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1 Introduction

Overview. What is the impact of the minimum wage on the college premium (the rela-
tive wage of college to non-college workers)? The canonical model—introduced by Tin-
bergen (1974), operationalized by Katz and Murphy (1992), and named by Acemoglu
and Autor (2011)—provides the central organizing framework for studying the evolu-
tion of the college premium. It straightforwardly relates relative wages of more and less
educated workers to their relative supply and demand. I generalize this model to in-
corporate monopsony power and minimum wages, labor-market dynamics, a job ladder,
and unemployment while maintaining the original model’s tractability. I demonstrate
that the extended model generates an estimating equation that is almost identical to the
typical empirical implementation of the canonical model except for the presence of one
additional term: the real minimum wage. The model predicts that at the moment the
minimum wage increases, the elasticity of the college premium with respect to the mini-
mum wage equals its bite (the share of wage earnings of college-educated workers at the
minimum wage minus the same share among less-educated workers), as wages rise only
for those earning below the new minimum wage (the direct effect). Over time, however,
the model predicts that the increase in the minimum wage spills over to wages higher up
the distribution (an indirect effect). This implies that the long-run elasticity of the college
premium is strictly greater than the short-run elasticity.

The purpose of the framework is both to guide my empirical analysis and interpret its
findings. My primary contributions are empirical. First, to motivate the analysis, I incor-
porate the real minimum wage into the otherwise traditional empirical implementation
of the canonical model and document empirically the importance of minimum wages for
shaping the national college premium. For example, the decline of the real minimum
wage in the 1980s and its subsequent rise explains a substantial share of the rapid rise in
the college premium in the 1980s and its slower growth thereafter. Second, and relatedly,
whereas the traditional canonical model implies a dramatic slowdown in the rate of skill-
biased technical change starting in the late 1980s or early 1990s, the model with the real
minimum wage implies a much smaller slowdown (or none at all), since the rise in the
minimum wage is sufficient to slow the college premium’s growth.

Third, I use the theory to guide a regional estimation of the extended canonical model.
I find short-run effects of changes in state-level minimum wages that are quantitatively
consistent with both past empirical work finding small wage spillover effects and my
model’s predictions. I find that the longer-run effects (which have not been the focus of
past studies) are much larger, implying sizable spillover effects up the wage distribution,
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consistent with my theoretical predictions and my national estimates. In the longer run,
minimum wages—together with supply and demand—play a first-order role in shaping
the U.S. college premium and its variation across states.

Finally, while my theory predicts that the mechanism through which the college pre-
mium rises more in the long run than in the short run is wage spillovers up the dis-
tribution, the evidence on the college premium is not itself definitive on this point. To
document the mechanism more directly, I study empirically the dynamic impact of the
minimum wage over the full wage distribution. On impact, wages rise only for the low-
est centiles, consistent with the literature and my theory. However, I show that this effect
spills over up the wage distribution slowly, consistent with my theory’s mechanism.

Details. In Section 2, I motivate the subsequent analysis by estimating an extended ver-
sion of the empirical canonical model incorporating the real minimum wage. I find that
the elasticity of the college premium with respect to the real minimum wage is between
−0.14 and −0.20. This range of point estimates implies (for example) that the 27% de-
cline in the real minimum wage between 1979 and 1989 caused between a 3.7% and a
5.3% increase in the college premium over this time period, which is about a third of the
observed increase. I find that the elasticity of the college premium with respect to the
relative supply of college is between −0.51 and −0.6. This implies that the slowdown
in the growth rate of the relative supply of college between 1979 and 1989, relative to its
growth rate between 1969 and 1979, raised the college premium by between 6.2% to 7.2%
in the latter period, which is about half of the observed increase. More generally, supply,
demand, and the minimum wage each play important roles in the evolution of the U.S.
college premium over the period 1963-2017.

Introducing the real minimum wage additionally fundamentally alters a standard con-
clusion in the literature, that the rate of skill-biased technical change has declined dramat-
ically since the late 1980s or early 1990s. The canonical model estimated on data spanning
1963 - 1987 (the set of years used in the seminal work of Katz and Murphy, 1992) predicts
substantially more rapid increases in the college wage premium than actually occur in
the data thereafter. Through the lens of the model, this problem with the out-of-sample
fit implies a substantial decline in the rate of skill-biased technical change. This issue is
mitigated by incorporating the real minimum wage; its rise in the later period reduces the
predicted growth rate of the college premium in the absence of any substantial change in
the rate of skill-biased technical change.

In Section 3, I present a generalized version of the canonical model that microfounds
the national regression analysis of Section 2, introduces novel predictions on the dynamic
implications of changes in the minimum wage, and guides my state-level analysis in Sec-
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tion 4. In addition to supply and demand, the model incorporates monopsony power,
minimum wages, a job-ladder, dynamics, and unemployment. My objective is to main-
tain the simplicity and tractability of the original framework yet facilitate the study of the
dynamic implications of minimum wages on inequality. As in the canonical model, an
aggregate constant returns to scale production function combines the output of different
skills. Unlike the canonical model, the labor market is frictional. In the baseline model,
a worker who meets a potential new employer bargains over her wage with her current
wage (or unemployment benefits) serving as her outside option.

In equilibrium, a worker exits unemployment at the minimum wage and slowly moves
up the job ladder to higher wages as she matches with new employers over time. Each
successive wage in the job ladder depends less on the minimum wage and more on the
worker’s value marginal product. In the steady state, the average wage of skill s workers
is a weighted average of the minimum wage and their value marginal product of labor. I
characterize how changes in supply, demand, and the minimum wage affect the skill pre-
mium across steady states. The minimum wage has no effect on value marginal products,
since it does not affect employment, but does affect wage markdowns. I show that the
elasticity of the skill premium with respect to the real minimum wage is strictly greater
than the minimum wage’s bite (for any number of worker skills or aggregate production
function). Under the assumptions of the traditional canonical model—two skills, a CES
aggregate production function, constant factor-biased growth rates—I micro-found the
extended canonical model estimating equation.

I also characterize the transition—solving in closed form for the distribution of wages
for each skill group at each date—in response to a one-time increase in the real minimum
wage.1 On impact, an increase in the minimum wage raises wages only for workers
whose initial wage is bound by the new minimum wage. Hence, on impact the elasticity
of the skill premium equals the minimum wage’s bite. Over time, however, workers
initially at the new minimum wage slowly rise up the new job ladder and the elasticity
of the skill premium rises. Hence, the distributional impact of changes in the minimum
wage grow over time.

In Section 4 I estimate a regional extended canonical model leveraging variation across
U.S. states and time. Motivated by the theoretical results of Section 3, I regress changes
over time in state-level college premia on (among other covariates) the interaction be-

1In the baseline wage-bargaining model, I assume that workers and firms are myopic to facilitate the
analysis of the transition to changes in the minimum wage. I show that the steady-state results broadly ap-
ply in the canonical wage-posting model of Burdett and Mortensen (1998) (with forward-looking agents).
And given that supply and demand are fixed in this exercise, I do not impose the restrictions of the tradi-
tional canonical model: there are arbitrarily many skills and an arbitrary aggregate production function.
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tween the state-level bite of the minimum wage and the change in the state’s minimum
wage (instrumenting for this minimum wage interaction using two distinct approaches).
Estimated in one-year differences, the coefficient on the minimum wage interaction is
very close to one, quantitatively consistent with the model’s predictions: in the first year,
the direct effect determines the response of skill premium. However, as I increase the
length of the time difference in the regression, this elasticity rises, as predicted by the
theory, by a factor of approximately three.

I consider a range of robustness exercises, including (among others) providing evi-
dence consistent with a parallel trend assumption, showing that the impact of nominal
minimum wage increases are similar to my baseline results (which are also driven by
inflation-induced real minimum wage declines), and documenting that the time-varying
elasticities of a once-off change in the real minimum wage are similar to my baseline
estimates. Lending further support to my empirical analyses, I show that the state-level
estimates are quantitatively consistent with the national estimates. Hence, I conclude that
the minimum wage plays a central role both in shaping the national skill premium, but
also variation across states in college premia.

My theory predicts that the long-run impact of changes in the minimum wage are
larger than in the short run because of the evolution of wage spillovers up the wage dis-
tribution. To document these dynamic wage spillovers more directly, I study the dynamic
impact of the minimum wage over the full wage distribution, as in, e.g. Lee (1999) and
Autor et al. (2016). To do so, I replicate the analysis of Autor et al. (2016); however, instead
of considering changes in inequality and the minimum wage of one year only, I vary the
length of time differences. On impact, wages rise only for the lowest centiles, consistent
with the literature and my theory. However, I show that this effect spills over up the wage
distribution slowly, confirming the underlying mechanism in my theory.

In summary, in both my theory and empirics, whereas on impact the direct effect ex-
plains almost all of the distributional consequences of changes in the minimum wage,
over time the indirect effect becomes the dominant mechanism and the effect of the min-
imum wage on the college premium become larger.

Additional Literature. In terms of static economic questions, my paper is perhaps most
related to Autor et al. (2008), who estimate a regression very similar to my motivating
empirics in Section 2 leveraging national-time series variation. They contend that the real
minimum wage “does not much alter the central role for relative supply growth fluctua-
tions and trend demand growth in explaining the evolution of the college wage premium”
and that “institutional factors are insufficient to resolve the puzzle posed by slowing trend
relative demand for college workers in the 1990s.” They reach their conclusions because
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they find that the coefficient on the real minimum wage is negative, significant, and of a
similar magnitude to my estimates in one of their two specifications (with a linear time
trend) but smaller and insignificantly different from zero in their other specification (with
a cubic time trend). I conclude differently. My national time-series empirical results are
robust across a wide range of degrees of the polynomial of time in my data. I additionally
show that these national time-series results also hold using Autor et al.’s data across a
wide range of specifications varying in the polynomial of time (up to the sixth degree),
excluding only the cubic one. More importantly, my empirical results additionally hold
using state-level variation. Based on these empirical findings, I conclude that relative sup-
ply growth fluctuations and trend demand growth remain crucial drivers of the college
premium, consistent with Autor et al. (2008), but so too are changes in the real minimum
wage. I also conclude that changes in the minimum wage are sufficient to resolve the
puzzle posed by slowing trend relative demand for college workers in the 1990s. Finally,
I also micro-found the regression they and I estimate.

A vast body of work studies the roles of labor-market institutions for shaping inequal-
ity. Much of the focus is on minimum wages (e.g., DiNardo et al., 1996; Lee, 1999; Card
and DiNardo, 2002; Teulings, 2003; Autor et al., 2016; Cengiz et al., 2019; Dube, 2019; Chen
and Teulings, 2022) and monopsony power (see Manning, 2013 for a summary). I build
on this literature to identify the impact of minimum wage changes across the full wage
distribution not only over short horizons, but also over longer horizons. My short-run
theoretical and empirical results are consistent with empirical results that the direct effect
is the dominant mechanism through which the minimum wage affects inequality (see,
e.g., Autor et al., 2016; Cengiz et al., 2019). My theory, however, implies that the indirect
effect strengthens over time. In my empirics, the indirect effect dominates in the longer
run. Moreover, I show analytically that a job-ladder model can rationalize these empirical
findings both across steady states and in the full transition.2

My paper is also related to a recent and fast growing macro-labor literature conducting
counterfactual analyses to study the implications of minimum wage policies for inequal-
ity, efficiency, and welfare (e.g., Haanwinckel, 2020; Ahlfeldt et al., 2022; Berger et al.,
2022; Hurst et al., 2022; Engbom and Moser, 2022; Trottner, 2022). In contrast, I use my
qualitative theory to guide and interpret my empirical analyses of the impact of mini-
mum wages on wage inequality. In one respect, my analysis is closest to Engbom and
Moser (2022), who use a job-ladder model to study the implications of minimum wages

2While I show that two types of job ladder models can rationalize my empirical findings, I neither claim
that only job ladder models are consistent with the data nor do I directly test that the wage spillovers I find
in the data are caused by movements up the job ladder; such an exercise would require worker-level wage
panel data.

5



in Brazil. But I am particularly interested in dynamic effects, from which Engbom and
Moser (2022) abstract. In this respect, my analysis is most related to Hurst et al. (2022).
Their dynamics are driven primarily by putty-clay capital as opposed to job ladders.

2 Motivation: national time series evidence

I consider regressions of the form

log
(

wht
w`t

)
= α + βm log mt + βL log

(
Supplyht
Supply`t

)
+ γt + [...] + ιt (1)

Here, log wht and log w`t are measures of high- and low-education average log wages;
log Supplyht and log Supply`t are measures of high- and low-education labor supplies;
and mt is a measure of the real minimum wage, all measured at the national level. The
regression includes a linear time trend, γt, and is identical to the traditional empirical
implementation of the canonical model (e.g., Katz and Murphy, 1992) except for the
inclusion of the real minimum wage.

Measurement. Here I briefly describe how I measure each variable; the Empirical Ap-
pendix contains details. I restrict my sample to the working-age population of those be-
tween 16 and 64 years old and define high-education workers as those with 16 or more
years of education and low-education workers as those with fewer than 16 years of ed-
ucation. I construct the composition-adjusted college premium by first measuring the
average log hourly wage within each of 180 groups (defined by the intersection of 9 age
bins, 2 genders, 2 races, and 5 education levels) in year t and then averaging across those
groups with and those groups without college education using time-invariant weights. I
measure the supply of college and non-college workers as the dual of these wages, such
that the product of composition-adjusted supply and wages equals the observed total in-
come of college and non-college workers in each year. I measure these variables using the
March Annual Demographic Files of the Current Population Survey from 1964 to 2018,
which report earnings from 1963 to 2017.

I measure the minimum wage in year t two ways. In one approach, I use the federal
(FLSA) minimum wage. In my baseline, I use the average minimum wage across states
(the maximum of the legislated state and federal minimum wages), using time-invariant
weights. I deflate each series using the GDP deflator. I refer to my baseline measure as
the real minimum wage and to my alternative measure as the real FLSA minimum wage.

Panels (a) and (b) of Figure 1 display the college premium and relative supply of col-
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Figure 1: Relative Wages, Relative Supplies, and the Minimum Wage
Notes: Panels (a) and (b) display the composition-adjusted college premium and relative supply of college.
Panel (c) displays the real FLSA minimum wage and the real minimum wage series, which averages mini-
mum wages across states; both series are deflated by the GDP deflator. All series are normalized to zero in
1963.

lege workers, both normalized to zero in 1963. The particularly steep rise in the college
premium starting in the early 1980s coincides with a decline in the growth rate of the
relative supply of college workers, a fact first emphasized in Katz and Murphy (1992).
Panel (c) of Figure 1 displays my two real minimum wage series, each normalized to
zero in 1963. The two series move in lockstep until the late 1980s and diverge there-
after (especially in the 2000s) as more states set minimum wages above the federal level.
Both real minimum wage series decline dramatically in the 1980s, as fixed nominal min-
imum wages are eroded by inflation. Finally, there is substantial time variation in both
real minimum wage series, which remain even after residualizing on a high-dimensional
polynomial of time.

Results. Before providing estimation results, I display the variation in the data that iden-
tifies the parameters of interest. Panel (a) of Figure 2 displays the college premium and
relative supply of college, each residualized of the real minimum wage and a linear time
trend. Panel (b) displays the college premium and real minimum wage, each residualized
of the relative supply of college and a linear time trend. The variation in Panel (a) iden-
tifies βL and the variation in Panel (b) identifies βm when estimating regression (1) using
OLS. There is a striking negative relationship in each panel. These qualitative patterns
are robust to residualizing on high-dimensional polynomials of time.

Column (a) of Table 1 displays results of estimating regression (1) using OLS includ-
ing a linear time trend and omitting the real minimum wage on the sample 1963 - 1987.3

This is the specification and sample years included in the seminal work of Katz and Mur-
phy (1992). Column (b) replicates this analysis, but using the full sample of 1963 - 2017.

3I report robust standard errors in all regressions.
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Figure 2: Residualized Independent and Dependent Variables
Notes: Panel (a) displays the composition-adjusted college premium and relative supply, both residualized
of the real minimum wage and a linear time trend. Panel (b) displays the composition-adjusted college
premium and real minimum wage, both residualized of composition-adjusted relative supply and a linear
time trend.

Consistent with past work, estimates are unstable across samples. The growth rate of
skill-biased technical change γ falls from 2.4% per year to 1.8%; and the coefficient on
relative supply βL rises from −0.596 to −0.441 when changing the sample from the Katz
and Murphy years to the full sample; in spite of differences in data cleaning and measure-
ment, these results are very similar to Acemoglu and Autor (2011). The model estimated
on the 1963 - 1987 sample systematically deviates from the data thereafter, predicting a
sharper rise in the college premium than actually occurs, as shown in Figure A.1 in the
Empirical Appendix.

Introducing the real minimum wage goes some way towards fixing this well-known
issue. Columns (c) and (d) replicate Columns (a) and (b), but additionally include the
value of the real minimum wage. Including the real minimum wage leads to a sub-
stantial improvement in the model’s out-of-sample fit—see Figure A.1 in the Empirical
Appendix—and broadly stable parameter estimates across samples. The growth rate of
skill-biased technical change γ and the coefficient on relative supply βL are 2.22% and
−0.594 when estimated on the 1963 - 1987 sample and are 2.11% and −0.556 when esti-
mated on the full sample. The remaining columns (e), (f), and (g) are estimated on the full
sample of years. Columns (e) and (f) include higher-dimensional polynomials of time.
Column (g) replaces the real minimum wage (which averages minimum wages across
states) with the real FLSA minimum wage.

The estimates in Table 1 highlight the importance of supply (education), demand
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1963-1987 1963-2017 1963-1987 1963-2017

(a) (b) (c) (d) (e) (f) (g)

Relative supply -0.596 -0.441 -0.594 -0.556 -0.600 -0.531 -0.510
(0.116) (0.044) (0.137) (0.054) (0.052) (0.102) (0.049)

Real m.w. -0.237 -0.195 -0.159 -0.136
(0.091) (0.040) (0.059) (0.055)

Real FLSA m.w. -0.162
(0.039)

Time 0.024 0.018 0.022 0.021 0.020
(0.005) (0.001) (0.006) (0.001) (0.001)

Constant 0.013 0.024 0.035 0.032 0.021 0.034 0.032
(0.013) (0.007) (0.021) (0.009) (0.014) (0.029) (0.009)

Time Polynom. 1 1 1 1 2 3 1
Observations 25 55 25 55 55 55 55
R-squared 0.324 0.950 0.517 0.968 0.969 0.969 0.963

Table 1: Regression Models for the College Wage Premium
Notes: Results of estimating (1) using OLS. The dependent variable and “Relative supply” are the logs of the
composition-adjusted college premium and relative supply of hours worked. “Real m.w.” and “Real FLSA
m.w.” are the logs of the real minimum wage and real FLSA minimum wage. The sample is 1963-1987 in
columns (a) and (b) and 1963-2017 elsewhere. “Time Polynom.” refers to the degree of the polynomial of
time; the coefficient on the linear trend on “Time” is omitted from the table whenever this polynomial is of
degree 2 or greater.

(technology), and the minimum wage in shaping the evolution of the U.S. college pre-
mium. The elasticity of the college premium with respect to the real minimum wage over
the full sample ranges between −0.136 and −0.195. This elasticity implies that the 27%
decline in the real minimum wage between 1979 and 1989 caused between a 3.7% and a
5.3% increase in the college premium over this time period (see Figure A.2 in the Empiri-
cal Appendix), which is between three to four tenths of the observed 13.4% increase. The
elasticity of the college premium with respect to relative supply ranges between −0.51
and−0.6. This elasticity implies that the slowdown in the growth rate of the relative sup-
ply of college between 1979 and 1989, relative to the growth rate between 1969 and 1979,
raised the college premium by approximately 6.2% to 7.2% in the latter period, which is
around one half of the observed 13.4% increase. All three forces—supply, demand, and
the minimum wage—play important roles not only in this decade, but also throughout
the sample.

Sensitivity. Here, I briefly describe results of four types of sensitivity exercises. I consider
the robustness of results to higher-dimensional polynomials of time, measuring relative
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supply differently, and using data from Autor et al. (2008)’s replication package. I addi-
tionally document the impact of minimum wages separately on high- and low-education
average wages. Details are provided in the Empirical Appendix.4

Appendix Table A.1 extends the baseline analysis by including progressively higher-
dimensional polynomials of time. Results on the impact of the minimum wage are largely
robust up to an eighth-degree polynomial, although the coefficient on supply becomes
insignificant by the fifth-degree polynomial.

My measure of supply is the dual of wages, exactly matching wage income for col-
lege and non-college workers in each year. This measure omits a portion of labor supply
(in the presence of wage markdowns) and depends not only on the supply of labor, but
also its demand (in the presence of endogenous unemployment and labor force partici-
pation). In the Empirical Appendix, I replicate Table 1 using two alternative measures of
labor supply: a composition-adjusted measure of efficiency-unit hours worked (weighing
changes in hours worked of each labor group by a fixed-over-time measure of efficiency
units per hour worked) in Table A.2 and, alternatively, a composition-adjusted measure
of efficiency-unit populations in Table A.3 (weighing changes in the population of each
labor group by a fixed-over-time measure of efficiency units). Both alternatives address
the issue of changing wage markdowns affecting the measure of changing labor supply.
And the population-based measure additionally addresses the issue of changing labor
demand affecting the measure of changing labor supply. Results are broadly similar to
those displayed in Table 1.

Appendix Table A.4 shows that my conclusions on the importance of the minimum
wage for the U.S. college premium holds using data from Autor et al. (2008)’s replication
package. The only exception is the case of a third-degree polynomial of time, where the
coefficient on the minimum wage is insignificantly different from zero.5 Autor et al. (2008)
focus on this specification and, therefore, reach different conclusions.

Finally, Appendix Table A.5 displays results of estimating regression (1) replacing the
dependent variable log(wht/w`t) with log wht and log w`t. A higher minimum wage raises
w`t and lowers log wht, but the point estimate is significant only in the regression on w`t.

Summary. In summary, introducing the real minimum wage into the canonical model’s
estimating equation demonstrates that supply, demand, and the minimum wage each
play central roles in shaping the evolution of the U.S. college premium. Moreover, incor-
porating the minimum wage improves the out-of-sample fit of the model and, in contrast

4Because I composition adjust wages and supplies both here and at the state level, I control for (observ-
able) changes in the composition of the workforce.

5The coefficient on supply is insignificant with a fifth- and sixth-degree polynomial of time.
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to the model without the real minimum wage, implies a much smaller slowdown (or none
at all) in the rate of skill-biased technical change.

This motivating evidence on the importance of minimum wages for the college pre-
mium leaves many questions unanswered. How can the minimum wage have such large
effects when so few workers are bound by it? If large spillovers up the wage distribution
are required to generate these large elasticity estimates, how is this consistent with past
empirical evidence showing stronger direct effects than wage-spillover effects? Finally,
is the national time series identification sufficiently compelling? I now turn to a model
that—together with additional empirical exercises motivated by it—helps address these
issues.

3 Theory

My objectives are fourfold: (i) to provide a simple extension of the theoretical framework
referred to as the canonical model, incorporating monopsony power, minimum wages,
unemployment, a job ladder, and dynamics; (ii) to derive equation (1) estimated above;
(iii) to derive a version of equation (1) that can be estimated using regional variation; and,
finally, (iv) to make predictions on how the resulting regression coefficients vary with the
length of the time difference in consideration. In Section 3.1 I describe a simple model
to make these points: a model of wage bargaining with myopic workers and firms. In
Section 3.2 I characterize the steady state of this model and provide comparative static
results on changes in the minimum wage and labor supply and demand across steady
states. In Section 3.3 I describe the transition to a one-time change in the economic envi-
ronment, focusing on changes in the minimum wage. These insights apply more broadly:
in Section 3.4 I briefly describe related steady-state results in the canonical wage-posting
model of Burdett and Mortensen (1998). Additional details and proofs are contained in
the Theoretical Appendix.

3.1 Setup

Time is discrete and indexed by t. The economy features S labor skills and types of firm,
each indexed by s, with a type s firm hiring only skill s labor to produce type s output.
The mass of skill s workers is Lst. There are many firms of each type, output across type
s firms is perfectly substitutable, and each employed skill s worker produces one unit of
type s output. Final output, Yt, is a constant returns to scale function of the output, Yst, of
each type s, Yt = Y

(
{AstYst}S

s=1

)
, where Ast is time-varying factor-biased productivity.
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The price of the final good is the numeraire and Pst is the endogenous real price of each
unit of type s output.

A worker can be employed or unemployed. Each period, a skill s worker-firm match
faces an exogenous separation probability δs ∈ (0, 1). Each period, an unemployed skill
s worker receives real income vs and matches with a firm with probability λsu ∈ (0, 1].
Each period an employed skill s worker meets a new firm with probability λse ∈ (0, 1). If
a worker meets a new firm, the worker and firm engage in generalized Nash bargaining
to determine if the worker moves from her current employer to the new firm and, if
so, the worker’s fixed-wage contract. The worker’s bargaining power is βs ∈ (0, 1). If
an unemployed worker meets a firm, her outside option is unemployment. If a worker
employed at wage w meets a new firm, her outside option is to continue employment in
her existing match at wage w.6

While wages are fixed and not renegotiable, they are also subject to a minimum wage,
mt. If the minimum wage rises above an existing wage contract, the wage in that match
rises to the minimum wage if the firm and worker find it optimal to maintain the match
at this new wage; otherwise, the firm can endogenously fire the worker and the worker
can quit to unemployment. I assume throughout that the minimum wage satisfies mt ∈
[(1− βs) vs + βsPst, Pst) for each s. The upper bound on mt implies that firms always
find it strictly profitable to hire workers at the minimum wage. The lower bound on mt

implies that firms are constrained by the minimum wage when hiring workers out of
unemployment.

Within period t, I assume exogenous separation shocks occur first and then new matches
are realized for those workers who did not separate in t. Workers and firms are risk neu-
tral and infinitely lived. In what follows, I focus on the case in which the discount factor
is zero, so that each worker maximizes her current wage and each firm maximizes its cur-
rent profit. This assumption facilitates the analysis of the transition to aggregate shocks.
I derive related steady-state results in a canonical (forward-looking) wage-posting model
in Section 3.4.

6I treat the matching probabilities as exogenous, as in, e.g., Postel-Vinay and Robin (2002) and Cahuc
et al. (2006); this rules out the possibility that an increase in the minimum wage (which reduces employer
profit) might reduce matching probabilities disproportionately more for worker skills that are more likely
to be bound by the minimum wage. I rule out the possibility that a worker can exploit a new job offer to
raise her wage with her current employer, consistent with counteroffers being uncommon empirically (see,
e.g., Mortensen, 2003). Finally, unlike Shimer (2006), a worker’s outside option is her current wage rather
than unemployment; wages are, therefore, not renegotiation proof.
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3.2 Steady state

In steady state, the time-varying parameters Lst, Ast, and mt are all fixed across time, as is
the price of type s output, Pst, and the density of wages across workers within each skill s,
which I denote by gst(w). Hence, in what follows, I omit time subscripts and re-introduce
them in Section 3.3. I first solve for the steady-state distribution of wages across workers
within skill s for a given Ps (and, therefore, for any aggregate production function and
any number of skills) and then determine Ps for a specific aggregate production function
and two skills; see Appendix B.1 for details.

Wages along the job ladder. Suppose that a skill s worker at wage w (where I refer to an
unemployed worker’s income of vs as a wage) matches with a new firm. Her new wage
is given by the maximum of the unconstrained bargaining problem, (1− βs)w + βsPs,
and the minimum wage, m. Hence, in steady state there is a wage ladder

{
wj,s
}∞

j=0 with
a discrete set of wages for each skill s. The unemployment benefit is the wage at the
bottom of the ladder: w0,s = vs. The minimum wage is the first rung on the job ladder,
since (1− βs) vs + βsPs < m implies that workers hired out of unemployment are paid
the minimum wage: w1,s = m. And the wage of each successive rung j + 1 > 1 on the job
ladder is a simple function of the wage on the previous rung, the worker’s value marginal
product, and her bargaining power: wj+1,s = (1− βs)wj,s + βsPs. Solving this recursive
system yields7

wj,s = (1− βs)
j−1m + βsPs

j−2

∑
k=0

(1− βs)
k for all j ≥ 1 (2)

A new match increases a worker’s wage, wj+1,s − wj,s = βs
(

Ps − wj,s
)
> 0, but propor-

tionally less for higher initial wages: d
(
wj+1,s/wj,s

) /
dwj,s < 0.

Distribution of workers across the job ladder and the average wage. The probability
that a skill s worker at any wage wj+1,s in period t does not work at this wage in period
t+ 1 is δs + (1− δs)γse, where δs is the probability the worker exogenously separates from
her firm and, if she does not, γse is the probability that she matches with a new firm. The
probability that a skill s worker begins earning wage wj+1,s at date t is (1− δs)γsegs(wj,s),
if j > 0 and γsugs(wj,s) if j = 0, which is the probability that she was one rung below
j + 1 times the probability that she does not separate (if j > 0) and the probability that

7For compactness, here I define ∑0
k=0(1− β)k = 1 and ∑−1

k=0(1− β)k = 0.
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she matches. Hence, the density of wages can be defined recursively as

[δs + (1− δs)γse] gs(w1,s) = γsuus

[δs + (1− δs)γse] gs(wj+1,s) = (1− δs)γsegs(wj,s) for j ≥ 1

where us = gs(w0,s) is the unemployment rate. Solving this recursive system and using
the fact that these densities must sum to one across all j = 0, ..., ∞, yields both

us =
δs

δs + γsu
(3)

and

gs(wj) =

(
(1− δs)γse

δs + (1− δs)γse

)j−1 γsu

δs + (1− δs)γse

δs

δs + γsu
for j ≥ 1 (4)

The average wage among the employed, ws ≡ 1
1−us

∑j≥1 wj,sgs(wj,s), is then

ws =
δs

δs + βs(1− δs)γse
m +

(
1− δs

δs + βs(1− δs)γse

)
Ps (5)

which is simply a weighted average of the minimum wage, m, and the value marginal
product of labor, Ps.

Comparative statics across steady states. According to equation (5), the minimum wage,
m, directly affects the average wage whereas factor supply and demand, Ls and As, only
affect the average wage through skill prices, Ps. The total derivative of ws can be ex-
pressed in terms of the share of wage income earned by skill s at the minimum wage,
denoted by

bs ≡
mgs(m)

(1− us)ws

as follows
d log ws = βmsbsd log m + (1− βmsbs) d log Ps (6)

where
βms ≡

δs + (1− δs)γse

δs + βs(1− δs)γse
> 1 (7)

The impact of changes in the price of skill s output on the average skill s wage is less than
one-for-one, as opposed to in competitive models, because workers do not receive their
value marginal product. Instead, at every step of the job ladder a worker’s wage depends
on the minimum wage, m, and the value marginal product, Ps, so the average wage does
as well, as shown in equation (5).
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The result that βms > 1 is an important one. The elasticity of the average wage with
respect to the minimum wage (across steady states) is strictly greater than what is often
referred to in the literature as its direct effect. The direct effect is the impact on workers
initially earning below the new minimum, whose wages rise to the new minimum wage,
holding fixed wages above this level. If only the direct effect were active, then βms would
equal exactly one. In this job-ladder model, however, there is a direct effect and, at least
in the long run, there are wage spillovers up the distribution above the minimum wage.

In particular, let Ws(c) denote the steady-state wage at percentile c of employed skill s
workers. In response to an increase in the minimum wage, Ws(c) rises for all percentiles,
dWs(c)/dm > 0, but does so disproportionately for lower percentiles,

d [Ws(c)/Ws(c′)]
dm

> 0 for all Ws(c) < Ws(c′)

The intuition for this result and its proof are straightforward. The steady-state share of
workers on each rung of the job ladder is invariant to the value of the minimum wage,
as shown in equation (4). Moreover, in response to an increase in the minimum wage,
wages at lower rungs (and, therefore, at lower centiles of the wage distribution) increase
disproportionately more, conditional on employment, as shown in equation (2).

For the steady-state analysis, it remains only to determine how changes across steady
states in labor supply, labor demand, and the minimum wage affect skill prices, d log Ps

in equation (6). According to equation (4), the share of workers who are unemployed is
fixed across steady states, which implies that changes in skill prices d log Ps depend only
on changes in factor supply and demand. Hence, for any aggregate production function,
steady-state skill prices are determined exactly as in a competitive static model (without
a job ladder, dynamics, or monopsony power) replacing the level of supply, Lst, with a
fixed-across-steady-state constant times the level of supply, (1− us)Lst. These issues have
been considered theoretically and empirically in a wide class of aggregate production
functions, from the canonical model, which features a CES aggregate production function
combining only two skill groups, to nested CES models featuring many skill groups as
in, e.g., Card and Lemieux (2001), and beyond. Of course, it should be noted that while
the determination of steady-state values of Ps are not affected by the job-ladder model,
the relationship between average wages and Ps is, as shown in equation (6).

Given my objective of studying the skill premium and extending the canonical model,
in what follows I impose the same restrictions on the aggregate production function as
in the canonical model: There are two worker skills—high s = h and low-skill s = `
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workers—and the aggregate production function is CES with elasticity η,

Y =

[
(AhYh)

η−1
η + (A`Y`)

η−1
η

] η
η−1

(8)

where Ys = (1− us)Ls. Additionally, and again only for the sake of obtaining a simple
extension of the canonical model, suppose that βm = βms for both skills. Then equation
(6) implies

d log
(

wh
w`

)
= βmbd log m− βLd log

(
Lh
L`

)
+ ∑

s
βAs d log As (9)

where
b ≡ bh − b`

is the minimum wage bite, which is simply the fraction of wage income earned by minimum
wage workers among high-skill, bh, minus the same fraction among low-skill workers, b`,
and where

βL ≡
1
η
(1− βmb`)

Ph(1− uh)Lh
Y

+
1
η
(1− βmbh)

P`(1− u`)L`

Y
(10)

Note that if bs = 0 for both skills (i.e. no workers are at the minimum wage), then βL =

1/η, exactly as in the canonical model.8 Finally, linearize around a particular year, t,
assume that each year represents a new steady state (as would arise, for instance, if there
were infinitely many periods within a year as in a continuous-time model with discrete
changes to supply, demand, and minimum wages each year), and impose the assumption
of the canonical model that Aht and A`t each grow at constant rates across years with
mean zero deviations. These assumptions yield a strict extension of the canonical model,

d log
(

wht
w`t

)
= βmbd log mt − βLd log

(
Lht
L`t

)
+ βAt + ιt (11)

The following proposition summarizes steady-state results.

Proposition 1.

Part 1. In steady state, the wages on the job ladder,
{

wj,s
}

, are given by equation (2), the unem-
ployment rate is given by equation (3), the share of workers at each wage, gs(wj,s), is given by

8In general, the model can be consistent with the long-run (steady-state) elasticity of labor demand
across skills, as in Hurst et al. (2022), since there is a free parameter η in equation (10), as in the traditional
canonical model. The same would apply given a generalized aggregate production function.
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equation (4), and the average wage, ws, is given by equation (5).

Part 2. Across steady states, the wage at each centile of the skill s wage distribution, Ws(c),
increases disproportionately more with the minimum wage for lower centiles: Ws(c) < Ws(c′)⇒
d [Ws(c)/Ws(c′)] /dm > 0.

Part 3. If the production function is given by (8), βm = βms for s ∈ {h, `}, Ast grows at a
constant rate across years t, and each year represents a new steady state, then d log (wht/w`t) is
given by equation (11), where βm > 1 and βL are given by equations (7) and (10).

3.3 Transition dynamics

Consider an economy in steady state at date t = 0 that experiences a one-time increase
in the minimum wage from m to m′ after all matches and bargaining in the period, but
before production occurs and wages are paid. In Proposition 2 in Appendix B.2 I solve in
closed form for the full transition (the distribution of wages at every date t ≥ 0). Here, I
describe the implications of these results.

On impact, the increase in the minimum wage raises the wage to m′ of all workers
employed at a wage below m′, but has no effect above m′. That is, on impact only the
direct effect is active. This implies that the impact elasticity of the average wage of skill s
with respect to the minimum wage equals the share of labor income among the employed
earned at the minimum wage before the shock d log ws0/d log m = bs. This elasticity is
strictly lower than the steady-state impact on the average wage, which is larger by a
multiple of βms > 1, as shown in equation (6). For any number of skills and any aggre-
gate production function, this implies that the impact elasticity of the skill premium (or,
more generally, the relative average wage of any two skill groups) with respect to the
minimum wage is the minimum wage bite b (the share of labor income earned at the min-
imum wage for high- minus the same share for low-skilled workers) just before the shock,
d log(wh0/w`0)/d log m = b, which is again strictly lower than the steady-state elasticity
in equation (11) by a multiple of βm > 1, again assuming that βm = βms for s ∈ {h, `}.

How do wages adjust over time? For each skill s, two wage ladders coexist at all
finite dates following the shock, the steady-state wage ladders associated with m and
with m′, which I denote by wj,s and w′j,s. As described above, in period 0 the increase
in the minimum wage only increases the wages of workers earning below m′, creating
the first rung on the new job ladder, w′1,s = m′. One period after the minimum wage
increase, t = 1, some workers who were employed on the first rung of the new job ladder
at date t = 0 move to the second rung of the new job ladder, w′2,s, and workers hired
out of unemployment are employed at wage w′1,s = m′. Period-by-period, workers enter
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successive rungs of the new job ladder and the number of workers on the new job ladder
rises as the number of workers on the original job ladder falls by an equal amount; the
unemployment rate is constant across time. As the share of workers on the original job
ladder falls, it does so at first only for the lower wage rungs. Over time, the share of
workers at higher and higher rungs of the original job ladder also begins to decline.9

Figure 3 displays the magnification coefficient βm,t associated with the t-period change
in the skill premium following a small increase in the minimum wage at date 0 from m to
m′ > m, defined as

βm,t ≡ log
(

wht
w`t

/
wh
w`

)/[
b log

(
m′

m

)]
(12)

Given parameters satisfying βmh = βm` and a small increase in the minimum wage
(m′ →+ m), the analytic results above provide the limits for βm,t in equation (12) as time
converges to zero and infinity: limt→+0 βm,t = 1 and limt→∞ βm,t = βm > 1 defined in
equation (7). In Figure 3, βm,t rises monotonically over time from 1 to βm.

The figure is constructed under the normalization that the value marginal product of
low-skill workers is P` = 1 for a small change in the minimum wage, from m = 0.45,
under the following (annualized) parameter values. For both skills, the job-separation
rate is δs = 0.13, the job-finding rate for the unemployed is γsu = 0.9, and the job-finding
rate for the employed is γse = 0.7, all broadly consistent with Hall and Mueller (2018), and
the worker’s bargaining power is βs = 0.25. I also set Ph = 2, so that the value marginal
product of high-skill workers is twice that of low-skill workers. These parameters imply
that the initial steady-state minimum wage bite b = bh − b` is approximately = -0.045,
consistent with my measure at the national level described in Section 4.2; the log of the
college premium is approximately 0.54, consistent with the average value of the national
time series data across years in my sample; the average wage is approximately 64% of the
value marginal product for high- and 75% for low-skill workers, in the range of Berger et
al. (2022); and the long-run magnification coefficient is approximately 2.6, in the range of
my longer-run estimates in Section 4.2.

The speed of adjustment in Figure 3 depends crucially on the parameters δs and γse.
A lower value of δs implies that it takes longer for workers to move from the original
job ladder to the new one. A lower value of γse implies that it takes longer for a non-
negligible share of the workers on the new job ladder to ascend up its rungs. See Section

9Depending on assumptions on downward wage adjustment for workers at the minimum wage, a
decline in the real minimum wage can differ have slightly different implications. Regardless of these as-
sumptions, if the minimum wage declines, any worker who exogenously separates from her employer into
unemployment will eventually enter employment at the new minimum wage and will slowly move along
the rungs of the new job ladder, which is now associated with a lower minimum wage. In Section 4.3 I
study empirically changes in nominal minimum wages, which only rise in my estimation sample.
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Figure 3: Magnification coefficient βm,t

Notes: Magnification coefficient βm,t from equation (12), calculated changing the minimum wage from m =
0.45 to m = 0.45001 for βs = 0.25, γse = 0.7, γsu = 0.9, and δs = 0.13 for both s, and for P` = 1 and Ph = 2.

B.2 for details.

3.4 Robustness

In the baseline model, workers and firms bargain over wages. I assume that agents are not
forward looking to facilitate solving the transition to an aggregate shock; and the model
counterfactually predicts that expected job duration is independent of the worker’s wage.
Here, I show that steady-state results are broadly similar in the canonical wage-posting
model of Burdett and Mortensen (1998) with homogeneous workers (within a skill) and
firms, extended to include a minimum wage, as in van den Berg and Ridder (1998). In
this framework, agents are forward looking and job duration is increasing in the worker’s
wage. I consider the case of a single skill s (omitting s subscripts), since this is sufficient to
show which results are robust, and I focus on steady states, since solving for the transition
to an aggregate shock is not straightforward. All results are derived in Appendix B.3.

Assume that parameters are such that the minimum wage is binding. In this setting,
I obtain a result equivalent to Part 1 of Proposition 1 by characterizing the distribution
of wages across employed workers (a result contained in van den Berg and Ridder, 1998)
and the average wage, which I show is a weighted average of the minimum wage and
worker value marginal product, as in my baseline model. I replicate Part 2 of Proposition
1 by solving explicitly for the wage at centile c of the wage distribution, W(c), and show-
ing that W(c) < W(c′) implies d [W(c)/W(c′)] /dm > 0, exactly as in my baseline model.
I do not replicate Part 3 of Proposition 1, which requires incorporating two skill groups
and an aggregate production function.
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From the perspective of my analysis, there are two key distinctions between this model
and my baseline model. First, studying the transition analytically is straightforward in
my baseline model whereas solving even quantitatively for the transition in response to
an aggregate shock (changing the minimum wage) in Burdett and Mortensen (1998) is
more difficult. Second, in my baseline model—as in the data—a mass of workers earn
exactly the minimum wage; in the Burdett and Mortensen (1998) model there are no mass
points in the wage distribution. Hence, in response to a marginal increase in the minimum
wage, the direct effect in my baseline model is positive whereas it is zero here.10

4 Empirics leveraging state variation

Section 2 shows that the minimum wage plays a central role—together with supply and
demand—in shaping the evolution of the U.S. college premium in the national time se-
ries. Nevertheless, however robust are these results to variations in specification and
measurement, there are still obvious limitations: the results are derived from a dataset
with 55 observations and leverage only national time-series variation. In this section, I
instead estimate versions of the extended canonical model of equation (11) leveraging
variation across U.S. states and time. In Section 4.1 I describe the baseline empirical spec-
ification, data, and measurement. In Section 4.2 I display results—varying the length of
time differences—and discuss the extent to which the short- and long-run empirical esti-
mates are consistent with the theoretical results in Sections 3.2 and 3.3 and the motivat-
ing empirical results in Section 2. In Section 4.3, I additionally describe various robust-
ness exercises, including checking for pre-trends. Finally, to document the mechanism
of dynamic wage spillovers more directly, in Section 4.4 I extend the analysis of Autor
et al. (2016)—identifying the impact of changes in the minimum wage on the full wage
distribution—to consider not only one-year differences, but also longer ones.

4.1 Specification and measurement

I estimate a regional version of the extended canonical model based on equation (11).
To bring this equation to the data, I must take a stand on the extent to which state labor
markets face common changes in skill prices or not. States face common skill prices (up to
a skill-state-time specific productivity shifter Asrt) if skill s output is freely traded across

10Related to both points: Engbom and Moser (2022) studies the impact of changes in minimum wages
in the Burdett and Mortensen (1998) model, focusing exclusively on the steady state, and also extends the
model to incorporate a mass point at the minimum wage.
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space whereas each state faces skill prices determined by local supply and demand if the
trade cost for skill s output is infinite. In either case, changes in the local skill premium
depend on changes in the minimum wage only locally. In my baseline, I assume that skill
prices are set nationally, in which case local supply is omitted from equation (11), yielding

∆ log
(

whrt
w`rt

)
= γt + γr + βmbrt∆ log mrt + [...] + ιrt (13)

In sensitivity, I include measures of changes in local skill supplies and show that results
for βm are largely robust. Here, r indexes region, which correspond to the fifty states,
and t indexes time, which correspond to the years 1979 - 2018 (excluding 1994 and 1995
for reasons described below). The term mrt is the real minimum wage in state r in year
t (the maximum of the legislated state and federal minimum wages) and brt ≡ brht −
br`t is the relevant bite of the minimum wage in state r in year t, defined as the share
of high-education minus the share of low-education wage income earned by minimum
wage workers in state r in year t.11

The national time fixed effect, γt, absorbs year-specific changes in the relative price of
high-to-low-skilled output, Pht/P`t, which depend on changes in national supply and de-
mand for worker skills. I additionally incorporate a state fixed effect, γr, which (together
with the fact that the specification is in differences) controls for linear state-specific trend
deviations from the national rate of skill-biased technical change. In some specifications
I additionally include state-specific linear trends, which absorb quadratic state-specific
deviations from the national rate of skill-biased technical change.

Following the theory, I estimate (13) in differences, defining ∆xt ≡ xt+T − xt as the
T-period difference in any outcome x starting in year t. I report results using values of T
ranging from one-year differences to nine-year differences.

To allow for correlation across time in the error terms ιrt, in all specifications I cluster
standard errors by state. In all regressions, I weigh each state by an average across years
of its share of national population.

Measurement and instrument. I switch from using the March CPS at the national level
to the CPS Merged Outgoing Rotation Groups (MORG) at the state level both because the
MORG CPS includes a larger sample, which is particularly useful when dividing the data

11In different empirical contexts, Bailey et al. (2021), Derenoncourt and Montialoux (2021), and Chen and
Teulings (2022) use similar measures of the minimum wage bite, which they define as the share of workers
(rather than the share of income earned by workers) at or below the minimum wage. In this specification,
the log change in the minimum wage is interacted with the minimum wage bite, allowing the impact of a
change in the minimum wage to have larger effects where the bite is larger, similar to the inclusion of the
square of the Kaitz index in Lee (1999) and Autor et al. (2016).
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across fifty states, and because individual wages can be measured with less error (see
Lemieux, 2006), which is especially important for measuring the bite of the minimum
wage. These benefits come at the cost of a shorter time frame, starting with 1979 instead
of 1963. I additionally drop the years 1994 and 1995 given missing imputation flags for all
of the year (1994) or much of it (1995), leaving 38 years of data across fifty states. I clean
the MORG CPS data following closely the approach in Lemieux (2006). See the Empirical
Appendix for details.

I measure the state-year bite, brt, defining a worker as earning the minimum wage if
her wage is no higher than 1.15 times her state’s minimum wage. I choose 1.15 as the
cutoff in order to make my results as comparable as possible to Cengiz et al. (2019), a
comparison I describe in detail below.12 This cutoff is also used in Derenoncourt and
Montialoux (2021). I measure composition-adjusted state-year wages as in the national
specification, but using state-specific rather than national data both in measuring wages
of labor groups and constructing time-invariant weights across them.

Finally, the minimum wage bite, brt, likely suffers from measurement error. And this
error may be correlated with the dependent variable, since the dependent variable (the
change in the college premium between year t and t + T) itself depends on measures of
wages in state r in year t; see Autor et al. (2016). To address this endogeneity concern, I
instrument for brt∆ log mrt with brt−1∆ log mrt. This instrument addresses the endogene-
ity concern if measurement error is uncorrelated across consecutive years. I describe an
alternative instrument in robustness.

4.2 Results

Table 2 displays baseline estimation results. Each cell of the table displays the coefficient
on brt∆ log mrt from a distinct regression. Columns 1 and 2 report results estimating re-
gression (13) using OLS whereas columns 3 and 4 report results estimated using 2SLS.
Each row T = 1, ..., 9 presents results from estimating regression (13) using the corre-
sponding time difference ∆xt ≡ xt+T − xt, with one-year changes in row one and nine-
year changes (in both skill premia and minimum wages) in row nine. I include time and
state fixed effects, γt and γr, in all columns. I additionally incorporate a linear state trend
in columns 2 and 4.

In first differences (row 1), the 2SLS coefficients on the minimum wage interaction

12Cengiz et al. (2019) consider the minimum wage bin to be all wages between the minimum wage and
one dollar (deflated to 2016) above. Given a minimum wage of $7 (which is approximately the median
across states and sample years), this implies that workers earning up to approximately 1.15 times the mini-
mum wage are considered to be at the minimum wage, as in my measure of brt.
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OLS IV

Time difference (years) (1) (2) (3) (4)

1 0.73 0.80 1.09∗ 1.26∗∗

(0.691) (0.739) (0.603) (0.624)
[2712] [2509]

2 0.81 1.02 1.35∗ 1.63∗∗

(0.716) (0.765) (0.692) (0.717)
[7534] [8870]

3 0.91 1.10 1.48∗∗ 1.65∗∗

(0.737) (0.783) (0.728) (0.726)
[7703] [9135]

4 1.29∗ 1.46∗ 1.76∗∗ 1.93∗∗

(0.744) (0.742) (0.849) (0.846)
[1283] [1419]

5 1.78∗∗ 1.98∗∗ 2.10∗∗ 2.34∗∗∗

(0.763) (0.790) (0.846) (0.860)
[2443] [2207]

6 1.88∗∗ 2.12∗∗∗ 2.06∗∗ 2.32∗∗

(0.704) (0.735) (0.868) (0.907)
[1514] [1448]

7 2.06∗∗∗ 2.33∗∗∗ 2.23∗∗∗ 2.52∗∗∗

(0.746) (0.771) (0.823) (0.855)
[1416] [1335]

8 1.88∗∗ 2.20∗∗∗ 2.23∗∗∗ 2.61∗∗∗

(0.704) (0.718) (0.757) (0.779)
[2480] [2522]

9 2.22∗∗∗ 2.62∗∗∗ 2.69∗∗∗ 2.97∗∗∗

(0.709) (0.747) (0.691) (0.752)
[3611] [3421]

Year FE Y Y Y Y
State FE Y Y Y Y
Linear state trend N Y N Y

Note: Results of estimating equation (13). Each cell reports the coefficient of brt∆ log mrt, and its standard
error in parentheses, from a separate regression. Columns 1 and 2 estimate (13) using OLS whereas columns
3 and 4 use 2SLS (and additionally report the first stage F-statistic in brackets). Row T uses T-year differ-
ences, ∆xt = xt+T − xt. In columns 1 and 2 there are 1,800 observations in row 1 and 50× (36− T) in row
T ≥ 2. In columns 3 and 4 there are 100 fewer observations in each row than column 1 since the instrument
uses the one-year lagged value of brt, which is missing in 1979 and 1996.

Table 2: Impact of brt∆ log mrt on State-Level College Wage Premia
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range between approximately 1.1 and 1.25.13 These results are consistent with the theo-
retical prediction in Section 3.3 that the impact elasticity of the skill premium with respect
to the minimum wage equals the minimum wage bite, which is equivalent to a row-one
estimate of one.14 These first-difference results imply that in the first year after the change
in the minimum wage, the change in the skill premium is consistent with the direct effect
of a change in the minimum wage—raising the wages of workers initially earning below
the new minimum wage—with at most very small indirect effects (i.e., very small wage
spillovers up the wage distribution above the minimum wage). I cannot reject that any of
the first-row coefficients equal one and, therefore, cannot reject that wage spillovers have
no effect on the skill premium on impact.15

The theory in Section 3 predicts that these elasticities should increase with the length
of the time difference.16 This prediction also fares well in the data. Empirically, coefficient
point estimates tend to rise with the length of the time difference in each column. The
coefficients in the last row, using nine-year differences, are statistically different from one
in all columns. In this row, the 2SLS coefficients range between approximately 2.7 and
3. These coefficients imply that, in the longer run approximately 35% (≈ 1/2.69 using
column 3 and ≈ 1/2.97 using column 4) of the total impact of the minimum wage on
the skill premium is caused by the direct effect, with approximately 65% caused by the
indirect effect of wage spillovers above the minimum wage.

How do the coefficient estimates in Table 2 relate to results in the literature? Using
one-year differences, Autor et al. (2016) find that the direct effect of the minimum wage
is large while wage spillovers are minimal. My first-difference results in row one of Ta-
ble 2 are then broadly consistent with these results: I find that the direct effect explains
between approximately 80% (≈ 1/1.26, using the higher 2SLS estimate in column 4) and
92% (≈ 1/1.09, using the lower 2SLS estimate in column 3) of the total change in the skill
premium in the first year. Cengiz et al. (2019) quantify the direct and indirect effects of
changes in the minimum wage on average wages in a $4 (deflated to 2016) range around
the minimum wage. To do so, they average wage changes over the five years following

13Recall that the minimum wage interaction, brt∆ log mrt, is the log change in the real minimum wage
times the minimum wage bite, where the bite is always negative. Hence, a positive coefficient in Table 2
implies that an increase in the minimum wage reduces the college premium.

14If a period in the model is shorter than a year, as is likely the case in reality, then the row-one estimates
should be greater than one.

15Of course, this conclusion depends on the definition of the cutoff wage below which the minimum
wage is assumed to bind, which is 1.15 times the minimum wage to facilitate comparison to Cengiz et al.
(2019).

16The theory makes this prediction in response to a single change in the minimum wage. In sensitiv-
ity analysis in Section 4.3 I take an alternative empirical approach that addresses the issue that the real
minimum wage continues to evolve.
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Time Differences in Years Levels

(1) (2) (3) (4) (5) (6)

Supply -0.061 -0.161 -0.290 -0.344 -0.410 -0.488 -0.575
(0.102) (0.096) (0.097) (0.087) (0.075) (0.070) (0.057)

m.w. interaction 1.024 1.549 2.263 2.297 2.662 3.621 4.561
(1.251) (0.992) (0.940) (1.066) (1.241) (1.187) (0.906)

Observations 54 53 52 51 50 49 55
R-squared 0.024 0.086 0.201 0.241 0.346 0.488 0.965

Table 3: Regression Analysis for the National College Wage Premium, Interacting the
Real Minimum Wage with its Average Bite Across Sample Years
Notes: Columns (1) - (6) estimate the national canonical model in time differences, interacting the change
in the real minimum wage with its average bite (across MORG sample years). Column (1) is in one-year
differences, (2) is in two-year differences, ..., and (6) is in six-year differences; these columns do not include
a time trend. The final column estimates the national canonical model in levels, interacting the level of the
real minimum wage with its average bite; this column includes a linear time trend. The minimum wage
bite is calculated using the MORG CPS and the supply and wage data using the March CPS.

a minimum wage increase. They find that approximately 60% of the total wage effect of
a change in the minimum wage is caused by the direct effect, with 40% caused by wage
spillover effects above the minimum wage. To compare with my results for the college
premium, I take the average of the coefficients across rows 1-5 in Table 2, yielding 1.56
using column 3 and 1.76 using column 4. These averages imply that the direct effect ex-
plains approximately 64% (1/1.56) using column 3 and 57% (1/1.76) using column 4 of
the total effects of the minimum wage on the skill premium (averaging across the five
years), in line with Cengiz et al. (2019). In addition to being consistent with past empir-
ical results, my results also explain why Cengiz et al. (2019) find a larger role for wage
spillovers than do Autor et al. (2016)—the difference in time changes—by showing that
the indirect effect grows with time.

Finally, how do the coefficients in Table 2, which leverage variation across time and
states, relate to the estimates in Table 1, which leverage variation from the national time
series alone? These specifications differ in two additional respects: in Section 2, the spec-
ification is in levels and the minimum wage is not interacted with its bite whereas here
the specification is in time differences and the change in the minimum wage is interacted
with its bite. Table 3 displays results of estimating the national time-series regression
interacting the real minimum wage with its average bite across all years.17 Column (1)

17I use the average bite rather than the bite in each year t to avoid dropping much of the data, since
the MORG data to construct the bite only goes back to 1979. The average bite is -0.046 when defining a
worker in state r to be at the minimum wage if she earns no higher than 1.15 times her state minimum
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displays results of estimating in one-year differences, column (2) in two-year differences,
..., and column (6) in six-year differences. The final column estimates the regression in
levels. In changes, the minimum wage coefficients are very similar to the state-level es-
timates, starting around 1.0 for one-year changes and rising monotonically to 3.5 for six-
year changes.18 In levels, the minimum wage interaction coefficient is 4.2, slightly higher
than the difference estimates at the state and national levels. In sum, these results im-
ply that the impact of minimum wage changes is similar at the national and state levels
qualitatively, with both starting small and growing over time, and quantitatively.

Summary. Consistent with results from the national time series, changes in the minimum
wage play a central role in shaping the differential evolution of college premia across U.S.
states between 1979 and 2018. Moreover, consistent with the theory, the impact of changes
in the minimum wage is initially almost exclusively driven by its direct effect and, over
time, magnified by wage spillovers up the wage distribution.

4.3 Sensitivity

Here, I briefly describe results of the following robustness exercises: incorporating mea-
sures of relative state-specific supply changes, using a different instrument that addresses
the possibility of measurement error that is correlated across years, incorporating the min-
imum wage bite as an additional control, checking for pre-trends in the college premium,
identifying the effect of nominal (rather than real) changes in the minimum wage, and
using a different instrument that identifies the time-varying elasticity βm,t. I additionally
document the impact of minimum wages separately on high- and low-education average
wages. Details of each exercise is provided in the Empirical Appendix.

Supply. In my baseline I assumed that skill prices are set nationally, in which case local
supply is omitted from equation (13) and the national change in skill prices is subsumed
by the time fixed effect. Here, I incorporate changes in relative supply across states.
I do so measuring changes in supply three ways: as the dual of wages (as in the na-
tional time-series approach), as a composition-adjusted measure of efficiency-unit hours
worked (weighing changes in hours worked of each labor group in each state by a fixed-
over-time measure of efficiency units per hour worked), and as a composition-adjusted
measure of efficiency-unit populations (weighing changes in the population of each labor

wage, consistent with the construction of brt in the state-level regressions
18The result that the supply elasticity is increasing in the length of the time difference is also consistent

with the theory in Section 3, although this is not the focus of my transition analysis. Tables A.6 and A.7 in
the Empirical Appendix replicate Table 3 using the two alternative measures of relative supply; results are
broadly robust.
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group in each state by a fixed-over-time measure of efficiency units). Tables A.8, A.9, and
A.10 in the Empirical Appendix display results on the impact of changes in the minimum
wage on the college premium. These results are very similar to those displayed in Table
2.

Correlated measurement error. My baseline instrument for brt∆ log mrt is brt−1∆ log mrt.
This instrument addresses the endogeneity concern if measurement error is uncorrelated
across consecutive years. I also consider a different instrument: b

t
rtb

r
rt∆ log mrt, where b

t
rt

is the average bite of the minimum wage in state r across all years in the sample before
year t and b

r
rt is the leave-out average bite of the minimum wage in year t across all states

other than state r. In a sufficiently long sample, the alternative instrument allows mea-
surement error to be correlated across years and would instead require that measurement
error be mean zero on average within each state across years and across states within each
year. Table A.11 displays results that are broadly similar to Table 2.

Controlling for the minimum wage bite. One potential concern is that the bite measure,
brt, rather than the actual change in the minimum wage, ∆ log mrt, is doing the work in
these state-by-time regressions. To investigate this issue, I estimate a version of regression
(13) including an additional control: brt−1. Table A.12 displays results, which are very
similar to Table 2.

Parallel trends. Another potential concern is that the parallel trend assumption is vio-
lated. To investigate this possibility, I regress lagged changes in the college premium,
between year t− T and year t for various values of T ≥ 1, on the minimum wage inter-
action between years t and t + 1. Table A.13 displays results consistent with the parallel
trend assumption.

Nominal minimum wage changes. My baseline analysis identifies the impact of a real
minimum wage interaction. This has two implications. First, it combines changes in nom-
inal minimum wages and inflation. Second, it combines increases in real minimum wages
(induced by increases in nominal minimum wages) along with decreases (induced by in-
flation). To determine if my baseline results are consistent with the impact of increases in
nominal minimum wages, I consider an alternative specification in which I additionally
control for the interaction between the log change in the GDP deflator interacted with the
state’s time-varying minimum wage bite. In this case, the coefficient on the real minimum
wage interaction identifies the impact of changes in nominal minimum wages alone. Ta-
ble A.14 displays results of the minimum wage interaction coefficient, which are very
similar to the real minimum wage interaction coefficients in Table 2.

Time-varying elasticities. In my theory, and in Figure 3, I consider the time-varying
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impact of a once-off change in the real minimum wage. In practice, however, the real
minimum wage changes often, both because of changes in nominal minimum wages and
inflation. To identify the time-varying impact of a once-off change in the real minimum
wage, I instrument for the T year change in the minimum wage interaction using the
one-year change in the minimum wage interaction. Table A.15 displays results that are
broadly consistent with my baseline results.

College and non-college wages. Finally, Appendix Table A.16 displays results of esti-
mating regression (13) replacing the dependent variable log(wht/w`t) with log wht and
log w`t. On impact, the minimum wage interaction coefficient in the regression of w`t is
negative and significant (recall that the minimum wage interaction is the log change in the
real minimum wage times the minimum wage bite, which is always negative); it remains
negative throughout and significant for all but the 9-year difference specification. On im-
pact, the minimum wage interaction coefficient in the regression of log wht is positive and
insignificant; it remains positive throughout and never becomes statistically significant.

4.4 Dynamic effects of the minimum wage across the distribution

My results in Table 2—of a growing impact of the minimum wage on the skill premium
over time—are consistent with dynamic spillovers up the wage distribution that decline
for higher wage centiles, as predicted by my theory in Part 2 of Proposition 1. Here, I
provide direct evidence. I leverage the approach and replication package of Autor et al.
(2016) (henceforth, AMS). Following Lee (1999), AMS identify the impact of changes in
the minimum wage on the wage of centile c relative to the median wage by estimating
the following regression in first differences across years (using the MORG CPS between
1979 and 2012)

∆ log
(

Wrt(c)
Wrt(50)

)
= β1(c)∆ log

(
mrt

Wrt(50)

)
+ β2(c)

[
∆ log

(
mrt

Wrt(50)

)]2

+ αr + αc + εrt(c) (14)

using state, r, and time, t, variation. Here, Wrt(c) is the wage at centile c in region r in
year t, so that Wrt(50) is the median wage. Because both the dependent and independent
variables depend on the median wage, which is measured with error, they instrument us-
ing the first difference of the log of the minimum wage, the first difference of the square
of the log minimum, and the first difference of the log minimum interacted with the av-
erage real log median for the state over the sample. AMS report the marginal effects for
selected percentiles in column 4 of their table 2. I follow their approach exactly, but vary
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Time difference in years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

p(5) 0.295 0.341 0.320 0.310 0.292 0.303 0.329 0.352 0.370
(0.063) (0.062) (0.053) (0.046) (0.045) (0.043) (0.036) (0.035) (0.047)

p(10) 0.168 0.199 0.191 0.179 0.159 0.179 0.196 0.196 0.225
(0.044) (0.045) (0.039) (0.029) (0.031) (0.034) (0.032) (0.031) (0.033)

p(20) 0.036 0.036 0.046 0.060 0.065 0.067 0.058 0.070 0.097
(0.028) (0.025) (0.024) (0.024) (0.021) (0.018) (0.022) (0.026) (0.029)

p(30) -0.003 0.009 0.024 0.037 0.036 0.035 0.025 0.026 0.049
(0.023) (0.022) (0.019) (0.019) (0.019) (0.021) (0.028) (0.029) (0.025)

p(40) 0.016 0.031 0.032 0.025 0.015 0.009 0.019 0.015 0.026
(0.032) (0.027) (0.014) (0.011) (0.015) (0.015) (0.018) (0.017) (0.020)

p(75) 0.014 0.021 0.018 0.018 0.010 -0.004 -0.014 -0.011 0.004
(0.023) (0.019) (0.020) (0.017) (0.017) (0.017) (0.021) (0.021) (0.022)

p(90) 0.021 0.030 0.037 0.030 0.003 -0.013 -0.024 -0.034 -0.007
(0.034) (0.033) (0.034) (0.034) (0.034) (0.034) (0.038) (0.040) (0.040)

Table 4: Distributional effect of minimum wage changes for select percentiles (relative to
the median) using one-year to nine-year differences, including females and males
Notes: Estimates of equation (14). Each column j ∈ {1, ...9} replicates column 4 of Table 2B in AMS, which
uses one-year differences, but using j-year differences instead.

the length of the time differences (both in the depenedent and independent variables in
regression (14), in the regression weights, and in the instruments).

Table 4 displays results for various centiles, with column j ∈ {1, ..., 9} showing results
associated with the j-year time difference in regression (14). Since column 1 is a one-year
difference, it exactly replicates column 4 of Table 2B in AMS. As noted in AMS, effects
are small and insignificant by the 20th centile of the wage distribution. Columns 2 - 9
display new results. Over time, the point estimates associated with the 10th, 20th, and
30th percentiles tend to rise while the point estimates associated with the 75th and 90th
percentiles tend to fall. While on impact wages rise only at the bottom of the distribu-
tion (relative to the median), in the longer run lower centiles of the wage distribution
experience disproportionate wage gains relative to higher wage centiles. Each of these
results is broadly consistent with the prediction in Part 2 of Proposition 1. Hence, it ap-
pears that the dynamic response of the skill premium to changes in the minimum wage
documented in Table 2 and predicted by Part 3 of Proposition 1 are driven by changes
throughout the wage distribution, consistent with the theory. Table A.17 in the Empirical
Appendix displays results estimated separately on the subsamples of females and males;
similar patterns are evident.
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5 Conclusions

What is the impact of the minimum wage on the college premium? In this paper I present
a simple theoretical argument and both national and a range of state-level empirical ev-
idence showing that the minimum wage plays a central role in shaping the U.S. college
wage premium and its variation across states and showing that these impacts are slow
developing.

Theoretically, I have provided a generalization of the canonical model featuring monop-
sony power and minimum wages, labor-market dynamics, a job ladder, and unemploy-
ment that maintains the simplicity and tractability of the purely neoclassical model. The
model generates a simple estimating equation similar to the canonical model, addition-
ally incorporating the real minimum wage. The model predicts that at the moment the
minimum wage increases, the elasticity of the skill premium with respect to the minimum
wage equals its bite, as wages rise only for those earning below the new minimum wage.
Over time, however, the model predicts that the increase in the minimum wage spills
over to wages higher up the distribution as workers slowly climb the job ladder starting
from a higher entry wage. This implies that the long-run elasticity of the skill premium is
strictly greater than the short-run elasticity.

Empirically, at the national level I have shown that changes in the real minimum
wage—together with changes in supply and demand—play a substantial role in generat-
ing the observed evolution of the U.S. college premium between 1963 and 2017. I have
also documented that incorporating the real minimum wage into the empirical imple-
mentation of the canonical model improves its out-of-sample fit and, in contrast to the
model without the real minimum wage, implies a much smaller slowdown (or none at
all) in the rate of skill-biased technical change. These conclusions differ from the past
literature and I show why.

Empirically, at the state level I have shown that the impact elasticity of the college
premium roughly equals the minimum wage bite, consistent with my theory and past
empirical work finding small wage spillover effects. I find that the longer-run effects
are much larger, implying sizable spillover effects up the wage distribution, consistent
with my theoretical predictions and national estimates. In the longer run, minimum
wages—together with supply and demand—play a first-order role in shaping national
and regional college premia (in spite of small wage spillovers in the short run). Finally,
I additionally document that increases in the minimum wage have substantially larger
longer-run effects throughout the wage distribution (raising wages at lower percentiles
disproportionately more than at higher percentiles) than previously documented in the
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short run, again confirming the predictions of my theory.
My model is not aimed at conducting a quantitative policy analysis or welfare coun-

terfactual. My theoretical goal was instead qualitative: to guide my empirical analysis
and interpret its results, with a particular focus on differences between impact elasticities
and longer-run elasticities. Of course, the model abstracts from many issues, both related
to the minimum wage (including the employment effects at the heart of the macro-labor
literature) and other institutions (including unions). In addition, while my theory is con-
sistent with a job-ladder model, without worker-level wage panel data I do not provide
direct evidence of the minimum wage affecting wages along the job ladder, which I con-
sider an important avenue for future work.

Finally, my dynamic analysis suggests an open question. Engbom and Moser (2022)
find substantially larger wage spillover effects in Brazil than do Autor et al. (2016) in the
U.S. context and conjecture that this difference may be due to less measurement error or
more binding minimum wages in Brazil. Similarly, Fortin et al. (2021) find substantially
larger wage spillover effects in the U.S. in the 1980s than in later decades. These two
contexts share in common the fact that real minimum wage changes were monotonic
(rising in Brazil throughout the period and falling in the U.S. in the 1980s). It would
be interesting to determine if abstracting from the dynamic effects of minimum wage
changes (predicted by my theory and found in my empirical analyses) leads to larger
identified effects of minimum wages on the wage distribution in periods of monotonic
changes in real minimum wages than in periods of fluctuating changes.
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A Empirical Appendix

Constructing real minimum wages. I construct real minimum wages as follows. In
1974-2012, I use data from Autor et al. (2016) to measure state-year minimum wages.
For each month and state, I define the relevant minimum wage as the maximum of the
legislated state and federal (FLSA) minimum wages. For each state and year I then aver-
age minimum wages across months to construct the state-year minimum wage. For the
remaining years, I measure annual federal minimum wages using data from the Depart-
ment of Labor (averaging across months) and I measure annual legislated state minimum
wages using data from FRED. For each state-year, I take the maximum of these annual
numbers to obtain the minimum wage. In measuring state real minimum wages, I deflate
using the GDP deflator from FRED. This approach yields the state-year series of annual
real minimum wages.

To construct the national time series of real minimum wages, I additionally take the
following steps. After constructing the state-year series of annual real minimum wages,
I average across states in each year using fixed weights and refer to this as the real mini-
mum wage. When using the FLSA minimum wages instead, I also deflate using the GDP
deflator.

A.1 National time-series analysis

Basic processing of the March CPS data. I use the March Annual Demographic Files
of the Current Population Survey from 1964 to 2018, which report earnings from 1963 to
2017, for workers age 16 to 64 during the earnings year. Thus, throughout when I refer to
any year, I am using the following year’s March CPS.

I drop respondents with missing schooling, missing or negative earnings, or with
missing weeks worked. I additionally drop those who are self employed or engage in
unpaid family work and anyone with allocated earnings. Finally, I drop respondents
who are part of the 3/8 redesign in the 2014 ASEC sample. Following Autor et al. (2008)
I multiply top-coded earnings by 1.5.

In composition adjusting, I bin workers into one of 180 groups, denoted by g, defined
by the intersection of 9 age bins, 2 genders, 2 races (white and all other self-reported
races), and 5 education levels (high school dropout, high school graduate, some college,
college complete, and graduate training).19 The lowest three educations—high school

19Up to and including 1991, I use the highest grade of school completed; I define college complete as
having finished the fourth year of college and graduate training as having more than four years of college.
Starting in 1992 I use degree completion, assigning associate’s degrees to some college.
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Figure A.1: Out-of-sample predictions of the (national) canonical model, estimated on the
sample 1963-1987 including and not including the real minimum wage
Notes: The predicted national college premium from estimating equation (1) on the sample of years 1963-
1987, both including and excluding the real minimum wage.

dropouts, those with a high school degree, and those with some college—are allocated to
non-college; the highest two educations—college graduates and graduate training—are
allocated to college.

Constructing Wages and Supplies. In each year t and for each of the 180 groups g I
construct total hours worked and total wage and salary income (using sample weights)
and, from this, the average wage of each group-year pair, wgt for group g. Within each
year I average across the log wages of all groups with at least a college degree (denoting
the set of these groups by Gh) and, separately, across all groups without (denoting the set
of these groups by G`) using time-invariant weights. For instance, for college-educated
workers, I have

log wht = ∑
g∈Gh

ωg log wgt

where ωg is the time-invariant weight applied to group g. These weights are constructed
using the average across years of the share of hours worked of each group g within the set
of college groups Gh and, separately, within the set of non-college groups G`. The resulting
averages are the composition-adjusted wages log wht and log w`t used in the analysis.

In my baseline, I construct composition-adjusted supplies of college and non-college
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Figure A.2: Detrended National College Premium and Predicted Impact of the Minimum
Wage and Supply
Notes: “Observed” is the (linearly) detrended national college wage premium. To construct the remaining
plots, I regress the detrended college premium on a constant, detrended supply, and the detrended real
minimum wage. “Both mw and supply” plots the predicted value of the detrended college premium.
“Only mw” and “Only supply” plot the predictions of the detrended college premium using the estimated
intercept and either the estimated minimum wage (omitting supply) or estimated supply (omitting the
minimum wage) coefficient.

workers as the dual of these wages. In particular, I set log Supplyht = log Incht − log wht

where Incht is the total income of college-educated workers in raw (weighted) data in
year t. I similarly construct log Supply`t.20 In robustness exercises I measure supply
differently. I describe these alternative approaches below.

Robustness of Table 1. Table A.1 displays results of estimating equation (1) including
progressively higher polynomials of time. The minimum wage is negative and significant
in all specifications, up to and including an eighth-degree polynomial of time.

Tables A.2 and A.3 replicate Table 1 using two distinct measures of relative skill sup-
ply. These results are broadly similar to Table 1.

In Table A.2 I measure changes in relative supply using a composition-adjusted mea-
sure of changes in efficiency-unit hours worked. The hours-based measure is constructed
as follows. In the first step, for each year and college group (each labor bin is either in
the set with completed college education or without), I construct a composition-adjusted

20When constructing wages and supplies for each state r, I follow exactly the same procedure as above,
but using data within state r alone.
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1963-2017

(a) (b) (c) (d) (e) (f) (g) (h)

Relative supply -0.556 -0.600 -0.531 -0.477 -0.080 0.046 0.050 0.088
(0.054) (0.052) (0.102) (0.089) (0.126) (0.092) (0.094) (0.078)

Real m.w. -0.195 -0.159 -0.136 -0.177 -0.161 -0.117 -0.117 -0.075
(0.040) (0.059) (0.055) (0.062) (0.041) (0.030) (0.030) (0.029)

Constant 0.032 0.021 0.034 0.025 -0.015 -0.075 -0.073 -0.027
(0.009) (0.014) (0.029) (0.028) (0.017) (0.012) (0.013) (0.009)

Time Polynom. 1 2 3 4 5 6 7 8
Observations 55 55 55 55 55 55 55 55
R-squared 0.968 0.969 0.969 0.971 0.981 0.990 0.990 0.992

Table A.1: Regression Models for the College Wage Premium (Higher Time Polynomials)
Notes: The estimating equation is (1) and the sample is 1963-2017 in all columns. The dependent variable
and “Relative supply” are the logs of the composition-adjusted college premium and relative supply of
hours worked. “Real min. wage” is the log of the real minimum wage. “Time Polynom.” refers to the
degree of the polynomial of time. Robust standard errors are reported.

weighted average wage. The fixed-over-time weights are identical to those used in the
construction of composition-adjusted wages. In the second step, I then divide the av-
erage wage of each labor group in that year-college pair by the average across all labor
groups (in the corresponding year-college pair) created in the first step; this provides a
year-specific measure of the relative wage of each group within the college-educated and
within the non-college-educated. In the third step, I take an average across years of this
relative wage within each labor group. This average across years is a measure of the av-
erage efficiency units supplied by each hour of labor of this labor group relative to the
average labor group in the same college group. Of course, this average does depend on
the average amount of monopsony power confronted by this labor group across time;
but changes in monopsony power across time do not generate changes across time in this
measure of efficiency units. In the fourth step, I take a weighted average of hours worked
across all labor groups in the year-college pair, weighting by the average efficiency units
supplied by each of these labor groups across time. Finally, I measure supply as the loga-
rithm of this composition-adjusted weighted average of efficiency-unit hours worked.

38



1963-1987 1963-2017 1963-1987 1963-2017

(a) (b) (c) (d) (e) (f) (g)

Relative supply -0.519 -0.439 -0.574 -0.575 -0.620 -0.506 -0.519
(0.109) (0.047) (0.111) (0.057) (0.055) (0.092) (0.051)

Real m.w. -0.269 -0.211 -0.177 -0.133
(0.090) (0.042) (0.060) (0.055)

Real FLSA m.w. -0.172
(0.041)

Time 0.020 0.018 0.021 0.021
(0.004) (0.001) (0.005) (0.001)

Constant 0.018 0.023 0.039 0.032 0.022 0.044 0.032
(0.014) (0.007) (0.020) (0.009) (0.015) (0.029) (0.009)

Time Polynom. 1 1 1 1 2 3 1
Observations 25 55 25 55 55 55 55
R-squared 0.282 0.946 0.527 0.965 0.966 0.969 0.960

Table A.2: Replicating Table 1 using composition-adjusted changes in efficiency-unit
hours worked
Notes: Replicating Table 1 replacing the baseline measure of relative supply using a measure of composition-
adjusted changes in hours worked.

1963-1987 1963-2017 1963-1987 1963-2017

(a) (b) (c) (d) (e) (f) (g)

Relative supply -0.786 -0.317 -0.800 -0.598 -0.804 -0.574 -0.491
(0.167) (0.066) (0.151) (0.082) (0.096) (0.139) (0.078)

Real m.w. -0.246 -0.302 -0.271 -0.135
(0.078) (0.057) (0.065) (0.055)

Real FLSA m.w. -0.235
(0.054)

Time 0.026 0.014 0.025 0.020
(0.006) (0.002) (0.005) (0.002)

Constant 0.001 0.006 0.022 0.022 -0.006 0.052 0.021
(0.019) (0.009) (0.023) (0.009) (0.018) (0.032) (0.009)

Time Polynom. 1 1 1 1 2 3 1
Observations 25 55 25 55 55 55 55
R-squared 0.423 0.909 0.630 0.936 0.941 0.964 0.930

Table A.3: Replicating Table 1 using composition-adjusted changes in efficiency-unit pop-
ulations
Notes: Replicating Table 1 replacing the baseline measure of relative supply using a measure of composition-
adjusted changes in population.
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In Table A.3 I measure changes in relative supply using a composition-adjusted mea-
sure of efficiency-unit populations (in which populations that earn more on average re-
ceive higher weight). This population-based measure is constructed very similarly to
the composition-adjusted measure of efficiency-unit hours worked. In the first step, for
each year and college group, I construct a composition-adjusted weighted average income
(again, using weights that are identical to those used in the construction of composition-
adjusted wages). In the second step, I divide total income of each labor group by the
average across all labor groups (in the corresponding year-college pair) created in the
first step. In the third step, I take an average across years of this relative income within
each labor group. This average across years is a measure of the total efficiency units
supplied across all agents in this labor group relative to the average labor group in the
same college group that is invariant across years. In the fourth step, I take a weighted
average of populations across all labor groups in the year-college pair, weighting by the
share of total efficiency units supplied by each of these labor groups across time. Fi-
nally, I measure supply as the logarithm of this composition-adjusted weighted average
of populations. As with the composition-adjusted measure of hours worked, changes in
monopsony power across time do not generate changes across time in this measure of ef-
ficiency units. In addition, because I take a weighted average of populations rather than
hours worked, changes in unemployment and non-employment more generally do not
affect this measure of changes in supply.

Comparison of results with Autor et al. (2008). Autor et al. (2008) estimate a related
reduced-form regression including the real minimum wage. They report two specifica-
tions including the real minimum wage and relative supply, in columns 6 and 7 of their
Table 2. In column 7, they include only a linear time trend and find a significant and neg-
ative coefficient on the real minimum wage that is similar to my estimates. In column 6,
they include a cubic polynomial of time and find that the coefficient on the real minimum
wage is negative, relatively small, and insignificantly different from zero. They conclude
that the real minimum wage “does not much alter the central role for relative supply
growth fluctuations and trend demand growth in explaining the evolution of the college
wage premium” and that “institutional factors are insufficient to resolve the puzzle posed
by slowing trend relative demand for college workers in the 1990s.”

I find relative supply growth fluctuations and trend demand growth remain crucial
drivers of the college premium, consistent with Autor et al. (2008), but so too are changes
in the real minimum wage. I also find that changes in the minimum wage are sufficient
to resolve the puzzle posed by slowing trend relative demand for college workers in the
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1963-2005

(a) (b) (c) (d) (e) (f)

Relative supply -0.431 -0.606 -0.612 -0.216 0.013 0.028
(0.051) (0.077) (0.091) (0.113) (0.104) (0.093)

Minimum wage -0.113 -0.109 -0.064 -0.174 -0.123 -0.119
(0.049) (0.049) (0.048) (0.052) (0.040) (0.043)

Constant 0.253 0.071 -0.001 0.523 0.581 0.591
(0.083) (0.112) (0.119) (0.179) (0.134) (0.130)

Time Polynom. 1 2 3 4 5 6
Observations 43 43 43 43 43 43
R-squared 0.942 0.947 0.954 0.972 0.979 0.979

Table A.4: Regression Analysis for the College Wage Premium Using Data From the
Replication Package for Autor et al. (2008)
Notes: This table estimates (1) using relative wages, relative supply, and the nominal minimum wage from
Autor et al. (2008). I deflate their nominal minimum wage using the GDP deflator from FRED rather than
the GDP deflator in their replication package. Robust standard errors are reported.

College premium College wage Non-college wage

(a) (b) (c)

Real m.w. -0.211 -0.101 0.110
(0.042) (0.060) (0.050)

Observations 55 55 55

Table A.5: Regression Models for the College and Non-College Wages
Notes: Results of estimating (1) using OLS replacing the dependent variable log(wht/w`t), shown in column
(a), with log wht in column (b) and log w`t in column (c). The coefficient in column (b) minus the coefficient
in column (c) equals the baseline coefficient in column (a).

1990s; that is, the extended canonical model fits well out of sample.
Here, I show that these conclusions can be reached using data from Autor et al.’s

replication package. Table A.4 displays results using their data moving from a linear time
trend in column (a) to a sextic polynomial of time in column (f).21 Columns (a) and (c)
correspond to those reported in Autor et al. (2008). The coefficient on the real minimum
wage is negative, significant, and similar to my baseline estimate across all specifications
up to and including a sextic polynomial of time except for the case of a third-degree

21Whereas they include the male unemployment rate, here I do not. The pattern of coefficient signif-
icance is identical including the male unemployment rate and the estimated minimum wage coefficients
are almost identical. Given the shorter time period (1963-2005), I stop at a sextic time trend since both the
minimum wage and relative supply coefficients are insignificant thereafter.
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Time Differences in Years Levels

(1) (2) (3) (4) (5) (6)

Supply -0.061 -0.161 -0.290 -0.344 -0.410 -0.488 -0.575
(0.102) (0.096) (0.097) (0.087) (0.075) (0.070) (0.057)

m.w. interaction 1.024 1.549 2.263 2.297 2.662 3.621 4.561
(1.251) (0.992) (0.940) (1.066) (1.241) (1.187) (0.906)

Observations 54 53 52 51 50 49 55
R-squared 0.024 0.086 0.201 0.241 0.346 0.488 0.965

Table A.6: Replication of Table 3 using composition-adjusted changes in efficiency-unit
hours worked

Time Differences in Years Levels

(1) (2) (3) (4) (5) (6)

Supply -0.020 -0.150 -0.325 -0.409 -0.510 -0.549 -0.598
(0.096) (0.121) (0.119) (0.111) (0.100) (0.095) (0.082)

m.w. interaction 1.058 1.565 2.302 2.252 2.810 3.837 6.539
(1.227) (1.025) (0.976) (1.113) (1.203) (1.122) (1.240)

Observations 54 53 52 51 50 49 55
R-squared 0.015 0.059 0.163 0.224 0.342 0.421 0.936

Table A.7: Replication of Table 3 using composition-adjusted changes in efficiency-unit
populations

polynomial of time in column (c), in which case the coefficient on the real minimum wage
is insignificant and relatively small.

A.2 State-level analysis

Basic Processing of the Merged Outgoing Rotation Groups CPS Data. I use statistics
from the Current Population Survey Merged Outgoing Rotation Groups (MORG CPS) in
the state-level estimation. I use the MORG CPS from 1979 to 2018, which reflects current
wages. Because of missing imputation flags—the CPS did not flag workers with missing
wages—in all of 1994, I do not include this year. As above, I restrict attention to worker
ages 16 to 64.

In processing the files, I broadly follow the approaches of Lemieux (2006) and Autor
et al. (2008), using hourly wages for workers paid by the hour and using usual weekly
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earnings divided by hours worked last week for non-hourly workers. I multiply top-
coded constructed hourly wages by 1.5. I drop respondents with allocated earnings flags.
I identify and drop non-flagged allocated observations between 1989 and 1993 using the
unedited earnings values.

In constructing the distribution of wages, I use the product of earnings weights and
hours worked. I am therefore constructing the distribution of hourly wages across hours
worked rather than across workers.

Robustness of Table 2: supply. Tables A.8, A.9, and A.10 display results of replicating
Table 2 incorporating a measure of the change in state-specific relative skill supply in
regression (13), with each table using a distinct measure of relative supply.

In Table A.8 I measure changes in relative supply using the dual of relative wages,
exactly as in the national time-series specification, but using data only from state r when
constructing supply in state r. In particular, I measure supply of college hours in state r at
time t so that the product of the supply of college hours in state r at time t and the hourly
wage of college labor in state r at time t exactly equals college income in state r and time
t in the data; and the same is true of non-college hours and wages. Unfortunately, this
measure of relative supply is directly impacted by changes in the minimum wage, which
affect wage income in the state-year pair. The following two measures of relative supply
help address this issue.

In Table A.9 I measure changes in relative supply using a composition-adjusted mea-
sure of efficiency-unit hours worked. The hours-based measure is constructed as fol-
lows. In the first step, for each state, year, and college group (each labor bin is either in
the set with completed college education or without), I construct a composition-adjusted
weighted average wage. The fixed-over-time weights are identical to those used in the
construction of composition-adjusted wages at the state level. In the second step, I then
divide the average wage of each labor group in that state-year-college triplet by the av-
erage across all labor groups (in the corresponding state-year-college triplet) created in
the first step; this provides a state-and-year-specific measure of the relative wage of each
group within the college-educated and within the non-college-educated. In the third step,
I take an average across years of this relative wage within each labor group-state pair. This
average across years is a measure of the average efficiency units supplied by each hour
of labor of this labor group relative to the average labor group in the same state-college
pair. Of course, this average does depend on the average amount of monopsony power
confronted by this labor group across time; but changes in monopsony power across time
do not generate changes across time in this measure of efficiency units. In the fourth
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OLS IV

Time difference (years) (1) (2) (3) (4)

1 0.56 0.65 1.05∗ 1.26∗∗

(0.646) (0.717) (0.560) (0.619)
[2707] [2502]

2 0.71 0.94 1.26∗ 1.57∗∗

(0.699) (0.778) (0.665) (0.725)
[7496] [8827]

3 0.77 0.97 1.34∗ 1.53∗∗

(0.713) (0.793) (0.680) (0.703)
[7638] [9134]

4 1.22∗ 1.38∗ 1.76∗∗ 1.92∗∗

(0.702) (0.724) (0.785) (0.786)
[1297] [1426]

5 1.75∗∗ 1.93∗∗ 2.16∗∗ 2.39∗∗∗

(0.731) (0.766) (0.805) (0.814)
[2482] [2225]

6 1.93∗∗∗ 2.13∗∗∗ 2.15∗∗ 2.38∗∗∗

(0.692) (0.717) (0.851) (0.869)
[1519] [1452]

7 2.07∗∗∗ 2.28∗∗∗ 2.32∗∗∗ 2.53∗∗∗

(0.712) (0.722) (0.790) (0.793)
[1421] [1338]

8 1.89∗∗∗ 2.13∗∗∗ 2.30∗∗∗ 2.58∗∗∗

(0.667) (0.645) (0.722) (0.698)
[2534] [2539]

9 2.23∗∗∗ 2.51∗∗∗ 2.71∗∗∗ 2.91∗∗∗

(0.660) (0.623) (0.664) (0.652)
[3642] [3425]

Year FE Y Y Y Y
State FE Y Y Y Y
Linear state trend N Y N Y

Note: Replicating Table 2 incorporating changes in state-specific relative skill supply, measured as the dual
of relative wages.

Table A.8: Replicating Table 2: the dual of wages measures relative supply
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OLS IV

Time difference (years) (1) (2) (3) (4)

1 0.75 0.82 1.05 1.21∗

(0.716) (0.757) (0.647) (0.657)
[2714] [2513]

2 0.87 1.07 1.36∗ 1.62∗∗

(0.738) (0.766) (0.731) (0.734)
[7547] [8883]

3 0.99 1.19 1.55∗ 1.72∗∗

(0.777) (0.801) (0.797) (0.786)
[7629] [9146]

4 1.32 1.50∗ 1.70∗ 1.89∗

(0.821) (0.812) (0.944) (0.950)
[1299] [1429]

5 1.74∗∗ 1.97∗∗ 1.98∗∗ 2.25∗∗

(0.823) (0.859) (0.903) (0.936)
[2496] [2230]

6 1.76∗∗ 2.05∗∗ 1.89∗∗ 2.22∗∗

(0.740) (0.792) (0.905) (0.975)
[1520] [1455]

7 1.97∗∗ 2.31∗∗∗ 2.10∗∗ 2.46∗∗∗

(0.789) (0.829) (0.861) (0.916)
[1423] [1339]

8 1.84∗∗ 2.23∗∗∗ 2.17∗∗∗ 2.60∗∗∗

(0.737) (0.771) (0.781) (0.831)
[2532] [2542]

9 2.18∗∗∗ 2.65∗∗∗ 2.64∗∗∗ 2.97∗∗∗

(0.748) (0.816) (0.724) (0.821)
[3690] [3485]

Year FE Y Y Y Y
State FE Y Y Y Y
Linear state trend N Y N Y

Note: Replicating Table 2 incorporating changes in state-specific relative skill supply, measured as
composition-adjusted relative hours worked.

Table A.9: Replicating Table 2: composition-adjusted hours worked (weighted by effi-
ciency units per hour) measures relative supply
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OLS IV

Time difference (years) (1) (2) (3) (4)

1 0.80 0.87 1.15∗ 1.31∗∗

(0.710) (0.756) (0.632) (0.651)
[2730] [2522]

2 0.89 1.11 1.43∗∗ 1.71∗∗

(0.735) (0.777) (0.710) (0.728)
[6973] [8403]

3 0.94 1.14 1.54∗∗ 1.72∗∗

(0.763) (0.809) (0.760) (0.758)
[7142] [8634]

4 1.40∗ 1.60∗∗ 1.88∗∗ 2.08∗∗

(0.774) (0.773) (0.887) (0.887)
[1314] [1423]

5 1.93∗∗ 2.16∗∗ 2.25∗∗ 2.53∗∗∗

(0.786) (0.821) (0.872) (0.896)
[2469] [2222]

6 1.99∗∗∗ 2.26∗∗∗ 2.16∗∗ 2.49∗∗

(0.724) (0.770) (0.884) (0.943)
[1610] [1489]

7 2.10∗∗∗ 2.41∗∗∗ 2.24∗∗∗ 2.59∗∗∗

(0.759) (0.803) (0.835) (0.890)
[1636] [1472]

8 1.88∗∗ 2.25∗∗∗ 2.21∗∗∗ 2.63∗∗∗

(0.705) (0.741) (0.759) (0.799)
[2594] [2537]

9 2.25∗∗∗ 2.69∗∗∗ 2.72∗∗∗ 3.06∗∗∗

(0.703) (0.766) (0.686) (0.774)
[3689] [3391]

Year FE Y Y Y Y
State FE Y Y Y Y
Linear state trend N Y N Y

Note: Replicating Table 2 incorporating changes in state-specific relative skill supply, measured as relative
population.

Table A.10: Replicating Table 2: composition-adjusted populations (weighted by effi-
ciency units) measures relative supply
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step, I take a weighted average of hours worked across all labor groups in the state-year-
college triplet, weighting by the average efficiency units supplied by each of these labor
groups across time within that state. Finally, I measure supply as the logarithm of this
composition-adjusted weighted average of hours worked.

In Table A.10 I measure changes in relative supply using a composition-adjusted mea-
sure of efficiency-unit populations. This population-based measure is constructed very
similarly to the composition-adjusted measure of hours worked. In the first step, for
each state, year and college group, I construct a composition-adjusted weighted aver-
age income (again, using weights that are identical to those used in the construction of
composition-adjusted wages at the state level). In the second step, I divide total income
of each labor group in that state-year-college triplet by the average across all labor groups
(in the corresponding state-year-college triplet) created in the first step. In the third step,
I take an average across years of this relative income within each labor group-state pair.
This average across years is a measure of the total efficiency units supplied across all
agents in this labor group relative to the average labor group in the same state-college
pair that is invariant across years. In the fourth step, I take a weighted average of popu-
lations across all labor groups in the state-year-college triplet, weighting by the share of
total efficiency units supplied by each of these labor groups across time within that state.
Finally, I measure supply as the logarithm of this composition-adjusted weighted average
of populations. As with the composition-adjusted measure of hours worked, changes in
monopsony power across time do not generate changes across time in this measure of ef-
ficiency units. In addition, because I take a weighted average of populations rather than
hours worked, changes in unemployment and non-employment more generally do not
affect this measure of changes in supply.

Robustness of Table 2: correlated measurement error. In my baseline, I instrument
for brt∆ log mrt with brt−1∆ log mrt. This instrument addresses the endogeneity concern if
measurement error is uncorrelated across consecutive years. Here, I consider a different
instrument: b

t
rtb

r
rt∆ log mrt. This instrument replaces brt with the product of two terms.

The first term, b
t
rt ≡ 1

|t−1979| ∑j<t brj, is the average bite of the minimum wage in state r
across all years in the sample before year t. By focusing on years before t, my instrument
for the bite is not itself a function of measurement error in year t or t + T and is not a
function of current changes in the minimum wage. The second term, b

r
rt ≡ 1

49 ∑j 6=r bjt, is
the leave-out average bite of the minimum wage in year t across all states other than state
r. In a sufficiently long sample, the alternative instrument allows measurement error to
be correlated across years and would instead require that measurement error be mean
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IV

Time difference (years) (1) (2)

1 0.81 0.90
(0.779) (0.828)

[91] [94]

2 0.88 1.00
(0.868) (0.906)
[100] [105]

3 1.16 1.22
(0.910) (0.917)
[101] [109]

4 1.77∗ 1.81∗

(0.895) (0.912)
[129] [132]

5 2.28∗∗ 2.50∗∗

(0.911) (0.974)
[210] [219]

6 2.43∗∗∗ 2.73∗∗∗

(0.853) (0.913)
[281] [256]

7 2.30∗∗∗ 2.70∗∗∗

(0.825) (0.850)
[355] [274]

8 2.06∗∗ 2.48∗∗∗

(0.771) (0.763)
[577] [403]

9 2.46∗∗∗ 2.90∗∗∗

(0.649) (0.648)
[850] [530]

State FE Y Y
Year FE Y Y
Linear state trend N Y

Note: Replication of columns 3 and 4 of Table 2, but using the alternative instrument.

Table A.11: Replicating Table 2 using the alternative instrument b
t
rtb

r
rt∆ log mrt

48



zero on average within each state across years and across states within each year. Table
A.11 displays results. Results are broadly similar to Table 2.

Robustness of Table 2: controlling for the minimum wage bite. One worry is that the
bite measure, brt, rather than the actual change in the minimum wage, ∆ log mrt, is doing
the work in these state-by-time regressions. To investigate this issue, I estimate a version
of regression (13) including an additional control: brt−1. Table A.12 displays results, which
are very similar to Table 2. Results are again similar if I instead control for brt; but given
endogeneity concerns, I use brt−1.

Robustness of Table 2: pre-trend analysis. To check for pre-trends, I estimate

∆B
T log

(
whrt
w`rt

)
= γt + γr + βmbrt∆F

1 log mrt + ιrt (A.1)

where ∆F
1 xt = xt+1− xt is the one-year forward difference of the variable x starting at time

t and where ∆B
Txt = xt−T − xt is the T-year backward difference of the variable x starting

at time t. This regression checks whether lagged changes in state r’s college premium
are predicted by the future change in its real minimum wage. I estimate this regression
using OLS and 2SLS. However, since the instrument includes the one-year lagged value
of the state’s minimum wage bite, this implies that the instrument solves the endogeneity
concern only for T ≥ 2. Table A.13 displays results consistent with the parallel trend
assumption.

Robustness of Table 2: nominal minimum wage increases. To check for the impact of
nominal minimum wage changes, I estimate

∆ log
(

whrt
w`rt

)
= γt + γr + βmbrt∆ log mrt + β Indexbrt∆ log Indext + ιrt (A.2)

where Indext is the price index (the GDP deflator) in year t. The coefficient βm now iden-
tifies the impact of increases in nominal minimum wages (since nominal minimum wages
do not fall over time in the sample). I estimate the regression using 2SLS, instrumenting
for the minimum wage interaction and the price deflator interaction using my baseline
instrument a version of that instrument replacing the change in the real minimum wage
with the deflator. Table A.14 displays results of the nominal minimum wage interaction
coefficient, which are very similar to the real minimum wage interaction coefficients in Ta-
ble 2; SW F stats, which are not reported, are all very high (across endogenous variables
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OLS IV

Time difference (years) (1) (2) (3) (4)

1 0.95 1.02 1.06∗ 1.16∗

(0.727) (0.757) (0.625) (0.637)
[2724] [2405]

2 1.00 1.10 1.24∗ 1.42∗

(0.723) (0.752) (0.735) (0.751)
[7510] [7920]

3 1.19∗ 1.37∗ 1.52∗∗ 1.82∗∗∗

(0.701) (0.735) (0.679) (0.647)
[9088] [6669]

4 1.56∗ 1.86∗∗ 1.93∗∗ 2.35∗∗∗

(0.780) (0.821) (0.850) (0.853)
[1748] [2924]

5 2.02∗∗ 2.42∗∗∗ 2.47∗∗∗ 3.00∗∗∗

(0.843) (0.809) (0.849) (0.783)
[4226] [3386]

6 2.15∗∗ 2.47∗∗∗ 2.54∗∗∗ 2.95∗∗∗

(0.833) (0.853) (0.904) (0.958)
[1812] [2202]

7 2.67∗∗∗ 2.96∗∗∗ 2.98∗∗∗ 3.33∗∗∗

(0.894) (0.939) (0.889) (0.946)
[1428] [2564]

8 2.69∗∗∗ 3.03∗∗∗ 3.07∗∗∗ 3.47∗∗∗

(0.806) (0.815) (0.823) (0.849)
[3355] [4151]

9 3.21∗∗∗ 3.41∗∗∗ 3.42∗∗∗ 3.59∗∗∗

(0.813) (0.802) (0.789) (0.835)
[4266] [4838]

Year FE Y Y Y Y
State FE Y Y Y Y
Linear state trend N Y N Y

Note: Replication of Table 2 but including an additional control: brt−1.

Table A.12: Replicating Table 2 controlling for brt−1
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OLS IV

Time difference (years) (1) (2)

1 0.62 0.87
(0.702) (0.771)

[2712]

2 0.59 0.85
(1.076) (1.081)

[2498]

3 -0.48 0.34
(1.057) (0.797)

[2287]

4 -0.38 0.01
(1.076) (0.921)

[2208]

5 0.17 0.87
(1.264) (1.024)

[2133]

Note: Results of estimating equation (A.1) using OLS in column 1 and 2SLS in column 2. Column 2 addi-
tionally reports the first stage F-statistic in brackets.

Table A.13: Pre-Trend Analysis of State-Level College Wage Premia
Notes:

and specifications).

Robustness of Table 2: Time-varying elasticities. In my theory, and in Figure 3, I con-
sider the time-varying impact of a once-off change in the real minimum wage. In practice,
however, the real minimum wage changes often, both because of changes in nominal min-
imum wages and inflation. Hence, my empirical results identify a mix of time-varying
elasticities and changes in minimum wages. To identify the time-varying impact of a
once-off change in the minimum wage, I instrument for the T year change in the mini-
mum wage interaction, brt∆ log mrt ≡ brt(log mrt+T − log mrt), in equation (13) using the
interaction between the lagged value of the minimum wage bite (as in my baseline) and
the one-year change in the minimum wage interaction (rather than its T-year change):
brt−1(log mrt+1− log mrt). Table A.15 displays results that are broadly consistent with my
baseline results, although the first-stage F statistic falls to 9 in six-year differences.
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Time Difference

(1) (2) (3) (4) (5) (6) (7) (8) (9)

m.w. interaction 1.078 1.230 1.482 1.659 2.210 2.289 2.978 3.349 3.689
(0.623) (0.734) (0.746) (1.012) (0.981) (0.998) (0.988) (0.963) (1.003)

Observations 1,700 1,600 1,550 1,500 1,450 1,400 1,350 1,300 1,250

Table A.14: The Impact of Nominal Minimum Wage Increases on State-Level College
Wage Premia
Notes: The minimum wage interaction coefficient from estimating equation (A.2) using 2SLS. Both the real minimum
wage interaction and the price index interaction are instrumented, using brt−1∆ log mrt and brt−1∆ log Indext.

Time Difference

(1) (2) (3) (4) (5) (6)

m.w. interaction 1.088 2.133 2.072 2.282 3.334 5.083
(0.603) (0.842) (0.778) (1.345) (1.911) (2.780)

Observations 1,700 1,600 1,500 1,450 1,400 1,350
KP F stat 2,711.8 225.3 166.1 31.7 19.6 9.2

Table A.15: Time Varying Elasticity of State-Level College Wage Premia
Notes: Estimating equation (13) instrumenting for the minimum wage interaction using brt−1(log mrt+1− log mrt).

B Theoretical Appendix

B.1 Steady state details

Under the assumption that parameters satisfy βm ≡ βms for both s, equation (6) implies

d log
(

wh
w`

)
= βm(bh − b`)d log m + (1− βmbh) d log Ph − (1− βmb`) d log P`

Equation (8), Ps = ∂Y/∂Ys, and Ys = (1− us)Ls imply

Ps = Y
1
η A

η−1
η

s (1− us)
−1
η L

−1
η

s

and
d log Ps =

1
η

d log Y + d log As −
1
η
(d log As + d log Ls)

From the production function, we have

d log Y =
1
Y ∑

s∈{h,`}
Y

1
η (As(1− us)Ls)

η−1
η (d log As + d log Ls)
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College Premium College Wage Non-College Wage

Time difference (years) (1) (2) (3)

1 1.26∗∗ 0.36 -0.90∗∗

(0.624) (0.598) (0.418)
[2509] [2509] [2509]

2 1.63∗∗ 0.10 -1.53∗∗∗

(0.717) (0.679) (0.410)
[8870] [8870] [8870]

3 1.65∗∗ 0.20 -1.45∗∗∗

(0.726) (0.751) (0.443)
[9135] [9135] [9135]

4 1.93∗∗ 0.32 -1.61∗∗∗

(0.846) (0.961) (0.512)
[1419] [1419] [1419]

5 2.34∗∗∗ 0.57 -1.77∗∗∗

(0.860) (1.084) (0.579)
[2207] [2207] [2207]

6 2.32∗∗ 0.67 -1.65∗∗

(0.907) (1.193) (0.631)
[1448] [1448] [1448]

7 2.52∗∗∗ 1.03 -1.49∗∗

(0.855) (1.164) (0.654)
[1335] [1335] [1335]

8 2.61∗∗∗ 1.31 -1.30∗

(0.779) (1.107) (0.680)
[2522] [2522] [2522]

9 2.97∗∗∗ 1.81 -1.16
(0.752) (1.084) (0.738)
[3421] [3421] [3421]

Note: Results of estimating equation (13) using the baseline instrument, including year and state effects
and a state-specific time trend, and where the dependent variable is the log change in the college premium
in column 1, the change in the log wage of college-educated workers in column 2, and the change in the
log wage of non-college-educated workers in column 3. Each cell reports the coefficient of brt∆ log mrt, its
standard error in parentheses, and the first-stage F stat from a separate regression. Row T uses T-year
differences, ∆xt = xt+T − xt.

Table A.16: Impact of brt∆ log mrt on State-Level College Wage Premia, College Wage,
and Non-College Wage
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Time difference in years

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Females
p(5) 0.390 0.423 0.402 0.378 0.347 0.375 0.396 0.418 0.426

(0.050) (0.058) (0.050) (0.043) (0.039) (0.042) (0.040) (0.042) (0.042)
p(10) 0.169 0.217 0.213 0.217 0.235 0.299 0.325 0.321 0.303

(0.032) (0.033) (0.029) (0.029) (0.034) (0.042) (0.047) (0.045) (0.046)
p(20) 0.067 0.087 0.081 0.087 0.109 0.151 0.170 0.158 0.147

(0.027) (0.027) (0.027) (0.032) (0.038) (0.038) (0.042) (0.035) (0.035)
p(30) 0.040 0.053 0.009 0.007 0.018 0.064 0.069 0.064 0.070

(0.030) (0.024) (0.020) (0.021) (0.022) (0.023) (0.019) (0.018) (0.019)
p(40) 0.029 0.017 -0.004 0.004 0.012 0.023 0.002 -0.001 0.001

(0.035) (0.022) (0.021) (0.019) (0.022) (0.030) (0.036) (0.029) (0.028)
p(75) 0.005 0.011 -0.013 -0.033 -0.037 -0.030 -0.038 -0.033 -0.030

(0.034) (0.026) (0.022) (0.022) (0.025) (0.022) (0.018) (0.020) (0.023)
p(90) 0.035 0.052 0.030 0.006 -0.009 -0.015 -0.017 -0.027 -0.024

(0.042) (0.041) (0.043) (0.039) (0.035) (0.034) (0.033) (0.036) (0.039)

Panel B. Males
p(5) 0.164 0.190 0.197 0.194 0.187 0.199 0.227 0.223 0.246

(0.041) (0.037) (0.030) (0.026) (0.030) (0.034) (0.031) (0.034) (0.042)
p(10) 0.054 0.084 0.091 0.062 0.042 0.053 0.065 0.055 0.095

(0.031) (0.026) (0.029) (0.027) (0.033) (0.035) (0.042) (0.051) (0.046)
p(20) 0.022 0.041 0.029 -0.006 -0.009 0.027 0.052 0.049 0.038

(0.030) (0.023) (0.024) (0.025) (0.026) (0.028) (0.026) (0.029) (0.035)
p(30) -0.001 0.031 0.042 0.024 0.028 0.054 0.065 0.050 0.046

(0.029) (0.024) (0.020) (0.018) (0.022) (0.023) (0.018) (0.018) (0.019)
p(40) 0.020 0.031 0.035 0.038 0.059 0.095 0.091 0.082 0.078

(0.041) (0.032) (0.027) (0.026) (0.028) (0.036) (0.036) (0.033) (0.028)
p(75) 0.017 0.022 0.028 0.015 0.002 0.008 -0.006 -0.019 -0.012

(0.022) (0.022) (0.024) (0.021) (0.023) (0.023) (0.023) (0.030) (0.023)
p(90) 0.036 0.068 0.061 0.024 -0.009 -0.005 -0.018 -0.026 -0.000

(0.038) (0.034) (0.031) (0.029) (0.032) (0.030) (0.032) (0.039) (0.039)

Table A.17: Distributional effect of minimum wage changes for select percentiles (relative
to the median) using one-year to nine-year differences, separately for females and males
Notes: Each column j ∈ {1, ...9} replicates column 4 of Panels A and B of Table 2A in AMS, which uses
one-year differences, but using j-year differences instead.
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Combining this with the expressions for Ps above, which implies PsYs = Y
1
η (As(1− us)Ls)

η−1
η ,

yields

d log Y =

[
PhYh

Y
(d log Ah + d log Lh) +

P`Y`

Y
(d log A` + d log L`)

]
Substituting into the d log Ps equation and using PhYh

Y + P`Y`
Y = 1 yields

d log Ps =
1
η

Ps′Ys′

Y
[(d log As′ + d log Ls′)− (d log As + d log Ls)] + d log As for s′ 6= s

Combining this with the expression for d log
(

wh
w`

)
above and defining βL as in equation

(10) yields equation (9), where

βAs ≡ (1− 2Is=`)

[
(1− βmbs)

(
1− 1

η

Ps′Ys′

Y

)
− 1

η
(1− βmbs′)

PsYs

Y

]
for s′ 6= s and where Is=` is an indicator function that equals one if s = ` and zero
otherwise.

B.2 Transition details

I focus on a single skill s and omit skill subscripts. Let g′tj and gtj denote the shares of
all workers at time t ≥ 0 employed in rung j of the wage ladders associated with m′

and m. To simplify notation, focus on the case in which the new minimum wage satisfies
m′ ∈ (m, w2). This determines which rungs of the initial job ladder disappear on impact:
in this case, only the first rung.

B.2.1 Results and intuition

Proposition 2. The share of all workers on any rung j ≥ 1 of the original and the new job ladders
at any date t ≥ 0 are given by

gtj =


0 if j = 1

g̃tj if 2 ≤ j ≤ t + 1

g(wj) if j > t + 1

and g′tj =

g̃′tj if j ≤ t + 1

0 if j > t + 1
(B.1)

where

g̃tj ≡
j

∑
k=2

(
t + 1− k

j− k

)
g(wk)(1− δ)2+t−k(1− γe)

2+t−jγ
j−k
e (B.2)
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and

g̃′tj =
t+1−j

∑
t′>0

(
t− t′

j− 1

)
uγu(1− δ)t−t′(1− γe)

t−t′−(j−1)γ
j−1
e

+

(
t

j− 1

)
g(m)(1− δ)t(1− γe)

t−(j−1)γ
j−1
e (B.3)

and where g(w) denotes the initial steady-state distribution before date 0.

Consider first the original job ladder, gtj. No one is on the original job ladder at the
original minimum wage for any t ≥ 0, since workers who were employed there were
all moved up instantly to the new and higher minimum wage and thereafter this rung is
never replenished from unemployment. For any date-rung pair tj satisfying j > t + 1, the
share of workers remains at the initial steady state value, as inflows of workers from the
previous rung have yet to be affected by the higher minimum wage. Inflows are reduced
into rung j relative to in the original steady state starting on date t = j− 1. Starting from
this date, equation (B.2) tracks in- and outflows as a function of the initial steady state
values of g(wk) for all k ≤ j, since those in rung j of the original job ladder at date t must
have been at a weakly lower rung of this ladder previously. To move from rung k to j ≥ k
over time requires that the worker (i) does not separate in any of the 2 + t − k periods
since we start tracking her (we only start tracking workers when they are on a rung of
the job ladder that is not at its original steady-state share), (ii) moves up the ladder j− k
times, and (iii) does not move up in all remaining periods. The binomial coefficient in
equation (B.2) tracks the number of routes through which a worker on rung k when we
first start tracking her can move up to rung j in period t.

Next, consider the new job ladder. At t = 0, only the first rung of this job ladder
has any workers. Each successive rung is first reached in each successive period. Hence,
g′tj = 0 for all j > t + 1. In period 0, the first rung of the new job ladder has g(m) workers.
Over time, these workers either separate or slowly move up the job ladder, reaching rung
j at date t through a particular path of wage increases over time with probability (1−
δ)t(1− γe)t−(j−1)γ

j−1
e . The binomial coefficient in the second line of equation (B.3) tracks

the number of routes that such a worker could have taken. The first line of equation (B.3)
counts the workers who are on rung j of the new job ladder at date t, having risen from
unemployment to the minimum wage at each possible date 0 < t′ ≤ t. The number
of workers who are hired from unemployment each period is uγu. The share of these
workers who were hired at date t′ ≤ t who reach exactly rung j of the new job ladder at
date t through a particular path is given by (1− δ)t−t′(1− γe)t−t′−(j−1)γ

j−1
e . The binomial
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coefficient in the first line of equation (B.3) tracks the number of routes that such a worker
could have taken. And the summation over all t′ sums across all possible dates that a
worker could have been hired out of unemployment and reached rung j by date t, which
requires that t′ ≤ t + 1− j.

B.2.2 Derivation of gtj

I begin by writing the recursive system. At date t = 0, the share of workers at each rung
of the original wage ladder is

g0j =

0 if j = 1

g(wj) otherwise

The share on the first rung remains zero in all dates. At any date t ≥ 1, the share of
workers at each remaining rung of the original wage ladder is given by the recursive
system

gtj = gt−1,j−1(1− δ)γe + gt−1,j(1− δ) (1− γe) for j > 1

A share (1− δ)γe of the workers on the previous rung j− 1 in the previous period t− 1
move up to rung j in period t and a share (1− δ)(1−γe) of the workers on rung j in period
t− 1 remain there in period t. By mathematical induction, this implies that gtj = g(wj)

for all j > t + 1, since if j > t + 1 then gt−1,j−1 = gj−1 and gt−1,j = gj. It then remains only
to solve for gtj for 2 ≤ j ≤ t + 1, which I refer to as g̃tj.

To solve the recursive system, note that in period t = j− 1, the first period in which
gtj 6= g(wj), the share g̃j−1,j satisfies

g̃j−1,j = (1− γe)
j

∑
k=2

g(wk)(1− δ)2+t−kγ
j−k
e

Note that there is a single path (through time and rungs) through which a worker earning
wk in period k − 2 can have reached exactly rung j in period t = j− 1. In this path, the
worker must have not separated in each of the 2 + t− k periods, must have not matched
with a new firm in the first period, and must have matched with a new firm in each
subsequent period. For subsequent periods, there are two differences. First, in each sub-
sequent period, the number of periods in which an agent must not have separated or
matched with another firm increases by one. Second, in later periods the number of paths
through which a worker earning wk in period k − 2 can have reached exactly rung j in
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period t rises. Hence, g̃tj can be expressed as

g̃tj =
j

∑
k=2

xtjkg(wk)(1− δ)2+t−k(1− γe)
2+t−jγ

j−k
e for all 2 ≤ j ≤ t + 1

for some xtjk. Here, xtjk is the number of routes a worker earning wk at date t = k − 2
could have taken to earn exactly wj at date t. Each date the worker must move forward
in time, and the worker can move one step up in the job ladder or remain on her previous
rung. The solution is

xtjk =

(
t + 1− k

j− k

)
=

(t + 1− k)!
(t + 1− j)! (j− k)!

The previous two displayed equations yield equation (B.2).

B.2.3 Derivation of g′tj

I again begin by writing the recursive system. At date t = 0, the share of workers at each
rung of the new wage ladder is

g′0j =

g(m) if j = 1

0 otherwise

and at any date t ≥ 1, the share of workers at each rung of the new wage ladder is given
by the recursive system

g′tj =


uγu + g′t−1,1(1− δ)(1− γe) if j = 1

g′t−1,j−1(1− δ)γe + g′t−1,j(1− δ)(1− γe) if 1 < j ≤ t + 1

0 if j > t + 1

Given the recursive system and the initial condition, it is straightforward to show that
g′tj = 0 for all j > t + 1. It remains to solve for g̃′tj.

For any tj pair, g̃′tj will include a g(m) term and a uγu term. It is straightforward
to solve for the g(m) term. Each term must include (1 − δ)t, since the worker must
have not been separated for all t periods. And similarly, each term must include (1 −
γe)t−(j−1)γ

j−1
e , since to get to rung j the worker must have moved up exactly j− 1 times

and, therefore, not moved up exactly t− (j− 1) times. All that remains then is solving for
the coefficient on this term. As in the previous problem this is just a matter of determin-
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ing how many paths the worker can take from the date 0 and rung 1 cell to the arbitrary
tj cell, where to move up a rung requires an increase in time. This coefficient is given by(

t
j− 1

)
= t!

(t+1−j)!(j−1)! .

Each period, uγu unemployed enter the new wage ladder at the first rung. What is
the impact of the inflow to rung 1 of the job ladder in period t′ > 0 on workers in rung
j ≥ 1 in period t ≥ t′. This problem is identical to how the g(m) workers in rung 1 at date
t = 0 transition across rungs in the new job ladder. If j− 1 > t− t′, then these workers
cannot yet have risen to rung j. If j− 1 ≤ t− t′, then the share of all skill s workers who
(i) moved from unemployment to rung 1 at date t′ > 0 and (ii) work in rung j at date t

is simply

(
t− t′

j− 1

)
uγu(1− s)t−t′(1− γe)t−t′−(j−1)γ

j−1
e . Of course, at rung j and date t,

we must sum this across all possible t′ satisfying j − 1 ≤ t − t′, which is equivalent to
summing across all t′ ≤ t + 1− j. Hence, we obtain equation (B.3).

B.3 Wage-posting model

As described in Section 3.4, I use the Burdett and Mortensen (1998) model with homoge-
neous workers and firms, extended to include a minimum wage, as in van den Berg and
Ridder (1998). I consider the case of a single skill s (omitting s subscripts), since this is
sufficient to show which results are robust, and I focus on steady states, since solving for
the transition to an aggregate shock is not straightforward.

According to equation (2.10) in van den Berg and Ridder (1998), the equilibrium earn-
ings density is

g(w) =
δ (P−m)1/2

2λe
(P− w)−3/2 for all w ∈ [m, wmax]

under the assumption that the minimum wage m is binding (an assumption I make
throughout). The maximum wage is then

wmax ≡
(

δ

δ + λe

)2

m +

(
1− δ

δ + λe

)2

P

In these expressions, I have used my notation: P is the value marginal product of labor,
δ is the exogenous separation rate, λe is the rate at which workers receive offers when
employed, and wmax is the (endogenous) supremum of offered wages. Integrating this
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yields the probability a worker earns less than w,

G(w) =
δ

λe

(
P−m
P− w

)1/2

− δ

λe
for all w ∈ [m, wmax]

which is the earnings distribution (conditional on employment). Given the average wage,
solved below, we therefore have Part 1 of Proposition 1 in the wage-posting model.

Impact of a change in the minimum wage on the distribution of wages. Define Wc(m)

to be the wage at centile c ∈ [0, 100]. Then from the distribution of wages, I obtain

c
100

=
δ

λe

(
P−m

P−Wc(m)

)1/2

− δ

λe

which yields an explicit solution for the wage at centile c as a function of the minimum
wage m,

Wc(m) = P− (P−m)

(
100δ

cλe + 100δ

)2

This implies

Wc′(m)

Wc(m)
=

P− (P−m)
(

100δ
c′λe+100δ

)2

p− (P−m)
(

100δ
cλe+100δ

)2

Differentiating with respect to m yields

d
[
Wc′(m)

/
Wc(m)

]
dm

< 0 ⇐⇒ c′ > c

Hence, as in my baseline model, an increase in the minimum wage increases the relative
wage of centile c to centile c′ for any c′ > c. That is, Wc(m) is log sub-modular in c, m.

The average wage. The average wage is given by w =
∫ wmax

m wg(w)dw. This can be ex-
pressing using the Wc(m) function (the wage at centile c) and noting that the distribution
across centiles is uniform (by definition) with density g̃(c) = (wmax −m)−1 which can be
expressed as

g̃(c) =
(

1− δ

δ + λe

)−2

(P−m)−1

Hence,

w =
(100δ)2

(wmaxλe + 100δ)(mλe + 100δ)
m +

(
1− (100δ)2

(wmaxλe + 100δ)(mλe + 100δ)

)
P

60



The previous expression gives the average wage. As in the baseline model, equation (5),
this is a weighted average of the minimum wage m and the value marginal product of
labor, P. Unlike the baseline model, the weights themselves depend on the minimum
wage.
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