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1 Introduction

Measuring the productivity of firms, industries or entire economies has long been a

central objective of applied macroeconomic research. Most measurement efforts go back to

the seminal paper of Solow (1957), which defined Total Factor Productivity (TFP) growth

as the part of output growth that cannot be explained by growth in inputs. Solow noted

that under perfect competition, the elasticity of output with respect to a given input is

equal to the sales share of that input (i.e., the ratio of input spending to sales). Therefore,

TFP growth can be computed as the difference between output growth and a sales-share-

weighted average of input growth rates. This “Solow residual” is still the most common

measure of productivity growth used by macroeconomists.

However, Solow residuals from standard datasets (e.g., EU KLEMS in Europe or the

Bureau of Labor Statistics TFP database in the United States) are problematic for analysing

productivity growth over the business cycle. The main problem is due to changes in factor

utilization, that is, changes in the intensity with which firms use their inputs. For instance,

workers often perform less tasks per hour of work in a recession. As this fall in labour

input is not recorded in standard datasets, their Solow residuals spuriously decrease during

recessions. The state-of-the-art approach to dealing with this issue is due to a series of

influential papers by Basu, Fernald and Kimball (Basu and Fernald, 2001; Basu, Fernald

and Kimball, 2006). Basu, Fernald and Kimball (henceforth, BFK) show that under some

assumptions, changes in hours per worker are one-to-one related to changes in factor

utilization, and the former can therefore be used to proxy the latter. This method underlies

the widely used series for utilization-adjusted quarterly US TFP growth introduced by

Fernald (2014a). It effectively decomposes the Solow residual into a first part capturing

changes in utilization, and a second part capturing “true” TFP growth.

The application of the BFK method has been largely limited to US data. Instead,

our paper seeks to estimate utilization-adjusted TFP growth rates for Europe. We make

three main contributions. First, we argue that while hours per worker are an appropriate

utilization proxy in the US, they are not well suited in Europe. Second, we introduce a new

proxy from firm utilization surveys, and show that it performs better. Third, using our new

proxy (and relaxing Solow’s perfect competition assumption to allow for profits, in line

with a growing literature), we construct annual and quarterly series of utilization-adjusted

TFP growth for Europe’s five largest economies, and make them publicly available.

Following the Solow tradition, our analysis is based on a dynamic model in which firms

minimize costs and take input prices as given. The model shows that changes in hours per

worker are not always an ideal utilization proxy. Indeed, hours per worker might be driven
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by shocks to their relative cost or by changes in the composition of the labour force, which

are not linked to utilization. Dual labour markets and frequent labour market reforms

make these issues empirically relevant in Europe. Therefore, we propose to use capacity

utilization surveys as an alternative proxy. We show that under general assumptions, the

change in a firm’s capacity utilization rate is a weighted average of changes in variable

inputs. Thus, while BFK use one labour utilization margin (hours per worker) as a proxy for

unobserved utilization, we use a summary statistic for variable inputs. When all variable

inputs co-move, both proxies are equivalent, and there is a case for relying on hours per

worker, which are arguably more precisely measured and more widely available. However,

greater caution is warranted when hours per worker behave differently from all other

variable inputs, as it often happens in Europe. In these cases, capacity utilization is a

preferable proxy: it directly includes unobserved factors, and it also includes other variable

inputs that are not affected by shocks that are specific to hours per worker.

Moreover, in line with a growing body of empirical evidence, our estimation allows for

non-zero profits (see Gutierrez and Philippon, 2017; Grullon et al., 2019; Barkai, 2020; De

Loecker et al., 2020). With constant returns to scale, this implies that output elasticities are

equal to cost shares rather than sales shares. To compute costs, we estimate industry-level

rental rates of capital using the Hall and Jorgenson (1967) method, as in Barkai (2020). In

most countries and industries, profits are positive, implying higher output elasticities for

labour and materials and a lower output elasticity of capital. As capital behaves differently

from other inputs both in the short and in the long run, this matters for TFP measurement.

Combining these elements, we estimate industry-level annual TFP growth by running

an instrumental variable regression of a modified Solow residual (weighting inputs with

cost rather than sales shares) on changes in capacity utilization.1 The residual from this

regression is our measure of industry-level TFP growth. This approach is similar to the

BFK method, which is commonly implemented by regressing a standard Solow residual on

changes in hours per worker.2 However, our dependent variable accounts for profits, and

we use a different utilization proxy.

We use our method to estimate annual industry-level and aggregate TFP growth for

the five largest European economies (between 1995 and 2018). Our results are strikingly

different from the ones obtained by standard methods. In all five countries, our industry-

level TFP measures are less volatile than the Solow or BFK measures, and less correlated

1We use monetary, oil, financial and uncertainty shocks as instruments for capacity utilization.
2In their original contribution, Basu et al. (2006) also adjusted the Solow residual for non-constant returns

to scale. As they found little evidence for deviations from constant returns, they imposed constant returns
from the outset in later work (Basu et al., 2013; Fernald, 2014a).
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with industry output. The same findings carry over to the aggregate, where our TFP series

are also generally less volatile and have a lower correlation with value added growth.

The differences between TFP series are most apparent during the Great Recession and the

European Sovereign Debt Crisis. In these years, the Solow and BFK methods suggest a

dramatic decrease in TFP, followed by a rapid recovery, while we find that TFP fell only

slightly and gradually.

Our new utilization proxy and the profit adjustment are both important for these results.

Indeed, we show that BFK utilization adjustment regressions, using hours per worker as

a proxy, have a weak first stage and an insignificant second stage in several countries. In

contrast, the results obtained with our survey measure have a stronger first and second

stage, and deliver less volatile and less cyclical TFP series. This suggests that the survey

captures more of the variation in unobserved utilization in Europe. Moreover, positive

profits imply a lower output elasticity of capital. As capital fell less than other inputs during

the crisis, we attribute a greater fraction of the fall in output to inputs and less to TFP. This

effect is strongest in Southern Europe, where profits are high and the crisis was most severe.

For comparison purposes, we also estimate US TFP growth rates. We find that positive

profits raise average TFP growth. The utilization proxy makes almost no difference, as

hours per worker and capacity utilization are strongly correlated.

Finally, we use our insights to build quarterly series for Germany, Spain, France and Italy.

These countries currently do not have standard quarterly TFP data (utilization-adjusted or

not).3 Our paper fills this gap and provides profit and utilization-adjusted estimates for

quarterly TFP growth, a crucial input for applied macroeconomic research.4

Related literature Following Jorgenson et al. (1987), many researchers have assembled

industry-level growth accounting datasets. Leading examples are EU KLEMS (O’Mahony and

Timmer, 2009) in Europe, or the Bureau of Labor Statistics (BLS) multifactor productivity

database in the US. We use these datasets for our empirical work. However, they only

compute annual Solow residuals, ignoring profits, utilization and quarterly data.5

The need to adjust TFP growth for changes in utilization has long been recognized.

Costello (1993) and Burnside et al. (1995) propose electricity consumption (in the latter

3Building on annual estimates from a previous version of our paper, Christofzik et al. (2021) have also
constructed quarterly series. However, they interpolate EU KLEMS annual growth rates to obtain their Solow
residuals (while we construct our measure from raw Eurostat data) and do not adjust for profits.

4Our data is posted at https://tomgschmitz.wordpress.com. We plan to continuously update
these series and extend them to further countries.

5TFP measurement faces several other challenges that we do not consider here. For instance, we ignore
measurement issues relating to quality improvements and new products (Aghion et al., 2019). We also do not
attempt to measure intangible capital (Corrado et al., 2012; Crouzet and Eberly, 2021).
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case, joint with hours per worker) as a proxy for capital services, while Field (2012) uses

the unemployment rate.6 Imbs (1999) develops an alternative model-based methodology.

Currently, the BFK method, using hours per worker as a utilization proxy, is the leading

approach on this issue. Its application has been largely limited to US data, with the

exception of Inklaar (2007) and Huo et al. (2020), who apply it to data from other (mainly

European) countries.7 In line with Inklaar (2007), we find that while hours per worker

might be an appropriate utilization proxy in the US, they are not ideally suited to capture

changes in utilization in many European countries. In contrast, our new survey proxy

delivers robust and consistent results in a range of countries with different labour market

institutions, and also can be used at the quarterly frequency.8

Several papers explore the effect of profits on TFP measurement (Karabarbounis and

Neiman, 2019; Meier and Reinelt, 2020; Crouzet and Eberly, 2021; Piton, 2021; Ruzic and

Ho, 2021). However, our paper is the first to jointly account for profits and utilization, and

to consistently aggregate the resulting industry-level TFP series. We also provide the first

utilization and profit-adjusted series for quarterly TFP growth in Continental Europe.

In the remainder, Section 2 describes our estimation approach and compares it to the

standard methods. Section 3 discusses the data. Section 4 presents our estimates for output

elasticities and utilization adjustments, while Sections 5 and 6 discuss the annual and

quarterly series. Section 7 concludes.

2 Measuring TFP growth

2.1 A workhorse framework

Production functions We assume that the economy is composed of I industries. In each

industry i and time period t, a representative firm produces output Yi,t by using capital, two

types of labour, and materials with a Cobb-Douglas production function:

Yi,t = Zi,t (Ki,t)
αi,K
(

EF
i,tH

F
i,tN

F
i,t

)αF
i,L
(

EV
i,tH

V
i,tN

V
i,t

)αV
i,L
(Mi,t)

αi,M , (1)

6Solow himself was aware of the issue, and proposed a correction dealing specifically with capital
utilization: “Lacking any reliable year-by-year measure of the utilization of capital I have simply reduced [the
capital stock] by the fraction of the labor force unemployed in each year [..]. This is undoubtedly wrong, but
probably gets closer to the truth than making no correction at all” (Solow, 1957, P. 314).

7Planas et al. (2013) propose a statistical filtering method to extract trend TFP growth for European
countries (also relying on capacity utilization surveys). Their approach differs from BFK and from ours by the
fact that it uses a statistical model instead of the economic structure imposed by cost minimization.

8Obviously, capacity utilization surveys are not perfect (see Shapiro, 1989, 1996). We discuss measurement
issues relating to them in greater detail in Section 2.3.

4



where αi,K + αF
i,L + αV

i,L + αi,M = 1. In this equation, Zi,t stands for industry i’s TFP in

period t, Ki,t stands for capital input and Mi,t stands for material inputs. There are two

types of labour inputs: quasi-fixed labour (denoted by the superscript F) and variable labour

(denoted by the superscript V). For each type `, N`
i,t stands for the number of workers, H`

i,t

for the number of hours per worker, and E`
i,t for the number of tasks a worker undertakes in

one hour (“worker effort”). Importantly, we assume that capital and quasi-fixed employment

are predetermined: their level in period t needs to be set in period t− 1. This adjustment

friction creates an incentive for firms to vary hours per worker and effort per hour.

These simple assumptions on production nest the standard TFP measurement methods

(i.e., the Solow growth accounting of EU KLEMS and the BLS, as well as the BFK method).

Nevertheless, before proceeding, it is worthwhile to discuss some important features.

First, we assume constant returns to scale. This is in line with empirical evidence and

the vast majority of the growth accounting literature. For instance, EU KLEMS and the BLS

impose constant returns. The BFK method allows for non-constant returns to scale, but

as the results of Basu et al. (2006) indicate constant returns, they impose these from the

outset in later work (Basu et al., 2013; Fernald, 2014a).9

Second, our assumption that capital and quasi-fixed labour are predetermined is shared

with Basu et al. (2006), and allows us to model adjustment frictions without having to

account for adjustment costs in the measurement of capital and labour input.10

Finally, our model has no role for a utilization rate of capital as an independent

production factor. Indeed, we think of capital utilization as an endogenous outcome that

depends on the capital stock and on all other inputs, and does not appear in a reduced-form

production function. For example, the utilization rate of a machine depends on how often

workers use it, how much electricity it consumes, and how many material inputs it receives.

The utilization rate of a restaurant building depends on how many people work in it, and

how many tasks they carry out. Nevertheless, Appendix A.2 shows that modelling capital

utilization as an input, as it is often done in the literature, does not affect our measurement.

Cost minimization Using equation (1), we can express TFP growth as

dZt = dYt −
[

αKdKt + αF
L
(
dEF

t + dHF
t + dNF

t
)
+ αV

L
(
dEV

t + dHV
t + dNV

t
)
+ αMdMt

]
,

(2)

9We also assume that the production function is Cobb-Douglas. However, as pointed out by Basu and
Fernald (2001), every production function is Cobb-Douglas up to a first-order approximation.

10In a previous version of this paper, we also considered a model with convex adjustment costs for capital
and employment (see Comin et al. (2023), Appendix B.1). Our estimates indicated very small effects of
adjustment costs on measured inputs, and therefore did not affect our results.
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where dXt ≡ ln Xt − ln Xt−1 is the growth rate of variable X in period t.11

Equation (2) shows that TFP growth is the difference between output growth and a

weighted average of input growth rates. It also neatly summarizes measurement challenges.

The growth rates of output, capital, hours per worker, employment and materials are

observable in standard datasets. However, output elasticities and worker effort are either

unknown or unobserved. To make progress, we thus follow the Solow-BFK tradition and

impose additional structure, assuming that firms minimize costs and are price-takers in

input markets. Precisely, we assume that the representative firm solves

min E0

[
+∞

∑
t=0

(
t

∏
s=1

(
1

1 + rs

))(
wF

t ΓF

(
HF

t

)
NF

t + wV
t ΓV

(
HV

t

)
NV

t

+qF
t ΛF

(
EF

t
)

HF
t NF

t + qV
t ΛV

(
EV

t
)

HV
t NV

t + PM,tMt + PI,t It

)]
s.t. Yt = Zt (Kt)

αK
(
EF

t HF
t NF

t
)αF

L
(
EV

t HV
t NV

t
)αV

L (Mt)
αM ,

Kt+1 = (1− δK)Kt + It,
NF

t+1 =
(
1− δF

N
)

NF
t + AF

t .

(3)

Problem (3) shows that the firm minimizes the expected discounted sum of production

costs, subject to the future (potentially stochastic) paths of output, TFP, interest rates and

input prices. The firm owns the capital stock, which depreciates at rate δK, and discounts

future costs at the interest rate rt. It also needs to set the level of capital and quasi-fixed

employment one period in advance (by choosing investment It and hiring AF
t ).

Each period, the firm pays a cost for materials, PM,tMt (where PM,t is the price of

materials), capital investment, PI,t It (where PI,t is the price of investment goods), and

labour. For each type of labour `, costs have two components. The first, w`
t Γ`

(
H`

t
)

N`
t ,

depends on employment and hours per worker. Γ` is an increasing and convex function,

capturing the fact that workers need to be paid more when working longer hours (e.g.,

because of overtime premia). w`
t is a stochastic cost shifter, capturing changes in wages that

are not due to changes in hours per worker. The second component is a cost for increasing

effort per hour worked, q`t Λ`

(
E`

t
)

H`
t N`

t . We stay as agnostic as possible with respect to

this cost, only assuming that it is proportional to total hours worked, increasing and convex

in effort, and subject to a stochastic cost shifter q`t .
With these assumptions, the first-order condition for materials is

PM,t = λtαM
Yt

Mt
, (4)

11To simplify notation, we from now on drop industry subscripts whenever this does not cause confusion.
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where λt is the Lagrange multiplier on the output constraint (i.e., the marginal cost of

output in period t). Equation (4) states that the firm equalizes the marginal cost of materials

PM,t to their marginal benefit (relaxing the output constraint by αM
Yt
Mt

units, valued at the

marginal cost λt).

We get analogous expressions for hours per worker, effort, and variable employment:(
w`

t Γ′`
(

H`
t

)
+ q`t Λ`

(
E`

t

))
N`

t = λtα
`
L

Yt

H`
t

for ` ∈ {F, V} , (5)

q`t Λ′`
(

E`
t

)
H`

t N`
t = λtα

`
L

Yt

E`
t

for ` ∈ {F, V} , (6)

wV
t ΓV

(
HV

t

)
+ qV

t ΛV

(
EV

t

)
HV

t = λtα
V
L

Yt

NV
t

. (7)

Investment into physical capital holds the Euler equation

Et−1

(
Rt

1 + rt

)
= Et−1

(
1

1 + rt

[
λt

αKYt

PI,t−1Kt

])
, (8)

where Rt is the rental rate of capital, given by the Hall and Jorgenson (1967) formula:

Rt ≡ 1 + rt − (1− δK)
PI,t

PI,t−1
. (9)

The firm equalizes the expected marginal cost of capital (the discounted rental rate)

and its expected marginal benefit, which is a relaxation of the output constraint in period t,
valued at the marginal cost λt. Likewise, hiring of quasi-fixed workers holds

Et−1

(
w̃F

t
1 + rt

)
= Et−1

(
1

1 + rt

[
λt

αF
LYt

NF
t

])
, (10)

where w̃F
t ≡ wF

t ΓF
(

HF
t
)
+ qF

t ΛF
(
EF

t
)

HF
t is the quasi-fixed wage bill per worker.

These optimality conditions inform our TFP measurement. To organize the discussion,

it is useful to recall the insights from the growth accounting equation (2): to compute

TFP growth, we need to estimate output elasticities, and we need to measure unobserved

changes in worker effort. In the next two sections, we discuss how we deal with each of

these challenges, and compare our choices to the standard Solow and BFK methods.12

12As our model yields the same measurement equations as the BFK setup, we use it as a framework without
loss of generality. Appendix A.2 contains further details on this issue.
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2.2 Output elasticities and the role of profits

To estimate output elasticities, we focus on our model’s balanced growth path (BGP)

solution, defined as the solution obtained when interest rates are constant, and output, TFP

and factor prices grow at a constant rate. Then, the first-order conditions from Section 2.1

imply

αM =
P∗M,tM

∗
t

P∗M,tM
∗
t + w̃F∗

t NF∗
t + w̃V∗

t NV∗
t + R∗P∗I,t−1K∗t

, (11)

where ∗ superscripts indicate BGP values. That is, the output elasticity of materials is equal

to the share of materials in total costs.13 The same results hold for the other inputs:

α`L =
w̃`∗

t N`∗
t

P∗M,tM
∗
t + w̃F∗

t NF∗
t + w̃V∗

t NV∗
t + R∗P∗I,t−1K∗t

for ` ∈ {F, V} , (12)

αK =
R∗P∗I,t−1K∗t

P∗M,tM
∗
t + w̃F∗

t NF∗
t + w̃V∗

t NV∗
t + R∗P∗I,t−1K∗t

. (13)

The Solow and BFK methods assume zero profits.14 Then, total costs are equal to sales,

and the material and labour elasticities are equal to the (easily observable) sales shares of

these inputs. Under constant returns to scale, the capital elasticity is obtained as a residual.

Our estimation does not impose zero profits, and we therefore compute output elastici-

ties as cost shares rather than sales shares. As the above equations show, this requires a

measure of capital costs, and hence an estimate for the rental rate of capital. We estimate

this rate by using the Hall and Jorgenson approach (i.e., equation (9)). Section 3 provides

further implementation details.

Note that this treatment of profits is no methodological innovation, but closely follows

the existing literature (e.g. Barkai, 2020; Crouzet and Eberly, 2021; Piton, 2021).15

However, adjusting for profits is important to obtain consistent TFP estimates. Moreover,

the profit adjustment can also interact with our utilization adjustment (the main novelty of

our approach), described in the next section.

2.3 Unobserved changes in worker effort

Changes in worker effort are not observed in standard datasets. Hence, they are typically

swept into the Solow residual (i.e., incorrectly included in measured TFP growth). In this

13Appendix A.1 provides further details on the model solution, both on and off the BGP.
14The model of Basu et al. (2006) allows for profits (if markups exceed the degree of returns to scale), but

they impose a zero-profit assumption in their estimation. Basu et al. (2013) impose constant returns to scale.
15Obviously, this approach has its own challenges (Karabarbounis and Neiman, 2019; Basu, 2019).
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section, we describe the BFK approach to this issue, its limitations, and our alternative.

Simply put, BFK and our method both rely on a proxy for worker effort. However, while

BFK use a labour utilization margin (hours per worker), we use capacity utilization surveys,

a summary statistic for variable inputs, and argue that this has advantages in Europe.

The BFK method The BFK proxy method is motivated by the cost-minimizing behaviour

of the firm. Combining equations (5) and (6), we get

w`
t

q`t
Γ′`
(

H`
t

)
= Λ′`

(
E`

t

)
E`

t −Λ`

(
E`

t

)
for ` ∈ {F, V} . (14)

Under some regularity conditions on the functions Γ` and Λ`, this equation implies that

we can write hours per worker H`
t as a function of effort per hour E`

t and the relative cost

of hours per worker, w`
t/q`t . Thus, up to a first-order approximation,

dE`
t ≈ a`H

(
dw`

t − dq`t
)
+ b`HdH`

t , for ` ∈ {F, V} , (15)

where a`H and b`H are positive constants. BFK assume that all labour inputs are quasi-fixed

(i.e., αV
L = 0) and that the relative price of effort with respect to hours per worker is constant

(i.e., dwF
t = dqF

t ). Then, equation (15) implies a linear relationship between changes in

effort dEt and changes in hours per worker dHt, and BFK can rewrite equation (2) as

dYt −
(
s∗KdKt + s∗L (dHt + dNt) + s∗MdMt

)
= αLdEt + dZBFK

t

⇔ dZSolow
t = βHdHt + dZBFK

t
(16)

where the s∗ stand for the BGP sales shares of production factors, and βH ≡ αLbH.16

The left-hand side of equation (16) is just the Solow residual, that is, the difference between

output growth and a sales-share-weighted average in the growth of observable inputs. As

shown in the first line, the Solow residual reflects both changes in TFP and changes in

worker effort. However, the latter is a linear function of changes in hours per worker: thus,

once we know the utilization adjustment parameter βH, we can compute “true” TFP growth.

BFK estimate βH with an instrumental variable (IV) regression of equation (16), using oil,

fiscal and monetary policy shocks as instruments for changes in hours per worker.

Limits to BFK Our model indicates that the relationship between hours per worker and

unobserved worker effort could break down because of two potential issues.

16Precisely, s∗L = w̃∗t N∗t /P∗t Y∗t and s∗M = P∗M,t M∗t/P∗t Y∗t . As shown in equations (11) and (12), these sales shares
equal αL and αM under the assumption of zero profits. The sales share of capital is then s∗K = 1− s∗L − s∗M.
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First, equation (15) shows that a shock to the relative cost of hours could lead to a

change in hours per worker without a corresponding change in effort. In that case, the BFK

method would lead to spurious changes in measured utilization (and therefore spurious

changes in measured TFP growth).

In practice, shocks to the relative cost of hours per worker could arise through changes

in regulation. This issue is particularly relevant for European countries, which undertook

major labour market reforms during the last decades. The most well-known example is

probably the introduction of the 35-hour workweek in France, which directly affected

the relative cost of hours per worker. The 35-hour workweek was introduced by a left-

wing government through two laws in 1998 and 2000, and became fully mandatory on

January 1, 2002. However, in 2002, a right-wing government took over and weakened the

reform through several measures (e.g., a reduction in the cost of overtime work).17

Figure 1: Hours per worker in France, 1998 - 2007
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Notes: This figure plots aggregate hours per worker in the French business economy. The data is taken from
EU KLEMS, as described in Section 3.

Figure 1 shows that these reforms led to important changes in hours per worker in the

early 2000s. Between 1998 and 2002, hours per worker fell, presumably under the impact

of the reform. Then, after 2002, as the law was weakened, hours per worker increased,

before falling again in 2006. These changes were unrelated to the business cycle, and are

likely to reflect changes in the relative cost of hours. However, the BFK method would

interpret them as indicating changes in factor utilization, and therefore lead to spurious

adjustments in measured TFP. Indeed, we will show in Section 5 that the BFK TFP measure

for France is very volatile between 1998 and 2007.

17For an overview of the evolution of hours per worker in France, see Raffin and Yildiz (2019) [in French].
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The second potential issue with BFK are composition effects: when there are two types

of labour input (as in our model), changes in aggregate hours per worker may not be

related to changes in utilization. To see this, assume that there are no shocks to the relative

price of hours per worker. Then, changes in aggregate effort can be written as

αF
LdEF

t + αV
L dEV

t = αF
LbF

HdHF
t + αV

L bV
HdHV

t

⇔ =
(

αF
LbF

H
dHF

t
dHt

+ αV
L bV

H
dHV

t
dHt

)
dHt

(17)

where Ht ≡ HV
t NV

t +HF
t NF

t
NV

t +NF
t

are aggregate hours per worker. Thus, there is a constant rela-

tionship between aggregate effort and aggregate hours per worker if and only if hours per

worker for each category of workers move in line with aggregate hours per worker (so that
dHF

t /dHt and dHV
t /dHt are constant). This assumption might not hold in the data, for two

reasons. First, hours per worker could move differently in different categories. Second,

even if changes in hours per worker were identical across categories, aggregate hours per

worker could move differently due to changes in the composition of employment.

Figure 2: Hours per worker and composition effects in Spain
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Notes: The left panel plots hours per worker in the Spanish business economy, distinguishing between
workers with part-time or temporary contracts (variable labour) and all others. The right panel plots the
share of variable workers in total employment. All data comes from EU KLEMS and the EU Labour Force
survey, as described in Appendix B. Shaded areas mark recessions, defined in Appendix B.8.

Figure 2 provides an example for this, using the case of Spain. We define workers with

temporary and/or part-time contracts as the data equivalent of our model’s “variable” labour,

and all other workers (i.e., workers with full-time permanent contracts) as the equivalent

of our model’s “quasi-fixed” labour. The former category represents around 30% of the

Spanish workforce, one of the highest shares in the OECD (Bentolila et al., 2012). As the

left-hand side panel shows, aggregate hours per worker in Spain (plotted by the solid black

line) did not behave in line with hours per worker for both sub-categories. While aggregate

11



hours per worker increased during the Great Recession, hours per worker for variable

workers strongly fell, and hours per worker for quasi-fixed workers rose. As equation (17)

shows, this implies that there cannot be a stable relationship between aggregate effort and

aggregate hours per worker. Furthermore, note that through the lens of the BFK method, the

behaviour of aggregate hours per worker implies that Spanish factor utilization decreased

during the 2002-2007 boom period and then increased in the Great Recession. This seems

implausible. Accordingly, in Section 5, we show that BFK utilization adjustment regressions

often yield inconsistent and insignificant results in Spain.

One driver of the divergence between aggregate hours per worker and hours per

worker for each category, and of the countercyclicality of aggregate hours per worker, are

composition effects in employment. Indeed, variable workers were more likely to be fired

during the Great Recession, and their share in total employment fell from around 33% in

2006 to 26% in 2010, as shown in the right panel of Figure 2. However, as the left panel

shows, variable workers work shorter hours. Therefore, their dismissal mechanically raises

aggregate hours per worker. This contributes to an increase in aggregate hours per worker,

in spite of the sharp reduction in the hours of variable workers.18 Note that in principle,

the composition issue could be addressed in the BFK framework by using separate proxies

for different types of workers. However, this faces empirical issues (see Appendix D.4).

Summing up, shocks to relative prices and composition effects make hours per worker

an imperfect proxy for factor utilization. As the examples of France and Spain show, these

issues are empirically relevant. Therefore, we propose to rely instead on capacity utilization

surveys, arguing that they provide a more robust proxy in such circumstances.

An alternative proxy European capacity utilization surveys are run by national institutes,

coordinated by the European Commission. The surveys ask participating firms to provide a

numerical estimate of the utilization rate of their current machinery and equipment.19

Capacity utilization is the ratio between current and full capacity output.20 To build

on this definition, we impose the assumption (shared with BFK and consistent with the

18Similar composition effects might be at work even among workers with permanent, full-time contracts,
explaining the increase in their hours.

19The Commission’s survey guidelines can be consulted at https://ec.europa.eu/info/sites/
info/files/bcs_user_guide_2021_02_en.pdf. Note that national questionnaires vary slightly.

20This definition is explicit in the equivalent US survey, which asks plants to estimate their full
capacity output, defined as “the maximum level of production that [...] could reasonably [be] ex-
pect[ed] under normal and realistic operating conditions fully utilizing the machinery and equipment in
place” (see https://www2.census.gov/programs-surveys/qpc/technical-documentation/
questionnaires/instructions.pdf). For this, respondents should consider an unchanged capital
stock, a “number of shifts, hours of plant operations, and overtime pay [that] can be sustained under normal
conditions and a realistic work schedule”, and that “labor, materials, utilities, etc. are fully available”.
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wording of the surveys) that some production factors are fixed in the short run. Thus, the

input from these factors is the same for current and full capacity output. In our model, the

fixed factors are capital Kt and quasi-fixed employment NF
t , and capacity utilization holds

CUt =
Yt

YFC
t

=

(
EF

t

EF,FC
t

HF
t

HF,FC
t

)αF
L
(

EV
t

EV,FC
t

HV
t

HV,FC
t

NV
t

NV,FC
t

)αV
L
(

Mt

MFC
t

)αM

, (18)

where FC superscripts denote full capacity levels. Thus, capacity utilization measures the

level of variable inputs relative to their full capacity level. The key question is then: when

are changes in this summary statistic a good proxy for changes in one unobserved variable

input, worker effort?

The difficulty in answering this question lies in the fact that we cannot observe the

full capacity level of variable inputs. However, we argue that capacity utilization is a good

proxy under a range of reasonable assumptions.

First, assume that the full capacity level of variable inputs is fixed (or growing at a fixed

rate).21 Then, changes in capacity utilization would be a good proxy for changes in effort if

(a) Changes in effort are large with respect to changes in other variable inputs, or

(b) Changes in effort are correlated with changes in other variable inputs.

In case (a), changes in capacity utilization are mostly driven by changes in effort, which

obviously yields a strong correlation between both variables. More generally, in case (b),

capacity utilization is a good proxy for effort if the co-movement between effort and other

variable inputs quantitatively dominates changes in the variable input mix.

Second, assume that the full capacity level of variable inputs changes over time. As

long as these changes are small with respect to actual changes in variable inputs, the same

arguments as before continue to hold. Moreover, even if the variable input mix changes

strongly from one year to the next, capacity utilization is still a good proxy for effort if one

is willing to make the (strong) assumption that the variable input mix moves symmetrically

between actual and full capacity production (that is, if a manager reacts to an increase in

the relative price of electricity by using less electricity and more other inputs, she does the

same thing when computing full capacity production). Appendix A.3 expands on this point.

The arguments above show that under a quite general set of assumptions, changes in

capacity utilization are a good proxy for changes in worker effort. Using this insight, we

21For instance, it seems reasonable to assume that the maximum number of tasks that a worker can be
asked to perform in an hour does not change from one year to the next.
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can rewrite our measurement equation (2) as

dYt −
[
αKdKt + αF

L

(
dNF

t + dHF
t

)
+ αV

L

(
dNV

t + dHV
t

)
+ αMdMt

]
= βdCUt + dZt. (19)

Equation (19) shows that, similarly to BFK, industry-level TFP growth can be obtained

as the residual from a regression of a raw TFP measure on a utilization proxy. As in BFK, we

will instrument changes in the proxy with shocks that are uncorrelated with TFP. However,

we introduce two crucial departures: our raw TFP measure weights inputs by cost rather

than by sales shares, and we use a different utilization proxy.

We are now ready to discuss the implementation of our method and its results. However,

before doing so, it is useful to discuss some common criticisms of capacity utilization

measures, and to compare them more systematically to hours per worker.

Limitations The debate on capital utilization measures has largely focused on US data.

However, most of the points in this debate apply equally to Europe.

Concerns about capacity utilization measures go back to the influential critique of

Shapiro (1989, 1996). Shapiro argued that adjustments made by the Federal Reserve

(which compiles the US data) made full capacity output a smooth trend, so that changes in

capacity utilization “contain essentially no information beyond that contained in the change
in production” (Shapiro, 1989, P. 182). In response to this critique, the Federal Reserve

changed its methodology, relying more directly on Census data (see Shapiro, 1996).

Figure 3: Full capacity output growth in US and German manufacturing
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Notes: Shaded areas mark recessions, defined in Appendix B.8. The German growth rate of full capacity
output is the difference between the growth rate of real output and the growth rate of capacity utilization.

The left panel of Figure 3, using the latest data series for US manufacturing, shows

that full capacity output does not behave like a smooth trend. Instead, there appears to

be a pro-cyclical pattern. This is consistent with our interpretation of the survey. Indeed,
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equation (18) implies dYt = dCUt + dYFC
t . Thus, if changes in fixed factors do not affect

the capacity utilization rate, they must be reflected in full capacity output. Accordingly, the

pro-cyclical behavior of full capacity output can be rationalized by pro-cyclical investment

into fixed factors. The same appears to be true for the (implied) growth rate of full capacity

output in German manufacturing, shown in the right panel of Figure 3.

Shapiro also argued that industry growth does not slow down at high levels of capacity

utilization. Later studies have found different results. Boehm and Pandalai-Nayar (2022)

show that “industries with low initial capacity utilization rates expand production twice as
much after demand shocks as industries that produce close to their capacity limit”. Corrado

and Mattey (1997) provide further evidence for the series behaving in a consistent way.

Finally, a more general concern about capacity utilization is measurement error. Mea-

surement error might either come directly from the survey, or from the fact (discussed

further below) that we need to impute or backcast capacity utilization data for some non-

manufacturing industries. If the measurement error is white noise, it will bias our estimate

of β in equation (19) towards zero, and lead us to make no utilization adjustment. This

does not appear to be the case in our regressions. Cyclical measurement error would a

priori be more problematic. However, as we instrument changes in capacity utilization with

shocks that are uncorrelated to TFP, measurement error would have to be systematically

correlated with these shocks in order to bias our estimates.

Comparison to hours per worker When variable inputs perfectly co-move, the BFK

hours per worker proxy and our capacity utilization proxy are equivalent in theory. Then,

there is a practical case for using hours per worker, as they are arguably less subject to

measurement error, and more widely available for different time periods and industries. As

we will show below, these arguments are particularly relevant for the United States.

However, we also argue that one might want to be more cautious in using hours per

worker when they behave differently from all other variable inputs. Often, such differences

can be traced to some specific shocks or issues affecting hours per worker (such as the

changes in the relative price or composition effects discussed above for the cases of France

and Spain). In these cases, capacity utilization might be a better proxy: it directly contains

changes in effort, and it contains changes in other variable inputs that were not directly

affected by the problems specific to hours per worker.

In the end, the relative advantages and shortcomings of the survey with respect to

hours per worker are an empirical question. We are now ready to study this question, and

to estimate industry-level and aggregate TFP growth. The next section discusses our data

sources, as well as some further implementation details.

15



3 Data sources and implementation details

3.1 Data sources

Growth accounting and interest rates We estimate TFP growth rates for the five largest

European economies: Germany, Spain, France, Italy and the UK.

Our main data source is the December 2021 release of the EU KLEMS database. This

database provides annual industry-level data for output, inputs and input compensation

between 1995 and 2018.22 We focus on the non-farm, non-mining market economy, which

leaves us with 25 industries in most countries. Appendix B.1 contains further details,

including an exact mapping between KLEMS variables and the variables in our model.

To compute our modified Solow residual (the left-hand side of equation (19)), we

need to estimate capital costs. KLEMS contains information on the nominal capital stock,

depreciation rates and investment goods prices, disaggregated for nine different assets.

Hence, the only missing element to compute capital costs is the interest rate in the Hall-

Jorgenson rental rate equation (equation (9) in our model). For all industries, we define

the interest rate in country c at time t as

1 + rc
t = GovBondYieldc

t +
Dc

Dc + Ec · BaaSpreadt +
Ec

Dc + Ec · ERPc
t . (20)

Equation (20) is a simplified form of the weighted average cost of capital formula in

Barkai (2020): the interest rate is the sum of a risk-free rate and a weighted average of

the risk premia on debt and equity.23 We measure the risk-free interest rate in country c as

the yield of 10-year government bonds (GovBondYieldc
t), taken from the OECD. The risk

premium on bonds is the spread on Moody’s Baa US bonds with a maturity of 20 years or

more (BaaSpreadt), from the FRED database. We rely on US data as there is no European

equivalent for our entire sample period (however, Appendix C.4 shows that our results are

robust to using a country-specific bond spread, available from the year 2000). Finally, our

data for the equity risk premium (ERPc
t) is from Refinitiv Datastream. Bond and equity risk

premia are weighted by the share of debt and equity in total assets, which we take from

Tressel and de Almeida (2020). Appendix B.3 contains further details.

22The data can be downloaded at https://euklems-intanprod-llee.luiss.it/. The KLEMS
methodology is described in O’Mahony and Timmer (2009). Unfortunately, different KLEMS releases are not
fully consistent (Fernald et al., 2023). However, our results do not depend on the vintage used. In previous
versions, we used the 2017 KLEMS vintage (http://www.euklems.net/) and obtained similar results.

23The main difference with respect to Barkai’s formula is that we ignore taxes in our baseline analysis. In
Appendix C.4, we show that taking into account taxes does not affect our main results.
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Obviously, there are reasonable alternatives to these particular choices. In Appendix C.4,

we show that our baseline results are robust to several alternatives.

Capacity utilization surveys To measure capacity utilization, we rely on the European

Commission’s Harmonised Business and Consumer Surveys.

For the manufacturing sector, these surveys cover a representative sample of firms,

with a sample size ranging between 2’000 (in Spain) and 4’000 (in Italy and France).

They provide quarterly time series for 24 industries, obtained as the employment-weighted

average of the responses of individual firms. We aggregate the quarterly series to the yearly

frequency by using simple averages, and to KLEMS industries by using value added weights.

The Commission has also included a question on capacity utilization in its survey of

service industries since 2011. For our baseline results, we use this service data whenever

available, and backcast the industry-level series by projecting them on average capacity

utilization in manufacturing for all earlier years.

Table 1: Capacity utilization in service industries

Germany Spain France Italy UK

Manufacturing average 0.601*** 0.599*** 0.097*** 0.445*** 0.590***

(0.068) (0.060) (0.029) (0.062) (0.063)

Observations 184 396 301 370 227

R-squared 0.65 0.25 0.58 0.26 0.38

Notes: This table lists the estimated coefficients β for the regression CUi,q,t = αi + αq + βCUManuf
q,t + εi,q,t,

where CUi,q,t is capacity utilization in service industry i in quarter q of year t, CUManuf
q,t is average capacity

utilization in manufacturing in quarter q of year t, and αi and αq are industry and quarter fixed effects.
Regressions use data between 2011Q1 and 2021Q2. The estimated coefficients are used to backcast capacity
utilization for service industries. Results are similar with industry-specific βs. Robust standard errors in
parentheses. ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

Table 1 summarizes the results of our backcasting regression. In all five countries,

capacity utilization measures in services and manufacturing are strongly correlated. Figure 4

further underlines this, by plotting a value-added weighted average of capacity utilization

for service industries against the manufacturing average for the entire sample period

(using the backcasted data for individual service industries before 2011). While there are

differences in levels, the cyclical behaviour of the average service industry follows the

manufacturing average closely. Appendix B.4 contains further details.
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Figure 4: Capacity utilization in manufacturing and services
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Notes: The figure plots average capacity utilization in manufacturing and services. Service data before 2011 is
backcasted. Industry-level data is aggregated with value-added weights. Appendix B.4 describes the surveys.

Instruments Our estimations use four instrumental variables: oil price shocks, monetary

policy shocks, economic policy uncertainty shocks and shocks to financial conditions.

Following Basu et al. (2006), we compute oil price shocks as the log difference between

the current quarterly real oil price and the highest real oil price in the preceding four

quarters. We define the annual oil price shock as the sum of the four quarterly shocks.

Monetary policy shocks for Euro Area countries are from Jarociński and Karadi (2020).

The authors identify shocks by considering movements in interest rates and stock markets
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after monetary policy announcements.24 In the UK, we use Cesa-Bianchi et al. (2020),

who identify shocks through changes in the price of 3-month Sterling future contracts after

policy announcements by the Bank of England.

For economic policy uncertainty (EPU), we rely on the measure developed by Baker

et al. (2016), a monthly index based on newspaper articles on policy uncertainty. We use

the log change in the EPU index as our measure of uncertainty shocks.

Finally, we measure financial conditions using the excess bond premium introduced

in Gilchrist and Zakrajšek (2012). This measure is computed as the difference between

the actual spread of unsecured bonds of US firms and the predicted spread based on firm-

specific default risk and bond characteristics. Thus, it captures variation in the average

price of US corporate credit risk, above and beyond the compensation for expected defaults.

We use the change in the annual average as our measure of financial shocks.

In our regressions, we use shock values in year t − 1 as instruments for changes in

capacity utilization in year t. Recall that in order to valid, instruments need to be correlated

with changes in capacity utilization, but uncorrelated with TFP shocks.

US data For comparison purposes, we also estimate TFP growth rates for the United

States. US Data sources are described in Appendix B.5.

3.2 Implementation details

To compute output elasticities (at the country-industry level), we start by computing

rental rates with the Hall-Jorgenson equation. Combining this with data on the nominal

capital stock, we obtain capital costs. Then, using the KLEMS data on the cost of all other

inputs, we can compute output elasticities, taking time averages of yearly cost shares to

obtain BGP values.

However, while our model has two types of labour and one type of capital, KLEMS

provides information for 18 labour inputs (differentiated by gender, age and education)

and 9 capital assets. To take into account this rich information, we compute rental rates,

capital costs and output elasticities separately for each asset. Using instead the capital input

index provided by KLEMS (CAP_QI) would be inconsistent with our estimation, as KLEMS

aggregates assets with a weighting method that assumes zero profits.25 For labour, this

24An updated version of their shock series can be downloaded at https://marekjarocinski.github.
io/. For Euro Area countries, the series starts in 1999. We backcast shocks for earlier years by projecting
them on the other instruments (which amounts to not using these shocks for the first four years of the sample).
As shown in Appendix C.4, our results are unchanged if we drop the monetary policy shock.

25However, we show in Appendix C.2 that our results do not change much when we do use CAP_QI.
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approach is not feasible, as we do not have wage data for each of the 18 different labour

types. Hence, we rely on the aggregate KLEMS index for labour inputs (LAB_QI). The

corresponding output elasticity for this overall labour input is αL ≡ αV
L + αF

L. Appendix B.1

provides further details on these issues.

To increase statistical power, we follow BFK and divide industries into three sectors

(durable manufacturing, non-durable manufacturing, and non-manufacturing). We assume

that all industries in a sector j have the same utilization adjustment coefficient βj. Thus, we

implement equation (19) by estimating for every sector j

dY j
i,t − dX j

i,t = κ
j
i + βjdCU j

i,t + ε
j
i,t,

with dX j
i,t ≡

A
∑

a=1
α

j,a
Ki dK j,a

i,t + α
j
LidLAB_QIj

i,t + α
j
MidMj

i,t.
(21)

In this specification, α
j,a
Ki is the output elasticity for capital asset a, κ

j
i is a dummy

variable for industry i of sector j, and we instrument changes in capacity utilization with

the instruments cited in Section 3.1.26 Our measure of TFP growth for industry i is then

given by dZj
i,t = κ

j
i + ε

j
i,t.

For comparison purposes, we also estimate TFP growth using the BFK method, using

the same instruments as in our baseline. Precisely, we estimate

dY j
i,t − dX j,BFK

i,t = κ
j
i + β

j
HdH j,Cycle

i,t + ε
j
i,t,

with dX j,BFK
i,t ≡ sj,∗

Ki dCAP_QIj
i,t + sj,∗

Li dLAB_QI + sj,∗
MidMj

i,t,
(22)

where dH j,Cycle
i,t stands for the first difference of the cyclical component of the logarithm

of hours per worker, extracted with a Christiano and Fitzgerald (2003) band-pass filter

isolating frequencies between 2 and 8 years. This procedure follows BFK, and separates

cyclical fluctuations in hours per worker from their long-run downward trend.27

Finally, to obtain an aggregate measure of TFP growth, we aggregate our industry-

level measures by using cost-based Domar weights, following Baqaee and Farhi (2019).

Appendix A.4 contains further details on this.

We are now ready to discuss our results. We first present our estimates for output

elasticities and utilization adjustment coefficients, and then discuss our TFP series.

26In Europe, we allow the coefficients of the instruments in non-manufacturing to differ between the periods
with original and backcasted data. Our results do not change when coefficients are constant throughout.

27The US capacity utilization survey also has a downward trend (Pierce and Wisniewski, 2018). Thus, we
also detrend it, using again the band-pass filter. European surveys do not have a trend.

20



4 Results: output elasticities and utilization adjustments

4.1 Profits and output elasticities

To get a sense of the importance of our departure from zero profits, it is instructive to

consider profit shares.28 As shown in greater detail in Appendix D.1, we find high profit

shares in Spain, France, Italy and the UK, where profits represent roughly 12-15% of value

added, and a lower profit share in Germany, around 6% of value added.

As most industries make positive profits, sales are larger than costs. Therefore, the

cost share of labour and materials (our estimate for their output elasticity) is higher than

their sales share (the output elasticity for the Solow and BFK methods). As a result, our

estimate for capital elasticities is lower than the one of the Solow and BFK methods. Table 2

illustrates the quantitative differences, by listing average industry-level factor elasticities.

In high-profit countries, our method reduces the capital elasticity by up to 5-6 percentage

points, and increases labour and material elasticities by corresponding amounts.

Table 2: Average output elasticities

Germany Spain France Italy UK USA

Materials

Our elasticity 0.54 0.56 0.56 0.59 0.54 0.42

Solow-BFK elasticity 0.52 0.52 0.53 0.56 0.50 0.41

Labour

Our elasticity 0.34 0.34 0.35 0.31 0.37 0.41

Solow-BFK elasticity 0.33 0.32 0.34 0.29 0.35 0.40

Capital

Our elasticity 0.12 0.11 0.09 0.10 0.09 0.17

Solow-BFK elasticity 0.14 0.17 0.13 0.15 0.15 0.19

Notes: Industry-level output elasticities are computed using equations (11) to (13). BGP values are simple
averages of the respective time series. Solow-BFK elasticities are computed the same equations, using gross
output instead of costs. The capital elasticity is the sum of the elasticities of all capital assets. Reported values
are value-added weighted averages across industries. Elasticities may not add to 1 due to rounding.

28 The profit share in gross output holds πt = 1− TCt
PtYt

, where TCt stands for total costs.
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As we will show in Section 5, these differences matter for TFP measurement. For

instance, capital typically falls less than other inputs in recessions. Therefore, our lower

output elasticity of capital leads to an upward revision of TFP growth during a recession.

Moreover, changes in output elasticities also affect long-run productivity growth.

4.2 Utilization adjustment regressions

Next, we turn to the utilization adjustment. Table 3 reports our estimates for the

utilization adjustment coefficients βH estimated using the BFK method, as specified in

Equation (22).

Table 3: BFK utilization regression results

Germany Spain France Italy UK USA

Non-durable manufacturing

β̂H 0.738*** -0.746 0.247 0.636*** -0.571 0.945**
(0.127) (0.655) (0.281) (0.196) (0.831) (0.368)

Observations 138 115 138 132 138 231
First-stage F-statistic 50.7 1.2 16.2 10.0 0.4 12.5

Durable manufacturing

β̂H 0.913*** 0.998* 0.890*** 0.647*** 1.671** 1.130***
(0.073) (0.590) (0.198) (0.067) (0.799) (0.286)

Observations 138 115 138 132 138 363
First-stage F-statistic 46.6 3.3 23.4 24.8 1.4 17.0

Non-manufacturing

β̂H 0.384 -1.279** 0.781** 0.922** -4.239 0.501
(0.321) (0.633) (0.316) (0.440) (3.590) (1.063)

Observations 299 299 299 286 299 1,023
First-stage F-statistic 43.7 4.0 15.0 5.3 0.4 2.6

Notes: Utilization adjustment coefficients βH are estimated using 2SLS on Equation (22). Instruments for
hours per worker are oil, monetary policy, uncertainty and financial shocks. The table reports Kleibergen-Paap
rk Wald F statistics. Robust standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

These regressions paint an uneven picture. In Germany, France, Italy and the US, we

find mostly (but not always) positive and significant coefficients, as indicated by the theory.

In Spain and in the UK, however, we find a weak first stage, with F-statistics not exceeding 4

in all sectors. Coefficients are mostly insignificant and several point estimates are even
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negative, implying that firms increase worker effort when they reduce hours per worker.

This is inconsistent with the BFK method, based on a positive co-movement between these

two margins.29

In contrast, Table 4 lists the estimates for our utilization adjustment coefficients β,

as specified in equation (21). Estimates are positive in 17 out of 18 cases, as well as

statistically significant in 14 out of 18 cases. Moreover, the first stage of our IV regressions

yields F-statistics that are above or close to the threshold value of 10 in almost all cases.

Table 4: Utilization adjustment regression results, our approach

Germany Spain France Italy UK USA

Non-durable manufacturing

β̂ 0.447*** 0.047 0.068 0.373*** -0.120 0.290***
(0.083) (0.054) (0.079) (0.107) (0.154) (0.094)

Observations 138 115 138 132 138 231
First-stage F-statistic 8.6 10.3 8.7 5.4 2.9 9.1

Durable manufacturing

β̂ 0.310*** 0.082** 0.160*** 0.258*** 0.212*** 0.315***
(0.035) (0.038) (0.044) (0.032) (0.067) (0.057)

Observations 138 115 138 132 138 363
First-stage F-statistic 22.6 10.6 22.4 27.4 22.1 21.6

Non-manufacturing

β̂ 0.122** 0.159** 0.281* 0.134** 0.272** 0.081
(0.055) (0.078) (0.151) (0.059) (0.117) (0.080)

Observations 299 299 299 286 299 1,023
First-stage F-statistic 86.4 23.9 6.3 17.1 46.6 13.5

Notes: Utilization adjustment coefficients β are estimated using 2SLS on Equation (21). Instruments for
capacity utilization are oil, monetary policy, uncertainty and financial shocks. The table reports Kleibergen-
Paap rk Wald F statistics. Robust standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

Positive estimates imply that changes in the survey are positively correlated with changes

in unobserved worker effort. Therefore, we need to adjust TFP growth upwards in years in

which the survey indicates falling capacity utilization, and downwards in years in which

the survey indicates rising capacity utilization. Table 4 also shows substantial heterogeneity

across countries and sectors, indicating that a pooled approach could be misleading. For

29Therefore, for computing TFP with the BFK series, we set βH = 0 when the point estimate is negative.
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instance, utilization adjustments are often largest in the durable manufacturing sector, and

smaller in Spain than in most other countries.

What explains the differences between the results of our estimation and the BFK one?

To shed some light on this issue, Figure 5 plots for each country changes in hours per worker

(the BFK utilization proxy) against changes in capacity utilization (our utilization proxy).

Figure 5: Hours per worker and capacity utilization
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Notes: This figure plots changes in (band-pass filtered) hours per worker and changes in capacity utilization.
For comparable scales, changes in hours per worker are multiplied by 5. Both statistics are aggregated from
the industry level with value added weights. Shaded areas mark recessions, defined in Appendix B.8.

In the countries in which the BFK regressions performed best (the US, Germany and
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Italy), both series are positively correlated. In France, Spain and in the UK, however, the

series often behave differently. In Spain and in the UK, differences are most striking during

the Great Recession. In both countries, the survey indicates a sharp drop in capacity utiliza-

tion in 2009. However, hours per worker fell only slightly (in the UK) or actually increased

(in Spain). As discussed in Section 2, these patterns might be driven by composition effects,

and explain why the BFK regressions deliver insignificant and/or negative coefficients.

In principle, composition issues might be addressed by using hours per worker for two

different types of workers as separate proxies. However, as we show in Appendix D.4, this

approach also yields problematic results, partly due to weak instrument issues.

France, finally, is a special case. French hours per worker did fall during the Great

Recession and the European Sovereign Debt crisis, in line with the capacity utilization survey.

However, French hours per worker also fluctuated strongly between 2000 and 2006 (during

the introduction of the 35-hour work week, as described in Section 2). These fluctuations

are not reflected in the survey, and could result in spurious utilization adjustments for the

BFK method during these years.

Summing up, our estimation results suggest that the relevance of hours per worker

as a utilization proxy is country-specific. In some countries (including the US, for which

BFK proposed this proxy), hours per worker deliver positive and significant utilization

adjustment coefficients, and have a reasonably strong first stage. In other countries, such

as Spain or the UK, they deliver insignificant and sometimes counter-intuitive results. In

contrast, our survey proxy performs more evenly across countries, potentially due to the

fact that it is not affected by national idiosyncrasies in labour market institutions.

5 Annual TFP growth rates

5.1 Industry-level results

We are now ready to analyse the implications of different estimation methods for TFP

dynamics. To begin, we consider some important properties of industry-level TFP series.

For each industry, we compute the standard deviation of TFP growth rates obtained with

our method, as well as with the Solow and BFK methods. Likewise, for each industry, we

compute the correlation of these three TFP growth rates with the growth rate of real gross

industry output. Table 5 reports a value-added weighted average of these industry-level

statistics. The table shows that in every country, our industry-level TFP series are both less

volatile and less cyclical than the ones obtained with standard methods.
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Table 5: Cyclical behaviour of different TFP measures at the industry level

Germany Spain France Italy UK USA

Relative standard deviation

Solow residual 0.55 0.31 0.43 0.40 0.37 0.72

BFK method 0.51 0.31 0.51 0.47 0.39 0.73

Our method 0.50 0.30 0.43 0.38 0.35 0.71

Correlation with real GO growth

Solow residual 0.62 0.29 0.49 0.61 0.55 0.37

BFK method 0.40 0.27 0.34 0.36 0.53 0.30

Our method 0.31 -0.01 0.34 0.33 0.36 0.26

Notes: Standard deviations of industry TFP growth are normalized by the standard deviations of industry
real gross output growth. Reported values are value-added weighted averages across industries.

Appendix D provides more details on industry-level TFP growth rates, by plotting them

for a large majority of industries in our sample. Here, we proceed instead by considering

the dynamics of aggregate TFP.

5.2 Aggregate TFP growth

Figure 6 shows cumulated aggregate TFP growth rates for all countries. Dotted black

lines refer to a standard Solow residual, red dashed lines refer to the measure obtained

with the BFK method, and solid green lines refer to our measure.

All TFP measures are in line with some trends that have been widely noted in the

literature. Since the early 1990s, TFP growth in Europe has generally been lower than in

the US (van Ark et al., 2008; Bloom et al., 2012). Within Europe, TFP in Italy and Spain

has suffered a protracted decline, while the UK, Germany and France have fared better

(Gopinath et al., 2017; García-Santana et al., 2020; Schivardi and Schmitz, 2020). Finally,

there has been a marked slowdown in TFP growth during the second half of our sample

(Fernald, 2014b; Gordon, 2016).

However, there are also striking differences between the different TFP estimation

methods in Europe. These are most apparent during the Great Recession and the European

Sovereign Debt Crisis, where our series suggest a much less volatile pattern than the

standard ones. For example, the BFK method implies that between 2008 and 2012, TFP

fell by 5.3 percentage points in Italy and by 4.1 percentage points in Spain. Instead, we
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find a decline of just 1.3 percentage points in Italy, and a 1 percentage point increase in

TFP in Spain. There are similar patterns in Germany, France and the UK: our estimates

suggested that TFP fell less during the crisis and grew more slowly afterwards, generating a

smoother overall pattern. Finally, in France, we can notice strong fluctuations in the BFK

series during the years between 2000 and 2006 (corresponding to changes in hours per

worker due to a series of reforms around the 35-hour workweek), which are not reflected

by the Solow residual or by our TFP series.

Figure 6: Cumulated aggregate TFP growth rates
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Notes: All series are normalized to 0 in 1996. Shaded areas mark recessions, defined in Appendix B.8.

Table 6 summarizes the cyclical properties of our series in a more formal way. The first
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panel lists the standard deviations of different TFP series (expressed as a fraction of the

standard deviation of real value added growth in the respective country). In line with our

industry-level results, our aggregate TFP series is generally less volatile than the Solow

residual or the series obtained with the BFK method. Differences are often substantial: for

the Euro Area as a whole (a value-added-weighted average of the four Euro Area members

in our sample), the standard deviation of our TFP measure is only one third of that of the

Solow residual, and half as large as that of the BFK series.

Table 6: Cyclical behaviour of different TFP measures

Germany Spain France Italy UK EA USA

Relative standard deviation

Solow residual 0.77 0.40 0.73 0.65 0.69 0.67 0.61

BFK method 0.48 0.39 0.94 0.53 0.66 0.48 0.51

Our method 0.33 0.39 0.58 0.32 0.58 0.23 0.53

Correlation with real VA growth

Solow residual 0.95 0.49 0.84 0.85 0.77 0.93 0.55

BFK method 0.47 0.47 0.40 0.36 0.73 0.55 0.40

Our method 0.23 -0.22 0.60 0.39 0.20 0.43 0.34

Correlation between TFP series

BFK TFP, Our TFP 0.74 0.56 0.83 0.73 0.43 0.82 0.88

Notes: TFP growth rates are expressed as log changes multiplied by 100. Standard deviations are normalized
by the standard deviations of growth in real value added. EA stands for Euro Area.

The second panel of Table 6 in turn shows that the Solow residual is procyclical in all

countries. Our TFP measure is in turn roughly acyclical: the correlation coefficient of TFP

and real value added growth is 0.23 in Germany, 0.20 in the UK, and −0.22 in Spain. The

BFK series is also less correlated with the cycle than the Solow residual, and positively

correlated with our series (most strongly so in the US and in France). However, the BFK

series has a higher correlation with real value added growth than our series. France is the

only significant exception to this pattern. However, this might reflect the undesirable fact

that the introduction of the 35-hour workweek creates some random variation in the French

BFK TFP series.

Besides these cyclical differences, our results also indicate differences in long-run
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growth rates. For instance, Figure 6 suggests that our estimate for long-run TFP growth is

higher than the one of the standard methods in Italy and in the UK, and lower in Germany

and Spain. These differences are due to our treatment of profits, which changes output

elasticities and hence the weights on factors that grow at different rates. Table A.14 in the

Appendix summarizes these differences in greater detail, by listing average growth rates

during the whole sample and for selected subperiods.

Summing up, the fact that our series are less volatile and less cyclical is consistent with

the idea that the BFK hours per worker proxy does not fully control for unobserved cyclical

changes in worker effort in Europe. Our survey proxy appears to be more successful at

accounting for these. In turn, long-run differences between TFP series are mostly due to our

profit adjustment. In the next section, we make these arguments more precise, by formally

investigating the drivers of the differences in TFP series.

5.3 Decomposing differences between TFP estimates

Profits Figure 7 illustrates the impact of profits on estimated TFP growth. It compares

our baseline measure of aggregate TFP growth with an alternative measure obtained when

setting profits to zero (i.e., setting output elasticities to their Solow-BFK values), but keeping

utilization adjustment coefficients at their baseline values.30

Profits reduce the output elasticity of capital and increase the elasticities of other inputs.

In countries where capital grows faster than other inputs (such as the UK or the US), this

leads to an upward shift in TFP growth. However, in countries where capital grows more

slowly than other inputs (such as Germany or France), this leads to a downward shift in

TFP growth.31

There is also a cyclical dimension to this issue, most clearly visible in Spain and Italy.

In these countries, capital fell less than other inputs during the Great Recession and

European Sovereign Debt crisis. Thus, a lower output elasticity of capital implies an upward

adjustment of TFP growth, and the profit-adjusted TFP series in Spain and Italy fell less

than the zero-profit series. Precisely, between 2008 and 2012, our baseline series shows

a 1% TFP increase in Spain and a 1.3% TFP decline in Italy, while the zero profit series

indicates TFP declines of 2.0% and 2.2%. Similar patterns can be seen in other countries,

although they are weaker than in Southern Europe.

30We aggregate industry-level series with our baseline cost-based Domar weights. In principle, this is
inconsistent, and we should use sales-based weights for the zero-profit series. However, our approach helps to
distinguish the direct effect of profits from their indirect effect through aggregation, discussed in Appendix A.4.

31For instance, in the average German industry, capital grows by just 1.0% per year, while labour shrinks
by 0.1% and intermediate inputs grow by 2.7%.
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Figure 7: The impact of profits on estimated TFP growth
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Notes: This figure plots our baseline measure of TFP growth against a measure assuming zero profits. The
zero-profit series uses baseline utilization adjustment coefficients and aggregates industry-level series with
the baseline cost-based Tornqvist-Domar weights. Shaded areas mark recessions, defined in Appendix B.8.

Utilization proxy Figure 8 compares our baseline measure of TFP growth to an alternative

measure obtained by using hours per worker as a utilization proxy (i.e., keeping output

elasticities at their baseline levels, but estimating Equation (21) by using dH j,Cycle
i,t rather

than dCU j
i,t as the right-hand side variable).

In Europe, the figure shows strong differences between the series obtained with both

proxies. Some of the most striking differences occur during the post-2007 crisis: here, the

survey proxy delivers stagnating or slightly declining TFP series, while the hours proxy

30



generally implies a sharp decline in TFP. These changes are visible in all five countries. In

Germany and in the UK, this divergence between TFP series is short-lived, but in Spain

and Italy, it persists substantially longer. In France, in turn, the large movements in hours

per worker in the aftermath of the introduction of the 35-hour workweek are again clearly

visible in the series obtained with the hours proxy, while our baseline series is much

smoother. Finally, in contrast to Europe, both series track each other closely in the US.

Figure 8: The impact of different utilization proxies on estimated TFP growth
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Notes: This figure plots our baseline measure of TFP growth against an alternative measure which uses
changes in hours per worker as the utilization proxy in Equation (21). Output elasticities are kept at their
baseline values, and industry-level series are aggregated with the same cost-based Tornqvist-Domar weights
as in the baseline. Shaded areas mark recessions, defined in Appendix B.8.
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Table 7 confirms these insights by listing the standard deviations of both series (ex-

pressed as a fraction of the standard deviation of real value added growth), their correlation

with value added growth, and their correlation among each other. In the United States, the

correlation coefficient is very high, at 0.92. In Europe, however, there are large differences

(especially in Spain, Italy and in the UK). For the Euro Area, our baseline series is half

as volatile as the alternative series using hours per worker, and its correlation with the

business cycle is slightly lower.

Table 7: Cyclical properties of TFP series with different utilization proxies

Germany Spain France Italy UK EA USA

Relative standard deviation

Baseline 0.33 0.39 0.58 0.32 0.58 0.23 0.53

Hours per worker proxy 0.48 0.37 0.97 0.56 0.63 0.46 0.54

Correlation with real VA growth

Baseline 0.23 -0.22 0.60 0.39 0.20 0.43 0.34

Hours per worker proxy 0.45 0.02 0.35 0.28 0.64 0.46 0.43

Correlation between TFP series

Baseline, Hours proxy 0.76 0.86 0.83 0.72 0.58 0.82 0.92

Notes: TFP growth rates are expressed as log changes multiplied by 100.

Summing up, our analysis suggests that hours per worker and capacity utilization

surveys deliver roughly equivalent results in the US. However, in Europe, there are important

differences between the two measures. The fact that our proxy delivers less volatile and

cyclical TFP series, combined with its superior regression performance and the conceptual

limitations of hours per worker, suggests that it is better suited to measure unobserved

changes in worker effort in Europe.

5.4 Robustness checks

We consider a large number of robustness checks, listed in Appendix C. For instance,

our baseline analysis assumed that output elasticities are constant over time. However, if

there were major changes in production technology, this assumption could be violated. In

Appendix C.1, we therefore allow for time-varying output elasticities: instead of computing
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output elasticities as the average of cost shares over the entire sample, we compute them as

Tornqvist weights (i.e., two-year moving averages). For most countries, this change implies

only small shifts in TFP growth.

In Appendix C.2, we consider using the KLEMS capital input series (CAP_QI) instead

of our disaggregated capital measure. In Appendix C.3, we address the concern that EU

KLEMS might account only partially for some capital assets (such as land) and omit others

(such as inventories), leading to overestimated profit shares. However, when we impute the

cost share of these assets from US data, our results change only marginally.

Finally, Appendix C.4 summarizes a number of other robustness checks (including

different interest rates to compute rental costs, or different combinations of instruments in

our utilization adjustment regressions). Changing these aspects generally delivers series

that are tightly correlated with our baseline, and that continue to be less volatile and cyclical

than the ones obtained with standard methods.

6 Utilization-adjusted quarterly TFP growth in Europe

For many business cycle applications, researchers rely on quarterly data, such as the

utilization-adjusted TFP series for the US provided by Fernald (2014a). In Europe, however,

there are no official estimates for quarterly TFP growth, as there are no quarterly series for

capital services (with the exception of the UK).32 Therefore, there are obviously also no

profit and utilization-adjusted quarterly series.

To address this unsatisfactory situation, we construct a quarterly series for capital

services for Germany, Spain, France and Italy. Then, we build on our annual estimation

results to construct a series for quarterly profit and utilization-adjusted aggregate TFP

growth in these four countries, addressing an important data need.33

As in Fernald (2014a), we only compute a measure of aggregate quarterly TFP growth,

due to data constraints. To do so, we rely on a simple aggregate equivalent of equation (2):

dZt = dYt − αL(dHt + dNt)− αKdKt − αLdEt, (23)

where dYt is the change in aggregate real value added, and αL and αK are the output

32The UK’s Office for National Statistics produces an experimental quarterly TFP series, available at https:
//www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/
datasets/multifactorproductivityexperimentalestimatesreferencetables.

33Using the BFK method on European quarterly data is not feasible, due to a lack of quarterly data on
industry-level hours per worker. Furthermore, note that building on annual estimates from a previous version
of our paper, Christofzik et al. (2021) have also constructed quarterly series. However, they interpolate KLEMS
annual growth rates to obtain their Solow residuals and do not adjust for profits.
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elasticities of the aggregate production function. Thus, to measure TFP growth rates, we

need quarterly measures of value added growth, labour and capital input growth, as well

as an estimate of output elasticities and utilization rates.

We obtain data on output and inputs from Eurostat, for the time period 1998Q1-

2018Q4.34 We measure quarterly value added growth as the growth rate of quarterly real

GDP, and construct a quarterly measure of capital and labour input by using quarterly data

on investment, employment and hours worked. Appendix B.10 contains more details.

We measure factor elasticities as the time average of the cost shares of labour and

capital (computed with our annual data). Finally, to compute the utilization adjustment,

αLdEt, we first compute for every industry i the utilization adjustment βi · dCUi,t, where

βi is the utilization adjustment coefficient estimated in Table 4. We then aggregate these

industry-level numbers by using our cost-based Tornqvist-Domar weights.

Figure 9: Quarterly TFP growth in Europe
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Notes: This figure plots our quarterly measure of TFP growth against a quarterly Solow residual. Shaded
areas mark recessions, defined in Appendix B.8. All series are normalized to 0 in 1998Q1.

Figure 9 illustrates our findings. As in our annual estimation, our quarterly series

declines in Italy and Spain, increases in Germany, and follows an inverse U-shaped evolution

34After Brexit, European capacity utilization surveys no longer cover the UK, so we currently do not provide
UK series. We also omit data beyond 2018 in order to be consistent with our annual estimation’s time frame.
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in France. Moreover, we again find important deviations in measured TFP growth around

the Great Recession and the European Sovereign Debt crisis, with our measure showing

stronger TFP growth than the Solow residual. Table 8 provides further details. It shows

that at the quarterly frequency, there are no significant differences in the volatility of

TFP measures: our measure and the Solow residual all have roughly the same standard

deviation. Finally, in all countries, our quarterly TFP growth measure has a much lower

correlation with the business cycle than the Solow residual.

Table 8: Statistical properties of quarterly TFP series in Europe

Germany Spain France Italy

Relative standard deviation

Solow residual 0.93 0.65 1.18 0.93

Our series 0.89 0.86 1.22 1.01

Correlation with real VA growth

Solow residual 0.86 0.24 0.69 0.84

Our series 0.24 -0.02 0.49 0.48

Correlation between TFP series

Our series, Solow residual 0.54 0.76 0.91 0.69

Notes: The relative standard deviation refers to the standard deviation of TFP growth rates, normalized by
the standard deviation of real value added growth rates.

7 Conclusions

Our paper proposes new estimates for TFP growth in Europe, taking into account

profits and using a new survey-based proxy for unobserved changes in factor utilization.

Our estimation delivers TFP growth series that are less volatile and cyclical than the

ones obtained with standard methods, painting a different picture for the behaviour of

productivity around the Great Recession and the European Sovereign Debt Crisis. We also

apply our insights from annual data to generate a quarterly utilization-adjusted TFP growth

series for four European countries, contributing to fill a major data gap.

Our estimation method is easy to implement, and we are working on extending it to

other time periods and countries. Such extensions could yield further insights into the

dynamics of TFP growth around the world.
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A Methodological details

A.1 Full model solution

Euler equations The value function V for the problem described in (3) holds the Bellman
equation:
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where Vt ≡ V(Kt, NF
t , Zt, Yt, rt, wF

t , wV
t , qF

t , qV
t , PM,t, PI,t). The first-order conditions for Kt+1

and NF
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The envelope conditions for the problem are

∂Vt

∂Kt
= − (1− δK) PI,t − λt

αKYt

Kt
, (A.4)

∂Vt

∂NF
t
= w̃F
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αF

LYt

NF
t

. (A.5)

Using these expressions to substitute out the derivatives of the value function in the
first-order conditions, we obtain the Euler equations in the main text.

BGP solution The BGP is defined as a situation in which output, TFP and factor prices
grow at a constant rate, and the relative price of hours per worker with respect to worker
effort is constant. Note that a BGP does not require output, TFP and factor prices to grow
at the same rate. As we show in this section, the firm chooses capital, employment and
materials to grow at a constant rate on the BGP, and hours per worker and effort per hour
to be constant.

On the BGP, the first-order condition for materials becomes

P∗M,t = αMλ∗t
Y∗t
M∗t

. (A.6)

The first-order condition for hours, effort and employment of any type ` ∈ {F, V} are
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Combining these equations shows that the BGP levels of effort per hour and hours per
worker hold

Γ′`
(

H`∗)H`∗

Γ`

(
H`∗) = 1, (A.10)
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The first condition is intuitive. Employment and hours enter the production function
symmetrically. The elasticity of the wage bill with respect to employment is 1 by definition,
so the firm chooses hours such that the elasticity of the wage bill with respect to hours
is 1 as well. Under some regularity conditions for the cost functions Γ and Λ, and the
assumption that wages and effort costs grow at the same rate, these equations pin down a
unique solution for BGP effort and hours.

Finally, the Euler equation for capital is

R∗ = αKλ∗t
Y∗t

P∗I,t−1K∗t
. (A.12)

On the BGP, total costs of production for factors used in period t are

TC∗t = w̃F∗
t NF∗
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(A.13)

Replacing Equations (A.6), (A.9) and (A.12) into this expression, and using the defini-
tion of the rental rate, it comes immediately that total cost is

TC∗t = λ∗t Y∗t (A.14)

Thus, on the balanced growth path, average cost is equal to marginal cost. Using this result
together with the BGP first order conditions for materials, employment and labour, we get
equations (11) to (13) in the main text.

A.2 Comparing our model to Basu et al. (2006)

The model in Section 2 differs slightly from the one in Basu and Fernald (2001) and Basu
et al. (2006). Problem (A.15) summarizes the BFK model (as shown in equations (6) to (9)

41



of Basu et al. (2006), and using our notation for an easier comparison). The representative
firm solves

min E0
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where Ut is capital utilization and V is an increasing and convex function. Most
differences between this setup and ours do not matter for measurement.

1. BFK consider a general production function F, while we impose a Cobb-Douglas
production function. This difference is irrelevant, as BFK log-linearize around the BGP.
This makes their effective production function log-linear with constant elasticities
(i.e., Cobb-Douglas).

2. BFK consider adjustment costs to capital and employment, captured by the functions
Φ and Ψ, while we abstract from such costs in our baseline analysis. However, BFK
assume that industries are always close to a BGP on which marginal adjustment
costs are zero. Thus, adjustment costs are negligible and can be ignored for TFP
measurement (this assumption is relaxed in Basu et al., 2001).

3. BFK consider the utilization rate of capital, Ut, as an independent production factor,
while we consider it as an endogenous outcome (and therefore omit it from our
reduced-form production function). This distinction is irrelevant in practice, as BFK
argue that both the utilization rate of capital and worker effort are (up to a first-order
approximation) linearly related to hours per worker. Thus, irrespective of whether
there are one or two unobservable production factors, TFP growth can be obtained by
a regression of the Solow residual on changes in hours per worker. Likewise, in our
approach, we could easily introduce capital utilization as a production factor: as long
as it is also linearly related to the utilization survey, our estimation equation would
remain the same.

However, there are also two more important differences. First, we impose constant
returns to scale, while BFK allow for non-constant returns to scale. Thus, Basu et al. (2006)
actually estimate a returns to scale parameter and a utilization adjustment parameter for
every industry. However, their results indicate that most industries are close to constant
returns to scale. Therefore, they impose this restriction from the outset in later work. For
instance, the famous quarterly series for utilization-adjusted TFP growth in the United
States introduced in Fernald (2014a) assumes constant returns to scale from the outset.

Second, we assume that there are two types of labour, and that there might be shocks
to the relative cost of hours per worker and effort. As we show in the main text, hours per
worker might not be an ideal proxy for effort in this more general setup.
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A.3 The link between worker effort and capacity utilization

In this section, we show how different assumptions on full capacity variable input
choices generate a close relationship between changes in effort and changes in capacity
utilization.

The simplest assumption delivering this result is that full capacity production uses
current variable factor proportions (e.g., if the firm currently uses 2 hours of variable labour
for every MW of electricity, it also uses 2 hours of variable labour for every MW of electricity
in full capacity).35 Formally, for any two variable inputs V1 and V2, V1/V2 = VFC

1 /VFC
2 .

Combining this assumption with equation (18), we get
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)
= βdCUt, (A.16)

where β =
(
αV

L + αF
L
)
·
(
3αV

L + 2αF
L + αM

)
. In other words, there is a direct relation

between total changes in effort (relative to full capacity effort) and changes in capacity
utilization. When changes in full capacity effort over time are small with respect to changes
in actual effort (which seems reasonable), changes in capacity utilization are approximately
linearly related to changes in worker effort, justifying equation (19).

Importantly, these assumptions are not the only ones to deliver a tight link between
effort and capacity utilization. We obtain the same result when we assume that in order to
produce full capacity output, firms minimize costs, taking current input prices as given. That
is, we again do not take a stand on how firms choose the level of full capacity production,
but only impose that they produce with an optimal combination of inputs. Moreover, we
need to assume functional forms for the cost functions of adjusting hours per worker and
effort, imposing

Γ`

(
H`

t

)
= 1 +

(
H`

t

)cΓ
and Λ`

(
E`

t

)
=
(

E`
t

)cΛ
, (A.17)

where cΓ > 1 and cΛ > 1 are parameters. The intercept in Γ` implies that firms need to
pay workers even if they work zero hours, and is needed for a well-defined solution.

Now, we can solve explicitly for variable input choices as a function of variable input
prices, fixed inputs, TFP and output. Using the first-order conditions in Section 2, we obtain
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cΛ , (A.18)
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(A.19)
where γ ≡ αM + αV

L + cΛ+cΓ−1
cΛcΓ

αF
L, and Θ is a constant. Note that the constant γ is

35This approach sidesteps the issue of how firms compute full capacity production. As Shapiro (1989)
has argued eloquently, the level of full capacity production is difficult to define in a consistent way with a
neoclassical production function. As our example shows, we do not have to take a stand on this issue.
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smaller than 1, and that the marginal cost of production is therefore increasing in output.
Indeed, in the short run, there are decreasing returns to scale, as some factors are fixed.

When firms choose full capacity output by minimizing prices and assuming that factor
prices, fixed factors and productivity are at their current level, equation (A.19) implies

λt

λFC
t

=

(
Yt

YFC
t

) 1−γ
γ

. (A.20)

Combining this with the first-order condition for effort, we get

E`
t

E`,FC
t

= (CUt)
cΓ−1

cΓcΛγ . (A.21)

From this, we directly obtain
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)
= βdCUt, (A.22)

where β = (αV
L + αF

L)
cΓ−1
cΓcΛγ . This is again equation (A.16), with a different value for β.

A.4 Aggregation

The standard method to aggregate industry-level TFP growth is due to Hulten (1978)
and uses Tornqvist-Domar weights, which depend on each industry’s ratio of gross output
to aggregate value added.36

Baqaee and Farhi (2019) have recently pointed out that this method is flawed in the
presence of markups.37 First, Tornqvist-Domar weights underestimate the contribution of
upstream industries to aggregate TFP growth. Intuitively, when downstream producers apply
markups, the ratio of upstream producer sales to aggregate value added underestimates their
importance for production. Second, when markups are heterogeneous across industries and
factors are mobile, changes in the resource allocation affect aggregate TFP growth. As our
estimation allows for positive profits (and thus for markups), we rely on the Baqaee-Farhi
results to aggregate our TFP series, computing

dZt =
I

∑
i=1

1
2

(
λ̃i,t−1 + λ̃i,t

)
dZi,t, (A.23)

where λ̃i,t−1 is the cost-based Domar weight of industry i. These weights are defined by
Proposition 1 in Baqaee and Farhi (2019), which states

[λ̃t, Λ̃t] = b′t
(

I − Ω̃t

)−1
. (A.24)

36Precisely, aggregate TFP growth is given by dZt = ∑I
i=1

1
2 (λi,t−1 + λi,t) dZi,t, where λi,t is the ratio of

industry i’s gross output to aggregate value added in year t.
37Rotemberg and Woodford (1995) and Basu and Fernald (2002) made similar points in earlier papers.
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With I industries and F production factors, bt is an (I + F)× 1 vector. Its I first entries
contain the share of each industry in total consumption (i.e., element i is pitcit/∑I

j=1 pjtcjt). The
last F entries are equal to 0. Ω̃t, in turn, is a cost-based input-output matrix. That is, it is an
(I + F)× (I + F) matrix in which the element in line l and column c is equal to the share
of costs of industry l spend on output (or factor) c. The last F rows of the matrix are equal
to 0. That is, factors are treated like industries which do not use any inputs. Performing
the matrix operation described in equation (A.24) yields a (I + F)× 1 vector, whose first I
elements are the cost-based industry Domar weights λ̃t. The last F elements, denoted Λ̃t,
are the cost-based factor Domar weights.

When implementing this formula, we assume that Ω̃t does not change over time. This
is due to data limitations, as we do not have input-output tables for every year of our
sample.38 We then split up total spending on intermediate inputs into spending on inputs
from different industries by using the input shares from country-specific input-output tables
for the year 2010.

To compute consumption shares, we get consumption for each industry as the difference
between the industry’s gross output and the use of that output as an input for other
industries. To compute the latter, we get the level of intermediate output spending of each
industry i on goods from another industry j in year t by multiplying the total spending
on intermediates of industry i in year t (from EU KLEMS) with the share of intermediate
spending of industry i which goes to goods from industry j (from input-output tables,
described in Appendix B.7).39

It is worth noting that our aggregation procedure implicitly assumes that there are no
imports of intermediate goods, that is, that all intermediate inputs come from domestic
sources. Relaxing this assumption and taking into account international linkages is beyond
the scope of this paper.

Moreover, while our measure of aggregate TFP growth defined in equation (A.23)
correctly weighs the contribution of each industry to aggregate TFP growth, it abstracts
from changes in the resource allocation. Conceptually, this choice is equivalent to assuming
that all production factors are industry-specific. In the data, there is indeed considerable
evidence for obstacles to reallocation across industries in the short and medium run (Ramey
and Shapiro, 2001; Autor et al., 2016). Even if some resources are reallocated, these
changes are gradual and therefore unlikely to affect the cyclical properties of our aggregate
TFP series. In line with this argument, Baqaee and Farhi find that the contribution of
between-industry reallocation to aggregate TFP growth is essentially zero in the US.40

38To be consistent, we also assume that the cost shares of production factors (capital and labour) are
constant over time, and equal to their BGP level. For simplicity, we consider here just one type of capital and
one type of labour, whose cost share is the sum of the cost shares of the different capital and labour types.

39In the rare cases in which we obtain negative values for consumption, we set these to zero.
40In practice, computing the contribution of reallocation to productivity growth would require taking a

stand on reallocation costs, and computing a time series of markups (while we compute a time series for
profit shares, these do not directly translate into markups, as our production function has decreasing returns
to scale in the short run). These tasks are beyond the scope of our paper.
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B Data Appendix

B.1 EU KLEMS accounting data

Basic data Our main data source is the December 2021 release of EU KLEMS (https://
euklems-intanprod-llee.luiss.it//). KLEMS provides industry-level accounting
data. Industries are classified according to the statistical classification of economic activities
in the European Community (NACE, Revision 2).

We restrict our attention to the market economy, defined by KLEMS as including all
industries except public administration and defence, social security, education, health and
social work, household activities, activities of extraterritorial bodies, and real estate.41 We
further drop agriculture, forestry and fishing (NACE code A), mining and quarrying (NACE
code B), and manufacturing of coke and refined petroleum products (NACE code C19).
This leaves us with 25 industries in our baseline analysis, listed in Table A.1.42

Table A.1: Industry list for European countries (KLEMS, NACE Rev. 2)

Non-durable manufacturing NACE Code
Food products, beverages and tobacco C10-C12
Textiles, wearing apparel, leather and related products C13-C15
Wood and paper products; printing and reproduction of recorded media C16-C18
Chemicals and chemical products C20
Basic pharmaceutical products and pharmaceutical preparations C21
Rubber and plastics products, and other non-metallic mineral products C22-C23
Durable manufacturing NACE Code
Basic metals and fabricated metal products, exc. machinery and equipment C24-C25
Computer, electronic and optical products C26
Electrical equipment C27
Machinery and equipment n.e.c. C28
Transport equipment C29-C30
Other manufacturing; repair and installation of machinery and equipment C31-C33
Non-manufacturing NACE Code
Electricity, gas, steam and air conditioning D
Water supply, sewerage and waste management E
Construction F
Wholesale and retail trade; Repair of motor vehicles and motorcycles G
Transportation and storage H
Accommodation and food service activities I
Publishing, Motion Picture, Recording and Broadcasting J58-J60
Telecommunications J61
Computer programming and information services J62-J63
Financial and Insurance Activities K
Professional, scientific, technical, administrative and support service activities M-N
Arts, entertainment, and recreation R
Other service activities S

41As noted by O’Mahony and Timmer (2009), “for the most part the output of the real estate sector [..] is
imputed rent on owner-occupied dwellings”. This makes productivity measures hard to interpret.

42Note that Spain lumps together data for industries C20 and C21, and for industries C26 and C27.
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We use six KLEMS time series from the KLEMS national accounts: nominal gross output
(GO_CP), the price index for gross output (GO_PI), nominal expenditure on intermediate
inputs (II_CP), the price index for intermediate inputs (II_PI), the total number of persons
engaged (EMP), total hours worked by persons engaged (H_EMP).43 We also use three
variables from the KLEMS growth accounts: the KLEMS index for capital input (CAP_QI),
the KLEMS index for labour input (LAB_QI) and the nominal wage bill (LAB). Finally,
we use three series from the KLEMS capital account: the nominal capital stock (K_), the
quantity index for capital input (Kq_) and the price index for investment goods (Ip_). These
three series are provided separately for nine different assets, listed in Table A.2.44 All series
provide annual industry-level data.

Table A.2: Capital assets in KLEMS

KLEMS abbreviation Variable
IT Computing equipment
CT Communications equipment
SOFT_DB Computer software and databases
TraEq Transport equipment
OMach Other machinery and equipment
OCon Non-residential investment (structures)
Cult Cultivated assets
RD Research & Development
OIPP Other intellectual property products
GFCF Gross Fixed Capital Formation (all assets)

Finally, we also use KLEMS data on depreciation rates for these nine assets.45 These
depreciation rates are constant over time.

Mapping KLEMS to our model Table A.3 summarizes the mapping between KLEMS
variables and our model.

This mapping is mostly straightforward. However, our treatment of the KLEMS indices
for total labour and capital input, LAB_QI and CAP_QI, deserves some further discussion.
The KLEMS index for total labour input, LAB_QI, is an aggregate across 18 types of
workers (differentiated by gender, three age groups and three education groups). KLEMS
computes the growth rates of total hours worked at the level of each group, and then
aggregates them compensation weights, i.e. the share of each group in the total wage bill

of the industry. Thus, strictly speaking, this measure equals w̃V
t NV

t
w̃V

t NV
t +w̃F

t NF
t

(
dNV

t + dHV
t
)
+

w̃F
t NF

t
w̃V

t NV
t +w̃F

t NF
t

(
dNF

t + dHF
t
)

in our model. This is not exactly equal to the contribution of total

43In Spain and in the UK, KLEMS does not provide a separate price index for gross output and intermediate
inputs before the year 2000. Therefore, we compute real growth rates for these countries by using the price
index for value added (VA_PI).

44We exclude from the table the asset RStruc (Residential Structures), which has no observations outside of
the real estate industry.

45As the 2021 release of KLEMS did not provide depreciation rates, we use the ones from the previous (2019)
release. In general, KLEMS depreciation rates do not change much between releases.
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hours worked to production, which in our model is instead given by αV
L

αV
L +αF

L

(
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t
)
+
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αV
L +αF
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(
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)
. However, as changes in the relative wage bill of the two categories of

workers over time are small, we ignore this difference and use LAB_QI to measure labour,
allowing us to take advantage of the full level of detail available in the KLEMS database.

Table A.3: Correspondence between KLEMS variables and our model

Model variable KLEMS variable
dYt dGO_CPt − dGO_PIt
dMt dII_CPt − dII_PIt
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On the other hand, we do not use the KLEMS index for total capital input, CAP_QI, in
our baseline analysis. The reason for this is that the way in which KLEMS computes this
index assumes zero profits, and is thus inconsistent with our estimation method.

Precisely, the KLEMS CAP_QI variable is a weighted average of the growth rate of the
capital stocks for the nine different assets listed in Table A.2. The weights are given by the
share of each asset in total capital compensation:

sa
K,t =

Ra
t Pa

I,t−1Ka
t

A
∑
a′

Ra′
t Pa′

I,t−1Ka′
t

. (A.25)

where Ra
t is the rental rate of asset a. Then, KLEMS defines

dCAP_QIt =
A

∑
a

1
2
(
sa

K,t−1 + sa
K,t
)

dKa
t (A.26)

To compute rental rates, KLEMS starts from the same Hall-Jorgenson equation as as in our
paper, evaluated separately for each asset a:

Ra
t = 1 + rt − (1− δa

K)
Pa

I,t

Pa
I,t−1

. (A.27)

However, KLEMS computes the interest rate rt as the return to capital in the industry,
assuming zero profits (i.e., the return to an investor who buys the entire capital stock, and
receives the difference between value added and labour payments as a dividend). This is
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inconsistent with our estimation, which finds positive profits. Instead, we compute a rental
rate for each asset by using equation (A.27) and our baseline interest rate. From this, we
obtain the total cost for this asset, Ra

t Pa
I,t−1Ka

t . Total costs are then

A

∑
a=1

Ra
t Pa

I,t−1Ka
t + LABt + II_CPt. (A.28)

From this, we can easily compute the share of each production factor in total costs for
every year t. Taking the average of these cost shares over time gives our estimates for the
production function elasticities αa

K, αL and αM.
Note that this approach to computing capital input is not crucial for our results. If we

ignore the inconsistent aggregation and directly use the KLEMS CAP_QI series (computing
the cost share of capital using the aggregate capital stock, given by the KLEMS “asset”
GFCF), our results are largely unchanged, as shown in Appendix C.2. For the BFK and
Solow series, we use CAP_QI throughout.

B.2 Labour composition

To measure labour composition, we rely on microdata from the European Union Labour
Force Survey (EU LFS).46 The EU LFS provides industry-level annual data on employment
and total hours by contract type (permanent or temporary) and job status (full-time or part-
time).47 We define quasi-fixed labour as the labour provided by workers with permanent
and full-time contracts, and variable labour as the labour provided by all other workers. We
then compute the employment and hours share of each of the two categories, and apply
these to the KLEMS data on employment and hours worked to obtain a series in levels.

B.3 Interest rates

For our baseline results, we use 10-year government bond rates from the OECD to
measure the risk-free interest rate.48 We also use Moody’s Baa US bonds with a maturity
of 20 years or more (as in Gutierrez, 2018) to measure the risk premium on bonds,49

and equity risk premia from Datastream (series USASERP, ITASERP, ESASERP, FRASERP,
UKASERP and BDASERP). Finally, we take debt-to-asset ratios from Tressel and de Almeida
(2020), who compute these ratios for a sample of publicly traded firms in the year 2010.

For robustness checks, we also use corporate tax rates from the OECD, and Stan-
dard&Poor’s yields for BBB-rated corporate bonds with a 10-year maturity. We obtain these
from Datastream (series SPEIB3E (Euro Area), SPUKI3B (UK) and UKSPUIG3B (US)).

46See https://ec.europa.eu/eurostat/web/microdata/european-union-labour-force-survey.
47The LFS only provides information at the NACE 1-digit level. Thus, we need to assign the same

employment and hours split to all industries belonging to a 1-digit NACE group.
48See https://data.oecd.org/interest/long-term-interest-rates.htm.
49See https://fred.stlouisfed.org/series/DBAA.
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B.4 Capacity utilization surveys

Our data on capacity utilization comes from the Joint Harmonised EU Programme of
Business and Consumer Surveys. These surveys are harmonized at the EU level, but carried
out separately in every member state by a national “partner institute” (generally, but not
always, the National Statistical Office).50

All manufacturing data comes from the quarterly Industry survey, which asks firms “At
what capacity is your company currently operating (as a percentage of full capacity)?” The
firm then has to fill out the blank in the following sentence, “The company is currently
operating at __ % of full capacity”. Surveys are representative at the industry-level, and the
sample size varies between 2’000 firms (in Spain) and 4’000 firms (in France and Italy).
The firm-level data is aggregated to the industry-level by using employment weights.51

We obtain an annual measure of capacity utilization by taking a simple average of the
industry-level quarterly measures. The survey provides data for 24 NACE industries, which
we aggregate to the 10 KLEMS manufacturing industries by using value added weights.

Starting in 2011, the Services Sector survey also measures capacity utilization for
service industries. Firms are asked “If the demand addressed to your firm expanded, could
you increase your volume of activity with your present resources? If so, by how much?” The
Commission interprets the hypothetical level of activity that a firm could reach as that firm’s
full capacity output (Gayer, 2013). Capacity utilization is defined as the ratio of current
output to full capacity output. As in the manufacturing sector, the industry-level data is
a weighted average of the firm-level responses. We use data from this survey, whenever
available, in our baseline analysis. To extend the series for years before 2011, we backcast
industry-level series by projecting them on average capacity utilization in manufacturing.

Table A.4: Capacity utilization data availability in non-manufacturing industries

Country Starting date Non-manufacturing industries covered
Germany 2011 Q1 H, I, J62-J63, M-N
Spain 2011 Q3 H, I, J58-J60, J61, J62-J63, K, M-N, R, S
France 2011 Q4 H, I, J58-J60, J61, J62-J63, M-N, S
Italy 2010 Q3 H, I, J58-J60, J61, J62-J63, M-N, R, S
United Kingdom 2011 Q3 H, I, J58-J60, J62-J63, M-N, R

Table A.4 summarizes the data availability for the non-manufacturing sector. Note that
Utilities (D-E), Construction (F) and Wholesale and Retail Trade (G) are not covered by
the survey. For Wholesale and Retail, we use the average capacity utilization in all service
industries, and for Utilities and Construction, the manufacturing average. Our results are
unchanged when using the services average instead for these latter industries.

50See https://ec.europa.eu/info/business-economy-euro/indicators-statistics/
economic-databases/business-and-consumer-surveys_en.

51More detailed information is available in the metadata sheets of the European Commission’s
partner institutes, available at https://ec.europa.eu/info/business-economy-euro/
indicators-statistics/economic-databases/business-and-consumer-surveys/
methodology-business-and-consumer-surveys/metadata-partner-institutes_en.
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B.5 US data

Growth accounting Our main data source for the United States is the TFP database of
the BLS (available at https://www.bls.gov/productivity/tables/home.htm).
This database provides industry-level growth accounting data that is comparable to KLEMS.
Industries are classified according to the North American Industry Classification System
(NAICS). Just as in Europe, we focus on the market economy and exclude agriculture
(NAICS Code 11), mining (21), Petroleum and Coal (324), Real Estate (531), Educational
Services (61), Health Care and Social Assistance (62) as well as Public Administration (92).
As the BLS dataset is more disaggregated than EU KLEMS, we have data for a total of 49
industries, listed in Table A.5.

Table A.5: Industry list for the United States (NAICS)

Non-durable manufacturing NAICS Code
Food and beverage and tobacco products 311-312
Textile mills and textile product mills 313-314
Apparel and leather and allied products 315-316
Paper products 322
Printing and related support activities 323
Chemical products 325
Plastics and rubber products 326
Durable manufacturing NAICS Code
Wood products 321
Nonmetallic mineral products 327
Primary metals 331
Fabricated metal products 332
Machinery 333
Computer and Electronic products 334
Electrical Equipment, Appliances, and Components 335
Motor vehicles, bodies and trailers, and parts 3361-3363
Other transportation equipment 3364-3369
Furniture and related products 337
Miscellaneous manufacturing 339
Non-manufacturing NAICS Code
Utilities 22
Construction 23
Wholesale Trade 42
Retail Trade 44-45
Air transportation 481
Rail transportation 482
Water transportation 483
Truck transportation 484
Transit and ground passenger transportation 485
Pipeline transportation 486
Other transportation and support activities 487, 488, 492
Warehousing and Storage 493
Publishing industries, except internet (includes software) 511
Motion picture and sound recording industries 512
Broadcasting and telecommunications 515, 517
Data processing, internet publishing, and other information services 518-519
Monetary authorities, credit intermediation and related activities 521-522
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Continuation of Table A.5

Securities, commodity contracts, other fin. inv. and related activities 523
Insurance Carriers and Related Activities 524
Funds, Trusts, and Other Financial Vehicles 525
Rental and leasing services and lessors of intangible assets 532-533
Legal services 5411
Computer systems design and related services 5415
Miscellaneous professional, scientific, and technical services 5412-5414, 5416-5419
Management of companies and enterprises 55
Administrative and support services 561
Waste management and remediation services 562
Performing arts, spectator sports, museums, and related activities 711-712
Amusements, gambling, and recreation industries 713
Accommodation 721
Food services and drinking places 722

The BLS database contains the same series as EU KLEMS, with the exception of employ-
ment and hours worked (instead, the BLS only provides a measure of total labour input,
the equivalent of the KLEMS LAB_QI variable). Thus, we obtain series for employment
and hours worked from the BLS Labor Productivity and Costs (LPC) database (available
at https://www.bls.gov/lpc/home.htm). Finally, we obtain capital data (on invest-
ment good prices, depreciation rates, nominal and real capital stocks) from the BLS Capital
Details tables.

The BLS uses five capital assets: land, inventories, intellectual property products,
equipment and structures. The BLS database follows similar conventions than EU KLEMS,
and we can therefore easily map its variables into KLEMS codes, as shown in Table A.6.

Table A.6: Correspondence between BLS and KLEMS variables

BLS variable BLS dataset KLEMS variable
Value of Production TFP GO_CP
Price of Sectoral Output TFP GO_PI
Cost of Intermediate Inputs TFP II_CP
Price of Intermediate Input TFP II_PI
Cost of Labor TFP LAB
Capital input TFP CAP_QI
Labor input TFP LAB_QI
Employment LPC EMP
Hours worked LPC H_EMP
Capital price deflator TFP (Capital details) Ip_a
Productive Capital stock TFP (Capital details) Kq_a
Wealth stock depreciation rate TFP (Capital details) dpr_a

It is worth noting that BLS definitions sometimes differ from KLEMS definitions (see
Jäger, 2018). For instance, both datasets differ in their choices for considering certain
expenses as intermediate inputs or capital investment. This can account for some differences
in the capital series between both datasets. One notable difference is the fact that the BLS
accounts for land and inventories as capital assets, while KLEMS does not. This might lead
to an overestimation of profit shares in Europe. We explore this concern in Appendix C.3.
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In the US, there is no direct equivalent to the European notion of permanent and tem-
porary employment contracts. Therefore, we define quasi-fixed labour as labour provided
by workers with full-time contracts, and variable labour as labour provided by workers with
part-time contracts. We obtain time series on employment and hours for these two types
of workers from unpublished occupation and industry tables from the Current Population
Survey (CPS), kindly provided to us by the BLS.52

Capacity utilization US capacity utilization data comes from the Federal Reserve Board’s
monthly reports on Industrial Production and Capacity Utilization (G.17).53

The data is constructed by the Federal Reserve on the basis of the Census Bureau’s
Quarterly Survey of Plant Capacity (QSPC) and other information sources.54 The QSPC is
carried out at the plant level. Plants are first asked to report the value of current production.
Second, they should report their full production capacity, defined as “the maximum level of
production that this establishment could reasonably expect to attain under normal and realistic
operating conditions fully utilizing the machinery and equipment in place”. In the detailed
instructions that plant managers are given, it is noteworthy that the Census suggests that
“if you have a reliable or accurate estimate of your plant’s sustainable capacity utilization
rate, divide your market value of production at actual operations [..] by your current rate
of capacity utilization [to get full production capacity”. Finally, plants are asked to report
the ratio between current and full production, which is capacity utilization. Plant-level
estimates are aggregated to the industry-level by using full capacity production weights. For
our purposes, we use the annual version of the Federal Reserve’s database, which provides
data for 17 NAICS manufacturing industries, as well as for Electric and Gas utilities.

The US does not have a survey on capacity utilization in services. Therefore, we use av-
erage capacity utilization in manufacturing as a utilization proxy for all non-manufacturing
industries (with the exception of utilities).

B.6 Instruments

Oil shocks Data on nominal oil prices are from World Bank Commodity Price Data (The
Pink Sheet), and deflated with country-specific CPIs from OECD.Stat. Following Basu et al.
(2006), we compute oil price shocks as the log difference between the current quarterly
real oil price and the highest real oil price in the preceding four quarters. We define the
annual oil price shock as the sum of the four quarterly shocks.

Monetary policy shocks For Euro Area countries and for the US, we take monetary policy
shocks from Jarociński and Karadi (2020), who rely on surprise movements in interest

52The split of employment and hours is not available before 1994. For these years, we assume that growth
in employment and hours per worker for both categories is equal to growth in overall employment or overall
hours per worker. This has only a very limited impact on our results, as this data is only used in Appendix D.4.

53The data can be accessed at https://www.federalreserve.gov/releases/G17/Current/
default.htm.

54An overview of the Federal Reserve’s methodology is available at https://www.federalreserve.
gov/releases/g17/CapNotes.htm.
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rates and stock markets after ECB and Federal Reserve policy announcements to identify
monetary policy shocks at the monthly frequency. We take simple averages of these shocks
to obtain an annual series. For the UK, we follow Cesa-Bianchi et al. (2020), who identify
monetary policy shocks through changes in the price of 3-month Sterling future contracts
after policy announcements by the Bank of England.55

Financial shocks We measure financial shocks by using the excess bond premium intro-
duced by Gilchrist and Zakrajšek (2012).56 This measure is the difference between the
actual spread of unsecured bonds of US firms and the predicted spread based on firm-
specific default risk and bond characteristics. Thus, it captures variation in the average
price of US corporate credit risk, above and beyond the compensation for expected defaults.
We aggregate the monthly excess bond premium to its annual average to obtain our shocks.

Uncertainty shocks Our measure of Economic Policy Uncertainy (EPU) was developed
by Baker et al. (2016), and is regularly updated at http://www.policyuncertainty.
com. For European countries, the measure is a monthly index based on newspaper articles
on policy uncertainty (articles containing the terms uncertain or uncertainty, economic or
economy, and one or more policy–relevant terms). The number of economic uncertainty
articles is then normalized by a measure of the number of articles in the same newspaper and
month, and the resulting newspaper-level monthly series is standardized to unit standard
deviation prior to 2011. Finally, the country-level EPU series is obtained as the simple
average of the series for the country’s newspapers, and normalized to have a mean of 100
prior to 2011.57 For the US, measurement is more sophisticated, considering not only
newspaper articles, but also the number of federal tax code provisions set to expire in future
years and disagreement among economic forecasters.

In order to obtain an annual series, we take a simple average of monthly values. For
country-years with missing data (before 1997 for Italy and the UK, and before 2001 for
Spain), we use the simple average of the series for the other European countries.

B.7 Input-Output tables

For European countries, we obtain country-specific input-output tables from the Eurostat
FIGARO tables.58 We use tables for the year 2010, and drop all transactions with foreign
countries and industries not covered in our sample. For the US, we rely on the BEA “Use”
tables.59 Likewise, we drop all transactions with industries not covered by our sample.

55For all cited papers, the authors provide this data in their replication files. Updated files are available
at https://marekjarocinski.github.io/ and https://sites.google.com/site/ambropo/
publications. Ambrogio Cesa-Bianchi also kindly shared an extended series with us.

56Data is available at https://www.federalreserve.gov/econresdata/notes/feds-notes/
2016/updating-the-recession-risk-and-the-excess-bond-premium-20161006.html.

57The newspapers used are Le Monde and Le Figaro for France, Handelsblatt and Frankfurter Allgemeine
Zeitung for Germany, Corriere Della Sera and La Repubblica for Italy, and El Mundo and El Pais for Spain.

58See https://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/data/
database.

59See https://www.bea.gov/industry/input-output-accounts-data.
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B.8 Recession definitions

Recession dates are taken from the NBER for the US, the Euro Area Business Cycle
Network for the Euro Area, and the Office for National Statistics for the UK.

B.9 Plots of key variables

Figures A.1 to A.5 summarize the behaviour of some of the key variables.

Figure A.1: Capacity utilization in the manufacturing sector
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Notes: This figure plots average capacity utilization in manufacturing against the cyclical component of
aggregate real value added (filtered with a band-pass filter). Data sources are described in Section 3. Shaded
areas mark recessions, defined in Appendix B.8.

Figure A.1 plots average capacity utilization in manufacturing against the cyclical
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component of real value added (filtered with a band-pass filter). The remaining figures plot
output and input growth across the three broad sectors used in our analysis. To generate
these plots, we aggregate real gross output, real spending on materials and employment
across the three sectors covered by our analysis. For capital, instead, we take value-added
weighted averages of our measure of growth in capital inputs. These graphs clearly show
that capital is much less volatile than other inputs. This is a key mechanism driving the
profit adjustment in our estimated TFP series.

Figure A.2: Gross output growth
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Figure A.3: Material input growth
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Figure A.4: Capital input growth
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Figure A.5: Employment growth
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B.10 Quarterly data

We construct quarterly measures of output and input growth by using data from Eurostat.
Eurostat’s database is also the main data source for EU KLEMS, and in the construction of
our quarterly variables, we aim to follow KLEMS practice as closely as possible.60

One important deviation from KLEMS is the fact that there is no quarterly data on
GDP, investment or employment per industry. Thus, we cannot focus on the same subset of
industries as in our annual analysis. To keep our focus on business GDP, however, we adjust
the quarterly series for all our variables by multiplying them with the share of the private

60In a previous version of our paper (Comin et al., 2023), we also constructed a quarterly series for the US.
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sector for the same variable at the annual frequency, taken from EU KLEMS.

Output We measure output growth as the growth of quarterly real GDP, taken from
Eurostat’s quarterly national accounts database. The data is seasonally adjusted and
expressed in chain-linked volumes. It is available from the first quarter of 1997.

Labour input Our measure of labour input accounts for labour composition, in the spirit
of the EU KLEMS LAB_QI variable. Precisely, we use data on six different groups of workers,
splitting the population of workers by gender and three age groups. For each of these
groups, the EU Labour Force Survey provides quarterly data for employment and actual
hours worked per week. Data is available from the first quarter of 1998 for Italy and
Spain, from the first quarter of 2003 for France, and from the first quarter of 2005 for
Germany. These series are not seasonally adjusted, but display strong seasonal patterns.
Therefore, we seasonally adjust each employment and hours per worker series by using the
X-13ARIMA-SEATS algorithm. We then construct quarterly data between 1998 and 2003
for France and between 1998 and 2005 for Germany by linear interpolation of the available
annual data.61

Finally, we construct an aggregate measure of labour input as

dHt + dNt =
6

∑
d=1

wd
t

(
dHd

t + dNd
t

)
, (A.29)

where dHd
t is the growth rate of hours per worker for category d and dNd

t is the growth
rate of employment for category d. The different categories are weighted by their shares
in total labour compensation, wd

t . We compute these shares by using data from the EU
Structure of Earnings Survey. This survey is available every four years, starting in 2002,
and we linearly interpolate values for the weights in all periods with missing data.

Capital input To construct a measure of capital input, we use data on real investment
(gross fixed capital formation, seasonally adjusted and in chain-linked volumes) from
Eurostat’s quarterly national accounts database. Investment data is available from the first
quarter of 1998. We combine this data with the 1998 value of the real capital stock in EU
KLEMS and the implicit KLEMS depreciation rate to compute a value for the capital stock
using the perpetual inventory method.62

We compute growth in capital inputs as the growth in this capital stock. This differs
from our approach with the annual data, where we compute a weighted average of the
growth rates of different capital asset stocks. However, there is not enough disaggregated
data on investment in different asset classes in order to do the same at a quarterly frequency.

61We also correct two anomalies in the Italian data for hours per worker (in 2002Q2 and 2003Q1) through
linear interpolation for these two quarters.

62EU KLEMS provides us with annual time series on the aggregate real capital stock Kt and investment
It. We then compute an implicit annual depreciation rate as 1− δK,t =

Kt+1−It
Kt

. We deduce from this the
quarterly depreciation rate and use it to compute a quarterly capital stock series.
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C Robustness checks

C.1 Time-varying output elasticities

Our baseline analysis assumes that output elasticities are constant over time. This
assumption could be problematic in the presence of structural changes in production
technologies which increase the importance of certain factors and decrease the importance
of others. Therefore, this section considers a robustness check allowing for time variation
in output elasticities.

Figure A.6: TFP growth with time-varying factor elasticities
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Notes: This figure compares our baseline series for TFP growth with an alternative series that allows for time
variation in factor elasticities. Shaded areas mark recessions, defined in Appendix B.8.

Precisely, we compute the elasticity of output with respect to a certain factor X as the
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average between the current and last year’s cost shares (following the common practice in
the KLEMS and BLS databases):

αX,t =
csX,t + csX,t−1

2
, (A.30)

where csX,t is the cost share of factor X in year t. Using these time-varying elasticities
in equation (21), we conduct the same analysis as in the baseline.

Figure A.6 plots the series obtained with these time-varying elasticities against our
baseline estimates for aggregate TFP growth. While there are certainly differences between
series in several countries (especially in Germany and Spain), the overall patterns of TFP
growth both in the short and in the long run do not change.

C.2 Capital input aggregation

In our baseline analysis, we compute capital input as a weighted average of the growth
rates of different assets. While this is consistent with our assumptions on profits, one might
be concerned that the KLEMS capital input index, CAP_QI, contains further adjustments
that we would miss by dropping this variable.

To address this issue, Figure A.7 plots our estimates for TFP growth when we use
CAP_QI as our measure of growth in capital inputs. As the figure shows, doing so does not
change the cyclical property of our TFP series. It does affect long-run productivity growth
somewhat, with the strongest effects in Spain. Here, our disaggregated estimates of capital
growth are higher than the growth in the KLEMS CAP_QI index (by about 0.3 percentage
points per year on average), and hence TFP growth is lower with the disaggregated measure.

C.3 Land and inventories

One potential concern about capital measures in EU KLEMS is the fact that they do not
include land and inventories (which are, in turn, included in BLS data for the US). This
might lead us to underestimate capital costs, and hence to overestimate profits.

To address this issue, we apply a simple correction to our estimates for total capital
costs. In our US data, land and inventories represent 9.6% of total capital costs. Therefore,
we inflate capital costs for European countries by a factor 1/1−0.096, which amounts to
assuming that land and inventories command the same share of capital costs in Europe
than in the US. This is likely to be a conservative assumption, as EU KLEMS does include
“land improvements” and at least a share of land under buildings.63

Figure A.8 compares the TFP growth estimates obtained with these inflated capital cost
shares to our baseline estimates. Higher capital costs imply lower profits, and hence they
weaken the profit adjustment of our baseline series. However, as the figure shows, this
effect is small.

63For instance, national accounting guidelines state that “in case that it is not possible to separate the land
from the related assets (buildings and other structures, water resources, mineral and energy resources, cultivated
and non cultivated biological resources), SNA 2008 and ESA 2010 recommend to register the combined value
under the more valuable asset” (SNA 2008 paragraph 13.46, ESA 2010 paragraph 7.52).
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Figure A.7: Results for the KLEMS CAP_QI capital input series
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Notes: This figure plots our baseline measure of TFP growth against an alternative measure that uses the
KLEMS CAP_QI series as a measure of capital input. Shaded areas mark recessions, defined in Appendix B.8.
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Figure A.8: Adjusting European capital costs for land and inventories

0

.05

.1

.15

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

Adj. for land and inventories

Baseline series

Germany

−.15

−.1

−.05

0

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

Adj. for land and inventories

Baseline series

Spain

0

.02

.04

.06

.08

.1

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

Adj. for land and inventories

Baseline series

France

−.06

−.04

−.02

0

.02

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

Adj. for land and inventories

Baseline series

Italy

0

.05

.1

.15

.2

.25

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

Adj. for land and inventories

Baseline series

United Kingdom

−.1

0

.1

.2

.3

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020
Year

Adj. for land and inventories

Baseline series

United States

Notes: This figure plots our baseline measure of TFP growth against an alternative that inflates European
capital costs to account for land and inventories. Shaded areas mark recessions, defined in Appendix B.8.

C.4 Further robustness checks

In this section, we summarize the results of a series of further robustness checks. Tables
A.7 to A.12 show the results of these checks for every country in our sample.

The first three robustness checks deal with the interest rate used to compute the rental
rate of capital. In our baseline results, this interest rate is the sum of a country-specific
risk-free interest rate and a weighted average of the risk premium on bonds and equity,
as defined in equation (20). Here, we consider three alternatives. Robustness check (1)
ignores equity and computes the interest rate as

1 + rc
t = GovBondYieldc

t + BaaSpreadt, (A.31)
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where, as in the baseline, GovBondYieldc
t is the interest rate on 10-year government bonds

of country c, and BaaSpreadt is the spread on Moody’s Baa bonds with a maturity of 20
years or more.

In robustness check (2), we instead use country-specific bond yields, for Standard&Poor’s
BBB rates bonds with a maturity of 10 years. That is, we define the interest rate as

1 + rc
t =

Dc

Dc + Ec · BBBYieldc
t +

Ec

Dc + Ec · (GovBondYieldc
t + ERPc

t) . (A.32)

In contrast to the baseline, this interest rate uses a country-specific bond risk premium.
However, data for the BBB yield is only available after the year 2000, so that we can only
compute profit shares for a shorter time horizon.

Finally, for robustness check (3), we take into account the fact that debt repayments
can be deducted from taxes, and compute the interest rate as

1+ rc
t =

Dc

Dc + Ec · (GovBondYieldc
t + BaaSpreadt) · (1− τc)+

Ec

Dc + Ec · (GovBondYieldc
t + ERPc

t) ,

(A.33)
where τc is the corporate tax rate in country c, taken from OECD.Stat.
As tables A.7 to A.12 show, using any of these three interest rates barely changes the

cyclical behaviour of our TFP series: correlations with the baseline series are very close
to 1, and correlations with the BFK TFP series and Solow residuals hardly change. Different
interest rates do yield somewhat different levels of TFP growth, depending on whether they
imply higher or lower profits than the baseline interest rate.

In robustness check (4), we assume that firms cannot make negative profits. That is, we
set all negative BGP profit shares to zero. As there are few such industries, the impact of
this change is limited.

In robustness checks (5), (6) and (7), we vary the set of instruments used in our
utilization adjustment regressions. In robustness check (5), we drop the monetary policy
shock, and in robustness check (6), we drop the uncertainty shock. In robustness check (7),
in turn, we do not backcast missing values for the monetary policy shock. All of these
changes have a negligible effect on our results.

In robustness check (8), we consider a different backcasting method for capacity utiliza-
tion data in European non-manufacturing industries. In the baseline analysis, backcasting
was based on a pooled regression across all non-manufacturing industries (as shown in the
main text). Here, we instead run the backcasting regression industry by industry. Again,
this does not affect our results.
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Table A.7: Robustness checks, Germany

Baseline (1) (2) (3) (4) (5) (6) (7) (8)

Mean TFP growth 0.58 0.56 0.50 0.57 0.58 0.59 0.58 0.58 0.58

Relative standard dev. 0.33 0.33 0.34 0.33 0.33 0.33 0.33 0.33 0.33

Corr. with real VA growth 0.23 0.23 0.20 0.23 0.23 0.33 0.23 0.27 0.25

Corr. between TFP series

Baseline . 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Solow residual 0.39 0.39 0.35 0.38 0.39 0.48 0.38 0.42 0.40

BFK method 0.74 0.75 0.73 0.74 0.75 0.79 0.71 0.76 0.75

Notes: Each numbered column corresponds to a different robustness check. Robustness check (1) uses an
interest rate without equity, (2) uses an interest rate with Standard and Poor’s country-specific bond yields,
(3) uses an interest rate including taxes, (4) assumes that profits cannot be negative, (5) drops the monetary
policy instrument, (6) drops the uncertainty instrument, (7) uses no backcasting for instruments, and (8)
backcasts non-manufacturing utilization data using industry-level regressions.

Table A.8: Robustness checks, Spain

Baseline (1) (2) (3) (4) (5) (6) (7) (8)

Mean TFP growth -0.53 -0.54 -0.67 -0.54 -0.53 -0.53 -0.53 -0.53 -0.53

Relative standard dev. 0.39 0.40 0.42 0.40 0.39 0.40 0.39 0.39 0.40

Corr. with real VA growth -0.22 -0.26 -0.30 -0.25 -0.23 -0.23 -0.21 -0.21 -0.22

Corr. between TFP series

Baseline . 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Solow residual 0.52 0.50 0.47 0.50 0.53 0.50 0.53 0.53 0.51

BFK method 0.56 0.54 0.51 0.54 0.57 0.53 0.57 0.56 0.55

Notes: Each numbered column corresponds to a different robustness check. Robustness check (1) uses an
interest rate without equity, (2) uses an interest rate with Standard and Poor’s country-specific bond yields,
(3) uses an interest rate including taxes, (4) assumes that profits cannot be negative, (5) drops the monetary
policy instrument, (6) drops the uncertainty instrument, (7) uses no backcasting for instruments, and (8)
backcasts non-manufacturing utilization data using industry-level regressions.
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Table A.9: Robustness checks, France

Baseline (1) (2) (3) (4) (5) (6) (7) (8)

Mean TFP growth 0.24 0.24 0.19 0.24 0.24 0.23 0.24 0.24 0.24

Relative standard dev. 0.58 0.58 0.58 0.58 0.58 0.56 0.58 0.59 0.57

Corr. with real VA growth 0.60 0.59 0.59 0.60 0.60 0.49 0.61 0.62 0.58

Corr. between TFP series

Baseline . 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Solow residual 0.90 0.89 0.88 0.89 0.90 0.82 0.90 0.91 0.88

BFK method 0.83 0.82 0.82 0.83 0.83 0.82 0.83 0.85 0.83

Notes: Each numbered column corresponds to a different robustness check. Robustness check (1) uses an
interest rate without equity, (2) uses an interest rate with Standard and Poor’s country-specific bond yields,
(3) uses an interest rate including taxes, (4) assumes that profits cannot be negative, (5) drops the monetary
policy instrument, (6) drops the uncertainty instrument, (7) uses no backcasting for instruments, and (8)
backcasts non-manufacturing utilization data using industry-level regressions.

Table A.10: Robustness checks, Italy

Baseline (1) (2) (3) (4) (5) (6) (7) (8)

Mean TFP growth -0.27 -0.27 -0.31 -0.27 -0.27 -0.28 -0.27 -0.27 -0.27

Relative standard dev. 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

Corr. with real VA growth 0.39 0.38 0.36 0.38 0.39 0.17 0.33 0.35 0.36

Corr. between TFP series

Baseline . 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00

Solow residual 0.60 0.60 0.59 0.60 0.61 0.37 0.55 0.56 0.58

BFK method 0.73 0.73 0.72 0.73 0.73 0.65 0.68 0.69 0.73

Notes: Each numbered column corresponds to a different robustness check. Robustness check (1) uses an
interest rate without equity, (2) uses an interest rate with Standard and Poor’s country-specific bond yields,
(3) uses an interest rate including taxes, (4) assumes that profits cannot be negative, (5) drops the monetary
policy instrument, (6) drops the uncertainty instrument, (7) uses no backcasting for instruments, and (8)
backcasts non-manufacturing utilization data using industry-level regressions.
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Table A.11: Robustness checks, United Kingdom

Baseline (1) (2) (3) (4) (5) (6) (7) (8)

Mean TFP growth 1.06 1.07 1.05 1.06 1.09 1.06 1.06 1.06 1.06

Relative standard dev. 0.58 0.58 0.57 0.58 0.58 0.58 0.57 0.58 0.58

Corr. with real VA growth 0.20 0.20 0.21 0.20 0.21 0.20 0.24 0.19 0.20

Corr. between TFP series

Baseline . 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Solow residual 0.52 0.52 0.52 0.52 0.53 0.52 0.57 0.51 0.52

BFK method 0.43 0.43 0.44 0.43 0.44 0.42 0.49 0.40 0.43

Notes: Each numbered column corresponds to a different robustness check. Robustness check (1) uses an
interest rate without equity, (2) uses an interest rate with Standard and Poor’s country-specific bond yields,
(3) uses an interest rate including taxes, (4) assumes that profits cannot be negative, (5) drops the monetary
policy instrument, (6) drops the uncertainty instrument, (7) uses no backcasting for instruments, and (8)
backcasts non-manufacturing utilization data using industry-level regressions.

Table A.12: Robustness checks, United States

Baseline (1) (2) (3) (4) (5) (6) (7) (8)

Mean TFP growth 0.83 0.84 0.78 0.85 0.87 0.83 0.83 0.83 0.83

Relative standard dev. 0.53 0.53 0.53 0.53 0.53 0.53 0.52 0.53 0.53

Corr. with real VA growth 0.34 0.33 0.31 0.33 0.34 0.34 0.35 0.32 0.34

Corr. between TFP series

Baseline . 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Solow residual 0.70 0.70 0.68 0.70 0.73 0.70 0.70 0.66 0.70

BFK method 0.88 0.88 0.87 0.88 0.89 0.77 0.88 0.85 0.88

Notes: Each numbered column corresponds to a different robustness check. Robustness check (1) uses an
interest rate without equity, (2) uses an interest rate with Standard and Poor’s country-specific bond yields,
(3) uses an interest rate including taxes, (4) assumes that profits cannot be negative, (5) drops the monetary
policy instrument, (6) drops the uncertainty instrument, (7) uses no backcasting for instruments, and (8)
backcasts non-manufacturing utilization data using industry-level regressions.
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D Additional results

D.1 Rental rates and profit shares over time

To illustrate the behaviour of rental rates and profit shares over time, Figure A.9 plots
the rental rate for the overall capital stock (top left panel), the profit share in gross output
(top right panel) and our baseline interest rate (bottom panel). Rental rates are fairly stable
over time, with a spike around the Great Recession in 2008-2009.64 Rental rates are stable
despite a decrease in interest rates, as they are more than compensated by an increase in
depreciation rates. This increase, in turn, is due to a composition effect, as assets with
higher depreciation rates (software, IT, R&D etc.) increase faster than others and have
considerably higher depreciation rates.

Figure A.9: Rental rates, profit shares and interest rates
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Notes: Rental rates are defined in equation (9), profit shares are defined in footnote 28. Both statistics are
computed at the industry-level, and aggregated with value-added weights.

The right panel of Figure A.9 plots our estimates for profit shares. In the United States,
our findings echo the ones of Barkai (2020): profits have risen substantially since the 1990s.
The same is true for Germany. In the other four European countries, there is no clear

64Note that rental rates for the United States and Europe are not directly comparable, as EU KLEMS and
the BLS use different definitions of capital: some expenditures are classified as material expenditures by the
BLS and as investments by KLEMS, and vice-versa (see Appendix B.1).
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trend.65 Finally, to provide further detail, table A.13 lists a value-added-weighted average
of industry BGP profit shares.66

Table A.13: Profit shares

Germany Spain France Italy UK USA

Percentage of gross output 2.9 6.2 4.7 5.5 6.0 2.3

Percentage of value added 6.1 15.5 11.9 12.9 13.6 4.9

Notes: BGP profit shares are time averages of profit shares. The table shows a value-added-weighted average
of BGP profit shares across industries.

D.2 TFP growth rates over time

Table A.14 lists average growth rates during the whole sample, as well as for the period
before and after 2007.

Table A.14: Average TFP growth rates

Germany Spain France Italy UK EA USA

Overall sample

Solow residual 0.73 -0.33 0.28 -0.30 0.91 0.27 0.67

BFK method 0.76 -0.33 0.26 -0.33 0.92 0.28 0.68

Our method 0.58 -0.53 0.24 -0.27 1.06 0.20 0.83

Subperiods, our method

1995-2007 0.77 -1.15 0.83 -0.29 1.60 0.29 1.49

2008-2018 0.37 0.14 -0.39 -0.24 0.48 0.08 0.38

Notes: EA stands for Euro Area, a value-added weighted average of TFP growth in Germany, Spain, France
and Italy. TFP growth rates are expressed as log changes multiplied by 100.

The first panel shows that our method implies lower average TFP growth rates than the
Solow or BFK methods for Germany and Spain, but higher growth rates in the UK and the
US. The second panel confirms the productivity slowdown in the second half of the sample
in Germany, France, the UK and the US. Spain is a notable exception to this pattern: here,

65Note that our focus on a BGP does not necessarily contradict the evolution of profit shares within countries.
Indeed, even in the US, where estimated profits increased over the last 20 to 30 years, Karabarbounis and
Neiman (2019) have argued that profits are currently at the same level than in the 1960s. Thus, the data is
consistent with low-frequency fluctuations around a stable long-run average.

66To deal with outliers, we winsorize BGP profit shares at −5% to deal with outliers. Our results are
unchanged with a threshold of−10%, or if we do not allow for negative profits at all, as shown in Appendix C.4.
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the Great Recession appears to end a long TFP decline. Tables A.15 to A.20 provide further
details, by listing aggregate TFP growth rates for every single year and country.

Table A.15: TFP growth rates, Germany

Solow residual BFK method Our method

1996 -0.33 0.43 0.95

1997 0.97 0.79 -0.41

1998 -0.20 -1.40 -0.78

1999 0.05 -0.18 0.47

2000 2.16 3.16 0.86

2001 1.21 1.34 2.31

2002 -0.05 0.07 1.02

2003 -0.58 -0.56 -1.22

2004 0.92 0.31 0.12

2005 1.92 3.14 1.78

2006 4.32 2.61 2.82

2007 2.33 1.65 1.32

2008 -1.60 -1.88 -0.95

2009 -7.86 -1.72 0.13

2010 4.52 -0.11 0.04

2011 2.83 0.95 -0.32

2012 0.38 2.67 1.22

2013 -0.16 0.36 0.36

2014 1.53 0.79 0.95

2015 0.35 0.12 0.20

2016 1.67 2.03 1.38

2017 2.38 2.77 1.51

2018 0.13 0.06 -0.39

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.16: TFP growth rates, Spain

Solow residual BFK method Our method

1996 -2.80 -2.90 -3.32

1997 -1.21 -1.14 -2.79

1998 -1.00 -1.05 -2.07

1999 0.07 0.09 -0.26

2000 0.16 0.10 -1.11

2001 -0.16 0.01 -0.03

2002 -1.10 -1.17 -1.42

2003 -0.50 -0.64 -0.80

2004 -0.86 -0.72 -1.22

2005 0.44 0.45 -0.13

2006 0.93 0.92 -0.21

2007 -0.02 -0.07 -0.42

2008 -1.49 -1.51 -0.26

2009 -2.18 -1.96 1.90

2010 0.38 0.19 -0.02

2011 -0.56 -0.81 -0.65

2012 -1.08 -0.61 -0.17

2013 -1.42 -1.56 -1.28

2014 0.65 0.65 -0.12

2015 2.62 2.47 1.00

2016 0.32 0.40 0.07

2017 1.15 1.24 1.03

2018 0.08 0.03 0.03

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.17: TFP growth rates, France

Solow residual BFK method Our method

1996 -0.17 -0.09 -0.04

1997 0.99 0.65 0.45

1998 2.35 2.07 2.18

1999 1.10 0.28 0.90

2000 2.85 3.74 2.26

2001 -0.99 -0.47 -1.18

2002 1.53 2.83 2.46

2003 0.72 -0.03 0.89

2004 0.20 -2.50 0.27

2005 0.43 0.94 0.04

2006 2.07 4.83 1.64

2007 0.55 -0.87 0.05

2008 -1.61 -1.99 -1.30

2009 -3.96 -1.93 -1.87

2010 0.91 -0.79 -0.04

2011 1.02 -0.07 0.06

2012 -1.23 -0.71 -0.82

2013 -0.13 1.00 0.75

2014 -0.37 0.01 -0.18

2015 0.05 -0.78 -0.09

2016 -0.24 -0.86 -0.53

2017 1.49 2.81 1.11

2018 -1.06 -2.04 -1.42

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.18: TFP growth rates, Italy

Solow residual BFK method Our method

1996 -0.23 -0.77 0.51

1997 0.37 1.38 0.23

1998 -0.85 -2.18 -1.72

1999 -0.93 -1.11 -0.67

2000 2.29 3.42 1.42

2001 -0.40 -0.65 -0.14

2002 -2.09 -2.67 -1.18

2003 -1.71 -0.84 -1.86

2004 0.92 0.26 0.95

2005 -0.11 0.56 0.14

2006 0.05 -0.41 -0.85

2007 0.02 -1.38 -0.32

2008 -1.43 -0.92 -0.13

2009 -5.86 -2.14 -0.96

2010 2.81 -0.15 0.91

2011 0.20 -2.13 -1.18

2012 -1.81 0.79 -0.13

2013 0.03 0.63 -0.27

2014 0.18 -0.07 -0.59

2015 0.26 -0.32 -0.79

2016 0.77 0.47 0.47

2017 0.91 1.04 0.23

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.19: TFP growth rates, United Kingdom

Solow residual BFK method Our method

1996 -0.15 -0.44 0.62

1997 -0.87 0.44 -1.82

1998 1.46 0.24 1.40

1999 0.50 0.65 2.43

2000 1.68 1.60 1.29

2001 1.60 1.63 2.68

2002 1.37 1.56 1.36

2003 2.41 2.67 3.07

2004 2.78 2.80 1.68

2005 2.71 2.22 3.78

2006 1.94 2.05 1.41

2007 2.14 1.83 1.24

2008 0.04 0.49 0.36

2009 -3.90 -3.72 0.54

2010 3.13 2.92 0.80

2011 0.68 0.58 -1.31

2012 -0.83 -0.68 -0.37

2013 0.71 0.42 1.19

2014 0.88 0.99 -0.32

2015 1.12 1.43 0.64

2016 -0.57 -1.05 0.41

2017 1.54 1.78 1.63

2018 0.54 0.83 1.65

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.20: TFP growth rates, United States

Solow residual BFK method Our method

1988 1.28 0.42 -0.31

1989 0.25 -0.05 0.50

1990 0.37 1.39 0.81

1991 -0.47 -0.03 0.53

1992 2.92 2.72 2.63

1993 -0.77 -1.58 -0.89

1994 0.68 0.02 0.38

1995 0.19 1.44 0.80

1996 2.05 2.60 2.99

1997 1.56 0.81 1.65

1998 1.71 1.91 2.13

1999 1.18 0.53 1.16

2000 1.09 0.73 1.20

2001 -1.51 -0.12 0.40

2002 2.95 2.48 3.31

2003 2.29 2.44 2.41

2004 2.26 1.85 2.09

2005 1.52 1.77 1.32

2006 0.85 0.28 0.95

2007 -0.62 -0.58 -1.12

2008 -1.84 -1.49 -0.88

2009 -0.71 0.89 2.42

2010 3.48 1.69 0.76

2011 0.00 -0.14 -0.97

2012 0.86 1.04 0.69

2013 -1.15 -0.69 -0.55

2014 0.31 0.27 0.75

2015 0.63 0.81 1.16

2016 -0.11 0.00 0.32

2017 0.79 0.48 0.21

2018 1.22 0.63 0.28

2019 0.81 1.14 0.97

2020 -1.82 -1.24 -0.67

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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D.3 Aggregation

This section investigates the importance of using cost-based Domar weights, as sug-
gested in Baqaee and Farhi (2019), for our overall results. Figure A.10 plots our baseline
estimates of aggregate TFP growth against an alternative series that uses the baseline
industry-level estimates of TFP growth, but aggregates them with standard sales-based
Tornqvist-Domar weights rather than with our cost-based ones.

Figure A.10: The impact of different aggregation methods on estimated TFP growth
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Notes: This figure plots our baseline measure of TFP growth against an alternative measure that uses
sales-based Tornqvist-Domar weights for aggregation. Shaded areas mark recessions, defined in Appendix B.8.

Figure A.10 shows that for countries with high profit shares (such as Spain, France,
Italy and the UK), consistent aggregation makes some difference. In these countries, the
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cost-based Domar weights of Baqaee and Farhi (2019) imply that TFP growth in upstream
industries matters more for aggregate TFP growth. In France and the United Kingdom,
where TFP growth in upstream industries is positive, this leads to an upward revision of
overall TFP growth. In Spain and Italy, where TFP growth in upstream industries is negative,
it leads to a downward revision. However, none of these changes affect cyclical patterns.

D.4 Regression results for disaggregate hours per worker proxies

As discussed in the main text, using aggregate hours per worker as a proxy for unob-
served worker effort is problematic when there are composition effects.

Table A.21: BFK regression results with two types of hours per worker

Germany Spain France Italy UK USA

Non-durable manufacturing

β̂F
H 0.554** -1.607* -0.034 0.487* -1.264 0.550

(0.236) (0.859) (0.244) (0.270) (1.332) (0.522)

β̂V
H 0.067 -0.054 0.232** 0.075 0.066 0.572

(0.303) (0.175) (0.102) (0.187) (0.121) (0.924)

Observations 132 110 132 132 132 175
First-stage F-statistic 5.3 0.6 38.3 7.9 0.3 1.0

Durable manufacturing

β̂F
H 0.852*** 0.326 0.771*** 0.701*** 1.765*** 1.673***

(0.247) (0.601) (0.183) (0.185) (0.576) (0.629)

β̂V
H -0.023 0.183** 0.093 -0.094 -0.053 -0.000

(0.302) (0.077) (0.104) (0.170) (0.123) (0.190)

Observations 132 110 132 132 132 275
First-stage F-statistic 4.8 1.5 37.9 7.7 2.1 3.8

Non-manufacturing

β̂F
H 1.758** -1.239 0.522** 0.656*** -1.786 -0.725

(0.736) (0.826) (0.257) (0.242) (1.299) (0.452)

β̂V
H -0.343** 0.417 0.150 0.099 -0.632 0.769

(0.159) (0.866) (0.304) (0.145) (0.467) (0.958)

Observations 286 286 286 286 286 775
First-stage F-statistic 7.8 0.5 4.4 9.4 0.9 2.1

Notes: The coefficients βF
H and βV

H are estimated using 2SLS on equation (22), replacing changes in aggregate
hours per worker by changes in hours per worker for the two subcategories of workers considered in this paper.
Instruments are oil, monetary policy, uncertainty and financial shocks. The table reports Kleibergen-Paap rk
Wald F statistics. Robust standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.
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In principle, this might be addressed by using disaggregate measures of hours per
worker. Table A.21 shows the result of this approach, using both hours per worker of
variable and quasi-fixed workers instead of aggregate hours per worker in the BFK regression
specification (22). The results are not promising, with a first stage F-statistic that is generally
very low, and many negative and/or insignificant second-stage coefficients. In practice, the
instruments might not have enough power to predict two endogenous variables. Moreover,
a positive correlation between the two proxies can also cause issues.67

D.5 TFP growth at the industry level

In this section, we plot industry-level TFP growth rates for all European countries.

Figure A.11: Industry-level TFP growth, Germany
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67Sanderson and Windmeijer (2016) show that the F-statistic with two endogenous variables needs to be
adjusted downward, implying that the first stage is even weaker than suggested by Table A.21.
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Figure A.12: Industry-level TFP growth, Germany (continued)
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Figure A.13: Industry-level TFP growth, Spain
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Figure A.14: Industry-level TFP growth, Spain (continued)
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Figure A.15: Industry-level TFP growth, France
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Figure A.16: Industry-level TFP growth, France (continued)
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Figure A.17: Industry-level TFP growth, Italy
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Figure A.18: Industry-level TFP growth, Italy (continued)
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Figure A.19: Industry-level TFP growth, United Kingdom
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Figure A.20: Industry-level TFP growth, United Kingdom (continued)
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