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Monitoring employee job performance is a fundamental task in personnel 

management. In particular, understanding how performance improves with 

experience—the “returns to experience”—is critical to decisions about hiring and 

turnover, investments in employee training, and others. Consider the choice 

between retaining a current employee or replacing that employee with a novice new 

hire; the optimal choice depends not simply on the current performance of the two 

individuals, but rather on each person’s expected future performance over time. 

However, isolating the causal effects of experience is complicated by imperfect and 

incomplete performance measures, and selection on performance through hiring 

and turnover decisions.  

Supervisor ratings of observed performance—a ubiquitous a job 

performance measure—present a particular challenge when measuring returns to 

experience. For example, the relative subjectivity of supervisor ratings creates 

scope for leniency bias (Prendergast 1999), and supervisors’ leniency bias may 

itself depend on the employee’s years of experience. We examine the case of 

classroom teachers, and the most common performance measure for public-school 

teachers: ratings by the school principal based on classroom observations. 

Our focus is estimating the returns to experience in teaching using 

classroom observation ratings. We define “returns to experience” as the causal 

effect of one additional year of teaching experience on teacher performance, 

estimating returns separately for the first year of experience, second year, third year, 

etc. We define experience broadly to include whatever professional experiences 

occur over the course of a teacher’s first year (or second year, etc.). Our primary 

objective is evaluating claims about returns to experience for (a) performance of 

the teaching practice inputs which the observation rubrics are designed to measure. 

But we also consider inferences about returns to experience on (b) broader output-

based measures of teacher performance, like teachers’ value-added contributions to 

student achievement scores. The extent to which experience affects (a) and (b) 
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differently partly motivates our work, because input-based measures are much 

more common in schools than output-based measures. 

We use a difference-in-differences framework to make explicit the causal 

inference features of the returns-to-experience estimates. Our preferred estimates 

come from applying a diff-in-diff strategy proposed by de Chaisemartin and 

D’Haultfœuille (2020, 2022a). Briefly, the first difference is the observed change 

in a teacher observation rating between year (𝑡𝑡 − 1) to 𝑡𝑡 when her experience 

changes from (𝑒𝑒 − 1) to 𝑒𝑒. The second difference is between early-career (treated) 

teachers and veteran (comparison) teachers. These estimates are the solid lines in 

Figure 1 using data from Tennessee and the Washington, DC Public Schools 

(DCPS).  The identifying assumptions require: First, that, on average, veteran 

(comparison) teachers no longer experience returns to an additional year of 

experience. Second, that the process, explicit or implicit, that maps true 

performance to ratings does not depend on a teacher’s years of experience.  

We evaluate several threats to the two identifying assumptions. Most threats 

are reasons why observation ratings might rise (fall) over time even if a teacher’s 

true performance is unchanged. One simple example is when changes are made to 

the scoring rubric, as happened in DCPS in 2017. As we discuss in detail, changes 

to the rubric (or to rater training, or to rater-teacher matching rules) do not 

necessarily threaten causal inferences about returns to experience estimates. 

Veteran teachers—the diff-in-diff comparison group—provide an estimate of the 

effect of such changes under the first assumption above, and that estimate is a 

reasonable counterfactual for early-career teachers under the second assumption 

above. We use similar reasoning, combined with empirical evidence where 

available, to address other threats: rater leniency bias, raters using information from 

outside the observation, changes in incentives that distort teacher effort, 

manipulation behaviors by teachers which raise scores but not performance, the 
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effect of job changes, and others. We find little evidence that these potential threats 

compromise a causal interpretation of our estimates. 

Our preferred estimation method is new to the literature on teacher returns 

to experience. Thus, we compare our estimates to estimate using the conventional 

strategy. That strategy is also a difference-in-differences strategy using a two-way 

fixed effects estimator, and both strategies require the same two main identifying 

assumptions. However, the conventional strategy requires additional assumptions 

about the heterogeneity of treatment effects.  

Understanding observation-based ratings is especially salient in the 

education sector. With differences in teacher effectiveness increasingly recognized, 

substantial attention has focused on the development, understanding, and 

application of measures of teacher performance (Goe, Bell, and Little 2008, Kane, 

Kerr, and Pianta 2014, Jackson, Rockoff, and Staiger 2014). Despite measure of 

performance, there is comparatively little evidence on whether or how teaching 

improves (Jackson, Rockoff, and Staiger 2014). One exception is that, on average, 

performance improves over the first few years of a teacher’s career. This returns-

to-experience finding has been widely replicated, but nearly all existing estimates 

measure performance with a teacher’s “value added” to student achievement test 

scores (see, for example, Rockoff 2004, Papay and Kraft 2015). The growth in 

value-added measures hints at opportunities for training or other management 

interventions; however, the test-score value-added measures are outcomes, and 

offer little insight on the teaching tasks by which teachers could improve.  

Classroom observations offer another measure of teaching performance that 

may provide insight on the specific skills teachers develop early in their careers. 

Standardized, rubric-scored classroom observations are now widely used, and most 

teachers receive at least one observation per year (Cohen and Goldhaber 2016, 

Steinberg and Kraft 2017). States and school districts use observations for a variety 

of purposes, including understanding changes in teaching performance over time. 
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For example, Figure 1 shows the average improvement over the first ten years of 

teaching for several cohorts of Tennessee and DCPS teachers as measured by their 

observation ratings. Figure 2 shows the same estimates but for value added to 

student test scores. The pattern of change over time is similar in these four graphs, 

which raises questions about whether either reflects true improvement and, if so, 

the relationship between skill development and teachers’ ability to improve student 

achievement.  

This is the first paper, to our knowledge, that studies the causal returns to 

experience reflected in supervisor ratings of observed performance. That 

contribution to the literature comes from combining explicit causal inference 

reasoning with observed performance ratings. Many prior papers have contributed 

causal estimates of the returns to experience using other measures of performance, 

for example, wages (e.g., Angrist 1990, Altonji and Williams 1992, Grogger 2009) 

or teacher value-added to student achievement scores (e.g., Rockoff 2004, Rivkin, 

Hanushek, and Kain 2005, Ost 2014). Our observation rating estimates of inputs 

complement the value-added estimates of outputs, in part by contributing to efforts 

to understand the mechanisms behind teachers’ improvements in value added 

(Kraft and Papay 2014, Ost 2014, Atteberry, Loeb, and Wyckoff 2015).  

Two other papers use classroom observation ratings to make claims about 

returns to experience: Kraft, Papay, and Chi (2020) using data from Charlotte, 

North Carolina, and work in-progress by Laski and Papay (2020) also using 

Tennessee’s data. Both papers report estimates similar to Figure 1. However, these 

two papers focus largely on substantive explanations for the improvement in ratings 

over a teacher’s career. Neither paper provides an explicit examination of causal 

inference considerations: identification strategy, identifying assumptions, threats to 

those assumptions, etc. As our paper makes clear, the causal inference 

considerations when studying observation ratings are more complex than when 

studying teacher value added.  
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A related contribution of our paper is a new estimation strategy for studying 

the returns to experience in teaching, suited to both observation ratings and value-

added measures. That new strategy incorporates recent developments in difference-

in-differences methods (for reviews see de Chaisemartin and D’Haultfœuille 

2022b, Roth et al. 2022), and it requires weaker identifying assumptions than the 

currently-most-common two-way-FE strategy.  

A final contribution comes in our analysis of threats to identification; that 

analysis incorporates several concerns about observation scores raised in prior 

papers, and in many cases provides new empirical evidence. These known concerns 

include rater leniency bias (Weisberg, Sexton, Mulhern, Keeling et al. 2009; 

Steinberg and Kraft 2017), the influence of the students in the classroom (Campbell 

and Ronfeldt 2018), unintended effects of teacher-rater pairings (Chi 2021), among 

other concerns (Cohen and Goldhaber 2016, Grissom and Bartanen 2019). 

 

1. Data and setting  

Both DCPS and Tennessee maintain panel data on teachers, including 

ratings from classroom observations over several years. In DCPS, the panel begins 

with the start of its current evaluation system, IMPACT, in 2009-10, and we use 

data through 2018-19. Tennessee’s current evaluation system began in 2011-12, 

and our data run from that start date through 2018-19. In both cases the data include 

item-level ratings for several specific teaching tasks evaluated in a given 

observation visit. Teachers in tested grades and subjects can be linked to their 

students and achievement scores. Characteristics of the teachers and their students 

in our data are summarized in Table 1. 

1.1 Features common to both settings 

The DCPS and Tennessee settings share many features. In both locations, 

all teachers, regardless of experience level, are evaluated every school year by 

trained observers. The resulting observation ratings are a highly-weighted 



7 
 

component, among a larger set of evaluation measures including value-added 

scores which measure teacher contributions to student achievement.1 The larger 

evaluation systems are used to identify exemplary teachers, those in need of 

additional support or training, or individuals who will be dismissed. During most 

of the period we study, teachers in DCPS were observed five times per year. After 

a change in the rubric in 2017, teachers were observed up to three times per year 

depending on experience and performance. In Tennessee, the number of 

evaluations per year varies according to teachers’ prior performance and licensure 

status, but teachers are typically evaluated multiple times per year. The median 

novice teacher in Tennessee receives 2.5 formal observations and the median 

novice teacher in DCPS receives five formal observations.  

While the two systems use different observation rubrics, both rubrics assess 

similar tasks and teaching practices, and both rubrics have roots in Danielson’s 

Framework for Teaching (1997). Tennessee uses the TEAM (Tennessee Educator 

Acceleration Model) evaluation rubric.2 The TEAM rubric’s 19 items are divided 

into three categories of skills: instruction, planning, and environment. Each 

category is comprised of multiple items for teaching tasks. Ratings for each item 

range from 1-5 (5 = significantly above expectations, 1 = significantly below 

expectations). During most of the period of our analysis, DCPS used an observation 

rubric called the Teaching and Learning Framework (TLF). The TLF rubric has a 

1-4 rating scale (4 = highly effective, 1 = ineffective) for items measuring nine 

teaching tasks.3 In 2017, DCPS transitioned to the Essential Practices (EP) 

 
1 In DCPS classroom observations account for 75 percent of overall IMPACT scores for the more 
than 80 percent of teachers without a value-added score. For teacher with value added as part of 
their evaluation, observations account for between 30 and 40 percent depending on the year. In 
Tennessee, classroom observations are 50 and 85 percent of the overall TEAM score for teachers 
with and without value-added scores, respectively.  
2 Not all Tennessee districts use the TEAM rubric, but our analysis in this paper uses only data from 
the TEAM rubric. 
3  The first seven tasks align generally with the domain of instruction, while the final two align with 
the domains of classroom management and environment. 
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observation rubric, which covers similar skills to the TLF, but with more concise 

definitions for each related task and explicit alignment to the Common Core State 

Standards.  

One frequent, but misleading, criticism of such classroom observation 

systems is that the scores produced have little variation, with most teachers scoring 

in one or two top categories (Kraft and Gilmour 2017, Weisberg et al. 2009). This 

lack of variation arises in part because final scores are rounded off to integer values. 

In this paper we use observation scores that average across many item ratings 

(several items and several observations of a given item), and those scores vary 

meaningfully, with a relatively Gaussian density (as shown in Appendix Figure 

A1).  

1.2 Differences between the two settings  

While both evaluation systems share many features, there are a number of 

useful differences. First, both places use trained school administrators as raters 

(e.g., principals and assistant principals, or other instructional leaders). However, 

until a change in 2017, in DCPS teachers were also observed and rated by “master 

educators”—specialized observers external to the school with subject- and grade-

specific expertise. Two of each teacher’s annual observations were conducted by a 

master educator.  

Second, the two systems have different incentives and consequences 

associated with teachers’ performance scores. While both DCPS and Tennessee 

might be considered high-stakes evaluation systems, DCPS’s has notably higher 

stakes. In DCPS, teachers with low performance (a final annual score below 

effective) are subject to involuntary dismissal. Prior work documents that these 

incentives influences teachers’ behavior at work and their decision about remaining 

at DCPS (Dee and Wyckoff 2015, Dee, James, and Wyckoff 2021). There are also 

rewards in DCPS for high performance. Teachers who demonstrate exceptional 

performance (a final annual score of highly effective) are eligible for substantial 
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bonuses and, if they continue to perform well, large base pay increases. In 

Tennessee, to earn tenure a teacher must receive a final composite score of “above 

expectations” or higher (roughly the top two-thirds of teachers) for two consecutive 

years, after working at least five years total. Tenure can be revoked based on 

evaluation scores but that is rare: a teacher must score “below expectations” or 

lower (roughly the bottom 5 percent of teachers) for two consecutive years, and this 

rule does not apply to teachers who were tenured before 2011-12. 

Finally, in addition to the specifics of their evaluation systems, DCPS and 

Tennessee differ from each other in size and many other characteristics. TEAM is 

used by nearly the entire state of Tennessee, and therefore includes teachers and 

schools across a range of settings and demographics. Each year the Tennessee data 

include roughly 84,000 teachers, of whom 5,500 are in their first-year teaching, 

with 450,000 students at 1,350 schools. DCPS, on the other hand is an urban 

majority-minority and low-income district, with approximately 3,500 teachers (290 

novice) at 125 schools serving 46,000 students each year.   

1.3 Additional data 

In addition to classroom observation ratings, we have access to other data 

for teachers and students. For DCPS and Tennessee teachers, we know when they 

entered teaching, their experience in teaching, and other demographic 

characteristics. We have information regarding the observation raters and timing of 

the observation visits. In both settings we have the usual information regarding each 

teacher’s students, for tested subjects and grades, including eligibility for free or 

reduced-price lunch, race and ethnicity, and standardized achievement scores.  

Additionally, DCPS began using student surveys in 2016-17 as teacher 

performance measures. This measure is adapted from the Tripod survey (Ferguson 

and Danielson 2015), which ask students’ questions about their teachers’ practice. 

An example question: “When explaining new ideas or skills in class, my teacher 

tells us about common mistakes that students might make.”  
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2. Returns to experience estimates 

2.1 Estimation methods 

We estimate the “returns to experience”—the improvement in performance 

caused by additional experience—using a difference-in-differences strategy. Our 

measure of performance, 𝑠̅𝑠𝑗𝑗𝑗𝑗, is the classroom observation score for teacher 𝑗𝑗 in 

school year 𝑡𝑡. At the start of year 𝑡𝑡, teacher 𝑗𝑗 has 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗 years of prior teaching 

experience. Using these inputs, we apply the diff-in-diff estimator proposed by de 

Chaisemartin and D’Haultfœuille (2020, 2022a).  

Let 𝛿𝛿𝑒𝑒 be the improvement in performance caused by gaining the 𝑒𝑒th year 

of teaching experience. Our estimate of 𝛿𝛿𝑒𝑒 is: 

 

𝛿𝛿𝑒𝑒 =
∑ 𝑁𝑁𝑒𝑒𝑒𝑒𝑡𝑡 𝛿𝛿𝑒𝑒𝑒𝑒
∑ 𝑁𝑁𝑒𝑒𝑒𝑒𝑡𝑡

 

𝛿𝛿𝑒𝑒𝑒𝑒 =
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where 𝛿𝛿𝑒𝑒𝑒𝑒 is simply the 𝛿𝛿𝑒𝑒 effect for a specific school year 𝑡𝑡. The number of treated 

teachers is 𝑁𝑁𝑒𝑒𝑒𝑒 and comparison teachers is 𝑀𝑀𝑒𝑒𝑒𝑒. Because a teacher, 𝑗𝑗, may contribute 

to several 𝛿𝛿𝑒𝑒, our standard error estimates correct for clustering at the teacher level.4 

The treatment is gaining an 𝑒𝑒th year of experience. Thus, teacher 𝑗𝑗 is in the 

treated sample if she had 𝑒𝑒 years of experience at the start of school year 𝑡𝑡, but only 

 
4 In practice, we estimate all the several 𝛿̂𝛿𝑒𝑒 simultaneously in one system of weighted least squares 
regressions, stacking together one regression for each 𝛿̂𝛿𝑒𝑒𝑒𝑒. The weight for each 𝛿̂𝛿𝑒𝑒𝑒𝑒 is 𝑁𝑁𝑒𝑒𝑒𝑒

∑ 𝑁𝑁𝑒𝑒𝑒𝑒𝑡𝑡
 as shown 

in Equation 1. The stacked regressions approach allows us to estimate standard errors which are 
cluster (teacher) corrected across regressions.  
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(𝑒𝑒 − 1) years of experience the prior school year. Inside the brackets on the left is 

the average first-difference in observation score, 𝑠̅𝑠𝑗𝑗𝑗𝑗, for the sample of treated 

teachers. That first-difference is the observed change in a teacher 𝑗𝑗’s score between 

year (𝑡𝑡 − 1) to 𝑡𝑡 when her experience changes from (𝑒𝑒 − 1) to 𝑒𝑒. Still, a given 

teacher’s scores may change over time for reasons unrelated to her own experience, 

which motivates the second difference between treated and comparison teachers. 

Our comparison sample is veteran teachers—teachers who have at least 𝑒̅𝑒 

years of experience. One identifying assumption, which we formalize below, is that 

past 𝑒̅𝑒 years of teaching experience, there are no longer any returns to experience 

for the average teacher. Inside the brackets on the right is the average first-

difference for the veteran comparison teachers. Any observed change from (𝑡𝑡 − 1) 

to 𝑡𝑡 among veterans is, by assumption, unrelated to experience and differenced out. 

Our main estimates set 𝑒̅𝑒 = 9, but our estimates are robust to higher values of 𝑒̅𝑒 as 

we show later. 

Each 𝛿𝛿𝑒𝑒𝑒𝑒 estimate uses data from just two school years: one treated year, 𝑡𝑡, 

and one pre year, (𝑡𝑡 − 1). A teacher’s performance in year 𝑡𝑡 is affected by her 𝑒𝑒th 

year of experience. A teacher’s performance in year (𝑡𝑡 + 1) is also affected by her 

𝑒𝑒th year of experience, but also affected by her (𝑒𝑒 + 1)th year of experience. Thus, 

we observe the marginal effect of the 𝑒𝑒th year of experience for one school year, 𝑡𝑡, 

after which the 𝑒𝑒th year is confounded with further experience gains. 

The outcome variable, 𝑠̅𝑠𝑗𝑗𝑗𝑗, is teacher 𝑗𝑗’s classroom observation score for 

school year 𝑡𝑡.  More precisely, 𝑠̅𝑠𝑗𝑗𝑗𝑗 is the average of several task-specific scores, 

𝑠̅𝑠𝑗𝑗𝑗𝑗 = 1
𝐾𝐾
∑ 𝑠𝑠𝑘𝑘𝑗𝑗𝑡𝑡𝐾𝐾
𝑘𝑘=1 . The Tennessee rubric includes 𝐾𝐾 = 19 items and DCPS 𝐾𝐾 = 9. 

Our focus on the average observation score is motivated by an empirical constraint: 

While the tasks being scored are distinct—for example “teacher content 

knowledge” and “managing student behavior”—in practice the scores across tasks 

are highly correlated. In our Tennessee data, the mean correlation between items is 
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0.53 with a standard deviation of 0.05; in a factor analysis the first factor explains 

95 percent of the variation in item scores. This correlation of items is common in 

classroom observation rubric scores (e.g., Kane et al. 2011). The 𝑠̅𝑠𝑗𝑗𝑗𝑗 scores are 

scaled in teacher standard deviation units, within jurisdiction (Tennessee or DC) by 

year cells.5 

2.2 Main results 

Teacher performance measured in classroom observations improves with 

experience. In Figure 1 the solid line plots our returns to experience estimates from 

the difference-in-differences strategy in Equation 1. Observation scores are scaled 

in standard deviation units, and, by construction, the zero line on the y-axis is the 

average score among veteran teachers, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒̅𝑒 = 10. The vertical lines mark 

cluster-corrected 95 percent confidence intervals. 

Just one year of teaching experience improves performance by one-quarter 

to one-third of a standard deviation. Over the first ten years of a teaching career, 

performance in observations improves one standard deviation. The patterns in DC 

and Tennessee are quite similar.  

The pattern in Figure 1, using classroom observation data, is also similar to 

the pattern of returns to experience for teacher value added to student achievement 

scores. In Figure 2 the solid line plots estimates where the performance measure is 

a teacher’s value-added contribution to student test scores. We first obtain value-

added scores, 𝜇̂𝜇𝑗𝑗𝑗𝑗, then apply the estimator in Equation 1 substituting 𝜇̂𝜇𝑗𝑗𝑗𝑗 for 𝑠̅𝑠𝑗𝑗𝑗𝑗.6 

In Figure 2, the y-axis, 𝜇̂𝜇𝑗𝑗𝑗𝑗, is measured in student standard deviation units, and the 

 
5 We begin with the item-by-observation-visit data recorded by observers in the original rubric units 
(integer scores 1-4 in DCPS and 1-5 in Tennessee). Separately for DCPS and Tennessee: (i) We 
standardize the item-by-visit ratings so that, by school year, each item is mean 0, standard deviation 
1. (ii) For each teacher 𝑗𝑗 by item by school year, we calculate the school-year average of the 
standardized item-by-visit ratings. We then re-standardize the item-average scores. (iii) For each 
teacher 𝑗𝑗 by school year, we average her item-average scores to create the overall average score, 𝑠̅𝑠𝑗𝑗𝑗𝑗. 
Finally, we again standardize the overall average scores by year.  
6 Appendix B provides details of our value-added estimation methods. 
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sample is limited to teachers of grades 4-8 in math and English language arts. The 

pattern for Tennessee in Figure 2 matches estimates from several other places (see 

Papay and Kraft 2015 for a review). The DC estimates are much nosier but 

consistent with the typical pattern. Additionally, Appendix Figure A2 reports 

results using student survey measures of teacher performance, and again the pattern 

of returns to experience is quite similar. 

2.3 Causal inference 

The difference-in-differences setup provides a familiar framework for 

evaluating causal claims about the estimates in Figure 1. Stated in general terms, 

the identifying assumption in this case is: Any change over time we observe in 

veteran (comparison) teachers’ scores is the same change we would see in early-

career (treated) teachers’ scores if there were no returns to experience. We can 

clarify the identifying assumption further with the help of a simple conceptual 

framework.  

2.3.1 Observation scores and true performance 

A teacher’s job involves many tasks—learning content, planning lessons, 

asking questions in class, responding to misbehavior, grading, communicating with 

parents, any many more. Each of those tasks produces some input to the production 

of student achievement or other goals of schooling. Let 𝜃𝜃𝑘𝑘 measure true 

performance of task 𝑘𝑘. Higher performance is synonymous with producing more or 

higher-quality task 𝑘𝑘 inputs. 

Classroom observation rubrics are designed to measure task performance, 

𝜃𝜃𝑘𝑘, at least for some subset of a teacher’s tasks. Rubrics are not designed to measure 

outcomes like student achievement. For example, observers are asked to score the 

nature and frequency of questions teachers ask students, but observers are not asked 

to assess whether these questions generated student learning. Observation scores 

are also sometimes described as measures of a teacher’s skills. But an observation 
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score is a function of both skills and effort, thus we prefer describing those scores 

as measures of performance. 

Still, classroom observations are an imperfect way to measure performance. 

An observation score, 𝑠𝑠𝑘𝑘, is inevitably some combination of true performance, 𝜃𝜃𝑘𝑘, 

and other factors unrelated to performance, 𝜈𝜈𝑘𝑘. For exposition we assume: 

𝑠𝑠𝑘𝑘 = 𝑔𝑔(𝜃𝜃𝑘𝑘, 𝜈𝜈𝑘𝑘) = 𝜃𝜃𝑘𝑘 + 𝜈𝜈𝑘𝑘 (2) 

Those other factors, 𝜈𝜈𝑘𝑘, include much more than just classical measurement error. 

Even as the number of observations grows, features of the evaluation process will 

create some difference between 𝐸𝐸[𝑠𝑠𝑘𝑘] and 𝐸𝐸[𝜃𝜃𝑘𝑘]. First, 𝜈𝜈𝑘𝑘 includes explicit features 

of the evaluation process, for example, the rubric itself, how evaluators are trained, 

how evaluators are assigned to teachers, incentives attached to scores. Such explicit 

features are (mostly) controllable by those designing and implementing the 

evaluation. But 𝜈𝜈𝑘𝑘 also includes less-explicit less-controllable features, for 

example, the behaviors teachers or evaluators choose in response to the explicit 

features. 

2.3.2 Identifying assumptions 

Interpreting Figure 1 as the returns to experience—the causal effect of 

teaching experience on true task performance—requires two identifying 

assumptions. Assumption 1: Factors which contribute to observation scores but are 

unrelated to performance, 𝜈𝜈𝑘𝑘 in Equation 2, do not depend on teaching experience. 

Specifically, 𝐸𝐸�𝜈𝜈𝑘𝑘𝑘𝑘𝑘𝑘|𝑘𝑘, 𝑡𝑡, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� = 𝐸𝐸�𝜈𝜈𝑘𝑘𝑘𝑘𝑘𝑘|𝑘𝑘, 𝑡𝑡�. This assumption requires that if an 

early-career and a veteran teacher both have the same true task performance, 𝜃𝜃𝑘𝑘, 

they will have the same observation score, 𝑠𝑠𝑘𝑘. Assumption 2: True performance is 

not changing over time, on average, in the comparison group of teachers. 

Specifically, 𝐸𝐸�𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒̅𝑒� = 0.  

The importance of a comparison group is shown by stating the assumption 

that would replace Assumption 2 in the absence of a comparison group. Assumption 
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3: The 𝜈𝜈𝑘𝑘 factors do not change over time. Specifically, 𝐸𝐸�𝜈𝜈𝑘𝑘𝑘𝑘𝑘𝑘|𝑘𝑘, 𝑡𝑡, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑗𝑗𝑗𝑗� =

𝐸𝐸�𝜈𝜈𝑘𝑘𝑘𝑘𝑘𝑘|𝑘𝑘�. If we used only early-career teachers’ data, we could not separate the 

returns to experience from changes in 𝜈𝜈𝑘𝑘 over time, because 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑡𝑡 are colinear 

within teacher. In Section 3 we discuss several different substantive threats to these 

identifying assumptions, but some of the quite-plausible threats are known changes 

in 𝜈𝜈𝑘𝑘 over time. 

These are the assumptions required for claims about performance of the 

teaching tasks which classroom observations are designed to measure. We might 

also be interested in claims about other aspects of teacher performance, like 

teachers’ value-added to student achievement scores. Imagine a production process 

for student achievement; some of the inputs will be the teaching tasks described in 

an observation rubric. However, to make any inference from observation scores to 

value-added would require a much better understanding of that production process 

than currently exists.7 Later we provide some new empirical evidence relevant to 

that broader inference.  

2.4 Alternative estimation methods 

Our estimation methods, described in Section 2.1, are new to the literature 

on returns to experience in teaching. Here we compare our estimation strategy to 

the conventional estimation strategy—the strategy which, to date, has been most 

common in that literature.8 The conventional strategy is also a difference-in-

differences strategy using a two-way fixed effects estimator, though it is not often 

 
7 The literature does include many estimates of the correlation between observation scores and 
teacher value-added, which is typically much less than 0.50. In our data that correlation is 0.38 for 
Tennessee and 0.30 for DCPS. Appendix Table A1 reports on these estimates in detail. However, 
0.38 and 0.30 are likely to underestimate the true correlation. First, there is the common attenuation 
because of measurement error. Second, the simple mean 𝑠̅𝑠𝑗𝑗𝑗𝑗 gives equal weight to each task 𝑘𝑘, but 
it seems unlikely the elasticity of value-added, 𝜇𝜇, with respect to 𝜃𝜃𝑘𝑘 is equal for all 𝑘𝑘. If we knew 
the production function for student achievement, we would likely choose un-equal weights. 
8 Though the conventional strategy is common, in nearly all prior papers the performance measure 
is teachers’ value-added contributions to student test scores. 
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described in those terms. Both strategies require the same core set of identifying 

assumptions, but the conventional strategy requires additional assumptions.  

In the conventional approach, estimates of the returns to experience come 

from a least-squares regression. The basic specification is: 

𝑠̅𝑠𝑗𝑗𝑗𝑗 = ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� + 𝜆𝜆𝑗𝑗 + 𝜋𝜋𝑡𝑡 + 𝜀𝜀𝑗𝑗𝑗𝑗 (3) 

where the outcome is a measure of teacher performance, 𝑠̅𝑠𝑗𝑗𝑗𝑗 in our case.  

Selective attrition is a fundamental threat to any returns-to-experience 

estimate; attrition from teaching is likely negatively correlated with performance. 

In response to that threat nearly all estimation strategies focus on variation within 

individual teachers over time. Our main strategy uses only within-teacher variation 

by first differences. The conventional approach uses teacher fixed effects (Rockoff 

2004). 

However, for a given teacher, years of experience, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗, is colinear with 

school year, 𝑡𝑡, unless she takes a leave of absence. Specification 3 includes both 

teacher fixed effects, 𝜆𝜆𝑗𝑗, and school year fixed effects, 𝜋𝜋𝑡𝑡, and thus requires some 

restriction on ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� to avoid the age-period-cohort problem. The typical 

restriction is to assume no returns to experience after some number of years, 𝑒̅𝑒. 

Then ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� is a series of indicator variables for years of experience up to 𝑒̅𝑒: 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� = �𝛽𝛽𝑒𝑒 × 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑒𝑒�
𝑒̅𝑒−1

𝑒𝑒=0

 

and 𝛿𝛿𝑒𝑒 = 𝛽𝛽𝑒𝑒 − 𝛽𝛽𝑒𝑒−1. 

(4) 

The omitted category is veterans, 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒̅𝑒�.9 This restriction maps to 

identifying Assumption 2, as stated earlier. That required assumption is well known 

 
9 There are alternative specifications of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� in the literature: (i) Specifying ℎ as cubic, or other 
higher-order polynomial, in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗, though often still with 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗  top-coded at some point (e.g., 
Rockoff 2004). (ii) Dividing 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗  into bins, e.g., 1–2, 3–4, 5–9, 10–14, 15–24, and 25+ (e.g., 
Harris and Sass 2011). (iii) Using the non-standard age-experience progressions, e.g., leaves of 
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in the literature on returns to experience in teaching; the assumption is stated 

explicitly (e.g., Rockoff 2004) and criticized (e.g., Papay and Kraft 2015).  

This conventional estimation strategy uses a two-way fixed effects 

estimator. Notice in specification 3 the characteristic group and period fixed effects, 

𝜆𝜆𝑗𝑗 and 𝜋𝜋𝑡𝑡, and a series of treatment indicators, ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗�. A recent, growing 

literature clarifies several properties of two-way FE estimators; in particular, how 

those estimators can produce biased estimates when treatment effects are 

heterogeneous (for reviews see de Chaisemartin and D’Haultfœuille 2022b, Roth 

et al. 2022).  

In our setting, that potential bias arises from differences across cohorts of 

teachers in their returns-to-experience profiles—heterogeneity across cohorts in the 

vector of treatment effects {𝛿𝛿1, 𝛿𝛿2, … 𝛿𝛿𝑒̅𝑒−1}. A cohort in this case is defined by when 

a teacher began her career, given the link between time and experience. 

Heterogeneity in any one parameter, 𝛿𝛿𝑒𝑒 for a given 𝑒𝑒, can bias the estimate of that 

parameter itself, 𝛿𝛿𝑒𝑒. This is a bias threat now widely recognized.10 Additionally, 

the estimate for the 𝑒𝑒th year, 𝛿𝛿𝑒𝑒, can also be biased by heterogeneity in the returns 

to experience for other years, 𝛿𝛿−𝑒𝑒. For example, 𝛿𝛿3 can be biased by heterogeneity 

in 𝛿𝛿1 or 𝛿𝛿6 across cohorts. de Chaisemartin and D’Haultfœuille (2022a) detail this 

second bias threat which arises when there are several treatments. 

The dashed line in Figure 1 shows our estimates from the common two-way 

FE strategy, alongside our preferred strategy. In Tennessee the two lines are nearly 

identical, suggesting little change from cohort to cohort in the returns to experience. 

 
absence, to estimate specification 1 without restrictions on ℎ (e.g., Wiswall 2013). Additionally, it 
is more common to make the first year of teaching the omitted category. We prefer to omit veterans 
in part for comparability with our main estimates. 
10 Bias is also a concern when there is heterogeneity of effects over time within groups, giving rise 
to the negative weights problem (for reviews see Chaisemartin and D’Haultfœuille 2022b, Roth et 
al. 2022). The specification of ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� is analogous to the common event study specification, and 
(largely) avoids the bias from heterogeneity of effects over time. 
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By contrast, there is some difference for DCPS, suggesting the two-way FE strategy 

underestimates the steepness of returns to experience. First, the differences are 

largely explained by changes in the distribution of teacher experience in DCPS over 

time. Appendix Figure A3 shows that the distribution of experience shifted away 

from early-career teachers over time but became more stable from 2014-15 on.11 If 

we restrict out analysis to this more-stable more-recent period, the standard and 

alternative approaches are quite similar, as shown in Appendix Figure A4. Perhaps 

the observable changes in the distribution of experience in DCPS are correlated 

with changes in the returns to experience among DCPS teachers. Second, the 

difference in Figure 1 for DCPS is more a difference in intercepts, and less a 

difference in slopes over time. Up through the fifth or sixth year, the year-to-year 

estimated changes are nearly identical.  

The two strategies also yield similar estimates when the performance 

measure is a teacher’s value-added contribution to student test scores, as shown in 

Figure 2. The value-added returns-to-experience estimates are much noisier, given 

the much smaller samples, but we cannot reject the null hypothesis of no difference 

between the two strategies.12 

 

3. Alternative explanations and threats to causal inference 

 Observation ratings may improve (decline) over time for reasons unrelated 

to a teacher’s gains from experience. In this section we describe several alternative 

explanations for changing ratings, and whether an alternative explanation threatens 

a causal “returns to experience” interpretation of Figure 1. We focus specifically 

 
11 Our DCPS data begin in 2009-10 and thus the early years coincide with the slow labor recovery 
following the recession. We do not see the same pattern in Tennessee where the experience 
distribution has been stable over the years we study. 
12 Appendix B provides details of our value-added estimation methods. 
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on interpreting changes in observation ratings as the causal effect of experience on 

performance of the tasks which the rubric is designed to measure.  

3.1 General evidence 

Before taking up specific alternative explanations, we begin with some 

general evidence relevant to the plausibility of identifying Assumptions 1 and 2. 

First, Figure 3 reports a partial test of Assumption 1. For this test assume, first, that 

the 𝜈𝜈𝑘𝑘 component of scores (Equation 2) does not depend on experience 

(Assumption 1); and, second, that the production process which turns teaching 

input tasks, 𝜃𝜃𝑘𝑘, into a teacher’s value added contributions to student achievement 

also does not depend on experience. If both assumptions hold, we would expect 

that the relationship between observation ratings, 𝑠𝑠𝑘𝑘, and teacher value added 

should be unrelated to experience. We can test this latter relationship. 

Figure 3 shows the relationship between observation ratings and test-score 

value added, and how that relationship changes with teacher experience. The x-axis 

is years of prior experience. The y-axis is the predicted increase in value added if 

we increase the teacher’s observation score by one standard deviation.13 The solid 

line uses only within-teacher over-time variation (by including teacher FE in the 

estimation), and the dashed line uses both within- and between-teacher variation 

(by omitting teacher FE). To get a sense of the correlation between observation 

scores and value added, multiply the y-axis by about five for Tennessee and three 

for DCPS.  

The relationship between observation scores and value added is (largely) 

unrelated to experience in Figure 3. With perhaps one exception, there is no clear 

trend related to experience. And we cannot reject the null hypothesis that each point 

estimate is equal to the average of the series it belongs to, though the DCPS 

estimates are quite noisy. The exception is the earliest years in Tennessee using 

 
13 The estimation details for Figure 3 are summarized in its note and described in Appendix B. 
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only within-teacher variation (solid line series). Those estimates suggest the 

correlation declines from the first year to the fourth, but then remains stable 

afterward. Some of the specific threats described below could be a mechanism 

behind the declining correlation. That decline in correlation could be evidence that 

the 𝜈𝜈𝑘𝑘 component of scores does depend on experience, but it is not necessarily 

evidence against Assumption 1. Even if the general production process which turns 

teaching tasks, 𝜃𝜃𝑘𝑘, into value added output does not depend on experience, the way 

in which a teacher chooses to optimize that production process may depend on 

experience. For example, perhaps as early-career teachers gain experience they 

shift more effort to tasks which are not measured by the observation rubric, or more 

subtly shift effort across tasks in a way not well captured by the simple average of 

ratings, 𝑠̅𝑠𝑗𝑗𝑗𝑗. 

Additionally, Figure 3 is only a partial test. We have only one outcome: 

teachers’ value-added contributions to student test scores. Teachers contribute to 

other important student outcomes, like social and behavioral skills (Jackson 2018), 

and classroom practices are likely important to those outcomes as well. Related, for 

DCPS teachers we have student surveys which may capture a different set of inputs 

to test and non-test student outcomes. Appendix Figure A5 repeats the test in Figure 

3 with the surveys as outcomes, and we find steady, albeit noisy, correlations 

between classroom observation scores and the student survey scores. 

We can also partially test identifying Assumption 2. That assumption 

requires that, on average, true performance, 𝜃𝜃𝑘𝑘, is not changing over time among 

the comparison group of veteran teachers, i.e., 𝐸𝐸�𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒̅𝑒� = 0. 

Our main estimates in Figure 1 set 𝑒̅𝑒 = 9 to define the veteran group. If Assumption 

2 holds, then our estimates for returns at 𝑒𝑒 = 0-8 should be robust to setting 𝑒̅𝑒 above 

9.  
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Our returns to experience estimates are quite robust to changes in 𝑒̅𝑒. The 

solid line in Figure 4 simply repeats the solid line in Figure 1 for convenient 

comparison, with 𝑒̅𝑒 = 9. The two dashed lines show estimates where 𝑒̅𝑒 = 14 and 

𝑒̅𝑒 = 19. The three lines have different intercepts; the intercept in this case is the 

average performance among veteran teachers with 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒̅𝑒. Still, the slopes of 

the lines are quite similar, over the range of 0-8 years of prior experience. Compare 

across estimates, for example, the change in performance between 0 and 1. Those 

changes in performance are the returns to experience we want to estimate, and those 

estimated changes are robust. However, the choice of 𝑒̅𝑒 does matter for inferences 

about the level of performance for novices and early-career teachers. 

Additionally, while we cannot observe Δ𝜃𝜃 = 𝐸𝐸�𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥

𝑒̅𝑒� directly, we can observe Δ𝑠̅𝑠 = 𝐸𝐸�𝑠̅𝑠𝑘𝑘𝑘𝑘𝑘𝑘 − 𝑠̅𝑠𝑘𝑘𝑘𝑘(𝑡𝑡−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒̅𝑒�. Among veteran 

teachers, the mean first-difference in observation scores is 0.004 standard 

deviations (st.err. 0.002) in Tennessee and -0.073 standard deviations (st.err. 0.006) 

in DCPS.14 Under what conditions would Δ𝑠̅𝑠 ≅ 0 but Δ𝜃𝜃 ≠ 0? Only in the knife-

edge case where any change in true performance, 𝜃𝜃𝑘𝑘, is just offset by a change in 

the 𝜈𝜈𝑘𝑘 component of scores. 

3.2 The evaluation system 

Changes in observation ratings over time may be caused by changes to the 

evaluation system’s tools and procedures. Key features of an evaluation system 

include the scoring rubric, the training provided to raters, and the rules for assigning 

 
14 In DCPS, compositional differences in the teaching force over time (Dee and Wyckoff 2015, Dee 
et al. 2021, James and Wyckoff 2020) could make it appear, with our preferred within-year 
standardization process, as if experienced teachers were declining over time as the average 
performance of incoming teachers improves. However, relying on alternative standardization 
approaches, including standardizing relative to veteran teachers within year and standardizing scores 
across years, do not change the slopes shown in Figure 1. Differences in point estimates across 
standardization approaches never exceed 0.037, with an average difference in point estimates across 
approaches and levels of experiences of 0.005. In rubric units, the average first difference for veteran 
teachers is also quite small, at -0.014 (st.err. 0.003). 
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teachers to raters.15 Even if a teacher’s performance, 𝜃𝜃𝑘𝑘, remains constant, the 

rating assigned to that performance, 𝑠𝑠𝑘𝑘, may go up or down if the system’s 

processes change. In other words, the evaluation system’s tools and procedures are 

key features of 𝜈𝜈𝑘𝑘 in Equation 2 where 𝑠𝑠𝑘𝑘 = 𝜃𝜃𝑘𝑘 + 𝜈𝜈𝑘𝑘. (The incentives or 

consequences attached to performance measures are also a key feature of an 

evaluation system, and we discuss those incentives below.) 

The most straightforward example of a change in 𝜈𝜈𝑘𝑘 is a change in the 

scoring rubric. In 2017 DCPS switched from the Teaching and Learning 

Framework (TLF) rubric to an entirely new Essential Practices (EP) rubric. The 

new EP rubric did not measure exactly the same set of tasks, 𝑘𝑘, as the old TLF 

rubric. Changes in other settings might be smaller, like word choices, even if the 

tasks scored remain the same. Still, large or small rubric changes would not 

necessarily threaten our identifying assumptions, as long as the rubric changes 

affect early-career (treatment) and veteran (comparison) teachers equally. 

The DCPS changes allow us to compare estimates from different rubrics. In 

Figure 5 the short dash line shows estimates of returns to experience using only 

ratings generated by the TLF, while the long dash blue line uses only EP ratings. 

Both dashed lines are limited to scores from school administrators. For both rubrics 

the average first-year teacher’s rating is much lower than the average veteran’s 

rating, but that starting gap is smaller with the EP rubric. In both cases teachers 

make larger improvements over the first five years compared to the next five, but 

the improvements are somewhat steeper as judged by the TLF rubric. The 

differences suggest a potential threat to Assumption 1—that 𝜈𝜈𝑘𝑘 does not depend on 

experience—at the time of the change in rubrics in DCPS. However, the difference 

between the dashed (TLF) and long-dashed (EP) estimates could be a compositional 

 
15 Our language and examples in this discussion mainly imply the evaluation systems designed or 
used by schools, districts, or states. The features and reasoning also apply to scores collected by 
researchers or for other purposes. 
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change. Starting in 2011, and thus concurrent with our data, DCPS became more 

selective in both hiring and retention decisions, with selection strategies based 

explicitly on performance measure (Dee and Wyckoff 2015, Jacob et al. 2018). 

There were noticeably fewer early-career teachers by 2017 (Appendix Figure A3). 

Thus, in Figure 5, the higher scores with the EP rubric may reflect true higher 

performance because of selection.  

Choosing raters is also a key evaluation design decision, and a decision 

which itself may change over time. Figure 5 also compares estimates by rater type 

for DCPS. The solid red line uses only ratings from the master educator raters, who 

specialize in rating and are external to the school, while the dashed red line uses 

only ratings from school administrators. Both lines are limited to scores generated 

by the TLF rubric. The slopes of the two TLF lines are quite similar, especially over 

the first five years of a teacher’s career. Additionally, in this comparison there is no 

composition change concern since each teacher was rated by both a school 

administrator and master educator each school year. Figure 5 does obscure one 

important difference between master educator scores and school administrator 

scores. School administrators give higher average scores on the 1-4 scale; in other 

words, the 𝜈𝜈𝑘𝑘 component in Equation 2 does depend on rater type. However, the 

difference in scores between the rater types is the same for all teachers regardless 

of experience; thus, the rater type difference in 𝜈𝜈𝑘𝑘 does not violate Assumption 1. 

In general, changes to the evaluation system are changes to the 𝜈𝜈𝑘𝑘 

component in Equation 2. Interpreting Figure 1 as the causal returns to experience 

does not require that 𝜈𝜈𝑘𝑘 remain unchanged over time. The only restriction on 𝜈𝜈𝑘𝑘 is 

that 𝜈𝜈𝑘𝑘 not depend on experience. This applies to obvious changes in 𝜈𝜈𝑘𝑘, like the 

rubric or types of evaluators, and to changes which are more difficult (for the 

researcher) to observe. One potentially difficult to observe change is changes to the 

training of raters. Imagine that system administrators determine, at a given point in 

time, that raters need to be re-trained on some aspect of scoring. That re-training 
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might be in fact be motivated by administrators’ belief that scores, 𝑠𝑠𝑘𝑘, are not 

reflecting performance, 𝜃𝜃𝑘𝑘, as they should. A second example is a change to the 

rules for assigning teachers to raters. Chi (2020), among others, has documented 

teacher-rater match effects on observation scores; for example, when a teacher and 

rater share a gender or race, the teacher’s scores are higher. Imagine the evaluation 

system administrators decide, at some point, to make gender or race an explicit 

factor in the rules for making assignments.  

3.3 Behavior of the raters 

Changes in ratings over time may reflect changes in the behavior of the 

raters. Raters have some discretion within any evaluation system’s designed 

procedures. Rubric-based classroom observation ratings fall somewhere in between 

the theoretical poles of truly objective evaluation and purely subjective evaluation. 

Moreover, raters may also take actions which violate the designed procedures they 

were trained to follow. The behavior of raters, whether intended or unintended in 

the system design, is part of the 𝜈𝜈𝑘𝑘 component in Equation 2. 

One behavior that is frequently cited, given rater discretion, is leniency 

bias—the tendency for raters to give scores which are higher than warranted. 

Histograms of observation ratings (Appendix Figure A1) are consistent with 

systematic leniency bias in both Tennessee and DCPS, although such bias is less 

evident for ratings assigned by the master educators in DCPS. The skew in the 

ratings distribution could also accurately reflect teacher performance using a rubric 

with ceiling effects. Leniency bias is often cited as a concern in classroom 

observation scores by both researchers and in public debate (Kraft and Gilmour 

2017, New York Times 2013), but leniency bias is common in many occupations 

beyond teaching (Prendergast 1999). 

However, leniency bias does not necessarily threaten our interpretation of 

Figure 1 as the causal returns to experience. To violate Assumption 1—𝜈𝜈𝑘𝑘 does not 

depend on experience—rater leniency would need to be correlated with teacher 
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experience. For example, imagine that raters are less lenient with a first-year 

teacher compared to their rating of the same teacher in her second year; then Figure 

1 would over-state the returns to the first year of teaching. Such a change in leniency 

might be a mechanism behind the early-years decline in Tennessee in Figure 3. 

However, if it is not correlated with experience, leniency bias will be differenced 

out in the same way as rubric changes or other evaluation system features. 

Another potential mechanism is that raters may use information learned 

outside an official observation visit. Consider the case of a teacher rated by her 

school principal. A few brief classroom observations are a small fraction of the 

interactions a teacher and principal will have in a school year; the principal likely 

learns much about the teacher’s performance outside of official observations. Ho 

and Kane (2013) show evidence that a teacher’s own principal scores a video of her 

classroom differently than a principal from another school in the district scores the 

same video, perhaps because the teacher’s own principal begins the scoring with a 

prior on the teacher’s performance. Additionally, because the rubric covers only 

some teaching tasks, 𝑘𝑘, a principal may raise (lower) observation scores to reflect 

the principal’s beliefs about the teacher’s performance of tasks not covered by the 

rubric. A principal using outside information is a potentially rational behavior if the 

observation ratings are used for personnel decisions and the principal cares much 

less about observation scores than she cares about student outcomes and teacher 

value-added to those outcomes. 

This outside information explanation may threaten Assumption 1—𝜈𝜈𝑘𝑘 does 

not depend on experience—but only if raters both have and use different outside 

information depending on a teacher’s years of experience. The number of years a 

teacher-principal pair has worked together likely will be correlated with the 

teacher’s years of experience, but it does not need to be strongly correlated if school 

principals switch schools frequently. A high correlation would suggest principal 

raters might have different outside information on early-career and veteran 
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teachers. Empirically the correlation between years-worked-together and 

experience is 0.17 in the DCPS data and 0.15 in the Tennessee data. 

One test relevant to this outside-information question is the event study of 

ratings in Figure 6. Event time is relative to a change in the school principal, with 

year zero the new principal’s first year, and we allow the time series to differ for 

early-career and veteran teachers as shown by the two plotted lines. If principals 

learn about a teacher’s performance outside of formal classroom observations, we 

might expect observation scores to rise or fall. However, scores do not change on 

average as a principal and teacher work together longer. This pattern holds for both 

early-career and veteran teachers. In Tennessee there is some evidence that 

principals give slightly lower scores in their first year in a new school.16  

3.4 Incentives and distortion of effort 

Changes in ratings may reflect changes in the incentives attached to those 

ratings. Those incentives might be explicitly linked to observation ratings, like 

monetary bonuses or the threat of dismissal, or less-explicit career concerns 

incentives. Still, a change in incentives alone does not threaten inferences about 

true performance, 𝜃𝜃𝑘𝑘, for tasks covered by the rubric. A new or stronger incentive 

attached to task 𝑘𝑘’s score, 𝑠𝑠𝑘𝑘, can induce a teacher to raise her performance of that 

task, 𝜃𝜃𝑘𝑘, through more effort for task 𝑘𝑘 or investing in skills for task 𝑘𝑘. Thus, 

inferences about true performance, 𝜃𝜃𝑘𝑘 , of tasks covered by the rubric are not 

necessarily threatened by a change in incentives attached to ratings, 𝑠𝑠𝑘𝑘.  

 
16 On additional note on rater behavior. As described in Section 2.1, the item level observation scores 
for specific tasks 𝑠𝑠𝑘𝑘 are strongly correlated, in these data and most teacher observation data. This 
fact is sometimes interpreted as evidence that raters do not actually differentiate between tasks, 𝑘𝑘, 
but instead score teachers on some single general dimension of teaching performance. This seems 
unlikely given that the item level correlations are not equal to one. A more plausible explanation is 
that the rubrics define tasks where true performance is in fact strongly correlated. Whatever the 
explanation, this issue is not central to our analysis in this paper which focuses on the average score. 
This issue does limit our ability to make conclusions about how experience may affect tasks 
differentially. 
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However, an increase in effort for tasks covered by the rubric, 𝑘𝑘, may come 

at the expense of teacher performance in other tasks not covered, −𝑘𝑘. This 

asymmetry between scored tasks and un-unscored tasks suggests scope for the well-

known multitask distortion problem (Holmstrom and Milgrom 1991). Given that 

potential distortion, a change in incentives attached to rubric ratings can threaten 

inferences about teacher performance beyond the scope of what is covered by the 

rubric. Recall that the rubric tasks are inputs to the broader education production 

responsibilities of teachers, including improving student math achievement, social 

skills, earnings as an adult, etc.  

Still, using ratings and incentives to shift teacher effort away from some 

tasks and toward other tasks will not necessarily lead to distortion. There is (quasi-

)experimental evidence that rubric-based classroom observations can improve 

teachers’ contributions to student test scores, even when teachers are not evaluated 

based on those test scores (Taylor and Tyler 2012, Burgess, Rawal, and Taylor 

2021, Briole and Maurin in-press). In DCPS specifically, teacher performance 

improves more when the teacher spends more of the year anticipating an 

unannounced rater visit (Phipps 2018, Phipps and Wiseman 2021). 

While incentives do not necessarily threaten our causal interpretation of 

Figure 1 as the returns to experience, changes in incentives may be a mechanism 

behind the improvements seen in Figure 1. The simplest example is tenure rules. In 

Tennessee, teachers can earn tenure after five years, but tenure requires sufficiently 

high observation ratings in years four and five.17 Thus, teachers have somewhat 

more incentive to focus effort on the rubric-measured tasks in years four and five 

compared to years one, two, and three, which might contribute to the pattern in 

Figure 1. Still, it seems unlikely a teacher concerned about tenure would wait until 

 
17 More precisely, tenure requires being rated “4. Effective” or “5. Highly Effective” on the 1-5 
integer scale. While only one input to that overall final rating, classroom observation scores get a 
weight of 50-85 percent for the teachers. 
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year four to pay attention to the rubric, and the slope from years three to four in 

Figure 1 is not obviously a departure from the trend suggested by the other year-to-

year slopes.  

Unlike Tennessee, the evaluation incentives in DCPS were not explicitly a 

function of years of experience but could have been correlated with experience. 

DCPS teachers are dismissed if rated “Minimally Effective” (the second-lowest 

rating) in two consecutive years or if they fail to exceed a “Developing” rating (the 

third-lowest rating) within three consecutive years. Before fall 2012, teachers could 

receive permanent salary increases after two consecutive years of being rated 

“Highly Effective” (the top rating). Figure 7 shows the proportion of teachers in 

each rating category by years of experience, suggesting the incentives are not 

strongly correlated with experience.18  

3.5 Manipulation of ratings 

Observation ratings may reflect changes in teachers’ actions unrelated to 

their job performance. Teachers, like professionals in any other occupation, may 

adopt behaviors or actions which do raise their ratings, 𝑠𝑠𝑘𝑘, but do not raise their 

true job performance, 𝜃𝜃𝑘𝑘. In the literature on job performance evaluation these 

actions are known as manipulation.19 This manipulation of observation ratings 

might occur, for example, because classroom observations are infrequent and brief; 

thus, a teacher could prepare a special lesson or even rehearse the lesson with his 

students in advance of the rater’s visit. By contrast, if the evaluation process or 

incentives prompted a teacher to improve her lessons on all (many of) the days the 

 
18 Also studying DCPS, Adnot (2016) reports evidence that teachers facing the two-consecutive-
years-minimally-effective dismissal threat shift effort across tasks within the rubric toward tasks 
which are more likely raise their scores. This is a sort of distortion within measured tasks but 
suggests that teachers are aware of this margin. 
19 Empirical examples of manipulation by teachers include cheating on student tests (Jacob and 
Levitt 2003) and intentionally excluding low-scoring students from high-stakes tests (Jacob 2005, 
Cullen and Reback 2006, Figlio 2006, Figlio and Getzler 2006). 
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rater would not be present, that would be an improvement in performance and not 

manipulation.  

Manipulation plausibly threatens our casual returns-to-experience 

interpretation of Figure 1. In our framework, teacher manipulation results from the 

evaluation system’s procedures and incentives, and is part of the 𝜈𝜈𝑘𝑘 component in 

Equation 2. A teacher’s awareness of how to manipulate likely grows as he gains 

experience with the evaluation system. That suggests a plausible correlation 

between potential for manipulation and general teaching experience, which 

threatens Assumption 1 that 𝜈𝜈𝑘𝑘 is invariant to experience. However, that correlation 

might be weakened if more-experienced teachers share their manipulation 

strategies with newly-hired teachers. If the manipulation component of observation 

scores is unrelated to general experience, then manipulation will be differenced out 

in Figure 1. 

The decline in correlation over years 1-4 in Tennessee in Figure 3 may be 

explained by increasing manipulation over the first few years of a teacher’s career. 

However, we cannot rule out other mechanisms, such as, for example, raters 

becoming more lenient as a teacher moves from first to second to third year. And 

there are other limitations to the test in Figure 3, as discussed above. On the other 

hand, while underpowered, the evidence from DCPS in Figure 3 does not indicate 

a decline in the relationship between classroom observation scores and student 

achievement over experience. In addition, the relatively stable correlation between 

classroom observation ratings and student survey scores across levels of teaching 

experience in DCPS (Appendix Figure A5) provide evidence against the presence 

of manipulation, unless teachers were similarly able to manipulate scores on both 

measures across levels of experience. 

Dee and Wyckoff (2015) examine whether DCPS school administers 

manipulate observation scores, 𝑠𝑠𝑘𝑘, in the face of increased incentives. Consider the 

teachers who received their first Minimally Effective rating in 2010-11, and thus 
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were under a significant threat of dismissal during 2011-12. Observation ratings 

did improve in 2011-12 for these teachers, on average. However, master educators 

also scored these teachers as having improved, and the increase in observation 

scores was similar across both types of raters. Additionally, these teachers under 

dismissal threat also improved on their test-score value added. Taken together, 

these results suggest that the dismissal threat did not improve observation ratings 

through manipulation alone.  

3.6 Changes in job assignments 

Changes in a teacher’s ratings may reflect changes in her job assignment. A 

teacher’s observation ratings, 𝑠𝑠𝑘𝑘, might decline (improve) after a job change for 

either of two reasons: First, the teacher’s actual performance, 𝜃𝜃𝑘𝑘, could decline 

(improve) because of the job change. Using teacher value-added to student test 

score, Ost (2014) provides evidence that teaching skills and experience are not fully 

transferable across grade levels. Switching from 3rd to 5th grade, for example, 

likely requires some adjusting of questioning techniques, or shifting effort to new 

lesson plans at the expense of in-class performance. 

Let 𝑎𝑎 and 𝑎𝑎′ be two different job assignments; 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the actual 

performance of teacher 𝑗𝑗 in task 𝑘𝑘 during school year 𝑡𝑡 with job assignment 𝑎𝑎. We 

can write: 

𝐸𝐸�𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)� = 𝐸𝐸�𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)𝑎𝑎��������������
Δ𝑡𝑡

+ 𝑝𝑝 𝐸𝐸�𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)𝑎𝑎 − 𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)𝑎𝑎′������������������
Δ𝑎𝑎

 (5) 

where 𝑝𝑝 is the probability of switching from job 𝑎𝑎′ to 𝑎𝑎. 

The intuitive notion of “returns to experience” implies that the job is 

constant and experience increases, which matches Δ𝑡𝑡 in Expression 5. If identifying 

Assumption 2 holds—no returns to additional experience for veterans—then Figure 

1 reports estimates of (Δ𝑡𝑡 + 𝑝𝑝Δ𝑎𝑎). Assuming further that job changes reduce 

performance, Δ𝑎𝑎 < 0, then Figure 1 underestimates the intuitive Δ𝑡𝑡. Alternatively, 

some researchers or policymakers may be interested (Δ𝑡𝑡 + 𝑝𝑝Δ𝑎𝑎), which we could 
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describe as the “returns to experience including job changes typical of early-career 

teachers.” 

Job changes do threaten identifying Assumption 2, which requires that 

𝐸𝐸�𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 − 𝜃𝜃𝑘𝑘𝑘𝑘(𝑡𝑡−1)|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 𝑒̅𝑒� = 0 in our comparison group of veteran teachers. A 

veteran’s performance might change because of a job change, Δ𝑎𝑎 ≠ 0 , even if her 

performance would not have otherwise changed, Δ𝑡𝑡 = 0. If job changes do reduce 

veteran (comparison) teacher performance, Δ𝑎𝑎 < 0, then the estimates in Figure 1 

overstate the intuitive Δ𝑡𝑡 for novices. This bias is positive, and the bias described 

in the prior paragraph is negative, but the two would only cancel each other out 

under the assumption that 𝑝𝑝 and Δ𝑎𝑎 do not depend on experience.20 

The second reason scores might change is that the 𝜈𝜈𝑘𝑘 component in 

Equation 2 might differ across jobs. For example, typically the same rubric is used 

for all teachers, leaving any adaptation to grade-level or subject circumstances up 

to the rater or training process. More subtly, 𝜈𝜈𝑘𝑘 might depend on the students in the 

classroom (Campbell and Ronfeldt 2018). Students are themselves an important 

feature of a teacher’s job assignment, and a feature which can change even if grade 

level or subject do not. The threat to identification parallels other features of 𝜈𝜈𝑘𝑘 

discussed above. As long as job-specific differences in 𝜈𝜈𝑘𝑘 are unrelated to 

experience, this second reason is not a serious threat to identification. A job-specific 

difference might be, for example, if raters are more lenient with novices after a job 

change than they are with veterans. 

In Figure 8 we test the robustness of Figure 1 to changes in the students a 

teacher is assigned. Using data from Tennessee and DCPS, we plot returns-to-

experience estimates with and without controls for students prior-year test scores.21 

 
20 This assumption is sufficient but not strictly necessary. We only require that the product 𝑝𝑝Δ𝑎𝑎  not 
depend on experience, which should be a weaker assumption.  
21 The estimation for Figure 8 is identical to our preferred strategy used in Figure 1 with two 
exceptions. First, we limit the sample to teacher-by-year, 𝑗𝑗𝑗𝑗, observations where we have prior-year 
test scores for students assigned to the teacher, grades 4-8 math and language classes. Second, for 
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Accounting for changes in students assigned does not affect our estimates. The 

similarity of all the estimates in Figures 1 and 8 is partly because they all use only 

within-teacher variation. The 𝜈𝜈𝑘𝑘 component might well depend on the students in 

the classroom (Campbell and Ronfeldt 2018), but most of the variation in students 

assigned is between teachers or schools, not within teachers over time. 

3.7 Performance improvements among veteran teachers 

The true performance of veteran (comparison group) teachers may change 

over time—violating Assumption 2—even if there are no returns to experience for 

veterans. For example, veterans may increase their effort in response to incentives. 

How would interpretation change if Assumption 2 was violated in this way, but 

Assumption 1 held? If the veteran gains were only among veterans, then the 

estimates in Figure 1 would likely understate the true returns to experience for 

early-career teachers. The veterans’ improvements would be subtracted off any 

improvements for early-career teachers.22 

3.8 Turnover 

One final consideration in interpreting Figure 1 is turnover or attrition from 

our estimation sample. The estimates in Figure 1 use only within-teacher variation 

in observation scores. This feature addresses a first-order potential bias: average 

observation ratings might rise with experience, even if each individual teacher’s 

scores remain constant, if lower-rated teachers are more likely to leave teaching (or 

at least leave the district or state).  

Still, even using only within-teacher variation, Figure 1 is still partly 

determined by turnover. In Figure 1 the slope between year one and year two is an 

 
the dashed line, the outcome variable is the residual from a regression of observation score, 𝑠̅𝑠𝑗𝑗𝑗𝑗, on 
the average prior-year test score for students assigned to the teacher. 
22 This subtraction might be desirable in specific cases. Imagine, for example, that veterans 
improved because of some new training, and that training was given to all teachers, early-career and 
veteran. If, roughly, the effect of the training was similar for all teachers, then the subtraction makes 
the Figure 1 estimates returns to experience controlling for any general training effects. 
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average of 𝑁𝑁1,2 different individual teacher slopes, where 𝑁𝑁1,2 is the sample of 

individuals who are observed in year one and year two (and perhaps future years). 

Similarly, the slope between year four and year five uses only the 𝑁𝑁4,5 sample. 

However, these are not the same samples: 𝑁𝑁4,5 ≠ 𝑁𝑁1,2. First, for any given cohort 

of novice hires, attrition from the profession over time will make 𝑁𝑁4,5 ⊂ 𝑁𝑁1,2. 

Second, experienced teachers who transfer into the system from elsewhere may 

contribute to 𝑁𝑁4,5 even if they do not contribute to 𝑁𝑁1,2. The slope from year one to 

year two in Figure 1 might be different if we could estimate it with the 𝑁𝑁4,5 sample. 

Empirically, however, our Figure 1 estimates are not strongly influenced by 

this second-order composition concern. Figure 9 shows our returns-to-experience 

estimates using subsamples defined by when the teacher leaves teaching in 

Tennessee or DCPS. The changes from year one to two, two to three, etc. are quite 

similar across samples. The exception is that the trajectory appears to change in a 

teacher’s final year before leaving teaching in Tennessee or DCPS. 

 

4. Conclusion  

We conclude that the typical estimates of returns to experience, applied to 

observation ratings, can reasonably be interpreted as the causal effect of additional 

experience on teachers’ job performance—specifically, performance of the input 

tasks covered by the rubric. The estimates are difference-in-differences estimates, 

where veteran teachers are the comparison group. Veterans provide a plausible 

counterfactual estimate for several often-stated threats, including for example, 

leniency bias from raters, manipulation by teachers, changes in the evaluation 

system, and changes in teachers’ job assignments. Our estimates are robust to 

changes in the rubric, different rater types, and controlling for student baseline 

achievement, among other things. Still, there are reasons to remain cautious about 

a causal interpretation. We find, in one setting, a weakening correlation between 
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teacher observation scores and student test scores as teacher experience grows. That 

weakening is consistent with some threats to the identifying assumptions, but it 

would also be consistent with changes in optimal teaching strategies as experience 

increases.  

Our analyses should be interpreted carefully. We focus on the performance 

of the input tasks covered by classroom observation rubrics. Stronger assumptions 

are required for using observation ratings to make inferences about teacher 

performance measured by contributions to student outcomes. Taking differences in 

scores over time addresses several concerns which are left unaddressed in results 

based on score levels at a single point in time. Additionally, estimates in Tennessee 

and DCPS may differ from other settings employing teacher observations. While 

the identification strategy, using differences in scores over time and between early 

career and veteran teachers, employed in this paper applies generally, the 

implementation of observations in other settings may open those systems to 

violations of assumptions explained and explored here.  

Finally, the estimates in this paper—the improvements in performance 

caused by teaching experience—provide a foundation for examining the 

mechanisms of early-career teacher development. Understanding those 

mechanisms may suggest interventions to expedite that development. For example, 

does early-career development depend on formal training, either in teacher 

certification programs or professional development for new teachers? Do teachers 

improve differentially across the various tasks of teaching, like managing student 

behavior, planning, or instruction? Answering these questions may provide useful 

insights to school managers and policymakers. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 1—Returns to experience measured in classroom observation ratings 
 

Note: The solid line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The dashed 
line reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical 
lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome 
variable is teacher 𝑗𝑗’s classroom observation score, 𝑠̅𝑠𝑗𝑗𝑗𝑗, which is an average of several item-level ratings recorded 
during a given school year 𝑡𝑡. Observation scores are standardized (mean 0, st.dev. 1) by school year using the 
distribution of all teachers in the jurisdiction, Tennessee or DCPS respectively. The solid line estimates are the 
difference between two means: (a) The average first-difference, �𝑠̅𝑠𝑗𝑗𝑗𝑗 − 𝑠̅𝑠𝑗𝑗,𝑡𝑡−1�, among “treated” teachers—those with 
𝑒𝑒 years of prior experience (x-axis) in school year 𝑡𝑡, and 𝑒𝑒 − 1 years in school year 𝑡𝑡 − 1. (b) The average first-
difference, �𝑠̅𝑠𝑗𝑗𝑗𝑗 − 𝑠̅𝑠𝑗𝑗,𝑡𝑡−1�, among “comparison” teachers—those with ≥ 9 years of prior experience in both year 𝑡𝑡 and 
𝑡𝑡 − 1. The (a) minus (b) second-difference is calculated separately for each unique combination of 𝑒𝑒 and 𝑡𝑡 in the data. 
Then the plotted points are the weighted average across 𝑡𝑡 for a given 𝑒𝑒, where the weights are the number of “treated” 
teachers. For the dashed line estimates we fit a single two-way fixed effects regression, with teacher 𝑗𝑗 and school year 
𝑡𝑡 fixed effects. The specification includes indicators for years of prior experience 0 through 8 individually, with ≥ 9 
years the omitted category, but no other controls. The plotted points are the coefficients on the experience indicators. 
The sample size for the dashed line in Tennessee is 375,072 teacher-by-year observations for 81,847 unique teachers; 
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and similarly 349,920 and 66,156 for solid line Tennessee, 33,484 and 7,268 for dashed line DCPS, and 33,040 and 
7,201 for solid line DCPS.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 2—Returns to experience measured in value-added contributions to student achievement 
 

Note: The solid line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The solid line 
reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical lines 
mark the 95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome 
variable is student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , in subject 𝑠𝑠 and school year 𝑡𝑡. Test scores are standardized (mean 0, s.d. 1) 
within each grade-by-subject-by-year cell using the distribution for all students in the jurisdiction, Tennessee or DCPS 
respectively. For the dashed line estimates we fit a single two-way fixed effects regression, with teacher 𝑗𝑗 and school 
year 𝑡𝑡 fixed effects. The specification includes indicators for years of prior experience 0 through 8 individually, with 
≥ 9 years the omitted category. Additional controls are a quadratic in prior-year test score, where the parameters are 
allowed to differ across grade-by-subject-by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)�. The plotted points are the coefficients on the 
experience indicators. For the solid line estimates, we begin by estimating teacher contributions to student test scores, 
𝜇̂𝜇𝑗𝑗𝑗𝑗. We fit a regression of student scores 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  on the same prior score controls, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)�, and teacher fixed effects; 
and then obtain the residuals 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑏𝑏��𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)�. Our estimate 𝜇̂𝜇𝑗𝑗𝑗𝑗 is the average residual for teacher 𝑗𝑗 in year 𝑡𝑡. The 
dashed line estimates are the difference between two means: (a) The average first-difference, �𝜇̂𝜇𝑗𝑗𝑗𝑗 − 𝜇̂𝜇𝑗𝑗,𝑡𝑡−1�, among 
“treated” teachers—those with 𝑒𝑒 years of prior experience (x-axis) in school year 𝑡𝑡, and 𝑒𝑒 − 1 years in school year 
𝑡𝑡 − 1. (b) The average first-difference, �𝜇̂𝜇𝑗𝑗𝑗𝑗 − 𝜇̂𝜇𝑗𝑗,𝑡𝑡−1�, among “comparison” teachers—those with ≥ 9 years of prior 
experience in both year 𝑡𝑡 and 𝑡𝑡 − 1. The (a) minus (b) second-difference is calculated separately for each unique 



43 
 

combination of 𝑒𝑒 and 𝑡𝑡 in the data. Then the plotted points are the weighted average across 𝑡𝑡 for a given 𝑒𝑒, where the 
weights are the number of “treated” teachers. The sample size for the dashed line in Tennessee is 4,222,939 student-
by-subject-by-year observations and 92,403 teacher-by-year observations for 34,395 unique teachers; and similarly 
71,474 and 20,954 for solid line Tennessee, 247,005, 5,413 and 2,268 for dashed line DCPS, and 4,249 and 1,280 for 
solid line DCPS. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 3—Predicting student test scores with teacher observation scores  
by years of teacher experience 

 
Note: The solid and dashed lines each report estimates from a separate linear regression. The vertical lines mark the 
95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is 
student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , in subject 𝑠𝑠 (maths or English language arts pooled) and school year 𝑡𝑡. Test scores are 
standardized (mean 0, s.d. 1) within each grade-by-subject-by-year cell using the distribution for all students in the 
jurisdiction, Tennessee or DCPS respectively. In both cases the specification includes (a) indicators for years of prior 
experience 0 through 8 individually, with ≥ 9 years the omitted category; (b) classroom observation score, 𝑠̅𝑠𝑗𝑗𝑗𝑗; and 
(c) the interactions of (a) and (b). Each plotted point is sum of the coefficient on the (a)*(b) interaction for 𝑒𝑒 years of 
prior experience (x-axis) plus the main-effect coefficient on (b). Additional controls are a quadratic in prior-year test 
score, where the parameters are allowed to differ across grade-by-subject-by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)�. The solid line 
specification includes year and teacher fixed effects. The dashed line includes only year fixed effects, omitting the 
teacher fixed effects. The sample size the same for the two lines; in Tennessee 4,222,939 student-by-subject-by-year 
observations and 92,403 teacher-by-year observations for 34,395 unique teachers, and similarly in DCPS 252,400, 
5,429, and 2,274. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 4—Estimates by definition of comparison group 
 

Note: Each of the three lines reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The 
vertical lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The solid line is 
identical to the solid line in Figure 1. For the two dashed lines, the details of estimation are identical to the solid with 
one exception. For the solid line, the comparison group is teachers with ≥ 9 years of experience, 𝑒̅𝑒 = 9. The two 
dashed lines show 𝑒̅𝑒 = 14 and 𝑒̅𝑒 = 19 respectively. The sample size the same for all three lines; in Tennessee 375,072 
teacher-by-year observations for 81,847 unique teachers, and similarly in DCPS 33,484 and 7,267. 
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Figure 5—Estimates using different rubrics and rater types (DCPS)  
 
Note: Each of the three lines reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The 
vertical lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The details of 
estimation are identical to the solid line in Figure 1 with the following exceptions. First, the estimation sample is 
limited by the type of rater: external “Master Educators” for the solid line, and school administrators for the dashed 
and long dashed lines. Second, the estimation sample is limited by the rubric used: TLF from 2010-2016 and EP from 
2017-2019. The sample size for the solid line is 18,715 teacher-by-year observations for 5,118 unique teachers; and 
similarly 21,080 and 5,380 for dashed line, and 10,190 and 3,726 for the long dash line. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 6—Event study of a change in school principal 
 

Note: All estimates are from a single linear regression. The vertical lines mark the 95 percent confidence intervals 
which are corrected for clustering (teacher). The dependent variable is teacher 𝑗𝑗’s classroom observation score, 𝑠̅𝑠𝑗𝑗𝑗𝑗, 
which is an average of several item-level scores recorded during a given school year 𝑡𝑡. Observation scores are 
standardized (mean 0, st.dev. 1) by school year using the distribution of all teachers in the jurisdiction, Tennessee or 
DCPS respectively. The specification includes (a) indicators for year relative to a change in school principal; (b) an 
indicator = 1 if teacher 𝑗𝑗 has ≤ 4 years of prior experience, and = 0 if teacher 𝑗𝑗 has ≥ 9 years; and the interaction of 
(a) and (b). The new principal’s first year, x-axis = 0, is omitted for both groups defined by (b). The specification also 
includes indicators for years of prior experience, with ≥ 9 years omitted, plus teacher and year fixed effects. If a 
teacher experiences two (or more) principal changes, we stack the data to include each teacher-by-event-study case in 
the data. DCPS observation scores in Panel B represent administrator-assigned scores only, but can include multiple 
administrators (i.e., principals and assistant principals) within a given teacher-year. The sample size for the solid line 
in Tennessee is 72,850 teacher-by-year observations for 29,193 unique teachers; and similarly 136,443 and 32,244 for 
dashed line Tennessee, 6,927 and 2,511 for solid line DCPS, and 9,597 and 2,406 for dashed line DCPS.  
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Figure 7—Incidence of consequential performance ratings (DCPS) 
 

Note: Each plotted series reports the percentage of teachers scoring at the relevant consequential rating level. In DCPS, 
teachers who receive their first Minimally Effective rating must improve the following year or risk dismissal. 
Beginning in 2012-13, teachers who have earned a second consecutive Developing rating are likewise subject to 
dismissal if they fail to improve. Through spring 2012, Highly Effective teachers were conversely eligible for large 
financial rewards. The share of teachers facing each performance incentive are estimated only within the respective 
years in which the incentive was in place. The sample for the solid line includes 35,672 teachers-by-year and 9,455 
unique teachers; and similarly for the dashed line 22,344 and 6,936, and for the long dashed line 10,004 and 4,755. 
.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 8—Estimates controlling for student baseline test scores 
 

Note: Both the solid and dashed lines report estimates using our preferred diff-in-diff strategy described in Section 
2.1. Both use the same identical sample of teacher-by-year observations. The vertical lines mark the 95 percent 
confidence intervals which are corrected for clustering (teacher). For the solid line “teachers with baseline test scores” 
estimates, the details of estimation are identical to the solid line in Figure 1 except that we restrict the estimation 
sample. The solid line sample includes only teacher-by-year observations where we have both an average observation 
rating, 𝑠̅𝑠𝑗𝑗𝑗𝑗, and baseline test scores, 𝐴𝐴𝑖𝑖(𝑡𝑡−1), for the students 𝑖𝑖 assigned to teacher 𝑗𝑗 in year 𝑡𝑡. For the dashed line 
“controlling for baseline test scores” estimates, the details of estimation are identical to the solid line except that we 
first residualize the outcome, 𝑠̅𝑠𝑗𝑗𝑗𝑗, using the mean baseline test score, 𝐴𝐴𝑖𝑖(𝑡𝑡−1), among teacher 𝑗𝑗’s students. The sample 
size the same for the two lines; in Tennessee 3,076,946 student-by-subject-by-year observations and 65,750 teacher-
by-year observations for 25,017 unique teachers, and similarly in DCPS 250,377, 5,369 and 2,258. 
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Figure 9—Estimates by year of exit 
 
Note: All lines report estimates using our preferred diff-in-diff strategy described in Section 2.1. The vertical lines 
mark the 95 percent confidence intervals which are corrected for clustering (teacher). For each line in the figure, the 
details of estimation are identical to the solid line in Figure 1 except for the estimation sample. The sample for each 
of the four solid lines is defined by how many years the teacher taught in the jurisdiction (Tennessee or DC). Each 
teacher is observed for exactly 2, 3, 4, or 5 consecutive years and then not observed in the data subsequently. The 
dashed line includes teachers observed for 6 or more consecutive years. The sample size the same for the two series; 
in Tennessee 27,853 teacher-by-year observations for 6,613 unique teachers, and similarly in DCPS 31,785 and 8,931. 
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Table 1—Characteristics of the two samples 
    

 Tennessee DCPS 
 (1) (2) 

(A) Students 
At or above proficiency on NAEP   
   Math, grade 4 0.39 0.31 
   Math, grade 8 0.30 0.18 
   Reading, grade 4 0.34 0.27 
   Reading, grade 8 0.32 0.20 
Race/ethnicity   
   Black 0.22 0.64 
   Hispanic 0.09 0.18 
   White 0.64 0.13 
   Other or multiple race or ethnicity 0.05 0.04 
Urbanicity   
   City 0.34 1.00 
   Suburb 0.25 0.00 
   Town 0.14 0.00 
   Rural 0.27 0.00 
Share of school-age population in poverty 0.22 0.28 
English language learner 0.04 0.10 
Special Education 0.13 0.17 

    
(B) Teachers 

Observation score (original units) 3.94 3.17 
 (0.57) (0.47) 

   Observation score, administrators 3.94 3.22 
 (0.57) (0.49) 

   Observation score, master educators   3.02 
  (0.53) 

In student test score sample 0.23 0.15 
Female 0.79 0.74 
Race/ethnicity    
   Black 0.06 0.51 
   Hispanic 0.00 0.05 
   White 0.86 0.32 
   Other or multiple race or ethnicity 0.08 0.04 
Graduate degree 0.55 0.69 
Years of experience   
   Mean 11.83 10.86 
   Standard deviation (9.61) (8.25) 
   Categorical   
      1st year teaching 0.06 0.07 
      2nd 0.06 0.07 
      3rd 0.06 0.07 
      4th 0.05 0.06 
      5th 0.05 0.06 
      6th 0.05 0.05 
      7th 0.04 0.05 
      8th 0.04 0.04 
      9th  0.04 0.04 
     10th or more 0.55 0.48 
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Note: Panel A: National Assessment of Educational Progress (NAEP) scores are the simple mean of NAEP tests which 
occurred during the years in our analysis sample. Descriptive statistics for students are form the from National Center 
for Education Statistics’ Common Core of Data. The exception is the “in poverty” statistic which comes from US 
Census Bureau Small Area Income and Poverty Estimates. Panel B: Authors calculations using administrative data. 
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Appendix A. Additional figures and tables 
 
 

Panel A. Tennessee, all scores Panel B. DCPS, all scores 

  
Panel C. DCPS, master-educator scores Panel D. DCPS, administrator scores 

  
 

Appendix Figure A1—Distribution of observation scores  
 

Note: Histograms of teacher-by-year observations. The x-axis is a teacher’s annual observation score, which is an 
average of scores for different items or tasks, in the original rubric-scale units. Data are from the Tennessee TEAM 
rubric 2011-12 through 2018-19, and DCPS TLF rubric 2009-10 through 2015-16. The sample size for Tennessee in 
Panel A is 375,072 teacher-by-year observations; and similarly for DCPS 35,672 in Panel B, 34,898 in Panel C, and 
21,086 in Panel D. 
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Appendix Figure A2—Returns to experience measured in scores from student surveys (DCPS) 
 

Note: The dashed line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The dashed 
line reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical 
lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The details of estimation 
are identical to Figure 1 except that the outcome variable in this figure is based on student survey responses to the 
Tripod survey. The dependent variable is the teacher 𝑗𝑗’s Student Surveys of Practice (SSoP) score for school year 𝑡𝑡. 
SSoP scores are standardized (mean 0, s.d. 1) by school year using the distribution for all teachers in DCPS. The 
survey was administered to all DCPS students in grade 3 and above from 2016-17 to 2018-19. The sample size for the 
solid line is 4,406 teacher-by-year observations for 1,687 unique teachers, and similarly 4,312 and 1,640 for the dashed 
line.  
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Panel A. Tennessee 

 
 

Panel B. DCPS 

 
 

Appendix Figure A3—Distribution of teacher experience over time 
 

Note: Each line measures the proportion of teachers (y-axis) in a given school year (x-axis) who are in their 𝑒𝑒th year 
of teaching. The estimation sample is the same as Figure 1. The estimation sample for Tennessee includes 375,072 
teacher-by-year observations for 81,847 unique teachers, and similarly for DCPS 35,672 and 9,455. 
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Panel A. School years 2013-14 to 2015-16, TLF rubric 

 
 

Panel B. School years 2016-17 to 2018-19, EP rubric 

 
 

Appendix Figure A4—Estimates when the distribution of experience is relatively stable (DCPS) 
 

Note: The solid line reports estimates using our preferred diff-in-diff strategy described in Section 2.1. The dashed 
line reports estimates using the conventional two-way fixed effects approach described in Section 2.4. The vertical 
lines mark the 95 percent confidence intervals which are corrected for clustering (teacher). The details of estimation 
are identical to Figure 1 except that the estimation samples here are each a subset of Figure 1’s estimation sample. 
Panel A uses only data from 2013-14 to 2015-16, and panel B only 2016-17 to 2018-19. Starting in 2016-17 DCPS 
switched from the TLF rubric to the new EP rubric. The sample size for the solid line in panel A is 24,125 teacher-
by-year observations for 7,726 unique teachers; and similarly 21,558 and 5,452 for dashed line in panel A, 11,547 and 
5,083 for solid line in panel B, and 10,116 and 3,689  for dashed line panel B. 
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Appendix Figure A5—Predicting student survey scores with teacher observation scores  
by years of teacher experience (DCPS) 

 
Note: The solid and dashed lines each report estimates from a separate linear regression. The vertical lines mark the 
95 percent confidence intervals which are corrected for clustering (teacher). In both cases the outcome variable is 
teacher 𝑗𝑗’s Student Surveys of Practice (SSoP) score for school year 𝑡𝑡. SSoP scores are standardized (mean 0, s.d. 1) 
by school year using the distribution for all teachers in DCPS. In both cases the specification includes (a) indicators 
for years of prior experience 1 through 8 individually, with ≥ 9 years the omitted category; (b) classroom observation 
score, 𝑠̅𝑠𝑗𝑗𝑗𝑗; and (c) the interactions of (a) and (b). Each plotted point is sum of the coefficient on the (a)*(b) interaction 
for 𝑒𝑒 years of experience (x-axis) plus the main-effect coefficient on (b). The solid line specification includes year and 
teacher fixed effects. The dashed line includes only year fixed effects, omitting the teacher fixed effects. The sample 
size for both lines is 5,362 teacher-by-year observations for 2,643 unique teachers. 
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Appendix Table A1—Predicting student test scores  

with teacher observation scores  
      
 (1) (2) (3) (4) 

(A) Tennessee 
Observation score (st.dev.) 0.166 0.081 0.009 0.005 

 (0.003) (0.001) (0.002) (0.002) 
(B) DCPS 

Observation score (st.dev.) 0.196 0.098 0.029 0.025 
 (0.012) (0.006) (0.007) (0.008) 
      

Student prior test score controls  √ √ √ 
Teacher experience controls    √ 
Teacher fixed effects   √ √ 
               

 
Note: Each column within panels reports results of a separate least-squares regression. Standard errors in parentheses 
are corrected for clustering (teacher). The dependent variable is student 𝑖𝑖’s test score, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , in subject 𝑠𝑠 (maths or 
English language arts pooled) and school year 𝑡𝑡. Test scores are standardized (mean 0, s.d. 1) within each grade-by-
subject-by-year cell using the distribution for all students in the jurisdiction, Tennessee or DCPS respectively. The 
key independent variable is teacher 𝑗𝑗’s classroom observation score, 𝑠̅𝑠𝑗𝑗𝑗𝑗, which is an average of several item-level 
scores recorded during a given school year 𝑡𝑡. Observation scores are standardized (mean 0, st.dev. 1) by school year 
using the distribution of all teachers in the jurisdiction, Tennessee or DCPS respectively. The “student prior test score 
controls” are a quadratic in prior-year test score, where the parameters are allowed to differ across grade-by-subject-
by-year cells, 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)�. The “teacher experience controls” are a set of indicators for years of experience 1 through 
9 individually, with ≥ 10 years the omitted category. The sample size the same across columns; in Tennessee 
4,222,939 student-by-subject-by-year observations and 92,403 teacher-by-year observations for 34,395 unique 
teachers, and similarly in DCPS 252,400, 5,429, and 2,274. 
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Appendix B: Details of Estimates Involving Teachers’ Value-Added 

Contributions to Student Test scores 

B.1 Estimates for Figure 2 Solid Line 

The solid line in Figure 2 plots returns-to-experience estimates where the 

performance measure is a teacher’s value-added contributions to student test scores. 

We first obtain value-added scores, 𝜇̂𝜇𝑗𝑗𝑗𝑗, following the procedure described in the 

next two paragraphs, then we apply the estimator in Equation 1 substituting 𝜇̂𝜇𝑗𝑗𝑗𝑗 for 

𝑠̅𝑠𝑗𝑗𝑗𝑗. In Figure 2, the y-axis, 𝜇̂𝜇𝑗𝑗𝑗𝑗, is measured in student standard deviation units, and 

the sample is limited to teachers of grades 4-8 in math and English language arts. 

To estimate 𝜇̂𝜇𝑗𝑗𝑗𝑗 we first fit the following regression specification, separately 

for Tennessee and DCPS data:  

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)� + 𝜆𝜆𝑗𝑗 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (B.1) 

where 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the end of year 𝑡𝑡 test score for student 𝑖𝑖 in subject 𝑠𝑠 taught by teacher 

𝑗𝑗. Test scores are in student standard deviation units (mean 0, s.d. 1 within 

jurisdiction-by-year-by-subject-by-grade cells, where jurisdiction is either the state 

of Tennessee or the DCPS district). The function 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)� is a flexible function 

of student 𝑖𝑖’s prior year test score in subject 𝑠𝑠, specifically, a quadratic in 𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1) 

where the parameters are free to differ across grade-by-school-year cells. Finally, 

the 𝜆𝜆𝑗𝑗 term represents teacher fixed effects.1 

After fitting Specification B.1, we calculate the modified residuals: 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ =

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑏𝑏��𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)� or equivalently 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝜆̂𝜆𝑗𝑗 + 𝑢𝑢�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. Then our estimate of value 

added, 𝜇̂𝜇𝑗𝑗𝑗𝑗, is the average residual, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ , averaging over all students 𝑖𝑖 assigned to 

 
1 Years 2015-16 and 2016-17 are excluded for Tennessee because students were not tested in 2015-
16. In Tennessee if the student had two or more teachers in a given subject and year, we include one 
observation per teacher and weight each observation by the proportion of responsibility allocated 
by the state to the teacher. Three quarters of students had one teacher in a given subject. If the 
student’s prior year test score is missing, we replace it with zero and include an indicator for missing 
in the function 𝑏𝑏. 
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teacher 𝑗𝑗 in year 𝑡𝑡, and averaging over subjects 𝑠𝑠 (math and reading) if the teacher 

taught both. This average residual, 𝜇̂𝜇𝑗𝑗𝑗𝑗, version of a “value added measure” is the 

same average residual as in step one of the Chetty, Friedman, and Rockoff (2014) 

or Kane and Staiger (2008) approaches. In the current application we do not 

“shrink” the estimates because 𝜇̂𝜇𝑗𝑗𝑗𝑗 is the outcome in our analysis. 

B.2 Estimates for Figure 2 Dashed Line 

The dashed line in Figure 2 plots returns-to-experience estimates where the 

outcome is also teacher value added, but the estimation methods follow the 

conventional strategy instead of our preferred strategy. That conventional strategy 

is described in the next paragraph. 

 For these estimates we fit a version of the regression specification in 

Equation 3, but a specification fit with student-level data: 

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� + 𝑏𝑏�𝐴𝐴𝑖𝑖𝑖𝑖(𝑡𝑡−1)� + 𝜆𝜆𝑗𝑗 + 𝜋𝜋𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (B.2) 

where the function ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� is specified just as it is for the classroom observation 

outcomes. We repeat Equation 4 here for convenience: 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� = �𝛽𝛽𝑒𝑒 × 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑒𝑒�
𝑒̅𝑒−1

𝑒𝑒=0

 

and 𝛿𝛿𝑒𝑒 = 𝛽𝛽𝑒𝑒 − 𝛽𝛽𝑒𝑒−1. 

(4) 

with the omitted category is veterans, 𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 ≥ 𝑒̅𝑒�. All other details of estimation 

for B.2 are the same as for fitting B.1. We continue to estimate standard errors using 

a cluster (teacher) correction.  

B.3 Estimates for Figure 3  

Figure 3 shows the relationship between observation ratings and test-score 

value added, and how that relationship changes with teacher experience. The x-axis 

is years of prior experience. The y-axis is the predicted increase in value added if 

we increase the teacher’s observation score by one standard deviation.  
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To obtain the estimates in Figure 3 we fit the regression specification in 

Equation B.2, except that the function ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗� is replaced with: 

ℎ�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗, 𝑠̅𝑠𝑗𝑗𝑗𝑗� = 𝛼𝛼𝑒̅𝑒𝑠̅𝑠𝑗𝑗𝑗𝑗 + �𝛽𝛽𝑒𝑒𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑒𝑒�
𝑒̅𝑒−1

𝑒𝑒=0

+ 𝛼𝛼𝑒𝑒�𝟏𝟏�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑒𝑒� × 𝑠̅𝑠𝑗𝑗𝑗𝑗� 

(B.3) 

which interacts experience and observation ratings on the right-hand side. Figure 3 

plots (𝛼𝛼�𝑒𝑒 + 𝛼𝛼�𝑒̅𝑒) for each level of experience, 𝑒𝑒. The solid line in Figure 3 uses only 

within-teacher over-time variation, by including teacher fixed effects just as in 

Specification B.2. The dashed line in Figure 3 uses both within- and between-

teacher variation by omitting the teacher fixed effects from the regression 

specification. As throughout the paper, we estimate standard errors using a cluster 

(teacher) correction. 
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