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1 Introduction

Problems of collective action are among the most basic and ubiquitous forms of strategic
interaction in societies. Examples of collective action problems range from the case of private
citizens banding together in public demonstrations; to dissatisfied workers participating in
union activities; to voters bearing up against bad weather to cast their ballots; to community
members donating their time to organize charity or cultural events. At a more macro level,
the choices by countries contemplating to join an international environmental agreement also
constitute a collective action problem. These are all instances of environments in which a
common goal can be achieved by a community, but only if a sufficiently large number of its
members are willing to make individual contributions, thus overcoming the incentives to free
ride. There are many concrete examples testifying that societies are indeed able to partially
solve collective action problems; theories of voluntary behavior and free riding, however, find
hard to explain significant levels of individual participation, except assuming that citizens
like it or feel morally obliged to it.

In his seminal work, Mancur Olson [1965] provided a taxonomy of the factors determining
success of collective action, and highlighted the presence of an organization as a key factor.
This observation is intuitive, but it opens up practical and theoretical questions that, as
we will argue, have not yet been fully explored in the literature. A first set of questions is
positive: what type of organizations should we plausibly expect in collective action prob-
lems, and how effective should we expect them to be? A second related set of questions is
normative: how do empirically plausible organizations compare to the theoretically optimal
organization? To what extent, the presence of an organization (plausible or even optimal)
can explain the observed effectiveness of collective action even with a large number of agents?
Understanding these questions is important to make sense of the limits and opportunities of
collective action and may provide normative insights to improve it.

In this paper we make progress on these issues by studying the effectiveness of organiza-
tions in a classic threshold contribution game, widely studied in economics, biology, political
science and sociology.1 In the game, a group of n agents pursue a collective goal that, if
achieved, generates a benefit v per agent. The goal is achieved if at least a mn out of n
agents choose to make a personal contribution. The cost of a personal contribution is pri-
vate information to each agent: it is independently distributed across agents according to
some F (c) with support [0, c], where typically (but not necessarily) one assumes c > v. The
agents may or may not have an organization, and the organization may be strong (allowing
for transfers and/or some form of coercion) or, more plausibly, weak (no transfers and no
coercion). We ask how the probability of success changes as n increases, depending on (1)
the rate of increase in mn, (2) whether or not there is an organization, and (3) whether the
organization, if it exists, is strong or weak. We also ask under what conditions the group of
agents will endogenously form an organization.

1Classic contributions are Palfrey and Rosenthal [1984] in economics and Diekmann [1985] in sociology,
who coined the term the “volunteer’s dilemma” for the special case in which mn = 1. A survey of the work
using these games in biology is presented by Archetti and Scheuring [2012]. Applications to environmental
economics include, for example, Tavoni et al. [2011] and Barrett et al [2014]. Recent contributions in
economics included Harrington [2011], Bergstrom [2017], Battaglini and Benabou [2003], Battaglini [2017],
Bergstrom and Leo [2020], Nöldeke and Peña (2020), Dziuda et al. [2021], among others.
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Our analysis produces four new theoretical insights. As a preliminary step, we first
revisit the equilibrium analysis without an organization when the threshold mn is a general
increasing function of n. Our first finding is that, even without an organization and with
a threshold mn that grows to infinity, failure of collective action is not inevitable: the key
factor is the rate of increase of m versus n. Perhaps surprisingly, we show that, regardless
of the shape of F (c), success is achieved with probability one if mn grows at a rate slower
than n2/3; success is instead impossible if n grows faster than n2/3. When mn grows faster
than n2/3, moreover, the is a critical group size, nU , such that the probability of success falls
precipitously from a strictly positive success probability to becomes exactly zero for n ≥ nU .
Collective action, therefore, does not require an organization to be successful if mn grows
sufficiently slowly; but it can be really valuable otherwise.

The other three main findings address the questions of how and to what extent the per-
formance of collective action can be improved by an organization. The key issue here is how
to model an organization. The standard approach in mechanism design theory has focused
on the study of optimal organizations with transfers that are Bayesian incentive compatible
(IC) and interim individually rational (IR), what we refer to as strong mechanisms.2 This
approach, through the (IC) constraint, captures the problem of honestly aggregating the
dispersed private information regarding the agents’ types; it also partially captures, through
the IR constraint, a moral hazard problem at the interim stage by guaranteeing a mini-
mal expected utility to all types. In most environments of interest, however, this approach
bypasses the moral hazard problem faced by the group, since some types might choose to
disobey a recommendation by the mechanism if carrying out the recommendation would not
be optimal. In the standard Bayesian mechanism design problem, a direct mechanism maps
each reported profile of types to an allocation and a payment by each agent, which is then
imposed on all agents even if the allocation/payment makes some agents worse off at the
reported type profile. In contrast, in a collective action problem, a mechanism lacks the
power to simply impose the outcome on all agents, and can only suggest recommended (i.e.,
not imposed) actions, one for each agent (“go protest”, “sign a petition”, “volunteer”, “do
nothing”, etc.). The final outcome ultimately depends in the individual willingness of the
agents to voluntarily carry out these recommendations.

To clarify this point with an example, consider a community asking for volunteers to
organize an event. The event requires at least 3 out of 10 agents to spend one afternoon at
the community center and yields a value v = 1/2 per person if the quota is met. If c = 1,
then a simple (IC) and (IR) mechanism can achieve the goal with probability 1 using a
simple lottery draft mechanism:3 just randomly select 3 agents and ask them to volunteer.
This is (IC), since the information on the types is not used; and it is (IR) since the interim
expected cost is lower than the benefit even for the highest type (v = 1/2 > 3/10). The
problem with this mechanism is that it violates the moral hazard (obedience) constraint: no
type c ∈ (1/2, 1) would agree to volunteer if asked.4 In such a situation one must add an
obedience constraint, requiring that the agents asked to volunteer find it optimal to carry

2An exception is Dixit and Olson [2000], as we will discuss below.
3This mechanism is also optimal under some weak conditions as we will see in Section 3. This fact is

however irrelevant for the present discussion.
4Indeed, the mechanism described above is also ex post incentive compatible, since the willingness to

participate does not depend on the vector of reports by the agents, before the realization of the randomization
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out the mechanism’s recommendation. We refer to mechanisms that also satisfy obedience
and no transfers as weak mechanisms.

This distinction between (IC) and (IR) mechanisms and honest and obedient mechanisms
was not especially important for limiting results with large groups in the early literature that
assumed constant returns to scale; i.e., the cost of the common project grows linearly with
the number of agents. In that case, the limit probability of success is zero even if we ignore
the obedience constraint (Rob [1989], Mailath and Postlewaite [1990], Ledyard and Palfrey
[1994, 1999]). If one generalizes the constant returns assumption, however, the distinction
becomes important. As we are able to show, when mn grows slower than n, even if at a
speed arbitrarily close to n, then optimal (IC) and (IR) mechanisms achieve a probability
1 of success for a large enough n even if we adopt a simple lottery with no transfers as
outlined before. Such mechanisms, however, violate the obedience constraint, as shown in
the example above. It therefore becomes important to understand what can be achieved
with an honest and obedient mechanism.

Our second theoretical contribution is to show that a simple class of honest and obedient
mechanisms that we call Volunteer-Based Organizations (VBO) is asymptotically optimal.
The mechanism is a simple extension of the lottery described above. In a general VBO,
agents are asked to report whether they are willing to be activated (volunteers) or not (free
riders). If the number of agents who state they are willing to be volunteers is lower than
some threshold kn ≥ mn,

5 then no agent is asked to be active and the group fails, but wastes
no cost of action by any agent. If the number of volunteers is greater than or equal to kn,
then the collective goal is achieved by randomly and anonymously selecting mn volunteers.
These volunteers are willing to follow the recommendation because they know that exactly
mn − 1 volunteers will also carry out similar recommendations. Free riders are never asked
to be active. Indeed, we show that an even simpler mechanism in which kn = mn obtains
approximately the same probability of success as the optimal mechanism and a positive
probability of success for any n. While these mechanisms appear plausible because of their
simplicity, there is also empirical evidence that mechanisms similar to these are likely to
emerge endogenously if agents are allowed to communicate (see van de Kragt et al. [1983],
Palfrey et al. [2017]).

In our third theoretical result we use the previous characterization to explore the limits
of optimal honest and obedient organizations. This allows us to extend the negative limit
results of the early literature which hold only for environments with constant return to scale.
That literature showed that the limit probability of success in an optimal (IC) and (IR) with
constant returns to scale is zero both with an organized and unorganized group (Rob [1989],
Mailath and Postlewaite [1990], Ledyard and Palfrey [1994, 1999, 2002]). As mentioned
above, this finding does not extend when we generalize the assumption of constant marginal
costs. We instead show that with honest and obedient mechanisms the limiting probability
of success is the same with an organized and an unorganized group for any rate of growth
of mn: as with the Bayesian Nash equilibrium for unorganized groups, the optimal honest
and obedient mechanism achieves a limiting success probability of 1 if mn grows at a rate

in the mechanism is realized. The mechanism however is not obedient for types with c > v since after they
are drafted to be active by the random mechanism, they are not willing to be active.

5Obviously kn cannot be less than mn.
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slower than n2/3; and it achieves a limit probability of 0 if it grows faster than n2/3. An
implication of this result is that the probability of success converges to zero even if the total
benefit for the group is strictly higher than the total cost in the worst possible scenario in
which all types are at the theoretical maximum cost (a case in which, as we will see, strong
mechanisms are successful with probability 1 even with no transfers).

So is there any value in having an organization? The fourth lesson from our analysis
is that organizations are indeed very useful, and that focusing only on limit results for
infinite-sized groups misses an important part of the problem. We show that even when mn

grows faster than n2/3, the limit probability of success in a honest and obedient organization
converges to zero at a rate that is infinitely slower than without an organization (which
indeed achieves exactly zero probability after a finite threshold, n). In Section 4.2 we also
present numerical simulations of the model to quantify how the probability of success with a
VBO varies as group size changes. Even when mn grows faster than n2/3, significant (though
obviously lower than 1) probabilities of success can be achieved even with n in the tens of
thousands (when unorganized groups can achieve success probabilities equal to zero).

Taken together these results confirm and sharpen Olson’s intuition for the importance of
organizations for collective action, and also highlight important limitations to the power of
organizations. Even an ideally optimal honest and obedient organization is not necessarily
a perfect solution of the collective action problem for arbitrarily large numbers of interested
agents. Simple forms of cooperation such as a VBO, however, can be approximately optimal
for large but finite n and provide an effective institution for group success. These results
may help explain why numerous cases of successful collective action have been documented,
even if collective action is not a panacea for all social problems. This message is confirmed
and strengthened when we endogenize the formation of an organization, as we do in Section
6. That analysis suggests that even when successful collective action is only possible with an
organization, we should observe the formation of organizations only for values v larger than
a threshold v(n), increasing in n. These observations complement and formalize Olson’s
observation that groups with higher and more concentrated benefits are more successful,
which is not necessarily correct if we ignore the endogeneity of an organization.

1.0.1 Related literature

As mentioned above, Olson [1965] was arguably the first to highlight the importance of an or-
ganization in solving collective action problems, providing a first informal description of the
features of an organization useful to solve them.6 Formal analysis of this issue, however, had
to wait for the development of the theory of optimal mechanisms in Bayesian environments.
Our work follows this tradition, departing from it in two ways: first, because we assume
no transfers; second, and most importantly, because we require the optimal mechanism to
be honest and obedient as discussed above. Most previous theoretical research on optimal
mechanisms for public good provision in Bayesian environments consider only strong organi-

6Other factors for the success of collective action that have been emphasized by Olson [1965] and the
following literature include the cohesiveness of the preferences of the group’s members, the elasticity of their
cost function as a function of the contributions, and the degree of excludability of the common goal’s benefits.
Important works on these dimensions see Chamberlin [1974], and more recently Esteban and Ray [2001].
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zations, which allow unlimited side payments and interim individual rationality constraints,
ignoring the obedience constraint (Mailath and Postlewaite [1990], [1989], Ledyard and Pal-
frey [1994], [1999], [2002], Hellwig [2003]).7 As far as we know, the problem of optimal public
goods mechanisms in Bayesian environments that satisfy obedience has never been studied.
The first three groups of authors have presented negative results of strong organizations
assuming constant returns to scale, showing that limit probabilities converge to zero with
or without an optimal (IC) and interim (IR) mechanism. Hellwig [2003] has shown that
with increasing returns, limit probabilities equal to 1 are feasible with an optimal (IC) and
(IR) mechanism with unlimited transfers, indeed always achieved when the demand for the
public good is bounded above. When we consider honest and obedient mechanism, results
are very different, both with constant returns and without. Allowing for increasing returns,
we extend the insight that organizations are not useful in the limit, since we show with (HO)
mechanisms they can only obtain the same limit probabilities of success than unorganized
groups as n → ∞: with sufficiently increasing returns, however, this probability may be
one both with and without an organization, a case that we precisely characterize. With
constant returns, we also show that the failure of organizations in the limit is a more severe
phenomenon than previously believed, since it extends to cases in which the total societal
value of the collective action goal, i.e. vn, is strictly higher than the expected cost in the
worst scenario, i.e. when all types are equal to the maximal so αn · c (a case in which success
is guaranteed with strong organizations and that was ruled out by assumption in previous
work).8

Following Olson [1965], a significant literature has also studied organizations for collective
action from a positive perspective, providing empirical studies of the type of organizations
that emerge in concrete examples, both using case studies (Ostrom [1990], for instance)
and laboratory experiments (De Kragt et al [1983], Braver and Wilson [1986], Palfrey and
Rosenthal [1991], Ostrom andWalker [1991], Ostrom et al. [1992], Palfrey et al. [2017] among
others). Several of these experimental papers study public good games very similar to ours,
by allowing players to communicate before the contribution stage and ruling out coercion,
and report the endogenous emergence of mechanisms similar to the VBO mechanism that
we show to be asymptotically optimal.

7Other research on Bayesian mechanism design with public goods analyzes ”super-strong” organizations
that require incentive compatibility, but allow for unlimited side payments and no participation constraints
(d’Aspremont and Gerard-Varet [1979], Cremer and McLean [1985], d’Aspremont, Cremer, and Gerard-Varet
[1990], Ledyard and Palfrey [1999], [2002]).

8The limits of organizations for collective action are also explored by Dixit and Olson [2000], who focus
on the the study of incentives to join organized groups. They take a cooperative perspective, assuming that
organizations achieve the efficiency frontier through Coaseian bargaining; agents, however, have incentives
to stay out, free riding on those who join the organization (for a similar approach in a dynamic setting, see
also Battaglini and Harstad [2016]). Passarelli and Tabellini [2017] present a model of political unrest that
incorporates psychological rewards for activism. Besides the contributions cited above, moreover, a recent
significant literature has studied the limits of organizations in Bayesian mechanisms. See, for example, Healy
[2010], Goldlucke and Troger [2020], and Bierbrauer and Hellwig [2016] and Bierbrauer and Winkelmann
[2020].
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2 The Collective Action Model

2.1 Setup

A group with n members, I = {1, 2, ..., n}, desires an outcome generating a total value of
Wn, with each member in the group receiving a personal, direct benefit of v = Wn/n ∈ (0, 1)
which is independent of n.9 The policy is obtained if and only if at least mn out of the n
members of the group are active. The fraction of agents that are required to be active for
success is denoted by αn = mn/n ∈ (0, 1).

Different members have different activity costs, and we denote by ci the cost of being
active for member i. Member i’s payoff is given by:

ui = 0 if i is not active and fewer than m members are active

= v if i is not active and at least m members are active

= −ci if i is active and fewer than m members are active

= v − ci if i is active and at least m members are active

Costs are i.i.d. and distributed in [0, c] according to a distribution F (c) with density f(c).
We normalize without loss of generality c = 1 > v and we assume 0 < f(c) < f for some
bound f < ∞ and all c ≥ 0.10

We do not need to assume that mn is monotonic in n, though typically we expect it to
be non decreasing with mn → ∞ as n → ∞.11 We refer to the case in which mn = αn for
some fixed constant α ∈ (0, 1) as the constant returns to scale case, since it represents a
situation in which the fraction of active members required for success, mn/n, is constant in
n (or equivalently converges to a constant). We refer to the case in which mn/n declines in
n as the increasing returns to scale case, since in this case the average cost of the common
goal declines in n.

There are two basic forms of organization of the group. The first is no organization
at all. In this case each member decides to be active or to free ride independently, given
rational expectations about the other members activity decisions. This corresponds to a
pure voluntary participation game with a threshold.

The second form is an organized group. We are interested in studying the benefits
from organizing even when the organization has very limited tools at its disposal. To this
end, we assume that the organization cannot directly observe the types of its members, it
cannot exert any form of coercion on the members’ actions and it cannot even commit to
monetary transfers. We refer to such organizations as weak organizations. The organized
group can only design an optimal communication mechanism. In such a mechanism, group
members can exchange messages through the mechanism; given the exchanged messages, the
mechanism sends each agent a recommended action. While the set of such mechanisms can

9It is straightforward to extend the analysis to the case in which we have a value vn depending on on n
and vn → v as n → ∞.

10The analysis directly extends to more general environments. To keep the discussion of the main case
simple, we discuss the case with unbounded support and the case with f(0) = 0 in Section 10.

11We give an example in the next section of a boundary case where mn = M , a constant, for all n → ∞.
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be very large, Myerson [1982] has shown that the characterization of the set of all Bayesian
Nash equilibria of all such communication mechanisms can be accomplished by considering
only honest and obedient direct communication mechanisms.12 In Section 2.2.1 below we
provide a formal characterization of this class of mechanisms and its relationship to the class
of incentive compatible and individually rational mechanisms.

In Section 2.2.2 we describe a stronger form of organization in which only incentive
compatibility and interim individual rationality is required. This class of mechanism is a
useful benchmark since the previous literature has focused on these mechanisms in the form
presented here or in close variants (Rob [1989], Mailath and Postlewaite [1990] and Ledyard
and Palfrey [1994, 1999, 2002]). We refer to these as strong organizations.

2.2 Modelling organizations

2.2.1 Weak organizations

In the absence of monetary transfers, a direct communication mechanism is fully character-
ized by a mapping from the set of possible type profiles into the set of probability distribu-
tions over the subsets of I, µ : [0, 1]n → ∆

(
2I
)
, where we call µ either the mechanism or

the activity function, ∆2I is the set of probability distributions over subsets of I, and we
denote by µg(c) the probability the activity function selects subset g ⊆ I of the group to be
active at type profile c. Members independently report their types to the mechanism; given
the messages c the mechanism selects a coalition g to activate according to µg(c) and sends
the corresponding recommended action to each member; then each member observes their
own recommendation and decides whether to comply.

In the following it is sometimes useful to denote a coalition g ⊆ I as an n-dimensional
vector of zeros and ones, in which the ith component, gi, is equal to 1 if i ∈ g and equal to
0 if i /∈ g. In this notation (g−i, 0) is a coalition with g−i that excludes i; and (g−i, 1) is the
coalition of g−i plus i. We denote |g| =

∑
i gi.

Define Ii = {g ⊆ I|i ∈ g} as the subsets of I containing i and define Im = {g ⊆ I|
|g| ≥ m} as the set of subsets containing at least m members. Given an activity function,
µ, the probability i is active at type profile c is given by Ai(c;µ) =

∑
g∈Ii µg(c), and the

probability that enough members are active so the group is successful is given by P (c;µ) =∑
g∈Im µg(c). A mechanism is balanced if and only, for all c, µg(c) > 0 ⇔ |g| = m. A

mechanism has undercontribution at c if µg(c) > 0 for some |g| < m and a mechanism has
overcontribution at c if µg(c) > 0 for some |g| > m. Thus a mechanism is balanced if and
only if it never has overcontribution or undercontribution.

For any mechanism µ define its reduced form mechanism by the functions pi(ci) =
Ec−i

[P ((ci, c−i);µ)] and ai(ci) = Ec−i
[Ai(ci, c−i);µ)], which are, respectively the expected

probability of success and the expected probability i is active, condition on i’s cost. We
assume the mechanism is symmetric, i.e., for any i, j ∈ I, c ∈ [0, 1], pi(c) = pj(c) and
ai(c) = aj(c).

13 To simplify notation, we drop the member subscripts and simply write these
reduced form functions as p : [0, 1] → [0, 1] and a : [0, 1] → [0, 1]. We call a reduced form

12This set is closely related to the set of correlated Bayesian equilibrium outcomes of the game.
13The restriction to symmetric mechanisms is without loss of generality. To see this, consider any honest
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mechanism, (p, a), feasible if and only if there exists an activity function µ that generates
(p, a). Given any activity function, µ, the interim expected utility for type c who reports to
be a type c′ is denoted by U(c′, c) = vp(c′)− ca(c′) with U(c) ≡ U(c, c).

In Myerson [1982] a coordination mechanism is honest and obedient (HO) if it provides
incentive to reveal the true type and/or to follow the recommendations of the mechanism.
Define χ(g) as the success indicator function when a coalition g ∈ I is activated: so χ(g) = 1
if |g| ≥ mn and χ(g) = 0 if |g| < mn. Given this, the utility for agent i when the vector of
types is c and the activated coalition is g can be written as:

ui
g(c) =

{
vχ(g)− c if g ∈ Ii
vχ(g) if g /∈ Ii

Using this notation, condition (HO) requires:

U(c) = Ec−i

[∑
g∈I

µg (c, c−i)u
i
g (c)

]
≥ Ec−i

[∑
g∈I

µg (c
′, c−i)u

i
g−i,δi(gi)

(c)

]
(HO)

for any i = 1, ..., n, c, c′ ∈ [0, 1], and any function δi(gi) mapping gi to {0, 1}. If we fix
δi (gi) = gi, (HO) implies the standard interim incentive compatibility condition:

U(c) ≥ U(c′, c) = Ec−i

[∑
g∈I

µg (c
′, c−i)u

i
g(c)

]
(IC)

for any c, c′ ∈ [0, 1].

If we fix ci = c, (HO) implies the following interim moral hazard condition (IMH):

Ec−i

[∑
g∈I

µg (c, c−i)u
i
g (c)

]
≥ max

δi
Ec−i

[∑
g∈I

µg (c, c−i)u
i
g−i,δi(gi)

(c)

]
(IMH)

This inequality states that members find it optimal to follow the mechanism’s recommen-
dation on the equilibrium path in which types are truthfully revealed. Condition (HO)
however also rules out joint deviations, in which a member misreports his/her type and then
disobeys to the recommendation that follows the misreport.

Condition (IMH) has two implications. First, since the right hand side is non negative
and the left hand side is U(c) = Ec−i

[U(c, c−i)] ≥ 0, it implies interim individual rationality
(INTIR):

U(c) = Ec−i
[U(c, c−i)] ≥ 0 (INTIR)

It follows that an (HO) mechanism is also an (IC) and (INTIR) mechanism. Second, (IMH)

and obedient asymmetric mechanism, µ. For any permutation, ρ, of the member indices, define the mech-
anism µρ by pi(c;µρ) = pρ(i)(c;µ) and ai(c;µρ) = aρ(i)(c;µ). Now define the symmetric mechanism, µ, by
uniformly randomizing among all possible such permutations. Linearity of the member utility function will
guarantee that µ is also honest and obedient, and it generates the same total surplus as µ.
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implies:
c > v ⇒ a(c) = 0 (1)

since U((g−i, 0) , c) > U((g−i, 1) , c) for any g−i if c > v. Condition (1) is not required in an
(IC) and (INTIR) mechanism, so an (IC) and (INTIR) mechanism is not generally an (HO)
mechanism (as we will see in Section 3.2).14

2.2.2 Strong organizations

The standard approach in the literature to study collective action and public good provision
with an organization is to study the best direct mechanism allowing for monetary transfers
and requiring incentive compatible as in (IC) and interim individually rational (INTIR), see
Rob [1989], Mailath and Postlewaite [1990] and Ledyard and Palfrey [1994, 1999]. As we
will see in Section 2.2., monetary transfers are not necessary when n is large, so it will not
be important to allow them. We refer to a mechanism without transfers requiring (IC) and
(INTIR) as a strong organizations, since in both cases it needs to satisfies weaker constraints
than in the weak organization defined in 2.2.1, and thus they can achieve more.

3 Unorganized and strongly organized groups

In this section we study the equilibrium behavior of the activist group in two benchmarks:
with no organization in Section 3.1; and with a strong organization in Section 3.2.

3.1 Equilibrium for an unorganized group

For an unorganized group, the payoff function and distribution of costs described above define
a Bayesian game where each member simultaneously choose to be active or not. We consider
only symmetric equilibria of the game. The symmetry assumption reflects the idea that an
asymmetric equilibrium implicitly requires some degree of organization or communication.

For any n denote by pUn the probability a member is active in the voluntary contribution
game. Given any value of pUn ∈ [0, 1], each member has a best reply that is characterized by
a cutpoint, ĉUn (p

U
n ), with the property that member i is active if and only if ci ≤ ĉUn (p

U
n ). If

success requires at least mn of the members to be active, then an equilibrium cutpoint must
satisfy:

ĉUn (p
U
n ) = vB(mn − 1, n− 1, pUn ), (2)

where B(mn − 1, n − 1, pUn ) ≡
(

n−1
mn−1

) (
pUn
)mn−1 (

1− pUn
)n−mn

. In equilibrium, it must be

that pUn coincides with the probability a member has ci ≤ ĉUn (p
U
n ), which is simply equal

to F
(
ĉUn (p

U
n )
)
. Hence the following condition is necessary and sufficient for pUn to be an

14An alternative assumption for the participation constraint is ex post individual rationality (EXIR). It is
interesting to note that (EXIR) does neither imply (IMH) nor, more generally, it implies (HO). An example
is presented in Section 3.2, where we show conditions under which the optimal (IC) and (INTIR) mechanism
is (EXIR), but fails (IMH) and (HO).
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equilibrium probability that a member is active:

pUn = F
(
vB(mn − 1, n− 1, pUn )

)
. (3)

The equilibrium cutpoint is then given by cUn = ĉUn (p
U
n ) from (2). An equilibrium exists,

trivially, because pUn = 0 is always a solution to equation (3). It is possible there are also
equilibria with pUn ∈ (0, v). In all the analysis that follows, pUn always refers to the largest
solution to equation 3: this is without loss of generality since we just intend to find an upper
bound to the effectiveness of unorganized groups.

An organized group succeeds with positive probability only if there is a strictly posi-
tive solution pUn . Given a pUn > 0 and associated cUn > 0, the equilibrium probability an
unorganized group is successful is:

PU
n (pUn , αn) =

n∑
k=mn

B(k, n, pUn ) (4)

It is relatively straightforward to see that in the extreme case with constant returns to
scale, i.e. mn = αn for some α ∈ (0, 1), large groups completely fail for sufficiently large
n, in the sense that nobody is ever active, including members with arbitrarily small costs:
formally, there is a finite nU(α, v) such that pUn = cUn = 0 for n > nU(α, v). To see this point,
assume here for simplicity that F is uniform in [0, 1] (a more general argument is presented
in the proof of Theorem 1 below), consider any pUn ∈ (0, 1) and divide both sides of equation
(3) by vpUn to obtain:

1

v
=

(
n− 1

mn − 1

)(
pUn
)mn−2 (

1− pUn
)n−mn

=

(
1

1− pUn

)(
n−mn + 1

mn − 1

)(
n− 1

mn − 2

)(
pUn
)mn−2 (

1− pUn
)n−mn+1

⇔
1− pUn

v
=

(
(1− α)n+ 1

mn − 1

)(
n− 1

mn − 2

)(
pUn
)mn−2 (

1− pUn
)(1−α)n+1

(5)

The limit of the left hand side of equation (5) converges to 1−pUn
v

> 1−v
v
, and the right hand

side converges to
(
1−α
α

)
B(mn−2, n−1, pUn ) which converges to 0. Hence there exists nU(α, v)

such that for n > nU(α, v) there does not exist a value of pUn ∈ (0, v) that satisfies equation
(3).

While it is natural to assume that mn increases in n, it is also natural to expect that it
grows slower than n. This opens the question of whether and to what extent an unorganized
group can achieve success if mn grows sufficiently slow. The following example shows that at
least in the polar extreme case in which mn is constant, this is not true. This is a particularly
extreme example of increasing returns to scale of activism, in which the ratio of required
participation to population, mn/n declines at the speed of 1/n.

Example 1. The Volunteer’s dilemma: Assume F (c) is uniform in [0, 1] and consider

10



the so called “volunteer’s dilemma,” in which only 1 volunteer is required, regardless of group
size, somn = 1.15 Will the group be able to send 1 volunteer as n → ∞? It is straightforward
to see that the answer is yes. From equation (3), a cutpoint equilibrium solves: cUn =

v
(
1− cUn

)n−1
which has a unique positive solution cUn for all n, with limn→∞ cUn = 0. The

probability of success, from equation 4 is:

PU
n = 1−

(
1− cUn

)n
= 1−

(
cUn
v

) n
n−1

so limn→∞ PU
n = 1−

(
limn→∞ cUn

v

)
= 1. ■

Can the logic of the volunteer’s dilemma be generalized to the more realistic case in which
mn grows without bound? We say that mn grows slower (resp., faster) than a sequence fn,
i.e. mn ≺ fn (resp., mn ≻ fn) if mn/fn → 0 (resp. mn/fn → ∞). We say that mn grows
at the same speed as fn, i.e. mn ≃ fn if mn/fn → ρ for some finite ρ.16 The following
theorem shows that, independently of the shape of F , unorganized groups are successful
with probability 1 in the limit as n → ∞ if mn ≺ n2/3, and are completely unsuccessful if
mn ≻ n2/3.17

Theorem 1. With an unorganized group:

(1) if mn ≺ n2/3 then limn→∞ PU
n = 1 for all v ∈ (0, 1).

(2) if mn ≻ n2/3 then, for all v ∈ (0, 1), there exists nU(α, v) such that the unique
equilibrium is cUn = 0 for all n > nU(α, v), and hence limn→∞ PU

n = 0.

Theorem 1 shows that we do not need constant returns for a group to fail: when the rate of
growth ofmn is sufficiently high, i.e. mn ≻ n2/3, the probability of success in the unorganized
group collapses to exactly zero for n large enough. Perhaps more significantly, however, the
theorem also shows that the negative results on collective action cannot generalize to all
cases in which mn grows slower than n. Even with no organization the group can achieve
a limit success probability of 1; but the no organization case can be seen as a trivial (HO)
mechanism, so full success is also possible in the limit in an optimal HO mechanism when
mn ≺ n2/3.

When mn grows slower than n, an increase in n has two effects on the right hand side
of equation (3). First, it pushes it down, since the probability of exactly mn − 1 active
agents goes down: this makes it harder to have a positive intersection. Second, however,
it moves the curve to the left as illustrated in Figure 1, since the share of required active
agents αn = mn/n is also reduced: this makes it easier to have a positive intersection even
if F

(
vB(mn − 1, n− 1, cUn )

)
is lower. As we increase n, the probability of success remains

bounded above zero and eventually converges to 1 if the sequence of intersections cns remains

15The volunteer’s dilemma is not consistent with our assumption that m > 1, which is assumed to hold
throughout the rest of the paper, but it is an illustrative boundary case. The argument presented here
generalizes to the case in which mn is constant and equal to any integer M > 1.

16We will also use the notation mn ⪰ fn (resp. mn ⪯ fn) to the note the case in which mn does not grow
slower (resp., faster) than a sequence fn.

17All omitted proofs are presented in the appendix.
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Figure 1: Intuition for equilibria with positive limit probability of success in unorganized
groups: v = .6, n = 10, 60, mn = ⌈.5n.6⌉.

sufficiently higher than the sequence of thresholds αn. From Figure 1 we can see that a
necessary condition for this is that for all n sufficiently large the right hand side of equation
(3), evaluated at αn, is higher than the 45o degree line, so higher than αn itself,18 i.e.:

F (vB(mn − 1, n− 1, αn))

αn

≥ 1. (6)

When this is the case, then the highest intersection point, cn, remains on the right of the
threshold αns. The proof of Theorem 1 shows that, for any choice of F , a necessary and
essentially sufficient condition for this to happen is that mn declines faster than n2/3: when
mn ≺ n2/3, the right hand side of (6) diverges at infinity, so (6) is satisfied; when mn ≻ n2/3,
the right hand side of (6) converges to zero, so (6) fails to be satisfied.

The logic behind the “magic number”2/3 in Theorem 1 can be heuristically explained
as follows. Let us first see why, when mn ≻ n2/3, the expected share of volunteers in
equilibrium F (cUn ) falls short of the threshold αn for all n sufficiently large, thus leading to
a limit probability of success equal to zero. As n → ∞, cUn → 0, so F (cUn ) ≃ f(0)cUn . We
therefore have αn ≤ F (cUn ) only if :

mn

n
= αn ≤ F (cUn ) ≃ f(0)cUn = vf(0)B(mn − 1, n− 1, F

(
cUn
)
) (7)

where the last equality follows from the equilibrium condition for cUn . Since B(mn−1, n−1, c)
is maximized at (αn − 1/n) /(1− 1/n) ≃ αn, in the limit B(mn− 1, n− 1, F

(
cUn
)
≤ B(mn−

1, n − 1, αn), so (7) is implied by vf(0) · B(αnn − 1, n − 1, αn)/αn ≥ 1. The binomial

18The function of cn F (vB(αnn− 1, n− 1, cn)) has a maximum at cn = (αnn− 1) /(n− 1) < αn, and it
is increasing (resp. decreasing) in c for c < (αnn− 1) /(n− 1) (resp., c > (αnn− 1) /(n− 1)).
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probability of αnn − 1 successes converges to zero at the slowest rate when the probability
of success is αn, and this rate is on the order of 1/

√
αnn. This implies that:

B(αnn− 1, n− 1, F
(
cUn
)
) ⪯ B(αnn− 1, n− 1, αn) ≃ m−1/2

n ,

where ⪯ here means that the right hand side converges to zero at the same or slower
rate than the left hand side. A necessary condition for (7) therefore is that mn

n
con-

verges to zero faster than m
−1/2
n , but this condition cannot hold if mn ≻ n2/3. When

mn ≺ n2/3, we have αn < F (vB(mn − 1, n− 1, αn)) for all n sufficiently large. Since
F (vB(mn − 1, n− 1, 1)) = 0 < 1, continuity implies that there is a solution cUn > αn for all
n sufficiently large. Indeed, the proof of Theorem 1 establishes that this solution remains
sufficiently larger than αn, so that the probability of success converges to 1. When instead
mn ≻ n2/3, then αn > F (vB(mn − 1, n− 1, αn)) for all n sufficiently large. Again, the proof
of Theorem 1 establishes that the only solution of cUn = F

(
vB(mn − 1, n− 1, F (cUn ))

)
is

actually zero in this case for n sufficiently large, so that the probability of success is 0 for n
sufficiently large.

3.2 Strong Organizations

The best (IC) and (IR) mechanism can be characterized as the solution of the following
maximization problem:

max
p,a

∫ 1

0
U(c)dF (c) (8)

s.t. vp(c)− ca(c) ≥ vp(c′)− ca(c′) ∀c, c′ ∈ [0, 1]

vp(c)− ca(c) ≥ 0 ∀c ∈ [0, 1]

p, a feasible

where the first constraint is the (IC) constraint, the second is the (INTIR) constraint and
the third is the feasibility constraint discussed in Section 2. Following standard methods,
we can show that the (IC) constraint is equivalent to requiring U ′(c) = −a(c) and a(c) is
non-increasing. Substituting (IC) into the objective function, moreover, we can write:∫ 1

0

U(c)dF (c) = − [U(c) [1− F (c)]] |10 +
∫ 1

0

U ′(c) [1− F (c)] dc

= vp(0)−
∫ 1

0

a(c) [1− F (c)] dc = vp(0)− E

[
a(c) · 1− F (c)

f(c)

]
This leads to the problem:

max
p(0),a(·)

{
vp(0)− E

[
a(c) · 1− F (c)

f(c)

]}
(9)

s.t. U ′(c) = −a(c), a(c) ∈ [0, 1] and non-increasing,

U(c) ≥ 0 ∀c ∈ [0, 1] , and p, a feasible
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To solve (9), consider a relaxed version in which we ignore the (INTIR) constraint. In the
online appendix, we prove that when F (c) satisfies the Monotone Hazard Rate Assumption
(MHRA) the optimal way to solve this relaxed problem is to keep a(c) flat. Intuitively,
when F (c) satisfies MHRA, then in the objective function a(c) is weighted by an increasing

function, −
[
1−F (c)
f(c)

]
. In this case, if a(c) is strictly decreasing, then it is optimal to shift the

probability of participation a(c) from lower to higher values of c; since a(c) is non increasing,
the best way to do it satisfying feasibility is to keep a(c) and (by incentive compatibility) p(c)
constant: an(c) = αn and pn(c) = pn. Since we do not have an (INTIR) constraint and it is
efficient for the group to be successful, we have pn = 1 and an is chosen to be the smallest
possible, so an(c) = αn. The solution of the relaxed problem is therefore a simple lottery
draft mechanism in which m agents are randomly selected with equal probability to be active
and the group is always successful. This mechanism, however, is also a solution of the full
problem (9) when n is large. To see this, note that for n sufficiently large, mn < (v/c) · n
when mn ≺ n, so U(c) = vpn − mn

n
· c = v

(
1− mn

n
· c
v

)
> 0.

Theorem 2. If F satisfies (MHRA), then with a strong organization subject to (IC) and
(INTIR), we have:

(1) If mn ≺ n, then there is a nS such that for n > nS the optimal direct mechanism
satisfying (IC) and (INTIR) is a random mechanism in which each g such that |g| = mn is
activated with probability 1/

(
n
mn

)
and each g such that |g| ̸= mn is activated with probability

0. The probability of success converges to one as n → ∞;

(2) if mn = αn for some α ≤ 1 and α < v, then for all n the optimal direct mechanism
satisfying (IC) and (INTIR) is a random mechanism in which each g such that |g| = αn is
activated with probability 1/

(
n
αn

)
and each g such that |g| ̸= αn is activated with probability

0. The probability of success equals 1.

Theorem 2 is relevant for two reasons. First, because it shows that the optimal (IC)
and (IR) mechanism is not obedient. This is can be seen from the fact that it requires
all types to be active with positive probability, but this directly violates (1) since no type
with c > v would find it optimal to be active. The mechanism satisfies (INTIR) since
the probability of being drafted is small, so v

(
1− αn

c
v

)
> 0 even if c > v; but this only

guarantees interim participation in the mechanism, not that a type c > v will obey a
recommendation to be active. Second, Theorem 2 is relevant because it highlights the need
to study more realistic, honest and obedient mechanisms: by ignoring moral hazard, the
optimal mechanism achieves complete success as n → ∞. In order to understand why
collective action can only be partially successful in more realistic environments, we need to
integrate the obedience constraint into the analysis of the optimal mechanism.

We should note that the monotone hazard rate assumption in Theorem 2 is used only for
the characterization of the shape of the mechanism, not for the substantive result that there
is an (IC) and (INTIR) mechanism that achieves success with probability one for n large
when mn ≺ n. To see this observe that even without MHRA, the mechanism described in
Theorem 2 is (IC) and (INTIR) and achieves success with probability one for mn ≺ n and
n sufficiently large.
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Note also that Theorem 2 is not in conflict with the main result in Mailath and Postlewaite
[1990] where it was shown that the probability of success converges to zero in the best (IC)
and (INTIR) mechanisms (even allowing for monetary transfers). That earlier result relied
on the assumption that the total benefit of success, nv, is strictly lower than the cost of
obtaining it in the worst scenario in which all types have cost equal to 1, an assumption
that reduces to v < mn/n = αn, which is not satisfied for large n in our environment when
mn ≺ n.19 The main reason to assume v < αn is that without it the model generates
the perhaps implausible conclusion that a strongly organized group achieves success with
probability 1. As we will see in the next two sections, when instead we consider honest
and obedient mechanisms, v > αn does not imply success with probability one. Failure of
collective action, therefore does not require this condition. Indeed, there are many situations
in which it very natural to assume v > αn, such as situations in which the “sacrifice” of a
small share of population is needed to guarantee a successful public protest.

The observation that when we relax this assumption then the collective good can be
financed in an (IC) and (INTIR) mechanism with monetary transfers is not completely new,
as it was previously made by Hellwig [2003] in a more general environment in which the public
good can be chosen as a continuous variable. Theorem 4 differs from Hellwig’s result in two
ways: it dispenses with the assumption of unlimited monetary transfers and it provides a full
characterization of the optimal mechanism, even for large but finite n, as a simple lottery
draft mechanism.

4 A simple Voluntary Based Organization (VBO)

As discussed in the previous section, strong mechanisms that only require (IC) and (INTIR)
are not a good description of organizations for collective action because they ignore the
obedience constraint, implicitly allowing agents to commit to obey to the mechanisms’ rec-
ommendations. An optimal strong organization, moreover, cannot explain collective action
as an empirical phenomenon, since it either predicts complete success of any group when
mn ≺ n2/3; or complete failure in the limit when mn ≃ n and v < c.

What type of (honest and obedient) organization should we then expect? A natural
mechanism that has repeatedly emerged in experimental investigation of this question is
what we call a Voluntary Based Organization (VBO).20 In this mechanism, which is naturally

19Formally, the key assumption in Mailath and Postlewaite [1990] is assumption (iv) in Theorem 2 (p.
357). Translating it to apply to our environment, it is equivalent to requiring that there exists ϵ > 0 such
that nv + nϵ < nαn.

20A significant experimental literature has studied how groups self-organize when given the possibility
communication before playing a threshold public good game as described in Section 2. Simmons [1980], De
Kragt et al [1983] and Braver and Wilson [1986], among others, studied the case with complete information,
a special case of the model described in Section 2. Palfrey and Rosenthal [1991] and Palfrey et al. [2017]
studied the case with asymmetric information described in Section 2. These works do not impose a specific
communication protocol, they just empirically observe how unstructured pre-play communication affects
coordination in this game. In all these experiments, groups that can coordinate through messaging achieve
higher success probabilities and welfare. Communication allows the members to self-select as volunteers,
and the group to coordinate on a subset of volunteers of minimal size in which the volunteers exceed the
requirement, allowing the group to achieve success coordinating on the activation of subgroup of volunteers
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honest and obedient, members self-identify as volunteers and coordinate in order to activate
a minimal coalition for success when the number of volunteers are more than the success
threshold. In this section, we start the analysis of honest and obedient mechanisms by
studying this simple type of mechanism. This class has independent interest because of
its simplicity; as we will show in the next section, it has the additional virtue of being
approximately optimal as n → ∞. The basic intuition presented in this section for why a
VBO cannot achieve a higher limit probability than a group with no organization at all,
moreover, will prove useful for understanding the more general result that also holds in the
context of the optimal honest and obedient mechanism.

4.1 Characterization and properties

In a VBO each member reports his or her type: if the reported type is higher than some
threshold cOn , the agent is excused and not asked to be active, irrespective of what the
other members’ reports; if the type is below cOn , then the agent is deemed a volunteer and
is activated with positive probability, determined by the following rule. If the number of
volunteers is greater than mn, then a coalition of exactly mn volunteers is selected and
activated, thus triggering success of the group. If the number of volunteers is fewer than mn,
then no volunteer is activated and the groups is unsuccessful. In case the group activates
mn volunteers, then all volunteers have the same probability of being included. Using the
notation introduced in Section 2.2.1 a VBO is defined formally as follows:

Definition 1. For any c ∈ [0, 1] and any profile of types, c, let k(c;c) = |{j ∈ I|cj ≤ c}|. For
any given mn and n, a simple VBO mechanism is defined by a volunteer cutoff cOn ∈ (0, v)
such that (1) Ai(c) = 0 for all c and for all i such that ci > cOn ; (2) k(c;c

O
n ) < mn ⇒ P (c) = 0

and Ai(c) = 0 for all i; (3) k(c;cOn ) > mn ⇒ P (c) = 1 and Ai(c) =
mn

k
P (c) for all i such

that ci ≤ cOn .

The following result characterizes the unique incentive compatible V BO. Define the
function:

Yn(p) = F

(
vB(mn − 1, n− 1, p)∑n−1
k=mn−1

mn

k+1
B(k, n− 1, p)

)
(10)

Proposition 1. For any mn and n, the function Yn(p) has a unique fixed point pOn > 0 and
a VBO is (IC) if and only it has a volunteer threshold cOn = F−1

(
pOn
)
.

Condition (31) provides a simple way to compute the equilibrium threshold cOn and char-
acterize its qualitative properties. We will use this condition below for the qualitative analysis
and in Section 4.2 where we illustrate equilibrium behavior with numerical simulations. The
next result shows that an incentive compatible VBO respects the moral hazard problem of
the organization.

Proposition 2. An incentive compatible V BO is Honest and Obedient as defined in (HO).

of minimal size.
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Propositions 1 and 2 make clear why it is natural to refer to such a mechanism as “vol-
unteer based”. When cOn is chosen so that the VBO is incentive compatible as in (IC), then
the VBO can be implemented with a simple menu with two options. In this implementation,
an agent is asked to choose to be a “volunteer” or an “inactive member”. The groups is
successful if the number of volunteers is greater than or equal to mn, in which case exactly
mn of them are randomly selected to be active. If the number of volunteers is fewer than
mn, then the group is unsuccessful and no member is activated.

Compared to an unorganized group, a group using a VBO mechanism eliminates two
possible sources of ex post efficiency. The first source of inefficiency in the unorganized
voluntary contribution mechanism is undercontribution, which occurs when fewer than mn

members contribute, as this creates unwanted costs (borne by all members with ci ≤ cUn )
without any benefit to any member of the group. In a VBO, no members at all contribute in
such an event. The second source of inefficiency in the unorganized group is overcontribution,
which occurs when strictly more than mn members contribute, as the extra members who
participate add nothing to benefit the group, but bear the cost. This inefficiency is avoided
by always activating the minimum number of volunteers required for success.

These properties have an immediate positive impact on the willingness to volunteer,
which ultimately leads to a higher probability of success of the group. The first result is
that a VBO guarantees higher participation and higher success probability for any n. Recall
that cUn and cOn are the volunteer thresholds for an unorganized group and a group with a
VBO, respectively. Denote by PO

n the probability that the organized group is successful in
the optimal mechanism, and recall that PU

n is the probability that a unorganized group is
successful.

Proposition 3. For any n, cOn > cUn and PO
n /PU

n > 1.

To evaluate how the group performs when n is large it is important to compare partic-
ipation and the probabilities of success as n → ∞. The next result shows that the VBO
guarantees a much higher participation rate even in the limit as n → ∞.

Proposition 4. With an unorganized group:

� If mn = αn for some α ∈ (0, 1), then cOn > 0 for any n and limn→∞ F
(
cOn
)
= F

(
cO∞
)
>

0.

� If mn ≺ n, then cOn > 0 for any n and limn→∞
(
F
(
cOn
)
/αn

)
≥ 1

Proposition 4 has important implications for the probability of success of the organized
group and the welfare of its members. When mn = αn, the fact that cO∞ > 0 implies that
there are always volunteers with positive probability for any n. When mn ≺ n, the fact that
limn→∞(F

(
cOn
)
/αn) ≥ 1 implies that the rate of participation converges to zero as n → ∞,

but at the same rate as the threshold fraction, αn.

The intuition behind Proposition 4 is as follows. Volunteers are always willing to follow
a recommendation to be active, since they know that, conditional on receiving such a rec-
ommendation, the mechanism has also activated exactly mn − 1 other volunteers. At the
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interim stage, however, an agent might still have an incentive to misreport, since it would
prefer some other agent to be called in case of k ≥ mn + 1. The cost of misreporting as a
free rider is that indeed that there are exactly mn − 1 volunteers in the rest of the group, so
the misreport would be pivotal in inducing the group’s failure. The expected value of this
cost is B(mn − 1, n− 1, F

(
cOn
)
)v, pretty much the same as in the unorganized group in (3),

except that the probability that a member volunteers is cOn > cUn instead of cUn , because there
is no fear of being activated when the group is unsuccessful and no concern that when one
is activated one’s participation is inessential to the group’s success. These qualifications are
reflected in the denominator of (10). The numerator converges to zero as n → ∞, but cOn
does not converge to zero because the denominator also converges to 0, and at the same rate
as the numerator. The critical difference for the organized group is that volunteers are not
called to action indiscriminately, but only if they are needed, and never in excess. The proof
of Proposition 4 in the appendix uses the fact that the numerator and the denominator of
the ratio on the right hand side of (10) both converge to zero at the same rate and indeed
the ratio is strictly positive in the limit. See the appendix for details.

Does the fact that cOn remains bounded or converges to zero at the same speed of αn imply
that we can we can get strictly positive probability of success even with large or arbitrarily
large groups, and/or we can achieve a higher limit probability of success than without an
organization? Consider the case with constant returns to scale first, i.e. mn = αn for some
α ∈ (0, 1). From the previous literature studying (IC) and (INTIR) optimal mechanisms,
we already know that in this case success in the limit as n → ∞ is impossible. Indeed,
this literature has shown that a positive limit probability is impossible even if we consider
direct mechanisms with fewer constraints and we allow for monetary transfers. The following
result confirms these results, but it also shows that limit results do not capture the full story
concerning VBO. The fact that individual participation remains strictly positive even in the
limit, guarantees that the probability of success converges to zero much slower than without
an organization (which indeed is exactly zero for after some finite n).

Proposition 5. If mn = αn for some α ∈ (0, 1), then for all v < 1:

� limn→∞ cOn ∈ (0, α) and thus PO
∞ = limn→∞ PO

n = 0.

� There exists nU(α, v) such that for all n > nU(α, v) , P
U
n /PO

n = 0.

Proposition 5 follows from the incentive compatibility constraint (31), requiring that
an agent with type cOn is indifferent between reporting to be a volunteer or not. The
constraint implies that the expected cost of being activated cOn a(c

O
n ) must be equal to

v
[
p1(c

O
n )− p2(c

O
n )
]
, the net increase in the probability of being pivotal from reporting to

be a volunteer, which converges to zero as n → ∞. Since cOn → cO∞ > 0, it must be that the
probability of being activated converges to zero: a(cOn ) → 0. In this case, the expected share
of agents willing to be active is lower than the threshold: so, by the law of large numbers,
the probability of passing the threshold converges to zero as n → ∞. Hence PO

∞ = 0 so it
must be that F

(
cOn
)
≤ α.

When mn ≺ n, then both the required threshold and participation converge to zero
and F

(
cOn
)
/αn → 1. The key question is exactly how F

(
cOn
)
/αn converges to 1. If
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F
(
cOn
)
/αn converges from below and convergence is slow, then the probability that the

number of volunteers passes the threshold converges to zero; if instead convergence is fast or
F
(
cOn
)
/αn converges from above, then the probability of success of the group will be strictly

positive even for an arbitrary large number of activists. We might expect that the presence
of an organization that allows for coordination and eliminates wasteful participation makes
it possible to achieve higher limit probabilities of success in the limit, at least for some
parameterizations. This conjecture is however incorrect. We have:

Proposition 6. For any v ∈ (0, 1):

� If mn ≺ n2/3, then limn→∞ PO
n = 1 for organized groups using the VBO mechanism.

� If mn ≻ n2/3, then PO
n > 0 for all n and limn→∞ PO

n = 0 for organized groups using
the VBO mechanism. Hence, PU

n /PO
n = 0 for sufficiently large n.

Proposition 6 establishes two results that, as we will show in the next section, will hold
more generally for HO mechanisms. First, perhaps surprisingly, the limit probability of
success is the same with a VBO or without it, in an unorganized group. When mn ≺ n2/3,
a limit probability of success is 1, but this was also true for an unorganized group; when
mn ≻ n2/3, the limit probability of success is zero with a VBO, once again, just as in an
unorganized group. The second result is that with a VBO the probability of success is
positive for any n, a feature that is not shared by the equilibrium in an unorganized group
(where the probability is exactly zero after a finite n): this can be a significant benefit of
adopting a simple VBO compared to having an unorganized group. As we will show in the
next section where we quantify by numerical methods the success probability in a VBO, for
reasonable parameter values groups with VBO can achieve high probabilities of success even
for large groups, even if mn ≻ n2/3.

It is useful to go over the intuition of this result since, suitably generalized, it will also
help with understanding the extension to general HO mechanisms in the next section. In
equilibrium, the condition that induces the marginal type to volunteer is:

aOn (c
O
n ) · cOn = vB(mn − 1, n− 1, F

(
cOn
)
) (11)

where aOn (c) =
∑n−1

k=mn−1
mn

k+1
B(k, n − 1, c) is the probability that a volunteer is activated

when the other members use a threshold c, so the left hand side is the expected cost of being
a volunteer;21 and the right hand side is the expected benefit of being a volunteer, i.e. v
times the probability that a single additional volunteer is useful. We can rewrite (11) as:

cOn =
vB(mn − 1, n− 1, F

(
cOn
)
)

aOn (c
O
n )

= Y (cOn ) (12)

21Note that in Section 2, we used the notation a(c) to the note the interim probability of success for a
type c. In a VBO, the interim probability of success for a volunteer, i.e. a type c ≤ cOn , is independent of
the exact volunteer’s type; however it depends on the threshold used by the other players, cOn . The notation
aOn (c) makes this dependence explicit, representing the probability of activation as a function of a general
threshold c used by the other players.
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where Y (·) is defined by (10). The share of volunteers does not fall short of the threshold
for success only if αn ≤ F

(
cOn
)
. Since cOn → 0, we have F

(
cOn
)
≃ f(0)cOn , implying:

αn

f(0)
≲ cOn = Y (cOn ) ≤ Y (αn) =

vB(mn − 1, n− 1, αn)

aOn (αn)

where ≲ here means that the LHS converges to a value less than or equal to the RHS. The
second inequality, Y (cOn ) ≤ Y (αn) follows from the fact that, Y (·) is a decreasing function,
by Proposition 1. Hence:

aOn (αn) ≲ vf(0) · B(mn − 1, n− 1, αn)

αn

(13)

If mn ≻ n2/3, we know from the discussion of Theorem 1 that the right hand side of (13)
converges to zero. Condition (13), therefore, implies that aOn (αn) must also converge to zero.
It is however intuitive to see that this is impossible. Note that aOn (αn) is the probability that
a volunteer is activated when the threshold used by the other members for volunteering is
αn. But when this is the case, for large n there will be a share of volunteers roughly equal
to αn. In this case, the probability that a volunteer is activated cannot be arbitrarily small
since, even conditioning on having at least a share αn of volunteers, the share of volunteers
will almost surely be only marginally greater than αn, the minimal requirement for success.

4.2 Numerical Computations

The results of the previous section - that very large organized groups are infinitely more
successful than unorganized groups - are limiting results. It is also insightful to compare the
performance of organized and unorganized groups of finite size.22 As the examples below
indicate, the performance of organized groups is many orders of magnitude greater than the
performance of unorganized groups, even with a small number of members.

Example 1: αn = 0.2, v = 0.8, F ∼ U[0,1]. In this example, we compare the organized
and unorganized group, varying the size of the group, but keeping α fixed (constant returns
to scale). From Proposition 1, the organized group’s optimal threshold satisfies: cOn =
Yn(c

O
n , α, v) (where we make explicit the dependence of Yn on α, v for convenience), where:

Yn(c
O
n , α, v) = v

B(mn − 1, n− 1, cOn )∑n−1
k=mn−1

mn

k+1
B(k, n− 1, cOn )

. (14)

With no organization the equilibrium condition is: cUn = Zn(c
U
n , α, v), where:

Zn(c
U
n , α, v) = vB(mn − 1, n− 1, cUn ) (15)

22A theoretical lower bound on the speed of convergence of the probability of success in a VBO is presented
in Section 5.3.
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(a) Equation 2 (Unorganized; dashed) and Equation 12
(VBO; solid) n = 10 (black) and n = 80 (cyan)

(b) cUn (dashed) and cOn (solid). (c) PU
n (dashed) and PO

n (solid).

Figure 2: Comparison of VBO mechanism (solid lines) and unorganized group equilibrium
(dashed lines). αn = 0.2. v = 0.8. F(c) Uniform.

The equilibrium probabilities of success for the unorganized and organized groups are,
respectively:

PU
n (cUn , α) =

n∑
k=mn

B(k, n, cUn ) and PO
n (cOn , α) =

n∑
k=mn

B(k, n, cOn )

The top panel of Figure 2 illustrates the cOn = Yn(c
O
n , α, v) and cUn = Zn(c

U
n , α, v) conditions

for group with 10 and 80 members, fixing α = 0.2, v = 0.8. The monotonically downward
sloping solid darker curve is Y10(c, 0.2, 0.8) and the downward sloping lighter shaded curve
is Y80(c, 0.2, 0.8), corresponding to the RHS of equation 12. The respective equilibrium
cutpoints, cO10 and cO80, are given by the intersection of these two Y (·) curves with the 45◦ line
(in red). The darker dashed hump-shaped curve in top panel of Figure 2 is Z10(c, 0.2, 0.8),
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Figure 3: The distribution of the fraction of group members who are volunteers (i.e. c ≤ c∗n)
for n = 100 and n = 500.

and cU10 is given by the highest intersection of this curve with the 45◦ line. The lighter dashed
hump-shaped curve in top panel of Figure 2 is Z80(c, 0.2, 0.8), which does not intersect the
45◦ line at any positive value, so the unique equilibrium for the unorganized group is cU80 = 0
and the unorganized group has zero participation.23 The bottom right panel of Figure 2
graphs the success probabilities of the organized group (solid) and the unorganized group
(dashed) as a function of group size for n ranging from 10 to 300. The bottom left panel
shows how the thresholds cOn and cUn change as a function of n. In this case, cUn = 0 for
n ≥ 30.

As proved in Proposition 5, as n increases cOn → cO∞ > 0, and cOn does not change very
much with n for n high, a property illustrated the bottom left panel of Figure 2. Still, the
probability of success converges to zero as n → ∞. The intuition for this is illustrated in
Figure 3. The distribution of the fraction of volunteers, i.e. those with cost below cOn , is a
binomial with expected value cOn . As n becomes large, the expected value becomes insensitive
to n, but the distribution becomes more concentrated around cUn . This implies that the tail
probability that the share of group members who are available is larger than α converges to
zero. Figure 3 illustrates the distribution of the share of group members who are available
for n = 100 and n = 500, again fixing α = 0.2, v = 0.8. These tail probabilities are shaded
in red. With n = 100, the probability of success is PO

100(0.19, 0.2)) = 0.31 and with n = 500,
the probability of success is PO

500(0.17, 0.2) = 0.04.

23If αn = m > 1, there is always a solution at cU∗ = 0. When n is sufficiently small, there are can also
be at most two positive, equilibrium cutpoints for the unorganized group, in addition to the 0 equilibrium
cutpoint.
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(a) Organized Groups (b) Unorganized Groups

Figure 4: Probability of Success as a function n for different values of β. Comparison of
organized and unorganized groups. Higher curves correspond to lower values of β. v = 0.8.
F (c) Uniform.

Example 2: mn ≃ nβ. Figure 4 illustrates the equilibrium probability of success for
organized (left panel) and unorganized (right panel) groups of size up to 104 for mn ∝ nβ

for and various levels of β. As in the previous example, v = 0.8 and F is Uniform. One
can see that for β < .66, both unorganized and organized group can achieve success with
probability that is high even for small groups and rapidly converges to 1. For β = .67, the
probability of success also starts out relatively high and is essentially flat for n < 10, 000
for both organized and unorganized groups, although it will theoretically converge to zero
eventually in both cases. For β > .67, instead the probability converges to zero, and groups
without an organization fail completely after reaching a threshold size that is decreasing in
β. In contrast, organized groups obtain high probability of success even for β = 0.8 and this
success falls relatively slowly in group size. The figure shows the importance of considering
finite n even when the limit probability of success is 0. For organized groups and β = 0.85,
the probability of success converges to zero as n → ∞, but the probability of success is more
than 20% even for groups with more than 10, 000 members. In contrast, for unorganized
groups and β = 0.85, the probability of success is exactly zero for all n ≥ 200.

5 When is a VBO optimal?

The previous section showed that a group can achieve significant (albeit imperfect) levels of
success even when n is large by organizing with a very simple honest and obedient mechanism.
Proposition 6 suggests that the advantage of a VBO is not in the limit probability of success
that can be achieved with infinitely large groups, which is equal to the limit probability
obtainable without an organization; instead, the real benefit of a VBO is that when the
probability converges to zero in the limit, it does so at a much slower rate compared with
unorganized groups. Is this a general result? Indeed, Proposition 6 does not rule out the
possibility that there is an even better (HO) mechanism that achieves higher probability of
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success than in an unorganized group. In this section we prove two key results that answer
affirmatively to this question, but qualify its implications. First, we show that a minimal
generalization of the simple VBO is asymptotically optimal: so for large n, there is little
benefit to consider more complicated mechanisms. Second, we show that in the limit, as
n → ∞, the probability of success in an optimal (HO) mechanism is the same as without
an organization: zero if mn ≻ n2/3, and one if mn ≺ n2/3. We prove this by showing that
the result holds for a generalized class of VBO mechanisms, and then using the fact that a
generalized VBO is asymptotically optimal.

5.1 The optimal honest and obedient mechanism

The optimal honest and obedient mechanism is defined as the solution a∗(c), p∗(c) of the
following problem:24

max
a(c), p(c)

∫ 1

0
U(c)dc (16)

s.t.(HO) and a(c), p(c) is feasible.

where (HO) is the honest and obedient constraint described in Section 2.2. As discussed in
Section 2, the (HO) constraint implies (IC), (INTIR) and Condition (1). In the following we
will first study the solution of the relaxed problem in which only (IC) and (1) are considered,
we will then prove that this solution satisfies the omitted constraints and thus solves (16).
By standard methods and formally proven in the appendix, we can write the relaxed problem
as:

max
p(0)∈[0,1],a(c)∈[0,1]

{
vp(0)− E

[
a(c) · 1− F (c)

f(c)

]}
(17)

s.t. U ′(c) = a(c) with a(c) non-increasing

a(c) = 0 for c > c∗, where c∗ = min {c ≤ v |vp(c)− ca(c) ≤ vp2}
and p, a feasible

In (17) we derived the objective function using the (IC) constraint in a similar way as in (9).
The constraints in the second line of (17) is a monotonicity constraint implied by IC, also
present in (9); the constraint in the third line follows from (1) and incentive compatibility,
and it is new to (17).25 Note that in the problem above we have no (IR) constraint; IR,
however, follows from the monotonicity of U(c) and the definition of c∗n.

26

To study the solution to this constrainted optimization problem it is useful introduce
a class of mechanisms that generalizes the simple VBO of the previous section. We call
these mechanisms general Voluntary Based Organizations, or general VBO. A general VBO
is defined by a threshold kG

n ≥ mn and a volunteer cutoff cGn . A kG
n -generalized VBO

with a threshold kG
n greater than or equal to mn works as follows. If there are more than

24Whenever it does not create confusion, as here and when we take n as given, we omit the subscript n in
the equilibrium variables a∗n(c), p

∗
n(c), c

∗
n.

25See the proof of Theorem 3 for the details on how it follows from (1) and incentive compatibility.
26Indeed, U(c) ≥ U(c∗) ≥ vp2 ≥ 0 for all c ∈ [0, 1].
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kG
n volunteers, then the mechanism selects and activates exactly mn volunteers, each with

equal probability, thus guaranteeing that the group succeeds. If there are fewer than kG
n

volunteers, then the mechanism selects 0 volunteers and the group fails. If there are exactly
kG
n volunteers, then the mechanism selects and activates exactly mn volunteers with some

probability qkGn ∈ (0, 1] and selects exactly 0 volunteers with probability 1− qkGn . Thus, the
simple VBO analyzed above corresponds to the special case kG

n = mn and qkGn = 1. The
lottery draft mechanism that in Section 3.2 we showed solves problem (8) for the best (IC)
and (IR) mechanism when n is large can also be seen as a VBO with kG

n = mn, qkGn = 1 and
cGn = 1.

Definition 2. For any c ∈ [0, 1] and any profile of types, c, let k(c;c) = |{j ∈ I|cj ≤ c}|.
For any given mn and n, a generalized VBO mechanism is defined by a volunteer cutoff
cGn ∈ (0, v) and a critical mass threshold kG

n ≥ mn, such that (1) Ai(c) = 0 for all c and
for all i such that ci > cGn ; (2) k(c;cGn ) < kG

n ⇒ P (c) = 0 and Ai(c) = 0 for all i; (3)
k(c;cGn ) > kG

n ⇒ P (c) = 1 and Ai(c) =
mn

k
P (c) for all i such that ci ≤ cGn .

Intuitively, one might conjecture that a simple Voluntary Based Mechanism (VBO) would
be the optimal honest and obedient binary mechanism; i.e., the group succeeds if and only if
there are enough volunteers (at least mn). Using a higher threshold than mn seems wasteful
and is ex post suboptimal since it implies that there are events in which the group fails even
thought the number of volunteers is known (by the mechanism) to exceed the minimum
number required for success. However, in principle, it could be ex ante optimal for the
mechanism to commit to failure in some such events (e.g., kG

n = mn + 1) in order to create
better incentives for the agents to self identify as volunteers and more generally relax the
(HO) constraint. This could happen if increasing kG

n above mn leads to a higher volunteer
cutoff, cGn .

In Section 3.2 we showed that the optimal (IC) and (INTIR) mechanism for any mn ≺ n
can be easily characterized when n is large after we note that we can improve the objective
function in (9) without violating the constraints by “flattening” the mechanism, i.e. by
making the mechanism less sensitive to an agent’s type c. The optimal mechanism for n
large is indeed a simple lottery in which all types are asked to be activated with positive
probability and randomly selected with the same probability. Because the mechanism ignores
the type reports, (IC) is always trivially satisfied; moreover, (INTIR) is also satisfied for n
large since given that all types are activated, the probability of being activated is αn, smaller
than v for n large.

The same logic cannot be applied to (17). Here too, the objective function (which is
the same in (9) and (17)) improves if we “flatten” the mechanism; however, now flattening
the mechanism may affect the obedience constraint. To see this note that a mechanism in
which all types are activated with positive probability is certainly impossible, since no type
with c > v will ever accept to be activated even if it is interim rational (INTIR) to commit
to participate in the mechanism. In the optimal (HO) mechanism we have a maximal type
c∗n < v < 1, who is indifferent between volunteering, in which case he will be activated with
some probability (the third line in (17)), and free riding. By flattening the mechanism, we
now necessarily require higher expected participation from this type c∗n which would break
that indifference. Having a flatter mechanism therefore involves a trade off: on the one hand,
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for a given c∗n, it improves the objective function since it relaxes the (IC) constraint; on the
other hand, however, it may imply lower participation, in the form of a lower c∗n. The shape
of the mechanism in this case may be difficult to pin down since it depends on the trade-off
between the benefit of keeping the volunteer cutoff high (a higher c∗n), which produces a
larger pool of volunteers, and keeping the mechanism flat.

In the reminder of this section we provide two key results. In Section 5.2, we prove that a
general VBO is approximately optimal as n → ∞. This implies that it is impossible that an
optimal mechanism achieves positive probability in the limit if the optimal VBO mechanism
does not achieves the same utility in the limit.

In Section 5.3, we use the characterization of Section 5.2 to prove that in the limit
as n → ∞ unorganized groups are just as likely to be successful as groups with the best
honest and obedient mechanism. This result thus allows us generalize the equivalence result
of Mailath and Postlewaite [1990]. The previous authors showed that for mn = αn for
some α ∈ (0, 1), both an unorganized group and a group with the optimal (IC) and (INTIR)
mechanisms are equally unsuccessful in the limit. When mn grows slower than n, the optimal
(IC) and (IR) always achieves probability of success equal to 1, so the equivalence result
does not generalize for optimal (IC) and (INTIR) mechanisms. An implication of this, is
that the simple VBO is also an asymptotically optimal mechanism that guarantees positive
probability of success for any finite n.

5.2 A positive result: the asymptotic optimality of a general VBO

In this section we prove that a generalized VBO is asymptotically optimal as n → ∞.
The result is immediate if the limit probability of success of a mechanism that solves (17)
converges to zero (i.e., if mn ≻ n2/3). But we know from the previous analysis that this
limit probability is strictly positive if mn ≺ n2/3, which is the more difficult case to prove. In
this section, we show that this limit probability is asymptotically the same as the probability
(and the associated welfare level) that can be achieved with a generalized VBO. This will
allow us to prove that the limit probability of success in an optimal VBO is the same as with
no organization.

We proceed in two steps. We first prove an intermediate result of independent interest.
We define a mechanism as binary, if it allows the agents to send at most two messages: vol-
unteer or not volunteer. In the next result, we establish that the optimal binary mechanism
is a generalized VBO.

Lemma 1. For any v ∈ (0, 1),mn and n, there exists cbn ∈ (0, 1) and kb
n ≥ mn such that a

kb
n-generalized VBO mechanism with volunteer cutoff cbn and critical mass threshold kb

n is an
optimal honest and obedient binary mechanism.

Proof: The proof is carried out in two steps. In step 1, we establish that the optimal
binary mechanism is non-wasteful, meaning that it never activates more volunteers than
necessary. In step 2, we show that if the optimal binary mechanism activates mn agents with
positive probability with k volunteers, then it must activate mn agents with probability one
with more than k volunteers. This implies that the optimal non-wasteful binary mechanism
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is characterized by a threshold kb
n as specified in Definition 1. Proof details are in the

appendix. ■

In an optimal binary mechanism, the mechanism does not use detailed information re-
garding the type of the agent, just whether the agent is willing to be volunteer. The optimal
binary mechanism is therefore asymptotically optimal if the best (HO) mechanism also does
not use detailed information regarding the types c, even if the probability of success is
positive in the limit. The following result establishes this property:

Lemma 2. Let a∗n(c), p
∗
n(c) be an optimal honest and obedient mechanism. For any two types

c′ and c′′ with c′ > c′′ > 0, p∗n(c
′)− p∗n(c

′′) → 0 and a∗n(c
′)− a∗n(c

′′) → 0 as n → ∞.

To see the intuition of this result, note that by IC, p∗n(c) is non-increasing in c, so
p∗n(c

′) ≤ p∗n(c ≤ c′) and p∗n(c
′′) ≥ p∗n(c ≥ c′′), where p∗n(c ≤ c′) and p∗n(c ≥ c′′) are the interim

probabilities of success conditioning on, respectively, c ≤ c′ and c ≥ c′′. Moreover,

p∗n(c ≤ c′) = τ0,n−1P
n
B + (1− τ0,n−1)P

n
0

where τ0,n−1 is the probability that, out of the remaining n− 1 agents, there is at least one
type c̃ ≥ c′′, P n

B is the expected probability of success conditioning on the presence of a type
c̃ ≥ c′′ and a type c̃ ≤ c′, and P n

0 is the expected probability of success conditioning on the
presence of at least one type c̃ ≥ c′′. Similarly, we have:

p∗n(c ≥ c′′) = τ1,n−1P
n
B + (1− τ1,n−1)P

n
1

where τ1,n−1 is the probability that, out of the remaining n− 1 agents, there is at least one
type c̃ ≤ c′, and P n

1 is the expected probability of success conditioning on the presence of at
least one type c̃ ≤ c′. But then we have:

0 ≤ p∗n(c
′)− p∗n(c

′′) ≤ (τ0,n−1 − τ1,n−1)P
n
B + (1− τ0,n−1)P

n
0 − (1− τ1,n−1)P

n
1

As n → ∞, both τ0,n−1 and τ1,n−1 converge to 1. Since P n
0 , P

n
1 and P n

B are all bounded, we
have that for any ε > 0, there is a nε such that p∗n(c

′)− p∗n(c
′′) < ε for all n > nε.

An implication of Lemma 2 is that when n is large the optimal mechanism is character-
ized by a c∗n such that for c > c∗n, the required participation a∗n(c) is zero; and for c ≤ c∗n,
participation is a non-increasing function which is approximately flat, even when the proba-
bility of success converges to a positive value. The next result shows that the utility obtained
in such a mechanism converges to the utility that can be obtained in a binary mechanism.
This fact combined with Lemma 1 implies that the optimal VBO is asymptotically optimal.
Let V G

n and V ∗
n be the expected welfare generated in, respectively, the best general (VBO)

and in the best (HO) mechanism when the number of agents is n. Putting this all together,
we have:

Theorem 3. limn→∞ V G
n = limn→∞ V ∗

n .

This theorem allows us to rule out situations in which the limit probability of success is
positive in the optimal (HO) mechanism, but is zero in the optimal VBO. An implication
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of this is that whenever the limit probability of the optimal VBO converges to zero, then it
converges to zero in every honest and obedient mechanism. We will use this fact in the next
section to show that the limit probability in the best HO mechanism is the same as in the
unorganized case.

5.3 A negative result: the irrelevance of an optimal organization
in the limit (but only in the limit)

In our earlier analysis of the simple VBO mechanism (Proposition 6), we proved that in
the limit large groups succeed with probability 1 if mn ≺ n2/3 and large groups fail with
probability 1 if mn ≻ n2/3. However that left open the question of whether the optimal
honest an obedient mechanism might succeed with positive probability for some values of
mn ≻ n2/3. Since the simple VBO is not necessarily optimal, it could be the case that the
optimal mechanism does much better than a simple VBO in large groups. In fact it’s possible
that the optimal generalized VBO mechanism (which also might not be optimal) does much
better than the simple VBO. In this section, we prove that the limiting properties of the
simple VBO are shared by the optimal honest and obedient mechanism.

Let P ∗
n denote the probability of success in the optimal honest and obedient mechanism

as a function of n, for a given threshold mn and value v. We have:

Theorem 4. For any v ∈ (0, 1):

� If mn ≺ n2/3, then limn→∞ P ∗
n = 1.

� If mn ≻ n2/3, then limn→∞ P ∗
n = 0.

Proof: The first bullet point is trivial, since the simple VBO achieves success with
probability 1 in large groups from Proposition 6.

The bullet point is proved in two steps. The first step establishes that if mn ≻ n2/3, then
the probability of success in the best generalized VBO converges to zero. The second step
prove that this implies that the probability of success in the best mechanism (not necessarily
VBO) converges to zero as well. We outline the first step here and leave the second step for
the online appendix.

Denote by P θn
n the probability of success in the best general VBO with a threshold fraction

equal to θn (≥ αn), so mn members are activated if and only if there are at least kn = θnn
volunteers. Suppose mn ≻ n2/3 and assume, by contradiction, that limn→∞ P θn

n > 0. It must
be that:

lim
n→∞

1

θn
· F

(
B(θnn− 1, n− 1, θn)∑n−1

j=θnn−1
mn

j+1
B(j, n− 1, θn)

)
≥ 1 (18)

If this inequality is not satified then the threshold cθnn below wich an agent is willing to
be activated is such that F (cθnn ) is lower than θn, making it impossible to achieve positive
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probability in the limit as n → ∞.27 By the Mean Value Theorem we can write:

F

(
B(θnn− 1, n− 1, θn)∑n−1

j=θnn−1
mn

j+1
B(j, n− 1, θn)

)
= F (0) + vf(ξ)

B(θnn− 1, n− 1, θn)∑n−1
j=θnn−1

mn

j+1
B(j, n− 1, θn)

where ξ ∈
[
0, B(θnn−1,n−1,θn)∑n−1

j=θnn−1
mn
j+1

B(j,n−1,θn)

]
and the last term uses the residual in the Lagrange

form. Thus, if we define f = maxc∈[0,1] f(c), we have:

1

θn
· F

(
B(θnn− 1, n− 1, θn)∑n−1

j=θnn−1
mn

j+1
B(j, n− 1, θn)

)
(19)

≤
(
vf
)
· B(θnn− 1, n− 1, θn)

θn
· 1∑n−1

j=θnn−1
mn

j+1
B(j, n− 1, θn)

since F (0) = 0. Consider the second term. Following the same steps as in Theorem 1, we
can write it as:

B(θnn− 1, n− 1, θn)

θn
≃ 1

θn

√
1

2πθn (1− θn)n
≃

√
1

θ3nn

where ≃ means that it converges to zero at the same speed. Consider now the denominator
of the third term, we can write:

∑n−1

j=θnn−1

mn

j + 1
B(j, n− 1, θn) =

αn

θn

∑n−1

j=θnn−1

θnn

j + 1
B(j, n− 1, θn) ≃

αn

θn

where the last step follows since
∑n−1

j=1
θnn
j+1

B(j, n− 1, θn) can be shown to be bounded away

from zero.28

Putting all of the above together, (18) can be written as:

θ3nn

(
αn

θn

)2

≤
(
vf
)2 ⇔ α2

nθnn ≤
(
vf
)2 ⇔ α3

nn

(
θn
αn

)
≤
(
vf
)2

But we have α3
nn·(θn/αn) ≥ α3

nn since θn
αn

≥ 1. So if α3
nn >

(
vf
)2
, then α3

nn·(θn/αn) >
(
vf
)2

as well. For mn ≻ n2/3, we have that α3
nn = (mn)

3 /n2 → ∞, implying that θ3nn ·(θn/αn)
2 →

∞ as well. We conclude that for mn ≻ n2/3, (18) is not satisfied and the probability of
success does not converge to a positive value. Essentially, having θn > αn helps making the
probability of activation smaller (the second term); but it slows down convergence to zero
too much for the first term.

For the second step (see Appendix) we rely on Theorem 3. By Theorem 3, welfare in

27When (18) is not satisfied, then Y (θn) > θn, so Y (θn) intersects the 45o line on the left of θn, implying
that θn > pθnn = F (pθnn ).

28The fact can be formally proven following the same steps in Proposition 7, just replacing θn for αn.
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the best general VBO converges to the welfare in the best (HO) mechanism. But then, as
n → ∞, it is impossible that the the probabilities of success under the two mechanisms
converge to different values. ■

We conclude this section discussing three implications of Theorem 4. The first is that
the moral hazard problem is worse than previously assessed. If we believe that the groups
can adopt a strong organization, then success will always be achieved if the total benefit for
society Vn = nv is larger than the cost in the worst case scenario in which ci = c = 1 for
all i ∈ I. In our setting this situation emerges when αn < v; in other environments, such
a situation emerges, for example, when total demand for a public good is bounded above
(Hellwig [2003]). When we need to satisfy honesty and obedience, success is not generally
guaranteed even in this case:

Corollary 1. An optimally organized group fails to achieve its goal even if the total benefit
is strictly higher than the cost in the worst case scenario in which ci = c for all i ∈ I if
m ≻ n−2/3.

The second implication of Theorem 4 is that the real benefit of an organization occurs
for finite n, not in the limit. Theorem 4 shows that the optimal HO, general VBO and no
organization all have the same expected per capita welfare in the limit if mn ≺ n2/3 and
0 if mn ≻ n2/3. The real benefit of having an efficient organization is derived by the fact
that when the limit probability of success of an unorganized group converges to zero, the
limit probability with an organized group converges to zero much slower. The next result
bounds below this rate of convergence. We say that P ∗

n converges at a strictly lower rate
than exponential if P ∗

n/e
−υn → ∞ for any υ > 0. We have:

Proposition 7. For any mn ≻ n−2/3, P ∗
n converges to zero at a rate that is strictly slower

than exponential.

Finally, we have that:

Corollary 2. The simple VBO is asymptotically optimal.

The simple VBO has the appealing properties of being intuitive, asymptotically optimal
and, when the probability of success converges to zero, has a very slow convergence rate.

6 Endogenous organizations: when do groups choose

to organize?

The key insight in Olson [1965] is that we should expect successful collective action only
when the free rider problem is not too severe: that is, for a given value v of the public good,
when the number of interested agents n is not too large; or for a given n, when the value
of the public good v is sufficiently large.29 These observations motivate his claim that small
groups with strong individual incentives will be much more effective than large groups in
which individuals have weak incentives.

29See the discussion in chapters 1-2 in Olson [1965].
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The results obtained above have implications that relate to these conjectures and also
some additional insights about when one might expect successful groups to arise endoge-
nously. On the one hand, the marginal impact of v or n on the probability of success
depends on whether the group is organized or not and the extent to which the underlying
technology displays increasing returns to scale: for example, without an organization, the
marginal impact of v and n is exactly zero when n is large; it is positive only with an orga-
nization. So we cannot understand the true impact of individual preferences and the size of
the population without first specifying their impact of the presence and quality of a group’s
organization.

On the other hand, whether the group might become organized or not depends on the
underlying fundamentals of the economy, thus on v and n as well. We can evaluate the
importance of these variables for the success of a group only when we include in the analysis
their impact on the presence and effectiveness of an organization. To explore this idea, in this
section we capitalize on the previous analysis to endogenize the presence of an organization
and study how its endogeneity affects the impact of v and n on the ultimate success of a
group.

We model the process of formation of an organization in a stylized, yet general way.
Suppose the agents composing a group evaluate the opportunity of establishing an organiza-
tion ex ante, before they know their individual costs of activism c. A VBO is formed if the
increase in expected utility with the organization is larger than a given organizational fixed
cost, κ: ∆V ∗

n = V O
n − V U

n ≥ κ(n), where V O
n and V U

n are, respectively, the expected utilities
with and without an organization; and κ(n) is the per person cost of forming and operating
an organization with these n agents. We assume κ(2) > 0, and limn→∞ κ(n) = κ > 0.30

The expected utility in a VBO with cut off cOn can be written as:

V O
n = v

[
F
(
cOn
)
p1,n(c

O
n ) + (1− F

(
cOn
)
)p2,n(c

O
n )
]
− F

(
cOn
)
E
(
c; cOn

)
a∗n, (20)

where p1,n(c
O
n ) and p2,n(c

O
n ) are the probability of success for an agent, conditioning on being

a volunteer and on not being a volunteer; and E (c; c′) is the expected c, conditioning on not
being larger than c′. In a VBO, we must have cOn a

∗
n = v(p1,n(c

O
n ) − p2,n(c

O
n )), the expected

utility with an optimal organization can therefore be written as:

V O
n = v

 F
(
cOn
)(

1− E(c;cOn )
cOn

)
B(mn − 1, n− 1, F

(
cOn
)
)

+
∑n−1

j=mn
B(j, n− 1, F

(
cOn
)
)

 (21)

30This simple model is intended capture a variety of environments. Consider these two polar examples.
First, assume perfect substitutability and that there is an elite of l ≤ n agents each of whom can form the
organization paying a fixed cost κ̂. The organization is created if at least one member of the elite pays
the cost; if the organization is formed, the members of the elite capture a share υ ≤ 1 of the total surplus
n∆V ∗. In this case, there is an equilibrium in which each member of the elite pays the cost with probability
ϕ < 1 and the condition for the establishment is ∆V ∗ ≥ κ with κ = κ̂/ [nB(0, l − 1, ϕ)υ]. The elite members
internalize only a share of the benefit because they themselves may face a free rider problem.
Second, assume perfect complementarity in the technology for the formation of the organization, so that

each member of the elite needs to pay a cost κ̂. In this case the organization forms if and only if ∆V ∗ ≥ κ
is satisfied with κ = κ̂/nυ as described in the main text.
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Following similar steps, the expected utility without an organization can be written as:

V U
n = v

 F
(
cUn
)(

1− E(c;cUn )
cUn

)
B(mn − 1, n− 1, F

(
cUn
)
)

+
∑n−1

j=mn
B(j, n− 1, F

(
cUn
)
)

 (22)

The effect of n on ∆V ∗
n is complicated by the fact that n indirectly affects the thresholds for

equilibrium participation cOn and cUn . Still, from the continuity of the functions in the square
parentheses with respect to cOn and cUn , and the fact that we know for n large enough cUn = 0
and cOn → 0+, we can deduce the no organization will ever be formed for arbitrarily large
groups:31

Proposition 8. There is a nκ > 0 such that a VBO is formed only if n ≤ nk.

A similar discontinuity as highlighted above is generated by a change in v if we keep
n constant. Again, signing the comparative statics in full generality is difficult because it
involves evaluating how the mechanism cutoff for volunteers, cO, changes relative to cU as
we change v. However, the effect can easily be signed when n is sufficiently large. We have:

Proposition 9. There is a n∗ > 0 such that for any n > n∗, ∆V ∗
n is strictly increasing in

v, so an organization is formed only if v is larger than a threshold v∗n.

Propositions 8 and 9 are interesting because they suggests why the two factors highlighted
by Olson (size and individual incentives) matter for a group’s effectiveness. It is not just
that as n increases or v decreases, we have a more severe free rider problem that depresses
the probability of success. If it were only for this, the probability of success would change
very little. A more important point is that the group organizes only for n ≤ nκ and this
has important implications for effectiveness.32 As n passes nκ, effectiveness collapses to
almost zero, since without an organization the probability of success is extremely small
and insensitive of v and n. Proposition 8 also explains why we should expect a dichotomy
of organizations: the small, organized, and effective groups on the one hand; and large,
unorganized, and ineffective group on the other hand. What creates the dichotomy is the
decision to organize that transform a continuous effect in a discrete drop in effectiveness.

7 Variations and discussions

7.1 On High-value environments (v ≥ 1)

An assumption that we have maintained throughout the analysis is that v < 1, where 1 is the
highest possible cost c. This assumption is standard and implied by the stronger assumption

31Note that the fact that cUn and cOn converge to zero does not imply the terms in parenthesis converge
to zero; indeed, as we know form Proposition 6, they both converge to zero if mn ≻ n2/3 and to one if
mn ≺ n2/3.

32The size threshold, nκ, as well as the value threshold, v∗n, both vary with the returns to scale. In
principle, nκ could be quite large.

32



made, for example, by Mailath and Postlewaite [1990] requiring that the total benefit of
success vn is less than the marginal cost αn in the worst case scenario in which all types
have a cost of 1, so that v < α. The case with v ≥ 1, however, has an interesting peculiarity
that is worth discussing. If v ≥ 1, then, for weak organizations we obtain a result similar
to Theorem 2, because randomly selecting a group of size mn, regardless of individual costs,
does not violate the obedience constraint for any type. Specifically:

Proposition 10. If v ≥ 1, MHRA is satisfied, and either mn ≺ n or mn = αn for some fixed
α < 1, then for all n the optimal direct mechanism satisfying (IC) and (IMH) is a random
mechanism in which each g such that |g| = αn is activated with probability 1/

(
n
mn

)
and each

g such that |g| ̸= mn is activated with probability 0. The probability of success equals 1.

When v ≥ 1, however, the limit probability of success in the symmetric equilibrium of
an unorganized group remains 0 when m ≻ n2/3. An implication of Proposition 9, therefore,
is that the limit equivalence of the probabilities of success in organized and unorganized
groups is not valid anymore when v ≥ 1. In this case, moral hazard is not a problem; the
only strategic problem faced by the members is coordination. Coordination can be easily
solved by a honest and obedient mechanism, but is unsolvable in a symmetric equilibrium
without an organization.33

7.2 On the divisibility of tasks

In the previous analysis we have assumed that the decision to contribute is dichotomous:
agent i either contributes at a cost ci or not. For example, an agent participates in a rally
or not; an agent signs a petition or not; joins a union or a committee or not. There are
however cases in which the contribution can be split up. For example, suppose that an agent
has up to one day to donate to a cause, say the organization of a charity. However, if the
agent cannot donate one day, perhaps the agent can donate less, say one hour. It is easy to
see that the analysis can be easily extended to this case, though the results are interesting
only when we assume some economies of scale, if the task cannot be “atomized” too much
relative to the cost of providing the effort: in this case the obedience constraint becomes
moot (and the optimal mechanism becomes too powerful to generate plausible predictions).

To see this, assume that a contribution now can be divided in λ parts: when λ = 1 the
contribution is, say, one day; when λ = 24, it is one hour, etc. Now the mechanism can ask
each agent to contribute any discrete amount x ∈ {0, 1/λ, 2/λ, ..., 1}, say from 0 hours to 24
hours. Assume that we need a total of mn contribution units to achieve the collective goal
and recall that the costs cis are distributed in [0, c]: now we can require mn agents providing
one unit, or up to λmn agents providing one hour. If we can choose λ so large that c/λ < v
and λm ≤ n, then we can achieve the common goal with probability one with a mechanism
equivalent to the optimal (IC) and (INTIR) mechanism of Theorem 4. In this case, we just
ask λmn agents at random to contribute 1/λ each. If mn ≺ n, then for any λ such that
c/λ < v, it will be true that λmn ≤ n for large n, so success with probability 1 is feasible

33Of course, we can design an asymmetric equilibrium that achieves success with probability 1 in an
unorganized group, but such an equilibrium would implicitly assume a solution of the coordination problem
by ex ante selecting the “volunteers”.
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for n large enough. In many plausible environments, however, economies of scale make it
unrealistic to assume that divisibility is fine enough to guarantee that all types including the
most extreme would be willing to obey it if asked. If we assume that there is a λ satisfying
c/λ > v, then the obedience constraint will always be binding as in the analysis presented
above. For instance, this is always true for any λ, for c large enough.

The analysis in previous sections carries over to this case where contributions can be
discretely divisible rather than just dichotomous. In the dichotomous case a (reduced form)
mechanism specifies a probability of success p(c) and a probability of contributing a(c),
where a(c) ∈ [0, 1] and non-increasing in c. As before, a mechanism specifies an interim
probability of success p(c) and an interim expected contribution a(c), where again a(c) ∈ [0, 1]
and non-increasing in c. The analysis is completely analogous. Indeed, the same logic as
in Section 5 suggests that, for finite n, a(c) will be non increasing and positive up to a
threshold c∗ = min {c ≤ vvp(c∗)− c∗a(c∗) ≤ vp(c)} and then a(c) = 0 for c > c∗, just as
above. Moreover, a(c) will become flat as n → ∞, so a VBO with a(c) > a for “volunteers”
and zero for free riders with a higher c will be asymptotically optimal, just as in the previous
analysis.

7.3 The Two-type case

The result that generalized VBO mechanisms are optimal binary mechanisms, together with
the fact that generalized VBO mechanisms are also approximately optimal HO mechanisms
for large groups, suggests a connection between organizational solutions to the free rider
problem when members have continuous types and when there are only two possible types.
In this section we analyze the two-type case, using similar techniques as with the optimal
binary mechanism problem. A key difference however is that in the continuous case, the
volunteer threshold, c∗n, is endogenously determined as a function of the mechanism through
the honest and obedience constraints, and also depends on n Here we assume there are
two types: a low type c ∈ (0, v) with probability ϕ ∈ (0, 1); and a high type c > c with
probability 1 − ϕ. With only two types, the volunteer threshold can only be one of two
possible values, c or c.34

We only consider the case where c < v < c̃.35 Since c > v, HO requires a(c) = 0. Using
the notation of Section 2.2, a direct mechanism µ in this case is described in its reduced
form by 3 numbers: a = a(c), p1 = p (c) , and p2 = p (c).

We solve for the optimal HO mechanism by considering a relaxed problem and then
proving that its solution satisfies all constraints of the original problem. The relaxed problem
requires 3 necessary conditions for an (HO) mechanism: feasibility; the fact that c > v →
a(c) = 0; and (IC), which in this case with two types can be written as:

ac ≤ v(p1 − p2) (23)

34See Ledyard and Palfrey (1994) for an generalized VBO characterization of the optimal mechanism with
strong organizations (INTIR) for the two type case with side payments.

35If c > v obedience implies a = 0 for both types. If c < v the random mechanism identified in Proposition
10 is optimal.
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We start with a preliminary observation that any mechanism that solves the relaxed
problem must be non-wasteful: whenever a group is activated, there are exactly m = αn
members in the activated group; and groups with fewer than αnmembers are never activated.
We prove this by contradiction by supposing that µ is wasteful at a positive measure set of
profiles and then showing that it can be improved. First, define a new mechanism, µ′, that
is exactly the same as µ for all coalitions of size m, but eliminates all waste by reducing
all activated successful coalitions to a size m by randomly selecting agents to drop out, and
do not activate coalitions that are smaller than m. The resulting mechanism is feasible.
Moreover, it continues to satisfy the (IC) constraint. This leaves pµ1 and pµ2 unchanged and
reduces aµ to aµ′ < aµ. This implies that aµ′c < v(pµ1 − pµ2). Note that after the modification
the mechanism must be characterized by a set of probabilities qk such that with k ≥ αn
low types, the probability that a randomly selected coalition of size αn is activated is qk. If
qk = 1 for all k ≥ αn, then we have proven the result. Assume therefore that qk < 1 for
some k ≥ αn. But then we can increase qk to q′k > qk in order to increase aµ′ to aµ′,q

′
k and

still satisfy aµ′,q
′
kc ≤ v(pµ1 − pµ2). After this change the probability of success and welfare are

higher, a contradiction with the assumption that µ is optimal.

Now note that a non-wasteful mechanism that solves the relaxed problem must be char-
acterized by a set of probabilities qk such that with k ≥ αn low types, the probability that
a randomly selected coalition of size αn is activated is qk. We can therefore easily write the
feasibility conditions as follows:

p1 =
∑n−1

k=αn−1
B(k, n− 1, ϕ)qk+1, p2 =

∑n−1

k=αn
B(k, n− 1, ϕ)qk (F2)

and a =
∑n−1

k=αn−1

αn

1 + k
B(k, n− 1, ϕ)qk+1

And thus the (IC) can be written in terms of the qk as:

Φ(q) = c

[∑n−1

k=αn−1

αn

1 + k
B(k, n− 1, ϕ)qk+1

]
−v

 B(n− 1, n− 1, ϕ)qn

+
∑n−1

k=⌊αn⌋

[
B(k − 1, n− 1, ϕ)
−B(k, n− 1, ϕ)

]
qk

 ≤ 0

(24)

The relaxed problem can therefore consists in maximizing expected welfare ϕ (vp1 − ca)+
(1− ϕ) vp2 subject to (24) and (F2). This problem can be written as:

max
{qk}nk=αn

{
ϕ
∑n−1

k=αn−1 B(k, n− 1, ϕ)qk+1

(
v − αn

1+k

)
+(1− ϕ) v

∑n−1
k=αnB(k, n− 1, ϕ)qk

}
s.t. (24)

We next show that the optimal honest and obedient mechanism is a generalized threshold
mechanism, and that it is characterized by just one easily computable real number κ ∈
[0, n].36 To this goal note that, for any general VBO described by {qk}nk=mn

, we can find a κ
such that qk = 0 if k < ⌊κ⌋, qk = 1 if k < ⌈κ⌉, and qk = ⌈κ⌉ − κ if k = κ, where ⌈κ⌉ and ⌊κ⌋

36The definition of a generalized threshold mechanism in the two-type case is the same as defined earlier,
with c∗ = c.
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are respectively the least integer larger than κ and the greatest integer smaller than κ. We
say that a threshold κ is consistent with (24) if the corresponding qk satisfies it. We have:

Theorem 5. If c < v < c, the optimal mechanism is the generalized V BO characterized by
the smallest threshold κ consistent with (24).

Proof: The proof that the optimal mechanism is a generalized VBO follows a similar
logic to the proof of Theorem 1. The fact that the best mechanism corresponds to the
smallest threshold follows from the fact that the objective function is decreasing in κ. See
appendix for details. ■

With this characterization, we can also answer the question: When is the simple VBO
exactly optimal for finite values of n (i.e. qαnn = 1 or κ = 0)? The following proposition
provides a sufficient condition:

Corollary 3. If 0 < c < v < c and c
v
<

1− ϕ
α

1−ϕ
, then a simple VBO is optimal.

Corollary 3 only shows that c
v
<

1− ϕ
α

1−ϕ
is a sufficient condition for a simple VBO mechanism

to be optimal; it does not show that c
v
≥ 1− ϕ

α

1−ϕ
is a necessary condition, since it is possible

that Ψ(q) > 0 for the mechanism in which k∗ = m and qm = 1, in which case the (IC)
constraint would be slack under the simple VBO mechanism.

While the results above show that the two type and the continuum model share some
properties, they differ in their asymptotic properties. Specifically, we show below that with
two types, if mn ≻ n1/2, the probability of success of the every HO mechanism converges 0
in the 2-type model, while it converges to 1 in the continuum model if mn ≺ n2/3.

Proposition 11. If 0 < c < v < c and mn ≻ n1/2, then limn→∞ Pn → 0

The intuition for this result is that for an HO mechanism to result in a positive probability
of success for arbitrarily large n, the low cost type, c, cannot be strictly positive.37 This
also demonstrates, once again, the sharp contrast between strong (INTIR) and weak (HO)
organizations, since weak organizations succeed with probability 1 in the limit, for mn ≺ n.

8 Conclusions

We have developed a model of collective action in which a group can organize by constructing
communication mechanisms to elicit private information and coordinate the actions of its
members. We have stressed the importance of requiring the mechanism to be obedient,
besides the more familiar requirements of incentive compatibility and individual rationality.
Mechanisms that are only incentive compatible and individually rational make sure that
members are willing to join a group and reveal their types, but they require members to
commit to carry out the mechanism’s recommendations, thus assuming away a key aspect of

37We conjecture that the probability of success for HO mechanisms converges to 0 in the two-type model
for all β > 0. However, our proof here only establishes the result for β > 1/2.
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the moral hazard problem. Obedience is not generally included in classic mechanism design
problems, since in these applications mechanisms map vectors of type profiles to allocations;
in collective action problems, on the contrary, mechanisms only map vectors of type profiles
to recommendations: allocations are the decentralized results of the members’ individual
actions.

Except when we assume constant returns to scale in the technology underlying the group’s
effectiveness, an incentive compatible and individually rational mechanism that omits the
obedience constraint can fully solve a group’s problem, achieving full success even with no
side payments. Moreover, regardless of how fastmn grows, success is always guaranteed when
the total benefit of the group is larger than the cost in the worst case scenario (in which
all members have maximal costs). The predicted success of optimal honest and obedient
mechanisms is typically much more modest, but perhaps more realistic. We showed that
when mn grows slower than n2/3, success is achievable with certainty, with or without an
organization. When mn grows faster than n2/3, however, success is impossible in the limit
even if total benefit is always larger than total cost (a result that generalizes previous negative
results proven only for the constant returns to scale case and assuming that total benefits
are smaller than maximal total cost). Still, we showed that endowing a group with an honest
and obedient organization gives a group a key advantage. The real benefit of an organization
is that even when the probability of success converges to zero, it does so at a much slower
rate than without an organization (which indeed is exactly zero after a finite n). The rate of
convergence of the probability of success when mn grows faster than n2/3 is always strictly
slower than exponential.

There are numerous ways the theory might usefully be extended. In our analysis we have
relied on a very simple base model of collective action, a classic threshold public good game.
It may be possible to explore the themes described above in much more general economic
environments in which the size of the common goal that can be chosen by the collectivity
is a continuous variable: as, for example, when the group does not only choose to build a
bridge, but also its quality and its capacity. In addition, we have studied a completely static
model. Many collective action problems are dynamic. The ideas presented here could be
embedded in dynamic environments to extend previous work that has studied contribution
games in dynamic environments with no organizations (see, for instance, Matthews [2013]
and Battaglini et al. [2014]).

An important dimension of the problem that we plan to explore in future work is the
study of how groups faced with multiple collective action problems strategically interact with
each other. Groups may strategically interact because their respective goals are substitutes,
as when there is a budget constraint that allows only a subset of projects to be realized. Or
they can interact in environments with complementarities, which leads to “a collective action
problem in a collective action problem”: that is, the groups need to solve a collective action
problem among themselves in the face of common goals, but each group also needs to solve
its own internal collective action problem in order for the group to make a contribution.

The theory presented here also provides inspiration for new empirical questions that can
be studied with laboratory experiments and possibly field work. We mentioned a significant
literature in experimental economics that has studied contribution games with structured and
unstructured preplay communication. Most of this literature has focused on environments
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with complete information, or with only a few players. We leave for future research an
empirical investigation of the effectiveness of the VBOs characterized in this paper and the
comparison of their performance with unorganized groups.
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9 Appendix

9.1 Proof of Theorem 1

In Step 1, we show that mn ≺ n2/3 implies that F
(
cUn
)
is sufficiently larger than αn for all n

and in the limit. This guarantees that limn→∞ PU
n = 1. In Step 2, we show that if mn ≻ n2/3,

then limn→∞ PU
n = 0.

Step 1. We proceed in three steps.

Step 1.1. We first show thatmn ≺ n2/3 implies that F
(
cUn
)
> αn for any n sufficiently large.

Recall that the threshold, cUn , is the largest solution for c ∈ [0, 1] to the following equation:
c = vB(αn − 1, n− 1, F (c)). Therefore, F

(
cUn
)
> αn for any n large if, for sufficiently large

n, we have:
αn < F (vB(αn − 1, n− 1, αn))

This condition guarantees that there is an intersection on the right of αn. See Figure 1. The
following lemma will prove useful in the argument.

Lemma A1. If mn ≺ n2/3 then B(αn − 1, n− 1, αn)/αn → ∞; if mn ≻ n2/3 then B(αn −
1, n− 1, αn)/αn → 0.

Proof. We can approximate the binomial combinatorial term for large n using Stirling’s

formula:
(
n
k

)
=
√

n
2πk(n−k)

nn

kk(n−k)n−k . First note that:

(
n− 1

αn− 1

)
=

(n− 1)!

(αnn− 1)!(n− αnn)!
=

αnn

n

n!

αnn · (αnn− 1)!(n− αnn)!
= αn

(
n

αnn

)
Applying Stirling’s formula yields:(

n− 1

αnn− 1

)
≃ αn

√
1

2παn(1− αn)n

[
1

(αn)
αn (1− αn)(1−αn)

]n
where ≃ means that the two sequences converge to zero at the same speed. So an approxi-
mation of B(αnn− 1, n− 1, αn) is given by:

B(αnn− 1, n− 1, αn) =

(
n− 1

αnn− 1

)
[(αn)

αn (1− αn)
1−αn ]

n

αn

≃

√
1

2παn(1− αn)n

We therefore have:

B(αnn− 1, n− 1, αn)

αn

≃ 1

αn

√
1

2π (αn) (1− αn)n

We have B(αnn−1,n−1,αn)
αn

→ ∞ if
(
mn

n

)3
(1 − mn

n
)n → 0 as n → ∞, a condition satisfied if

mn/n
2/3 → 0, or mn ≺ n2/3; we have B(αnn−1,n−1,αn)

αn
→ 0 if

(
mn

n

)3
(1− mn

n
)n → ∞ as n → ∞,

42



a condition satisfied if mn/n
2/3 → ∞, or mn ≻ n2/3. ■

We can now prove that mn ≺ n2/3 implies that F
(
cUn
)
> αn for all n sufficiently large.

To this goal, note that as n → ∞, vB(αn− 1, n− 1, αn) → 0, so we can write

F [vB(αn− 1, n− 1, αn)] = vf(0) ·B(αn− 1, n− 1, αn) + o(B(αn− 1, n− 1, αn))

where o(B(αn− 1, n− 1, αn))/αn → 0 as n → ∞. It follows that:

lim
n→∞

F [vB(αn− 1, n− 1, αn)]

αn

= lim
n→∞

[
vf(0) · B(αn−1,n−1,αn)

αn

+o(B(αn−1,n−1,αn))
αn

]

= lim
n→∞

[
vf(0)

+o(B(αn−1,n−1,αn))
B(αn−1,n−1,αn)

]
B(αn− 1, n− 1, αn)

αn

= vf(0) lim
n→∞

B(αn− 1, n− 1, αn)

αn

We conclude that whenever B(αn−1,n−1,αn)
αn

converges to 0 or diverges at∞, so does F [vB(αn−1,n−1,αn)]
αn

.

This implies that whenmn ≺ n2/3, then F [vB(αn−1,n−1,αn)]
αn

→ ∞, implying αn < F [vB(αn− 1, n− 1, αn)],

so F
(
cUn
)
> αn.

Step 1.2. We now prove that if mn ≺ n2/3 the probability of success for the group converges
to 1. We proceed in two sub-steps.

Step 1.2.1. Assume first that
F(cUn )
αn

→ 1. We have:

B(αnn− 1, n− 1, F (cUn )) =

(
n− 1

αnn− 1

)[(
F (cUn )

)αn
(1− F (cUn ))

1−αn
]n

F (cUn )

=

(
n− 1

αnn− 1

)
[(αn)

αn (1− αn)
1−αn ]

n

αn

[(
F (cUn )

)αn
(1− F (cUn ))

1−αn
]n

[(αn)
αn (1− αn)1−αn ]

n

≃ 1

f(0) · l

(
n− 1

αnn− 1

)
[(αn)

αn (1− αn)
1−αn ]

n

αn

But note that by the definition of cUn and the fact that mn ≺ n2/3 we must have:

1 =
B(αnn− 1, n− 1, F (cUn ))

cUn

≃ 1

f(0) · l

(
n− 1

αnn− 1

)
[(αn)

αn (1− αn)
1−αn ]

n

αn

→ ∞,

a contradiction. We must therefore have that in equilibrium:
F(cUn )
αn

→ l > 1, with l possibly
arbitrarily large.

Step 1.2.2. It follows from Steps 1.1 and 1.2.1 that we can assume
F(cUn )
αn

> ζ, for some
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bounded ζ > 1. First note that F
(
cUn
)
> ζαn implies F

(
cUn
)
− αn > αn(ζ − 1). Second,

note that the probability of failure is equal to the probability that fewer than αnn agents
volunteer and thus it can be written as:

Pr(k ≤ αnn) = Pr(
k

n
≤ αn) = Pr(

k

n
≤ F

(
cUn
)
− (F

(
cUn
)
− αn))

≤ Pr(
k

n
≤ F

(
cUn
)
− (αn(ζ − 1))) ≤ Pr

[∣∣∣∣kn − F
(
cUn
)∣∣∣∣ ≥ αn(ζ − 1)

]
= Pr

[∣∣∣∣kn − F
(
cUn
)∣∣∣∣ ≥

√
F (cUn ) (1− F (cUn ))√

n

√
nαn(ζ − 1)√

F (cUn ) (1− F (cUn ))

]

= Pr

[∣∣∣∣kn − F
(
cUn
)∣∣∣∣ ≥ σcUn

(
k

n
) ·

√
nαn(ζ − 1)√
ζ(1− F (cUn ))

]
≤

(√
ζ(1− F (cUn ))√
nαn(ζ − 1)

)2

→ 0

where in the second line we used F
(
cUn
)
− αn > αn(ζ − 1); in the fourth line we define

σcUn
( k
n
) =

√
F (cUn )(1−F (cUn ))

√
n

and used Chebyshev’s inequality; and in the last step of the fourth

line (“→”), we used the fact that nαn = mn → ∞.

Step 2. We now show that if mn ≻ n2/3, then limn→∞ PU
n = 0. We first establish that

limn→∞
pUn
αn

= 0. Assume not, so limn→∞
pUn
αn

= l for some l > 0. From the equilibrium
condition we must have:

pUn = F
(
vB(αnn− 1, n− 1, pUn )

)
Note however that:

B(αnn− 1, n− 1, pUn ) =

(
n− 1

αnn− 1

)[(
pUn
)αn

(1− pUn )
1−αn

]n
pUn

=
αn

pUn

(
n

αnn

)[(
pUn
)αn

(1− pUn )
1−αn

]n
= l ·

√
1

2παn(1− αn)n
[ξn]

n

with ξn =
(pUn )

αn
(1−pUn )1−αn

(αn)
αn (1−αn)1−αn ≤ 1 for any n (since for any pUn ,

(
pUn
)αn

(1−pUn )
1−αn ≤ (αn)

αn (1−
αn)

1−αn). So, by Lemma A1, we have that for large n:

1 =
F
(
vB(αnn− 1, n− 1, pUn )

)
pUn

≃ vf(0) (ξn)
n

αn

√
1

2παn(1− αn)n
→ 0

where in the second step (“≃”) we used the fact that pUn = lαn, and in the last step (“→”),

we used the fact that 1
αn

√
1

2παn(1−αn)n
→ 0 since mn ≻ n2/3 and (ξn)

n ≤ 1. This is a

contradiction, implying that limn→∞
pUn
αn

= 0. We next use this to show that pUn = 0 for large
n. By definition we have:

pUn = F (vB(αnn− 1, n− 1, pUn )) = Ψ(αn, n, p
U
n ) (25)
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Note that since we don’t have an equilibrium pUn > 0 on the right of αn, we must have an
equilibrium p̃n > 0 on the left of αn with Ψ′(αn, n, p

U
n ) < 1, where Ψ′(αn, n, p

U
n ) denotes

the derivative of Ψ(αn, n, p
U
n ) with respect to pUn for a given αn and n. Note that for any

constant ϵ > 0 arbitrarily small, there is a nϵ such that Ψ′(αn, n, p
U
n ) > vf(0)(1− ϵ)B′(αnn−

1, n − 1, pUn ), where B′(αnn − 1, n − 1, cUn ) denotes the derivative of B′(αnn − 1, n − 1, pUn )
with respect to pUn for a given αn and n. The derivative of the right hand side of (25) is:

B′(αnn− 1, n− 1, pUn ) = B(αnn− 1, n− 1, pUn )

[
αnn− 1

pUn
− n− αnn

1− pUn

]
=

pUn
v

[
αnn− 1

pUn
− n− αnn

1− pUn

]
=

(
αn − pUn

)
n− 1 + pUn

v (1− pUn )

=

(
1− pUn

αn

)
αn − 1−pUn

n

v (1− pUn )
n =

[(
1− pUn

αn

)
− 1−pUn

αnn

]
v (1− pUn )

αnn → αnn

v
→ ∞

where the equilibrium condition (25) is used in the second equality; and the last line follows

from the earlier result that pUn
αn

→ 0 when mn ≻ n2/3 and αnn → ∞. This leads to a

contradiction, since it implies that for n large at any positive intersection Ψ′(αn, n, p
U
n ) is

arbitrarily large. We conclude that the only equilibrium is pUn = 0. ■

9.2 Proof of Theorem 2

For a given n, consider the relaxed problem:

max
p(·),a(·)

{
vp(0)− E

[
a(c) · 1− F (c)

f(c)

]}
(26)

s.t. a(c) is non-increasing with a(c) ∈ [0, 1]

and p, a feasible

derived from (9) by eliminating the (IR) constraint, and let µn(c) with associated reduced
form mechanism an(c), pn(c) be its solution. We proceed in three steps. In Step 1, starting
from µn(c) we present a perturbed mechanism µγ

n(c) and show it is incentive compatible and
feasible. In Step 2 we show that such a perturbation strictly improves the relaxed problem
(26) if an(c) is strictly decreasing. In Step 3, we show that the solution of the relaxed
problem is pn(c) = 1, a(c) = αn. Moreover, when mn ⪯ n and v > α, or when mn ≺ n and
n is large, then this solution is a solution of the full problem (9).

Step 1. Since the argument is true for any n, we omit here the subscript n for simplic-
ity. Let µ be any feasible and incentive compatible mechanism. Consider the following
“flattening” perturbation of the mechanism. After a profile of reports c, the perturbed
mechanism is defined by a new activity function that uses µ(c) with probability 1− γ, and
µ(c̃) and with probability γ, where c̃ is a vector in which all components ci > 0 are replaced
with i.i.d realizations in (0, 1] from F (x) (and components ci = 0 are left unchanged). Let

a =
∫ 1

0
a(x)f(x)dx and p =

∫ 1

0
p(x)f(x)dx This new allocation generates a reduced form
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mechanism:
pγ(ci) = γp+ (1− γ)p(ci), and aγ(ci) = γa+ (1− γ)a(ci)

for ci ∈ (0, 1] and pγ(0) = p(0), aγ(0) = a(0). Note that since a(0) ≥ a(ci) and p(0) ≥ p(ci)

for all ci ∈ [0, 1], we must have that a(0) ≥ a =
∫ 1

0
a(x)f(x)dx and similarly p(0) ≥ p.

The new reduced form allocation is clearly feasible since we have shown the feasible
activity function that generates it. It also does not change p(0). Note that after the change
incentive compatibility is satisfied since aγ(ci) is non increasing in [0, 1] and, after the change,
we have:

Uγ(x) = γ [vp− ax] + (1− γ) [vp(x)− a(x)x]

= vpγ(x)− aγ(x)x

For c > 0 and c′ ≥ 0, we have:

vpγ(c)− aγ(c)c = γ [vp− ac] + (1− γ) [vp(c)− a(c)c]

≥ γ [vp− ac] + (1− γ) [vp(c′)− a(c′)c]

= vpγ(c′)− aγ(c′)c

Moreover a type 0 does not want to imitate a type c > 0:

vpγ(0) ≥ γ [vp] + (1− γ) [vp(0)] ≥ γ [vp] + (1− γ) [vp(c′)] = vpγ(c′)

where the first inequality follows from the fact that p(0) ≥ p. Given IC, by the usual
argument, we have:

[Uγ]′ (x) = −γa− (1− γ)a′(x) = −aγ(ci)

So the change is feasible in the relaxed problem.

Step 2. To see that it increases the objective function, we need to show that −
∫ 1

0
aγ(x)(1−

F (x))dx increases in γ, since vp(0) is unchanged by the change. We can write it as:

a ·
∫ 1

0
G (x)

aγ(x)

a
f(x)dx

where G (x) = −1−F (x)
f(x)

and a is
∫ 1

0
a(x)f(x)dx. Note that aγ(x)f(x)

a
is a density since

aγ(x)f(x)
a

≥ 0 and

∫ 1

0

aγ(x)f(x)
a

dx = 1. By MHRA, G (x) is monotone non-decreasing in x,

so the result is proven if we prove that an increase in γ implies a first order stochastic dom-
inance improvement in aγ(x)

a
f(x). Define: Γγ(t) =

∫ t

0
aγ(x)

a
f(x)dx. We prove the result if

∂Γγ(t)/∂γ < 1 for all t < 1. We have:

∂

∂γ
Γγ(t) =

∂

∂γ

[
1

a

∫ t

0

[γa+ (1− γ)a(x)] f(x)dx

]
=

∫ t

0

[
1− a(x)

a

]
f(x)dx = F (t)

[
1− E [a(x);x ≤ t]

E [a(x)]

]
≤ 0
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where the last inequality follows from the fact that a(x) non-increasing in x. It follows that
increasing γ improves the relaxed problem, which is maximized at γ = 1. When γ = 1,
feasibility and the (IC) are satisfied: so γ = 1 is optimal for the original problem as well.

Step 3. From Step 2 we know that the optimal mechanism solving the relaxed problem
is independent of c: aSn, p

S
n. It is easy to see that this mechanism will always activate a

coalition of size m. Assume not. Three cases are possible. First, the mechanism activates a
coalition of size larger than m; second the mechanism selects a non empty coalition of size
smaller than m. In the first case, just modify the mechanism by imposing that all activated
coalitions are reduced to a size m by randomly selecting agents to drop; in the second,
modify the mechanism by imposing that coalitions that are smaller than m are not selected
and a coalition of size m is selected instead, with equal probability on all coalitions of size m.
This leaves pSn unchanged and it and reduce aSn. No constraint is violated and the objective
function is increased, a contradiction. The third case is that the mechanism always select a
coalition of size m, but with probability pSn < 1. It is easy to see that this is not optimal
since by increasing pSn we obtain a marginal improvement in utility equal to 1 − αn

c
v
. We

conclude that the optimal solution of the relaxed problem is pSn = 1 and aSn = αn. The fact
that the optimal solution of the relaxed problem satisfied the (IR) constraint follows from
the argument presented in Section 3.2.

9.3 Proof of Proposition 1

We first prove that for any α, n, Yn(p) has a unique fixed point pO. We then prove that a
simple VBO is incentive compatible if and only if the type parameter is cO = F−1(pO). The
following lemma will prove useful.

Lemma A3. B(αn−1+j,n−1,p)
B(αn−1,n−1,p)

=
∏j

k=1
(n−αn−1−k)

αn−1+k
·
(

p
1−p

)j
.

Proof: We prove this by induction. The formula is correct for j = 1 since B(m+1,n−1,p)
B(m,n−1,p)

=
(n−m−1)

m+1
· p
1−p

, and for j = 2 since:

B(m+ 2, n− 1, p)

B(m,n− 1, p)
=

B(m+ 2, n− 1, p)

B(m+ 1, n− 1, p)
· B(m+ 1, n− 1, p)

B(m,n− 1, p)

=
(n−m− 2)

m+ 2

(n−m− 1)

m+ 1
·
(

p

1− p

)2

The induction hypothesis is that the formula is correct for j − 1:

B(m+ j − 1, n− 1, p)

B(m,n− 1, p)
=
∏j−1

i=1

(n−m− i)

m+ i
·
(

p

1− p

)j−1
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This implies:

B(m+ j, n− 1, p)

B(m,n− 1, p)
=

B(m+ j, n− 1, p)

B(m+ j − 1, n− 1, p)
· B(m+ j − 1, n− 1, p)

B(m,n− 1, p)

=
(n−m− j)

m+ j

(
p

1− p

)∏j−1

l=1

(n−m− l)

m+ l
·
(

p

1− p

)j−1

=
∏j

i=1

(n−m− i)

m+ i
·
(

p

1− p

)j

so the formula is correct for j, which proves the claim. ■

We now proceed in two steps.

Step 1. For any α, n, Yn(p) is defined as:

Yn(p) = F

(
vB(αn− 1, n− 1, p)∑n−1
j=αn−1

αn
j+1

B(j, n− 1, p)

)
.

We can rewrite it as:

Yn(p) = F

(
v

1 +
∑n−1

j=αn
αn
j+1

B(j,n−1,p)
B(αn−1,n−1,p)

)
= F

(
v

1 +
∑n−αn

j=1
αn

j+αn
B(αn−1+j,n−1,p)
B(αn−1,n−1,p)

)

We now show that: ∑n−αn

j=1

αn

j + αn

B(αn− 1 + j, n− 1, p)

B(αn− 1, n− 1, p)

is strictly increasing in p, so Yn(p) is continuous and strictly decreasing in p. By Lemma A3,
we have:

B(αn− 1 + j, n− 1, p)

B(αn− 1, n− 1, p)
=
∏j

i=1

n− αn+ 1− i

αn− 1 + i
·
(

p

1− p

)j

It follows that:∑n−αn

j=1

αn

j + αn

B(αn− 1 + j, n− 1, p)

B(αn− 1, n− 1, p)
=
∑n−αn

j=1

αn

j + αn
·
∏j

i=1

n− αn+ 1− i

αn− 1 + i
·
(

p

1− p

)j

which is increasing in p. Moreover, it is easy to see that Yn(0) = F (v) > 0 and Yn(1) = 0.
Hence Yn(p) has a unique fixed point in (0, 1).

Step 2. Incentive compatibility requires that U(c) ≥ vp(c′) − ca(c′) for all c, c′ ∈ [0, 1]. It
is straightforward to show that this is implied by vp(cO)− cOa(cO) = vp2. The unique fixed
point of Y , denoted pO, defines the volunteer threshold, cO. Given this threshold, we let p1
denote the (constant) interim probability of success for all types c ≤ cO, let p2 denote the
(constant) interim probability of success for all types c > cO, and let a denote the (constant)
interim probability of being activated for all types c ≤ cO. From the definition of a VBO,
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p1, p2, a are given by the following formulas:

a =
n−1∑

k=αn−1

αn

k + 1
B(k, n− 1, F

(
cO
)
) (27)

p1 =
n−1∑

k=αn−1

B(k, n− 1, F
(
cO
)
) (28)

p2 =
n−1∑
k=αn

B(k, n− 1, F
(
cO
)
) (29)

and pO = F (cO).

The equilibrium condition for IC is:

acO = v(p1 − p2) (30)

By substituting equations (27), (28), and (29) into equation (30), for any n we can obtain
an expression for cOn (v), the VBO volunteer threshold cost as a function of group size and
the value of success.

F−1(pOn ) = cOn (v) = v
B(αn− 1, n− 1, pOn )∑n−1

k=αn−1
αn
k+1

B(k, n− 1, pOn )
(31)

where the numerator on the right hand side is p1n − p2n and the denominator is an, the
probability a volunteer is activated. It is easy to see that (31) implies the statement in the
Proposition. ■

9.4 Proposition 2

First observe that all group members whose recommended action is to free ride will obey
the recommendation because they assume all other members are obedient and know that
either 0 or exactly m of the other members have been requested to participate. Hence, their
participation will not affect success of failure, so they are better off free riding. Second, all
members whose recommended action is to activate will obey the recommendation because
they assume all other agents are obedient and know that exactly m− 1 of the other agents
have been recommended to activate. Hence their payoff is 0 if they disobey the request to
activate and v− ci > 0 if they obey the request, since ci ≤ cO ∈ (0, v). It follows that, using
the notation of Section 2.2.1, the following ex post moral hazard condition is verified:

ui
g(c) ≥ ui

ξi(g)
(c) (ENA)

for any g such that µg (ci, c−i) > 0 and for any function ξi (g) mapping g to either {g, (g−i, 0)}
if g ∈ Ii or {g, (g−i, 1)} if g /∈ Ii. Note that ξi (g) is measurable with respect to the vector g,
while δi (gi) ignores g−i and is measurable only with respect to gi. We say that a mechanism
is honest and ex post obedient (HEO) if it satisfies (IC) and (ENA).
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It is now easy to see that (IC) and (ENA) imply (HO). To see this note that:

Ec−i

[∑
g∈I

µg (ci, c−i)u
i
g(c)

]
≥ Ec−i

[∑
g∈I

µg (c̃i, c−i)u
i
g(c)

]
(32)

≥ Ec−i

[∑
g∈I

µg (c̃i, c−i)u
i
ξi(g)

(c)

]

for any i = 1, ..., n, ci, c̃i ∈ [0, 1] and any function ξi (g) mapping g to either {g, g\{i}} if
g ∈ Ii or {g, g ∪ {i}} if g /∈ Ii. ■

9.5 Proof of Proposition 3

The probabilities of success are: PO
n =

∑n
k=αnB(k, n, pOn ) and PU

n =
∑n

k=αn B(k, n, pUn ),which
are respectively increasing in pOn and pUn . Hence we need to show that pOn > pUn for any n.
Recall that:

pUn = F
(
vB(αn− 1, n− 1, pUn )

)
, and pOn = Yn(p

O
n )

where Yn(·) is defined by (10). Since pOn solves equation (31) and, as proven in Step 1 of the
proof of Proposition 2, Yn(p) is strictly decreasing in p, we must have that if p ∈

(
pOn , v

]
,

then p > Yn(p). It follows that if p
U
n > pOn , we must have that:

pUn > F

(
v

B(αn− 1, n− 1, pUn )∑n−1
j=αn−1

αn
j+1

B(j, n− 1, pUn )

)
> F

(
vB(m− 1, n− 1, pUn )

)
= pUn

a contradiction. Therefore PO
n /PU

n > 1. ■

9.6 Proof of Proposition 4

We proceed in two steps.

Step 1. To prove the first bullet point, let mn = αn for some α ∈ (0, 1). From (31) in
Proposition 2, pOn is the unique solution to:

pOn = F

[
v

1

1 +
∑n−αn

j=1
αn

j+αn
B(αn−1+j,n−1,pOn )
B(αn−1,n−1,pOn )

]
(33)
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and from Lemma A3, we have:

∑n−αn

j=1

αn

j + αn

B(αn− 1 + j, n− 1, pOn )

B(αn− 1, n− 1, pOn )
=
∑n−αn

j=1

αn

j + αn
·
∏j

i=1

n− αn+ 1− i

αn− 1 + i

(
pOn

1− pOn

)j

(34)

≤
∑n−αn

j=1

αn

j + αn

(
n− αn

αn

pOn
1− pOn

)j

≤
∑n−αn

j=1

(
1− α

α

pOn
1− pOn

)j

Assume by contradiction that limn→∞ pOn = 0, then:

lim
n→∞

∑n−αn

j=1

(
1− α

α

pOn
1− pOn

)j

≤ lim
n→∞

∑n

j=1

(
1− α

α

pOn
1− pOn

)j

< ∞

since 1−α
α

pOn
1−pOn

→ 0. Hence

lim
n→∞

∑n−αn

j=1

αn

j + αn

∏j

i=1

n− αn+ 1− i

αn− 1 + i

(
pOn

1− pOn

)j

< ∞ ⇒ lim
n→∞

pOn > 0

a contradiction.

Step 2. To prove the second bullet point, let mn ≺ n. From Proposition 3, pOn is again the
unique positive solution to (33) and from Lemma A3, we have (34). Assume by contradiction

that limn→∞
pOn
αn

< 1, so limn→∞
1−αn

αn

pOn
1−pOn

= θ < 1 . In this case:

lim
n→∞

∑n−αnn

j=1

(
1− αn

αn

pOn
1− pOn

)j

→
∑∞

j=1
(θ)j =

θ

1− θ
< ∞

Hence

lim
n→∞

∑n−αnn

j=1

αnn

j + αnn

∏j

i=1

n− αnn+ 1− i

αnn− 1 + i

(
pOn

1− pOn

)j

< ∞

⇒ lim
n→∞

pOn > 0 = lim
n→∞

αn ⇒ lim
n→∞

pOn
αn

= ∞ > 1

where limn→∞ αn = 0 follows from mn ≺ n. We have a contradiction and conclude that
limn→∞

pOn
αn

≥ 1. ■

9.7 Proof of Proposition 5

Consider the first bullet point of the proposition. From equations (28 and 29) we have:

p1(c
O
n )− p2(c

O
n ) = B(αn− 1, n− 1, F

(
cOn
)
) →n 0
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since all single terms of the binomial expansion converge to 0 as n → ∞. Hence, equation 31
implies that limn→∞ cOn a(c

O
n ) = 0, which in turn implies limn→∞ a(cOn ) = 0 since limn→∞ cOn =

cO > 0. This implies limn→∞ PO
n = 0. To show limn→∞ cOn ≤ α, suppose instead that

limn→∞ cOn > α. In that case, the fraction of volunteers converges in probability to a fraction
strictly greater than α, implying limn→∞ PO

n = 1, a contradiction. Consider now the second
bullet point. Theorem 1 implies that PU

n = 0 for all n > nU(α, v), and Proposition 5 implies
that cOn > 0 for all n, so PO

n > 0 for all n. Hence, PU
n /PO

n = 0 for all n > nU(α, v). ■

9.8 Proof of Proposition 6

We proceed in two steps.

Step 1. The first part of Proposition 6 follows from Proposition 3 and part (1) of Theorem
1: for any n, the probability of success of an organized group using a VBO mechanism
is greater than or equal to the probability of success of an unorganized group. Since the
probability of success of an unorganized group converges to one when mn ≺ n2/3, the same
must be true for an organized group using a VBO mechanism.

Step 2. Suppose that mn ≻ n2/3 and limn→∞ PO
n > 0. For n large enough, it must be that:

lim
n→∞

1

αn

· F

[
vB(αnn− 1, n− 1, αn)∑n−1
k=αn−1

αnn
1+k

B (k, n− 1, αn)

]
≥ 1 (35)

If this inequality is not satisfied, then limn→∞ αn > limn→∞ cn and so P 0
n → 0, for the same

reason as in the proof of Theorem 1.

We first prove that there is a constant a∞ > 0 such that
∑n−1

k=αn−1
αnn
1+k

B (k, n− 1, αn) →
a∞ as n → ∞. To this goal, note that, for any η > 0 arbitrarily small:38∑n−1

k=αnn+η
√
n
B (k, n− 1, αn) = Pr

(
k ≥ αnn+ η

√
n
)
= Pr

(
k

n
− αn ≥ η√

n

)
≤ Pr

(∣∣∣∣kn − αn

∣∣∣∣ ≥ σαn(k/n)
η√

αn(1− αn)

)

≤ lim
αn(1− αn)

η2
≃ δ

η2
· mn

n
→ 0

where σαn(k/n) =
√

αn(1−αn)
n

and in the last step we use Chebyshev’s inequality. So we

38The initial term of the summation below should be written as ⌈αnn+ η
√
n⌉, since αnn+ η

√
n may not

be an integer. To keep the notation simple, and without loss of generality since irrelevant for the argument,
in the following we ignore this issue.

52



have:

lim
n→∞

∑n−1

k=αn−1

αnn

1 + k
B (k, n− 1, αn) = lim

n→∞

[ ∑(
α+ η√

n

)
n−1

k=αn−1
αnn
1+k

B (k, n− 1, αn)

+
∑n−1

k=αnn+η
√
n

αnn
1+k

B (k, n− 1, αn)

]

= lim
n→∞

∑(
α+ η√

n

)
n−1

k=αn−1

αnn

1 + k
B (k, n− 1, αn)

and limn→∞
∑(

α+ η√
n

)
n−1

k=αn−1 B (k, n− 1, αn) ≥ 1
2
. We can also write:

lim
n→∞

∑(
α+ η√

n

)
n−1

k=αn−1

αnn

1 + k
B (k, n− 1, αn)

≥

(
lim
n→∞

1

1 + η · n1/2

mN

)
· lim
n→∞

∑(
α+ η√

n

)
n−1

k=αn−1
B (k, n− 1, αn) ≥

1

2

where in the last line we use the fact that αnn = mn ≻ n1/2, so n1/2/mn → 0.

Given that limn→∞
∑n−1

k=αn−1
αnn
1+k

B (k, n− 1, αn) = a∞ > 0, we can rewrite (35) as:

lim
n→∞

[
1

αn

F

(
vB(αn− 1, n− 1, αn)∑n−1
k=αn−1

αnn
1+k

B (k, n− 1, αn)

)]
=

vf(0)

α∞
lim
n→∞

B(αn− 1, n− 1, αn)

αn

which again converges to 0 if mn ≻ n2/3 and diverges at infinity if mn ≺ n2/3. ■

9.9 Proof of Lemma 1

We will omit n here as a subscript for simplicity whenever it does not create confusion. Let
µb be an optimal binary mechanism and let cb be the volunteer cut-point associated with
µb and qk be the corresponding probability of success when there are k volunteers. We will
prove the result that if qk > 0 for some k ≥ m, then qk+j = 1 for j > 0. This implies that
there is a kb such that qj = 0 for j < kb and qj = 1 for j > kb and at most at one k we have
qkb ∈ (0, 1). So the optimal binary mechanism is a kb-VBO except at most for an event with
probability that converges to zero as n → 0, i.e. when there are exactly kb volunteers.

We proceed in two steps. In step 1, we establish that the optimal binary mechanism
is non-wasteful, meaning that it does not ever activate more agents than necessary; step 2
shows that it is characterized by a threshold kb.

Step 1. We first show that the optimal honest and obedient binary mechanism must be
non-wasteful in the sense that whenever a group is activated, there are exactly m members
in the activated group. We prove this by contradiction by supposing that µb is wasteful
at a positive measure set of profiles and then showing that it can be improved. First,
define a new mechanism, µ′, that is exactly the same as µ for all coalitions of size m, but
eliminates all waste by reducing all activated successful coalitions to a size m by randomly
selecting agents to drop out, and by not activating unsuccessful coalitions that are smaller
than m. This leaves cb, pµ1 and pµ2 unchanged and reduces aµ to aµ′ < aµ. This implies
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that aµ′cb < v(pµ1 − pµ2), so some cost types in a neighborhood above cb are strictly better
off volunteering, which violates incentive compatibility. Now, for any c̃ > cb, consider a
modified version of µ′, denoted by µ̃′ that has the same success probabilities, {qk}nk=m as µ′

except that all members with c < c̃ are volunteers, so there is a bigger pool of volunteers.
This increases pµ1 and pµ2 to pµ̃

′

1 > pµ1 and pµ̃
′

2 > pµ2 and changes aµ′ to ãµ′. Denote by c̃b > cb

the first such value of c̃ > cb such that ãµ̃′c̃b = v(pµ̃
′

1 − pµ̃
′

2 ). (Such a point exists by the
intermediate value theorem.) Denote by u(c; cb) the interim expected utility of a member
with cost c under µ, and denote by u(c; c̃b) the interim expected utility of a member with

cost c under the modified mechanism, µ̃′ with volunteer cutoff c̃b > cb. Because pµ̃
′

2 > pµ2 , we
know that u(c; c̃b) = u(c̃b; c̃b) > u(c; cb) for all c ≥ c̃b, so these members are strictly better off.
For c ∈ (cb, c̃b) we have u(c; c̃b) ≥ u(c̃b; c̃b) > u(c; cb), so these members are also better off.
Finally, for all c ∈ [0, cb) (the volunteers under µ) are better off because for each k ≥ m for
which qk > 0 there are a positive measure of additional profiles c with exactly k volunteers,
and for each such additional profile, the c-type member in [0, c̃b) gets a conditional expected
utility of (v − m

k
c)qk > 0. (Such members receive the same conditional expected utility for

all other profiles.) Hence, u(c; c̃b) > u(c; cb) for all c ≤ cb. Hence all agents are better off
under µ̃′ than under µ. All constraints are satisfied and the objective function is increased,
a contradiction. Hence the optimal mechanism is non-wasteful

Step 2. If qk > 0 for k ≥ m and qk+j < 1 for j > 1, then there must be a k′ such that
qk′ > 0 for k′ ≥ m and qk′+1 < 1, so we only need to prove the result for the case of j = 1.

Assume by contradiction that qk > 0 for some k ≥ m and qk+1 < 1. Let cb be the
minimum cost above which an agent is activated with probability zero. Then incentive
compatibility is binding at cb if acb = v(pb1 − pb2), where:

pb1 − pb2 = B(n− 1, n− 1, F (cb))qn +
∑n−1

k=m
[B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))]qk

and

a =
∑n−1

k=m−1

m

1 + k
B(k, n− 1, F (cb))qk+1.

We can marginally reduce qk by −dqk < 0 and marginally increase qk+1 by dqk+1 > 0 so that
the (IC) constraint is unchanged, thus keeping cb constant. This requires:

cb
[
−m

k
B(k − 1, n− 1, F (cb)) +

m

k + 1
B(k, n− 1, F (cb))

dqk+1

dqk

]
dqk (36)

=

[
−
(
B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))

)
+B(k, n− 1, F (cb))−B(k + 1, n− 1, F (cb))dqk+1

dqk

]
dqk

Note we can write:

pb1 − pb2 = B(n− 1, n− 1, F (cb))qn (37)

+
∑n−1

k=m
[B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))]qk =

∑n

k=m
Θkqn
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where we denote:

Θn = B(n− 1, n− 1, F (cb))

Θk = B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb)) for k = n− 1, ..,m

We can rewrite the previous expression as:

Θk = B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb)) = B(k, n− 1, F (cb))

[
k

n− k

1− F (cb)

F (cb)
− 1

]
Similarly, we have:

Θk+1 = B(k, n− 1, F (cb))−B(k + 1, n− 1, F (cb))

=
(n− 1)!

(k)! (n− k − 1)!

(
F (cb)

)k
(1− F (cb))n−k−1

− (n− 1)!

(k + 1)! (n− k − 2)!

(
F (cb)

)k+1
(1− F (cb))n−k−2

= B(k + 1, n− 1, F (cb))

[
k + 1

n− k − 1

1− F (cb)

F (cb)
− 1

]
Substituting into (36) gives:

cb
[
−m

k
B(k − 1, n− 1, F (cb)) +

m

k + 1
B(k, n− 1, F (cb))

dqk+1

dqk

]
dqk

=

[
−
(
B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))

)
+B(k, n− 1, F (cb))−B(k + 1, n− 1, F (cb))dqk+1

dqk

]
dqk

or

cb

[
−m

k
k

n−k
1−F (cb)
F (cb)

B(k, n− 1, F (cb))

+ m
k+1

k+1
n−k−1

1−F (cb)
F (cb)

B(k + 1, n− 1, F (cb))dqk+1

dqk

]
dqk

=

 −B(k, n− 1, F (cb))
[

k
n−k

1−F (cb)
F (cb)

− 1
]

+B(k + 1, n− 1, F (cb))
[

k+1
n−k−1

1−F (cb)
F (cb)

− 1
]

dqk+1

dqk

 dqk

It follows that:

dqk+1

dqk

[(
cb

m

k + 1
− 1

)
k + 1

n− k − 1

1− F (cb)

F (cb)
+ 1

]
B(k + 1, n− 1, F (cb))

=

[(
cb
m

k
− 1
) k

n− k

1− F (cb)

F (cb)
+ 1

]
B(k, n− 1, F (cb))

⇔ dqk+j

dqk
=

1−
(
1− cb m

k

)
k

n−k
1−F (cb)
F (cb)

1−
(
1− cb m

k+1

)
k+1

n−k−1
1−F (cb)
F (cb)

B(k, n− 1, F (cb))

B(k + 1, n− 1, F (cb))
= Tn,k

B(k, n− 1, F (cb))

B(k + 1, n− 1, F (cb))

55



where:

Tn,k =
1−

(
1− cb m

k

)
k

n−k
1−F (cb)
F (cb)

1−
(
1− cb m

k+1

)
k+1

n−k−1
1−F (cb)
F (cb)

> 1 ⇔ k − cbm

n− k
<

k − cbm+ 1

n− k − 1
⇔ n > cbm

After this change, the probability of success increases, indeed we have:

dPn =

[
−B(k, n− 1, F (cb)) +B(k + 1, n− 1, F (cb))

dqk+1

dqk

]
dqk

=

[
−B(k, n− 1, F (cb)) +B(k + 1, n− 1, F (cb)) · Tn,k

B(k, n− 1, F (cb))

B(k + 1, n− 1, F (cb))

]
dqk

> (Tn,k − 1)B(k, n− 1, F (cb)) · dqk > 0

Since the probability of success increases but the average probability of participation
remains constant (since cb is unchanged), we must increase welfare, ceteris paribus. This
implies that the original mechanism was not optimal, a contradiction. ■

9.10 Proof of Lemma 2

We show that for any ε, there is a nε such that for n > nε we have:

p∗n(0)− p∗n(c
∗
n) < ε

where c∗n = sup {c ∈ [0, 1] |a∗n(c) > 0}.
There are two cases to consider: (1) limn→∞ c∗n = 0; (2) limn→∞ c∗n = c∗∞ ∈ (0, v).

Case 1: limn→∞ c∗n = 0

By IC, we have:

vp∗n(c
∗
n)− a∗n(c

∗
n)c

∗
n ≥ vp∗n(0)− a∗n(0)c

∗
n

⇔ v [p∗n(0)− p∗n(c
∗
n)] ≤ [a∗n(0)− a∗n(c

∗
n)] c

∗
n → 0

It follows that for any ε > 0, there is a nε such that p∗n(0)− p∗n(c
∗
n) < ε for n > nε.

Case 2: limn→∞ c∗n = c∗∞ ∈ (0, v).

We first show that for any ε > 0 and for every δ ∈ (0, c∗∞), there is a nε,δ such that
p∗n(δ)− p∗n(c

∗
∞) < ε

2
if n > nε,δ.

Suppose by contradiction that this is not true, then, for some δ ∈ (0, c∗∞), it must be
that p∗n(δ)− p∗n(c

∗
∞) > ε for all n. Define τ0,n−1 as the probability that there is at least one

member out of n− 1 with cost c > c∗n; similarly let τ1,n−1 denote the probability that there
is at least one member out of n − 1 with cost c < δ. Denote by P n

0 , P
n
1 , P

n
B the probability

of success conditioning on, respectively, the presence of a type c ≤ δ and no type c ≥ c∗n; the
presence of a type c ≥ c∗n and no type c ≤ δ; and the presence of both a type c ≤ δ and a
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type c ≥ c∗n. Then, using this notation, we have:

E [p∗n(c)|c ≤ δ] = τ0,n−1P
n
B + (1− τ0,n−1)P

n
0

p2 = τ1,n−1P
n
B + (1− τ1,n−1)P

n
1

and furthermore we have: p∗n(δ) ≤ E [p∗n(c)|c ≤ δ] and p∗n(c
∗
∞) ≥ p2. So we have:

0 ≤ p∗n(δ)− p∗n(c
∗
∞) ≤ E [p∗n(c); c ≤ δ]− p2

≤ (τ0,n−1 − τ1,n−1)P
n
B + (1− τ0,n−1)P

n
0 − (1− τ1,n−1)P

n
1

As n → ∞, both τ0,n−1 and τ1,n−1 converge to 1. Since P n
0 , P

n
1 and P n

B are all bounded,
we have that for any ε > 0 and δ > 0, there is a nε,δ such that p∗n(δ) − p∗n(c

∗
∞) < ε

2
for all

n > nε,δ.

Finally, by incentive compatibility: v [p∗n(0)− p∗n(δ)] ≤ [a∗n(0)− a∗n(δ)] δ ≤ δ. Hence, if
we set δ/v = ε/2:

p∗n(0)− p∗n(v
ε

2
) ≤ ε

2
. (38)

Furthermore, for any ε, there is a nε such that:

n > nε =⇒ p∗n(v
ε

2
)− p∗n(c

∗
∞) ≤ ε

2
(39)

Combining (38) and (39) implies that for any ε, there is a nε such that for n > nε: p
∗
n(0)−

p∗n(c
∗
∞) ≤ ε. ■

9.11 Proof of Theorem 3

As discussed in Section 5.1, we derive the objective function in the relaxed problem (17)
using the (IC) constraint in a similar way as in (9). The constraint in the second line of
(17) is just the implication of IC, also present in (9). The constraint in the third line of (17)
follows from the following lemma:

Lemma A4: If (IC) and (1) hold, then a(c) = 0 for c > c∗, where

c∗ = min {c ≤ v |vp(c)− ca(c) ≤ vp2} .

Proof: By (1), c > v implies a(c) = 0. Consider any c ∈ [c∗, v]. By the definition of c∗,
U(c) ≤ U(v); by (IC), and monotonicity implies that U(c) ≥ U(v), thus U(c) − U(v) = 0

for c ∈ [c∗, v]. This implies:
∫ v

c∗
a(x)dx =

∫ c∗

v
U ′(x)dx = U(c∗) − U(v) = 0. Since a(c) is

monotonic, we get a(c) = 0 for c > c∗. ■

Let V ∗∗
n (c) denote the expected value for a type c in an optimal mechanism that solves

the relaxed problem (17) and V ∗∗
n = Ec{V ∗∗

n (c)} be the value of the objective function in
(17). Note that V ∗∗

n ≥ V ∗
n , where V ∗

n is the optimal mechanism in an honest and obedient
mechanism, since (17) is a relaxed version of (16).
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Define an ε-bounded mechanism, µ̃ε
n(c), and associated reduced form mechanism ãεn(c),

p̃εn(c) as follows. It is solves the problem for the optimal mechanism (17), but with an
additional condition:

ãn(c) > 0 ⇒ pn(0)− p̃n(c) < ε

The value for a type c and the expected values of this mechanism are Ṽ ε
n (c) and Ṽ ε

n , respec-

tively When ε = 1 (or larger), the additional constraint is slack, so Ṽ ε
n = V ∗∗

n . When ε = 0,
µ̃ε
n(c) is a binary mechanism, that is there is a c̃εn such that p̃εn(c) = p̃εn(0) for c ≤ c̃εn and

p̃εn(c) = p̃εn(1) for c > c̃εn. Moreover, incentive compatibility implies that ãεn(c) = ãεn(0) for
c ≤ c̃εn and ãεn(c) = 0 for c > c̃εn. We denote a binary mechanism as follows: µb

n(c) and
associated abn(c), p

b
n(c) with values V b

n (c) and V b
n .

We proceed in two steps:

Step 1: For any η, there exists nη such that n > nη =⇒ V b
n ≥ V ∗∗

n −η, and hence V b
n ≥ V ∗

n−η.

Consider Dn = V ∗∗
n − Ṽ 0

n = V ∗∗
n − V b

n . There are two possibilities:

(1) limn→∞ Dn = 0. In thhis case:

lim
n→∞

Dn = lim
n→∞

(
V ∗∗
n − V b

n

)
= lim

n→∞

(
V ∗∗
n − V G

n

)
= 0

where V G
n is the value in the optimal generalized VBO and we are done.

(2) limn→∞Dn = D > 0. In this case let η ∈ (0, D) , and for any such η and any n, define
ε (n, η) as follows:

V b
n = Ṽ ε(n,η)

n − η/2

Note that ε (n, η) ∈ (0, 1) for any n. It follows that limn→∞ ε (n, η) exists and limn→∞ ε (n, η) =
ε (η) ∈ [0, 1].

Suppose that ε (η) > 0. Then for any ε′ ≤ ε (η), there is a n1
η such that for n > n1

η we

have V b
n ≥ Ṽ ε′

n − η/2. From Lemma 2, we know that there is a n2
η such that for n > n2

η we

have Ṽ ε
n = V ∗∗

n , we conclude that for n > max{n1
η, n

2
η}, V b

n ≥ V ∗∗
n − η, a contradiction with

the assumption that limn→∞ Dn = D > 0.

Therefore ε (η) = 0. The rest of the proof of Step 1 relies on the following lemma:

Lemma A5. If limn→∞ ε (n, η) = 0, then for any arbitrarily small ϵ ∈ (0, η/2), there is an

nϵ such that for n > nϵ, we have Ṽ
ε(n,η)
n ≤ Ṽ 0

n + ϵ.

Proof. We first prove that, for any sequence εm such that εm → 0 asm → ∞ and εm ≤ εm−1,
we have:

lim
m→∞

lim
n→∞

Ṽ εm
n = lim

n→∞
lim

m→∞
Ṽ εm
n

To this goal define for convenience Ṽ j
n = Ṽ

εj
n and:

ajn = Ṽ j−1
n − Ṽ j

n with a0n = 0,

noting that by construction ajn ≥ 0. We can write:
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lim
n→∞

lim
m→∞

Ṽ m
n = − lim

n→∞
lim

m→∞

∑m

j=1
ajn

since Ṽ j
n = −

∑m
j=1 a

j
n. So we have:

lim
n→∞

lim
m→∞

Ṽ j
n = − lim

n→∞
lim

m→∞

∑m

j=1
ajn = − lim

n→∞

∑∞

j=1
ajn = − lim

n→∞

∫
an

where the
∫
an =

∑∞
j=1 a

j
n = limm→∞

∑m
j=1 a

j
n is the Lebesgue integral of an with respect to

the counting measure.

Define now the sequence (gj)∞j=0 such that gj = supn a
j
n. Note that gj ≥ ajn ≥ 0 for all

n by definition. Moreover, gj is integrable with respect to the counting measure since ajn is
integrable and integrability is passed by the sup operator. Finally, we have∫

gn = lim
m→∞

m∑
j=1

gj = lim
m→∞

m∑
j=1

sup
n

ajn = lim
m→∞

sup
n

m∑
j=1

ajn = lim
m→∞

sup
n

Ṽ m
n ≤ v

where v is the value of the collective good. We conclude that gj is an integrable function
that dominates ajn for any n. We can therefore apply the Dominated Convergence Theorem
as follows:

lim
n→∞

lim
m→∞

Ṽ m
n = − lim

n→∞

∫
an = −

∫
lim
n→∞

an

= − lim
m→∞

∑m

j=1
lim
n→∞

ajn = − lim
m→∞

lim
n→∞

∑m

j=1
ajn = lim

m→∞
lim
n→∞

Ṽ m
n

So we have limn→∞ limm→∞ Ṽ m
n = limm→∞ limn→∞ Ṽ m

n .

Now note that:

lim
n→∞

Ṽ εm
n = lim

n→∞
V ∗∗
n ⇔ lim

m→∞
lim
n→∞

Ṽ εm
n = lim

m→∞
lim
n→∞

V ∗∗
n

⇔ lim
m→∞

lim
n→∞

Ṽ εm
n = lim

n→∞
V ∗∗
n ≥ lim

n→∞
Ṽ ε(n,η)
n

since we have proven in Lemma 2 that the optimal (HO) mechanism becomes approximately

flat for large n, so the constraint becomes slack for n large enough. Moreover, Ṽ
ε(n,η)
n ≥

limm→∞ Ṽ εm
n = Ṽ 0

n . It follows that:

lim
n→∞

lim
m→∞

Ṽ εm
n ≤ lim

n→∞
Ṽ ε(n,η)
n ≤ lim

m→∞
lim
n→∞

Ṽ εm
n = lim

n→∞
lim

m→∞
Ṽ εm
n

⇔ lim
n→∞

Ṽ ε(n,η)
n = lim

n→∞
lim

m→∞
Ṽ εm
n = lim

n→∞
Ṽ 0
n

It follows that for any ϵ > 0, there is an nϵ such that for n > nϵ, we have Ṽ
ε(n,η)
n ≤ Ṽ 0

n + ϵ,
where ϵ− η/2 < 0 ■

From Lemma A5, we have that, for n > nϵ, V
b
n = Ṽ

ε(n,η)
n − η ≤ Ṽ b

n + ϵ − η/2 < V b
n , a

contradiction. Form the fact that we obtain a contradiction for any ε (η) ≥ 0, we conclude
that limn→∞

(
V ∗∗
n − V G

n

)
= 0. ■
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Step 2. We can now put together Step 1 and Lemma 1 to argue that a VBO is approximately
optimal for n large. Since V b

n ≤ V ∗
n , Step 1 implies that

∣∣V b
n − V ∗

n

∣∣ → 0 as n → ∞.
Lemma 1, moreover, shows that the optimal binary mechanism is a generalized VBO with
threshold k∗

n. Let V BO(k∗
n) be a VBO with threshold k = k∗

n and no mixing for k = k∗
n.

The V BO(k∗
n) generates utility that converges to the utility of the generalized VBO with

threshold k∗
n, since the probability of exactly k = k∗

n volunteers converges to zero. Since the
generalized VBO is equivalent to an optimal binary mechanism that generates utility V b

n , we

have
∣∣∣V b

n − V
V BO(k∗n)
n

∣∣∣→ 0. Hence, we have that for any η there is a nη such that for n > nη

V
V BO(k∗n)
n ≥ V ∗

n − η for some threshold k∗
n, which implies the result. ■

9.12 Proof of Theorem 4

We complete here the second step of the proof of the second bullet point of Theorem 4 by
showing that if the probability of success in the best binary mechanism (which is a general
VBO) converges to zero, then the probability of success in the optimal mechanism converges
to zero as well. This implies that the expected welfare in the two mechanisms converge to the
same value. For this we use Theorem 3, that proves that the general VBO is approximately
optimal.

Suppose by contradiction that the probability of success in the optimal mechanism P ∗
n

(non necessarily binary or VBO) converges to some positive value P ∗ > 0, but the probability
of success in the optimal generalized VBO mechanism PG

n converges to zero. Let W ∗
n and

WG
n be the expected per capita welfare in the optimal mechanism and in the optimal VBO.

Note that for any ε, there is a n1,ε such that for n > n1,ε:

WG
n = vPG

n

(
1− E

(
aG(c)

PG
n

· c
v

))
≤ vPG

n ≤ ε/2

since by assumption PG
n → 0. Moreover for any ε, there is a n2,ε such that for n > n2,ε

W ∗
n = vP ∗

n

(
1− E

(
a∗n(c)

P ∗
n

· c
v

))
≥ vP ∗ − ε/2 > 0

since: a. for all c ≤ v, a∗n(c)
c
v
≤ p∗n(c) − p∗n(v) → 0, as proven in Theorem 4; and b.

P ∗
n → P ∗ > 0. It follows that for any ε, there is a nε = max{n1,ε, n2,ε} such that for n > nε,

W ∗
n −WG

n > vP ∗ − ε.

By Theorem 3, for any arbitrarily small η > 0, there is a nη such that for n > nη,∣∣W ∗
n −WG

n

∣∣ < η, where W ∗
n and WG

n are the expected per capita welfare in the optimal
mechanism and in the optimal VBO. It follows that for n large, η+ ε >

∣∣W ∗
n −WG

n

∣∣ ≥ vP ∗,
which is a contradiction since η and ε are both arbitrarily small, and vP ∗ is bounded away
from zero. ■
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9.13 Proof of Proposition 7

We can bound the probability of success in an optimal honest and obedient mechanism as
follows. Let D

(
k
n
∥p
)
= k

n
log k/n

p
+ (1− k

n
) log 1−k/n

1−p
be the Kullback–Leibler divergence, or

relative entropy. We can write:

lim
n→∞

P ∗
n = lim

n→∞

∑n

k=mn

B (k, n, p∗n) ≥ lim
n→∞

PO
n =

∑n

k=mn

B
(
k, n, pOn

)
≥ lim

n→∞

1√
8mn(1− mn

n
)
exp

(
−nD

(mn

n

∥∥pOn )) ≃ lim
n→∞

1√
8mn

exp
(
−nD

(mn

n

∥∥pOn ))
where in the last line we used the lower bound on the tail of a Binomial distribution (Lemma
4.7.2 in Ash [1990]). Since mn

n
→ pOn , we have that for any ϵ > 0, there exists nϵ such that

for n > nϵ, we have D
(
mn

n
∥p∗n
)
≤ ϵ/2. So

lim
n→∞

P ∗
n

m
−1/2
n e−ϵn

≥ lim
n→∞

1√
8mn

exp
(
−nD

(
mn

n
∥p∗n
))

e−ϵn

= lim
n→∞

e[ϵ−exp(−nD(mn
n

∥p∗n ))]n
√
8mn

≥ lim
n→∞

e
ϵ
2
n

√
8mn

= ∞

So for any ϵ > 0, P ∗
n converges strictly faster than e−ϵn. We conclude that P ∗

n converges to
zero at a rate that is strictly lower than exponential. ■

9.14 Proof of Proposition 8

If mn ≻ n2/3, cOn > 0 for all n and cUn = 0 for n sufficiently large, so ∆V ∗
n is proportional

to v, and thus clearly increasing in v. If instead mn ≺ n2/3, then F (cOn ) > mn/n and
F (cUn ) > mn/n, so the first terms in the square parenthesis of (21) and (22) converge to zero
faster than the second terms, which can therefore be ignored for large n. Hence, for large
enough n:

EUO(c
∗
n)− EUU(c

U
n ) ≃ v

[
n−1∑
j=αn

B(j, n− 1, c∗n)−
n−1∑
j=αn

B(j, n− 1, cUn )

]

which is strictly increasing in v since
∑n−1

j=αnB(j, n − 1, c) is strictly increasing in c and

cOn > cUn by Proposition 4. ■

9.15 Proof of Theorem 5

In the optimal honest and obedient mechanism the high type is never activated, so the
mechanism, in reduced form, is characterized by a probability of activation aµ for c, an
expected probability of success pµ1 when a low type reports to be a low type and a probability
of success when the low type reports to be a high type, pµ2 . Incentive compatibility implies
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that:
aµc ≤ v(pµ1 − pµ2)

We now prove that the mechanism must looks as follows: (1) It elicits the types truthfully;
and (2) Let k be the number of low types. There is a k∗ ≥ αn such that for k < k∗, no agent
is activated. For k > k∗, a coalition of αn agents among the reported low types is selected
and activated, triggering success. If k = k∗, there is a probability π such that a coalition
of m = αn agents among the low types is selected and activated, triggering success. When
a coalition of αn agents is activated, the self-reported low types have equal probability of
being selected.

We proceed in three steps.

Step 1. We first show that the optimal mechanism must be non-wasteful in the sense that
whenever a group is activated, there are exactly m = αn members in the activated group.
We prove this by contradiction.

Suppose that the optimal mechanism µ is wasteful at a positive measure set of profiles.
First, define a new mechanism, µ′, that is exactly the same as µ for all coalitions of sizem, but
eliminates all waste by reducing all activated successful coalitions to a size m by randomly
selecting agents to drop out, and do not activate coalitions that are smaller than m. This
leaves pµ1 and pµ2 unchanged and reduces aµ to aµ′ < aµ. This implies that aµ′c < v(pµ1 − pµ2).
Note that after the modification the mechanism must be characterized by a set of probabilities
qk such that with k ≥ αn low types, the probability that a randomly selected coalition of
size αn is activated is qk. If qk = 1 for all k ≥ αn, then we have proven the result. Assume
therefore that qk < 1 for some k ≥ αn. But then we can increase qk to q′k > qk in order to
increase aµ′ to aµ′,q

′
k and still satisfy aµ′,q

′
kc ≤ v(pµ1 − pµ2). After this change the probability

of success and welfare are higher, which contradicts the assumption that µ is optimal.

Step 2. Incentive compatibility is satisfied if aµc ≤ v(pµ1 − pµ2). Note that incentive com-
patibility would be satisfied even if the inequality were strict (in this case the low type
would strictly find it optimal to report to be a low type). Optimality however implies that
the inequality is satisfied as an equality. If not, then qk = 1 for all k ≥ αn and qk = 0
for all k < αn; or we could profitably increase some qk as in Step 1. We conclude that
aµc = v(pµ1 − pµ2).

Step 3. Note again that a mechanism must be characterized by a set of probabilities qk
such that with k ≥ αn low types, the probability that a randomly selected coalition of size
αn is activated is qk. We will prove the result that if qk > 0 for some k ≥ αnn, then qk+j = 1
for j > 0. Note that if qk > 0 for k ≥ αnn and qk+j < 1 for j > 1, then there must be a k′

such that qk′ > 0 for k′ ≥ αnn and qk′+1 < 1, so we only need to prove the result for the case
of j = 1.

Assume by contradiction that qk > 0 for some k ≥ αnn and qk+1 < 1. Let a be the
expected probability of participation for a low cost c; and p1, p2 the expected probabilities
of success for a low type conditioning on reporting truthfully or not. By Step 2 IC implies

62



aµc = v(pµ1 − pµ2) where:

pµ1 − pµ2 = B(n− 1, n− 1, ϕ)qn (40)

+
∑n−1

k=αn
[B(k − 1, n− 1, ϕ)−B(k, n− 1, ϕ)]qk, (41)

and a =
∑n−1

k=αn−1

αn

1 + k
B(k, n− 1, θ)qk+1 (42)

These are exactly the same formulas as presented in step 2 of Lemma 1, except that now the
probability of a “low type” is not cb, but θ. We can marginally reduce qk by −dqk < 0 and
marginally increase qk+1 by dqk+1 > 0 so that the (IC) constraint is unchanged. Following
exactly the same steps as in step 2 of Lemma 1, we can show that this requires:

dqk+j

dqk
= Tn,k

B(k, n− 1, ϕ)

B(k + 1, n− 1, ϕ)

where:

Tn,k =
1−

(
1− cαn

k

)
k

n−k
1−ϕ
ϕ

1−
(
1− c αn

k+1

)
k+1

n−k−1
1−ϕ
ϕ

> 1 ⇔ k − cm

n− k
<

k − cm+ 1

n− k − 1
⇔ n > cm

After this change, the probability of success increases, indeed we have:

dPn =

[
−B(k, n− 1, ϕ) +B(k + 1, n− 1, ϕ)

dqk+1

dqk

]
dqk

=

[
−B(k, n− 1, ϕ) +B(k + 1, n− 1, ϕ) · Tn,k

B(k, n− 1, ϕ)

B(k + 1, n− 1, ϕ)

]
dqk

> (Tn,k − 1)B(k, n− 1, θ) · dqk > 0

Since the probability of success increases, welfare must increase. This implies that the
original mechanism was not optimal, a contradiction.

It follows from the argument above that the optimal mechanism is characterized by a
threshold k∗ ≥ αn and a probability π ∈ (0, 1] such that qk = 1 for k ≥ k∗, qk = 0 for k < k∗

and qk = π for k = k∗. Any such k∗ and π uniquely defines pk
∗,π

1 − pk
∗,π

2 , ak
∗,π from equations

(40) and (42) above.39 Since the objective function is decreasing in k∗ it follows that the
optimal mechanism is then characterized by the least integer k∗ ≥ αn for which there exists
π ∈ (0, 1] such that: ak

∗,πc ≤ v(pk
∗,π

1 − pk
∗,π

2 ), where:

pk
∗,π

1 −pk
∗,π

2 = B(n−1, n−1, ϕ)+π

[
B(k∗ − 1, n− 1, ϕ)
−B(k∗, n− 1, ϕ)

]
+
∑n−1

k=k∗+1

[
B(k − 1, n− 1, ϕ)
−B(k, n− 1, ϕ)

]
and ak

∗,π = πB(k∗ − 1, n− 1, ϕ) +
∑n−1

k=k∗
αn
1+k

B(k, n− 1, ϕ). ■

39Notice that qn = 1 (k∗ < n) since IC is not binding for k∗ = n.
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9.16 Proof of Corollary 3

For ease of notation, instead of writing mn, simply write m as the minimum number of
activated volunteers that is required for success, since the argument below does not depend
on n. Let µ be an optimal 2 − type mechanism. From Theorem 5, an optimal two-type
mechanism is characterized by threshold k∗ ≥ m such that and qk = 0 for k < k∗ and

qk = 1 for k > k∗.Suppose by contradiction that c
v
<

1− ϕ
α

1−ϕ
and k∗ > m, so that qm = 0.

Since µ is optimal, it must be the case that increasing qm while holding q−m fixed (which
increases the objective function) must violate the incentive constraint: v(p1 − p2)− ac ≥ 0.
Furthermore, the fact that increasing qm increases the objective function and qm = 0 in the
optimal mechanism implies that the (IC) constraint must hold with equality. Otherwise, one
could increase qm slightly without violating the incentive constraint, so:

v(p1 − p2)− ac = 0. (43)

Recall that the exact formulas for p1, p2, a in terms of the qk’s are given in equations (F2).
Substituting these three expressions into the incentive constraint (43) gives:

Ψ(q) ≡ v

[ ∑n−1
k=m−1 B(k, n− 1, ϕ)qk+1

−
∑n−1

k=mB(k, n− 1, ϕ)qk

]
− c

∑n−1

k=m−1

m

1 + k
B(k, n− 1, ϕ)qk+1 = 0

Since qm = 0 in the optimal mechanism, it must be that ∂Ψ
∂qm

≤ 0. Simple calculation gives:

∂Ψ

∂qm
= v(B(m− 1, n− 1, ϕ)−B(m,n− 1, ϕ))− cB(m− 1, n− 1, ϕ)

But we have the binomial identity: B(m,n − 1, ϕ) = n−m
m

ϕ
1−ϕ

B(m − 1, n − 1, ϕ). So ∂Ψ
∂qm

reduces to:

∂Ψ

∂qm
= vB(m− 1, n− 1, ϕ)(1− n−m

m

ϕ

1− ϕ
)− cB(m− 1, n− 1, ϕ)

= B(m− 1, n− 1, ϕ)

[
v(1− n−m

m

ϕ

1− ϕ
)− c

]

Hence ∂Ψ
∂qm

≤ 0 if and only if: c
v
≥ 1− n−m

m
ϕ

1−ϕ
. This implies that if c

v
<

1− ϕ
α

1−ϕ
and k∗ > m we

have a contradiction. We conclude that if c
v
<

1− ϕ
α

1−ϕ
, then k∗ = m and qk = 1 for all k ≥ m.

■

9.17 Proof of Proposition 11

Let θn be the threshold chosen in the general VBO with n agents. If limn→∞ θn > ϕ, then
we have that P → 0 and the result is proven. Assume therefore that limn→∞ θn ≤ ϕ. Note
that the (IC) constraint requires:

a
c

v
≤ p1,n − p2,n (44)
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where p1,n, p2,n are the success probability conditioning on a low and high type. The right
hand side converges to zero at the speed of B(⌊θn⌋ − 1, n − 1, ϕ). Since θn < ϕ, we must
have:

B(⌊θnn⌋ − 1, n− 1, ϕ) ≤ B(⌊ϕn⌋ − 1, n− 1, ϕ) ≃ 1√
n

Consider now the left hand side of (44). Note that for any η, ε > 0:

Pr
(
k ≥ ϕn+ ηn1/2+ε

)
= Pr

(
k

n
− ϕ ≥ η

n1/2−ε

)
= Pr

(
k

n
− ϕ ≥

√
ϕ(1− ϕ)

n

nεη√
ϕ(1− ϕ)

)

= Pr

(
k

n
− ϕ ≥ σϕ(k/n)

nεη√
ϕ(1− ϕ)

)
≤ ϕ(1− ϕ)

η2n2ε
→ 0

where σϕ(k/n) =
√
ϕ(1− ϕ)/n. Therefore, we can write:

lim
n→∞

an = lim
n→∞

∑(
1+ η

ϕn1/2−ε

)
ϕn−1

k=θnn−1

αnn

1 + k
B (k, n− 1, ϕ)

≥ lim
n→∞

αnn(
1 + η

ϕn1/2−ε

)
ϕn

· lim
n→∞

∑(
1+ η

ϕn1/2−ε

)
ϕn−1

k=θnn−1
B (k, n− 1, ϕ)

= lim
n→∞

αnn(
1 + η

ϕn1/2−ε

)
ϕn

· lim
n→∞

∑n−1

k=θnn−1
B (k, n− 1, ϕ)

= lim
n→∞

αn

ϕ
· lim
n→∞

p1,n

where p1,n is the conditional probability of success for a low type with n agents. Two things
are possible. Suppose first limn→∞ p1,n = 0, then the probability of success is also converging
to zero and the result is proven. To see this formally note that:

Pn = ϕp1,n + (1− ϕ) p2,n ≤ p1,n

since p1,n ≥ p2,n. Assume therefore limn→∞ p1,n = p̂ > 0. Then we have:

lim
n→∞

an
c

v
= lim

n→∞

αn

ϕ
· p̂ · c

v
=

(
p̂

ϕ
· c
v

)
· lim
n→∞

mn

n

It follows that p1,n−p2,n
am

≃ n1/2

mn
→ 0, since mn ≻ n1/2. It follows that p1,n−p2,n

am
→ 0, implying

c
v
≤ 0, a contradiction. ■
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