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invited many applicants for freshman admission to submit letters of recommendation. This 
proved controversial within the university, with concerns that this change would further 
disadvantage applicants from disadvantaged groups. To inform this debate, we use this pilot as 
the basis for an observational study of the impact of submitting letters of recommendation on 
subsequent admission, with the goal of estimating how impacts vary across pre-defined 
subgroups. Understanding this variation is challenging in an observational setting because 
estimated impacts reflect both actual treatment effect variation and differences in covariate 
balance across groups. To address this, we develop balancing weights that directly optimize for 
“local balance” within subgroups while maintaining global covariate balance between treated and 
control units. Applying this approach to the UC Berkeley pilot study yields excellent local and 
global balance, unlike more traditional weighting methods, which fail to balance covariates 
within subgroups. We find that the impact of letters of recommendation increases with applicant 
strength. However, we find little average difference for applicants from disadvantaged groups, 
although this result is more mixed. In the end, we conclude that soliciting letters of 
recommendation from a broader pool of applicants would not meaningfully change the 
composition of admitted undergraduates.
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1 Introduction and motivation

In a pilot program during the 2016-17 admissions cycle, the University of California, Berkeley invited many
applicants for freshman admission to submit letters of recommendation (LORs) as part of their applica-
tions. UC Berkeley had (and has) a “holistic review” admissions process, which attempts to examine the
whole applicant, taking account of any contextual factors and obstacles overcome without over-reliance on
quantitative measures like SAT scores [Hout, 2005]. Unlike other highly selective universities, however, UC
Berkeley had not routinely asked applicants to submit letters from teachers and guidance counselors.

The new approach proved controversial within the university. The LORs were intended to help identify
students from non-traditional backgrounds who might otherwise be overlooked [UC Berkeley, 2017]. But
there was also legitimate concern that applicants from disadvantaged backgrounds might not have access to
adults who could write strong letters, and that the use of letters would further disadvantage these students
[Chalfant, 2017].

In this paper, we use the Berkeley pilot as the basis for an observational study of the impact of submitting
letters of recommendation on subsequent admission. Our goal is to assess how impacts vary across pre-defined
subgroups, in order to inform the debate over the Berkeley policy and similar debates at other universities.

Assessing such heterogeneity is difficult in non-randomized studies like this because variation in estimated
impacts reflects both actual treatment effect variation and differences in covariate balance across groups.
Existing approaches, such as balancing weights and traditional inverse propensity score weighting (IPW), face
a curse of dimensionality when estimating subgroup effects: balancing all covariate-by-subgroup interactions
is difficult, and fully interacted models can over-fit.

To address this, we develop a balancing weights approach tailored to estimating heterogeneous treatment
effects in the UC Berkeley LOR pilot study. Specifically, we present a convex optimization problem that
finds weights that directly target the level of local imbalance within each subgroup — ensuring approximate
local covariate balance — while guaranteeing exact global covariate balance between the treated and control
samples. The resulting weights control the estimation error of subgroup-specific effects, allowing us to better
isolate treatment effect variation. This proposal also has a dual representation as inverse propensity weighting
with a hierarchical propensity score model. Finally, we propose combining weighting with an outcome model
to adjust for any remaining imbalance, analogous to bias correction for matching.

We then use this approach to assess heterogeneity in the impacts of letters of recommendation during
the 2016 UC Berkeley undergraduate admissions cycle. Based on the Berkeley policy debate, we focus on
variation in the effect on admissions rates by Berkeley’s preferred markers of student disadvantage (such
as low income, or from a low-scoring high school), and by applicant strength estimated using data from
the prior year’s admissions cycle. We first show that the proposed weights indeed yield excellent local and
global balance, while traditional propensity score weighting methods yield poor local balance. We then find
evidence that the impact of letters increases with the applicant’s predicted strength. Applicants who are
very unlikely to be admitted see little benefit from letters of recommendation, while applicants on the cusp
of acceptance see a larger, positive impact.

The evidence on the differential effects across student groups is more mixed. Overall, the point estimates
for disadvantaged and non-disadvantaged applicants are close to each other. However, these estimates are
noisy and mask important variation by applicant strength. For applicants with the strongest quantifiable
credentials, we estimate larger impacts for non-disadvantaged applicants, though these estimates are sensitive
to augmentation with an outcome model. For all other applicants, we estimate the reverse: larger impacts for
disadvantaged than non-disadvantaged applicants. Since student disadvantage is correlated with applicant
strength, this leads to a Simpson’s Paradox-type pattern for subgroup effects [Bickel et al., 1975, VanderWeele
and Knol, 2011]: there is a slightly larger point estimate for non-disadvantaged applicants pooled across
applicant strength, but larger point estimates for disadvantaged applicants within most levels of applicant
strength.

We also conduct extensive robustness and sensitivity checks, detailed in Appendix A. In addition to
alternative estimators and sample definitions, we conduct a formal sensitivity analysis for violations of the
assumption of no unmeasured confounding, adapting a proposal from Soriano et al. [2020]. We also explore
an alternative approach that instead leverages unique features of the UC Berkeley pilot study, which included
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an additional review without the letters of recommendation for a sample of 10,000 applicants. Finally, we
conduct a simple simulation exercise to project the impact of a policy requiring letters of recommendation
for all applicants, finding minimal effects on the demographic composition of admitted students. Overall,
our conclusions are similar across a range of approaches. Thus, we believe our analysis is a reasonable first
look at this question, albeit best understood alongside studies that also examine the content of the letters
[Rothstein, 2022].

The paper proceeds as follows. In the next section we introduce the letter of recommendation pilot
program at UC Berkeley. Section 3 introduces the problem setup and notation, and discusses related work.
Section 4 proposes and analyzes the approximate balancing weights approach. Section 5 presents empirical
results on the effect of letters of recommendation. Section 6 concludes with a discussion about possible
extensions. The appendix includes additional analyses and theoretical discussion, as well as an extensive
simulation study.

2 A pilot program for letters of recommendation

There is a longstanding policy debate around the relative roles of quantitative and qualitative measures,
including letters of recommendation, in selective undergraduate admissions; see, for example, Bowen and
Bok [1996], Rothstein [2004], Karabel [2005], Bleemer [2022]. LORs have the potential to offer insight
into aspects of the applicant not captured by the available quantitative information or by the essays that
applicants submit [Kuncel et al., 2014]. At the same time, letters from applicants from disadvantaged
backgrounds or under-resourced high schools may be less informative or prejudicial against the applicant,
due, e.g., to poor writing or grammar, or to lower status of the letter writer [Schmader et al., 2007]. A
related concern arises in admissions essays: Alvero et al. [2021] find that essay text is strongly predictive of
family income.

2.1 Letters of recommendation at UC Berkeley

Historically, undergraduate admissions at UC Berkeley were largely quantitative and mechanical, often
determined by SAT scores and high school GPA alone [see, for example, Bleemer, 2022]. This began to
change in the mid-2000s when Berkeley adopted a “holistic review,” in which two separate reviewers read
and scored each application [Hout, 2005]. This shifted further in the mid-2010s with a push to consider
LORs in admission, with the explicit goal of identifying students who were strong enough to admit but were
unlikely to be admitted without the additional context that LORs provide [UC Berkeley, 2017]. To explore
this potential, UC Berkeley solicited LORs from a small number of applicants in the Fall 2015 admissions
cycle, expanding to a larger number in the Fall 2016 admissions cycle.

The pilot LOR policy led to significant debate within the university. One Academic Senate committee,
following an inquiry into the “intended and unintended consequences of the interim pilot admissions policy,
especially for underrepresented minority students,” concluded that “the burden of proof rests on those
who want to implement the new letters of recommendation policy, and should include a test of statistical
significance demonstrating measurable impact on increasing diversity in undergraduate admissions” [UC
Berkeley, 2017]. The UC system-wide faculty senate was concerned that “LORs conflict with UC principles of
access and fairness, because students attending under-resourced schools or from disadvantaged backgrounds
will find it more difficult to obtain high-quality letters, and could be disadvantaged by a LOR requirement”
[Chalfant, 2017]. Ultimately, the faculty senate limited the use of LORs following the pilot—though before
any results were available.

Our goal is to conduct an impact analysis for the effect of LORs on undergraduate admissions from the
UC Berkeley pilot study, especially regarding how impacts vary across key student subgroups. To the best
of our knowledge, this type of impact estimate is the first of its kind: the policy change at UC Berkeley is
unique. In a companion paper, Rothstein [2022] uses natural language processing methods to understand the
role of letter content in admissions. Unlike in our paper, Rothstein [2022] restricts his analysis to a subset
of 10,000 applications that received additional review after admissions decisions were made; we discuss this
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Figure 1: Absolute difference in means, standardized by the pooled standard deviation, between applicants
submitting and not submitting LORs for several key covariates. By design, applicants submitting LORs
disproportionately have a “Possible” score from the first reader (70% of treated applicants vs. 4% of untreated
applicants).

alternative approach in Appendix A.2. Finally, in an internal UC Berkeley report, Rothstein [2017] discusses
key implementation details and explores alternative research designs.

2.2 UC Berkeley pilot study

Our analysis focuses on applicants for undergraduate admissions to UC Berkeley in the 2016 admissions
cycle. Specifically, we restrict the pool of applicants to non-athlete California residents who applied for
freshman admission to either the College of Letters and Science or the College of Engineering. There were
40,541 such applicants, 11,143 of whom submitted LORs. We examine the impacts for applicants who both
were invited to and subsequently did submit LORs; we consider alternative approaches in Section 5 and
Appendix A.

Our primary interest is in estimating treatment effects of LORs separately for students who are and
are not from groups underrepresented among admitted students. We follow the university in defining an
underrepresented (or “URM”) applicant as one who is a low-income student, a student from a low-performing
high school, a first-generation college student, or a student from an underrepresented racial or ethnic group
(Black, Hispanic, or American Indian or Alaskan Native). Based on this definition, 55% of applicants in our
sample are categorized as URM.1

2.3 Selection into treatment

Selection into submitting letters was a two-step process: A subset of students were invited to provide letters,
and then invited applicants did or did not submit them. The selection of students to be invited was embedded
in the application review process, and depended on the initial application review. UC Berkeley uses a two-
reader evaluation system. Each reader scores applicants on a three-point scale, as “No,” “Possible,” or
“Yes.”2 In the LOR pilot, any applicant who received a “Possible” score from the first reader was invited
to submit letters. In addition, due to concerns that the first readers’ scores would not be available in time

126% are low-income; 37% from low-performing schools; 23% are first generation; and 28% are from underrepresented racial
or ethnic groups; there is substantial overlap among these categories.

2Application decisions are based on the combination of these two scores and the major to which a student has applied. In
the most selective majors (e.g., mechanical engineering), an applicant typically must receive two “Yes” scores to be admitted,
while in others a single “Yes” is sufficient.
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to be useful, an index of student- and school-level characteristics was generated, and applicants with high
levels of the index were invited as well.3 When submitted, letters were made available to the second reader
for possible consideration, with the instruction that applicants’ scores should not be harmed either by the
absence of letters or by the content of letters if submitted.

Of our sample of 40,451 applicants, 14,596 were invited to submit letters, and 11,143 (76% of those
invited) eventually submitted them. No applicant submitted a letter who was not invited to. Because the
“treatment” of interest is the inclusion of letters in the reader evaluation, we include the 3,453 applicants
who were invited but did not submit LORs as part of the possible comparison group; we consider alternative
definitions in Appendix A.2.

We assume that submission of LORs is effectively random conditional on the first reader score and on
both student- and school-level covariates (Assumption 1 below). In particular, the interaction between the
covariates and the first reader score plays an important role in the overall selection mechanism, as applicants
who received a score of “No” or “Yes” from the first reader could still have been asked to submit an LOR based
on their individual and school information. Figure 1 shows covariate imbalance for several key covariates
(measured as the absolute difference in means divided by the pooled standard deviation) for applicants who
submitted LORs versus those who did not.4 We see that there are large imbalances in observable applicant
characteristics, most notably average school income, GPA, the number of honors and AP classes taken, and
SAT score. There were also large imbalances in first reader scores (not shown in Figure 1): 70% of applicants
that submitted LORs had “Possible” scores, compared to only 4% of those who did not. There is a smaller
imbalance in URM status, with 61% of those submitting LORs classified as URMs, versus 53% of those who
did not submit. Our statistical goal is to adjust for these differences in observable characteristics between
applicants who do and do not submit LORs. However, differences in unobservable characteristics across
applicants, e.g. in conscientiousness, may bias our effects, likely upward. To account for this possibility, we
assess the sensitivity of our results to unmeasured confounding variables in Appendix A.3.

2.4 Heterogeneity across application strength

The admissions office provided us with a univariate summary of the large number of applicant- and school-
level characteristics, which we refer to as the Admissibility Index (AI). This is computed as the prediction
from a logistic regression fit to admissions data from the prior year (2015), using linear terms for the
admissions variables without interactions.5 Overall, we view the AI as a useful, albeit simple, a priori
measure of applicant strength and seek to adjust for it in our main analysis.6

Figure 2 shows the AI distribution for the 2016 applicant cohort, broken out by URM status and LOR
submission. There are several features of this distribution that have important implications for our analysis.

3The index was generated from a logistic regression fit to data from the prior year’s admissions cycle, predicting whether
an applicant received a “Possible” score (versus either a “No” or a “Yes”). Applicants with predicted probabilities from this
model greater than 50% were invited to submit LORs. Because we observe all of the explanatory variables used in the index,
this selection depends only on observable covariates. A small share of applicants with low predicted probabilities received first
reads after January 12, 2017, the last date that LOR invitations were sent, and were not invited even if they received “Possible”
scores.

4The full set of student-level variables we include in our analysis are: weighted and unweighted GPA, GPA percentile within
school, parental income and education, SAT composite score and math score, the number of honors courses and percentage
out of the total available, number of AP courses, ethnic group, first generation college student status, and fee waiver status.
The school level variables we control for are: average SAT reading, writing, and math scores, average ACT score, average
parental income, percent of students taking AP classes, and the school Academic Performance Index (API) evaluated through
California’s accountability tests. For students that did not submit an SAT score but did submit an ACT score, we imputed the
SAT score via the College Board’s SAT to ACT concordance table. For the 992 applicants with neither an SAT nor an ACT
score, we impute the SAT score as the average among applicants from the school.

5These variables include those in Figure 1 as well as disaggregated SAT scores, parental education, and an indicator if
less than 5% of students from the high school apply to UC Berkeley. Notably, the AI does not include ethnic group or race
information. About 15% of students in the data used to train the AI model submitted LORs in an earlier iteration of the UC
Berkeley pilot; the AI does not include any information on whether students submitted LORs.

6Unfortunately, the AI cannot be used to impute counterfactuals on its own. The model used to generate the AI did not
include interactions, and in particular did not account for differences in admissions outcomes across applicants to different
colleges within the university. As we show in Appendix Figure D.1, while the AI has decent calibration for the overall sample,
it is mis-calibrated for Engineering applicants and high admissibility Letters and Science applicants, both URM and non-URM.
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Figure 2: Distribution of the “admissibility index” — an a priori estimate of applicant strength — for the
2016 UC Berkeley application cohort, separated into URM and non-URM and those that submitted letters
versus those that did not.

First, applicants across nearly the full AI support submitted LORs. This is primarily because applicants
who received “Possible” scores from the first readers come from a wide range of admissibility levels. This
will allow us to estimate heterogeneous effects across the full distribution, with more precision for applicants
with lower AIs. Second, because the admissions model disproportionately predicted that URM students had
high chances of receiving “Possible” scores, many more URM applicants were invited to submit letters than
non-URM applicants, and so our estimates for URM applicants will be more precise than those for non-URM
applicants. Third, at higher AI levels large shares of applicants submitted LORs, leaving few comparison
observations. This will make it challenging to form balanced comparison groups for high-AI applicants who
submit letters.

From Figure 2 we know that the distribution of AI varies between URM and non-URM applicants, and
so apparent differences in estimated average effects between the two groups may be due to compositional
differences. Therefore, in the subsequent sections we will focus on estimating effects within subgroups
defined by both URM status and the AI. To do this, we define subgroups by creating four (non-equally-
sized) strata of the AI: < 5%, 5% − 10%, 10% − 20% and > 20%. Interacting with URM status, this leads
to eight non-overlapping subgroups; we will marginalize over these to estimate the other subgroup effects
above. Appendix Table D.1 shows the total number of applicants in each of the eight groups, along with the
proportion submitting letters of recommendation. As we discuss in Section 5, we will further divide each of
these subgroups by first reader score and college, to ensure exact balance on these important covariates.

3 Treatment effect variation in observational studies

3.1 Setup and estimands

We now describe the letter of recommendation study as an observational study where for each applicant
i = 1, . . . , n, we observe applicant and school level-covariates Xi ∈ X ; a group indicator Gi ∈ {1, . . . ,K}
denoting a pre-defined subgroup of interest; a binary indicator for submitting a letter of recommendation
Wi ∈ {0, 1}; and whether the applicant is admitted, which we denote as Yi ∈ {0, 1}. Let n1g and n0g represent
the number of treated and control units in subgroup Gi = g, respectively. We assume that for each applicant,
(Xi, Gi,Wi, Yi) are sampled i.i.d. from some distribution P(·). Following the potential outcomes framework,
we assume SUTVA and posit two potential outcomes Yi(0) and Yi(1) for each applicant i, corresponding to
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i’s outcome if that applicant submits a letter of recommendation or not, respectively; the observed outcome
is Yi = WiYi(1) + (1−Wi)Yi(0).

Importantly, this assumption rules out interference between applicants; that is, we assume that the
availability of LORs for one student does not affect any other student’s admission probability. While this
assumption cannot strictly hold in our setting — there are more applicants than admissions slots — we view
this as a reasonable working assumption. UC Berkeley admitted nearly 19,000 students for Fall 2017 in a
relatively mechanistic way, with minimal coordination across application readers. We discuss this further in
Appendix B.2 and also formalize the relevant no interference assumption.

In this study we are interested in estimating two types of effects. First, we wish to estimate the overall
Average Treatment Effect on the Treated (ATT), the treatment effect for applicants who submit letters,

τ = E[Y (1)− Y (0) | W = 1] = µ1 − µ0,

where we denote µ1 = E[Y (1) | W = 1] and µ0 = E[Y (0) | W = 1]. Second, for each subgroup Gi = g, we
would like to estimate the Conditional ATT (CATT),

τg = E[Y (1)− Y (0) | G = g,W = 1] = µ1g − µ0g, (1)

where similarly we denote µ1g = E[Y (1) | G = g,W = 1] and µ0g = E[Y (0) | G = g,W = 1].
Estimating µ1g is relatively straightforward: we can simply use the average outcome for treated units

in group g, µ̂1g ≡ 1
n1g

∑
Gi=g WiYi. However, estimating µ0g is more difficult due to confounding; we focus

much of our discussion on imputing this counterfactual mean for the group of applicants who submitted
letters of recommendation. To do this, we rely on two key assumptions that together form the usual strong
ignorability assumption.

Assumption 1 (Ignorability). The potential outcomes are independent of treatment given the covariates
and subgroup:

Y (1), Y (0) ⊥⊥ W | X,G. (2)

Assumption 2 (One Sided Overlap). The propensity score e(x, g) ≡ P (W = 1 | X = x,G = g) is less than
1:

e(X,G) < 1. (3)

In our context, Assumption 1 says that conditioned on the first reader score and applicant- and school-level
covariates, submission of LORs is independent of the potential admissions outcomes. Due to the selection
mechanism we describe in Section 2.3, we believe that this is a reasonable starting point for estimating these
impacts; see Rothstein [2017] and Appendix A.2 for alternatives. In Appendix A.3, we assess the sensitivity
of our conclusions to violations of this assumption.

Assumption 2 corresponds to assuming that no applicant would have been guaranteed to submit a letter
of recommendation. Although some applicants were guaranteed to be invited to submit an LOR, we believe
that this is a reasonable assumption for actually submitting a letter. In Section 5.1 we assess overlap
empirically.

With this setup, let m0(x, g) = E[Y (0) | X = x,G = g] be the prognostic score, the expected control
outcome conditioned on covariates X and group membership G. Under Assumptions 1 and 2, we have the
standard identification result:

µ0g = E[m0(X,G) | W = 1] = E
[

e(X,G)

1− e(X,G)
Y | W = 0

]
. (4)

Therefore we can obtain a plug-in estimate for µ0g with an estimate of the prognostic score, m0(·, ·), an
estimate of the propensity score, e(·, ·), or an estimate of the treatment odds themselves, e(·,·)

1−e(·,·) . In our

setting, the large number of groups and relatively small number of observations per group means that we
cannot estimate any of these quantities precisely at the group level. Thus, our methodological approach will
focus on ways of borrowing information across groups to improve precision while maintaining validity.

6



3.2 Related work

There is an extensive literature on estimating varying treatment effects in observational studies; see Anoke
et al. [2019] and Carvalho et al. [2019] for recent discussions. This is an active area of research, and we
narrow our discussion here to methods that assess heterogeneity across pre-defined, discrete subgroups. In
particular, we will focus on linear weighting estimators that take a set of weights γ̂ ∈ Rn, and estimate µ0g

as a weighted average of the control outcomes in the subgroup:

µ̂0g ≡ 1

n1g

∑
Gi=g

γ̂i(1−Wi)Yi. (5)

Many estimators take this form; we focus on design-based approaches that do not use outcome information
in constructing the estimators [Rubin, 2008]. See Hill [2011], Künzel et al. [2019], Carvalho et al. [2019], Nie
and Wager [2017], Hahn et al. [2020] for discussions of approaches that instead focus on outcome modeling.

3.2.1 Methods based on estimated propensity scores

A canonical approach in this setting is Inverse Propensity Weighting (IPW) estimators for µ0g [see Green and
Stuart, 2014, Griffin et al., 2022]. Traditionally, this proceeds in two steps: first, estimate the propensity score

ê(x, g), e.g., via logistic regression; second, estimate µ0g as in Equation (5), with weights γ̂i =
ê(Xi,Gi)

1−ê(Xi,Gi)
:

µ̂0g =
1

n1g

∑
Wi=0,Gi=g

ê(Xi, Gi)

1− ê(Xi, Gi)
Yi, (6)

where these are “odds of treatment” weights to target the ATT. A natural approach to estimating ê(Xi, Gi),
recognizing that Gi is discrete, is to estimate a logistic model for treatment separately for each group or,
equivalently, with full interactions between Gi and (possibly transformed) covariates ϕ(Xi) ∈ Rp using some
transformation function ϕ : Rd → Rp:

logit(e(x, g)) = αg + βg · ϕ(x). (7)

Due to the high-dimensional nature of the problem, it is often infeasible to estimate Equation (7) without
any regularization: the treated and control units might be completely separated, particularly when some
groups are small. Classical propensity score modeling with random effects is one common solution, but can
be numerically unstable in settings similar to this [Zubizarreta and Keele, 2017]. Other possible solutions in
high dimensions include L1 penalization [Lee et al., 2019], hierarchical Bayesian modeling [Li et al., 2013],
and generalized boosted models [McCaffrey et al., 2004]. In addition, Dong et al. [2020] propose a stochastic
search algorithm to estimate a similar model when the number of subgroups is large, and Li et al. [2017] and
Yang et al. [2021] propose overlap weights, which upweight regions of greater overlap.

Under suitable assumptions and conditions, methods utilizing the estimated propensity score will converge
to the true ATT asymptotically. However, in high dimensional settings with a moderate number of subgroups,
these methods can often fail to achieve good covariate balance in the sample of interest; as we show in Section
5.1, these methods fail to balance covariates in the UC Berkeley LOR study. The key issue is that traditional
IPW methods focus on estimating the propensity score itself (i.e., the conditional probability of treatment)
rather than finding weights that achieve good in-sample covariate balance.

3.2.2 Balancing weights

Unlike traditional IPW, balancing weights estimators instead find weights that directly target in-sample
balance. One example is the Stable Balancing Weights (SBW) proposal from Zubizarreta [2015], which finds
the minimum variance weights that achieve a user-defined level of covariate balance in transformed covariates
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ϕ(Xi) ∈ Rp:
min
γ

∥γ∥22

subject to max
j

∣∣∣∣∣ 1n1

∑
Wi=1

ϕj(Xi)−
1

n1

∑
Wi=0

γiϕj(Xi)

∣∣∣∣∣ ≤ δ

∑
Wi=0

γi = 1 and γi ≥ 0, for all i,

(8)

for weights γ, typically constrained to the simplex as we have written, allowable covariate imbalance δ,
and a transformation function ϕ : Rd → Rp giving transformations of the covariates ϕj(·), j = 1, . . . , p.
These methods have a long history in calibrated survey weighting [see, e.g. Deville et al., 1993], and have
recently been extensively studied in the observational study context [e.g. Zubizarreta, 2015, Athey et al.,
2018, Hirshberg et al., 2019, Hazlett, 2020]. They have also been shown to estimate the propensity score
with a loss function designed to achieve good balance [Wang and Zubizarreta, 2020].

While balancing weights typically achieve better balance than the traditional IPW methods above, we
must take special care to use them appropriately when estimating subgroup treatment effects. As we will
show in Section 5.1, designing balancing weights estimators without explicitly incorporating the subgroup
structure also fails to balance covariates within subgroups in the LOR study. We turn to designing such
weights in the next section.

4 Balancing weights for treatment effect variation

We now describe a specialization of balancing weights that minimizes the bias for estimating both the overall
treatment effect and the subgroup-specific treatment effects. This approach incorporates the subgroup
structure into the balance measure and optimizes for the “local balance” within each subgroup. First we
show that the error for the subgroup treatment effect estimate is bounded by the level of local imbalance
within the subgroup. Furthermore, the error for estimating the overall ATT depends on both the global
balance and the local balance within each subgroup. We then describe a convex optimization problem to
minimize the level of imbalance within each subgroup while ensuring exact global balance in the full sample.
Next, we connect the procedure to IPW with a hierarchical propensity score model, using the procedure’s
Lagrangian dual formulation. We conclude by describing how to augment the weighting estimate with an
outcome model.

4.1 Subgroup effects

We initially consider the role of local imbalance in estimating subgroup treatment effects. This is the
subgroup-specific specialization of standard results in balancing weights; see Ben-Michael et al. [2021c] for a
recent review. We will compare the estimate µ̂0g to µ̃0g ≡ 1

n1g

∑
Gi=g Wim0(Xi, g), our best approximation

to µ0g if we knew the true prognostic score. Defining the residual εi = Yi −m0(Xi, Gi), the error is

µ̂0g − µ̃0g =
1

n1g

∑
Gi=g

γ̂i(1−Wi)m0(Xi, g)−
1

n1g

∑
Gi=g

Wim0(Xi, g)︸ ︷︷ ︸
biasg

+
1

n1g

∑
Gi=g

(1−Wi)γ̂iεi︸ ︷︷ ︸
noise

. (9)

Since the weights γ̂ are design-based [Rubin, 2008], they will be independent of the outcomes, and the noise
term will be mean-zero and have variance proportional to the sum of the squared weights 1

n2
1g

∑
Gi=g(1 −

Wi)γ̂
2
i .

7 At the same time, the conditional bias term, biasg, depends on the imbalance in the true prognostic

7In the general case with heteroskedastic errors, the variance of the noise term is 1
n2
1g

∑
Gi=g γ̂2

i Var(εi) ≤

maxi{Var(εi)} 1
n2
1g

∑
Gi=g γ̂2

i .
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score m0(Xi, Gi). The idea is to bound this imbalance by the worst-case imbalance in all functions m in a
model class M. While the setup is general,8 we describe the approach assuming that the prognostic score
within each subgroup is a linear function of transformed covariates ϕ(Xi) ∈ Rp with L2-bounded coefficients;
i.e., M = {m0(x, g) = ηg · ϕ(x) | ∥ηg∥2 ≤ C}. We can then bound the bias by the level of local imbalance
within the subgroup via the Cauchy-Schwarz inequality:

|biasg| ≤ C

∥∥∥∥∥∥ 1

n1g

∑
Gi=g

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)

∥∥∥∥∥∥
2︸ ︷︷ ︸

local imbalance

. (10)

Based on Equation (10), we could control local bias solely by controlling local imbalance. This approach
would be reasonable if we were solely interested in subgroup impacts. In practice, however, we are also
interested in overall effects and aggregated subgroup effects.

4.2 Overall treatment effect

We estimate aggregated effects by taking weighted averages of the subgroup-specific estimates, e.g., we
estimate µ0 as µ̂0 =

∑K
g=1

n1g

n1
µ̂0g = 1

n1

∑
Wi=0 n1Gi

γ̂iYi. The imbalance within each subgroup continues to
play a key role in estimating this overall treatment effect, alongside global balance. To see this, we again
compare to our best estimate if we knew the prognostic score, µ̃0 = 1

n1

∑K
g=1 n1gµ̃0g, and see that local

imbalance plays a part. The error is

µ̂0 − µ̃0 = η̄ ·

(
1

n1

n∑
i=1

n1Gi γ̂i(1−Wi)ϕ(Xi)−
1

n1

n∑
i=1

Wiϕ(Xi)

)
+

1

n1

k∑
g=1

n1g (ηg − η̄) ·

∑
Gi=g

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)

 +

1

n1

n∑
i=1

γ̂i(1−Wi)εi,

(11)

where η̄ ≡ 1
K

∑K
g=1 ηg is the average of the model parameters across all subgroups. Again using Cauchy-

Schwarz we see that the overall bias is controlled by the local imbalance within each subgroup as well as the
global balance across subgroups:

|bias| ≤ ∥η̄∥2

∥∥∥∥∥ 1

n1

n∑
i=1

n1Gi
γ̂i(1−Wi)ϕ(Xi)−

1

n1

n∑
i=1

Wiϕ(Xi)

∥∥∥∥∥
2︸ ︷︷ ︸

global balance

+

G∑
g=1

n1g

n1
∥ηg − η̄∥2

∥∥∥∥∥∥
∑
Gi=g

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)

∥∥∥∥∥∥
2︸ ︷︷ ︸

local balance

.

(12)

In general, we will want to achieve both good local balance within each subgroup and good global balance
across subgroups. Ignoring local balance can incur bias by ignoring heterogeneity in the outcome model
across subgroups, while ignoring global balance leaves potential bias reduction on the table. Equation (12)
shows that the relative importance of local and global balance for estimating the overall ATT is controlled

8See Wang and Zubizarreta [2020] for the case where the prognostic score can only be approximated by a linear function;
see Hazlett [2020] for a kernel representation and Hirshberg et al. [2019] for a general nonparametric treatment.
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by the level of similarity in the outcome process across groups. In the extreme case where the outcome
process does not vary across groups — i.e., ηg = η̄ for all g — then controlling the global balance is sufficient
to control the bias. In the other extreme where the outcome model varies substantially across subgroups —
e.g., ∥ηg − η̄∥2 is large for all g — we will primarily seek to control the local imbalance within each subgroup
in order to control the bias for the ATT. Typically, we expect that interaction terms are weaker than “main
effects,” i.e., ∥ηg − η̄∥2 < ∥η̄∥2 [see Feller and Gelman, 2015]. As a result, our goal is to find weights that
prioritize global balance while still achieving good local balance.

4.3 Optimizing for both local and global balance

We now describe a convex optimization procedure to find weights that optimize for local balance while
ensuring exact global balance across the sample. The idea is to stratify across subgroups and find approximate
balancing weights within each stratum, while still constraining the overall level of balance. To do this, we
find weights γ̂ that solve the following optimization problem:

min
γ

K∑
g=1

∥∥∥∥∥∥
∑

Gi=g,Wi=0

γiϕ(Xi)−
∑

Gi=g,Wi=1

ϕ(Xi)

∥∥∥∥∥∥
2

2

+
λg

2

∑
Gi=G,Wi=0

γ2
i

subject to
∑
Wi=0

γiϕ(Xi) =
∑
Wi=1

ϕ(Xi)

∑
Gi=G,Wi=0

γi = n1g, γi ≥ 0 ∀i = 1, . . . , n

(13)

The optimization problem (13) has several key components. First, following Equation (10) we try to find
weights that minimize the local imbalance for each stratum defined by G; this is a proxy for the stratum-
specific bias. We also constrain the weights to exactly balance the transformed covariates globally over
the entire sample. Equivalently, this finds weights that achieve exact balance marginally on the transformed
covariates ϕ(Xi) and only approximate balance for the interaction terms ϕ(Xi)×1Gi

, placing greater priority
on main effects than interaction terms.9 Taken together, this ensures that we are minimizing the overall
bias as well as the bias within each stratum. In principle, weights that exactly balance the covariates within
each stratum would also yield exact balance globally. Typically, however, the sample sizes are too small to
achieve exact balance within each stratum, and so targeting local balance alone without the global balance
constraint can fail to achieve good global balance. On the other hand, including the exact global balance
constraint guarantees global balance. As we discuss in Section 5.1, in our study this global balance constraint
improves global balance at a small cost to local balance.

From Equation (12), we can see that if there is a limited amount of heterogeneity in the baseline outcome
process across groups, the global exact balance constraint will limit the estimation error when estimating
the ATT, even if local balance is relatively poor. By contrast, if there is more heterogeneity, local balance is
a higher priority. In principle, incorporating the global balance constraint could lead to worse local balance.
However, we show in both the simulations in Appendix C and the analysis of the LOR pilot study in Section
5 that the global constraint leads to negligible changes in the level of local balance and the performance
of the subgroup estimators, but can lead to large improvements in the global balance and the performance
of the overall estimate. Thus, there seems to be little downside in terms of subgroup estimates from an
approach that controls both local and global imbalance — but large potential gains for overall estimates.

In Appendix B.1 we also show that if the estimand is the difference in treatment effects between two

9We could extend the optimization problem in Equation (13) to balance intermediate levels between global balance and local
balance. Incorporating additional balance constraints for each intermediate level is unwieldy in practice due to the proliferation
of hyperparameters. Instead, we can expand the set of transformed covariates ϕ(x) to include additional interaction terms
between covariates and levels of the hierarchy. We discuss this choice in the letters of recommendation study in Section 5.

10



subgroups there are also possible gains to balancing the difference in covariate values across the two groups.
Note that while we choose to enforce exact global balance, we could also limit to approximate global balance,
with the relative importance of local and global balance controlled by an additional hyperparameter set by
the analyst.

The optimization problem in Equation (13) also includes an L2 regularization term that penalizes the
sum of the squared weights in the stratum; from Equation (9), we see that this is a proxy for the variance
of the weighting estimator. For each stratum, the optimization problem includes a hyper-parameter λg that
negotiates the bias-variance tradeoff within that stratum. When λg is small, the optimization prioritizes
minimizing the bias through the local imbalance, and when λ is large it prioritizes minimizing the variance
through the sum of the squared weights. As a heuristic, we limit the number of hyperparameters by choosing
λg = λ

ng
for a common choice of λ. For larger strata where better balance is possible, this heuristic will

prioritize balance — and thus bias — over variance; for smaller strata, by contrast, this will prioritize lower
variance. We discuss selecting λ in the letters of recommendation study in Section 5.1.

Next, Equation (13) incorporates two additional constraints on the weights. We include a fine balance
constraint [Rosenbaum et al., 2007]: within each stratum the weights sum up to the number of treated units
in that stratum, n1g. Since each stratum maps to only one subgroup, this guarantees that the weights sum
to the number of treated units in each subgroup. We also restrict the weights to be non-negative, which
stops the estimates from extrapolating outside of the support of the control units.10 Together, these induce
several stability properties, including that the estimates are sample bounded.

Finally, we compute the variance of our estimator conditioned on the design (X1, Z1,W1), . . . , (Xn, Zn,Wn)
or, equivalently, conditioned on the weights. The conditional variance is

Var(µ̂0g | γ̂) = 1

n2
1g

∑
Gi=g

(1−Wi)γ̂
2
i Var(Yi). (14)

Using the ith residual to estimate Var(Yi) yields the empirical sandwich estimator for the treatment effect

V̂ar(µ̂1g − µ̂0g | γ̂) = 1

n2
1g

∑
Gi=g

Wi(Yi − µ̂1g)
2 +

1

n2
1g

∑
Gi=g

(1−Wi)γ̂
2
i (Yi − µ̂0g)

2, (15)

where, as above, µ̂1g is the average outcome for applicants in subgroup g who submit LORs. This is the
fixed-design Huber-White heteroskedastic robust standard error for the weighted average. See Hirshberg
et al. [2019] for discussion on asymptotic normality and semi-parametric efficiency for estimators of this
form.

4.4 Dual relation to partially pooled propensity score estimation

Thus far, we have motivated the approximate balancing weights approach by appealing to the connection
between local bias and local balance. We now draw on recent connections between approximate balancing
weights and (calibrated) propensity score estimation through the Lagrangian dual problem. The weights that
solve optimization problem (13) correspond to estimating the inverse propensity weights with a (truncated)
linear odds function with the stratum G interacted with the covariates ϕ(X),11

P (W = 1 | X = x,G = g)

1− P (W = 1 | X = x,G = g)
= [αg + βg · ϕ(x)]+ , (16)

where [x]+ = max{0, x}, and the coefficients βg are partially pooled towards a global model.

10Without this constraint, the optimization problem is equivalent to fitting a hierarchical ridge regression outcome model.
For additional discussion, see Ben-Michael et al. [2021a].

11The truncation arises from constraining weights to be non-negative, and the linear odds form arises from penalizing the L2

norm of the weights. We can consider other penalties that will lead to different forms; In particular, with an entropy penalty,
the weights are linear in the log-odds. See Ben-Michael et al. [2021c] for a review of the different choices.
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To show this, we first derive the Lagrangian dual. For each stratum g, the sum-to-n1g constraint induces
a dual variable αg ∈ R, and the local balance measure induces a dual variable βg ∈ Rp. These dual variables
are part of the balancing loss function for stratum z:

Lg(αg, βg) ≡
∑

Wi=0,Gi=g

[αg + βg · ϕ(Xi)]
2
+ −

∑
Wi=1,Gi=g

(αg + βg · ϕ(Xi)) , (17)

With this definition we can now state the Lagrangian dual.

Proposition 1. With λg > 0, if a feasible solution to (13) exists, the Lagrangian dual is

min
α,β1,...,βJ ,µβ

K∑
g=1

Lg(αg, βg)︸ ︷︷ ︸
balancing loss

+

J∑
z=1

λg

2
∥βg − µβ∥22︸ ︷︷ ︸

shrinkage to global variable

. (18)

If α̂, β̂1, . . . , β̂J are the solutions to the dual problem, then the solution to the primal problem (13) is

γ̂i =
[
α̂Zi

+ β̂Zi
· ϕ(Xi)

]
+
. (19)

The Lagrangian dual formulation sheds additional light on the approximate balancing weights estimator.
First, we apply results on the connection between approximate balancing weights and propensity score
estimation [e.g., Wang and Zubizarreta, 2020, Hirshberg and Wager, 2021]. We see that this approach
estimates propensity scores of the form (16), which corresponds to a fully interacted propensity score model
where the coefficients on observed covariates vary across strata. Recall that we find approximate balancing
weights for each stratum because the number of units per stratum might be relatively small; therefore we
should not expect to be able to estimate this fully interacted propensity score well.

The dual problem in Equation (18) also includes a global dual variable µβ induced by the global balance
constraint in the primal problem (13). Because we enforce exact global balance, this global model is not
regularized. However, by penalizing the deviations between the stratum-specific variables and the global
variables via the L2 norm, ∥βg − µβ∥22, the dual problem partially pools the stratum-specific parameters
towards a global model. Thus, we see that the approximate balancing weights problem in Equation (13)
corresponds to a hierarchical propensity score model [see, e.g. Li et al., 2013], as in Section 3.2, fit with a
loss function designed to induce covariate balance.

Excluding the global constraint removes the global dual variable µβ , and the dual problem shrinks the
stratum-specific variables βg towards zero without any pooling. In contrast, ignoring the local balance
measure by setting λg → ∞ constrains the stratum-specific variables βg to all be equal to the global variable
µβ , resulting in a fully pooled estimator. For intermediate values, λg controls the level of partial pooling.
When λg is large the dual parameters are heavily pooled towards the global model, and when λg is small
the level of pooling is reduced. By setting λg = λ

ng
as above, larger strata will be pooled less than smaller

strata.

4.5 Augmentation with an outcome estimator

The balancing weights we obtain via the methods above may not achieve perfect balance, leaving the potential
for bias. We can augment the balancing weights estimator with an outcome model, following similar proposals
in a variety of settings [see, e.g. Athey et al., 2018, Hirshberg and Wager, 2021, Ben-Michael et al., 2021b].
Analogous to bias correction for matching [Rubin, 1973] or model-assisted estimation in survey sampling
[Särndal et al., 2003], the essential idea is to adjust the weighting estimator using an estimate of the bias.
Specifically, we can estimate the prognostic score m0(x, g) with a working model m̂0(x, g), e.g., with a flexible
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regression model. An estimate of the bias in group g is then:

b̂iasg =
1

n1g

∑
Wi=1,Gi=g

m̂0(Xi, g)−
1

n1g

∑
Wi=0,Gi=g

γ̂im̂0(Xi, g). (20)

This is the bias due to imbalance in estimated prognostic score in group g after weighting. With this estimate
of the bias, we can explicitly bias-correct our weighting estimator, estimating µ0g as

µ̂aug
0g ≡ µ̂0g + b̂iasg

=
1

n1g

∑
Wi=0,Gi=g

γ̂iYi +

 1

n1g

∑
Wi=1,Gi=g

m̂0(Xi, g)−
1

n1g

∑
Wi=0,Gi=g

γ̂im̂0(Xi, g)

 .
(21)

Thus, if the balancing weights fail to achieve good covariate balance in a given subgroup, the working
outcome model, m̂0(Xi, g), can further adjust for any differences. See Ben-Michael et al. [2021c] for further
discussion.

5 Differential impacts of letters of recommendation

We now turn to estimating the differential impacts of letters of recommendation on admissions decisions.
We focus on the eight subgroups defined by the interaction between URM status (2 levels) and admissibility
index (4 levels); see Table D.1. Due to the selection mechanism described in Section 2, however, it is useful
to create even more fine-grained strata and then aggregate to these eight subgroups. Specifically, we define
G = 41 fine-grained strata based on URM status, AI grouping, first reader score, and college applied to.12

While we are not necessarily interested in treatment effect heterogeneity across all 41 strata, this allows us
to exactly match on key covariates and then aggregate to obtain the primary subgroup effects.

Another key component in the analysis is the choice of transformation of the covariates ϕ(·). Because
we have divided the applicants into many highly informative strata, we choose ϕ(·) to include all of the raw
covariates. Because of the importance of the admissibility index, we also include a natural cubic spline for
AI with knots at the sample quantiles. We next include the probability of a “Possible” score predicted by
the admissions model, interacted with a binary indicator for whether it is greater than 50%. We further
prioritize local balance in the admissibility index by including in ϕ(x) the interaction between the AI, URM
status, and an indicator for admissibility subgroup; this ensures local balance in the admissibility index at
an intermediate level of the hierarchy between global balance and local balance. Finally, we standardize
each component of ϕ(X) to have mean zero and variance one. If desired, we could also consider other
transformations such as a higher-order polynomial transformation, using a series of basis functions for all
covariates, or computing inner products via the kernel trick to allow for an infinite dimensional basis [see,
e.g. Hazlett, 2020, Wang and Zubizarreta, 2020, Hirshberg and Wager, 2021].

5.1 Diagnostics: local balance checks and assessing overlap

In order to estimate effects, we must first choose values of the common hyperparameter λ in the optimization
problem (13), where we set λg = λ

ng
. Recall that this hyperparameter negotiates the bias-variance tradeoff:

small values of λ will prioritize bias by reducing local imbalance while higher values will prioritize variance
by increasing the effective sample size. Figure 3a shows this tradeoff. We plot the square root of the local
balance measure in (13) against the effective sample size for the re-weighted control group, n1

/ (∑
Wi=0 γ̂

2
i

)
.

Between λ = 100 and 104, we see that the imbalance is relatively flat while the overall effective sample size

12Of the 48 possible strata, we drop 7 strata where no applicants submitted a letter of recommendation. These are non-URM
applicants in both colleges in the two lowest AI strata but where the first reader assigned a “Yes” or “No”. This accounts
for ∼ 2% of applicants. The remaining 41 strata have a wide range of sizes with a few very large strata. Min: 15, p25: 195,
median: 987, p75: 1038, max: 8000.
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Figure 3: (a) Imbalance measured as the square root of the objective in (13) plotted against the effective
sample size of the overall control group. (b) Effective sample size of the control group for each subgroup,

with weights solving Equation (13) with λg = 104

ng
.

increases, after which the imbalance increases quickly with λ. We therefore select λ = 104 for the results we
present.

Figure 3b shows the effective control group sample size for each of the primary URM and AI subgroups,
scaled by the number of applicants in the group submitting LORs. Across the board, the URM subgroups
have larger effective sample sizes than the non-URM subgroups, with particularly stark differences for the
lower AI subgroups. For all non-URM subgroups the effective sample size is less than 250. Comparing to the
sample sizes in Appendix Table D.1, we see that the weighting approach leads to a large design effect: many
applicants who did not submit LORs are not comparable to those who did. However, lower admissibility
non-URM applicants also submitted letters at lower rates. This design effect, combined with the smaller
percentage of non-URM applicants submitting LORs, means that we should expect to have greater precision
in the estimates for URM applicants than non-URM applicants.

We now assess the level of local balance within each subgroup, following the discussion in Section 4.1.
We focus on three estimators: fully- and partially-pooled balancing weights, which solve Equation (13) with

λg → ∞ and λg = 104

n1g
, respectively, and traditional IPW with a fully-interacted propensity score model.

See Appendix C for complete descriptions. Figure 4 shows the distribution of the imbalance in each of the
51 (standardized) components of ϕ(X). The fully interacted IPW approach has very poor balance overall,
due in part to the difficulty of estimating the high-dimensional propensity score model. As expected, both
the fully- and partially-pooled balancing weights achieve perfect balance overall; however, only the partially
pooled balancing weights achieve excellent local balance. Appendix Figure D.4 shows these same metrics
for the no-pooled balancing weights and fixed effects IPW estimators we discuss in Appendix C, as well as
subgroup overlap weights [Yang et al., 2021]. The partially- and no-pooled approaches have similar global
and local balance overall, but the partially-pooled approach sacrifices a small amount of local balance for
an improvement in global balance. In contrast, both the fixed effects IPW and overlap weights approaches
yield poor local balance.

Finally, we assess overlap within each subgroup. A key benefit of weighting approaches is that overlap
issues manifest in the distribution of our weights γ̂. Appendix Figure D.6 plots the distribution of the
weights over the comparison applicants by URM status and AI group, normalized by the number of treated
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Figure 4: Distribution of imbalance in each component of ϕ(X) after weighting, for partially- and fully-
pooled balancing weights and fully interacted IPW estimator.

applicants in the subgroup. The vast majority of control units receive zero weight and are excluded from
the figure. Of the 28,556 applicants who did not submit LORs, only 9,834 (34%) receive a weight larger
than 0.001. This is indicative of a lack of “left-sided” overlap: very many applicants who did not submit
a letter of recommendation had nearly zero odds of doing so in the pilot program. This is problematic for
estimating the overall average treatment effect, but is less of a concern when we focus on estimating the
average treatment effect on the treated.

For each AI subgroup we also see that the distribution of weights is skewed more positively for the
non-URM applicants. In particular, for the lower AI, non-URM subgroups we see a non-trivial number of
comparison applicants that “count for” over 1% of the re-weighted sample, with a handful of outliers that
count for more than 2%. While large weights do not necessarily affect the validity of the estimator, large
weights decrease the effective sample size, reducing the precision of our final estimates, as we see in Figure
3b.

5.2 Treatment effect estimates

After assessing local balance and overlap, we can now turn to estimating the differential impacts of letters of
recommendation. Figure 5 shows the ATT estimates, µ̂1g−µ̂0g; Appendix Figure D.7 gives the corresponding
means. The standard errors are computed via the sandwich estimator in Equation (15).

Overall, we estimate that LORs increased admission rates by 5 percentage points (pp). We estimate a
larger effect for non-URM applicants (6.2 pp) than URM applicants (4.5 pp), though there is insufficient
evidence to distinguish between the two effects. We also see a roughly positive trend between treatment
effects and the AI, potentially with a peak for the 10%-20% group. This is driven by the very small estimated
effect for applicants with AI < 5%, who are very unlikely to be accepted with or without LORs. LORs thus
seem to have a larger effect for applicants closer to the cusp of acceptance.

The right panel of Figure 5 further stratifies the subgroups, showing the effects jointly by URM status
and AI. While the point estimate for the overall increase in admission rates is slightly larger for non-URM
applicants than for URM applicants, this is mainly a composition effect. For applicants very unlikely to be
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Figure 5: Estimated treatment effects of letters of recommendation on admission ± two standard errors:
overall, by URM status, by Admissibility Index, and by URM × AI.

admitted (AI < 5%) the point estimates are nearly identical for URM and non-URM applicants, although
the URM subgroup is estimated much more precisely. For the next two levels of the admissibility index
(AI between 5% and 20%), URM applicants have a higher estimated impact, with imprecise estimates for
non-URM applicants. For the highest admissibility groups (AI > 20%), non-URM applicants have larger
positive effects, though again these estimates are noisy. Since URM applicants have lower AI on average,
the overall estimate is also lower for URM applicants. We view this as a form of Simpson’s Paradox [Bickel
et al., 1975, VanderWeele and Knol, 2011]: the prima facie difference between the point estimates for URM
and non-URM applicants is a result of the correlation between AI and URM status and masks differences in
estimates within admissibility groups. Furthermore, the peak in the effect for middle-tier applicants is more
pronounced for URM applicants than non-URM applicants. From Appendix Figure D.7 we see that this is
primarily because high admissibility URM applicants have very high imputed admission rates. However, we
emphasize that there is insufficient precision to make strong claims about any of these differences between
effects for URM and non-URM applicants at any resolution.

We also estimate effects separately by which college the applicant applied to. Engineering admissions are
more competitive than Letters and Science (L&S) admissions, and so the availability of additional context
through LORs might have different effects. Appendix Figure D.9 shows the treatment effects overall, by URM
status, and by AI for the two schools. We find that effects for applicants to L&S broadly follow the same
pattern we see overall. In contrast, the effects for applicants to Engineering are either substantively small or
statistical indistinguishable from zero. This shows that the positive effects we see across the two schools are
driven by positive effects for applicants to L&S. However, for both colleges we fail to find differential effects
by URM status; although URM applicants to L&S have a higher point estimate than non-URM applicants,
the opposite is true in Engineering. This is primarily because there is a higher degree of uncertainty about
the effects for non-URM Engineering applicants.

The Appendix includes extensive robustness checks and additional analyses. We find that the overall
pattern of results is consistent across a wide range of estimators and data definitions. We also conduct a
formal sensitivity analysis for violations of the ignorability assumption (Assumption 1), adapting a recent
proposal from Soriano et al. [2020]. Using this approach we conclude that there would need to be substan-
tial unmeasured confounding, of roughly the same predictive power as the AI, to qualitatively change our
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conclusions.

5.3 Conclusions and policy implications

First, our overall finding that submitting LORs indeed increases the probability of undergraduate admissions
to UC Berkeley is largely unsurprising: readers were given explicit instructions that letters should only help
applicants. That said, the point estimate of 5 percentage points is large relative to the expectations that we
heard from university policymakers.

More relevant for the policy debate are our estimates of treatment effect variation. Our clearest results
are for the differential impact of letters of recommendation across applicants’ a priori application strength.
Treatment effects are low for applicants who are unlikely to be accepted and—consistent with the goals of
the admissions office—high for applicants on the margin for whom letters provide useful context, with some
evidence of a dip for the highest admissibility applicants.

At the same time, our estimates of differential impacts between URM and non-URM students are more
muddled, due to large sampling errors, and do not support strong conclusions. Several studies have found
evidence that letter writers use different language when describing different types of students, with evidence
in particular that letters written for female applicants are weaker [Trix and Psenka, 2003, Madera et al.,
2009, Schmader et al., 2007]. However, Rothstein [2022] does not find large systematic differences in the
strength of the language used in letters written for URM and non-URM students in the UCB setting. Our
point estimates of effects of letters on admissions outcomes indicate that LORs benefit URM applicants more
than they do non-URM applicants at all but the highest academic indexes. Because non-URM applicants
are overrepresented in the high-AI category, the point estimate for the average treatment effect is larger for
non-URMs; however, there is insufficient precision to distinguish between the two groups. Thus, while we
do not find evidence of detrimental impacts on URM applicants, we also do not find a “measurable impact
on increasing diversity in undergraduate admissions,” as desired by the Academic Senate committee [UC
Berkeley, 2017].

We assess this question further in Appendix A.4 by conducting a simple policy simulation to evaluate the
impact of requiring LORs for all UC Berkeley applicants on the composition of the admitted class, relative
to the current policy of no LORs [see Chalfant, 2017, UC Berkeley, 2017]. This addresses how the overall cap
on undergraduate admissions would combine with the differential effects of LORs. We find that a universal
LOR requirement would raise the number of admits with strong applications but would have a negligible
effect on the URM composition of admitted students.

6 Discussion

Letters of recommendation and other qualitative inputs play important roles in select undergraduate ad-
missions. Using a pilot study from the 2016 undergraduate admissions cycle at UC Berkeley, we find that
submitting LORs increase the overall probability of admissions by 5 percentage points, relative to an esti-
mated baseline of 17 percent. We find strong evidence of treatment effect variation across a baseline measure
of applicant strength, with larger impacts for stronger applicants. At the same time, we find no evidence of
differential effects by URM status, although this is much noisier.

Taken together, our results are mixed on the UC Berkeley LOR policy debate. Those in favor of LORs
can find some evidence in their favor, especially the larger impacts for students at the margins of admissions.
Similarly, those opposed to the policy can point to results in support of their position, especially the possibly
adverse impacts for URM applicants with the highest baseline probability of admission. In the end, however,
it is unlikely that — at least based on this study — expanding LORs would meaningfully change the
proportion of admitted URM students. Given the small estimated impacts, it is instead likely that other
parts of the UC Berkeley admissions process, such as decisions around requiring standardized tests, will be
more important factors.

Subsequent to the period that we study, the University of California system set new rules governing
campus admissions that provided for the regular but limited use of LORs [University of California Board
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of Regents, 2022]. Specifically, admissions offices may identify a small group of applicants for “Augmented
Review” based on a judgment that the initial application yields an incomplete picture of their qualifications,
or presents extraordinary circumstances that invite further comment. Only for these applicants, no more
than 15% of the overall pool, can LORs be considered. Our results suggest that these applicants may be
helped by the inclusion of LORs, but the impact on the composition of the admitted pool will depend
importantly on who is selected for Augmented Review. These criteria suggest that AR candidates are likely
to come from middle AI ranges, suggesting that within the AR pool LORs will be more beneficial to URM
than to non-URM applicants.

Methodologically, there are several directions for future work. First, an important limitation of our
approach is that subgroups are defined by discrete covariates, requiring us to discretize important continuous
measures such as the Admissibility Index. A possible extension is to adapt the recent proposal from Wang
et al. [2021] to combine balancing weights and traditional kernel weighting methods in order to estimate a
conditional average treatment effect function.

Second, hyperparameter selection for balancing weights estimators is a key question in practice but
remains an open problem. We elect to choose the hyperparameter by explicitly tracing out the level of
balance and effective sample size as the hyper-parameter changes. However, cross validation approaches
such as that proposed by Wang and Zubizarreta [2020] may have better properties. This an an important
avenue for future work.

Third, analogous to the issue of local balance is the issue of local overlap: if there are very many fine-
grained subgroups it may become impossible to find weights that achieve adequate local balance even if we can
achieve exact global balance. In extreme cases, all individuals in a subgroup might receive either treatment
or control. This occurs in the LOR pilot study, where 7 strata have no applicants that submit LORs. In our
analysis, we can drop these strata because we target the average treatment effect on the treated. However,
we could not do this if there were any strata where all applicants submitted LORs. In such settings with a
lack of “right-sided” local overlap within subgroups, we may consider changing the estimand. For instance,
we could trim the sample by dropping subgroups with limited overlap or by changing the target estimand to
the average treatment effect on the overlapping population [Li et al., 2017]. We could even consider mixed
estimands that shift from the treated to overlapping populations only within subgroups with poor overlap.
The weighting procedure we propose can be adapted to target such estimands by incorporating weights on
the treated units as well. We leave an investigation of this to future work.

Finally, while we have developed this procedure specifically for the context of the LOR pilot study, it
can be applied more broadly. In particular, many observational studies exhibit a grouped structure where
individual units are part of groups, e.g. patients belonging to hospitals or students belonging to schools.
In fact, the LOR pilot study has such a structure, with each individual applicant enrolled in one of over
1,000 high schools in California. Even though measuring treatment effect heterogeneity across groups is not
always the primary aim for such studies, controlling both global balance across groups and local balance
within groups is key to controlling the bias for the overall treatment effect, as we have shown. We anticipate
that the weighting procedure we have developed will be readily applicable to such settings; however, the
exact form of the procedure may depend on study-specific factors.
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Supplementary materials for

“Varying impacts of letters of recommendation on college

admissions”

A Additional analyses and robustness checks

This appendix section addresses how our conclusions change with different estimation approaches,
different data and sample definitions, and under violations of the key ignorability assumption.

A.1 Augmented and machine learning estimates

We now consider augmenting the weighting estimator with an estimate of the prognostic score,
m̂(x, g). In Appendix Figure D.11 we show estimates after augmenting with ridge regression,
fully interacting ϕ(X) with the strata indicators; we compute standard errors via Equation (??),
replacing Yi− µ̂0g with the empirical residual Yi−m̂(Xi, g). Because the partially pooled balancing
weights achieve excellent local balance for ϕ(X), augmenting with a model that is also linear in ϕ(X)
results in minimal adjustment. We therefore augment with random forests, a nonlinear outcome
estimator. Tree-based estimators are a natural choice, creating “data-dependent strata” similar in
structure to the strata we define for G. For groups where the weights γ̂ have good balance across
the estimates m̂(x, g), there will be little adjustment due to the outcome model. Conversely, if the
raw and bias-corrected estimate disagree for a subgroup, then the weights have poor local balance
across important substantive data-defined strata. For these subgroups we should be more cautious
of our estimates.

Figure D.10 shows the random forest-augmented effect estimates relative to the un-augmented
estimates; the difference between the two is the estimated bias. Overall, the random forest estimate
of the bias is negligible and, as a result, the un-adjusted and adjusted estimators largely coincide.
Augmentation, however, does seem to stabilize the higher-order interaction between AI and URM
status, with particularly large adjustments for the highest AI group (AI ≥ 20%). This suggests that
we should be wary of over-interpreting any change in the relative impacts for URM and non-URM
applicants as AI increases.

Finally, we use Bayesian causal forests (BCF; Hahn et al., 2020) to estimate the conditional
average treatment effect given the covariates and subgroup, τ̂(x, g), then aggregate over the treated
units in the group to estimate the CATT, τ̂g = 1

n1g

∑
Gi=g Wiτ̂(Xi, Gi). This approach gives no

special consideration to the subgroups of interest: G enters symmetrically with the other covariates
X. Appendix Figure D.15 shows the results. The BCF estimate of the overall ATT is nearly
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Figure A.1: Estimated effect of letters of recommendation on admission rates with and without
augmentation via a random forest outcome model.

the same as our main estimates and similarly finds no variation between URM and non-URM
applicants. However, the BCF estimates find less heterogeneity across admissibility levels and
little to no heterogeneity across URM and admissibility subgroups, in part because this approach
regularizes higher-order interactions in the CATE function. While this can be beneficial in many
cases, with pre-defined subgroups this can lead to over-regularization of the effects of interest, as
happens here. Furthermore, the BCF estimates are extremely precise, even in regions with limited
overlap (see discussion in Hahn et al., 2020). Overall, we find this approach less credible in our
setting with pre-defined subgroups of interest.

A.2 Alternative data and sample definitions

Here we consider alternative data and sample definitions as well as additional data sources. First,
we consider effects on an intermediate outcome: whether the second reader — who has access to
the LORs — gives a “Yes” score. Because these are design-based weights, we use the same set of
weights to estimate effects on both second reader scores and admissions decisions. We find a similar
pattern of heterogeneity overall.

With this outcome we can also make use of a within-study design to estimate treatment effects,
leveraging scores from additional third readers who did not have access to the letters of recom-
mendation. After the admissions process concluded, 10,000 applicants who submitted letters were
randomly sampled and the admissions office recruited several readers to conduct additional evalu-
ations of the applicants (Rothstein, 2017). During this supplemental review cycle, the readers were
not given access to the letters of recommendation, but otherwise the evaluations were designed
to be as similar as possible to the second reads that were part of the regular admissions cycle; in
particular, readers had access to the first readers’ scores.
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With these third reads we can estimate the treatment effect by taking the average difference
between the second read (with the letters) and the third read (without the letters). One major
issue with this design is that readers might have applied different standards during the supplemental
review cycle. Regardless, if the third readers applied a different standard consistently across URM
and admissibility status, we can distinguish between treatment effects within these subgroups.

Appendix Figures D.13 and D.14 show the results for both approaches. Overall for second
reader scores we see a similar structure of heterogeneity as for admission rates, although there does
not appear to be an appreciable decline in the treatment effect for the highest admissibility non-
URM applicants. The two distinct approaches yield similar patterns of estimates overall, with the
largest discrepancy for applicants with AI scores between 5% and 10%, particularly for non-URM
applicants. However, this group has a very low effective sample size, and so the weighting estimates
are very imprecise.

Finally, recall that an applicant may not have submitted an LOR for one of two reasons: (i)
they were not invited to do so, and (ii) they did not submit even though they were invited. We
assess the sensitivity of our results to excluding this first group when using the weighting approach.
Appendix Figure D.16 shows the estimated effects with the full sample and restricted to applicants
who were invited to submit an LOR. The point estimates are similar, although the estimated effect
on non-URM low admissibility applicants is higher in the restricted sample. Additionally, although
the number of control units is much smaller in the restricted sample — 3,452 vs 29,398 — the
standard errors are only slightly larger. This reflects the fact the weighting approach finds that few
of the no-invitation control units are adequate comparisons to the treated units.

A.3 Formal sensitivity analysis

We assess sensitivity to the key assumption underlying our estimates, Assumption 1: an applicant’s
LOR submission is conditionally independent of that applicant’s potential admission decision. Since
we observe all the information leading to an invitation to submit an LOR, we believe that Assump-
tion 1 is plausible for this step in the process. However, applicants’ decisions to submit LORs given
that invitation might vary in unobserved ways that are correlated with admission.

To understand the potential impact of such unmeasured confounding, we perform a formal
sensitivity analysis. Following the approach in Zhao et al. (2019); Soriano et al. (2020), we allow
the true propensity score conditioned on the control potential outcome e(x, g, y) ≡ P (W = 1 |
X = x,G = g, Y (0) = y) to differ from the probability of treatment given covariates x and group
membership g, e(x, g), by a factor of Λ in the odds ratio:

Λ−1 ≤
e(x,g)/1−e(x,g)

e(x,g,y)/1−e(x,g,y)
≤ Λ. (1)

This generalizes Assumption 1 to allow for a pre-specified level of unmeasured confounding, where
Λ = 1 corresponds to the case with no unmeasured confounding. The goal is then to find the
smallest and largest ATT, [τmin, τmax], consistent with a given Λ for the marginal sensitivity model
in Equation (1). Following Soriano et al. (2020), we use the percentile bootstrap to construct a
95% confidence for this bound, [L,U ]. In particular, we focus on the largest value of Λ for which
the overall ATT remains statistically significant at the 95% level (i.e., L > 0), which we compute
as Λ = 1.1.

We then modify this approach to focus on subgroup differences; we focus on differences between
URM and non-URM applicants but can apply this to other subgroups as well. First, we use the same
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procedure to find bounds on the effect for URM applicants, [Lurm, Uurm], and non-URM applicants,
[Lnon, Unon]. We then construct worst-case bounds on their difference, [Lurm −Unon, Uurm −Lnon].
Although we fail to detect a difference between the two groups, there may be unmeasured variables
that confound a true difference in effects. To understand how large the difference could be, we
use the sensitivity value that nullifies the overall effect, Λ = 1.1 and construct a 95% confidence
interval for the difference. We find that we cannot rule out a true difference as large as 12 pp, with
95% confidence interval (−12%, 8.2%).

To understand this number, Appendix Figure D.17 shows the strength required of an unmea-
sured confounder in predicting the admission outcome (measured as the magnitude of a regression
of the outcome on the unmeasured confounder) to produce enough error to correspond to Λ = 1.1,
for a given level of imbalance in the unmeasured confounder between applicants who did and did
not submit LORs.1 It compares these values to the imbalance in the components of ϕ(X) before
weighting and the regression coefficient for each component where we regress the outcome on ϕ(X)
for the control units. We find that the unmeasured confounder would have to have a higher level
of predictive power or imbalance than any of our transformed covariates, except for the AI. Thus,
an unmeasured confounder would have to be relatively strong and imbalanced in order to mask a
substantial difference between URM and non-URM applicants.

A.4 Simulation of universal LOR policy

Our main analysis considers the impact of submitting LORs for each applicant in isolation, following
the structure of the UC Berkeley pilot study. We now use these estimates to conduct a simple policy
simulation for the impact of requiring LORs for all UC Berkeley applicants on the composition of
the admitted class, relative to the current policy of no LORs. We begin with the same sample as
our previous analyses; in this exercise, however, we take explicit account of capacity constraints.
The exercise has three basic steps: (1) use our prior estimates to predict the admissions probability
for each applicant in isolation if no applicants submitted LORs and if all applicants submitted
LORs;2 (2) adjust these probabilities to set the expected number of admitted students under each
policy to the observed number;3 and (3) use the adjusted probabilities to construct an “expected”
admitted class under each policy.

This policy simulation is necessarily simplistic, and ignores many complications, such as a
possible change in the composition of the applicant pool as a result of requiring LORs. Nonetheless,
this exercise captures the important role of an overall cap on undergraduate admissions, which
does not affect our individual estimates above: while we estimate that LORs increase the average
applicant’s admissions probability by around 5 percent in isolation, the feasible policy cannot
also increase the total number of all undergraduates by 5 percent. Thus, our focus above on the

1Letting δ denote this imbalance, the absolute regression coefficient must be larger than max{|Lurm−Unon|, |Uurm−
Lnon|}/δ = 0.592/δ.

2We first use the predictions of the baseline probability of admission without LORs using the random forest
estimator from Appendix A.1. We then add the estimated treatment effects from the right panel in Figure ?? to the
probability of admission for each applicant in the 2016 cohort, according to their subgroup. We assume here that
the subgroup ATT equals the subgroup Average Treatment Effect, E[Y (1)− Y (0) | G = g,W = 1] = E[Y (1)− Y (0) |
G = g], for each URM × AI subgroup.

3A naive adjustment can lead to estimated probabilities outside [0, 1]. To account for this, we iteratively subtract
the average difference between the expected and simulated admissions rates and then truncate the probabilities to
be between 0 and 1. We repeat these centering and truncation steps until all estimates are in [0, 1] and the expected
number of admits equals the observed number of admits for our subsample, 6,874.

4



differential impacts of LORs is especially relevant for this exercise; see also Section B.1.
Appendix Figure D.18 shows the simulated effect of the LOR policy on the number of admitted

applicants in each subgroup. Consistent with our point estimates, we find a negligible overall
impact on URM applicants, with roughly 90 fewer URM admitted applicants overall (less than
half a percent of all URM applicants in this sample). We see larger (if still small) changes across
the Admissibility Index: more medium and high admissibility applicants are admitted, offset by
fewer low admissibility applicants, both URM and non-URM. Thus, based on this back-of-the-
envelope simulation, we find that requiring LORs for all applicants would have minimal effects on
the URM composition of admitted students, while raising the number of applicants with traditional
qualifications.
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B Additional analytic results

B.1 Balance when estimating the difference in effects

Here we consider targeting the difference in treatment effects for groups g and g′. Because we have
access to the treated potential outcomes for treated units, we will focus on the difference in the
counterfactual means, µ̃0g − µ̃0g′ . Under the linear model in Section 4.1, the estimation error for
the difference is

µ̂0g − µ̂0g′ − (µ̃0g − µ̃0g′) = η̄gg′ ·

(
n∑

i=1

γ̂i(1−Wi)

[
1

n1g
1{Gi = g} − 1

n1g′
1{Gi = g′}

]
ϕ(Xi)

−
n∑

i=1

Wi

[
1

n1g
1{Gi = g} − 1

n1g′
1{Gi = g′}

]
ϕ(Xi)

)

+
(
ηg − η̄gg′

)
·

∑
Gi=g

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)


+
(
ηg′ − η̄gg′

)
·

∑
Gi=g′

γ̂i(1−Wi)ϕ(Xi)−
1

n1g

∑
Gi=g

Wiϕ(Xi)


+

1

n1g

∑
Gi=g

(1−Wi)γ̂iεi +
1

n1g′

∑
Gi=g′

(1−Wi)γ̂iεi,

(2)

where η̄gg′ =
1
2(ηg + ηg′).

From this, we see that the estimation error now includes a combined measure of imbalance
(the first term) as well as the level of local balance in subgroups g and g′ (the second two terms).
However, this is the imbalance in a transformed set of covariates:

ϕ̃gg′(Xi) ≡
[

1

n1g
1{Gi = g} − 1

n1g′
1{Gi = g′}

]
ϕ(Xi).

Intuitively, the imbalance in this transformation is the imbalance in the difference in covariate
profiles of the two subgroups, across treatment and control. Practically, we can control this measure
by including the transformed covariate vector ϕ̃gg′(Xi) into the set of covariates that we balance,
for a given contrast between two groups. In our application, when we include this additional set
of covariates for the URM/non-URM contrast the results are nearly identical, indicating that this
contrast is already well balanced.

B.2 No interference between applicants

As we discuss in the main text, we consider the availability of LORs as an individual-level treatment,
and aim to uncover the average effect of LORs among the students who submit them. We assume
independence of admissions across students — in particular, that the availability of LORs for one
student does not affect any other student’s admission probability. However, this cannot be strictly
true in our setting. There are two possible sources of non-independence. First, the number of
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admitted students is constrained, so admitting one student reduces the number of admissions offers
that can be made to others. Second, many small colleges and elite universities treat admissions as a
portfolio problem, aiming to balance a range of characteristics within the pool of admitted students.
Under this approach, admitting (say) a tuba player might dramatically reduce the admissions
chances of other applicants who play the tuba as well.

Neither of these is a major consideration at UC Berkeley, which admitted over 14,500 first-year
students — as well as roughly 4,300 transfer students — for Fall 2017, in a relatively mechanistic
way. With the exception of recruited athletes, who we exclude from our sample, each applicant is
considered separately, with very limited interaction among the readers reviewing applications and
no stage of the process at which balancing considerations can arise. Readers generally do not confer
about application scores, and the capacity constraint is enforced only at the very end, where the
combined reader scores are converted to admissions decisions; tiebreaking in this process considers
very limited information about applicants and does not incorporate the portfolio balancing con-
siderations that are prominent elsewhere (Stevens, 2009). Moreover, the total number of admitted
undergraduates fluctuates meaningfully from year to year, with fewer than 12,000 first-year stu-
dents admitted for Fall 2014 and nearly 15,500 first-year students admitted for Fall 2020, so is not
a hard cap. Thus, while each admitted student must on average crowd out about one other student
who would otherwise have been admitted, this crowding out is imperfect and is spread across many
thousands of students.

We now formalize different types of dependence, following the literature on causal inference
with interference; see Miles et al. (2019) for a closely related setup. Formally, let Yi(W) be the
potential outcome associated with the vector of all units’ treatment assignments, W ∈ {0, 1}N ,
which we can equivalently write in terms of unit i’s own treatment and the vector of remaining
treatments: Yi(W) = Yi(Wi,W−i). The substantive assumption that UC Berkeley does not engage
in “portfolio balancing” for the LOR pilot study applicants corresponds to a stratified interference
assumption: unit i’s potential outcomes only depend on the proportion of units treated, rather
than the identity of those units (Hudgens and Halloran, 2008). Formally, under this assumption
can write unit i’s potential outcomes as:

Yi(W) = Yi(Wi,W−i) = Yi

Wi,
1

N − 1

∑
j ̸=i

Wj

 = Yi(Wi, W̄−i),

where W̄−i =
1

N−1

∑
j ̸=iWj is the fraction of remaining units treated. Without additional restric-

tions, analysis is still possible but challenging (see Miles et al., 2019).
In our analysis, we differentiate between two key scenarios based on the fraction of treated units,

W̄ , noting that W̄ ≈ W̄−i for large N . Let c be a given threshold for proportion treated, such that
we consider two scenarios: W̄ ∈ (0, c) and W̄ ∈ [c, 1]. Our substantive assumption for the main
analysis is that, so long as there are relatively few applicants submitting LORs, the overall limit on
undergraduate admissions is not binding and we can effectively ignore interference between units.
Formally:

for W̄ < c : Yi(Wi, W̄−1) = Yi(Wi) for all i = 1, . . . , N. (3)

In Appendix A.4, we instead consider the opposite scenario in which all applicants are required to
submit LORs: W̄ = 1. Here, we no longer believe that Equation (3) is a reasonable restriction,
and instead use a simple policy simulation to assess the overall impact of such a policy.
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C Simulation study

We now present simulations assessing the performance of our proposed approach versus traditional
inverse propensity score weights fit via regularized logistic regression as well as outcome modelling
with machine learning approaches. To better reflect real-world data, we generate correlated covari-
ates and include binary and skewed covariates. For each simulation run, with d = 50 covariates,

we begin with a diagonal covariance matrix Σ where Σjj =
(d−j+1)5

d5
and sample a random orthog-

onal d × d matrix Q to create a new covariance matrix Σ̃ = QΣ with substantial correlation. For

n = 10, 000 units, we draw covariates from a multivariate normal distribution Xi
iid∼ N(0, Σ̃). We

then transform some of these covariates. For j = 1, 11, 21, 32, 41 we dichotomize the variable and
define X̃ij = 1{Xij ≥ q.8(X·j)}, where q.8(X·j) is the 80th percentile of Xj among the n units. For
j = 2, 7, 12, ..., 47 we create a skewed covariate X̃ij = exp(Xij). To match our study, we create
discrete subgroup indicators from the continuous variable Xid. To do this, we create a grid over
Xid with grid size n

G , and sample G− 1 points from this grid. We then create subgroup indicators
Gi by binning Xid according to the G− 1 points. We consider G ∈ {10, 50} groups.

With these covariates, we generate treatment assignment and outcomes. We use a separate
logistic propensity score model for each group following Equation (7),4

logit e(Xi, Gi) = αGi + (µβ + Uβ
g ⊙Bβ

g ) ·Xi, (4)

and also use a separate linear outcome model for each group,

Yi(0) = η0Gi + (µη + Uη
g ⊙Bη

g ) ·Xi + εi, (5)

where εi ∼ N(0, 1) and ⊙ denotes element-wise multiplication. We draw the fixed effects and
varying slopes for each group according to a hierarchical model with sparsity. We draw the fixed

effects as αg
iid∼ N(0, 1) and η0g

iid∼ N(0, 1). For the slopes, we first start with a mean slope vector
µβ, µη ∈ {− 3√

d
, 3√

d
}K , where each element is chosen independently with uniform probability. Then

we draw isotropic multivariate normal random variables Uβ
g , U

η
g

iid∼ MVN(0, Id). Finally, we draw

a set of d binary variables Bβ
gj , B

η
gj that are Bernoulli with probability p = 0.25. The slope is then

constructed as a set of sparse deviations from the mean vector, which is µβ + Uβ
g ⊙ Bβ

g for the
propensity score and µη + Uη

g ⊙Bη
g for the outcome model.

To incorporate the possibility that treatment effects vary with additional covariates that are not
the focus of our analysis, we generate the treatment effect for unit i as τi = Xid −Xi3 + 0.3XidXi3

and set the treated potential outcome as Yi(1) = Yi(0) + τiWi. Note that the effect varies with the
underlying continuous variable Xid that we use to form groups, as well as the additional variable
Xi3. The true ATT for group g in simulation j is thus τgj =

1
n1g

∑
Gi=g Wi(Yi(1)− Yi(0)), and the

overall ATT is τj =
1
n1

∑n
i=1Wi(Yi(1)− Yi(0)).

For j = 1, . . . ,m with m = 500 Monte Carlo samples, we estimate the treatment effects for
group g, τ̂gj , and the overall ATT, τ̂j , and compute a variety of metrics. Following the metrics
studied by Dong et al. (2020), for subgroup treatment effects we compute (a) the mean abso-

lute bias across the G treatment effects, 1
m

∑m
j=1

∣∣∣1g ∑G
g=1 τ̂gj − τg

∣∣∣, and (b) the mean root mean

4The logistic specification differs from the truncated linear odds in Equation ??. If the transformed covariates
ϕ(Xi) include a flexible basis expansion, the particular form of the link function will be less important.
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square error
√

1
mG

∑m
j=1

∑G
g=1(τ̂gj − τg)2. For the overall ATT we measure (a) the absolute bias∣∣∣ 1m∑m

j=1 τ̂j − τj

∣∣∣ and (b) the root mean square error
√

1
m

∑m
j=1(τ̂j − τj)2.

We compute treatment effects for the following eight estimators:

• Partially pooled balancing weights: approximate balancing weights that solve Equation (??),
using G as the stratifying variable and prioritizing local balance by setting λg = 1

n1g
.

• Augmented balancing weights: augmenting the partially pooled balancing weights as in Equa-
tion (??) where m̂0(x, g) is fit via ridge regression with all interactions.

• Fully pooled balancing weights: approximate balancing weights that solve Equation (??), but
ignore local balance by setting λ → ∞, thus fully pooling towards the global model. This is
equivalent to stable balancing weights in Equation (8) with an exact global balance constraint
δ = 0.

• No pooled balancing weights: approximate balancing weights that solve Equation (??), but
without the exact global balance constraint.

• Full interaction IPW: traditional IPW with a fully interacted model that estimates a separate
propensity score within each stratum as in Equation (7).

• Fixed effects IPW: full interaction IPW with stratum-specific coefficients constrained to be
equal to a global parameter βg = β for all g.

• Full interaction ridge regression outcome model: Estimating µ0g via µ̂0g = 1
n1

∑
Gi=g Wim̂0(Xi, g),

where µ̂0(x, g) is the same ridge regression predictor as for augmented balancing weights

• Bayesian Causal Forests (BCF): Estimating τg as 1
n1g

∑
Gi=g Wiτ̂i, where τ̂i are the posterior

predictive means from a Bayesian Causal Forest estimator (Hahn et al., 2020).

For the fully interacted specification of the logistic regression in IPW and the ridge regression
in the augmented balancing weights, we include a set of global parameters µβ so that the slope for
group g is µβ +∆g, with a squared L2 penalty for each component. These are correctly specified
for the models above. We estimate the models with glmnet (Friedman et al., 2010) with the
hyperparameter chosen through 5-fold cross validation.

Appendix Figure D.2 shows the results for the overall ATT and for subgroup effects. In most
cases, the partially pooled approximate balancing approach has much lower bias and RMSE than the
logistic regression-based IPW estimator; however, the RMSEs are comparable with 50 subgroups.
Furthermore, prioritizing local balance with partial pooling yields lower bias and RMSE than
ignoring local balance entirely with the fully pooled approach. Finally, including the global balance
constraint yields much lower bias for the ATT in some settings, with relatively little cost to the
subgroup estimates.

The partially-pooled balancing weights estimator, which is transparent and design-based, also
performs nearly as well as the black-box BCF method. Augmenting the partially-pooled weights
provides some small improvements to the bias, indicating that the weights alone are able to achieve
good balance in these simulations, and a larger improvement in the RMSE in the setting with
many groups where the weighting estimator alone have larger variance. Finally, Appendix Figure
D.3 shows the coverage of 95% intervals for the different approaches. We see that the weighting
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estimator, both with and without augmentation, has reasonable uncertainty quantification, with
much better coverage than either of the two model-based approaches.
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D Additional figures and tables

AI Range URM Number of Applicants Number Submitting LOR Proportion Treated

< 5%
URM 11,832 2,157 18%
Not URM 6,529 607 9%

5% - 10%
URM 3,106 1,099 35%
Not URM 2,099 536 25%

10% - 20%
URM 2,876 1,212 42%
Not URM 2,495 828 33%

> 20%
URM 4,645 2,345 50%
Not URM 6,959 2,359 34%

Table D.1: Number of applicants and proportion treated by subgroup.
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Figure D.1: Calibration of the admissibility index (a) in the full sample, (b) by URM status and
college applied to, (c) by invitation to submit an LOR, and (d) by URM status and invitation to
submit. The points are binned scatter plots for the quantiles in intervals of 5% and the lines are
smoothed estimates of the relationship between the observed admission rate for applicants that did
not submit LORs and the AI. The distribution of the quantiles emphasizes that most applicants
are very unlikely to be admitted. For most groups, over three quarters have AI scores below 25%.
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Figure D.2: Performance of approximate balancing weights, traditional IPW with logistic regres-
sion, and outcome modelling for estimating subgroup treatment effects.
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Figure D.3: Coverage for approximate balancing weights, traditional IPW with logistic regression,
and outcome modelling for estimating subgroup treatment effects.
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Figure D.4: Distribution of covariate balance measured by the mean standardized difference for
different weighting methods.
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Figure D.5: Imbalance in the admissibility index after weighting relative to before weighting, overall
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Figure D.9: Estimated effect of letters of recommendation on admission rates for Engineering and
Letters and Science applicants.
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Figure D.10: Estimated effect of letters of recommendation on admission rates with and without
augmentation via a random forest outcome model.
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Figure D.11: Estimated effect of letters of recommendation on admission rates with and without
augmentation via ridge regression with 5-fold cross validation.
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Figure D.12: Estimated effect of letters of recommendation on admission rates for comparable
weighting estimators.
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Figure D.13: Effects on second reader scores overall, by URM status, and by AI, estimated via (a)
the partially pooled balancing weights estimator and (b) the within-subject design.
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Figure D.14: Effects on second reader scores by URM status interacted with AI, estimated via (a)
the partially pooled balancing weights estimator and (b) the within-subject design.
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Figure D.15: Estimated effect of letters of recommendation on admission rates via Bayesian Causal
Forests (Hahn et al., 2020).
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Figure D.16: Estimated effect of letters of recommendation on admission rates via weighting in the
full sample and restricting to applicants who were invited to submit an LOR
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Figure D.17: Amplification of a sensitivity analysis. The line shows the magnitude of the regression
coefficient and the magnitude of the imbalance in an unmeasured standardized covariate required
to produce enough bias to remove the effect. Points correspond to the regression coefficients and
imbalance before weighting for the 51 components of ϕ(X).
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Figure D.18: Projected change in number of admitted applicants if all applicants submitted a letter
of recommendation: by URM status, by Admissibility Index, and by URM × AI. Points are scaled
by the expected size of the admitted group without submitting LORs; e.g., applicants with high
AI are a much larger share of the admitted class than applicants with low AI.
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E Proofs

Proof of Proposition ??. First, we will augment the primal optimization problem in Equation (??)
with auxiliary covariates E1, . . . , Ej so that Eg =

∑
Gi=g,Wi=0 γiϕ(Xi) −

∑
Gi=g,Wi=1 ϕ(Xi). Then

the optimization problem becomes:

min
γ

J∑
z=1

1

2λg
∥Ej∥22 +

λg

2

∑
Zi=z,Wi=0

γ2i + I(γi ≥ 0)

subject to
∑
Wi=0

γiϕ(Xi) =
∑
Wi=1

ϕ(Xi)

Ej =
∑

Gi=g,Wi=0

γiϕ(Xi)−
∑

Gi=g,Wi=1

ϕ(Xi), z = 1, . . . , J

∑
Gi=g,Wi=0

γi = n1g,

(6)

where I(x ≥ 0) =

{
0 x ≥ 0
∞ x < 0

is the indicator function. The first constraint induces a Lagrange

multiplier µβ, the next J constraints induce Lagrange multipliers δ1, . . . , δJ , and the sum-to-one
constraints induce Lagrange multipliers α1, . . . , αJ . Then the Lagrangian is

L(γ, E , µβ, δ, α) =
J∑

z=1

 1

2λg
∥Ej∥22 − Ej · δj +

∑
Gi=g,Wi=0

1

2
γ2i + I(γi ≥ 0)− γi(α+ (µβ + δj) · ϕ(Xi))


+

J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · ϕ(Xi))

(7)
The dual objective is:

q(µβ, δ, α) =
J∑

z=1

min
Ej

{
1

2λg
∥Ej∥22 − Ej · δj

}
+

∑
Gi=g,Wi=0

min
γi≥0

{
1

2
γ2i − γi(α+ (µβ + δj) · ϕ(Xi))

}
+

J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · ϕ(Xi))

(8)
Note that the inner minimization terms are the negative convex conjugates of 1

2∥x∥
2
2 and

1
2x

2 + I(X ≥ 0),
respectively. Solving these inner optimization problems yields that

q(µβ, δ, α) = −
J∑

z=1

λg

2
∥δj∥22 +

∑
Gi=g,Wi=0

[αj + (µβ + δj) · ϕ(Xi)]
2
+


+

J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · ϕ(Xi))

(9)
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Now since there exists a feasible solution to the primal problem (??), from Slater’s condition we
see that the solution to the primal problem is equivalent to the solution to maxµβ ,α,δ q(µβ, α, δ).
Defining βj ≡ µβ + δj gives the dual problem (??). Finally, note that the solution to the minimiza-
tion over the weights in Equation (8) is γi = [αj + βj · ϕ(Xi)]+, which shows how to map from the
dual solution to the primal solution.
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