schott (2022). Different from these, our

model features endogenous maturity. Xiang (2023) shows how covenant violations

and subsequent debt restructuring generate endogenous debt maturity. In our paper,

maturity is driven by deposit withdrawals, and how depositors respond to interest

rate shocks is key to our results.

Dilution has been studied in the sovereign debt literature, for example Hatchondo

and Martinez (2009), Arellano and Ramanarayanan (2012), Chatterjee and Eyigungor

(2012), Aguiar, Amador, Hopenhayn and Werning (2019), Bocola and Dovis (2019).

The problem of a sovereign differs in a number of ways from the problem of a bank.

One key difference is that a bank in our model can issue equity, but a sovereign does

not have this option. Another difference is that bank debt in our model generates

direct service flows, for sovereigns debt serves only as an instrument for intertemporal

substitution.

The liability-side theory where banks engage in maturity transformation by of-

fering the option to withdraw deposits early is central to a large finance literature

building on Diamond and Dybvig (1983). In this approach, a sequential service con-

and Koby (2018), Mendicino, Nikolov, Suarez, and Supera (2018), Corbae and D’Erasmo (2019),
Malherbe (2020), Porcellacchia (2020), Elenev, Landvoigt and Van Nieuwerburgh (2021), Bianchi
and Bigio (2022), and Xiang (2022). In a companion paper, we apply the framework developed in
this paper to study bank capital requirements (Jermann and Xiang, 2023).

3



straint can lead to bank runs. Instead, our model features debt dilution. Models

have mostly abstracted from time-varying maturity. Exceptions are several papers

interested in the valuation of non-maturing deposits from a bank’s perspective where

maturity is exogenously specified, including Hutchison and Pennacchi (1996), Jarrow

and van Deventer (1998), Nyström (2008) and Wolff (2000). Some recent macro-

finance studies also emphasize the long-term nature of bank deposits. For instance,

Bolton, Li, Wang and Yang (2020) present a model where banks have limited control

over deposit inflows, and Drechsler, Savov and Schnabl (2021) present empirical ev-

idence suggesting that bank franchise value confers long duration to bank deposits.

Different from these, we model the dilution problem associated with long-term debt.

The paper proceeds as follows. Section 2 presents our model for non-maturing

deposits and studies banks’ responses to interest rate shocks. Section 3 considers

extensions with insured deposits and when bank asset profitability comoves with

interest rates. Section 4 discusses our model ingredients and empirical implications.

Section 5 concludes.

2 Non-maturing deposits and interest rate shocks

In this section, we present our model for non-maturing deposits and study the impact

of interest rate shocks on bank dynamics. The model is presented in Section 2.1,

followed by an illustration of the time-varying dilution mechanism in Section 2.2.

Results about interest rate shocks are in Section 2.3.

2.1 Setup

We start with presenting our model of deposit withdrawals, followed by bank leverage

choice and the pricing of deposits.

2.1.1 Deposit withdrawals

Time is discrete and all agents are risk neutral. The economy is populated with

a continuum of banks, each of whom creates value by providing liquidity services

to a continuum of depositors. Consider an individual bank. The liquidity value

4



derived by depositor i with deposits bi has two components. The first is the benefit

of holding deposits, captured by µ. In particular, a depositor can use the bank

account for transactions within the period, such as receiving wage bills, paying for

online shopping, meeting margin requirements, etc (Gorton and Pennacchi, 1990).

Moreover, the depositors may have the option to pursue illiquid investments with

high risk-adjusted returns.

The second is the benefit of withdrawing. The depositor can withdraw from the

account to meet a need for cash at the period end (Diamond and Dybvig, 1982).

Specifically, depositor i encounters a liquidity shock at the end of each period. In

addition to the principal redemption, there is an extra marginal benefit ν when with-

drawing an additional dollar with c.d.f. (p.d.f.) F (ν) (f(ν)) over support [ν,∞).

We assume that f(ν) is decreasing, capturing the reality that encountering a large

liquidity need is rare. Withdrawal incurs a marginal cost of κ.2 As a result, depositor

i withdraws the entire deposit bi if the shock is large enough such that

(1 + ν − κ)bi ≥ qbi, (1)

where q is the price of the deposit. The endogenously determined price equals the

present value of future liquidity benefits adjusted for the default risk of the bank. The

depositor keeps bi in the bank if the above condition is not satisfied. Condition (1)

implies that when interest rates increase or the bank becomes riskier, both leading

to a lower q, the mass of withdrawing depositors, λ(q) = 1− F (q + κ− 1), becomes

larger and deposit maturity shortens. The time-varying deposit maturity is the key

distinction of our model relative to typical macro-banking models which usually fix

λ = 1 and thus force depositors to withdraw and re-deposit every period.

Because the withdrawal decision of depositor i does not depend on bi, the bank’s

problem only depends on the total amount of deposits on the balance sheet, b =∫
i
bidi, rather than the whole distribution of bi’s. Summing up the two components of

liquidity benefits and integrating over the optimal withdrawal set, the liquidity value

2It would be equivalent to model a net withdrawal benefit, but we find it more natural to have a
withdrawal cost and a withdrawal benefit that are both positive. This assumption does not introduce
a redundant parameter because the distribution of the withdrawal benefit has only one parameter.
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per unit of deposit, from the bank’s perspective, can be written as

l (q) = µ+

∫ ∞

q+κ−1

(ν − κ)dF (ν).

2.1.2 Bank problem

A bank makes its leverage decision each period conditional on the total outstanding

deposits b and the withdrawal rule of depositors. The assets of the bank generate a

per-period profit of R + z, where R is constant for simplicity and z is a zero-mean

bank-specific i.i.d. profit shock with c.d.f. (p.d.f.) Φ(z) (ϕ(z)) over support [−z̄, z̄].

Government interest rate policy determines the discount rate for banks and depositors

since treasury bills serve as the outside option for both groups. That is, the discount

rate in this economy is given by 1/r where interest rate r follows an exogenous process

Γ(r′|r).
Bank equity value and deposit policy are given by:

z + ve(r, b) = z +max
b′

{
R−λ(q(r, b′))b+ q(r, b′){b′ − [1− λ(q(r, b′))]b}

+
1

r
Er′|r

[∫ z̄

−ve(r′,b′)

[ve(r′, b′) + z′]dΦ(z′)

]}
, (2)

where deposit pricing schedule q(r, b′) and depositors’ withdrawal rule λ(q) are taken

as given.

As shown in (2), bank equity value consists of two parts. First is the current period

net cash flow, which includes profits R+ z, repayment to withdrawing depositors λb,

and proceeds from new deposits q[b′−(1−λ)b]. Second is the continuation value, which

incorporates the bank’s default option tomorrow. After the realization of two shocks

r′ and z′, the bank defaults if its equity value goes below zero, i.e. z′ + ve(r′, b′) < 0.

When typical models assume λ = 1, a bank reissues all deposits every period

and thus fully internalizes the price impact of its choice for b′. In contrast, with

the presence of future liquidity benefits and the withdrawal cost, our model features

deposits that can be potentially long-term. A dilution problem arises when the bank

does not need to compensate non-withdrawing depositors (1− λ)b for how its choice
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for b′ changes the risk of default.

2.1.3 Deposit pricing

The deposit price q(r, b′) is pinned down by the zero profit condition of depositors.

For a non-defaulting bank, the payoff to depositors in the current period consists

of the liquidity value lb, principal repayment to withdrawing depositors λb, and the

value of unwithdrawn deposits q(1− λ)b. That is, depositors’ value is given by:

vb(b, q) =
{
l(q) + λ(q) + q[1− λ(q)]

}
b,

which does not depend on z because its realization does not affect the equilibrium

choice for b′, as suggested by (2).

Our formulation of default follows Gomes, Jermann, and Schmid (2016). Upon

default, depositors take over the bank and initiate a restructuring. They first collect

current profitsR+z and then sell off the equity portion to new owners while continuing

to hold their deposits. After going through the restructuring, individual depositors

again decide on whether to withdraw their money or not. This means that depositors

have a claim over the total bank franchise value z+ve(r, b)+vb(b, q) in default states.

However, restructuring incurs a dead-weight loss for depositors that is increasing in

the amount of deposits, ξb, reflecting a larger difficulty to restructure a more levered

bank. Under this formulation, we do not need to keep track of the distribution of b’s

when considering the aggregate economy.

To sum up, the deposit price is given by

q(r, b′)b′ =
1

r
Er′|r

[ ∫ z̄

−ve(r′,b′)

vb(b′, q(r′, hb(r
′, b′)))dΦ(z′)

+

∫ −ve(r′,b′)

−z̄

[z′ + ve(r′, b′) + vb(b′, q(r′, hb(r
′, b′)))− ξb′]dΦ(z′)

]
, (3)

which is affected by bank’s future choice for b′′ = hb(r
′, b′) because deposits have

effectively a maturity that is longer than one period. This implies that future deposit

dilution is priced in at the issuance stage.

7



2.1.4 Equilibrium

At each point in time, interest rate r, depositors’ idiosyncratic withdrawal benefits

{ν}, and banks’ idiosyncratic profits {z} realize. Given existing deposits {b}, realiza-
tions of current shocks, and rational expectation of law of motions, depositors choose

how much to withdraw and the amount to put into new deposits; banks choose to

default or not and a pricing schedule at which they are willing to absorb new deposits.

All actions happen at the same time.

We consider a Markov-perfect equilibrium with a set of time-invariant rules and

functions:

� Bank’s deposit policy b′(r, b) with associated equity value ve(r, b) given by (2);

� A deposit pricing schedule q(r, b′) given by (3);

� Banks’ optimal default set {z|z + ve(r, b) < 0} and depositors’ optimal with-

drawal set {ν|1 + ν − κ ≥ q(r, b′)}.

2.2 Model mechanisms

We now illustrate the key mechanisms of our model. We first show the dilution

incentive of banks when deposits are long-term. We then illustrate how deposit

dilution varies over time under endogenous withdrawals.

2.2.1 Dilution

The key feature of our model, relative to previous work on macro-banking, is that

non-maturing deposits are plausibly long-term because depositors do not withdraw

and reprice deposits period by period due to future liquidity services and withdrawal

cost. As a result, banks make leverage decisions with the presence of unwithdrawn

deposits (1−λ)b. In this section, we illustrate how this leads to a dilution problem—

that is, banks have a tendency to over-borrow and incur an excessive default risk.

First, for simplicity, we shut down the withdrawal feature and consider a fixed-

maturity defaultable debt model—that is, only a fixed fraction of depositors withdraw

each period, i.e. λ(.) ≡ λ̂ ∈ [0, 1], and they get a net benefit of ν − κ ≡ 0. In this
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setting, l(.) ≡ µ > 0. To further simplify notations, we assume default recovery is

zero, and then some straightforward algebra gives the following first-order condition

for b′:3
1

r
µEr′|r[1− Φ(−ve(r′, b′))] = −[b′ − (1− λ̂)b]

∂q(r, b′)

∂b′
, (4)

where the price impact on the right hand side (RHS) is given by:

∂q(r, b′)

∂b′
=

1

r
Er′|r

[
[µ+ λ̂+ (1− λ̂)q(r′, hb(r

′, b′))]ϕ(−ve(r′, b′))
∂ve(r′, b′)

∂b′

+ [1− Φ(−ve(r′, b′))](1− λ̂)
∂q(r′, h)

∂h
|h=hb(r′,b′)

∂hb(r
′, b′)

∂b′

]
. (5)

Equation (4) describes the trade-off behind absorbing an additional unit of deposit.

On the left hand side (LHS) is the marginal benefit—additional liquidity value µ in

non-default states. On the RHS is the marginal cost. As can be verified numerically,

pushing up b′ reduces the debt price q(r, b′). This is not surprising as it reduces equity

value ve(r′, b′) and therefore leads to a higher default probability tomorrow, captured

by the first term in (5).

Deposit dilution arises because banks only internalize the negative price impact

on new deposits. Unwithdrawn deposits, (1− λ̂)b, also have to bear a larger default

risk associated with a higher b′ but are not repriced to current market conditions. As

a result, banks would like to keep absorbing new deposits even when default risk has

become excessively large. By doing so, they keep capturing the additional liquidity

value but do not have to pay fully for the incremental default risk. As (1 − λ̂)b

increases, banks would choose a larger b′ and dilution becomes severer.

At the time of issuance, depositors will price in the banks’ future incentive to over-

3The bank problem in this simplified setup evolves into: maxb′ R + z − λ̂b + q(r, b′)[b′ − (1 −
λ̂)b] + 1

rEr′|r[
∫ z̄

−ve(r′,b′)
[ve(r′, b′) + z′]dΦ(z′)]. The deposit pricing equation evolves into: q(r, b′) =

1
rEr′|r[µ+ λ̂+ q(r′, hb(r

′, b′))(1− λ̂)][1− Φ(−ve(r′, b′))]. First-order condition for b′ is given by:

[b′ − (1− λ̂)b]
∂q(r, b′)

∂b′
+ q(r, b′) +

1

r
Er′|r

{
[1− Φ(−ve(r′, b′))]

∂ve(r′, b′)

∂b′

}
= 0.

Utilizing the envelope theorem, i.e., ∂ve(r,b)
∂b = −λ̂ − q(r, b′)(1 − λ̂), and the pricing function to

simplify, and we get equation (4).

9



borrow. Depositing an additional dollar into the bank today amplifies the conflict of

interest tomorrow. This is recognized by ∂hb(r
′,b′)

∂b′
in the second term in (5). That

first-order condition contains the derivative of the policy function reflecting the fact

that dilution is a time inconsistency problem in nature—banks would be better off if

they could commit to not over-borrow in the future.

When deposits are short-term, i.e. λ̂ = 1, the debt dilution problem disappears.

Banks have no incentive to over-borrow unless some other exogenous frictions are

built in. Analyses of dilution in fixed-maturity long-term corporate debt models can

be found also in e.g., Gomes, Jermann and Schmid (2016) and Admati, DeMarzo,

Hellwig and Pfleiderer (2018).

2.2.2 Endogenous withdrawals and time-varying dilution

Deposit maturity in our model is not fixed because of the withdrawal options of

the depositors, which contrasts against a typical long-term debt model that we have

analyzed in the previous section. The left panel of Figure 1 presents the mass of

withdrawing depositors λ(q(r, b′)). There are two key patterns.

First, λ(q(r, b′)) is upward sloping with respect to b′. This is because, starting

with a nontrivial leverage choice b′, a marginal increase implies a larger default risk

and thus a lower discounted future liquidity benefit. This means, endogenous deposit

withdrawals create a disciplining effect on dilution, even though limited by frictions.

Second, λ(q(r, b′)) depends on interest rate r. As r increases, λ increases because

of a heavier discount over future liquidity benefits. Moreover, λ also becomes more

sensitive to b′ when r increases. The key driver is a decreasing p.d.f. f(.). When r

becomes large, q becomes small and thus f(q+1−κ) becomes large, which means that

λ = 1−F (q+1− κ) becomes more sensitive to changes in q caused by changes in b′.

In other words, when future liquidity benefits are high, only a few depositors would

encounter a big enough liquidity shock today so that withdrawing or not becomes a

relevant decision. In that case, a marginal variation in future default risk will not

change withdrawals much. As future liquidity value becomes small, a large mass

of depositors are on the margin of withdrawing, and therefore a variation in future

default risk will have a big impact. Broadly, this feature is consistent with the well
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recognized reality that banks with poorer financial health are more unstable.4

Figure 1: Policy functions. Notes: We set κ = 0.1, ξ = 0.2, µ = 0.04, R = 0.02, z̄ = 0.22.

r takes value {1.0270, 1.0526, 1.0790} with probability {1/6, 2/3, 1/6}. We set f(ν) = a exp(−aν)

where a = 20.

The right panel presents banks’ deposit policy function b′(r, b) in our baseline

model. It is upward sloping, which clearly contrasts the flat policy function that

λ̂ = 1 would imply and reveals the impact of dilution. Importantly, b′(r, b) also

depends on r, and their relationship is governed by how λ(q(r, b′)) depends on r as

we have pointed out previously.

First, an interest rate cut leads to a higher b′. This directly follows the fact that

λ(q(r, b′)) increases with r. In particular, for a given b, a decrease in r creates a

larger amount of unwithdrawn deposits (1− λ)b that banks can dilute, which in turn

changes the marginal calculation in equation (4) and amplifies banks’ incentive to

issue new deposits. This mechanism is key to our results in Section 2.3. Second,

the effect of an interest rate cut on b′ decreases with r, for a high enough b. This

is because λ(q(r, b′)) becomes less sensitive to b′ for a low r. When r is low, banks

are much less worried about additional withdrawals if they dilute and are thus able

to choose a much higher b′. A smaller disciplining effect of endogenous withdrawals

in this case implies that the additional unwithdrawn deposits created by an interest

4In Diamond and Dybvig (1983) and numerous follow-up papers, fragility caused by strategic
complementarity in early withdrawals becomes relevant only when bank fundamental becomes weak
enough. Gorton and Ordoñez (2014) argue that a deterioration in collateral quality can trigger a
regime shift and make bank debt sensitive to information.

11



rate cut will have a bigger effect on banks’ over-borrowing. This mechanism is key to

our state dependence results in Section 2.4.

2.3 Interest rate shocks and boom-bust dynamics

In this section, we show how banks respond to interest rate shocks. We assume that

the interest rate r follows an AR(1) process and set Γ(r′|r) accordingly—that is,

r = r∗+exp(x)−1 where r∗ is the long-run interest rate level and x′ = ρxx+σxϵ̃, ϵ̃ ∼
N (0, 1). We simulate 200,000 firms with 20 periods as burn-ins to compute moments

and impulse responses.

2.3.1 I.i.d. shocks

We first consider i.i.d. interest rate shocks to cleanly show the workings of endogenous

deposit maturity. The parameterization is a proof of concept and, even though we

approximately match empirical counterparts, it cannot be interpreted as a full-blown

calibration. The presented impulse responses are not very sensitive to varying param-

eter values within reasonable ranges. A period is a year. For the interest rate process,

we set r∗ = 1/0.95, ρx = 0 and σx = 0.015. We set R = 0.02, which delivers an av-

erage profitability of bank assets of about R/(ve + vb) = 1.22%. According to the

FDIC, the average profitability of bank assets before subtracting interest expenses

is slightly below 2% between 2010 and 2021. The default loss is ξ = 0.2, close to

what has been documented by Granja, Matvos, and Seru (2017). For the zero-mean

i.i.d. shocks to profitability, we follow Gomes, Jermann and Schmid (2016) and set

ϕ(z) = ι0 − ι1z
2. By imposing ϕ(z̄) = 0 and Φ(z̄) = 1, we can use z̄ to pin down ι0

and ι1. We set z̄ = 0.22, which leads to an average bank default probability of 82

basis points. We are not aware of an obvious empirical counterpart for the withdrawal

frequency. Wolff (2000) argues that as a rule-of-thumb 20% of deposits are highly

volatile. We set withdrawal cost to κ = 0.1, which implies an average withdrawal

mass of λ = 0.2574. Regarding liquidity parameters, we set µ = 0.04 and assume ν to

follow an exponential distribution, i.e., f(ν) = a exp(−aν), with a = 20. Under these

two parameters, average bank equity ratio 1 − b/(ve + vb) = 0.162. If we consider

maturity to be about 1/λ ≈ 4 years, the deposit rate is about (1/q − 1)/4 ≈ 77 bps.
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Figure 2: Banks’ responses to i.i.d. interest rate shocks. Notes: r∗ = 1/0.95, a = 20, κ =

0.1, ξ = 0.2, µ = 0.04, R = 0.02, z̄ = 0.22, ρx = 0, σx = 0.015. For fixed-maturity models, we

adjust µ = 0.045, z̄ = 0.21 for the λ̂ = 0.2574 case and µ = 0.051, z̄ = 0.4 for the λ̂ = 1 case for

comparability.

The blue solid lines in Figure 2 describe how banks respond to a one-time interest

rate cut.5 At t = 10, the interest rate is reduced and thus the discount rate becomes

high, the present value of future liquidity services becomes larger. Fewer depositors

choose to withdraw. With the presence of more unwithdrawn deposits to dilute at

t = 10, banks increase their deposit taking b11. A higher b11 in turn leads to a b12

that is still noticeably higher than the long-run deposit level.

5With the chosen parameters, for banks at the steady state, the asymmetry between their re-
sponses to one-standard-deviation positive and negative interest rate shocks is small.
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The default probability exhibits a boom-bust feature. At t = 10, bank default

probability shrinks in response to the contemporaneous rate cut. Similar to the reason

behind depositors’ increasing willingness to stay, the equity value of banks becomes

larger due to a higher discount rate. However, going forward, as the interest rate

returns to normal but b11 and b12 remain high, the default probability becomes higher

than its long-run level. In other words, an interest rate cut makes banks safer in the

short run but leads to a subsequent increase in risk.

Crucial for our results is the endogenous withdrawal feature. Figure 2 compares

our results against those coming out of fixed-maturity models, as characterized before

by equations (4) and (5). The red dashed lines show banks’ responses to an identical

rate cut in a fixed-maturity long-term deposit model. We fix the withdrawal mass

λ̂ = 0.2574, which is equal to the average withdrawal rate in our baseline model. We

re-set µ = 0.045 and z̄ = 0.21 so that the average default rate is roughly the same

as that in the baseline. The black dotted lines show the responses under short-term

deposits, i.e. λ̂ = 1, where we re-set µ = 0.051 and z̄ = 0.4. In both cases with fixed

maturity, i.i.d. interest rate shocks produce no impact on leverage dynamics. This

is because shocks to r do not change the marginal trade-off for b′ in these cases. In

contrast, unwithdrawn deposits [1 − λ(q(r, b′))]b and thus bank’s dilution incentive

change with r when maturity is endogenous.

Formally, we can show that in a model with a fixed deposit maturity, i.e., l(.) ≡ µ

and λ(.) ≡ λ̂, the amount of deposits stays constant upon i.i.d. interest rate shocks.6

2.3.2 Persistent shocks

Now we consider persistent shocks to interest rates by setting ρx = 0.8 and σx = 0.005.

We adjust µ = 0.0415 while keeping all the other parameter values to be same as those

in the i.i.d.-shock case, and unconditional simulated moments are comparable to the

i.i.d.-shock ones. The blue solid lines in Figure 3 describe how banks respond to persis-

tently low interest rates. Again, we compare our benchmark model to two alternatives

with fixed maturities: long-term deposits where λ̂ = 0.2357, µ = 0.045, z̄ = 0.24 and

short-term deposits where λ̂ = 1, µ = 0.0529, z̄ = 0.42.

6Substituting equation (5) into (4), the first-order condition for b′ under a fixed maturity does
not depend on r.
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Figure 3: Banks’ responses to persistent interest rate shocks. Notes: r∗ = 1/0.95, a =

20, κ = 0.1, ξ = 0.2, µ = 0.0415, R = 0.02 , z̄ = 0.22, ρx = 0.8, σx = 0.005. For fixed-maturity

models, we adjust µ = 0.045, z̄ = 0.24 for the λ = 0.2357 case and µ = 0.0529, z̄ = 0.42 for the λ = 1

case for comparability.

When the interest rate cut becomes persistent, banks’ deposit choice starts to

respond to the rate cut even if deposit maturity is fixed. Again, by inspecting (4)

and (5), one can see that 1/r cancels out but the conditional expectation Er′|r[.]

does not. When expecting rates to be low in the future, banks start to absorb more

deposits.

Under short-term deposits, the default probability does not exhibit boom-bust

dynamics even though debt remains persistently high after t = 10. Banks do not

have a dilution incentive. They increase deposits simply because of a smaller marginal
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cost—that is, with an increase in discount rates, default risk becomes less sensitive

to deposit absorption. As the interest rate returns to normal, banks adjust leverage

downward rather quickly, and the equilibrium default risk remains moderate.

Under fixed-maturity long-term deposits, debt dilution kicks in. However, even

though banks are reluctant to delever quickly as the rate cut leads to a larger amount

of deposits at t = 11, such an effect turns out to be dominated quantitatively in this

case by the persistently low interest rate for t ≥ 11. Overall, the bank default rate

remains low after the shock. By comparing the blue solid and red dashed lines, one

can clearly see the important role played by the endogenous maturity. The additional

unwithdrawn deposits caused by the rate cut greatly exacerbate the dilution problem

and are key for the delayed increase in default rates.

2.4 State-dependency in responses

In this section, we show that the impact of an interest rate cut is different if rates

have been low for a while. Specifically, the subsequent surge in default risk following

a rate cut is much stronger in a low-rate environment.

Formally, we consider a regime-switching model of interest rates. In either the

high- or low-rate regime, i.e. s ∈ {H,L}, x follows an AR(1) process:

x′ = (1− ρx)x̄(s) + ρxx+ σxϵ̃

where x̄(H) > x̄(L). State s shifts with probability p. In the period where the shift

takes place, x is drawn from the stationary distribution of the new regime.

2.4.1 I.i.d. shocks

We first consider a case where shocks to interest rates are i.i.d. in any given regime.

More specifically, we set ρx = 0, σx = 0.007, x̄(H) = −x̄(L) = 0.015, p = 0.4. All

bank- and depositor-related parameters are set to be same as those in the i.i.d.-shock

case of Section 2.3.1 without regime switches. Figure 4 compares how banks’ responses

to an identical interest rate cut differ across regimes. Specifically, we compute impulse

responses by taking the difference between the following two paths. The first averages

16



banks who have been in one regime for quite a long time and then start to transit

(shown as t = 10 in the figures) to the ergodic distribution. The second averages

banks facing an identical situation except that they receive an interest rate shock

right when the transition starts.

Figure 4: State dependency of banks’ responses to i.i.d. interest rate shocks. Notes:

r∗ = 1/0.95, a = 20, κ = 0.1, ξ = 0.2, µ = 0.04, R = 0.02, z̄ = 0.22, ρx = 0, σx = 0.007, x̄(H) =

0.015, x̄(L) = −0.015, p = 0.4.

In the low-rate regime, bank leverage is higher (b=1.097 as opposed to 1.060 for the

high-rate regime) and fewer depositors withdraw their money each period (λ = 0.1951

as opposed to 0.3355). Even though a high discount rate can be helpful for the bank,

a larger amount of unwithdrawn deposits can also worsen banks’ dilution problem.
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Combining these two offsetting effects, the average default probability turns out to

be higher (Φ(−ve) = 0.0097 as opposed to 0.0032), which is largely consistent with

our previous finding that the default probability increases following interest rate cuts

when deposits are endogenously long-term.

Responding to the rate cut, in the low-rate regime, banks increase leverage more

aggressively and the subsequent surge in default risk is also stronger. As we have

highlighted the unappealing consequence of interest rate cuts in the previous section,

this result calls for central banks’ exercising additional caution when the economy

has been in a low-rate environment for a while. To understand this result, recall

our policy function for b′(r, b) in Figure 1. When interest rates are low, deposit

withdrawals respond less aggressively to deposit issuances, resulting in dilution being

less disciplined. The additional unwithdrawn deposits caused by the interest cuts

encourage banks to dilute in a much more significant way. Consistently, we observe

a weaker reduction in the withdrawal amounts in the low rate regime despite larger

increases in deposit issuance and default risk.

2.4.2 Persistent shocks

Considering persistent shocks, we set ρx = 0.8, σx = 0.005 and adjust µ = 0.0415

while keeping all the other parameter values to be same as those in the i.i.d.-shock

case with regime switches. Figure 5 shows that the results we find in the i.i.d.-shock

case are largely preserved. Again, an interest rate cut creates a stronger surge in

bank leverage and default risk in the low-rate environment.

In the last two panels of Figure 5, we show the state dependency for a short-term

deposit model, λ = 1, with persistent shocks. We adjust µ = 0.0529 and z̄ = 0.42

for comparability. We consider the same shock as in our baseline model. According

to Section 2.3.1, bank leverage does not move upon i.i.d. interest rate shocks with

short-term deposits, and thus there is naturally no state dependency in responses of

aggregate quantities in that case. Figure 5 shows that even with persistent shocks,

state dependency in b is trivial. Different from our baseline model, the average default

probability of banks is lower in the low-rate regime (0.0014 as opposed to 0.0109 for

the high-rate regime). Also, because default probabilities are bounded by 0 from

below, they respond by less in the low-rate regime.
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Figure 5: State dependency of banks’ responses to persistent interest rate shocks.
Notes: r∗ = 1/0.95, a = 20, κ = 0.1, ξ = 0.2, µ = 0.0415, R = 0.02, z̄ = 0.22, ρx = 0.8, σx =

0.005, x̄(H) = 0.015, x̄(L) = −0.015, p = 0.4. For the fixed-maturity model with λ̂ = 1, we adjust

µ = 0.0529 and z̄ = 0.42 for comparability.

3 Extensions

This section considers two extensions of our baseline model. Section 3.1 analyzes

a model with insured and uninsured deposits. We highlight that issuing insured

deposits can be an effective way to dilute uninsured deposits. Section 3.2 considers

banks’ responses to an interest rate cut when bank asset profitability worsens at the

same time.

3.1 Insured deposits

At the heart of debt dilution lies the conflict between bank shareholders and depositors

with the presence of default risks. As around 50% of US bank deposits are insured by
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the FDIC, one might wonder if debt dilution and thus our results will vanish with the

presence of risk insensitive deposit insurance assessments. In this section, we show

this is not the case.

To do so, we revisit our problem in Section 2, but this time allow banks to issue

both uninsured b′ and insured deposits b′i. Similarly to uninsured depositors, insured

depositors enjoy liquidity benefits and withdraw at period ends upon a large liquidity

shock. We carry previous notations while using subscript i to denote variables and

functions associated with insured deposits when needed.

Bank equity now depends on both deposits and is given by:

ve(r, b, bi) = max
b′,b′i

{
R−λi(qi(r))bi − λ(q(r, b′, b′i))b+ qi(r){b′i − [1− λi(qi(r))]bi}

− γ

2
(b′i − b̄i)

2 + q(r, b′, b′i){b′ − [1− λ(q(r, b′, b′i))]b}

+
1

r
Er′|r

[∫ z̄

−ve(r′,b′,b′i)

[z′ + ve(r′, b′, b′i)]dΦ(z
′)

]}

where γ
2
(b′i− b̄i)

2 represents the cost associated with issuing insured deposits, such as

that for building ATMs to attract retail depositors. The price of insured deposits is

given by

qi(r)b
′
i =

1

r
Er′|rv

b
i (b

′
i, qi(r

′)),

and the price of uninsured deposits is:

q(r, b′, b′i)b
′ =

1

r
Er′|r

[∫ z̄

−ve(r′,b′,b′i)

vb(b′, q(r′, hb(r
′, b′, b′i), hbi(r

′, b′, b′i)))dΦ(z
′)

+

∫ −ve(r′,b′,b′i)

z

b′

b′i + b′

[
ve(r′, b′, b′i) + z′ + vbi (b

′
i, qi(r

′))

+ vb(b′, q(r′, hb(r
′, b′, b′i), hbi(r

′, b′, b′i)))− ξ(b′i + b′u)

]
dΦ(z′)

]
,

where vb(b, q) = {λ(q) + l(q) + [1 − λ(q)]q}b and vbi (bi, qi) = {λi(qi) + li(qi) + [1 −
λi(qi)]qi}bi. hbi(.) and hb(.) denote equilibrium policies for insured and uninsured

deposits, respectively. We assume that depositors of different types have the same
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seniority and split the recovered value according to how much they are owed. For

insured depositors, the FDIC covers the remaining gap.

A key observation here is that the equity value and the price of uninsured de-

posits depends on insured deposits. This is because when a bank issues more insured

deposits, a default becomes more likely. Therefore, with the presence of uninsured

deposits, issuing insured deposits can also be an effective way to dilute. For a sim-

ple illustration, consider the first-order condition for insured deposits b′i under fixed

maturity and a constant interest rate, i.e. λ(.) ≡ λi(.) ≡ λ̂, l(.) ≡ li(.) ≡ µ ≡ µi and

r ≡ r∗:

qi−
1

r∗

{
[1− Φ(−ve(b′, b′i))][λ̂+ (1− λ̂)qi]

}
+

∂q(b′, b′i)

∂b′i
[b′− (1− λ̂)b]−γ(b′i− b̄i). (6)

The term
∂q(b′,b′i)

∂b′i
reflects the marginal impact of issuing insured deposits on the price

of uninsured deposits. The dilution is thus reflected by −∂q(b′,b′i)

∂b′i
(1 − λ̂)b, which

disappears when uninsured deposits are short-term.

We solve our extended model with insured deposits under the following param-

eters: R = 0.03, 1/r∗ = 0.95, a = ai = 30, κ = κi = 0.1, ξ = 0.4, µ = 0.01, µi =

0.05, z̄ = 0.5, ρx = 0, σx = 0.015.7 Figure 6 compares the impulse responses to a

one-time interest rate cut with γ = 0.2 and b̄i = 0.75 (blue solid lines) against those

with γ = 20 and b̄i = 0.855 (red dashed lines). What is different between these two

cases is that banks have different abilities to adjust insured deposits over time.

The key takeaway from Figure 6 is that the presence of insured deposits does not

necessarily weaken debt dilution. In fact, one can notice that when banks are able to

dilute more easily through issuing more insured deposits, the boom-bust dynamics in

default probability can actually become more pronounced. On the margin, dilution

through issuing insured deposits can actually be more aggressive because the risk

insensitive deposit insurance has eliminated most of the price impact banks have to

bear. In contrast, when banks dilute through issuing more uninsured deposits, they

still have to bear a nontrivial proportion of the price impact, even though not fully

because of non-withdrawing uninsured depositors.

7Results for persistent shocks are similar and ommitted to save space.
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Figure 6: Banks’ responses to i.i.d. interest rate shocks with insured and uninsured
deposits. Notes: R = 0.03, 1/r∗ = 0.95, a = ai = 30, κ = κi = 0.1, ξ = 0.4, µ = 0.01, µi =

0.05, z̄ = 0.5, ρx = 0, σx = 0.015. The left axis considers γ = 0.2, b̄i = 0.75 and the right axis

considers γ = 20, b̄i = 0.855.

3.2 Time-varying asset profitability

We have fixed the average bank asset profitability R in our previous analyses for

transparency. In reality, interest rates typically serve as the benchmark for loan

pricing—this means, as the central bank cuts interest rates, loan rates decline. Banks’

monopoly power in the lending market implies a weaker decline in loan rates relative

to that in interest rates. For instance, Wang (2020) shows that a 100-bps increase

in interest rates increases bank lending rates by about 50 bps, using data on ARM
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(adjustable-rate mortgages) and auto loans. Therefore, we connect the average bank

asset profitability R and interest rates r by parameterizing

R = R∗ + 0.5× (r − r∗),

where r∗ and R∗ are respective long-run means, and we resolve our model.

Figure 7: Time-varying bank asset profitability. Notes: The average bank asset profitability

is specified as: R = R∗ + 0.5 × (r − r∗). Parameters are: r∗ = 1/0.95, a = 20, κ = 0.1, ξ = 0.2, µ =

0.0415, R∗ = 0.02, z̄ = 0.22, ρx = 0.8, σx = 0.005.

Under i.i.d. interest rate shocks, connecting R with r has minimal impacts on

bank dynamics. This is because a one-time shock to R has no long-term impact—

deposit issuance b′, deposit price q and withdrawals λ do not change. In the end, the
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additional effect of a decrease in R is mostly reflected in a smaller drop in default

rates on impact.8

When r shocks are persistent, which means that R stays low for some time after

an interest cut, our main result in fact becomes stronger—that is, bank risk increases

more drastically following the interest cut. Figure 7 compares banks’ responses in our

baseline in Section 2.3.2 (blue solid lines) and those in the extended setup (red dashed

lines). The drop in default rates on impact weakens when R declines together with r.

In contrast, the delayed increase in bank risk becomes more pronounced, even though

banks scale back their deposit issuance on impact to some extent for precautionary

purposes. The impact of the decline in R on withdrawals is fairly small.

4 Discussions

Before closing the paper, we provide further discussions about our model ingredients

and results. In particular, Section 4.1 discusses the implications of our model and

points out questions for future empirical work to investigate. Section 4.2 elaborates

about non-maturing deposits.

4.1 Empirical implications

In reality, US commercial banks and supervisors from the FDIC employ various econo-

metric models to predict the inflows and outflows of deposits as they are considered

important for bank stability. However, these account-level data are largely propri-

etary, and the bank-level data that are easily accessible provide aggregated positions

that only allow the computation of net deposit flows. The lack of data on gross flows

creates a challenge for empirical research—for instance, it is impossible to identify

how much of an increase in deposits is driven by fewer withdrawals and how much is

driven by new deposits. One promising direction is to use the data from failed banks

in the US—for instance, Martin, Puri and Ufier (2022) utilize such data to study how

uninsured depositors withdraw from one distressed bank. Interestingly, they show

8Such a connection introduces a source of randomness and under a global solution will affect
expected values in the future. However, we find this impact to be tiny.
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that banks issue a lot of new insured deposits close in time to failure, which is consis-

tent with our theory that banks dilute by issuing insured deposits when distress risk

is high.9 Going forward, being able to collect time series of gross deposit flows will

be key for empirical work.10 We provide two potential directions to bring our theory

to the data.

First, one can test directly how outflows and inflows of deposits interact with

each other dynamically. Banks compete for uninsured depositors shopping around

and compensate the risk they bear by offering higher rates, giving coupons, etc. For

instance, it is interesting to test if an outflow of uninsured deposits that is orthogonal

to a bank’s risk profile, due to say a headquarter move of a corporate client, implies

that new uninsured deposits are absorbed at a lower rate. Moreover, do bank lever-

age and other risk-taking activities get constrained in a persistent manner after the

outflow? Alternatively, one can use public asset market data to test if the outflow

predicts a decrease in bank risk.

Second, one can combine monetary policy surprises to test if interest rate shocks

affect bank leverage and default risk as our model suggests. For instance, is it the

case that an interest rate cut predicts a future increase in bank risk and does such

an increase become more pronounced in a low interest environment? One can utilize

heterogeneity in bank characteristics to test the role of endogenous maturity. For

instance, some banks build more ATMs, which corresponds to a lower κ in our model.

Some banks devote a lot of resources to Fintech, which facilitates online transactions

and corresponds to a higher µ. It can be interesting to first establish if deposit flows

within these banks behave differently. Furthermore, it would be promising to see if

these cross-sectional differences in the characteristics of deposit flows affect banks’

responses to interest rate shocks. For instance, our model suggests that banks with

stickier deposits would see a smaller increase in risk following an interest rate cut.

9In a different modeling environment, Egan, Hortaçsu and Matvos (2017) argue that distressed
banks have a comparative advantage in competing for insured deposits.

10See e.g. Iyer and Puri (2012) for a study of deposit withdrawals triggered by a fraud, based on
proprietary data from a cooperative bank in India.
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4.2 Non-maturing deposits

Our model builds on the prevalence of uninsured demand deposits that are subject

to default risk but are not continuously repriced. First, it is worth noting that even

though large depositors, such as big corporations, can split their deposits across

multiple banks and get a better deposit insurance coverage, such behavior is quite

limited in reality. For instance, it is hard for large companies that frequently pay

employees and suppliers to manage large numbers of bank accounts. According to

the FDIC, about half of deposits in the US end up uninsured, to which hair-cuts

might apply when banks fail.11

Second, depositors do not reprice their claims as frequently. Using a sample

of insured depositors, Drechsler, Savov and Schnabl (2021) show that deposit rates

are insensitive to interest rate changes. Martin, Puri and Ufier (2022) show that

for a bank at the edge of failing, uninsured depositors actively pull their money out.

Nonetheless, a large amount of uninsured transactional deposits remain on the bank’s

balance sheet, and those who have a longer relationship with the bank appear to be

more reluctant to withdraw.

At last, we offer alternative ways to connect our theory with reality. For instance,

while certificates of deposits (CD) have fixed maturity, in many cases they are au-

tomatically renewed without lenders taking any actions. As frictions prevent lenders

from constantly shopping around for the best CD rate, our modeling of non-maturing

deposits also captures to some extent the feature of CDs on the balance sheets of

financial institutions. More broadly, the essence of our theory is that some creditors

are willing to extend funding to financial institutions without perfectly pricing default

risks, and such willingness varies with market conditions including e.g. the level of

interest rates. In this sense, our mechanism is also relevant for the rollover of other

types of risky debt issued by banks and shadow banks in a complex financial market

with physical and informational frictions.

11Between 2008 and 2014, there were 30 US bank failures in which uninsured depositors suffer a
nominal loss (https://www.cato.org/commentary/fdic-invents-costly-solution-imaginary-problem).
In other cases, the FDIC did manage to sell the bank and ultimately bailed out uninsured deposits.
However, the resolution process usually takes time and uninsured depositors effectively suffer a real
loss, which corresponds to our restructuring cost ξb′ in (3).
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5 Conclusions

The macro-finance literature has found it convenient to model bank liabilities as short-

term debt. However, bank deposits are mostly non-maturing, and this effectively

converts deposits into debt with endogenous maturity that are subject to time-varying

dilution. In this paper, we have demonstrated that explicitly modeling the non-

maturing nature of deposits is first-order for studying the leverage dynamics of banks

and the impact of monetary policy shocks on the banking sector.

In a companion paper, we apply this framework to policy analyses and show that

the non-maturing nature of deposits has first-order effects on bank capital require-

ments (Jermann and Xiang, 2023). For future research, our model can be incorporated

into a full-blown general equilibrium model for quantitative analyses. One interesting

direction to extend the model would be to formulate the competition among banks,

on both the loan and deposit sides. Another interesting extension would be to incor-

porate and quantify the factors that shape the behavior of depositors, such as limited

attention or bounded rationality.
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