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1 Introduction

Tackling the issue of long-term unemployment (LTU) is a long-standing challenge for labor market

policy (Machin and Manning [1999]). Spells of prolonged joblessness are associated with worse eco-

nomic outcomes, including lower job-finding rates, lower re-employment wages and less stable jobs.

These concerns are heightened during bad economic times when the incidence of LTU rises dramati-

cally, such as for example during the Great Recession in 2007-09 (Kroft et al. [2016]). The long-term

unemployed are central in the policy debate on how to set unemployment benefits (Kolsrud et al.

[2018] and are typically the target for active labor market programs (OECD [2019]).

Despite the policy-relevance of the issue, the sources of LTU are still subject to debate. A first

source of contention centers around the observation that long-term unemployed workers typically

exhibit lower job-finding rates. One interpretation is that likelihood of finding a job declines at the

individual level of the unemployment spell and thus long-term unemployment is a trap, which is

difficult to escape. An alternative interpretation, however, is that long-term unemployed workers are

inherently different and generally less likely to find jobs throughout their spell. This dynamic selection

thus could account for the lower observed job-finding among the long-term unemployed. A second

unsettled debate concerns the rise of long-term unemployment in recessions. This rise may be due

to a change in the composition of the pool of unemployed workers or be driven by a decrease in the

within-individual job-finding chances during recessions for all or at least some unemployed workers.

Traditionally, research has found little role played by observable heterogeneity in explaining the

dynamics of job finding over the spell of unemployment or over the business cycle, using observable

characteristics in survey data (e.g., Baker [1992]; Kroft et al. [2016]). This in principle leaves an

important potential role for within-individual dynamics, either over the unemployment spell or over

the business cycle. A long-standing literature has been contesting the limited role of heterogeneity

across unemployed job seekers and integrated unobservable heterogeneity in structural models (see

Lancaster [1979], Heckman and Singer [1984] and Machin and Manning [1999]). Most recently, a

series of papers find evidence for substantial heterogeneity across unemployed job seekers, using a

range of different methods (e.g., Hall and Kudlyak [2019], Gregory et al. [2021], Mueller, Spinnewijn

and Topa [2021], Alvarez et al. [forthcoming], Ahn et al. [2023]). This naturally raises the question

whether studies, which found no or little role for observable heterogeneity, are limited by the range of

observable characteristics typically available in survey data.

This paper uses administrative data on the universe of unemployment spells for all unemployed

individuals in Sweden for the years 1992-2016 and combines it with rich and detailed information

on these individuals’ characteristics, which includes – in addition to standard socio-demographics –

information on income, employment and benefit histories, as well as information on prior employers,

occupation, asset portfolios and IQ scores. We leverage the rich observables to study the predictability

of long-term unemployment risk and combine it with multiple spell data to estimate the heterogeneity

in job-finding rates. We exploit the predictive power of our prediction model to study the dynamics

of job finding over the unemployment spell and the business cycle. We first revisit the importance of

heterogeneity in job finding across job seekers and the role of the resulting selection for the dynamics

of the average job finding over the unemployment spell and the business cycle. In addition, the large-

scale nature of our data both in terms of number of individuals and years allows us to study in detail
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the potential heterogeneity in dynamics over both dimensions.

The paper provides a conceptual framework that characterizes differences sources of heterogeneity

in job-finding rates and demonstrates how these can be identified using both measures of predictive

power from a prediction model and using the correlation in job finding across repeated spells. First,

we show that the R-squared of the predicted job-finding rate with the actual job finding in a hold-out

sample provides a lower bound for the heterogeneity in job-finding probabilities. The heterogeneity

identified in this way includes both persistent and transitory heterogeneity. In a second step, we show

that heterogeneity that persists – for example over the spell of unemployment or across cohorts of

workers who become unemployed at different stages of the business cycle – can be separated using the

correlation between the predicted job-finding rate with actual job finding at different times (e.g., in

the spell or over the business cycle). Our measure of persistent heterogeneity over the unemployment

spell provides a lower bound for the contribution of dynamic selection to the observed decline in job

finding. Finally, we highlight the complementary value between our approach of using observable

characteristics vs. the approach of using multiple unemployment spells. While the first approach

uncovers all observable heterogeneity and allows separating its persistent and transitory components,

the second approach uncovers also unobserved heterogeneity but at the same time remains limited to

the heterogeneity that is persistent across spells (Honoré [1993], Alvarez et al. [forthcoming]). We show

how we can combine the two methods to provide a tighter lower bound on the overall heterogeneity

of job finding probabilities, which accounts for the unobserved heterogeneity missed by the prediction

approach as well as the transitory heterogeneity missed by the approach using multiple spell data.

Moving beyond the lower bound, we also show how to scale estimates of observable heterogeneity to

gauge the importance of unobservable heterogeneity for dynamic selection.

For the empirical analysis we employ standard machine learning (ML) techniques that leverage

the data-rich environment to predict job seekers’ job-finding. Our baseline prediction model is an

Ensemble Model, which uses a weighted average of the predictions from the LASSO, Gradient-Boosted

Decision Trees and Random Forest algorithms (e.g., Einav et al. [2018]). These algorithms vary in

their selection of variables and treatment of non-linearities and variable interactions. To deal with

potential over-fitting the prediction model is trained on a training sample, but its predictive power

is evaluated in a hold-out sample. We focus on predicting the probability of finding a job within

6 months from the start of the unemployment spell. We define this job-finding probability as one

minus the probability to be still unemployed six months into the spell, which is a standard measure

of long-term unemployment risk in labor-force statistics and a typical target in risk profiling models

used by Public Employment Services. Our main analysis predicts the job-finding rates at the start

of the spell in the year 2006, when we have all the different data sets available. We then extend our

prediction exercise to other unemployment durations and to the years between 1992 and 2016, using a

baseline set of characteristics, which are available consistently for each year in our sample and for the

universe of unemployed workers in Sweden. Our prediction analyses provide three sets of empirical

results shedding new light on the nature of long-term unemployment risk and its determinants.

First, we find substantial predictable heterogeneity in long-term unemployment risk. The predic-

tive power, as measured by the hold-out sample R-squared between the predicted job-finding rate

and actual job finding, equals 15% and is more than twice as large when adding income, employment
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and benefit histories relative to a prediction model that only uses basic socio-demographic variables

such as education, age, gender, marital status, citizenship and the number and age of children. The

prior employment history, even if only available for one or a few years, is particularly predictive,

potentially serving as a proxy for workers’ heterogeneity that is otherwise unobservable. The further

gains in predictive power when using information on occupation, assets, IQ scores, UI benefits, etc.,

which are only available for limited samples or years, are modest, suggestive of the saturation of our

baseline model. Compared to our Ensemble Model we find that the predictive power of a linear model

is nearly as high. This shows both that the additional predictive power comes from the data-rich

environment rather than non-linearities or interactions exploited by the ML algorithms and that the

risk of over-fitting using the universe of unemployment spells is limited.

We complement our approach using observables by leveraging repeated unemployment spells for

a subsample of job seekers and find a substantial role for unobserved heterogeneity. The unobserved

heterogeneity estimated using the repeated spells corresponds to about half of the estimated observable

heterogeneity. At the same, our approach using observables shows that an important part of the

heterogeneity is not persistent across unemployment spells and that the sample of job seekers with

repeated spells is less heterogeneous than the overall sample. Combining the two methods allows us

to establish a tighter lower bound on the overall heterogeneity than using either method separately.

That is, we find that at least 19% of the variation in job finding outcomes is ex ante determined for

a cohort of job seekers at the start of their unemployment spell.

Second, we study the implications of the estimated heterogeneity in job finding for the dynamics

of the average job finding over the unemployment spell. Similar to other countries, the observed

job-finding rate in Sweden declines strongly with the duration of an unemployment spell. In 2006,

unemployed job seekers’ 6-month job-finding rate was 70% at the start of the unemployment spell

but then declined to 55% at 6 months. We repeat the prediction exercise at different durations for

ongoing unemployment spells and infer the persistent heterogeneity in job finding by computing the

covariance between predicted job finding from 6 to 12 months in the unemployment spell with actual

job finding from 0 to 6 months. We find that nearly three quarters of the predictable heterogeneity in

job finding is persistent over the spell of unemployment. Applying the decomposition in our conceptual

framework, the persistent heterogeneity accounts for a decline of job finding from 70% to 62.7% at

6 months, implying that dynamic selection accounts for 49% of the observed decline in job finding,

or more, given the lower bound nature of our prediction exercise. Assuming proportionality in the

selection on unobservables relative to the selection on observables into long-term unemployment, we

can explain as much as 88% of the observed decline in job finding.

Our analysis thus suggests that the within-individual decline in job finding over the unemployment

spell is relatively small on average. Our prediction exercises allow us to go beyond this and investigate

the potential heterogeneity in the declines by relating the predicted probabilities of job finding at

different durations. This also allows for an empirical test of the key assumption in proportional

hazard models, which is that job-finding rates decline at the same rate across job seekers. We uncover

substantial heterogeneity in the decline of job finding over the unemployment spell across individuals

with different observable characteristics, even when adjusting for the sampling error inherent in this

exercise, or when relying on non-parametric tests. Our results thus reject the key assumption in the
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most commonly used model of job search. We do find, however, that the individual-level declines

are strongly negatively correlated with the job finding probability at the start of the spell. This

convergence in within-individual job-finding rates further compresses the heterogeneity in job finding

over the unemployment spell, above and beyond the dynamic selection.

Third, we turn to the time series of our sample and estimate our prediction model for each year

from 1992 to 2016. While we find that some heterogeneity is transitory, the persistence in predictive

power is very strong across years. In particular, the R-squared of actual job finding in a given cohort

of unemployed workers with the predicted job-finding rate from the model estimated on a different

cohort remains high even if distant years are used. The distribution of predicted job-finding risk,

however, changes over the business cycle. Prior research has found that compositional changes in

the pool of unemployed cannot account for the increased LTU risk in recessions [Baker, 1992; Kroft

et al., 2016]. Using richer data, we still reject this so-called heterogeneity hypothesis, as we find

that the compositional changes in the pool of unemployed do not translate into higher LTU risk

in recessions. Unemployed workers are thus exposed to substantial changes in LTU risk over the

business cycle. In parallel to our analysis on duration dependence, we also assess the heterogeneity in

the cyclicality of LTU risk across job seekers with different observable characteristics, by relating their

predicted job-finding rate to the unemployment rate in each year. In comparison with the duration-

dependence analysis, we find only modest differences in the cyclicality in job finding. Recessions

affect the employment prospects of both job seekers with higher and lower job-finding chances, but

disproportionally hurt the job-finding prospects of workers with lower education and income.

Related Literature. A long and distinguished literature has studied long-term unemployment and

its causes and consequences. Our analyses aim to contribute to three important strands in this

literature.

First, the duration dependence in job finding and the importance of heterogeneous job finding

therein has received wide attention, starting with the seminal work of Lancaster [1979] and Heckman

and Singer [1984]. Several papers have argued that negative duration dependence is largely spurious,

once both observed and unobserved heterogeneity are accounted for (e.g., Cockx and Dejemeppe

[2005]). However, an important takeaway from this early literature is that identification is sensitive

to functional and distributional form assumptions. A few recent papers have tried to overcome these

challenges. Building on Honoré [1993] and his identification argument using multiple spell data,

Alvarez, Borovičková and Shimer [forthcoming] have developed and implemented a novel approach

that estimates heterogeneity in job finding without relying on proportional hazards. In a similar

spirit, Güell and Lafuente [2022] decompose the observed variance in unemployment durations into

a between- and within-spell component.1 Mueller, Spinnewijn and Topa [2021] instead focus on

predictable heterogeneity from job seekers’ reported beliefs about their own job-finding risk.2 All of

these papers find substantial heterogeneity in job-finding rates, implying substantial dynamic selection

over the unemployment spell, just like we do.3 In comparison with Alvarez et al. [forthcoming]

1Güell and Lafuente’s paper builds on an earlier paper by Alvarez, Borovičková and Shimer [2014].
2See also Arni et al. [2014] who look at the role of personality traits, beliefs and other behavior variables for predicting

long-term unemployment.
3There is also direct evidence that call-back rates decline with unemployment duration (Eriksson and Rooth [2014];

Kroft et al. [2013]), though Farber et al. [2016] find no effects for older workers. Jarosch and Pilossoph [2018] also show
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and Güell and Lafuente [2022], our paper does not rely on identifying assumptions regarding the

persistence of job-finding probabilities across unemployment spells, but shows how to evaluate this

empirically. In our data, we show that the persistent heterogeneity across spells identified by the

multiple spell approach is about equally as large as the observable heterogeneity uncovered by our

prediction exercise. The nature of the heterogeneity, however, is different across the two approaches

(observable vs. unobservable; transitory vs. persistent) and, for this reason, the two approaches are

highly complementary. In comparison with Mueller et al. [2021], we use rich observable characteristics

from administrative data, including income, employment and benefit histories, rather than predictive

beliefs. This gives us the statistical power to study heterogeneity in the dynamics of job-finding rates

over the unemployment spell. Moreover, to adjust for unobservable heterogeneity, they rely on a model

of beliefs, whereas in this paper we show conceptually how to combine our approach using observables

with the approach using multiple spell data to estimate unobserved heterogeneity and implement

it empirically. For all these reasons, our paper also differs starkly from the prior literature that

found a small role of observables for dynamic selection but using data limited to socio-demographic

characteristics (e.g., Kroft et al. [2016]).

Second, we apply our approach to a long time series of over 20 years of data, allowing us to

speak to issues related to the business cycle. As already mentioned, prior work has found little role

for observable heterogeneity for explaining the cyclicality of job finding or unemployment duration

(e.g., Baker [1992]; Cockx and Dejemeppe [2005]; Krueger et al. [2014]; Kroft et al. [2016]). Still,

a number of papers have found compositional changes in the pool of unemployed over the business

cycle. For example, Mueller [2017] documents changes in the composition of the unemployed in

terms of prior wage but these compositional shifts have no bearance for the heterogeneity hypothesis

because high- and low-wage workers have similar job-finding rates. Elsby et al. [2015] show that the

heterogeneity hypothesis matters for transition rates between unemployment and out of the labor force,

but not for U-E transition rates. In contrast, Ahn and Hamilton [2020] estimated the heterogeneity

in the context of a mixed proportional hazard model and find an important role of heterogeneity

for cyclical movements in job finding. Hall and Schulhofer-Wohl [2018] find some evidence in favor

of the heterogeneity hypothesis based on the reason for unemployment (layoff, quit, etc.) and show

that the pool of job seekers sorts toward low-job-finding types in recessions. Overall, these papers

typically rely on a small number of observable characteristics available in labor force survey data.

Given the richness of our data, we believe it is important to re-evaluate the heterogeneity hypothesis

of the cyclicality of long-term unemployment risk. Moreover, while some earlier work has studied the

heterogeneity in the cyclicality job finding by groups of workers characterized by their average wages

and hours worked (Bils et al. [2012], Mueller [2017]), we go beyond this by studying heterogeneity in

the cyclicality of job finding across a rich set observable characteristics.

Our paper more generally relates to recent papers that use machine learning and related techniques

to classify workers into types based on labor force histories. Gregory et al. [2021] use a k-means

algorithm to cluster workers based on the similarity of their employment histories in administrative

data. Hall and Kudlyak [2019] and Ahn et al. [2023] infer worker types from their labor market

that this may not necessarily translate into declining job-finding rates. Another related paper is Morchio [2020] who
finds in data from the NLSY79 that workers with different unemployment histories in their 20s face different job-finding
rates later in life.
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transitions in labor force survey data. These papers generally find large amounts of heterogeneity in

job finding, though they do not separately identify ex-ante heterogeneity and true duration dependence

in job finding. Our paper is also complementary to the work studying the impact of job loss on earnings

and wages in particular, focusing on the duration dependence [Schmieder et al., 2016], the cyclicality

[Schmieder et al., 2022] and predictable sources of heterogeneity more generally [Bertheau et al., 2022].

Finally, many countries either use long-term unemployment or a measure of the risk of long-term

unemployment as a criterion for the assignment of active labor market policies (OECD [2019]). This

has received relatively little attention in the literature, with only a few empirical (e.g., Berger et al.

[2001], Black et al. [2003], Ernst et al. [2024]) and theoretical exceptions (e.g., Pavoni and Violante

[2007], Spinnewijn [2013]). This contrasts with the wide attention given to the duration dependence of

unemployment benefits specifically (e.g., Shimer and Werning [2008], Schmieder et al. [2012], Kolsrud

et al. [2018]) and the evaluation of active labor market programs more generally (see Card et al. [2017]

for a meta-analysis).

This paper proceeds as follows. Section 2 provides a conceptual framework that characterizes

different sources of heterogeneity and shows how they can be identified using observables and multiple

spells. Section 3 presents the data and prediction model and analyses the heterogeneity in job finding.

Section 4 analyses the predictability of job finding over the spell of unemployment and quantifies its

role for dynamic selection. Section 5 analyses the predictability of job finding over the business cycle.

Section 6 concludes.

2 Conceptual Framework

We present a conceptual framework of unemployment to show how to identify heterogeneity in job

finding probabilities and how this heterogeneity is crucial for understanding the dynamics in job

finding and the role of selection or sorting effects in particular.

2.1 Statistical Model

Setup. We model a continuum of types defined by their likelihood of starting an unemployment

spell in each time period t = t, ..., t̄, P = {P t}t̄t=t, and their job-finding probabilities at each duration

d = 0, ..., d̄, Tt = {T td}d̄d=0, where t to t̄ is the sample period and d̄ is an upper bound on the

duration of unemployment that we impose. The job-finding probabilities T td for a given type may vary

both across spells and during the unemployment spell. The probability for an individual to start an

unemployment spell at time t and still be unemployed at duration d thus is P td = P t
∏d−1
δ=0(1 − T tδ )

given the respective probabilities for her type. At this stage, we do not impose any structure or

distributional assumptions on the joint distribution of P’s and T’s.4 Estimating the full matrix of

correlations of these probabilities in the population would be challenging.

Our focus is on characterizing and identifying key statistics that capture relevant heterogeneity

in job finding T td in the context of this model. More specifically, we are interested in the following

three moments: First, as a baseline, we would like to identify the overall heterogeneity in job-finding

4Technically, we impose that T t
d < 1 and P t

d > 0 (i.e., a strict inequality), which ensures that every type has a
positive measure of unemployed in each cohort and at each duration.
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probabilities at a given moment in time, as characterized by the variance in job finding probabilities

for a given cohort t at a given duration d, vartd(T
t
d). Note that superscript t and subscript d on

the variance refer to the corresponding sample of unemployed individuals. Second, we would like

to identify the heterogeneity in job finding probabilities that is persistent – over the unemployment

spell and/or across cohorts – as characterized by the covariance of job finding probabilities between

durations d and d′ and/or cohorts t and t′, covtd(T
t
d, T

t′

d′ ). As shown below, this moment is crucial

for identifying the extent of dynamic selection over the unemployment spell as well as for identifying

the extent of unobserved heterogeneity across unemployment spells. Finally, we are interested in

identifying heterogeneity in the dynamics of job finding probabilities – over the unemployment spell

as well as across cohorts – as characterized by the variance in the ratios of job-finding probabilities

between durations d and d′ and/or cohorts t and t′, vartd

(
T t′
d′
T t
d

)
. This allows us to test the common

assumption of proportionality, implying that the variance of the ratios is zero, and to characterize

deviations from proportionality both over the unemployment spell and across cohorts. In what follows,

we think about these objects in more detail and outline their implications.

Duration dependence in job finding. The heterogeneity in job finding within a given cohort t is

key for the dynamic selection of job seekers into longer unemployment durations. Following Mueller et

al. [2021], we can decompose the observed changes in job-finding probabilities over the unemployment

spell into true duration dependence and dynamic selection as follows:

Etd
(
T td
)
− Etd+1

(
T td+1

)︸ ︷︷ ︸
‘observed’ duration dependence

= Etd
[
T td − T td+1

]︸ ︷︷ ︸
‘true’ duration dependence

+ Etd
(
T td+1

)
− Etd+1

(
T td+1

)︸ ︷︷ ︸
dynamic selection

, (1)

which can be rewritten as:

Etd
(
T td
)
− Etd+1

(
T td+1

)
= Etd

[
T td − T td+1

]
+
covtd

(
T td, T

t
d+1

)
1− Etd (T td)

. (2)

Equation (2) highlights that what matters for dynamic selection is not the overall variance in job-

finding probabilities at a given duration, but instead the covariance of job-finding probabilities across

durations. Along with the average job-finding probability in the first period, this moment identifies

the extent to which dynamic selection contributes to the observed duration dependence. We label the

covariance term covtd(T
t
d, T

t
d′) for d′ > d as persistent heterogeneity over the spell of unemployment.

Intuitively, it identifies the extent to which a person with a high job finding probability at duration

d still has high-job finding probability at a longer duration d′. In the limit, when the covariance goes

to zero, then heterogeneous job finding probabilities do not contribute to dynamic selection as the

selection into longer unemployment based on the job finding probability at duration d is uncorrelated

with the job finding probability at duration d′.

The overall variance in job-finding probabilities can be decomposed into a persistent and transitory

term:

vartd(T
t
d)︸ ︷︷ ︸

heterogeneity in job finding

= covtd(T
t
d, T

t
d′)︸ ︷︷ ︸

persistent heterogeneity

+ covtd(T
t
d, T

t
d − T td′)︸ ︷︷ ︸

transitory heterogeneity

. (3)
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For the purpose of studying dynamic selection, it is not sufficient to simply characterize the hetero-

geneity in job finding. Furthermore, the transitory heterogeneity is interesting by itself as it relates

to the extent of heterogeneity in the dynamics of job finding, vartd

(
T t
d′
T t
d

)
.

Dynamics of job finding over time. Just like for the heterogeneity within a cohort, we are inter-

ested in identifying the statistics that characterize the heterogeneity across cohorts and in particular

how it evolves over the business cycle. We can again decompose the observed changes in job-finding

probabilities across cohorts into ‘true’ changes and dynamic selection as follows:

Etd
(
T td
)
− Et

′

d

(
T t

′

d

)
︸ ︷︷ ︸

‘observed’ dynamics in job finding

= Etd

[
T td − T t

′

d

]
︸ ︷︷ ︸
‘true’ dynamics

+ Etd

(
T t

′

d

)
− Et

′

d

(
T t

′

d

)
︸ ︷︷ ︸

dynamic selection

. (4)

Analogue to the ‘true’ duration dependence, the true dynamics capture how job finding changes for a

given type across cohorts. When comparing cohorts of unemployed job seekers, the selection term is

no longer fully determined by the persistent heterogeneity in job finding probabilities, as the selection

depends on the probability of becoming unemployed, P t, and thus how that correlates with job finding

probabilities. The overall heterogeneity in job finding depends again on both persistent and transitory

heterogeneity across cohorts:

vartd(T
t
d)︸ ︷︷ ︸

heterogeneity in job finding

= covtd(T
t
d, T

t′

d )︸ ︷︷ ︸
persistent heterogeneity

+ covtd(T
t
d, T

t′

d − T td)︸ ︷︷ ︸
transitory heterogeneity

, (5)

where we define covtd(T
t
d, T

t′

d ) as the persistent heterogeneity across cohorts. To be clear, our definition

of a cohort refers to individuals who become unemployed at the same time t and thus individuals can

be part of multiple cohorts. For this reason, in the context of the multiple spell analysis below, we

refer to this also as the persistent heterogeneity across spells. The transitory heterogeneity is again

intrinsically linked to heterogeneity in the dynamics across cohorts, like for instance the cyclicality

in job finding. As will become clear below, the distinction is particularly relevant in the presence of

multiple spell data, as it identifies the heterogeneity in job finding that is fixed between two spells of

unemployment.

There are two main issues with identifying the moments outlined in the prior paragraphs: First,

we do not observe the probabilities but only the random outcome thereof, which makes it difficult to

identify the distributional statistics outlined above. Second, we observe outcomes only in the selected

sample of job seekers who become unemployed at time t and are still unemployed at duration d. It is

in principle not possible to look at the covariance of job finding across durations d and d′ for all those

unemployed at duration d, nor to look at the covariance and dynamics across cohorts t and t′ for all

those unemployed at time t. In the next two sub-sections, we describe how we can overcome these

identification issues, by using a rich set of observable characteristics, by using multiple spell data and

ultimately combining both of these approaches for identification.
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2.2 Identification with Observables

We model the job-finding probability for an individual who becomes unemployed at time t and is still

unemployed at duration d as

T td = T td(Xt
d) + εtd,

where T td(Xt
d) = Etd (T td|Xt

d) is the individual’s job finding probability based on observable charac-

teristics Xt
d at time t and duration d. We use the sub-index on the moment indicator as short-hand

notation to refer to the considered sample of individuals, i.e., people unemployed at time t and du-

ration d. The average job finding probability for a sample of unemployed job seekers corresponds to

the sample’s discrete-time hazard rate. εtd captures the unobservable heterogeneity, orthogonal to the

observable characteristics, Etd (εtd|Xt
d) = 0.

While we cannot observe an individual’s job-finding probability, we can observe whether or not an

individual has found a job. For an individual of type T td, the realization of the probability is

F td =

1 with prob T td

0 otherwise.
(6)

We posit a prediction model F td(.) such that

F td = F td(Xt
d) + etd, (7)

where etd is a prediction error. Note that the source of prediction error is both sampling error as well

as randomness in the outcome variable, which is the random realization of the underlying probability.

If the prediction model is unbiased, we have Etd(F̂
t
d|Xt

d) = T td(Xt
d).

5

2.2.1 Heterogeneity

We are interested in evaluating the ex-ante heterogeneity in job finding types, vartd (T td). The challenge

is to separate the ex-ante heterogeneity from the heterogeneity in ex-post outcomes, vartd (F td) =

Etd (T td) (1− Etd (T td)). We can bound the ex-ante heterogeneity by the variation in ex-post outcomes

that is predictable ex-ante using observables:

Proposition 1. Lower bound for the variance in types. The hold-out sample R-squared between

the observed realization of the probability and its prediction provides a lower-bound estimate of the

variance in (observable) types relative to the variance in realizations:

R2(F td, F̂
t
d) ≤ vartd(T

t
d(Xt

d))

vartd(F
t
d)

≤ vartd (T td)

vartd(F
t
d)
. (8)

Proof. See Appendix B.

The R-squared equals the covariance between the realizations and predictions scaled by their

respective variances, R2(F td, F̂
t
d) =

covtd(F t
d,F̂

t
d)2

vartd(F t
d)vartd(F̂ t

d)
. By evaluating the covariance in a hold-out sam-

ple rather than in the sample used for estimating the prediction model, we avoid any confounding

5We refer to a predictor to be unbiased only for the variables Xt
d that are also included in the prediction model.

10



correlation between the sample error underlying individual predictions and their specific outcomes.

The main argument in the proof relies on the Cauchy-Schwarz inequality, which implies the lower

bound. This lower bound becomes tight when the predictor is unbiased. The hold-out sample co-

variance of the observed realization and the prediction then equals the variance in observable types,

covtd(F
t
d, F̂

t
d) = vartd(T

t
d(Xt

d)) (see Proposition B1 in Appendix B).

2.2.2 Persistent heterogeneity

We are interested in separating out the heterogeneity that is persistent and the heterogeneity that is

transitory over the spell of unemployment or across cohorts. As discussed, persistent heterogeneity

over the spell crucially determines the potential for selection out of unemployment and how it changes

the average job finding dynamics among the unemployed. Transitory heterogeneity implies that

individuals are subject to different within-individual changes and thus causes individual job finding

dynamics to be heterogeneous. Just like we can infer the overall heterogeneity from the covariance

between the contemporaneous predictions and job finding realizations, we can infer the persistent

heterogeneity from the covariance between predictions and realizations, but using lags or leads of the

predictions instead:

Proposition 2. Persistent heterogeneity. If the predictor is unbiased, i.e. Etd(F̂
t
d|Xt

d) = T td(Xt
d),

then the hold-out sample covariance of the observed realization for cohort t at duration d and the

prediction model for cohort t′ at duration d′ evaluated in the sample of all unemployed in cohort t

at duration d is an estimate of the covariance in observable types between duration d and d′ and/or

across cohorts t and t′:

covtd(F
t
d, F̂

t′

d′ ) = covtd(T
t
d(Xt

d), T
t′

d′ (X
t′

d′)). (9)

Proof. See Appendix B.

Note that we do not need to observe the same individuals in both (d, t) and (d′, t′), but we only

require common support in terms of the respective sample. This proposition relies on the unobserved

heterogeneity at state (d, t) to be orthogonal to the predictions at state (d′, t′). This is trivial when

the predictor is unbiased and uses only observables that are fixed across states (d, t). In our empirical

application of the dynamics of job finding over the unemployment spell, we only use predictors from

the year prior to the start of the unemployment spell and thus do not change over the unemployment

spell. We can thus use the covariance in equation (9) to identify an upper bound for the individual-level

decline in job finding over the unemployment spell. Following Proposition 2, we can prove:

Corollary 1. Upper bound for true duration dependence over the unemployment spell. If

the predictor is unbiased, i.e. Etd(F̂
t
d|Xt) = T td(Xt) and depends on observables that are determined

prior to the spell Xt, and the unobserved heterogeneity is weakly persistent, i.e. covtd(ε
t
d, ε

t
d+1) ≥

0, then the hold-out sample moments of the observed duration dependence in job finding and the

covariance of the observed realization at duration d and the prediction model at duration d+ 1 provide

an upper bound for the individual-level decline in job finding over the unemployment spell, as follows:

Etd
(
T td − T td+1

)
≤ Etd

(
F td
)
− Etd+1

(
F td+1

)
−
covtd

(
F td, F̂

t
d+1

)
1− Etd (F td)

. (10)
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Proof. See Appendix B.

We would like to note that we do not make any assumptions on the shape of the true duration

dependence over the spell of unemployment and our approach is fully flexible in this respect. At the

same time, the upper bound nature of our estimates of true duration dependence between durations

d and d+ 1 prevents us from pinning down its exact shape over the spell of unemployment.

The empirical analysis of duration dependence in Section 4 estimates the persistence in heterogene-

ity over the spell of unemployment and uses it to construct the upper bound following equation (10).

In the same spirit, we study in Section 5 how persistent job finding rates are across cohorts at different

stages of the business cycle, but we cannot use that directly to study how much sorting into unemploy-

ment contributes to cyclicality in the average job finding rate, as discussed further above. Instead, to

study selection effects over the business cycle, we use equation (4) and look at selection through the

lens of the prediction model by looking at changes in the predicted job-finding probability that come

from changes in observable characteristics in the pool of unemployed, i.e. Etd

(
F̂ t

′

d

)
− Et′d

(
F̂ t

′

d

)
.6 Of

course, this measure of selection does not take into account selection based on unobservable types,

i.e. Etd

(
εt

′

d

)
− Et′d

(
εt

′

d

)
, and we cannot use the same bounding argument as for dynamic selection

over the spell of unemployment. Still, we believe that this exercise has merit because of the richness

of our data and the high predictive power of our model, which leaves much less room for selection on

unobservables than in previous studies who used only a limited set of observable characteristics.

2.2.3 Heterogeneity in job-finding dynamics

The estimated selection on observables allows us to bound the dynamics in the average job finding rate,

as we have just discussed. We can also leverage the observables to directly study heterogeneity in the

dynamics in job finding rates across individuals. That is, we can gauge the potential heterogeneity in

the dynamics of job finding by relating individuals’ predictions across dynamic states, F̂ td and F̂ t
′

d′ , given

their observables Xt
d. This then also allows us to determine which specific observables are predictive

of stronger dynamics and whether these dynamics are proportional to the baseline job finding rates,

i.e., T t
′

d′ (X
t
d) = βt,t

′

d,d′T
t
d(Xt

d) for any Xt
d, where βt,t

′

d,d′ is a proportionality factor that is independent

of Xt
d. Appendix B.4 discusses in detail how this relates to the continuous-time proportional hazard

model Cox [1972].

It is important to qualify the analysis here in two dimensions: First, the analysis ignores dynamic

selection on unobservable types and would attribute this to the dynamics in observable types. Clearly,

the better the prediction model and the less unobserved heterogeneity is left, the less of a caveat this is.

Second, we hold observables fixed. This is exactly what allows us to use predictions for all individuals

unemployed in state (t, d) and (t′, d′) and thus address the issue of selection based on observables.7

6Note that Et
d

(
F̂ t′
d

)
− Et′

d

(
F̂ t′
d

)
= Et

d

(
F̂ t′
d (Xt

d)
)
− Et′

d

(
F̂ t′
d (Xt′

d ))
)

=
[
Et

d

(
T t′
d (Xt

d)
)
− Et

d

(
T t′
d (Xt′

d )
)]

+[
Et

d

(
T t′
d (Xt′

d )
)
− Et′

d

(
T t′
d (Xt′

d )
)]

. The first term in square brackets implies that our measure of selection over time

includes changes in selection that come from changes in observables at the individual level. Thus, our empirical measure
of selection refers to selection on observables rather than selection at the individual level alone (the second term).

7While this is a major advantage of our approach, it captures only the dynamics of job finding probability holding
observable characteristics constant and thus not the dynamics that come from changes in observables at the individual
level. In our empirical setting, this only applies to the analysis of job finding over the business cycle, since in the
context of dynamics over the spell we only use observables that are pre-determined relative to the unemployment spell
in question.
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To test for the proportionality assumption, we can simply compute – for a given pair of states (t, d)

and (t′, d′) as well as for a given set of observables in the baseline state, Xt
d – the variance of

F̂ t′
d′ (X

t
d)

F̂ t
d(Xt

d)

and test whether it is positive. Given the large number of possible pairwise comparisons in our data,

we would like to go beyond the pairwise comparisons and leverage the full extent of our data. We

do so by using the individual predictions F̂ t
′

d′ (X
t
d) across different states (d, t) and relate them to the

duration of the unemployment spell, the time of the unemployment spell or the unemployment rate

at the time of the unemployment spell, as follows:

log(F̂ t
′

d′ (X
t
d)) = β0(Xt

d) + β∆(Xt
d)× δ + ηt

′

d′ (11)

where δ (∆) is either the duration d (D), the time t (Tr), the unemployment rate ut (U) or a vector

that combines some of these variables. We run this linear regression for each individual in the sample

with characteristics Xt
d at duration d in baseline period t and thus can test whether vartd(β̂∆(Xt

d)) = 0,

while correcting for the estimation error underlying β̂∆(Xt
d).

8

We note again that when rejecting proportionality, we can in principle not distinguish between

individual dynamics or selection on unobservables driving the non-proportionality. We discuss these

issues in more detail in Sections 4 and 5.

2.3 Identification with Multiple Spell Data

The identification approach using observables does not capture all of the individual-level heterogeneity,

but only the heterogeneity that is predictable given the available observables. We can, however,

capture both observed and unobserved heterogeneity with data on multiple unemployment spells per

person and thus observing the outcome of job finding, F td, at the same duration d on two or more

separate occasions. This is the idea underlying the use of multiple unemployment spells as proposed

by Honoré [1993] and more recently Güell and Lafuente [2022] and Alvarez et al. [forthcoming]. In

the context of our model, we can show that

vart1,t2d (T t1d ) = covt1,t2d (T t1d , T
t2
d )︸ ︷︷ ︸

persistent heterogeneity across the two spells

+ covt1,t2d (T t1d , T
t1
d − T

t2
d )︸ ︷︷ ︸

transitory heterogeneity in first spell

, (12)

where t1 refers to the time of the first unemployment spell and t2 refers to the time of the second

unemployment spell. We can show that the persistent heterogeneity across two spells is identified by

the covariance of job finding outcomes in the two spells:

Proposition 3. Persistent heterogeneity across cohorts in multiple spell data. For two

randomly chosen spells for each individual, the covariance of job finding outcomes in spell 1 and 2

identifies the heterogeneity that is persistent between the two spells:

covt1,t2d (F t1d , F
t2
d ) = covt1,t2d (T t1d , T

t2
d ). (13)

Proof. See Appendix B.

8See Proposition B4 in the Appendix for more details on this test.
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Corollary 2. Lower bound with multiple spell data. For two randomly chosen spells for

each individual, if some of the heterogeneity in job finding is transitory and specific to a spell, i.e.

covt1,t2d (T t1d , T
t1
d − T

t2
d ) > 0, then the covariance of job finding outcomes in spell 1 and 2 identifies a

lower bound for the heterogeneity in job finding

covt1,t2d (F t1d , F
t2
d ) < vart1,t2d (T t1d ). (14)

Proof. See Appendix B.

The multiple spell approach thus only identifies heterogeneity that is persistent between the time

of the first and second unemployment spell. Moreover, it relies on a potentially selected sample of

individuals that are observed to be unemployed in those two cohorts, which is captured by the super-

script t1, t2 on the variance and covariance terms. We can also apply the approach with multiple

spell data for outcomes at different durations, say d and d + 1, but this is for an even more selected

sample as not all individuals who are unemployed at duration d in the first spell are unemployed at

duration d + 1 in the second spell. That is also why this approach cannot use multiple observations

for individuals at different durations in the same unemployment spell, as individuals who find a job at

duration d are no longer unemployed at duration d+1 in the same spell. Finally, we would like to note

that an assumption that is implicit in the multiple spell approach is the absence of lagged duration

dependence, i.e. the duration and frequency of past spells does not affect the job-finding probability

in the current spell. For the prediction model using observables, the fact that we include information

on past unemployment spells in the prediction model is not in contradiction with this assumption.

Instead, the approach using observables for identification relies on the frequency and duration of past

unemployment spells providing useful signal of the underlying type of the worker.

2.4 Identification with Observables and Multiple Spell Data

The method using observables misses out on the unobservable heterogeneity, but allows capturing het-

erogeneity that is transitory across spells. This transitory heterogeneity potentially is non-negligeable

as individuals may change occupations, accumulate skills through training or school, or experience

changes in their financial wealth, their family life or their health status between two unemployment

spells. It is important to note that this transitory heterogeneity across cohorts can still be persistent

over the spell of unemployment and thus be relevant for understanding the dynamic selection over

the spell. While the multiple spell approach misses out on this transitory heterogeneity, it allows

capturing unobservable heterogeneity that is persistent across spells and that is missed by the ap-

proach using observables. We can thus leverage the complementarities between the two approaches

to better understand the different sources of heterogeneity and impose tighter bounds on the overall

heterogeneity.

First, we can assess empirically how important transitory heterogeneity is across two spells relative

to the heterogeneity that is persistent. The total observable heterogeneity can be decomposed into
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heterogeneity that is persistent and transitory across two spells:

vart1,t2d (T t1d (Xt1
d ))︸ ︷︷ ︸

Observable Heterogeneity (OH)

= covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ))︸ ︷︷ ︸
Persistent Observable Het. (POH)

+ covt1,t2d (T t1d (Xt1
d ), T t1d (Xt1

d )− T t2d (Xt1
d ))︸ ︷︷ ︸

Transitory Observable Het. (TOH)

.

(15)

As shown in Proposition B1, the approach using observables can identify the observable heterogeneity

within a cohort with the covariance of the predicted job finding probability with the outcome within

the same cohort, but using a random hold-out sample, i.e. covt1,t2d (F t1d , F̂
t1
d ) = vart1,t2d (T t1d (Xt1

d )). We

can also apply this method across different spells to find the observable heterogeneity that remains

persistent. If the unobservable heterogeneity is orthogonal to the observable heterogeneity, we can

identify the persistent observable heterogeneity through covt1,t2d (F t1d , F̂
t2
d ). The combination of the

two approaches thus allows to gauge the importance of transitory heterogeneity.

Second, mutatis mutandum, we can assess empirically how important unobservable heterogeneity

is relative to observable heterogeneity, at least for the heterogeneity that is persistent across spells.

Indeed, we can decompose the persistent heterogeneity into observable and unobservable persistent

heterogeneity:

covt1,t2d (T t1d , T
t2
d )︸ ︷︷ ︸

Persistent Heterogeneity (PH)

= covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ))︸ ︷︷ ︸
Persistent Observable Het. (POH)

+ covt1,t2d (εt1d , ε
t2
d )︸ ︷︷ ︸

Persistent Unobservable Het. (PUH)

. (16)

As shown in Proposition 3, the approach to identification using multiple spell data can identify the

persistent heterogeneity, both observed and unobserved, with the covariance in job finding outcomes

across two spells, i.e. covt1,t2d (F t1d , F
t2
d ) = covt1,t2d (T t1d , T

t2
d ). This can be compared to the persistent ob-

servable heterogeneity identified using the predictions based on observables through covt1,t2d (F t1d , F̂
t2
d ).

The combination of the two methods thus allows to shed light on the importance of unobservable het-

erogeneity.9

The two equations (15) and (16) illustrate the comparative advantage of the two approaches to

identification and taken together allow to provide a better understanding of the overall heterogeneity.

Again, equation (16) shows the advantage of using multiple spell data, which is to capture also the

persistent heterogeneity across spells, including the heterogeneity that is unobserved (PUH). Equa-

tion (15) shows the advantage of the approach using observables, which is to identify the observable

heterogeneity, including the heterogeneity that is transitory across spells (TOH). The moment con-

ditions using observables are in principle not restricted to the sample of individuals with multiple

spells, but can be applied to this specific sample. The persistent observable heterogeneity (POH) in

job finding is the common denominator of the two approaches, whereas the Transitory Unobservable

Heterogeneity (TUH), covt1,t2d (εt1d , ε
t1
d − ε

t2
d ), is missing from both approaches. Still, by combining the

two approaches we can identify a tighter lower bound on the total heterogeneity in job finding:

Proposition 4. Lower bound with observables and multiple spell data. For two randomly cho-

sen spells for each individual, if the predictor is unbiased, i.e. Et1,t2d (F̂ tid |X
ti
d ) = T tid (Xti

d ) for i = 1, 2,

and if the unobserved heterogeneity is orthogonal to observable characteristics, i.e. Et1,t2d (εtid |X
tj
d ) = 0

9Note that the decomposition above again relies on the observable heterogeneity being independent of the unobserv-
able heterogeneity across spells, but this is not crucial for our purposes here as shown below.
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for all combinations of i = 1, 2 and j = 1, 2, the following lower bound for the true variance in types

holds:

L = covt1,t2d (F t1d , F̂
t1
d ) + covt1,t2d (F t1d , F

t2
d )− covt1,t2d (F t1d , F̂

t2
d ) ≤ vart1,t2d (T t1d ).

Proof. See Appendix B.

The proposition requires that the two spells are randomly selected, which implies symmetry in

the covariances (e.g., covt1,t2d (F t1d , F̂
t2
d ) = covt1,t2d (F t2d , F̂

t1
d )), and that that the unobserved type in

each spell is independent of the observable characteristics.10 Intuitively, the lower bound adds up

equations (15) and (16) by adding covt1,t2d (F t1d , F̂
t1
d ) and covt1,t2d (F t1d , F

t2
d ) and then subtracts the

common component of persistent observable heterogeneity, identified by covt1,t2d (F t1d , F̂
t2
d ), in order to

avoid double counting of this term.

Further Opportunities. Proposition 4 showcases the complementarity between the two ap-

proaches for understanding different sources of heterogeneity, but further opportunities arise from

combining the two approaches.

First, both approaches miss out on the unobserved heterogeneity in job finding that is transitory

and specific to a spell. However, we can make assumptions comparable to proportionality assump-

tions in the literature studying the role of selection on observables vs. unobservables (e.g., Altonji

et al. [2005], Oster [2019], Finkelstein et al. [2021]). The advantage in our setting is that we can

directly assess the relative importance of unobservable heterogeneity to observable heterogeneity, at

least for the heterogeneity that is persistent across spells. We can then gauge the magnitude of the

transitory unobservable heterogeneity, assuming that the relative importance of the unobservable vs.

observable heterogeneity is the same for the persistent and transitory component of heterogeneity.

That is, TUH = TOH × PUH
POH . Such an assumption remains speculative in nature, but we can eval-

uate its plausibility further by studying whether the relative importance of unobserved vs. observed

heterogeneity for the persistent component remains the same in different sub-samples and at different

durations.

In a similar spirit, we can evaluate how much heterogeneity estimates depend on sample composi-

tions, which can constrain the multiple spell approach, by leveraging the approach using observables.

More specifically, Proposition 4 limits the analysis of heterogeneity to the sample of individuals with

multiple unemployment spells, due to the nature of the multiple spell approach. To correct for

the potential differences in heterogeneity due to sample selection, we can compare the observable

heterogeneity in the sample of individuals with only one spell of unemployment to the observable het-

erogeneity in the sample of individuals with at least two spells of unemployment, i.e., covt1d (F t1d , F̂
t1
d )

vs. covt1,t2d (F t1d , F̂
t1
d ).

Finally, in the approach with multiple spells we exploit the heterogeneity that is persistent across

cohorts t for individuals with multiple spells. As discussed in detail above, to study the selection across

10We note that when the observable characteristics used in the prediction can change across spells, we do not re-
quire orthogonality of observable characteristics and unobserved heterogeneity across spells when correcting the lower
bound. Proposition B2 in the Appendix B establishes this modified lower bound as Λ = L + covt1,t2d (F̂ t1

d , F̂ t2
d ) −

covt1,t2d (F t1
d , F̂ t2

d ) ≤ vart1,t2d (T t1
d ). We note that the orthogonality across spells rules out history dependence where

prior job finding affects future job finding. While this is implicitly assumed in the literature using multiple spells for
identification, this can be partially relaxed to the extent that the history dependence is captured through the observables.
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durations, we need to identify the heterogeneity that is persistent over the spell of unemployment,

covtd(T
t
d, T

t
d+1). We can in principle apply the same approach in multiple spell data and identify the

heterogeneity that is persistent across both spells and durations and thus identify the unobservable

component of job finding that is persistent over the spell of unemployment and thus contributes to

selection, covt1,t2d,d+1(F t1d , F
t2
d+1).11

While our main focus in the empirical analysis is on using observables for identification, we will

harness the complementary value of the multiple spell approach to further improve our understanding

of the differences in job finding across job seekers, over the unemployment spell and over the business

cycle.

3 The Predictability of Long-Term Unemployment

This section presents the prediction model, evaluates its predictive value and shows the complementary

value of using multiple spells in estimating ‘unobserved’ heterogeneity. We start by describing the

data and institutional context.

3.1 Data and Context

We merge several data sources from Sweden for the universe of prime-age job seekers starting an

unemployment spell between 1992 and 2016.

First of all, we use data on unemployment spells from the Public Employment Service (PES),

merged with data on UI benefit payments from the UI funds in Sweden. Unemployment benefits

replace 80% of pre-unemployment earnings for workers who have worked for at least 6 months prior

to being displaced and contributed to the UI system for at least 12 months. The unemployment

benefit level is subject to a maximum and a minimum. Before 2001, the benefits were constant

during the unemployment spell. Downward steps have been introduced in subsequent reforms for

both the replacement rate and the maximum level. UI benefits are typically received for 450 business

days, after which the unemployed must accept to participate in counselling activities and, potentially,

active labor market programs (ALMP).12 The PES organizes various ALMPs for unemployed workers

with training programs being the cornerstone of Swedish labor market policy for many years. The

ALMPs are targeted to the long-term unemployed or those who are ‘typically at risk’ of long-term

unemployment [Richardson and van den Berg, 2013]. Our data contains information on the date

the unemployed registered with the PES (which is a pre-requisite to start receiving UI benefits),

unemployment benefits received and participation in the ALMPs. We define an unemployment spell

as a spell of non-employment during which an individual receives unemployment benefits. To define

the start date of an unemployment spell, we use the registration date at the PES. The end of a spell

is defined as finding any employment or leaving the PES for other reasons.

11In parallel to equation (16), one can decompose the persistent heterogeneity across two spells at durations d and

d + 1 as covt1,t2d,d+1(T t1
d , T t2

d+1) = covt1,t2d,d+1(T t1
d (Xt1

d ), T t2
d+1(Xt2

d+1)) + covt1,t2d,d+1(εt1d , ε
t2
d+1) + cross terms. Note that the

sample selection is more severe in this case compared to the case illustrated in equation (16), because not only we need
to observe two spells for the same individual but also it requires that the unemployed job seeker did not find a job
between durations d and d+ 1 in the second spell.

12See Kolsrud et al. [2018] for more details on the UI schedule in Sweden.
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Second, the unemployment data are linked with the longitudinal dataset LISA which merges

several administrative and tax registers for the universe of Swedish individuals aged 16 and above.

In addition to socio-demographic information (such as age, family situation, education, county of

residence, immigration, etc.), LISA contains exhaustive information on earnings, taxes and transfer

and capital income on an annual basis. It also includes data on the occupation and industry of workers.

We use the matched employer-employee register (RAMS) to obtain further information on workers’

employers and their tenure prior to becoming unemployed.

Third, for selected years and sub-samples, we have access to additional data sources. This includes

granular data on asset portfolios, including liquid bank accounts, outstanding debt and other financial

and real asset holdings for the universe of households, but only up to 2007 when the wealth tax

in Sweden was abolished. We use data on union membership and contributions to the UI system

[Landais and Spinnewijn, 2021]. Sweden is with Iceland, Denmark and Finland, one of the only four

countries in the world to have a voluntary UI scheme, in which an important role is played by the

unions who administer the unemployment benefits. Workers who have not contributed to obtain the

comprehensive UI coverage receive the minimum benefit level instead. The premium for comprehensive

UI coverage was heavily subsidized, but this subsidy has been reduced in a reform in 2007. Around

80-90 percent of workers have been covered by comprehensive UI. Finally, we have IQ data for men

from military enlistments and we have also merged survey data from SILC (Survey of Income and

Living Conditions) to our administrative data with questions related to health and mental well-being.

Table 1 lists the range of variables used in the baseline model, which are generally available for all

years in the sample period and thus allows estimating the baseline model for every year in a consistent

manner.13 We only use pre-determined variables, i.e. variables that predate the unemployment spell

in question. The set of variables thus includes basic socio-demographics, which are usually available

in labor force survey data; migration history, including citizenship and years since immigration; yearly

income, both wage and non-wage, as well as income from other household members, for each year over

the 5 years pre-dating the year of the unemployment spell; employment history over the five years,

pre-dating the year of the unemployment spell, including the employment status in November of each

year, the number of unemployment spells, days on UI, days on DI, and the number of employers. In

our baseline model, we include these variables for both over the last 2 and the last 5 years to capture

the timing of the employment histories. We also include job tenure at the pre-unemployment firm and

its characteristics (size and employment growth and layoff rate); finally, our baseline model includes

3-digit industry and municipality dummies. Additional variables – which are not available in all years

or only for a subset of individuals – are used in extensions of the baseline model for the year 2006.

Table 2 shows descriptive statistics for the sample of unemployed job seekers in our sample. Panel A

compares the sample of unemployed to the overall population and shows that the sample of unemployed

is selected towards the young, foreign and low-education and low-income population. Overall, our data

over the years 1992 to 2016 features over 7 million unemployment spells. An important observation

is that many of these spells include the participation in ALMPs including training and job search

13A limitation to this is that, since the LISA panel only starts in 1990 and even later for days spent on UI and DI,
income and employment histories are partly censored for the earliest years in our sample. We impute these censored
observations using the individual’s history when partially observed, falling back on the population mean in 1995 when
the full history is missing.
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Table 1: Variables Included in Baseline Prediction Model

Socio Migration Income Employment Industry
- demographics history (last 5 years) (last 5 years) and municipality

Educational Years since Labour Number of 3-digit
attainment migration Income unemployment spells industry code

Age Citizenship Income from Days on UI Municipality
Gender other sources Days on DI

Marital status Income of other Employment status

Number HH members Number of
of kids employers

Age of kids Pre-unemployment job tenure

Foreign Pre-unemployment firm
citizenship (size, growth rate, layoff rate)

Notes: For income histories, we include variables capturing annual income during the year before the unemployment
spell and total income during the preceding 4 years. For employment histories, we compute the variables over the last
2 years and last 5 years.

assistance, though a majority of them start at 12 months of unemployment or later. We include these

spells in our baseline prediction exercise, but in a series of robustness checks we perform the prediction

exercise without spells that enter ALMPs in the first 6 months of the unemployment spell. In Panel

B, we show additional statistics for employment histories of the unemployed in our sample, including

days on UI and DI, number of employers and employment spells, the pre-unemployment tenure, prior

employer size and its layoff rate in the prior year. Overall, the table shows that there are substantial

differences in these variables across the unemployed in our sample.

3.2 Prediction Model

Our baseline model predicts the long-term unemployment risk for spells starting in 2006. To be

precise, we predict the probability that someone does not leave unemployment in the first 6 months of

the unemployment spell. We will mostly report the complement of this probability, which we will refer

to as the 6-month job-finding probability at the start of the unemployment spell. We will probe the

robustness of our results to more narrow definitions of job finding and find that the predictive power of

our model remains very similar. We then redo the prediction exercise for every year in the data and also

estimate the 6-month job-finding probabilities for workers at 6 and 12 months of the unemployment

spell in 2006. As in any prediction exercise, there is a trade-off between improving predictive power and

over-fitting when including more variables. To address this issue, we use machine learning techniques

to optimally choose variables to include in the prediction model and generate predictions. More

specifically, we use an Ensemble Model (see, e.g., Einav et al. [2018]), which combines three different

Machine Learning (ML) algorithms: LASSO, Gradient-Boosted Decision Trees, and Random Forest.

These models take different approaches for the selection of variables, but also allow differently for non-

linearities and interactions between these variables. The Ensemble Model trains each ML algorithm

separately and, in a final step, assigns each of these three algorithms a linear weight. All results

presented here use the predictions of this Ensemble Model, but evaluated in the hold-out sample.
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Table 2: Descriptive Statistics

A. Unemployed Sample vs. Population Mean
Unemployed Population

Age 36.0 40.0
Female 48% 49%
Foreign 16% 8%

Primary Edu. 21% 16%
Secondary Edu. 57% 54%
Tertiary Edu. 21% 29%

Labour Income (2006 SEK) 100,500 199,700
Other Income (2006 SEK) 12,100 14,900
Household Income (2006 SEK) 106,200 156,200

Number of unemployment spells 7,259,797
Spells interrupted by training 1,628,080

B. Employment History Mean Percentile
25th 50th 75th

Days on UI (2y) 113 0 48 190
Days on UI (5y) 251 0 156 409

Days on DI (2y) 34 0 0 0
Days on DI (5y) 66 0 0 19

Unemp. Spells (5y) 1.4 0 1 2
Employers (5y) 1.9 1 2 3

Tenure (years) 1.8 1 1 3
Firm Size 4,460 15 147 3,063
Firm Layoff Rate 35% 17% 25% 48%

Notes: Descriptive statistics for the baseline sample for the years 1992-2016 and ages 25-54.

We provide more detail on the Ensemble Model and the tuning and estimation of the underlying

prediction algorithms in Appendix C.

To evaluate the accuracy of our prediction model, we compare predictions and outcomes in the

hold-out sample for the year 2006 in Panel A of Figure 1. The figure shows a binned scatter plot of the

averages of the 6-month job-finding rate for 20 equally sized bins of the predicted 6-month job-finding

probability. Typically, attenuation of outcomes from the 45-degree lines suggest issues with sampling

error due to limited sample size, which is not a significant issue here as the prediction exercise yields

outcomes that are close to the 45-degree line. The individual-level linear regression, shown as a red

line, of a dummy for finding a job within 6 months on the predicted 6-month job-finding probability

has a slope of 1.08 (0.01).

Our prediction algorithm thus seems to work very well, producing predictions that are subject to

minimal bias. In Appendix C, we gauge this further by performing this evaluation for different groups

separately. For the subgroup analysis, we split the sample by income, citizenship, gender, education,
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days on UI and days on DI, but we also consider a split into 36 groups, based on income decile, gender

and citizenship, and into 144 groups based on income decile, gender, citizenship, days on DI and days

on UI. The slope remains close to one in each of these separate analyses, showing that our prediction

exercise also does well for different prediction models and sub-groups.

Finally, we also evaluate the accuracy of the three predictions algorithms separately and compare

it to a linear model estimated with the same variables as in the baseline ML model. As the least

square estimates of the linear model are unbiased, this is assessing the importance of sampling error

in attenuating the relation between predictions and outcomes. As shown in Appendix C, we again

find that the slopes are very close to 1, just like for the Ensemble Model. This also suggests that our

approach does not suffer from any biases that may arise in the non-linear ML algorithms.

Overall, we conclude that our prediction exercise performs very well and we do not detect any

biases in the prediction, neither for job seekers with specific predicted job-finding probabilities, nor

for job seekers belonging to specific observable groups.

3.3 Predictive Value

We use our prediction model to assess the heterogeneity in long-term unemployment risk. Panel B of

Figure 1 shows the distribution of the predicted 6-month job-finding probability in the hold-out sample

for the year 2006. The figure shows substantial dispersion in the job-finding probability, with our

predictions covering almost the entire range from 0 to 100 percent. The average job-finding probability

equals 71 percent. For the 80th percentile of the sample, the predicted job-finding probability is as

high as 85 percent. The distribution has a long left tail. The 20th percentile corresponds to a predicted

job-finding probability of 58 percent, the 5th percentile to a probability of 36 percent. The predicted

job-finding probability is subject to error in the prediction model and thus Figure 1 can in principle

exaggerate the dispersion in the 6-month job-finding risk. As shown above, the covariance of the

predicted job-finding rate with actual job finding in the hold out sample gives an accurate estimate

of the variance in job-finding risk. Our estimate of the covariance is 0.029, which is substantial and

slightly above the variance of 0.027. This suggests that the prediction error is rather small, confirming

the results from Panel A of Figure 1. We also find that the R-squared of the predicted job-finding

rate with actual job finding is 0.150. To address the issue of sampling error, we also bootstrapped

the 95% confidence interval for these moments and find its fairly tight with [0.029, 0.030] for the

covariance and [0.146, 0.154] for the R-squared.14 The R-squared may appear fairly low, but the

dependent variable is a binary, random realization of a probability. The low R-squared thus reflects

the noise associated with this binary realization.15 A complementary way to evaluate the predictive

power of the model is to consider the area under the ROC. This curve contrasts the false-positive rate

to the true-positive rate in the hold-out sample, depending on the threshold used to map the predicted

job-finding probabilities into a binary outcome. The area under the ROC equals 0.73, compared to a

lower bound of 0.5 for a random prediction model and an upper bound of 1 for a model with perfect

foresight.

Our baseline model studies job-finding probabilities at the start of unemployment spells that

14We draw 500 bootstrap samples from the hold-out sample in 2006, following Mullainathan and Spiess [2017].
15For example, if T is uniformly distributed on interval [0, 1], then R2(F, T ) = 1/3.
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Figure 1: Baseline Prediction Model in 2006

A. Comparing Predictions to Outcomes
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Notes: Panel A presents a binned scatter plot of observed and predicted job finding.
That is to say, we split the hold-out sample into 20 vigintiles of predicted 6-month
job-finding probability and report, for each bin, mean observed and predicted 6-month
job-finding rates at the start of the spell. The red line shows the results of a linear
regression at the individual level of a dummy for finding a job within 6 months on
the predicted 6-month job-finding probability. Panel B shows the distribution of the
predicted job-finding probability in the hold-out sample for the year 2006.
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initiated in 2006, which is prior to the Great Recession. Panels A and B of Figure 2 illustrate how the

distribution of predicted job-finding rates changes when considering instead job seekers who are long-

term unemployed or became unemployed during the Great Recession. In particular, Panel A compares

the distributions for individuals six months into the spell vs. at the start of the spell, while Panel B

compares the distributions for individuals at the start of the spell in 2009 vs. 2006. Not surprisingly,

both for the long-term unemployed and the recession year, the job-finding rates are substantially lower

on average. In both cases, few individuals remain who are almost certain to find a job in the next six

months, while the predicted job-finding probabilities become more compressed in the bottom range

of the distribution. As discussed in the conceptual framework, the observed differences in job finding

can result from compositional changes in the pool of unemployed job seekers, but also from dynamics

in job-finding chances, which can be heterogeneous too. We aim to separate the different forces in the

next two sections.

Further Robustness. We perform a series of robustness checks where we evaluate the predictive

value and accuracy over different horizons, for different samples and for different models.

First, while our focus is on job finding over a 6 month-horizon, as it corresponds to the standard

measurement of long-term unemployment risk, we can evaluate the job-finding rates over different

horizons too. Panel C of Figure 2 shows substantial dispersion in predicted job finding when con-

sidering instead job finding over the first 3 or 12 months of the unemployment spell. The prediction

exercise yields a similar predictive power when the job-finding rate is measured at 3, 6 and 12 months

of the unemployment spell (see Appendix Table A1). Moreover, when we compute the R-squared of

the prediction for the 3- and 12-month job-finding rate with actual job finding over the first 6 months,

we find that the R-squared is very similar compared to using the 6-month model. This is re-assuring

and suggests that our results do not rely on a particular horizon chosen for the job-finding rate.

Second, we gauge how our prediction is affected by our definition of job finding and the transition

through active labor market policies. We first consider active labor market policies (ALMP) started

in the first 6 months of the unemployment spell. Figure A1 in the Appendix shows that these spells

are not strongly correlated with predicted long-term unemployment risk. Appendix Table A2 also

shows that the R-squared and covariance change little when we exclude these spells from the hold-out

sample. We also re-estimate the model after excluding all spells with ALMP starting in the first 6

months and we find that the R-squared remains similar both in the hold-out sample of spells with the

ALMP spells included (R2 = 0.147) and excluded (R2 = 0.146) (see also Appendix Figure A1).

Third, we evaluate the predictive power of our baseline model when we use additional information

on the end of the unemployment spell. As shown in Appendix Table A2, when we re-define job finding

in the hold-out sample as those spells which ended but did not take up education other than training,

the predictive power of the baseline model remains nearly unaffected. When we re-define job finding

as those spells which ended but did not take up education and did not end for unknown reasons,

the predictive power is somewhat lower, but still high with an R-squared of 0.128. Furthermore,

when we exclude the about 10% of recalls to the previous employer from the sample, the R-squared

remains nearly unaffected. This also remains true when we retrain the model excluding all observations
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Figure 2: Distribution of Predicted Job-Finding Probability

A. At Start of Spell vs. 6 Months into Spell B. 2006 vs. 2009
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Notes: This figure reports the distribution of various predicted job-finding probabilities. In all four panels, the baseline
(in blue) is the predicted 6-month job-finding probability at the start of the spell for the 2006 holdout sample. Panel
A compares the baseline with the predicted distribution 6 months into the spell. Panel B compares with the predicted
distribution in 2009. Panel C shows the predicted job-finding probabilities over 3-month and 12-months horizons.
Finally, Panel D contrasts the baseline model, which uses all the variables shown in Table 1, with the basic model,
which only uses the socio-demographic variables shown in the table.

that ended in a recall.16 The fact that the recall/new job distinction does not affect our results on

observable heterogeneity is re-assuring.

Finally, we evaluate the predictive performance of the different sub-models underlying the Ensem-

ble Model and also compare them to the linear model. Appendix Table A2 shows that all sub-models

perform well, with the R-squared being the highest for the gradient-boosted model (0.150) and the

lowest for the LASSO (0.134). Appendix Figure C4 confirms this ranking plotting the area under

the receiver operating characteristic curve (AUC), which is a standard metric to compare predictive

power of ML models. The different models also provide predictions that are highly correlated, with

the correlation coefficient between 0.92 and 0.96 (see Appendix Figure C5). The Ensemble Model uses

a linear combination of the three sub-models, but the gain in predictive performance relative to the

16We find that the recall rates in Sweden are relatively low and only slowly declining in comparison with Katz [1986].
See also Nekoei and Weber [2015].
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separate prediction models is minimal.17 Interestingly, we find that also the linear model performs

very well with an R-squared of 0.137. It also provides predictions that are again highly correlated with

the submodels, with a correlation coefficient of 0.89 and higher. Overall, this suggests that over-fitting

is not a first-order issue when the sample of unemployment spells is large. Moreover, the potential

non-linearities and interactions between variables leveraged by ML methods are not particularly im-

portant either for the high predictive power of our baseline model. Instead, what matters is the rich

data going into the model.

3.4 Predictive Variables

While our prediction model does not allow us to evaluate the causal impact of job seekers’ character-

istics on their unemployment risk, we are interested in how much different sets of variables contribute

to the predictive value of the model. Prior work using labor force surveys to predict long-term un-

employment has been mostly limited to socio-demographic variables, including age, gender, family

composition and education. A simple linear regression already reveals that various other charac-

teristics relate significantly to long-term unemployment risk, conditional on these socio-demographic

variables. To make the estimates comparable and help with the interpretation, we first standardize

both the explanatory variables and the predicted job-finding probabilities. The left panel of Figure

3 shows that on average job seekers face a higher risk of long-term unemployment when they are

older and less educated. This risk is also further increased for job seekers who had lower income and

tenure in their prior employment and spent more days on UI and DI prior to the unemployment spell.

The strength of our analysis comes from the data-rich environment, which allows us to observe more

characteristics of job seekers, but also prior employment and unemployment outcomes, which may

further proxy for otherwise unobservable heterogeneity across job seekers.

We can evaluate more formally how the predictive value of our baseline model compares to a

basic model, which only uses socio-demographic variables (see Column 1 of Table 1). Panel D of

Figure 2 shows that the predicted dispersion using more limited information is substantially smaller.

To quantify how much smaller, Table 3 reports the R-squared in the hold out sample for various

sub-models. The basic model with only socio-demographic variables has a predictive power that is

less than half of our full model (R-squared of 0.071). We then sequentially add variables that are

increasingly unlikely to be available in surveys and have been rarely used in earlier work. As shown in

the top panel of the table, the subsequent inclusion of income variables and the employment history

substantially improves the predictive power of the model and these variables thus seem key for the

predictability of long-term unemployment risk. Moreover, once we have added these variables, further

adding income history, migration history, and location and industry effects do not add much predictive

power. Clearly, the ordering of variables used for various sub-models in Table 3 matters as different

predictors are correlated. To compare the marginal contributions of different sets of variables, we

add each of them separately to the socio-demographics in the basic model. The bottom panel of the

17Note that the linear weight given to the LASSO predictions is negative for the baseline model estimated on the 2006
sample of job seekers at the start of the spell, reflecting the collinearity among the predictions. The respective weights
are 0.710 for the gradient-boosted model, 0.338 for the random forest and −0.048 for the LASSO. These weights vary
across years and unemployment durations, as shown in Appendix Figure C3. Restricting the weights to be positive does
not meaningfully affect the predictive value of the Ensemble Model.
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Figure 3: Heterogeneity in Job Finding, Duration Dependence and Cyclicality

So
ci

o-
de

m
og

ra
ph

ic
s

In
co

m
e

Va
ria

bl
es

Em
pl

oy
m

en
t

H
is

to
ry

Pred. JFR

Age

Female

Kids

Kids <18

Foreign

Higher Edu.

Secondary Edu.

Labour Income

Other Income

Household Income

Days on UI (2y)

Unemp. Spells (2y)

Days on DI (2y)

Tenure

-.75 -.5 -.25 0 .25 .5 -.75 -.5 -.25 0 .25 .5

Pred. JFR Duration Dep. (βD) Cyclicality (βU)

Regression Coefficient

Notes: This figure presents results from linear regressions of the predictions on a subset of observables. Both right-
hand-side and left-hand-side variables have been standardized by subtracting the sample mean and dividing by the
sample standard deviation, so the coefficients can be interpreted as the standard-deviation change in the outcome
associated with a one-standard-deviation change in the covariate. The left panel shows the OLS coefficients of a
regression of the predicted 6-month job-finding probability at the start of the spell, from the baseline model in
2006, on the variables listed on the y-axis. The right panel shows the coefficients from regressions of the duration
dependence parameter βD (see Section 4) and the cyclicality parameter βU (see Section 5) on the same covariates
and the predicted job-finding rate. In both panels, standard 95% confidence intervals are shown around the point
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table reveals that adding either the income variables, the migration history, or industry fixed effects

increases the R-squared by about 30 percent and thus realizes a third of the gain in predictive power

when expanding from the basic to the baseline model.18

The most predictive set of variables regards the individuals’ employment history prior to the unem-

ployment spell. This includes number of days spent unemployed, the number of unemployment spells,

but also DI receipt and number of job switches (see column 4 of Table 1). A further decomposition

of the prior history shows that information in the year prior to unemployment is sufficient to realize

18As non-linearities do not seem very relevant, we can evaluate the contribution of different sets of variables by
sequentially adding them to a linear regression of the predictions and observing how the R2 changes. For this, we
calculate a Shapley-Owen decomposition of the R2, as described by Grömping [2007] and Huettner and Sunder [2012].
Intuitively, when the regressors are correlated, the change in the R2 that we attribute to each variable depends on
the order in which it is introduced into the regression. The Shapley-Owen decomposition overcomes this limitation by
computing the average change across all possible orderings of the variables. The conclusions are very similar, as shown
in Appendix Table A9.
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most of the gain in predictive power, with an increase in R-squared of 67% relative to an increase of

6% or less for any additional year (see Appendix Table A4). The marginal contribution is highest

when using the most recent year, but still sizeable at 13% when only adding information from five

years earlier.19

We explore to what extent the predictive power of the baseline model can be improved further by

adding additional variables available in 2006. As these variables are not available for all years between

1992 and 2016 and some are only available for a subsample, we did not include them in the baseline

model. Panel C of Table 3 shows that using further information on the prior occupation (at the 3-

digit level) or union membership adds limited predictive power to the baseline model. Strikingly, also

adding detailed information on individuals’ financial and real assets adds basically no predictive power.

The same is true for IQ, which we observe for men from military enlistments. Adding information

on UI benefits (only observed for 54.6% percent of the spells) does increases the R-squared by 4.4%.

This is a more significant increase, but still arguably small in light of the attention given to the

design of UI benefits and the corresponding moral hazard. Of course, the UI benefit level received

depends on the pre-unemployment earnings and employment history, which are included in the baseline

model. However, even relative to the basic model including only basic socio-demographics, the UI

benefits and thus job seekers’ potential search responses explain relatively little of the variation in

employment outcomes (see Appendix Table A6). Adding workers’ choices to get comprehensive UI or

not increases the R-squared by only 0.4%. However, we note that most workers in our sample do get

the comprehensive UI (70.3%) and prior work has shown relatively limited risk-based selection into

comprehensive UI with most of it explained by observables included in our prediction model [Landais

et al., 2021]. The final column in Panel C of Table 3 shows that the additional information from the

various administrative registers jointly increases the R-squared for our prediction to 0.156 (relative to

0.150 for our baseline model). Other than information on DI receipt, our prediction model uses no

information on job seekers’ health. In Appendix Table A5 we briefly explore the potential predictive

power of health status using survey data. The results indicate that information on mental health in

particular adds additional explanatory power above and beyond our model predictions, although we

cannot perfectly address concerns of over-fitting in the small survey samples.20

Overall, this confirms that our prediction model seems saturated along some key dimensions of

heterogeneity. However, it also reminds us that the predicted heterogeneity remains a lower bound

on the overall heterogeneity across job seekers.

3.5 Identifying Unobserved Heterogeneity in Multiple Spell Data

So far we have focused on unemployment spells that initiated in 2006. However, we observe the

universe of unemployment spells for the period 1992-2016 and thus observe multiple unemployment

spells for a sizeable share (69%) of the individuals in our data. This allows us to estimate heterogeneity

following the multiple spell approach, which we can combine with our approach to obtain a tighter

estimate of the overall heterogeneity as outlined in the conceptual framework in Section 2.4. We follow

19Panel C in Appendix Table A4 also shows that none of the specific features of the pre-unemployment history (e.g.,
UI receipt, number of unemployment spells, employment switches) by themselves are driving the predictive power.

20After constructing a mental health index using principal component analysis, we find that adding this index to our
model predictions in a linear regression model increases the R-squared by 14 percent.
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Table 3: R2 for various models in the year 2006

A. Sub-models of Baseline - Sequential

(1) (2) (3) (4) (5) (6) (7) (8)

R2(F̂0, F0) 0.071 0.099 0.106 0.140 0.142 0.147 0.149 0.150

Change (j) vs (j − 1) - +38.5% +7.3% +32.5% +1.1% +4.1% +1.2% +0.6%

Socio-demographics X X X X X X X X
Labour Income X X X X X X X
Other Income X X X X X X
Employment History X X X X X
Income History X X X X
Migration History X X X
Industry X X
Municipality X

B. Sub-models of Baseline - Marginal

(1) (2) (3) (4) (5) (6) (7) (8)

R2(F̂0, F0) 0.071 0.099 0.081 0.137 0.100 0.089 0.098 0.078

Change (j) vs (1) - +38.5% +14.5% +92.2% +40.3% +24.7% +37.9% +9.1%

Socio-demographics X X X X X X X X
Labour Income X
Other Income X
Employment History X
Income History X
Migration History X
Industry X
Municipality X

C. Extensions of Baseline

(1) (2) (3) (4) (5) (6) (7) (8)

R2(F̂0, F0) 0.150 0.151 0.151 0.150 0.150 0.151 0.157 0.156

Change (j) vs (1) - +0.7% +0.3% -0.3% +0.1% +0.4% +4.4% +3.9%

Baseline Variables X X X X X X X X
Occupation X X
Union member X X
Wealth X X
IQ X X
UI choice X X
UI benefits X X

Notes: The table shows the R2 of the predicted 6-month job-finding probability and a dummy for actual
job finding in the hold-out sample for the year 2006 for various models. Panel A starts from the basic
model in (1) and adds variable groups sequentially until all of the groups included in the baseline model
are incorporated in (8). Panel B adds the same variable groups one at a time. Finally, Panel C starts
from the baseline model in (1) and adds additional information from other administrative data sets, first
one at a time and then all at once in column (8).

28



the same terminology and classify heterogeneity by being persistent or transitory across spells for the

respective observable and unobservable components.

Table 4 puts together our estimates of the covariances between observed and/or predicted job

finding rates, either across or within spells and shows how to quantify the different sources of hetero-

geneity. We focus on job finding rates at the start of the spell, but extend this to job finding rates

later in the spell in Section 4. The analysis is also restricted to the hold-out sample of individuals

with at least two spells, choosing two spells at random if the individual has more than two. To gauge

sample selection, we also compare the estimates of the observable heterogeneity for the multiple spell

sample and the total sample used in our prediction analysis.

Table 4 provides a number of insights. The covariance in observed job finding between two spells in

the lower left corner (PH) of Table 4 identifies the heterogeneity in types that is persistent between the

two spells for this particular sample. It is estimated to be 0.030. This is substantial and slightly higher

than the observable heterogeneity we find in the reference sample, which includes job seekers who only

experience one spell. As discussed before, under the assumption of unbiasedness in prediction, the

covariance between the predicted and actual job finding for the same cohort, but evaluated in a hold-

out sample, identifies the observable heterogeneity (ÕH), which is estimated to be 0.027. The tilde

refers to the reference sample for which it is evaluated. Of course, these two estimates are difficult to

compare by themselves. However, we can quantify the importance of the different subcomponents of

heterogeneity by combining the two approaches on the same sample.

First, the covariance in the predicted job finding in the first spell with the actual job finding in

the second spell in the upper left corner (POH) identifies the persistent observable component of

heterogeneity for the multiple spell sample. It is estimated to be 0.017 or about 56% of the total

persistent heterogeneity, PH. This thus shows how unobservable heterogeneity remains important in

our data-rich environment and highlights the advantage of using multiple spells for identification.

Second, we can estimate the total observable heterogeneity for this multiple spell sample, using

again the covariance between the predicted and actual job finding for the same cohort, which is

estimated to be 0.023 (see OH in Table 4). This is 37% higher than the persistent component POH

for the same multiple spell sample. This is due to transitory heterogeneity, either coming from changes

in observable characteristics or changes in how observable characteristics relate to job finding across

spells. While less important than the unobservable component, the transitory component is also

sizeable and highlights a key advantage of using observables. Moreover, building on the approach

using observables, we can compare the estimate of the observable heterogeneity for the multiple spell

sample and the reference sample. Including individuals with only one spell increases the estimated

covariance between predicted and actual job finding for the same cohort from 0.023 to increases to

0.027 or by an additional 17%. This suggests that there is additional heterogeneity in the total sample,

which is missed when restricting the sample to individuals with multiple spells.21

Third, following Proposition 4, we can combine the estimated covariances using both approaches

21To be precise, for every pair of spells in the two-spell sample, we draw a random spell from the same year as the
second spell, but including individuals with one spell only. This keeps the distribution of number of spells by year the
same in the two-spell and reference sample. This explains why this estimate deviates slightly from the estimate of 0.029
reported earlier for the year 2006.
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Table 4: Observable, Unobservable, Persistent and Transitory Components of Hetero-
geneity in Job Finding

Multiple Spells Sample Reference Sample

Persistent Transitory Total Total

Observable
POH = Covt1,t20,0 (F̂ t1

0 , F t2
0 ) OH − POH OH = Covt1,t20,0 (F̂ t2

0 , F t2
0 ) ÕH = Covt20 (F̂ t2

0 , F t2
0 )

0.017 0.006 0.023 0.027

Unobservable
PH − POH

0.013

Total
PH = Covt1,t20,0 (F t1

0 , F t2
0 ) By Proportionality By Proportionality

0.030 0.042 0.048

Notes: This table reports key statistics for the sample of individuals with multiple unemployment spells between 1992
and 2016. The sample size consists of 735,797 individuals. For the first three columns, we construct the two-spell sample
by restricting the analysis to individuals with at least two spells in our hold-out sample. We take two of the spells,
choosing at random if there are three or more, and randomly label them as “first” and “second”. For the last column,
we construct a reference sample by matching each second spell with a spell chosen at random from the hold-out sample
of the same calendar year, without excluding unique spells. F t1

0 (F̂ t1
0 ) resp. F t2

0 (F̂ t2
0 ) refers to actual (predicted) job

finding over the first 6 months in the first resp. second spell.

to establish a tighter lower bound for the multiple spell sample:

L = OH + PH − POH = 0.036. (17)

Or alternatively, having found that the observable heterogeneity is more pronounced for the reference

sample than for the multiple spell sample, we can make the same assumption for the unobservable

heterogeneity and find an even tighter bound for the reference sample:

L̃ = ÕH + PH − POH = 0.040. (18)

Expressing this lower bound relative to the variance in job finding outcomes in the 2006 sample, this

implies that at least 19% of the variation in job finding realizations can be determined ‘ex ante’, which

can be directly compared to the R-squared of 15% for our prediction model. This highlights again the

strong degree of complementarity between the two approaches. We find comparable lower bounds on

the overall heterogeneity when either using the identification approach relying on multiple spells or

the identification approach relying on observables. Combining the two approaches, however, we can

establish a lower bound which is substantially higher.

Finally, the one component of heterogeneity that we cannot identify directly is the unobserved

heterogeneity that is transitory across spells. As discussed in Section 2.4, one can gauge the potential

importance of this term, by assuming that the ratio of the observable vs. unobservable heterogeneity is

the same for the persistent and transitory components. Given this – admittedly somewhat speculative

– assumption, we find a variance of the transitory unobservable component of 0.006, which implies

a total variance of 0.042 for the multiple spell sample.22 Assuming that the same proportionality

22We can assess the reasonability of the proportionality assumption by studying how the ratio of the observable vs.
unobservable heterogeneity changes when studying the persistent component for different samples. Table A7 shows
that the share of unobservable heterogeneity increases from 0.44 to 0.47 (0.58) when restricting the two-spell sample
further to spells two (five) years apart and thus considering persistence over a longer horizon. Table A8 shows that
the proportion remains unchanged when restricting the two-spell sample to those who have been LT unemployed in (at

30



assumption holds between the sample of multiple spells and the sample of all spells (including single

spell individuals), we get an estimate of the total variance in job finding rates of 0.048 for the reference

sample, increasing the explained share of variation in job finding outcomes to 23%. This suggests that

our lower-bound estimate is tight relative to the overall degree of heterogeneity.

To sum up, while both approaches highlight a large role for heterogeneity in job-finding risk

and of similar magnitude, they identify different elements of heterogeneity. The two approaches are

thus highly complementary and jointly imply a larger role for heterogeneity in job-finding risk than

identified by the methods separately.

4 Job Finding over the Unemployment Spell

The substantial heterogeneity in job-finding rates at the start of the spell implies that the long-term

unemployed will differ from the short-term unemployed. This section studies how the job-finding

prospects change over the unemployment spell and revisits the question how much changes in the

composition of unemployed job seekers contribute to this. We also study heterogeneity in the dynamics

of job finding that individuals experience over the unemployment spell.

4.1 Dynamic Selection into Long-Term Unemployment

We first study how much compositional changes contribute to the average decrease in job-finding rates

over the unemployment spell. Figure 4 provides a graphical illustration of the dynamic selection, using

the prediction model estimated in the prior section for job seekers at the start of the unemployment

spell. The figure shows how the average of these predictions changes for the pool of job seekers still

unemployed at different unemployment durations. The decline is substantial. For the job seekers still

unemployed six months into the spell the average predicted job finding is 9.3 percentage points lower

compared to all the unemployed starting a spell. This is 56 percent of the observed drop in job-finding

rates of 16.6 percentage points. For those still unemployed after one year, the average predicted job

finding is 14.6 percentage points lower, corresponding now to 63 percent of the observed drop. Of

course, such analysis is constrained by the observables used in our prediction model. Using our basic

model with socio-demographic variables only, we explain a drop of 8 instead of 14.6 percentage points

and would thus assess the dynamic selection as potentially only half as important.

The actual contribution of dynamic selection to the decline in job finding rates, however, depends

on the heterogeneity in job finding rates that remains persistent over the spell, as discussed in Section

2. That is, in order to interpret the residual drop in Figure 4 as the dynamic effect of unemployment,

i.e., as true duration dependence, the job-finding rates would need to be persistent over the spell. If

not, the mean reversion in job-finding rates among the surviving unemployed would imply that the

residual drop underestimates the true-duration dependence. Following Proposition 2 and Corollary

1, we can separate out the role of dynamic selection and provide a lower-bound by estimating the

persistent observable heterogeneity, now not across unemployment spells like in Table 4, but over

least) one of the spells (0.44) and thus considering a component that remains persistent not just across spells, but also
over the spell of unemployment. Overall, the share of the unobserved heterogeneity is thus fairly stable across these
different samples.
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Figure 4: Dynamic Selection over the Unemployment Spell
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Notes: The figure compares the evolution of the empirical 6-month job-finding rate d
months into the spell with the predicted 6-month job-finding rate at the beginning of the
spell for individuals who reach the d-th month of unemployment, in the 2006 hold-out
sample.

the unemployment spell. For this we need to predict job finding rates for job seekers at longer

unemployment durations. We can then evaluate how persistent differences in job finding rates are over

the unemployment spell by comparing the relative predictive value of the prediction model estimated

on the unemployed later in the spell vs. on the unemployed earlier in the spell for the outcomes for

the latter. This is shown in Table 5, focusing again on the sample of job seekers in 2006.

We first consider job seekers at the start of the spell and the predictive value of predictions

estimated six months into the spell. We find R2
0(F0, F̂6) = 0.124, which compares to R2

0(F0, F̂0) =

0.150 when using the contemporaneous predictions. The R-squared is evaluated in the hold-out sample

of newly unemployed and not just those who remain unemployed for at least 6 months. Our R-squared

estimates suggest that more than 80 percent of the observable heterogeneity is persistent over the first

six months of the unemployment spell. Only a small fraction of the heterogeneity estimated at the start

of the spell is transitory. Following Corollary 1, we can then calculate cov0(F0, F̂6)/(1 − E0(F0)) to

provide a lower-bound of 7.3 percentage points on the average decline in job finding due to selection.

This is a lower bound as it only considers persistent observable heterogeneity, but it relies on the

unobservable heterogeneity being persistent too. This conservative lower-bound implies that true

duration dependence can explain at most 51% of the observed decline in the 6-month job-finding rate

between the start of the spell and at 6 months of the spell.

We perform the same calculation for the decline in the job-finding rate between 6 and 12 months of

the spell and find a lower-bound decline due to selection of 0.025. This is about 38% of the total decline

in the 6-month job-finding rate from 0.55 to 0.49 and thus less than during the first six months of the
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Table 5: Predictable Heterogeneity during the Unemployment Spell

Sample Model N E(F ) E(F̂ ) V ar(F̂ ) Cov(F̂ , F ) R2(F̂ , F )

At Start of Spell 0M Model 126,052 0.701 0.705 0.027 0.029 0.150

6M Model 126,052 0.701 0.604 0.018 0.022 0.124

12M Model 126,052 0.701 0.536 0.009 0.013 0.093

6M into Spell 6M Model 42,823 0.552 0.551 0.019 0.019 0.076

12M Model 42,823 0.552 0.504 0.009 0.011 0.056

12M into Spell 12M Model 20,831 0.485 0.489 0.009 0.009 0.037

Notes: The table reports summary statistics about models trained on different unemployment durations
in 2006. The first three rows correspond to the hold-out sample at the start of the unemployment spell.
We generate three different predictions for this sample, with models trained at the start of the spell (the
contemporaneous predictions), 6 months into the spell and 12 months into the spell. Rows 4 and 5 deal
with the hold-out sample 6 months into the spell; for this sample, we generate predictions using the
models trained contemporaneously and 12 months into the spell. Row 6 presents results for the hold-out
sample 12 months into the spell, using the contemporaneous model.

unemployment spell. The declining role of selection over the unemployment spell can be attributed to

the fact that dynamic selection affects the sample composition of long-term unemployed. The reason is

that, if heterogeneity is persistent, the variance in predicted job-finding rates among survivors should

decline over the unemployment spell. Indeed, we find that the hold-out sample variance in predicted

6-month job-finding rates is 0.027 at 0 months of unemployment, but declines to 0.019 at 6 months

and 0.009 at 12 months of unemployment.

As mentioned, our analysis relies on the richness of the observables used in our prediction model.

Using a prediction model with only basic socio-demographic variables, we find some persistence over

the unemployment spell, but we would attribute much less of the decline in job finding to dynamic

selection. For the first six months of the sample for example, we would explain only 22% of the decline

compared to about half of the decline using our baseline prediction model (see Appendix Table A9).

By the same token, we can use our estimates of the unobserved heterogeneity using multiple spells

to turn the lower-bound estimate into an estimate of the overall contribution of dynamic selection

to the decline in job finding rates. Indeed, we showed in Table 4 above that the extent of observed

heterogeneity at the start of the spell in the multiple spell sample is about 56% of the extent of total

heterogeneity. If one assumes that the selection into long-term unemployment on observables and

unobservables is proportional, we can scale the covariance in Column 4 of Table 5 up by a factor of
1

0.56 = 1.76. Using the same calculation as above, this would imply that we can even account for 88%

of the decline in job finding over the spell of unemployment.

Robustness. We perform three robustness checks on these results. First, we address issues of

sampling error due to the smaller sample sizes of unemployed at 6 and 12 months of duration.23

23Note that these predictions models are indeed estimated on much smaller samples and thus potentially subject
to more sampling error. However, as can be seen from Panels B and C of Appendix Figure C6, there is basically no
attenuation when comparing outcomes to predictions. Moreover, splitting the sample again into 36 groups based on
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To do this, we pool the years 2006 and 2007 and redo our prediction exercise. Appendix Table A10

reports the corresponding results, which are very similar to the results in Table 5. In fact, we find that

R2(F t00 , F̂ t06 ) = 0.136 in the hold-out sample of 2006 and 2007, compared to R2(F t00 , F̂ t00 ) = 0.162, and

following Corollary 1, we find a very similar number for covt00 (F t00 , F̂ t06 )/(1 − Et00 (F t00 )), accounting

for 45% of the observed decline in the 6-month job-finding rate between the start of the spell and at

6 months of the spell. This suggests that sampling error is not biasing our conclusions.

Second, we redo the same analysis for 2009-2010 when both unemployment and LTU risk were

higher and report the results in Table A11. We find that R2(F t00 , F̂ t06 ) = 0.097 in the hold-out

sample of 2009-2010, compared to R2(F t00 , F̂ t00 ) = 0.126. While the persistent share is estimated

to be equally important, the predictable heterogeneity is thus somewhat smaller in these recession

years. The observed duration dependence in job-finding rates is, however, smaller as well during the

recession years: the relative decline in the 6-month job-finding rate 6 months into the spell equals

18% in 2009-2010 compared to 24% in 2006-2007. This is consistent with prior evidence for the US in

Krueger et al. [2014]. Separating out the role of dynamic selection following Corollary 1, we find that

it accounts for at least 40% of this observed decline in the 6-month job-finding rate between the start

of the spell and at 6 months of the spell. This is only slightly lower than the lower bound during the

pre-recession years 2006-2007.

Third, we can use the multiple spell approach more directly to account for unobservable hetero-

geneity that is persistent over the spell. For this, we consider again individuals who experience at

least two spells, but are also long-term unemployed in at least one of the spells. We can then compare

their job finding at the start and later into the spell across these two spells, as shown in Appendix

Table A8. We find a covariance Covt1,t26,0 (F t16 , F t20 ) = 0.016. We first note that this is smaller than

the corresponding covariance at the start of the spell, Covt1,t20,0 (F t10 , F t20 ) = 0.030 (see Table 4), simply

confirming that not all heterogeneity that is persistent across spells is also persistent over the spell.

At the same time, the multiple spell covariance Covt1,t26,0 (F t16 , F t20 ) = 0.016 misses heterogeneity that

is persistent over the spell, but transitory across spells. We can evaluate this using our observable

approach for this sample, Covt1,t26,0 (F̂ t26 , F t20 ) = 0.014, and compare this to the common component

underlying both covariances, Covt1,t26,0 (F̂ t16 , F t20 ) = 0.009. Empirically, we thus find that the observable

heterogeneity that is transitory across spells (0.014 − 0.009 = 0.005) is almost as important as the

unobservable heterogeneity that is persistent across spells (0.016−0.009 = 0.007). Both sources of het-

erogeneity thus contribute to dynamic selection over the spell and the decline in observed job-finding

rates. This also directly supports our assumption in Corollary 1 that unobservable heterogeneity is

(weakly) persistent over the unemployment spell and thus the lower bound nature for the observable

heterogeneity that is persistent over the unemployment spell.

We can combine the two approaches to provide a tighter lower bound. But, of course, when

using the multiple spell approach to speak directly to persistent heterogeneity over the spell, the

sample becomes even more selected, as we illustrate in Appendix Table A8. Interestingly, also for this

selected sample the ratio of observable heterogeneity to total heterogeneity is 0.56, which turns out

to be exactly the same as what we found at the start of the spell (see Table 4). This lends credibility

to our exercise above where we invoke the proportionality assumption instead. Indeed, the ratio of

income decile, gender and citizenship and computing the average observed and predicted job-finding rate for each group
in the hold-out sample, we find again that the slope is very close to one, suggesting that the predictions remain unbiased.
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observable and unobservable heterogeneity appears to be stable across different types of heterogeneity

(persistent heterogeneity over spell vs. overall heterogeneity).

Discussion. Overall, our estimates show that heterogeneity is important in explaining the observed

dynamics of job finding over the spell of unemployment. This corroborates the findings in recent

work. Mueller et al. [2021] document substantial predictability based on elicited beliefs about the

job-finding probability in U.S. survey data. Using a model of beliefs, they then show that selection

accounts for 85% of the observed decline of job finding over the first 12 months of the unemployment

spell. Of course, we should not necessarily expect the role of dynamic selection to be the same in the

US and Sweden, but their estimates are very close to our estimates when we account for unobserved

heterogeneity too. Also Alvarez et al. [forthcoming] and Güell and Lafuente [2022] find a large role

for heterogeneity using repeated unemployment spells. As discussed, their method identifies both

observed and unobserved heterogeneity in job-finding risk, but only to the extent that it is persistent

across spells.24

Our analysis has highlighted the importance of using a rich set of observables to assess the role

of dynamic selection for the observed decline in job finding. For example, Kroft et al. [2016] find

little selection into long-term unemployment based on educational attainment, age, race and gender

in U.S. data, comparable to what we find when limiting the set of observables. Our findings also

point to a lesser role for true duration dependence than often suggested in earlier work. For example,

using a resume-audit study in the US with job seekers ages 40 and younger, Kroft et al. [2013] find

that call-back rates to interviews decline by about 40% over the first 12 months of the unemployment

spell. We find that, in the Swedish context, dynamic selection can account for at least a 10 percentage

point decline of the observed decline in job finding from 70% to 49% over the first 12 months of

the unemployment spell. This leaves at most a 11 percentage point decline of job finding, or 16%

decline relative to the initial job-finding rate, for true duration dependence in job finding. Assuming

contexts are comparable, this implies that true duration dependence in job finding is substantially

less important than duration dependence in call back rates. This is in line with Jarosch and Pilossoph

[2018] who show that a decline in call-back rate may not result in a meaningful decline in the job-

finding rate.25

24Alvarez et al. [forthcoming] consider unemployment spells in Austria and find that dynamic selection is particularly
important over the first 6 months of the unemployment spell, which we find as well in our data. Güell and Lafuente
[2022] consider unemployment spells in Spain and explicitly quantify that 18% of the ‘ex-post’ variation in unemployment
spell durations is due to ‘ex-ante’ heterogeneity. Comparing our results with Güell and Lafuente [2022], the R-squared
quantifies the share of variation in realized job finding that is predictable using observables. This is 15% in our baseline
sample. Using the multiple spell approach instead, we would estimate the heterogeneity to explain about 14% of the
variation in realized job finding (scaling PH in Table 4 by the variance of job-finding outcomes in 2006). This share
is somewhat smaller than their estimate. Note of course that there is no one-to-one mapping between the variance
of job finding and the variance in unemployment durations, due to non-linearities in the relationship between the two
concepts, but we verified in simulations that the two compositions give similar though not equivalent answers.

25Note that Kroft et al. [2013] find that the decline in call-back rates is less pronounced when the unemployment rate
is high. Comparing our estimates prior and during the Great Recession, we find that the observed duration dependence
indeed decreased, but our lower-bound on the role of dynamic selection, if anything, decreases.
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4.2 Heterogeneity in Duration Dependence

We can add more structure to the dynamics in job finding and use the data to estimate the observable

heterogeneity in these dynamics. In particular, we assume the following model for predicted job-

finding rates by duration of unemployment d for a given cohort t (we drop the latter superscript here

for ease of notation):

log(F̂d(X)) = β0(X) + βD(X)d+ ηd, (19)

where F̂d(X) is the predicted job-finding rate at unemployment duration d for an individual with

observables X prior to unemployment.26 An important feature of this exercise is that we can estimate

this model for any individual simply relying on the predictions given his or her observables X prior

to becoming unemployed, regardless of when he or she found a job. That is, we compute F̂d(X) at

durations d = 0, 6 and 12 months for all individuals unemployed at the start of the spell based on

their X. We then use these predicted job findings to estimate an observable-specific intercept β0(X)

and slope βD(X) for each X in the baseline year 2006. Of course, we should again interpret the

estimated slopes as an upper-bound on true duration dependence, as some of the decrease in job

finding for individuals with observables X who remain unemployed could be driven by selection on

unobservables driving low job-finding. The estimated coefficients are measured with error and thus

the dispersion in the estimated coefficients reflects both actual dispersion as well as sampling error.

To address this issue, we shrink each observable-specific prediction using the standard errors of the

same regressions, as follows:

˜̂
βj(X) = E(β̂j(X)) +

√
var(β̂j(X))− (σ̂j(X))2

var(β̂j(X))
[β̂j(X)− E(β̂j(X))], (20)

for j ∈ {0, D}. E(β̂j(X)) and var(β̂j(X)) are equal to the sample mean and variance of the predictions

and σ̂j(X) is the standard error corresponding to prediction β̂j(X).

Our estimates reveal substantial heterogeneity in individual job finding dynamics. The distribution

of the (shrunken) estimates of β̂D(X), shown in Appendix Figure A5, displays significant dispersion.

We find an estimated standard deviation of 0.0131 with a bootstrapped confidence interval of [0.0130,

0.0132].27 Because we use our predictions in logs in equation (19) above, this by itself implies that

job-finding rates do not vary proportionally throughout the unemployment spell. We also carry out

a second test for the heterogeneity in individual dynamics that does not impose the linearity in

duration d in the above equation, by computing the log of the ratio of the predicted job finding rate

for a subset of observables in our data, i.e. log
( F̂6(X)

F̂0(X)

)
. As reported in Appendix Figures B1 and

B2, we find substantial heterogeneity in this ratio across different X’s, which again is in contradiction

with the assumption of proportionality in proportional hazard models.28 Importantly, this rejects

a common assumption in models of job search. Indeed, a large number of papers have estimated

26Since we implement this test only for the baseline year 2006, we dropped the t in the notation. See Appendix B.4
for further details.

27Again following Mullainathan and Spiess [2017], we draw 500 bootstrap samples from the 2006 hold-out sample.
28See also Appendix B.4 for the theoretical underpinnings derived from the proportional hazard model Cox [1972].

36



Figure 5: Heterogeneity in Duration Dependence

A. By Quintiles of Duration Dependence B. By Quintiles of Initial Job-Finding
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Notes: Panel A shows the predicted individual change in the job-finding rate for the five quintiles of the distribution
of βD, assuming a job-finding rate of 0.703 at the start of the unemployment spell. Panel B shows the predicted
change at the individual level in the job-finding rate for the five quintiles of the distribution of β0.

mixed proportional hazard models, assuming full proportionality in the job-finding rates over the

unemployment spell along observable dimensions. Our rejection corroborates the findings in Alvarez

et al. [forthcoming], who find evidence of non-proportionality in data on repeated unemployment spells

in Austria.29

Panel A of Figure 5 illustrates the magnitude of the estimated heterogeneity in individual dynamics

by showing how the job-finding rates evolve over the unemployment spell for the five quintiles of

β̂D(X), all starting from the average job-finding rate of 70% for comparability. This clearly evinces

the significant dispersion. In fact, for the top quintile, our exercise predicts that the job-finding rate

stays basically the same, whereas for the bottom quintile it declines by around 33% over a 12-month

spell. Panel B of Figure 5 shows how the predicted individual level dynamics relate to the initial

job-finding rate. More specifically, it shows the predicted changes by quintile of the distribution of

the intercept β̂0(X). Clearly, the decline in the job-finding rate is strongly correlated with the initial

job-finding rate. In fact, for the bottom quintile of the initial job-finding rate, we predict a small

decline of 4 percentage points. For the top quintile, however, we predict a decline of 26 percentage

points. Hence, the predicted job-finding rates would converge as the spell continues for all job seekers

29Alvarez et al. [forthcoming] test for proportionality by looking at the job-finding hazard at a given duration in the
second spell conditional on finding a job early vs. late in the first spell. The proportional hazard assumption implies
that the hazard in the second spell for those who find a job early in the first spell should dominates the hazard for
those who find a job late in the first spell at all durations in the second spell. They strongly reject the proportionality
assumption. At the same time, their test requires that there is no transitory heterogeneity across spells. For this reason,
we view our test complementary to theirs as it holds even with transitory heterogeneity across spells.
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in the spell. As a result, both the heterogeneous dynamics and the dynamic selection contribute to

the compression of the job finding distribution among job seekers who remain unemployed for longer.

We note again that we cannot rule out that the heterogeneity in the predicted individual dynamics is

driven by differential dynamic selection based on unobservables. However, it seems unlikely that the

dynamic selection would be so important for job seekers with the highest predicted job-finding rates

and fully absent for job seekers with the lowest predicted job-finding rates at the start of the spell.

Finally, we briefly study which type of job seekers are more at risk of declining job-finding rates.

Following the same approach as for the heterogeneity in job finding at the start of the spell, we

correlate observable characteristics with the dynamic component β̂D(X) in the right panel of Figure

3. Like in the left panel, we again standardize both the outcome and explanatory variables. We

confirm the finding that the most pronounced gradient is in the individuals’ job finding at the start of

the spell. However, the dynamics in job-finding rates do not only differ across initial job-finding rates,

but also conditional on initial job-finding rates. This necessarily leads to rank reversals in predicted

job finding over the unemployment spell. Indeed, conditional on initial job finding, we for example

find that job seekers experience stronger declines in job finding during unemployment when they are

older, have lower income and are less educated.30 While several observables correlate significantly

with the dynamic component β̂D(X), the estimates are all relatively small.31

To sum up, we find significant heterogeneity in duration dependence across individuals with dif-

ferent observed characteristics. Our findings reject the common assumption of proportionality used

in standard models of job finding.

5 Job Finding over the Business Cycle

This section turns from the dynamics in job finding over the unemployment spell to the dynamics in

job finding over the business cycle. Like for the dynamics over the spell, an important, outstanding

question is to what extent the dynamics over the business cycle are driven by compositional changes

in the pool of unemployed or by changes in the job-finding rates themselves. In the latter case, the

natural follow-up question is whether the cyclicality in job finding varies across job seekers.

5.1 Cyclical Selection into Unemployment

We first study the role that selection into the pool of unemployed plays for the cyclicality of the

average long-term unemployment risk. Figure 6 shows the average long-term unemployment risk

for each year in our sample period as well as the aggregate unemployment rate. There is a strong

positive correlation between the two, with a correlation coefficient of 0.3. The increase in long-term

unemployment risk is particularly notable during the Great Recession period, as well as the decrease

30Our findings are somewhat different from Eriksson and Rooth [2014] who find using randomized CVs that the call
back rate is significantly lower only for job seekers after 9 months into unemployment, though they do find heterogeneity
in the duration profile as the call backs only decline for job seekers with low-medium skills jobs. Again, they study only
call-backs, which may not translate into job finding.

31Appendix Figure A8 shows the corresponding bivariate correlations for comparison. We also report the Shapley-
Owen decomposition of the R2 to assess the explanatory power of the different groups of variables in Appendix Figure
A9, mirroring the analysis done for the baseline model. The results again confirm that the job-finding rates at the start
of the spell jump out in explaining the variation in duration dependence.
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Figure 6: Compositional Effects over the Business Cycle
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Notes: The figure shows the averages of 1 minus the 6-month job-finding rate
in the hold-out sample for the years 1992-2016, the averages of the predicted
long-term unemployment risk using the 2006 model, and the yearly averages of
the unemployment rate (see Appendix Figure A4 for a comparison with OECD
data). The grey shaded areas correspond to periods with two consecutive
quarters of negative growth in Gross Domestic Product.

after the large recession in Sweden in the beginning of the 1990s. The substantial variation in long-

term unemployment risk over the business cycle is also a feature of other major developed economies,

including the U.S. (see, e.g., Elsby et al. [2009], Shimer [2012], among many others).

We revisit the heterogeneity hypothesis, i.e., whether compositional changes in the pool of un-

employed do translate into higher LTU risk in recessions, by using the 2006 model to predict the

long-term unemployment risk of newly unemployed job seekers in each year in our sample. Figure 6

shows how the average long-term unemployment risk predicted by the 2006 model but in the sam-

ple of newly unemployed in each year changes over time.32 By keeping the prediction model fixed,

changes in this counter-factual long-term unemployment risk only reflect compositional changes in the

pool of unemployed. As is clear from the figure, there appears to be no distinct relationship of the

predicted long-term unemployment risk with the aggregate unemployment rate, much in contrast to

the observable long-term unemployment risk. As shown in Appendix Table A12 the raw correlation

of the predicted and the aggregate unemployment rate is very close to 0. The bi-variate regression

coefficient with the log unemployment rate as dependent variable grows slightly larger (0.082) when

we control for a linear time trend but is only at 12% of the one of the regression with observable LTU

risk (0.700).33 The lack of correlation is even more apparent during the Great Recession period, when

32Since the LISA panel only starts in 1990 and even later for days spent on UI and DI, we impute the pre-unemployment
variables for spells in the earliest years of our sampling variable. In particular, we use the individual’s history when
partially observed, but use the population mean in 1995 when the individual’s history is entirely missing. Given our
finding that employment histories from the prior year are the most predictive, the imputation of earlier years does not
seem restrictive.

33As reported in the same table, we find that the contribution of selection is 22% if we extend the sample to the first
three years where we do not have complete income and employment histories available.
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LTU risk increased sharply by 13.6 p.p. from 2006 to 2009, but the predicted risk barely moved and

increased by just 1.0 p.p. over the same time period, accounting for only 7% of the movement in the

observed LTU risk over the Great Recession.

Overall, this shows that – even when using a rich set of observables that is highly predictive of job

finding – there is little support for the heterogeneity hypothesis. That is, most of the increase in long-

term unemployment risk in recessions cannot be attributed to observable changes in the composition of

the pool unemployed workers.34 Of course, our analysis using multiple spells has shown the importance

of unobserved heterogeneity, but the considered set of observables captures more than half of the overall

heterogeneity. Hence, we cannot exclude compositional changes along these unobservable factors, but

for compositional changes to contribute meaningfully to the cyclicality in the long-term unemployment

risk, we would need the selection on unobservable heterogeneity underlying individuals’ job finding to

be substantially different than the selection on observable heterogeneity.35

In sum, our analysis suggests that compositional shifts in the pool of unemployed account only

to a small extent for the cyclical movements in the aggregate job finding rate, at least to the extent

predicted by the observables included in our model. Our findings thus speak against structural factors

being important for movements of the unemployment rate as the proportion of those who are likely

to become long-term unemployed stays relatively constant over the business cycle.

5.2 Heterogeneity in Cyclicality

When compositional changes cannot account for the large increase in long-term unemployment risk in

recessions, this implies that the same individuals face varying risks depending on when they become

unemployed. An important question taken up in the literature is whether individuals differ in their

cyclicality of job finding and long-term unemployment risk. Heterogeneity in the cyclicality of job

finding could be driven by differential labor supply responses to recessions or labor demand changing

differentially for workers of different skills. Prior work, for example, has found that those who tend to

work fewer hours have a lower cyclicality of job finding out of unemployment [Bils et al., 2012], but

that there are little differences in the cyclicality based on education and prior wages [Mueller, 2017].

We revisit this question using richer data and we leverage the extendability of our approach repeating

the prediction exercise for each year from 1995 to 2016.36

Persistence. To preface the analysis of heterogeneity in cyclicality, we first consider again how

persistent the heterogeneity in job finding is, but now across cohorts of unemployed rather than over

the unemployment spell. As shown in Section 2.4, the combination of the multiple spell approach

with the use of observables, allowed us to separate the observable heterogeneity into a component

that is persistent across spells and one that is transitory. Using all multiple spells, we find that about

34Note that selection into long-term unemployment is driven both by selection into unemployment, i.e. at the start
of the spell, and selection that occurs over the spell. We find, however, similar patterns when we look at the predicted
risk of remaining unemployed from 6 to 12 months or from 12 to 18 months, see Appendix Figure A3.

35In Appendix B.5, we perform calculations under the assumption that the distributions of observable and unob-
servable heterogeneity, scaled by their standard deviations, move identically over the business cycle. We show that
the compositional changes based on observables should be inflated by a scaling factor of 1.87 to account for shifts in
unobservables in the pool of unemployed. We find that compositional shifts then can explain 22% over the period
1995-2016 and 14% over the period of the Great Recession of the observed changes in LTU risk.

36We start only in 1995 to reduce the censoring of pre-unemployment histories.
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Figure 7: Persistence in the Predictive Value over Time
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Notes: The figure shows the R2 in the hold out sample of 1998, 2006 and
2014 using the prediction model from each year relative to R2 in the hold out
sample from the same year as the prediction model.

three quarters of the observable heterogeneity is persistent across spells as measured by the ratio of

the covariances POH/OH, reported in Table 4. However, as we consider spells that are further apart,

the share of observable heterogeneity that remains persistent goes down and it becomes less than

50 percent when considering spells that are at least 5 years apart.37 To study this further, we can

consider the R-squared instead, scaling the covariance by the respective variances in job findings in

either year, and compare the relative predictive value of models estimated in a different year t than

the year of the hold-out sample. Figure 7 shows the relative predictive value of models estimated in

a different year t for three different hold-out samples (resp. 1998, 2006 and 2014). For example, the

orange dotted line shows the R-squared in the hold-out sample of 2006 for models from different years

relative to the R-squared for the model of 2006. Not surprisingly, the model from 2006 does best

but the fall off in predictive power for other years is relatively modest. Moreover, even when using

models estimated in more distant years, the decrease in the predictive power is limited. E.g., for the

2014 hold-out sample, the predictive power of the model estimated 20 years earlier is still around 70

percent of the predictive power of the model estimated in 2014. We also see slight reductions in the

predictive values, for all three hold-out samples, during the Great Recession. Overall, the evidence,

suggests that the features that predict long-term unemployment are relatively stable and that while

job-finding rates are cyclical, there are only limited rank reversals in predicted job-finding over time.

Cyclicality. We can now use the predictions based on observables to estimate how heterogeneity

in individual cyclicality in parallel to our analysis of heterogeneity in individual duration dependence

37Appendix Table A7 repeats Table 4, but restricting the multiple spell sample further to spells two or five years
apart. We find that the further apart the spells, the lower are the estimated covariances across spells in Columns 1 and
2, whereas the within-spell covariances in Columns 3 and 4 are hardly affected.
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Figure 8: Heterogeneity in Cyclicality
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Notes: Panel A shows the predicted individual change in the job-finding rate for the five quintiles of the
distribution of βU , normalizing the job-finding rate to the one in 2006. Panel B shows the predicted change at
the individual level in the job-finding rate for the five quintiles of the distribution of the intercept β0.

in the previous section. An advantage of our prediction exercise is that we can predict a hypothetical

job-finding rate for each individual and each year in our data, conditional on their observable char-

acteristics. We can then estimate for each individual in the sample the cyclicality in the predicted

6-month job-finding rates based on her observables Xt0 prior to unemployment in baseline year t0 by

relating it to the log of the aggregate unemployment rate, ut, as follows:

log(F̂ t0(Xt0) = β0(Xt0) + βU (Xt0)(ut − ut0) + βTr(X
t0)(t− t0) + ηt0, (21)

where we use 2006 as the reference year t0. Note that we include only individuals who were actually

unemployed in this reference year and still focus on job finding rates at the start of the unemployment

spell. This exercise also holds characteristics of individual job seekers constant over time. As we

have shown that there is little movement in composition of types, this suggests that the conclusions

from our exercise are not much affected by these restrictions. We again shrink the distributions of

β̂j(X
t0)’s using the standard errors of the same regressions, as for the duration-dependence estimates

(see equation 20 above).

Panel A in Figure 8 illustrates the heterogeneity in the individual cyclicality of job finding by

splitting the sample into the five quintiles based on the cyclicality estimate β̂U (Xt0), normalizing the

job-finding rate to the one for the 2006 unemployment rate. It shows that there is only moderate

dispersion in how the predicted job-finding rates vary over the range of the unemployment rates

observed in Sweden in the sample period, especially in comparison to the dispersion in duration
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dependence discussed earlier (see Figure 5).38 Panel B of Figure 8 illustrates how the predicted

individual level dynamics relate to the job-finding rate in the reference year. More specifically, it

shows the predicted changes by quintile of the distribution of the intercept β̂0(Xt0). The declines in

the job-finding rate are quite similar across the five quintiles, very much in contrast with the dynamics

over the unemployment spell, where we found large differences in the slopes.39

In the right panel of Figure 3 we show again how observable characteristics correlate with the

cyclical component β̂U (Xt0). We confirm that in contrast to the duration dependence analysis job

seekers with higher job-finding rates do not experience larger, but slightly smaller (relative) declines

as the unemployment rate increases. We again find that, conditional on initial job finding, job seekers

are more shielded against declines in the job-finding rate when they are more educated and had higher

labor income prior to unemployment.40

To sum up, we find a moderate dispersion in the individual cyclicality of job finding despite the

important cyclicality overall and the large predictable differences in individual job-finding rates at a

given moment in time. Our findings suggest that movements in the job finding rate over time are

fairly uniform across workers, at least to the extent predicted by the observables in our model. The

predictable heterogeneity in job finding is thus persistent over time, which is also reflected in the

persistence of the predictive power of the prediction models across different years in our sample.

6 Conclusion

This paper uses rich administrative data from Sweden to study the predictability of long-term un-

employment. We find substantial predictable heterogeneity of LTU risk that is driven by the use of

comprehensive data on income, employment and benefit histories and show how the predictability in

LTU risk relates to issues of selection over the unemployment spell and the business cycle.

We show that, over the spell of unemployment, our results of substantial predictability have im-

portant implications for dynamic selection and the observed duration dependence in job finding. In

particular, we show that the persistence in the predictability of job finding is a key statistic that pins

down the extent of dynamic selection. We show empirically that the predictability of job finding is

indeed very persistent over the spell of unemployment and that, as a consequence, at least 49% of

the observed decline in job finding is driven by dynamic selection. This finding complements recent

research that has found an important role for selection but with different and complimentary ap-

38Appendix Figure A6 shows the distributions of the estimated permanent component (β̂0(Xt0 ))and cyclical compo-

nent (β̂U (Xt0 )) of the job-finding rate. The distribution of the permanent component in Panel A closely resembles the
distribution of predicted job-finding rates for the year 2006 in Figure 2, as we choose the year 2006 as our reference
year. Panel B shows the distribution of the cyclical component. The average cyclicality equals -0.353, implying that
if the unemployment rate doubles, the job-finding rate decreases by 35.3 percent. For the cyclical component, the
shrunken standard deviation is 0.1065, which is moderate, and the bootstrapped 95% confidence interval is tight at
[0.1061, 0.1069]. As in previous exercises, we draw 500 bootstrap samples from the 2006 hold-out sample for this last
step.

39In parallel to the duration-dependence analysis, we also carry out a test that relies on a pairwise comparison

between year 2009 and 2006 based on log

(
F̂2009
0 (X2006)

F̂2006
0 (X2006)

)
. As shown in Appendix Figures B1 and B2, we find significant

heterogeneity in this log ratio, but this can also be driven by differential time trends in addition to differential cyclicality
across individuals with different observables.

40The estimated Shapley values in Appendix Figure A9 confirm the relative importance of characteristics other than
the 2006 predicted job-finding in explaining the individual cyclicality.
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proaches [Güell and Lafuente, 2022; Alvarez et al., forthcoming; Mueller et al., 2021]. In fact, using

the sample of job seekers with repeated unemployment spells, we find a substantial role for unobserved

heterogeneity. Taken together, dynamic selection can account for as much as 88% of the observed

decline in job finding over the spell of unemployment.

We also examine to what extent the cyclicality in job finding and LTU risk is driven by cyclical

changes in the pool of unemployed. Prior work has found little role for composition, but was limited

to socio-demographic variables in survey data. Despite the richer data and the high predictive power

for job finding in the cross-section of job seekers, we find little evidence that the rise in LTU risk is

driven by composition and thus confirm the previous evidence over the business cycle (e.g., Baker

[1992] and Kroft et al. [2016]). Our approach of estimating prediction models for job finding at

different stages of the unemployment spell or the business cycle also allows us to predict the duration

dependence and the cyclicality of job finding for each individual in our data. We find substantial

heterogeneity in the dynamics over the unemployment spell that is inconsistent with the common

assumption of proportionality in models of job search. Over the business cycle, instead, we only find

limited heterogeneity in the cyclicality of job finding.

The predictability of LTU risk has important policy implications too. Many countries use long-

term unemployment as a criterion for the assignment of active labor market policies. The high

predictability of LTU risk suggests that we can target ALMPs better and assign them earlier in the

spell, as some countries try to do (e.g., Ernst et al. [2024]). A valuable avenue for future research

would be to identify the causal effects of unemployment policies by predicted LTU risk and whether

these change over the unemployment spell or over the business cycle.
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Appendix

A Additional Figures and Tables

A.1 Predictive Power: Further Results and Robustness

Table A1: Robustness: Job Finding over Different Horizons

E(·) V ar(·) Cov(·) R2(·)

Job Finding Horizon N F F̂ F F̂ F̂ , F F̂ , F6m F̂ , F F̂ , F6m

3 Months 126,052 0.483 0.487 0.250 0.023 0.025 0.026 0.110 0.142

6 Months 126,052 0.701 0.705 0.210 0.027 0.029 0.029 0.150 0.150

12 Months 126,052 0.861 0.863 0.120 0.015 0.016 0.020 0.138 0.134

Notes: The table reports summary statistics about observed and predicted job-finding probabilities at the
start of the spell over different horizons. We consider job finding over three horizons: three months, six
months (the baseline) and twelve months since the beginning of the spell.
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Table A2: Robustness: ALMPs, Job Finding, Prediction Algorithm

Model Sample N E(F0) E(F̂0) V ar(F0) V ar(F̂0) Cov(F̂0, F0) R2(F̂0, F0)

A. Baseline

Baseline All 126,052 0.701 0.705 0.210 0.027 0.029 0.150

B. Robustness to ALMPs

Baseline No ALMPs 116,608 0.730 0.712 0.197 0.026 0.027 0.144

No ALMPs All 126,052 0.701 0.728 0.210 0.026 0.028 0.147

No ALMPs No ALMPs 116,608 0.730 0.733 0.197 0.026 0.027 0.146

C. Robustness to job finding definition

Baseline No AvOrs 7-8 108,541 0.683 0.704 0.217 0.027 0.029 0.146

Baseline No AvOrs 5-8 67,861 0.740 0.745 0.192 0.021 0.023 0.128

Baseline No recalls 113,242 0.701 0.704 0.210 0.027 0.029 0.152

No Recalls All 126,052 0.701 0.708 0.210 0.028 0.030 0.150

No Recalls No recalls 113,242 0.701 0.706 0.210 0.029 0.030 0.152

D. Robustness to functional form

Linear All 126,052 0.701 0.701 0.210 0.030 0.029 0.137

R. Forest All 126,052 0.701 0.710 0.210 0.027 0.028 0.143

B. Gradient All 126,052 0.701 0.703 0.210 0.027 0.029 0.150

LASSO All 126,052 0.701 0.702 0.210 0.024 0.026 0.134

E. Robustness to sample split

Baseline: 10-30-10

↑ Weights: 10-20-20 All 126,052 0.701 0.703 0.210 0.027 0.029 0.148

↑ Tuning: 20-20-10 All 126,052 0.701 0.705 0.210 0.027 0.029 0.148

↑ Training: 10-40-10 All 100,873 0.702 0.702 0.209 0.029 0.030 0.151

F. Robustness to ensemble weights

Positive weights All 126,052 0.701 0.702 0.210 0.027 0.029 0.150

Notes: The table reports summary statistics about observed and predicted job-finding probabilities at the
start of the spell for different combinations of models and samples. Panel A presents results for the baseline
2006 model (“Baseline”) on the full 2006 hold-out sample (“All”). Panel B shows statistics for the baseline
model and a model trained on the subset of spells that did not include ALMPs during the first six months of
unemployment (“No ALMPs”), on the full holdout sample and excluding spells that include ALMPs during
the first six months (“No ALMPs”). Panel C considers the baseline model and a model trained on unemployed
that were not recalled by their previous employer (“No recalls”) on four different samples: full, excluding spells
that ended because the job seeker entered education other than training or died (“No AvOrs 7-8”), excluding
spells that ended because the job seeker terminated contact with PES for unspecified or unknown reasons,
entered education other than training or died (“No AvOrs 5-8”), and excluding unemployed that were recalled
by their previous employer (“No recalls”). Panel D looks at the linear regression model (“Linear”) and the
three Machine Learning predictors that underlie the baseline or ensemble model, all on the full sample. Panel
E considers three alternative ensemble predictors constructed with different sample splits: for the first two, we
preserve the full holdout sample and take 10% of the sample from training to either tune parameters or estimate
weights; for the third one, we move 10% from the holdout sample to the training sample and compute the
statistics on this smaller (“Reduced”) holdout sample. Finally, Panel F shows the performance of the ensemble
model when we constrain the weights to be positive (in the baseline exercise, they are only constrained to sum
to 1).
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Figure A1: Distribution of Predicted JFP: Exit to ALMPs

A. Baseline Model B. Prediction Model, excl ALMPs
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Notes: This figure shows the distribution of predicted job-finding probabilities as in Figure 2, but separating out
the spells that enter ALMPs during the first 6 months of the unemployment spell. Panel A shows the distribution
of predicted job-finding rates from the baseline model, while Panels B use a ML model that was trained on a
sample that excludes any unemployment spell where the unemployed worker entered ALMPs during the first 6
months of the unemployment spell.
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Table A3: R2 for various submodels in the year 2006: ML Model vs Linear Model

A. ML Model

(1) (2) (3) (4) (5) (6) (7) (8)

R2(F̂0, F0) 0.071 0.099 0.106 0.140 0.142 0.147 0.149 0.150

Change (j) vs (j − 1) - +38.5% +7.3% +32.5% +1.1% +4.1% +1.2% +0.6%

B. Linear model

(1) (2) (3) (4) (5) (6) (7) (8)

R2(F̂0, F0) 0.063 0.085 0.092 0.123 0.125 0.129 0.134 0.137

Change (j) vs (j − 1) - +35.1% +8.2% +33.0% +1.6% +3.6% +3.6% +2.4%

Socio-demographics X X X X X X X X
Labour Income X X X X X X X
Other Income X X X X X X
Employment History X X X X X
Income History X X X X
Migration History X X X
Industry X X
Municipality X

Notes: The table shows the R2 of the predicted 6-month job-finding probability and
a dummy for actual job finding in the hold-out sample for the year 2006 for various
models. Panel A reproduces Panel A in Table 3 for convenience. Panel B shows
results from linear regression models that use the same variable groups, starting from
the basic model in (1) and adding variable groups sequentially until all of the groups
included in the baseline model are incorporated in (8).
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Table A4: R2 depending on pre-unemployment history variables

A. Groups of variables: sequential sub-models

(1) (2) (3) (4) (5) (6) (7)

R2(F̂0, F0) 0.071 0.119 0.126 0.129 0.131 0.132 0.136

Change (j) vs (j − 1) - +66.6% +6.3% +2.7% +1.1% +0.6% +3.4%

Basic Socio-demographics X X X X X X X
Individual History in t− 1 X X X X X X
Individual History in t− 2 X X X X X
Individual History in t− 3 X X X X
Individual History in t− 4 X X X
Individual History in t− 5 X X
Firm Characteristics X

B. Groups of variables: marginal sub-models

(1) (2) (3) (4) (5) (6) (7)

R2(F̂0, F0) 0.071 0.119 0.097 0.088 0.083 0.081 0.100

Change (j) vs (1) - +66.6% +36.8% +23.6% +16.0% +13.2% +40.4%

Variables:

Basic Socio-demographics X X X X X X X
Individual History in t− 1 X
Individual History in t− 2 X
Individual History in t− 3 X
Individual History in t− 4 X
Individual History in t− 5 X
Firm Characteristics X

C. Individual variables: sequential sub-models

(1) (2) (3) (4) (5)

R2(F̂0, F0) 0.071 0.084 0.091 0.109 0.121

Change (j) vs (j − 1) - +17.6% +8.3% +20.4% +10.9%

Basic Socio-demographics X X X X X
Days on UI (last 2 years) X X X X
# Unempl. Spells (last 2 years) X X X
# Employers(last 2 years) X X
Days on DI (last 2 years) X

D. Individual variables: marginal sub-models

(1) (2) (3) (4) (5)

R2(F̂0, F0) 0.071 0.084 0.084 0.091 0.088

Change (j) vs (1) - +17.6% +17.9% +28.4% +24.1%

Basic Socio-demographics X X X X X
Days on UI (last 2 years) X
# Unempl. Spells (last 2 years) X
# Employers (last 2 years) X
Days on DI (last 2 years) X

Notes: The table shows the R2 of the predicted 6-month job-finding probability and
a dummy for actual job finding in the hold-out sample for the year 2006 for various
models. Panel A starts from the basic model in (1) and adds years of pre-unemployment
history variables (including days on UI, days on DI, number of unemployment spells and
number of employers) and firm characteristics (tenure, size, change in size and layoff
rate)) sequentially, while Panel B adds the same groups one at a time. Panels C and D
do the same for a selection of individual variables.
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Table A5: Regressions with SILC survey data

General Health (GH) Mental Health (MH) GH for MH sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Pred. JFR 1.063 1.005 0.989 0.912 0.989 0.930
(0.108) (0.112) (0.340) (0.347) (0.340) (0.362)

Health PC1 0.021 0.052 0.022 0.058
(0.011) (0.012) (0.044) (0.043)

Mental Health 0.037 0.056
PC1 (0.034) (0.035)

R2 0.138 0.142 0.026 0.093 0.106 0.030 0.093 0.096 0.022
Adj. R2 0.125 0.128 0.025 0.082 0.084 0.018 0.082 0.074 0.010
N 742 742 742 84 84 84 84 84 84

Notes: This table presents output from linear regressions of observed job finding on the predicted job-finding rate and
measures of general and mental health obtained from the EU-SILC survey. Our measure of general health (“Health
PC1”) is constructed from three survey questions: general health (PH010), suffering from any chronic illness (PH020)
and limitation in activities because of health problems (PH030). The mental health index (“Mental Health PC1”) is
constructed from five questions: overall life satisfaction (PW010), meaning of life (PW020), being very nervous (PW050),
feeling “down in the dumps” (PW060) and feeling downhearted or depressed (PW080). In both cases, the index used
in the regressions is the first principal component of the matrix of relevant survey answers. For the regressions, we
match individual spells in our hold-out samples from 1992 to 2016 with responses to the survey, with Columns (1)-(3)
including spells matched with general health answers, (4)-(6) with mental health answers and (7)-(9) with both. Note
that the mental health module was only included in the 2013 version of the survey, hence the lower number of matches
in Columns (4)-(9). The results show that general health does not add much explanatory power (+3%), potentially
because our prediction model already incorporates this information via the number of days spent on DI in the years
before the unemployment spell. In contrast, adding mental health increases the R2 by 14% and adjusted R2 by 2%,
although the small sample size raises concerns about overfitting. A simple placebo exercise, where we perform the
general health regressions on the mental health sample and find a 3% increase in the R2 and a decrease in the adjusted
R2, suggests that the added explanatory power of the mental health variables is not simply due to the small sample
size.
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Table A6: R2 for extended models: starting from Basic

Extensions of Basic

(1) (2) (3) (4) (5) (6) (7) (8)

R2(F̂0, F0) 0.071 0.090 0.077 0.080 0.075 0.078 0.079 0.101

Change (j) vs (1) - +27.1% +7.7% +12.2% +5.5% +9.8% +11.0% +41.4%

Socio-demographics X X X X X X X X
Occupation X X
Union member X X
Wealth X X
IQ X X
UI choice X X
UI benefits X X

Notes: The table shows the R2 of the predicted 6-month job-finding probability and a dummy for actual
job finding in the hold-out sample for the year 2006 for various models. We start from the basic model using
only socio-demographic information in column (1) and add additional information from other administrative
data sets, first one at a time and then all at once in column (8).
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A.2 Multiple Spell Analysis: Sample and Results

Figure A2: Two-Spell Sample: Time Difference Between Spells
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Notes: The figure shows the distribution of the calendar year differ-
ence, in absolute terms, between the start of the two unemployment
spells for individuals in our two-spell sample, as described in Table
4. The resulting sample consists of 735,797 individuals.
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Table A7: Observable, Unobservable, Persistent and Transitory Components of Het-
erogeneity in Job Finding: Robustness

A. Baseline

Multiple Spells Sample Control Sample

Persistent Transitory Total Total

Observable
POH = Covt1,t20,0 (F̂ t10 , F t20 ) OH − POH OH = Covt1,t20,0 (F̂ t20 , F t20 ) ÕH = Covt20 (F̂ t20 , F t20 )

0.017 0.006 0.023 0.027

Unobservable
PH − POH

0.013

Total
PH = Covt1,t20,0 (F t10 , F t20 ) By Proportionality By Proportionality

0.030 0.042 0.048

B. Spells more than 2 years apart

Multiple Spells Sample Control Sample

Persistent Transitory Total Total

Observable
POH = Covt1,t20,0 (F̂ t10 , F t20 ) OH − POH OH = Covt1,t20,0 (F̂ t20 , F t20 ) ÕH = Covt20 (F̂ t20 , F t20 )

0.014 0.011 0.024 0.027

Unobservable
PH − POH

0.012

Total
PH = Covt1,t20,0 (F t10 , F t20 ) By Proportionality By Proportionality

0.025 0.046 0.051

C. Spells more than 5 years apart

Multiple Spells Sample Control Sample

Persistent Transitory Total Total

Observable
POH = Covt1,t20,0 (F̂ t10 , F t20 ) OH − POH OH = Covt1,t20,0 (F̂ t20 , F t20 ) ÕH = Covt20 (F̂ t20 , F t20 )

0.008 0.015 0.023 0.028

Unobservable
PH − POH

0.011

Total
PH = Covt1,t20,0 (F t10 , F t20 ) By Proportionality By Proportionality

0.019 0.055 0.066

Notes: This table reports key statistics for the sample of individuals with multiple unemployment spells between 1992
and 2016. For a description of the samples and statistics, see the note to Table 4. Panel A reproduces Table 4, while
panels B and C simply restrict the samples in A to spells more than 2 and 5 years apart, respectively.
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Table A8: Observable, Unobservable, Persistent and Transitory Components of Het-
erogeneity in Job Finding: Long-Term Unemployment

Multiple Spells, LTU Sample Multiple Spells Sample Control Sample

Persistent Transitory Total Total Total

Observable
C1 = Covt1,t26,0 (F̂ t16 , F t20 ) C3 − C1 C3 = Covt1,t26,0 (F̂ t26 , F t20 ) C4 = Covt1,t20,0 (F̂ t26 , F t20 ) C5 = Covt20 (F̂ t26 , F t20 )

0.009 0.005 0.014 0.016 0.020

Unobservable
C2 − C1

0.007

Total
C2 = Covt1,t26,0 (F t16 , F t20 ) By Proportionality By Proportionality By Proportionality

0.016 0.025 0.028 0.034

Notes: The first three columns of this table restrict the multiple spells sample described in Table 4 to pairs where the
first spell lasted more than 6 months, and computes C1 and C2 using predicted and actual job-finding probabilities from
the 6th to the 12th month of unemployment during the first spell. Columns 4 and 5 presents results for the multiple
spells and control samples, respectively.
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A.3 Selection over the Spell: Robustness

Table A9: Models Trained on Different Variables: Basic Model

Sample Model N E(F ) E(F̂ ) V ar(F̂ ) Cov(F̂ , F ) R2(F̂ , F )

At Start of Spell 0M Model 126,052 0.701 0.696 0.013 0.014 0.071

6M Model 126,052 0.701 0.570 0.008 0.010 0.059

12M Model 126,052 0.701 0.513 0.004 0.007 0.052

6M into Spell 6M Model 42,823 0.552 0.546 0.009 0.009 0.038

12M Model 42,823 0.552 0.497 0.005 0.006 0.032

12M into Spell 12M Model 20,831 0.485 0.490 0.004 0.004 0.017

Notes: The table reports summary statistics for models trained on different unemployment durations
in 2006 using only basic socio-demographic variables - a basic model. The estimates can be compared
to the results for the baseline model in Table 5. The first three rows correspond to the hold-out sample
at the start of the unemployment spell. We generate three different predictions for this sample, with
models trained at the start of the spell (the contemporaneous predictions), 6 months into the spell and
12 months into the spell. Rows 4 and 5 deal with the hold-out sample 6 months into the spell; for this
sample, we generate predictions using the models trained contemporaneously and 12 months into the
spell. Row 6 presents results for the hold-out sample 12 months into the spell, using the contemporaneous
model.

Table A10: Models Trained on Different Samples: Pooled 2006-2007 Data

Sample Model N E(F ) E(F̂ ) V ar(F̂ ) Cov(F̂ , F ) R2(F̂ , F )

At Start of Spell 0M Model 226,837 0.704 0.708 0.031 0.032 0.162

6M Model 226,837 0.704 0.598 0.017 0.022 0.136

12M Model 226,837 0.704 0.542 0.010 0.014 0.103

6M into Spell 6M Model 74,412 0.536 0.538 0.018 0.020 0.083

12M Model 74,412 0.536 0.501 0.010 0.012 0.061

12M into Spell 12M Model 38,257 0.478 0.483 0.010 0.010 0.040

Notes: The table reports summary statistics about models trained on different unemployment durations
in 2006 and 2007. The estimates can be compared to the results for the baseline model using only 2006
in Table 5. The first three rows correspond to the hold-out sample at the start of the unemployment
spell. We generate three different predictions for this sample, with models trained at the start of the
spell (the contemporaneous predictions), 6 months into the spell and 12 months into the spell. Rows 4
and 5 deal with the hold-out sample 6 months into the spell; for this sample, we generate predictions
using the models trained contemporaneously and 12 months into the spell. Row 6 presents results for
the hold-out sample 12 months into the spell, using the contemporaneous model.
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Table A11: Models Trained on Different Samples: Pooled 2009-2010 Data

Sample Model N E(F ) E(F̂ ) V ar(F̂ ) Cov(F̂ , F ) R2(F̂ , F )

At Start of Spell 0M Model 236,043 0.576 0.578 0.029 0.030 0.126

6M Model 236,043 0.576 0.513 0.013 0.018 0.097

12M Model 236,043 0.576 0.471 0.009 0.012 0.063

6M into Spell 6M Model 99,369 0.470 0.472 0.012 0.014 0.061

12M Model 99,369 0.470 0.444 0.008 0.009 0.038

12M into Spell 12M Model 48,905 0.427 0.424 0.008 0.009 0.041

Notes: The table reports summary statistics about models trained on different unemployment durations
in 2009 and 2010. The first three rows correspond to the hold-out sample at the start of the unemploy-
ment spell. We generate three different predictions for this sample, with models trained at the start of
the spell (the contemporaneous predictions), 6 months into the spell and 12 months into the spell. Rows
4 and 5 deal with the hold-out sample 6 months into the spell; for this sample, we generate predictions
using the models trained contemporaneously and 12 months into the spell. Row 6 presents results for
the hold-out sample 12 months into the spell, using the contemporaneous model.
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A.4 Selection over the Business Cycle: Robustness

Figure A3: Average Risk and Selection into Long-Term Unemployment
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B. 12 Months into Spell
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Notes: The figure shows the averages of 1 minus observed and predicted 6-month
job-finding rates at different unemployment durations for the hold-out sample for
the years 1992-2016. Panel A shows unemployment risk between the 6th and 12th
months of unemployment, while Panel B shows unemployment risk between the 12th
and 18th months. Predictions are obtained using the corresponding model trained
on 2006 data. The grey shaded areas correspond to periods with two consecutive
quarters of negative growth in Gross Domestic Product.
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Figure A4: Unemployment Rate: LISA vs OECD
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Notes: The figure compares the unemployment rate computed from the LISA
panel and the official OECD statistics between 1992 and 2016. We use the LISA
series throughout the analysis.
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Table A12: Relationship between Unemployment and Long-Term Unemployment Risk

Predicted log LTU risk (2006) Observable log LTU risk

(1) (2) (3) (4)

Panel A. 1995-2016

Log unemployment rate -0.050 0.082 0.309 0.700
( 0.085) ( 0.052) ( 0.226) ( 0.086)

Time trend 0.011 0.034
( 0.002) ( 0.003)

R2 0.017 0.708 0.085 0.892
Adj. R2 -0.033 0.677 0.040 0.881
Observations 22 22 22 22

Panel B. 1992-2016

Log unemployment rate 0.006 0.146 0.342 0.791
( 0.072) ( 0.068) ( 0.185) ( 0.136)

Time trend 0.008 0.026
( 0.002) ( 0.004)

R2 0.000 0.402 0.129 0.679
Adj. R2 -0.043 0.348 0.091 0.650
Observations 25 25 25 25

Notes: The table shows the results of linear regressions of the log of predicted and
observed long-term unemployment risk on the log of the aggregate unemployment rate
(1-4) and a linear time trend (2 and 4). Panel A restricts to 1995-2016 to avoid early
censoring of income and employment histories in the first three years of the sample,
whereas Panel B uses every year in our sample period.
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A.5 Heterogeneity in Dynamics over Spell: Additional Results

Figure A5: Distribution of Permanent and Duration-Dependent Component of Job-
Finding Risk
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Notes: The figure shows the distribution of the coefficients from the regressions out-
lined in equation 19, after applying the shrinkage in equation 20. Panel A shows
the histogram of the exponential of the intercept exp(β̂0), while Panel B shows the

histogram of the duration-dependence coefficient β̂D.
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A.6 Heterogeneity in Dynamics over Business Cycle: Additional Results

Figure A6: Distribution of Permanent and Cyclical Component of Job-Finding Risk

A. Histogram of exp(β̂0)
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Notes: The figure shows the distribution of the coefficients from the regressions out-
lined in equation 21, after applying the shrinkage in equation 20. Panel A shows
the histogram of the exponential of the intercept exp(β̂0), while Panel B shows the

histogram of the cyclicality coefficient β̂U .
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Figure A7: Heterogeneity in Individual Cyclicality: Relative To Average

A. Relative Job-Finding Probability B. Relative LTU Risk
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Notes: Panel A shows the mean predicted individual job-finding rate for the five quintiles of the distri-
bution of the intercept β0, normalizing the job-finding rate to the mean in 2006 for each unemployment
rate. Panel B shows the predicted change in individual LTU risk (defined as the complementary prob-
ability), relative to the mean profile, for the five quintiles of the distribution of β0.
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A.7 Heterogeneity and Relationship to Observables: Additional Results

Figure A8: Heterogeneity in Job Finding, Cyclicality and Duration Dependence: Cor-
relation
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Notes: This figure reports bivariate correlation coefficients between the predictions and a subset of the
variables included in the baseline model. The first column shows correlations between the predicted
6-month job-finding probability at the start of the spell, from the baseline model in 2006, and the
variables listed on the y-axis. Columns 2 and 3 show the coefficients for the duration dependence
parameter βD (see Section 4) and the cyclicality parameter βU (see Section 5), respectively. All
coefficients are computed on the 2006 hold-out sample.
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Figure A9: Heterogeneity in Job Finding, Cyclicality and Duration Dependence: R2

0.120

0.094

0.049

0.294

0.120

0.087

0.097

0.034

0.217

0.101

0.037

0.043

0.162

0.080

0.054

0.063

0.060

0.065

0.058

0.086

0.016

0.115

0.053

0.039

0.076

0.046

0.896 0.818 0.553

Pred. JFR

Basic Socio-demographics

Individual Income

Other Income

Employment History

Income History

Migration History

Industry

Municipality

 Total R2

Pred. JFR Duration Dep. (βD) Cyclicality (βU)

0.00

0.10

0.20

0.30

Shapley
Values

Notes: The figure reports Shapley-Owen decompositions of the total R2 from a linear regression
of the predictions on the variable groups included in the baseline model. See Grömping [2007];
Huettner and Sunder [2012] for a full description of the decomposition. The first column shows
the Shapley-Owen values for the predicted 6-month job-finding probability at the start of the
spell, from the baseline model in 2006. Columns 2 and 3 show the same decomposition for the
duration dependence parameter βD (see Section 4) and the cyclicality parameter βU (see Section
5), respectively, also including the predicted job-finding probability as a separate variable group
in the regressions. All values are computed on the 2006 hold-out sample.
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B Proofs and Further Analysis

B.1 Identification with Observables

Proof of Proposition 1. We first note that
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)
+ Pr

(
F td = 0|T td

)
Etd

(
F̂ td × 0|T td

))
− Etd

(
T td
)
Etd

(
F̂ td

)
= Etd

(
Etd

(
T tdF̂

t
d|T td

))
− Etd

(
T td
)
Etd

(
F̂ td

)
= Etd

(
T tdF̂

t
d

)
− Etd

(
T td
)
Etd

(
F̂ td

)
= covtd

(
T td, F̂

t
d

)
.

Next, we use the assumption that E (εtd|Xt
d) = 0 to show that

covtd

(
T td, F̂

t
d

)
= covtd

(
T td(Xt

d) + εtd, F̂
t
d

)
= covtd

(
T td(Xt

d), F̂
t
d

)
+ covtd

(
εtd, F̂

t
d

)
= covtd

(
T td(Xt

d), F̂
t
d

)
+ Etd

(
εtdF̂

t
d

)
− Etd

(
Etd
(
εtd|Xt

d

))
Etd

(
F̂ td

)
= covtd

(
T td(Xt

d), F̂
t
d

)
+ Etd

(
εtdF̂

t
d

)
= covtd

(
T td(Xt

d), F̂
t
d

)
+ Etd

(
Etd

(
εtdF̂

t
d|Xt

d

))
= covtd

(
T td(Xt

d), F̂
t
d

)
+ Etd

(
Etd
(
εtd|Xt

d

)
Etd

(
F̂ td|Xt

d

))
= covtd

(
T td(Xt

d), F̂
t
d

)
.

Combining the fact that covtd

(
T td, F̂

t
d

)
= covtd

(
F̂ td, T

t
d(Xt

d)
)

and that covtd

(
F td, F̂

t
d

)
= covtd

(
T td, F̂

t
d

)
,

we get that:

covtd

(
F td, F̂

t
d

)
= covtd

(
T td(Xt

d), F̂
t
d

)
.

Now we can use the Cauchy-Schwarz inequality,

vartd
(
T td(Xt

d)
)
vartd

(
F̂ td

)
≥ covtd

(
T td(Xt

d), F̂
t
d

)2

= covtd

(
F td, F̂

t
d

)2

.

Hence, we have derived the first lower bound on the variance in job-finding rates,

vartd (T td(Xt
d))

vartd (F td)
≥

covtd

(
F td, F̂

t
d

)2

vartd (F td) vartd

(
F̂ td

) = R2
(
F td, F̂

t
d

)
.
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Given our assumption that Etd (εtd|Xt
d) = 0, we also have that vartd(T

t
d) ≥ vartd(T td(Xt

d)) and thus

R2
(
F td, F̂

t
d

)
≤ vartd(T

t
d(Xt

d))

vartd(F
t
d)

≤ vartd (T td)

vartd(F
t
d)
.

QED.

Variance of Types with Unbiased Predictors. We can prove the following proposition:

Proposition B1. If the predictor is unbiased, i.e. Etd(F̂
t
d|Xt

d) = T td(Xt
d), then the hold-out sample

covariance of the observed realization and the prediction model is an estimate of the variance in

observable types as follows:

covtd(F
t
d, F̂

t
d) = vartd(T

t
d(Xt

d)). (B1)

Proof. We take from the proof of Proposition 1 that covtd(F
t
d, F̂

t
d) = covtd(T

t
d(Xt

d), F̂
t
d) and then use

the fact that Etd(F̂
t
d|Xt

d) = T td(Xt
d) as follows

covtd(F
t
d, F̂

t
d) = covtd(T

t
d(Xt

d), F̂
t
d, )

= Etd

(
T td(Xt

d)F̂
t
d

)
− Etd

(
T td(Xt

d)
)
Etd

(
F̂ td

)
= Etd

(
Etd(T

t
d(Xt

d)F̂
t
d|Xt

d)
)
− Etd

(
T td(Xt

d)
)
Etd

(
Etd(F̂

t
d|Xt

d)
)

= Etd

(
T td(Xt

d)E
t
d(F̂

t
d|Xt

d)
)
− Etd

(
T td(Xt

d)
)
Etd

(
Etd(F̂

t
d|Xt

d)
)

= Etd
(
T td(Xt

d)
2
)
− Etd

(
T td(Xt

d)
)2

= vartd(T
t
d(Xt

d)).

QED.

Proof of Proposition 2. We take from the proof of Proposition 1 that, for any t and d, covtd(F
t
d, F̂

t
d) =

covtd(T
t
d(Xt

d), F̂
t
d). By extension covtd(F

t
d, F̂

t′

d′ ) = covtd(T
t
d(Xt

d), F̂
t′

d′ ) when E
(
εtd|Xt′

d′

)
= 0. The latter

assumption holds trivially when X are variables that are fixed across states t and d. We then use the

fact that Etd(F̂
t′

d′ |Xt
d) = T t

′

d′ (X
t
d) and proceed as follows,

covtd(F
t
d, F̂

t′

d′ ) = covtd(T
t
d(Xt

d), F̂
t′

d′ )

= Etd

(
T td(Xt

d)F̂
t′

d′

)
− Etd

(
T td(Xt

d)
)
Etd

(
F̂ t

′

d′

)
= Etd

(
Etd(T

t
d(Xt

d)F̂
t′

d′ |Xt
d)
)
− Etd

(
T td(Xt

d)
)
Etd

(
Etd(F̂

t′

d′ |Xt
d)
)

= Etd

(
T td(Xt

d)E
t
d(F̂

t′

d′ |Xt
d)
)
− Etd

(
T td(Xt

d)
)
Etd

(
Etd(F̂

t′

d′ |Xt
d)
)

= Etd

(
T td(Xt

d)T
t′

d′ (X
t
d)
)
− Etd

(
T td(Xt

d)
)
Etd

(
T t

′

d′ (X
t
d)
)

= covtd(T
t
d(Xt

d), T
t′

d′ (X
t
d)).

QED.
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Proof of Corollary 1. First, we follow Mueller, Spinnewijn and Topa [2021] and decompose the

observation decline in job finding between two adjacent duration periods d and d+ 1 as follows

Etd
(
T td
)
− Etd+1

(
T td+1

)
= Etd

[
T td − T td+1

]
+ Etd

(
T td+1

)
− Etd+1

(
T td+1

)
= Etd

[
T td − T td+1

]
+

∫
T td+1dG

t
d(T

t
d)−

∫
T td+1dG

t
d+1(T td+1)

= Etd
[
T td − T td+1

]
+

∫
T td+1dG

t
d(T

t
d)−

∫
T td+1(1− T td)dGtd(T

t
d)

1− Etd(T td)

= Etd
[
T td − T td+1

]
+

(1− Etd(T td))Etd(T
t
d+1)

1− Etd(T td)
−
∫
T td+1(1− T td)dGtd(T

t
d)

1− Etd(T td)

= Etd
[
T td − T td+1

]
+

(1− Etd(T td))Etd(T
t
d+1)

1− Etd(T td)
−
Etd(T

t
d+1)− Etd(T td+1T

t
d)

1− Etd(T td)

= Etd
[
T td − T td+1

]
+
Etd(T

t
d+1T

t
d)− Etd(T td+1)Etd(T

t
d)

1− Etd(T td)

= Etd
[
T td − T td+1

]
+
covtd(T

t
d, T

t
d+1)

1− Etd(T td)
,

where we used the fact that dGtd+1(T td+1) =
(1−T t

d)dGt
d(T t

d)∫
(1−T t

d)dGt
d(T t

d)
. The equation above can be re-arranged

to

Etd
(
T td − T td+1

)
= Etd

(
T td
)
− Etd+1

(
T td+1

)
−
covtd(T

t
d, T

t
d+1)

1− Etd(T td)

= Etd
(
T td
)
− Etd+1

(
T td+1

)
−
covtd(T

t
d(Xt) + εtd, T

t
d+1(Xt) + εtd+1)

1− Etd(T td)

= Etd
(
T td
)
− Etd+1

(
T td+1

)
−
covtd(T

t
d(Xt) + εtd, T

t
d+1(Xt))

1− Etd(T td)
−
covtd(T

t
d(Xt

d) + εtd, ε
t
d+1)

1− Etd(T td)

= Etd
(
T td
)
− Etd+1

(
T td+1

)
−
covtd(T

t
d(Xt), T td+1(Xt))

1− Etd(T td)
−
covtd(T

t
d(Xt

d) + εtd, ε
t
d+1)

1− Etd(T td)

= Etd
(
T td
)
− Etd+1

(
T td+1

)
−
covtd(T

t
d(Xt), T td+1(Xt))

1− Etd(T td)
−
covtd(ε

t
d, ε

t
d+1)

1− Etd(T td)
−
covtd(T

t
d(Xt), εtd+1)

1− Etd(T td)

The last covariance term covtd(T
t
d(Xt), εtd+1) equals 0 by the assumption that any unobserved hetero-

geneity is orthogonal to the observables, E(εtd|Xt) = 0 for any d. This indeed implies that unobserved

heterogeneity and observable heterogeneity across adjacent periods are orthogonal for a given set of

individuals.

If covtd(ε
t
d, ε

t
d+1) ≥ 0, then the equation above implies

Etd
(
T td − T td+1

)
≤ Etd

(
T td
)
− Etd+1

(
T td+1

)
−
covtd(T

t
d(Xt), T td+1(Xt))

1− Etd(T td)
.

Next, we use the fact that, in the hold-out sample, Etd (F td) = Etd (T td), Etd+1

(
F td+1

)
= Etd+1

(
T td+1

)
,

and covtd(F
t
d, F̂

t
d+1) = covtd(T

t
d(Xt), T td+1(Xt)) (from Proposition 2) and thus get
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Etd
(
T td − T td+1

)
≤ Etd

(
F td
)
− Etd+1

(
F td+1

)
−
covtd

(
F td, F̂

t
d+1

)
1− Etd (F td)

.

QED.
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B.2 Identification with Multiple Spell Data

Proof of Proposition 3.

covt1,t2d

(
F t1d , F

t2
d

)
= Et1,t2d

[
F t1d F

t2
d

]
− Et1,t2d

(
F t1d
)
Et1,t2d

(
F t2d
)

= Et1,t2d

[
Et1,t2d

(
F t1d F

t2
d |T

t1
d , T

t2
d

) ]
− Et1,t2d

(
T t1d
)
Et1,t2d

(
T t2d
)

= Et1,t2d

[
Et1,t2d

(
1× 1|T t1d , T

t2
d

)
Pr
(
F t1d = 1 & F t2d = 1|T t1d , T

t2
d

)
+E

(
1× 0 + 0× 1 + 0× 0|T t1d , T

t2
d

) (
1− Pr

(
F t1d = 1 & F t2d = 1|T t1d , T

t2
d

)) ]
−Et1,t2d

(
T t1d
)
Et1,t2d

(
T t2d
)

= Et1,t2d

[
Pr
(
F t1d = 1 & F t2d = 1|T t1d , T

t2
d

) ]
− Et1,t2d

(
T t1d
)
Et1,t2d

(
T t2d
)

= Et1,t2d

[
T t1d T

t2
d

]
− Et1,t2d

(
T t1d
)
Et1,t2d

(
T t2d
)

= covt1,t2d

(
T t1d , T

t2
d

)
. (B2)

QED.

Proof of Corollary 2. One can decompose the variance in a persistent and transitory part as

follows:

vart1,t2d

(
T t1d
)

= covt1,t2d

(
T t1d , T

t2
d

)
+ covt1,t2d

(
T t1d , T

t1
d − T

t2
d

)
.

Using Proposition 3 from above, and if covt1,t2d

(
T t1d , T

t1
d − T

t2
d

)
< 0, then this implies that covt1,t2d

(
F t1d , F

t2
d

)
<

vart1,t2d

(
T t1d
)
.

QED.
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B.3 Identification with Observables and Multiple Spell Data

Proof of Proposition 4. If the predictor is unbiased, i.e. Et1,t2d (F̂ tid |X
ti
d ) = T tid (Xti

d ) for i = 1, 2,

then following the proof of Proposition 2, we get

covt1,t2d (F t1d , F̂
t2
d ) = Et1,t2d (F t1d F̂

t2
d )− Et1,t2d (F t1d )Et1,t2d (F̂ t2d )

= Et1,t2d (F t1d T
t2
d (Xt2

d ))− Et1,t2d (F t1d )Et1,t2d (T t2d (Xt2
d ))

= Et1,t2d (T t1d T
t2
d (Xt2

d ))− Et1,t2d (T t1d )Et1,t2d (T t2d (Xt2
d ))

= covt1,t2d (T td, T
t2
d (Xt2

d )), (B3)

and

covt1,t2d (F̂ t1d , F̂
t2
d ) = Et1,t2d (F̂ t1d F̂

t2
d )− Et1,t2d (F̂ t1d )Et1,t2d (F̂ t2d )

= Et1,t2d (T t1d (Xt1
d )T t2d (Xt2

d ))− Et1,t2d (T t1d (Xt1
d ))Et1,t2d (T t2d (Xt2

d ))

= covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d )). (B4)

and from Proposition 1, we have

covt1,t2d (F t1d , F̂
t1
d ) = vart1,t2d (T t1d (Xt1

d )). (B5)

.

Using equations B2, B3 and B5 and the independence assumption that Et1,t2d (εtid |X
tj
d ) = 0 for all

combinations of i = 1, 2 and j = 1, 2, we get

covt1,t2d (F t1d , F̂
t2
d ) = covt1,t2d (T t1d , T

t2
d (Xt2

d ))

= covt1,t2d (T t1d (Xt1
d ) + εt1d , T

t2
d (Xt2

d ))

= covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d )) (B6)

covt1,t2d (F t1d , F
t2
d ) = covt1,t2d (T t1d (Xt1

d ) + εt1d , T
t2
d (Xt2

d ) + εt2d )

= covt1,t2d (T t1d (Xt
d), T

t2
d (Xt2

d )) + covt1,t2d (εt1d , ε
t2
d ) (B7)

covt1,t2d (F t1d , F̂
t1
d ) = covt1,t2d (T t1d (Xt1

d ) + εt1d , T
t1
d (Xt1

d ))

= vart1,t2d (T t1d (Xt1
d )), (B8)

which implies

L = covt1,t2d (F t1d , F̂
t1
d ) + covt1,t2d (F t1d , F

t2
d )− covt1,t2d (F t1d , F̂

t2
d )

= vart1,t2d (T t1d (Xt1
d )) + covt1,t2d (εt1d , ε

t2
d ). (B9)

Using the Cauchy-Schwarz inequality, we get

vart1,t2d (εt1d )vart1,t2d (εt2d ) ≥ covt1,t2d (εt1d , ε
t2
d )2.
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Under random selection of first and second spell, we get

vart1,t2d (εt1d ) = vart1,t2d (εt2d ) ≥ covt1,t2d (εt1d , ε
t2
d ),

and thus

L = vart1,t2d (T t1d (Xt1
d )) + covt1,t2d (εt1d , ε

t2
d )

≤ vart1,t2d (T t1d (Xt1
d )) + vart1,t2d (εt1d ) = vart1,t2d (T t1d ) = vart1,t2d (T t2d ), (B10)

where the last equality follows again from random selection of the first and second spell.

QED.

It is possible to relax the assumption of independence across spells in the presence of time-varying

observable characteristics. We can prove the following proposition:1

Proposition B2. Alternative lower bound. For two randomly chosen spells for each individual,

if the predictor is unbiased, i.e. Et1,t2d (F̂ tid |X
ti
d ) = T tid (Xti

d ) for i = 1, 2, the following lower bound for

the true variance in types holds:

Λ = L+ covt1,t2d (F̂ t1d , F̂
t2
d )− covt1,t2d (F t1d , F̂

t2
d ) ≤ vart1,t2d (T t1d ),

where L is the lower bound from Proposition 4.

Proof. Using equations B2, B3, B4 and B5, we get

covt1,t2d (F̂ t1d , F̂
t2
d ) = covt1,t2d (T t1d (Xt1

d ), T t2d (Xt2
d ))

covt1,t2d (F t1d , F̂
t2
d ) = covt1,t2d (T t1d , T

t2
d (Xt2

d ))

= covt1,t2d (T t1d (Xt2
d ) + εt1d , T

t2
d (Xt2

d ))

covt1,t2d (F̂ t1d , F
t2
d ) = covt1,t2d (T t1d (Xt1

d ), T t2d )

= covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ) + εt2d )

covt1,t2d (F t1d , F
t2
d ) = covt1,t2d (T t1d (Xt1

d ) + εt1d , T
t2
d (Xt2

d ) + εt2d )

covt1,t2d (F t1d , F̂
t1
d ) = covt1,t2d (T t1d (Xt1

d ) + εt1d , T
t1
d (Xt1

d ))

= vart1,t2d (T t1d (Xt1
d )) = vart1,t2d (T t2d (Xt2

d )).

Moreover, under random selection of spells, we have perfect symmetry, i.e. covt1,t2d (F t1d , F̂
t2
d ) =

covt1,t2d (F̂ t1d , F
t2
d ). Define C ≡ covt1,t2d (F t1d , F

t2
d ) + covt1,t2d (F̂ t1d , F̂

t2
d ) − 2covt1,t2d (F t1d , F̂

t2
d ), then under

1Of course, we still impose the independence assumption for characteristics from the same spell, i.e. Et1,t2
d (ε

ti
d |X

ti
d ) =

0 for i = 1, 2.
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symmetry we get:

C = covt1,t2d (F td, F
t2
d ) + covt1,t2d (F̂ t1d , F̂

t2
d )− covt1,t2d (F t1d , F̂

t2
d )− covt1,t2d (F̂ t1d , F

t2
d )

= covt1,t2d (T t1d (Xt1
d ) + εt1d , T

t2
d (Xt2

d ) + εt2d )

+ covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ))

− covt1,t2d (T t1d (Xt1
d ) + εt1d , T

t2
d (Xt2

d ))

− covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ) + εt2d )

= covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d )) + covt1,t2d (εt1d , ε
t2
d ) + covt1,t2d (εt1d , T

t2
d (Xt2

d )) + covt1,t2d (T t1d (Xt1
d ), εt2d )

+ covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ))

− covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ))− covt1,t2d (εt1d , T
t2
d (Xt2

d ))

− covt1,t2d (T t1d (Xt1
d ), T t2d (Xt2

d ))− covt1,t2d (T t1d (Xt1
d ), εt2d )

= covt1,t2d (εt1d , ε
t2
d ). (B11)

This implies:

covt1,t2d (F t1d , F̂
t1
d ) + C = vart1,t2d (T t1d (Xt1

d )) + covt1,t2d (εt1d , ε
t2
d ). (B12)

Using the Cauchy-Schwarz inequality, we get

vart1,t2d (εt1d )vart1,t2d (εt2d ) ≥ covt1,t2d (εt1d , ε
t2
d )2.

Under random selection of the first and second spell, we get

vart1,t2d (εt1d ) = vart1,t2d (εt2d ) ≥ covt1,t2d (εt1d , ε
t2
d ),

and thus

Λ = covt1,t2d (F t1d , F̂
t1
d ) + C = vart1,t2d (T t1d (Xt1

d )) + covt1,t2d (εt1d , ε
t2
d )

≤ vart1,t2d (T t1d (Xt1
d )) + vart1,t2d (εt1d )

= vart1,t2d (T t1d ) = vart1,t2d (T t2d ), (B13)

where the last equality follows again from random selection of the first and second spell.

QED.
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B.4 Testing for Proportionality in Job-Finding Hazards

Our paper tests for proportionality of discrete-time job-finding probabilities to observables character-

istics. In this Appendix, we develop the theoretical underpinnings of these tests and how they relate

to the proportional hazard model as first introduced by Cox [1972].

We define the continuous-time job finding hazard for cohort t and duration d for an individual

with characteristics Xt as λtd(X
t). Note that we make here the assumption that the characteristics

X do not change over the spell of unemployment as in our empirical application. We also abstract

here from unobserved heterogeneity, as discussed in the main text. The survival function related to

this hazard is

Std(X
t) = exp

{
−
∫ d

0

λty(Xt)dy

}
. (B14)

The discrete-time job-finding hazard at a duration d over a horizon h for individuals who became

unemployed at calendar time t then is

T td(Xt) =
Std(X

t)− Std+h(Xt)

Std(X
t)

= 1−
Std+h(Xt)

Std(X
t)

= 1−
exp

{
−
∫ d+h

0
λty(Xt)dy

}
exp

{
−
∫ d

0
λty(Xt)dy

}
= 1− exp

{
−
∫ d+h

d

λty(Xt)dy

}
= 1− exp

{
− Λtd(X

t)

}
. (B15)

where Λtd(X
t) =

∫ d+h

d
λty(Xt)dy is the cumulated hazard between periods d and d+ h.

Doing a first-order approximation of T td(Xt) around h = 0, we get

T td(X) ≈ λtd(Xt)h. (B16)

and thus

T t
′

d′ (X
t)

T td(Xt)
≈ λt

′

d′(X
t)

λtd(X
t)
.

for any Xt, t′, t, d′, and d.

Proportionality Test I - Two States. The Cox-proportional hazard model assumes that λtd(X
t) =

λ̃tde
αXt

, where λ̃td is the baseline hazard. Given the proportionality of the baseline hazard to the func-

tion with observables, we get

T t
′

d′ (X
t)

T td(Xt)
≈ λ̃t

′

d′

λ̃td
, (B17)
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which only depends on the baseline hazard, but not on observables characteristics. Note that we

evaluate the function T td(.) for the same set of characteristics in both t and t′.

Proposition B3. For any Xt, t′, t, d′, and d, if the job finding hazard is proportional to observ-

ables, i.e. λtd(X
t) = λ̃tde

αXt

, and the predictor of the discrete job-finding hazard is unbiased, i.e.

Etd(F̂
t
d|Xt) = F̂ td(Xt) = T td(Xt), then

TR(Xt, t′, t, d′, d) ≡ F̂ t
′

d′ (X
t)

F̂ td(Xt)
≈ λ̃t

′

d′

λ̃td
(B18)

and thus independent of Xt.

Proof. Under proportionality we have that
T t′
d′ (X

t)

T t
d(Xt)

≈ λt′
d′ (X

t)

λt
d(Xt)

. If the predictor is unbiased then, we

can replace the T’s and get
Et

d(F̂ t′
d′ |X

t)

Et
d(F̂ t

d|Xt)
≈ λ̃t′

d′

λ̃t
d

.QED.

We implement the test by regressing log(TR(Xt, t′, t, d′, d)) on a subset of observables, X̃t ⊂
Xt, for either durations d = 0 and d′ = 6 or years t = 2006 and t′ = 2009. We test whether

vartd(log(TR(X̃t, t′, t, d′, d))) = 0 in the sample unemployed in baseline year t and duration d. Note

that the log transformation is not necessary but we do it for consistency with our other test further

below.

Note that the test is not exact as it relies on an approximation in the neighborhood of h = 0, but

one can show that the following equation holds exactly:

log(1− T t′d′ (Xt))

log(1− T td(Xt))
=

Λt
′

d′(X
t)

Λtd(X
t)
.

and thus an alternative (exact) test would be to show that

log(1− Etd(F̂ t
′

d′ |Xt))

log(1− Etd(F̂ td|Xt))
=

Λ̃t
′

d′

Λ̃td

is independent of Xt, where we defined Λt
′

d′(X
t) = Λ̃t

′

d′e
αXt

and Λ̃t
′

d′ =
∫ d+h

d
λ̃tydy is the cumulated

baseline hazard between period d and d+ h.

Proportionality Test II - Multiple States. One disadvantage of the two-state proportionality

test above is that one can only implement it between pairs (t, d) and (t′, d′). This is particularly an

issue for the time dimension t as we would like to distinguish between trend and cylce, which is not

possible in the comparison of two periods only. For this reason, we develop an additional test, which

imposes structural assumptions on the baseline hazard of the following form:

λtd = eβC+βDd+βU (ut−ūt0
)+β(t−t0), (B19)
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where ut is the unemployment rate and t a linear time trend. Given the first-order approximation in

equation B16, this implies that

log(T td(Xt0)) ≈ β0 + αXt0 + βDd+ βU (ut − ūt0) + βTr(t− t0), (B20)

where β0 = βC + log(h).

Proposition B4. For any Xt0 , t and d, if the job finding hazard is proportional to observables, i.e.

λtd(X
t0) = λ̃tde

αXt0
, and the predictor of the discrete job-finding hazard is unbiased, i.e. Etd(F̂

t
d|Xt0) =

F̂ td(Xt0) = T td(Xt0), then

log(F̂ td(Xt0)) ≈ β0(Xt0) + βDd+ βU (ut − ūt0) + βTr(t− t0) (B21)

and thus bD, bU and bTr are independent of Xt0 .

Proof. Replacing F̂ td(Xt0) = T td(Xt0) in equation B20 above gives equation B21. QED.

We implement the test by computing

log(F̂ t0d (Xt0)) = β0(Xt0) + βD(Xt0)d+ ηt0d (B22)

and

log(F̂ t0(Xt0)) = β0(Xt0) + βU (Xt0)(ut − ūt0) + βTr(X
t0)(t− t0) + ηt0 (B23)

through a linear regression for each Xt0 in the sample of unemployed in baseline year t0 and duration

d = 0 but using predictions for d > 0 and t 6= t0.2 The error term in the equations captures the

approximation error.3 We test whether vart00 (β̂D(Xt0)) = 0 and vart00 (β̂U (Xt0) = 0 in the sample of

unemployed in baseline year t0 = 2006 and duration d = 0, where the hat denotes the fact that the

coefficients are estimated. As explained in the main text, we shrink our estimates of β̂D(Xt0) and

β̂U (Xt0) to adjust for sampling error.

2We could implement the test in one regression using the prediction models for all combinations of d and t (instead
of two regressions) but this is computationally more demanding as we need to compute the prediction model for each
duration in each cohort.

3Of course, it may also reflect specification error or deviations from unbiasedness, but we carry out the test under
the assumption that the specification is correct and that the predictions are unbiased.
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Figure B1: Proportional Hazards Test: Distributions
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Figure B2: Proportional Hazards Test: Regressions
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B.5 Selection on Unobservables over the Business Cycle

As discussed in the main text of the paper, our test for the heterogeneity hypothesis is based on

observables characteristics and thus omits the potential importance of selection based on unobserv-

ables. Our analysis of the sample of multiple unemployment spells in Section 3.5 shows, however,

that observables capture about 56 percent of the total heterogeneity in job finding (see Table 4). In

this section, we show that based on the assumption that – scaled by their respective variances – the

distribution of the unobservable heterogeneity is identical and moves identically to the demeaned dis-

tribution of observable heterogeneity, we can estimate the contribution of selection on unobservables

over the business cycle.

We start with our model T td = T td(Xt
d) + εtd, where Gtd(T̃

t
d(Xt

d)) is the CDF of the demeaned

observable job-finding rate, T̃ td(Xt
d), and Qtd(ε

t
d) the CDF of unobservable heterogeneity. We impose

here the assumption that Gtd

(
σx

σε
εtd

)
= Qtd(ε

t
d), i.e. that the demeaned observable and unobservable

distributions are identical, up to a scaling factor of their relative standard deviations. Given this

assumption and an estimate of the relative standard deviations, we can compute the change in the

job-finding rate that comes from observable and unobservable factors between period t2 and a base

period t1:

∆(T )obscomp =

∫
TdGt2d (T )−

∫
TdGt1d (T ) (B24)

∆(T )unobscomp =

∫
εdGt2d

(
σx
σε
ε

)
−
∫
εdGt1d

(
σx
σε
ε

)
=

∫
σε
σx
TdGt2d (T )−

∫
σε
σx
TdGt1d (T )

=
σε
σx

[∫
TdGt2d (T )−

∫
TdGt1d (T )

]
=

σε
σx

∆(T )obscomp. (B25)

This implies that given an estimate of the compositional change due to observables, ∆(T )obscomp, and

an estimate of the relative variances of observable and unobservable composition, one can compute

the shift the job-finding rate due to unobservable factors. Furthermore, the total compositional shift

then is

∆(T )totcomp = ∆(T )obscomp + ∆(T )unobscomp

=
σx + σε
σx

∆(T )obscomp. (B26)

Given the estimates in Table 4 for the observable and unobservable heterogeneity, we get σx =√
0.17 = 0.1304 and σε =

√
0.13 = 0.1140 and thus a total contribution of composition to changes in

job finding of

∆(T )totcomp = 1.87∆(T )obscomp.
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For our regressions in Table A12, this implies a coefficient of 1.87 ∗ 0.082 = 0.153 for the change in

LTU risk due to both unobservable and unobservable shifts in the pool of unemployed, compared to

an actual change of 0.700. Under the assumption of identical shifts in the distribution of observable

and unobservable heterogeneity, we thus estimate that 22% can be accounted for by compositional

changes.4 For the Great Recession period, the change in the observed LTU risk of 13.6 p.p. between

2006 and 2009 contrasts with the LTU risk due to compositional shifts of only 1.87 p.p. (1.0 p.p. *

1.87) and thus accounting for 14% of the change in the observed LTU risk. We conclude that under

the assumption of identical distributional shifts the heterogeneity hypothesis can account for between

14 and 22 percent of the observed change of the job finding and LTU risk over the business cycle. We

believe this is a useful exercise and goes beyond prior work because (1) it relies on a prediction model

with substantial predictive power and (2) our analysis with multiple spells allows to quantify the

importance of unobservable heterogeneity relative to observable heterogeneity. In sum, our analysis

suggests that not compositional shifts in the pool of unemployed, but rather aggregate factors in

the labor market are responsible for changes of in the aggregate job finding rate/LTU risk over the

business cycle.

4If we extend the sample to the period 1992-2016, where in the first three years we do not have the full income and
employment histories available, the contribution increases to 35% (=1.87 ∗ 0.146/0.791).
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C Prediction Model: Details and Robustness

In this Appendix, we describe the binary prediction algorithm that we use to obtain the job-finding

probabilities, and report its accuracy across different subgroups.

C.1 Prediction Algorithm

The algorithm we use to predict the probability that an individual finds a job in the next 6 months

is a standard machine learning method for binary classification, an ensemble learner that consists

in our case of a random forest model, gradient-boosted decision trees and LASSO model. To avoid

overfitting, we train and calibrate the prediction algorithm on a training sample, for which we use

50% of the overall sample. We then use this trained prediction algorithm to obtain predictions for a

hold-out sample, which consists of the remaining unemployment spells. All the analyses and statistics

in the paper are developed use only this hold-out sample.

The prediction method we use follows three steps, which closely resemble the steps used in Einav et

al. [2018]. First, we follow standard practice in machine learning by tuning key parameters that govern

the prediction models by 3-fold cross-validation. Second, we train the three resulting prediction models

separately. Finally, we combine the three obtained predictions into one using a linear combination

that we calibrate in the data. We describe each of the three steps in more detail here.

Parameter Tuning As the three machine learning models that we use have parameters that

are at the discretion of the researcher, we follow standard practice and tune these parameters using

3-fold cross validation in a separate tuning set, consisting of 10% of the overall sample. We use the

package caret [Kuhn and Max, 2008] in R, which allows for standardized tuning of a large class of

models. In particular, we use the following models (internal caret names in brackets):

1. Random forest (ranger): random forest is an ensemble model constructed by aggregating a large

number of decision trees using a technique known as bootstrap aggregation or “bagging”. In a

nutshell, the model is constructed as an average of decision trees trained on separate bootstrap

samples. To further reduce over-fitting, to which individual trees are prone, the algorithm

also selects a random subset of covariates to split on at each node of the tree. We tune two

parameters: the minimal node size (min.node.size), from the set {1, 3, 5, 7, 9, 12, 14}; and the

number of variables used at each node (mtry), from {10, 20, 30, 40, 50}. This gives us a total of

35 combinations to choose from.

2. Gradient-boosted decision trees (xgbTree): gradient boosting is an alternative technique to

aggregate simple estimators (“weak learners”, in the ML jargon), decision trees in this case,

into a stronger ensemble prediction model. The algorithm involves iteratively fitting a decision

tree to the residuals of the previous round of boosting. We tune the learning rate (eta in the

package), a parameter that governs the weight given to the new tree after every boosting round.

Smaller values of eta shrink the contribution of each round to the ensemble, thus making the

model more conservative. We choose eta from a grid of 50 log-spaced values between 0.0001

and 0.9.
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3. LASSO (glmnet): the well-known LASSO is a penalized least squares estimator with an L1 (i.e.,

absolute distance) penalty, scaled by a multiplicative parameter (usually denoted by λ, lambda

in the package). Larger values of λ lead to more shrinkage and a smaller subset of covariates

with non-zero coefficients in the model. We choose this penalty or shrinkage parameter from a

grid of 50 log-spaced values between 0.0001 and 0.1.

For each of these models, we optimize among the listed alternatives using 3-fold cross validation, where

the objective is the area under the receiver operating characteristic curve (AUC).5 Thus, for each of

the parameter values we want to test, and for each fold, predictions are generated using a model

trained in the remaining two folds. We then evaluate the AUC in the full tuning sample. The results

of this grid search procedure are shown in Figure C1 for the baseline model in 2006. The objective

functions for the gradient boosting and LASSO models seem well-behaved, with highest performance

in the middle of the grids (eta ∈ [0.01, 0.1] and lambda ∈ [0.001, 0.01]) and sharp deterioration as

we approach the upper bounds. The random forest, in contrast, exhibits high AUCs throughout the

grid, so the objective function looks comparatively flat. The optimal values for this tuning set are:

min.node.size = 3, mtry = 40, eta = 0.0219 and lambda = 0.0034.

We repeat this procedure for each year and set of variables separately, using 10% of the sample at

the start of the spell. That is to say, the baseline model including all of the variables in Table 1 is tuned

once for every year between 1992 and 2016, while each of the models in Table 3 is tuned separately in

2006. Then, the same optimal parameter values are used at other unemployment durations (namely,

6 months and 12 months into the spell) for the same year and set of variables. This is done to reduce

variance: since sample size declines sharply with unemployment duration, tuning the parameters in

these smaller samples would introduce unnecessary noise into the prediction models. Figure C2 shows

how the optimal values evolve over time for the baseline model. In line with the shape of the cross-

validated AUC in Figure C1, the optimal values of eta and lambda are quite stable over time, while

the two parameters in the random forest model exhibit larger jumps around the grid.

Estimating the Models Using these tuned parameter values, all models are estimated using

30% of the sample (for models that predict job-finding probabilities at the start of the spell) or 40%

of the sample (for models that predict at other unemployment durations). These training sets do not

include any observations used to tune the parameters in the previous step. Once trained, the models

are used to generate predictions for the remaining 60% of the sample.

Obtaining Ensemble Predictor Finally, we combine the predictions from the random forest,

gradient-boosted decision trees, and LASSO into one ensemble prediction. Following Einav et al.

[2018], we construct the ensemble prediction to be the linear combination pensemble = β̂rf p̂rf +

β̂gbp̂gb + β̂lassop̂lasso, where p̂x is the prediction from algorithm x and β̂x is the associated weight.

We obtain estimates for the weights from a constrained linear regression (with no constant and the

weights summing to one) of the dummy for job finding on the three individual predicted probabilities.

We do not constraint the weights to be positive, as this seems to have small effects on the performance

5This is a common metric used in the machine learning literature to measure the performance of binary prediction
models.
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Figure C1: Cross-validation Results for the Baseline Model: 2006
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Notes: This figure shows the cross-validated AUC for each of the three Machine Learning models
that comprise the baseline ensemble model, for each of the parameter values in our grids. This
AUC is evaluated in the tuning sample for the year 2006.

of the model (see panel F in Appendix Table A2). For this step, we use a further 10% of the sample,

held out from the previous steps. Again, this is done separately for each year, set of variables and

unemployment duration.

Figure C3 plots the weights in the baseline model across time and unemployment durations. For

predictions at the start of the spell, the weights are broadly stable over time and mirrors the ranking

of the three models in terms of predictive value (see discussion below). At other unemployment

durations, the series are noticeable noisier, with frequent rank reversals from year to year. This

suggests higher variance in the weight calibration step, which is performed in much smaller samples

6 and 12 months into the unemployment spell. For 2006 at the start of the spell, the weights are

β̂rf = 0.338, β̂gb = 0.710 and β̂lasso = −0.048.
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Figure C2: Optimal Tuning Parameters for the Baseline Model: 1992-2016
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Figure C3: Ensemble Weights for the Baseline Model: 1992-2016
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C.2 Further Results on Predictive Value

Figure C4 shows receiver operating characteristic curves (ROC) for the baseline ensemble and the

three underlying models in the year 2006, evaluated in the respective hold-out sample. The curves

show the ensemble slightly improves on the three individual models. Also, the ranking of these in

terms of AUC agrees with the main R2 criterion used in the paper, as shown in Table A2: gradient

boosting performs best, followed by random forest and, finally, LASSO. For more discussion, see 3.3.

Figure C5 also shows that the predictions from all three models are highly correlated, with coefficients

above 0.92.
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Figure C4: Predictive Power of Ensemble Model
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Figure C5: Correlation Coefficients between Predictors
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C.3 Further Results on Accuracy

While Panel A of Figure 1 compares predictions and outcomes to assess the accuracy of the Ensemble

Model for the entire sample, Figures C6 to C13 show the same plots for different prediction models,

by different durations and for different subgroups. Even when we construct 144 groups by income

decile, gender, citizenship, days on DI and days on UI, we see from Panel A, B and C of Figure C15

that average predicted probabilities within the groups remain well calibrated. Overall, this analysis

confirms the accuracy of the underlying prediction algorithms and provides re-assurance that the

observed differences in predicted long-term unemployment risks across different groups are not due to

differential prediction accuracy of our ensemble predictor.
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Figure C6: Comparing Predictions to Outcomes: by Duration
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and predicted job-finding rates, as in Figure 1, for various
unemployment durations. Panel A simply reproduces Panel
A of 1, while Panels B and C show the predictions 6 and
12 months into the unemployment spell, respectively. All
results correspond to the 2006 hold-out sample.
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Figure C7: Comparing Predictions to Outcomes: by Prediction Model
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Notes: The figure presents binned scatter plots of observed and predicted job-
finding rates at the start of the spell, as in Figure 1, but for the different
underlying prediction models separately.

Figure C8: Comparing Predictions to Outcomes: Linear Model
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Regression Line
Intercept = 0.02 (0.00)
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Notes: The figure shows a binned scatter plot of observed job finding
and the predictions of the linear model.
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Figure C9: Comparing Predictions to Outcomes: by Income
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Notes: The figure presents binned scatter plots of observed and predicted job-finding rates at the start of
the spell, as in Figure 1, but splitting the 2006 hold-out sample into two bins by individual labour income.

Figure C10: Comparing Predictions to Outcomes: by Gender
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Notes: The figure presents binned scatter plots of observed and predicted job-finding rates at the start of
the spell, as in Figure 1, but splitting the 2006 hold-out sample into two bins by gender.
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Figure C11: Comparing Predictions to Outcomes: by Citizenship
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Notes: The figure presents binned scatter plots of observed and predicted job-finding rates at the start of
the spell, as in Figure 1, but splitting the 2006 hold-out sample into two bins by citizenship.

Figure C12: Comparing Predictions to Outcomes: by Days on UI
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Notes: The figure presents binned scatter plots of observed and predicted job-finding rates at the start of
the spell, as in Figure 1, but splitting the 2006 hold-out sample into two bins by days on UI during the 5
years preceding the unemployment spell.
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Figure C13: Comparing Predictions to Outcomes: by Days on DI
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Notes: The figure presents binned scatter plots of observed and predicted job-finding rates at the
start of the spell, as in Figure 1, but splitting the 2006 hold-out sample into two bins by days on DI
during the 5 years preceding the unemployment spell.
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Figure C14: Comparing Predictions to Outcomes: by 36 groups
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B. At 6 Months
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C. At 12 Months
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Slope = 0.91 (0.07)
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Notes: The figure presents binned scatter plots of observed
and predicted job-finding rates for various unemployment
durations. Here we construct 36 bins by deciles of labour
income, gender and citizenship, and we report average ob-
served and predicted job-finding rates for each bin. The
regression output corresponds to a regression of bin aver-
ages. Panel A uses the baseline predictions at the start of
the spell, while Panels B and C show the predictions 6 and
12 months into the unemployment spell, respectively. All
results correspond to the 2006 hold-out sample.
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Figure C15: Comparing Predictions to Outcomes: by 144 groups
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B. At 6 Months
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C. At 12 Months
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Notes: The figure presents binned scatter plots of observed
and predicted job-finding rates for various unemployment
durations. Here we construct 144 bins by deciles of labour
income, gender, citizenship, days on UI and days on DI, and
we report average observed and predicted job-finding rates
for each bin. The regression output corresponds to a regres-
sion of bin averages. Panel A uses the baseline predictions
at the start of the spell, while Panels B and C show the
predictions 6 and 12 months into the unemployment spell,
respectively. All results correspond to the 2006 hold-out
sample.
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