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1 Introduction

Two salient features of exchange rates stand out: first, each country’s exchange rate movements

appear to be disconnected from its own economic fundamentals, exhibiting a lack of correlation

with macro variables that should drive marginal utility growth (Meese and Rogoff, 1983; Backus

and Smith, 1993; Engel and West, 2005); second, exchange rate movements are highly correlated

across countries, exhibiting a strong factor structure (Lustig, Roussanov, and Verdelhan, 2011;

Verdelhan, 2018). Using intuition from complete-market models, one explanation is that agents

in different countries are exposed to correlated shocks. This literature searches for specifications

of frictions or preferences such that the equilibrium marginal utilities are driven by latent factors

that (i) have different dynamics than the observed consumption process and (ii) are correlated

in the cross-section. For example, if the marginal utilities are driven by long-run consumption

risks that are correlated across countries, then, the equilibrium exchange rate movements do not

closely follow short-run consumption growth patterns while they share a common factor from the

correlated long-run risks.

In this paper, I show market incompleteness offers a new and complementary explanation for

the patterns of exchange rate disconnect and comovements. I develop a general framework to

show that market incompleteness has two effects on exchange rate dynamics. First, it weakens

the pass-through from marginal utility shocks to exchange rate movements by generating a wedge

that acts as a "shock absorber" in bilateral exchange rate dynamics. This result has been noted in

prior works (Backus, Foresi, and Telmer, 2001; Lustig and Verdelhan, 2019). In this paper, it is

characterized in a more convenient way to analyze the cross-section of currencies. Second, market

incompleteness propagates a country’s marginal utility shocks to the exchange rate movements

between other countries. This international spill-over effect has not been recognized in the prior

literature, which largely focuses on the two-country case. I show that this effect generates exchange

rate disconnect and comovements even when marginal utilities are uncorrelated across countries.

To show these results, I develop a general framework to characterize exchange rate dynamics

in incomplete markets. This framework builds on the no-arbitrage approach of Backus, Foresi,
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and Telmer (2001), who show that market incompleteness introduces a stochastic wedge between

two countries’ stochastic discount factors (SDFs) and their bilateral exchange rate movements. I

take one step further by decomposing this wedge into an SDF component and an IM (incomplete-

market) component. The SDF component describes how this wedge affects how the SDF shocks

pass through to the exchange rate dynamics, a key parameter that I will refer to as the SDF-

FX pass-through. When markets are complete, the exchange rate movement is equal to the SDF

differential, implying an SDF-FX pass-through coefficient of one. When markets are incomplete,

this pass-through coefficient can be less than one, reflecting a partial reaction of the exchange

rate to SDF shocks. The IM component captures additional variations in the exchange rate that

arise due to market incompleteness. By construction, this component is orthogonal to the home

country’s SDF shocks, but it may be correlated with other shocks in the economy.

This characterization is general and does not rely on specific assumptions of preferences, fric-

tions, and shocks. As a result, it can be applied to a large set of equilibrium international macroe-

conomic models. In this paper, the economic restriction is imposed by assuming investors in each

country can freely trade domestic and foreign risk-free bonds. Opening these basic bond markets

implies symmetric Euler equations that price a country’s risk-free bond from the perspective of

another country’s investor. For other contingent claims such as equity and long-term bonds, the

financial markets may or may not be open, which allows me to model a flexible degree of market

incompleteness.

While allowing agents to trade risk-free bonds is a general assumption, it is not devoid of

economic content. In prior work, Lustig and Verdelhan (2019) use this assumption to characterize

the relation between the cyclicality, volatility and risk premium of the bilateral exchange rate

between two countries. In this paper, I am going to show that this assumption imposes additional

restrictions when I consider more than two countries, and that as a result the symmetric Euler

equations implied from cross-country bond holdings will give rise to asymmetric pass-through

from SDF shocks to exchange rates.

Specifically, asymmetric SDF-FX pass-through means that the home currency’s exchange rates
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against different foreign currencies respond to the home SDF shock to different degrees. Then,

by Triangular arbitrage, the home country’s SDF shock affects not only its own exchange rates

against other currencies, but also the bilateral exchange rate between any two foreign countries.

More concretely, suppose a 1% increase in the U.K. households’ marginal utility appreciates the

British pound by 1% against the U.S. dollar but only by 0.5% against the Japanese yen. Then, yen

will appreciate by 0.5% against the dollar in response to this local shock in the U.K. This is the

key result in this paper that generates exchange rate disconnect and comovements in the presence

of market incompleteness.

To derive this result, I first pick an arbitrary country as the home country and study the Euler

equations for the cross-country holdings of risk-free bonds between this country and each foreign

country. As the markets may be incomplete, for given SDF processes, there may be multiple

exchange rate dynamics that are consistent with these Euler equations. Still, these Euler equations

impose restrictions on the equilibrium exchange rate behavior: they pin down the drift of the

bilateral exchange rate movement and the magnitude of the IM shock for a given level of the

SDF-FX pass-through and a given correlation between SDF and IM shocks.

Next, I consider the bilateral dynamics between any two foreign countries. On the one hand,

Triangular arbitrage rules out any discrepancies in spot exchange rates: once I know the bilateral

exchange rate between the home and each foreign country, the bilateral exchange rate between

any two foreign countries is directly implied. On the other hand, when markets are incomplete,

the Euler equations between two foreign countries for their cross-holdings of risk-free bonds are

not implied from the Euler equations between the home and each foreign country. As a result,

when I extend the analysis from two to three countries, the number of independent exchange rates

increases from 1 to 2 (i.e., home-foreign 1 and home-foreign 2), while the number of sets of unique

restrictions from the Euler equations increases from 1 to 3 (i.e., home-foreign 1, home-foreign 2,

and foreign 1-foreign 2). The Euler equations between foreign countries, which are not possible to

study in the two-country models in prior works, impose additional constraints and reduce the set

of admissible exchange rate dynamics.
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Specifically, I derive what these constraints imply under symmetric SDF-FX pass-through, in

which case the home country’s SDF shock affects different foreign countries’ exchange rates by

the same degree. In other words, when the home country’s marginal utility increases while foreign

marginal utilities remain constant, the home country’s exchange rate appreciates against all foreign

countries equally. This is a natural benchmark, as it holds in complete markets from which the

majority of our intuition about exchange rate dynamics is derived. Importantly, symmetric SDF-

FX pass-through does not rule out heterogeneous exposures that different countries’ SDFs may

have with respect to common and idiosyncratic shocks—it only describes how a given SDF shock

affects the exchange rate movement, not how the SDF shocks are correlated.

The main result in this paper is that, under symmetric SDF-FX pass-through, the Euler equa-

tions imply that the covariance between bilateral exchange rate movements has to be identical to

the covariance between SDF differentials of the same country pairs. In other words, under symmet-

ric SDF-FX pass-through, market incompleteness is incapable of relaxing the tight link between

the exchange rate covariance and the SDF covariance that also characterizes the complete-market

case.

This implication is incompatible with known features of SDF and exchange rate dynamics

in the data. I make three empirical observations. First, the correlation between exchange rate

movements is much higher than the correlation between consumption growth differentials. If the

agents have identical CRRA preferences, the correlation between consumption growth differen-

tials proxies for the correlation between SDF differentials. Similarly, motivated by the long-run

risk literature, I also use the change in each country’s stock price-to-dividend ratio as a proxy for

the long-run growth component in its SDF, and show that the correlation between this SDF proxy

is also much lower than the exchange rate correlation. I also obtain similar results using covari-

ance instead of correlation. These patterns are representative of a robust pattern in international

macroeconomics, that consumption correlation is much lower than what full risk-sharing implies.

Second, a salient feature of the exchange rate data is that a small number of common factors

explain large fractions of variations in exchange rate movements. If the equilibrium constraints
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under symmetric SDF-FX pass-through hold, the same factor structure must also manifest itself

in fundamental quantities that drive the SDFs. Empirically, evidence for such a factor structure in

fundamental quantities has been elusive.

Third, cross-country financial holdings data reveal a severe home bias in international portfolio

positions. Under certain standard assumptions about household preferences and income shocks,

this portfolio home bias implies poor international risk-sharing and hence a low correlation in

marginal utility growth across countries.

These three observations suggest that the correlation in SDF differentials should be lower than

the observed correlation in exchange rate movements. Therefore, this necessary condition for

symmetric SDF-FX pass-through is unlikely to hold in the data, which implies that the asymmetry

in SDF-FX pass-through is a fundamental feature of the exchange rate dynamics. To the extent that

our intuition about exchange rate dynamics is largely derived from complete-market models which

always have symmetric SDF-FX pass-through, this result calls for a reassessment of our intuition.

As discussed above, the key effect of asymmetric SDF-FX pass-through is to propagate one

country’s SDF shocks to other countries’ bilateral exchange rate movements. This international

spill-over effect gives rise to a novel mechanism through which common variations in exchange

rates endogenously arise, even when the SDF shocks happen to be uncorrelated across countries.

To test this spill-over effect in the data, I consider a null in which markets are complete and SDF

shocks have a factor structure (Lustig, Roussanov, and Verdelhan, 2011; Verdelhan, 2018). Each

country’s SDF is driven by common factors and an idiosyncratic shock. Under this null, the home

currency’s average exchange rate movement, which captures its own SDF shock, does not explain

bilateral exchange rate movements between two foreign currencies once common exchange rate

factors are controlled for.

However, I find the opposite in the data. Regardless of the choice of the home country, the

home currency’s average exchange rate movement explains a large number of bilateral exchange

rate movements between two foreign countries, even after common exchange rate factors are con-

trolled for. To the extent that these common factors capture the comovements in the SDFs, this
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result rejects the null and suggests that the spill-over effect from asymmetric SDF-FX pass-through

is a general phenomenon.

Moreover, in a numerical example, I show a possibility result that asymmetric SDF-FX pass-

through can generate a quantitatively much greater exchange rate correlation relative to the SDF

correlation, which is the lower bound of the exchange rate correlation attained when the SDF-FX

pass-through is symmetric. In this numerical example, market incompleteness indeed gives rise to

endogenous comovements and factor structure in the exchange rate dynamics, above and beyond

the comovements and factor structure embedded in the SDFs.

In conclusion, these results help us tie together the exchange rate comovements and disconnect

under one mechanism based on market incompleteness. This novel mechanism complements the

prior works that are based on complete markets and correlated latent SDF shocks. In doing so,

it sheds light on the origins of exchange rate movements and comovements. Moreover, as the

exchange rates play an important role in the transmission of global shocks to domestic conditions,

these results have additional implications for the real economy. While this paper focuses on the

theoretical possibility, quantifying the relative contributions of SDF shocks and the incomplete-

market effects for exchange rate patterns and real outcomes is an exciting next step.

Literature Review.

Market incompleteness is a salient feature of the international financial markets. Prior works

have proposed various settings with specific preferences and frictions and shown how market in-

completeness impacts the dynamics of business cycles and exchange rates (see Alvarez, Atkeson,

and Kehoe (2002, 2009); Kehoe and Perri (2002); Chari, Kehoe, and McGrattan (2002); Corsetti,

Dedola, and Leduc (2008); Pavlova and Rigobon (2010, 2012); Hassan (2013); Bruno and Shin

(2015); Favilukis, Garlappi, and Neamati (2015); Gabaix and Maggiori (2015); Maggiori (2017);

Itskhoki and Mukhin (2021a,b)). While these results are important and speak to the relevance of

modeling incomplete markets, they all focus on specific settings. In this paper, I explore whether

we can make any general statements about the role of market incompleteness in the foreign ex-
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change markets.

This paper builds on the preference-free approach to modeling incomplete-market exchange

rate dynamics developed by Backus, Foresi, and Telmer (2001); Brandt, Cochrane, and Santa-Clara

(2006), which has been applied to understand welfare implications (Lewis and Liu, 2022) and the

role of non-Gaussian shocks (Maurer and Tran, 2021). The closest paper in this literature is Lustig

and Verdelhan (2019), who characterize the exchange rate volatility, cyclicality and risk premium

in a two-country setting. I further develop this preference-free approach in two ways. First, much

of the focus has been given to the analysis of the bilateral exchange rate dynamics between two

countries, while the generalization to a multi-country setting is presumed to be a trivial extension.

In this paper, I show that this is not true: incomplete markets give rise to non-trivial constraints and

exchange rate dynamics in a general multi-country setting, and they allow me to study the patterns

in currency comovements that two-country models cannot address. Second, I decompose exchange

rate dynamics in a new way, which is economically meaningful and convenient for interpreting the

effect of market incompleteness and characterizing the asymmetry in the SDF-FX pass-through.

We also adopt this approach in concurrent work Jiang, Krishnamurthy, Lustig, and Sun (2021),

with a different objective of characterizing the bilateral exchange rate dynamics in the presence of

Euler equation wedges.

To my best knowledge, this paper is the first to show how market incompleteness can gener-

ate comovements and common factors in multi-currency dynamics. The prior literature explains

these patterns by various mechanisms that generate common factors in SDFs (Farhi and Gabaix,

2015; Corte, Riddiough, and Sarno, 2016; Colacito, Croce, Gavazzoni, and Ready, 2018; Mueller,

Stathopoulos, and Vedolin, 2017; Jiang and Richmond, 2019). In contrast, this paper shows that

asymmetric SDF-FX pass-through arises in incomplete markets and is able to generate comove-

ments in exchange rates even when SDFs are uncorrelated. This paper also offers some empirical

evidence that helps distinguish this effect of asymmetric pass-through in incomplete markets from

that of heterogeneous SDF exposures in complete markets.

In the broader literature, this paper contributes to our understanding of the asset pricing dy-
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namics in incomplete markets. Complementary to the prior works that study specific instances of

incomplete-market models, my paper derives a general characterization of the exchange rate dy-

namics for arbitrary SDFs. My approach is also complementary to Bakshi, Cerrato, and Crosby

(2018) and Korsaye, Trojani, and Vedolin (2020); Sandulescu, Trojani, and Vedolin (2021), which

use asset return data to discipline the SDF dynamics and characterize the roles of incompleteness

and segmentation in international asset markets, respectively.

The rest of this paper is organized as follows. Section 2 presents my main theoretical result in

a simple setting. Section 3 discusses the implication of the main result and its empirical relevance.

Section 4 discusses generalizations of the model. Section 5 concludes. Appendix contains the

proof and data sources.

2 Exchange Rate Characterization in a Simple Economy

In this section, I use a very stylized setting to illustrate the main results. There is only one time

period, and all shocks are drawn from a multivariate normal distribution. In Section 4.2, I show

the results hold much more generally in a dynamic, infinite-horizon, continuous-time setting.

2.1 Accounting for Bilateral Exchange Rate Movements

I begin with analyzing the dynamics between two countries, indexed by i ∈ {0, 1}. I refer to

country 0 as the home country. I assume there is no arbitrage and there exist stochastic discount

factors (SDFs) that price all tradable assets. Let ∆m(i) denote country i’s log SDF and let r̃ denote

the return of an arbitrary tradable asset in its numeraire. Then, the Euler equation E[exp(∆m(i) +

r̃)] = 1 holds. The SDF captures the marginal utility growth and the intertemporal marginal rate

of substitution (IMRS) of the country’s representative agent, which can depend on the agent’s

preference, the nature of economic shocks, and space of tradable financial assets in the underlying

economy.
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Let ∆s1/0 denote the log bilateral exchange rate movement1, which takes a higher value if the

currency in country 0 is stronger. Without imposing any structure except joint normality, I can

describe the system of SDFs and exchange rate as


∆m(0)

∆m(1)

∆s1/0

 =


−µ0

−µ1

α1

+


σ0,0 0 0

σ1,0 σ1,1 0

η1,0 η1,1 ζ1,1



ε
(0)
m

ε
(1)
m

ε
(1)
s

 , (1)

where ε
(0)
m , ε(1)m , and ε

(1)
s are three i.i.d. normal random variables with a mean of 0 and a volatility

of 1. The last row in Eq. (1) describes the exchange rate dynamics, which can be rewritten as

∆s1/0 = x(1) + z(1)(∆m(0) −∆m(1)) +
[
(η1,1 + z(1)σ1,1)ε

(1)
m + ζ1,1ε

(1)
s

]
,

where z(1) = η1,0
σ0,0−σ1,0

and x(1) = α1 + z(1)(µ0 − µ1). Define y(1) =
√

(η1,1 + z(1)σ1,1)2 + ζ21,1.

Then, I can express this equation as

∆s1/0 = x(1) + z(1)(∆m(0) −∆m(1)) + y(1)ε(1)y , (2)

where ε
(1)
y =

[
(η1,1 + z(1)σ1,1)ε

(1)
m + ζ1,1ε

(1)
s

]
/y(1) is also a standard normal variable with a mean

of 0 and a volatility of 1.

This equation decomposes the exchange rate movement into two components. The first com-

ponent z(1)(∆m(0)−∆m(1)) describes how the two countries’ SDFs affect their bilateral exchange

rates, and the parameter z(1) can be interpreted as the pass-through from SDF shocks to the ex-

change rate movement, or SDF-FX pass-through for simplicity. When markets are complete, the

SDF shocks impact the exchange rate movement one-for-one (i.e., ∆s1/0 = ∆m(0) −∆m(1)), im-

plying a pass-through of z(1) = 1. When markets are incomplete, z(1) can take values lower than

1I define the SDFs, exchange rates, and bonds in real terms, but this analysis also applies if I relabel them to their
nominal counterparts. Among developed countries, inflation has been low and stable in recent decades until recently.
As a result, for the issues I study in this paper, evaluating the model using either nominal and real variables leads to
similar results.
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1, reflecting a partial pass-through from the SDF shocks to the exchange rate: a 1% shock to the

SDF differential only generates an exchange rate movement smaller than 1%.

The second component y(1)ε(1)y captures additional variations in the exchange rate movement

that are not fully captured by the SDF shocks. This component allows the exchange rate move-

ment to be disconnected from the fundamental variables that drive the SDFs, which is a common

feature in the incomplete-market models of exchange rates. I refer to the variable ε
(1)
y as the IM

(incomplete-market) shock. By construction, this IM shock is uncorrelated with the home SDF

∆m(0). As such, Eq. (2) can be thought of as a projection of the exchange rate movement on

the home SDF shock, with the IM shock ε
(1)
y representing the home currency’s exchange rate

movement unexplained by its SDF. It is also worth noting that this shock is not necessarily “non-

fundamental”. For example, in the incomplete-market model of Pavlova and Rigobon (2012), this

additional shock reflects investors’ time-varying preferences for different goods across time.

I take the preference-free approach and start with exogenously given SDFs and SDF parame-

ters µi and σi,j . When markets are incomplete, there may exist multiple exchange rate solutions

that are consistent with the asset market equilibrium that I next describe. These solutions corre-

spond to different values in the 4 exchange rate parameters (α1, η1,0, η1,1, ζ1,1). Equivalently, these

4 degrees of freedom can be described by (x(1), z(1), y(1), corr(ε
(1)
m , ε

(1)
y )) in Eq. (2). However,

this model does not necessarily imply multiple equilibria. A full specification of the model with

additional conditions on goods and asset market clearing usually pins down a unique equilibrium

among the family of equilibria described by this approach.

Everything so far is just accounting. Eq. (2) remains a general description of the exchange

rate dynamics in a log-normal world. Next, I impose economic restrictions by assuming that

investors can freely trade both home and foreign risk-free bonds. Let r(i) denote the risk-free

rate in country i. Opening these basic markets implies the following four Euler equations, which
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impose restrictions on the exchange rate dynamics:

1 = E[exp(∆m(0) + r(0))] = E[exp(∆m(1) + r(1))],

1 = E[exp(∆m(0) −∆s1/0 + r(1))] = E[exp(∆m(1) +∆s1/0 + r(0))].

The financial markets for other contingent claims may or may not open for either country’s in-

vestors, which allows me to model a flexible degree of market incompleteness. If other contingent

claims are tradable, they could impose additional restrictions on the equilibrium exchange rate

dynamics.

The first two Euler equations describe the valuation of risk-free bonds from domestic perspec-

tives, which determine the equilibrium risk-free rates as functions of the SDF parameters in Eq.

(1). For example, r(0) = µ0 − 1
2
σ2
0,0.

The last two Euler equations describe the valuation of risk-free bonds from foreign perspec-

tives, which impose two restrictions on the relationships between the four exchange rate parameters

(x(1), z(1), y(1), corr(ε
(1)
m , ε

(1)
y )). One of these restrictions govern the drift x(1) of the exchange rate

movement, and the other can be expressed as

−cov(∆m(0),−∆s1/0)− 1

2
var(∆s1/0) = cov(∆m(1),∆s1/0) +

1

2
var(∆s1/0),

which has a simple interpretation. Note that the log currency risk premium from the perspective of

country 0 is captured by cov(∆m(0),−∆s1/0), the covariance between country 0’s SDF and its log

foreign exchange rate. Similarly, the log currency risk premium from the perspective of country

1 is captured by cov(∆m(1),∆s1/0), the covariance between country 1’s SDF and its log foreign

exchange rate. Then, this expression states that the log currency risk premium from the perspective

of country 0 should match the inverse of the log currency risk premium from the perspective of

country 1, after adjusting for second-order Jensen’s terms.

These two restrictions take out 2 degrees of freedom and we have 4−2 = 2 degrees of freedom

left. Specifically, I use these two restrictions to determine x(1) and y(1).
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Lemma 1. The Euler equations between countries 0 and 1 imply

y(1) = (
1

2
− z(1))(−σ1,1corr(ε

(1)
m , ε(1)y ))

±

√(
1

2
− z(1)

)2

(σ1,1corr(ε
(1)
m , ε

(1)
y ))2 + z(1)(1− z(1))((σ0,0 − σ1,2)2 + σ2

1,1)

x(1) = (1− z(1))(µ1 − µ0)−
1

2
(σ2

1,0 + σ2
1,1 − σ2

0,0) +
1

2
(z(1))2(σ0,0 − σ1,0)

2 +
1

2
(z(1))2σ2

1,1 +
1

2
(y(1))2

− z(1)y(1)σ1,1cov(ε
(1)
m , ε(1)y )− z(1)σ0,0(σ0,0 − σ1,0)

This lemma states that if investors can freely trade home and foreign risk-free bonds, the

bilateral exchange rate dynamics can be described by two parameters (z(1), corr(ε(1)m , ε
(1)
y )) and a

dummy indicating which root of y(1) is picked. Of these two parameters, z(1) reflects the SDF-FX

pass-through, while corr(ε(1)m , ε
(1)
y ) governs the correlation between country 1’s SDF shock and the

IM shock. These two parameters along with the SDF parameters (σi,j and µi) determine x(1) and

y(1). To guarantee a real solution for y(1), the parameters have to satisfy

(
1

2
− z(1)

)2

(σ1,1corr(ε
(1)
m , ε(1)y ))2 + z(1)(1− z(1))((σ0,0 − σ1,2)

2 + σ2
1,1) ≥ 0,

which implies a bound on the SDF-FX pass-through coefficient z(1). In particular, if the IM shock

is uncorrelated with the SDF shock, i.e., corr(ε(1)m , ε
(1)
y ) = 0, then, z(1) has to be bounded between

0 and 1, which guarantees a partial pass-through. Section 2.3 discusses this special case in detail.

Lastly, it is worth noting that my approach is closely related to the representation of incomplete-

market exchange rate dynamics in Backus et al. (2001), which shows that the exchange rate move-

ment is equal to the SDF differential plus an incomplete-market wedge η:

∆s1/0 = (∆m(0) −∆m(1)) + η.

My approach decomposes this incomplete-market wedge into an SDF component (z(1) −
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1)(∆m(0) −∆m(1)) and an IM component y(1)ε(1)y :

η = x(1) + (z(1) − 1)(∆m(0) −∆m(1)) + y(1)ε(1)y ,

which allows me to offer an economic interpretation for the effect of market incompleteness on

the pass-through from SDF shocks to exchange rates, and to characterize its properties in my

subsequent analysis.

2.2 Three Countries and Triangular Arbitrage

Next, I extend my analysis to the case of three countries, indexed by i ∈ {0, 1, 2}. Without loss of

generality, I again set country 0 as the home country. Then, assuming joint normality, the following

equation system describes the SDF and exchange rate dynamics in a general way:



∆m(0)

∆m(1)

∆m(2)

∆s1/0

∆s2/0


=



−µ0

−µ1

−µ2

α1

α2


+



σ0,0 0 0 0 0

σ1,0 σ1,1 0 0 0

σ2,0 σ2,1 σ2,2 0 0

η1,0 η1,1 η1,2 ζ1,1 0

η2,0 η2,1 η2,2 ζ2,1 ζ2,2





ε
(0)
m

ε
(1)
m

ε
(2)
m

ε
(1)
s

ε
(2)
s


. (3)

Similar to the two-country case, I take the SDF parameters as exogenously given, and regard

the 11 exchange rate parameters (α1, α2, η1,0, η1,1, η1,2, ζ1,1, η2,0, η2,1, η2,2, ζ2,1, ζ2,2) as free param-

eters. If I rewrite this equation system following Eq. (2), I obtain

∆s1/0 = x(1) + z(1)(∆m(0) −∆m(1)) + y(1)ε(1)y , (4)

∆s2/0 = x(2) + z(2)(∆m(0) −∆m(2)) + y(2)ε(2)y , (5)
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with

z(1) =
η1,0

σ0,0 − σ1,0

,

z(2) =
η2,0

σ0,0 − σ2,0

,

y(1) =
√

(η1,1 + z(1)σ1,1)2 + η21,2 + ζ21,1,

y(2) =
√

(η2,1 + z(2)σ2,1)2 + (η2,2 + z(2)σ2,2)2 + ζ22,1 + ζ22,2,

ε(1)y =
[
(η1,1 + z(1)σ1,1)ε

(1)
m + (η1,2)ε

(2)
m + ζ1,1ε

(1)
s

]
/y(1),

ε(2)y =
[
(η2,1 + z(2)σ2,1)ε

(1)
m + (η2,2 + z(2)σ2,2)ε

(2)
m + ζ2,1ε

(1)
s + ζ2,2ε

(2)
s

]
/y(2).

The 11 degrees of freedom can be described by (x(1), x(2), z(1), z(2), y(1), y(2), corr(ε
(1)
m , ε

(1)
y ),

corr(ε
(1)
m , ε

(2)
y ), corr(ε

(2)
m , ε

(1)
y ), corr(ε

(2)
m , ε

(2)
y ), corr(ε

(1)
y , ε

(2)
y )). Similar to the two-country case,

the home SDF ∆m(0) is orthogonal to the IM (incomplete-market) shocks ε
(1)
y and ε

(2)
y by con-

struction.

Once we know these bilateral exchange rate dynamics, Triangular arbitrage implies the bilat-

eral exchange rate movement between countries 1 and 2: ∆s1/2 = ∆s1/0 − ∆s2/0, which can be

expressed as

∆s1/2 = (x(1) − x(2)) + (z(1) − z(2))∆m(0) − z(1)∆m(1) + z(2)∆m(2) (6)

+ y(1)ε(1)y − y(2)ε(2)y ,

which increases when country 2’s currency appreciates.

An interesting question is whether the SDF-FX pass-through coefficients z(1) and z(2) are

identical. If they are identical, the SDF-FX pass-through is said to be symmetric; if they are

not, the SDF-FX pass-through is said to be asymmetric. The case of asymmetric pass-through is

interesting because, according to Eq. (6), (z(1) − z(2)) ̸= 0 implies that the bilateral exchange rate

movement between foreign countries 1 and 2 has to load on the home country 0’s SDF, giving rise

to a new mechanism for international spill-over.
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To answer this question, I divide the general case into three special cases which exhaust all

possibilities. In each case, I characterize the conditions under which the SDF-FX pass-through is

symmetric.

2.3 Case I: Uncorrelated SDF and IM Shocks within and across Countries

First, I consider the case in which the IM shocks in Eq. (4) and (5) are not correlated with the SDF

shocks:

Assumption 1. (a) corr(∆m(2), ε
(1)
y ) = corr(∆m(1), ε

(2)
y ) = 0.

(b) corr(∆m(1), ε
(1)
y ) = corr(∆m(2), ε

(2)
y ) = 0.

This assumption describes a useful benchmark. If Assumption 1(a) does not hold, i.e., corr(∆m(2), ε
(1)
y ) ̸=

0 for example, country 2’s SDF ∆m(2) affects the bilateral exchange rate between countries 0 and

1 via the IM term ε
(1)
y , which already gives rise to some international spill-over effects. To charac-

terize conditions under which the SDF-FX pass-through is symmetric, I start with the case without

such spill-over.

Moreover, Assumption 1(b) implies that two countries’ SDFs have symmetric effects on their

bilateral exchange rate: a 1% increase in ∆m(0) corresponds to z(1)% appreciation in ∆s1/0,

whereas a 1% increase in ∆m(1) corresponds to z(1)% depreciation in ∆s1/0. This symmetry

is always preserved with z(1) = z(2) ≡ 1 in complete markets, from which the majority of our

intuition about FX dynamics is derived. In contrast, if corr(∆m(1), ε
(1)
y ) ̸= 0, a shock to country

1’s SDF also affects the IM shock ε
(1)
y . Then, the response of the bilateral exchange rate ∆s1/0

to country 1’s SDF shock is different from its response to country 0’s SDF shock. I consider this

more general case in the next subsection.

This assumption pins down 4 degrees of freedom (corr(ε
(1)
m , ε

(1)
y ), corr(ε

(1)
m , ε

(2)
y ), corr(ε(2)m , ε

(1)
y ),

corr(ε
(2)
m , ε

(2)
y ), corr(ε

(1)
y , ε

(2)
y )). So we have 11− 4 = 7 degrees of freedom left, which can be de-

scribed by (x(1), x(2), z(1), z(2), y(1), y(2), corr(ε
(1)
y , ε

(2)
y )). The x, y, and z parameters describe the

bilateral exchange rate dynamics, and the last parameter corr(ε(1)y , ε
(2)
y ) describes the cross-country
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comovements in the IM shocks, which affect the cross-country correlation between the exchange

rate movements ∆s1/0 and ∆s2/0.

Next, I consider the Euler equations for the cross-country risk-free bond holdings between the

home country and each foreign country:

1 = E[exp(∆m(0) −∆s1/0 + r(1))] = E[exp(∆m(1) +∆s1/0 + r(0))],

1 = E[exp(∆m(0) −∆s2/0 + r(2))] = E[exp(∆m(2) +∆s2/0 + r(0))].

As discussed in the two-country case, the two Euler equations for the country pair (0, 1) pin down

the parameters x(1) and y(1). Similarly, the two Euler equations for the country pair (0, 2) pin

down the parameters x(2) and y(2). These restrictions remove 4 more degrees of freedom, leaving

7− 4 = 3 left, which can be described by (z(1), z(2), corr(ε
(1)
y , ε

(2)
y )).

Finally, I consider the Euler equations for the country pair (1, 2):

1 = E[exp(∆m(2) −∆s1/2 + r(1))] = E[exp(∆m(1) +∆s1/2 + r(2))].

While the bilateral exchange rate movements for country pairs (0, 1) and (0, 2) directly imply

the bilateral exchange rate movements for the country pair (1, 2), the Euler equations for country

pairs (0, 1) and (0, 2) do not imply these Euler equations for the country pair (1, 2) in general.2

As a result, the Euler equations for the country pair (1, 2) imposes an additional independent

restriction on the exchange rate parameters, leaving only 3− 1 = 2 degrees of freedom described

by (z(1), z(2)) for the three-country dynamics under Assumption 1. In other words, these two pass-

through coefficients uniquely determine not only the bilateral exchange rate dynamics between

country pairs (0, 1) and (0, 2), but also the cross-country correlations between the IM shocks and

between the exchange rate movements.

To interpret this result, one intuition from the complete-market models is that, once we model

2The only exception is the complete-market case, in which the Euler equations for country pairs (0, 1) and (0, 2)
directly imply the Euler equations for the country pair (1, 2).
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the bilateral dynamics between the home country 0 and each foreign country, we will know the

bilateral dynamics between any two foreign countries. In incomplete markets, this is not the case,

as the Euler equations between two foreign countries impose additional restrictions. These addi-

tional restrictions further restrict the exchange rate correlation between the two country pairs. In

particular, if we impose symmetric SDF-FX pass-through, we obtain a specific restriction on the

equilibrium exchange rate comovements:

Proposition 1 (Conditions for Symmetric SDF-FX Pass-Through, Case I). Under Assumption 1,

symmetric SDF-FX pass-through, i.e. z(1) = z(2) = z, implies the following restriction on the

covariances of exchange rate movements and SDF differentials:

cov(∆s1/0,∆s2/0) = z · cov(∆m(0) −∆m(1),∆m(0) −∆m(2)).

In correlation form,

corr(∆s1/0,∆s2/0) = corr(∆m(0) −∆m(1),∆m(0) −∆m(2)). (7)

This result imposes a tight constraint on the equilibrium exchange rate dynamics: the cor-

relation of exchange rate movements has to be exactly the same as that of SDF differentials.

The complete-market case is a special case of symmetric SDF-FX pass-through, with z = 1,

∆s1/0 = ∆m(0) −∆m(1), and ∆s2/0 = ∆m(0) −∆m(2). Under symmetric SDF-FX pass-through,

market incompleteness cannot alter the correlation structure of bilateral exchange rate movements

to deviate from that of the SDF differentials. Asymmetric SDF-FX pass-through (i.e., z(1) ̸= z(2)),

on the other hand, allows more flexibility.

2.4 Discussion

Proposition 1 identifies a necessary condition for symmetric SDF-FX pass-through. Before I gen-

eralize this result, I discuss whether it is consistent with the data. In this discussion, I make three
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empirical observations that all suggest this condition is unlikely to hold, which makes a case for

asymmetric SDF-FX pass-through.

First, a major puzzle of international economics is the lack of correlation in the consumption

growth data across countries, which suggests that risks are poorly shared internationally (Backus,

Kehoe, and Kydland, 1992; Backus and Smith, 1993). In comparison, the correlation between

bilateral exchange rates is much higher.

The first panel in Figure (1) plots the distribution of the correlations between bilateral exchange

rate movements. Here I take the USA as the base country. For example, the correlation between the

AUS/USA bilateral exchange rate movement and the GBR/USA bilateral exchange rate movement

is 0.64, which contributes to one data point in this histogram. On average, the correlation is 0.57,

which is marked by the vertical dashed line.

For comparison, the second panel in Figure (1) plots the distribution of the correlations be-

tween consumption growth differential. For example, the correlation between the AUS/USA con-

sumption growth differential and the GBR/USA consumption growth differential is −0.03. On

average, the correlation is 0.29, which is about half of the average correlation of bilateral exchange

rate movements. Therefore, consistent with the findings in the earlier literature, the international

correlation in consumption growth is much lower than that in exchange rate movements. To the

extent that the consumption growth shocks proxy for SDF shocks, this result suggests that the

right-hand side of Eq. (7) should be much lower than its left-hand side.

Alternatively, SDFs can be driven by forces beyond the concurrent consumption growth. For

example, the long-run risk literature develops SDFs that are driven by persistent long-run con-

sumption news, and uses the stock market dividend-price ratio as its empirical proxy (Bansal et al.,

2007; Colacito and Croce, 2011; Colacito et al., 2018). Without explicitly estimating a specifi-

cation of the long-run risk model, I calculate the correlation matrix for the change in log stock

dividend-price ratio differential. The last panel in Figure (1) plots the distribution. For example,

the correlation between the change in the AUS/USA log dividend-price ratio differential and the

change in the GBR/USA log dividend-price ratio differential is 0.52. On average, the correlation
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Figure 1: Correlations of Exchange Rates and Economic Quantities

This histogram reports the distribution of the pairwise correlations of bilateral exchange rate, bilateral log
consumption growth differential, and bilateral stock log price-dividend ratio growth differential. The under-
lying data are reported in Appendix Table (A.1).

is 0.25, which is again about half of the average correlation of bilateral exchange rate movements.

Second, a salient feature of the exchange rate data is the existence of common factors that

explain large fractions of variations in exchange rate movements (Lustig et al., 2011). Verdelhan

(2018) shows that two common factors based on the returns of long and short positions on cur-

rencies account for 20% to 90% of the exchange rate movements in developed countries. If the

condition (7) holds, the same factor structure must also manifest itself in the fundamental quantities
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that drive the SDFs. For example, if consumption growth drives the SDFs, then, under symmetric

SDF-FX pass-through, two similarly constructed consumption factors should be able to explain

the majority of variations in consumption growth across countries. However, common factors in

economic fundamentals have been elusive in the literature. The possible exceptions are interna-

tional capital flows (Verdelhan, 2018) and country-level stock price-dividend ratios (Colacito et al.,

2018), which are themselves quantities related to asset price and exchange rate movements.

My third observation is that international portfolio holdings exhibit large home bias, another

major puzzle in international macroeconomics (Lewis, 1995). For example, in 2019 among devel-

oped countries, the share of domestic assets is 70% in equity portfolio and 71% in bond portfolio

(Jiang et al., 2022). In models with standard preferences and heterogeneous country-level income

processes, the high degree of home bias implies poor international risk-sharing through holdings

of external financial assets and therefore a low correlation in the marginal utility growth across

countries. This different approach of assessing international risk-sharing also implies that the SDF

correlations should be lower than the observed exchange rate correlations.

Admittedly, it is possible to modify investor preferences or other model ingredients and gen-

erate correlated marginal utility shocks across countries even with a high degree of portfolio home

bias, just as it is possible to generate high correlations in SDFs without high correlations in con-

sumption growth. This paper does not go over an exhaustive list of theories to rule out such possi-

bility. Instead, this paper is about considering the possibility of asymmetric SDF-FX pass-through

and understanding what it implies for exchange rate dynamics.

2.5 Case II: Uncorrelated SDF and IM Shocks across Countries

Is the result in Proposition 1 a general feature of the exchange rate dynamics in incomplete mar-

kets? I next relax Assumption 1 in two steps. First, I allow the bilateral exchange rate between

the home country 0 and each foreign country i to load differently on their respective SDFs, by

removing part (b) from the assumption:

Assumption 2. (a) corr(∆m(2), ε
(1)
y ) = corr(∆m(1), ε

(2)
y ) = 0.
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By removing part (b) in Assumption 1, Assumption 2 allows a foreign country’s SDF and its

IM shock to be correlated. For example, if corr(∆m(1), ε
(1)
y ) ̸= 0, the bilateral exchange rate

movement between countries 0 and 1 has different responses to the two countries’ SDF shocks:

cov(∆s1/0,∆m(0)) = z(1)cov(∆m(0) −∆m(1),∆m(0)),

cov(∆s1/0,∆m(1)) = −z(1)cov(∆m(0) −∆m(1),∆m(1)) + y(1)cov(∆m(1), ε(1)y ),

which already imposes a certain degree of asymmetry to the bilateral exchange rate dynamics that

is absent in the complete-market case. On the other hand, Assumption 2(a) is maintained: the IM

shock for the country pair (0, 1) cannot load on country 2’s SDF shock.

The following proposition shows that in this more general case, the main result is maintained.

Proposition 2 (Conditions for Symmetric SDF-FX Pass-Through, Case II). Under the more gen-

eral Assumption 2, symmetric SDF-FX pass-through, i.e. z
(1)
t = z

(2)
t = zt, implies the same

relationship between the covariance of exchange rate movements and the covariance of SDF dif-

ferentials:

cov(∆s1/0,∆s2/0) = z · cov(∆m(0) −∆m(1),∆m(0) −∆m(2)). (8)

In correlation form, the correlation of SDF differentials is augmented with additional terms:

corr(∆s1/0,∆s2/0)

=
cov(∆m(0) −∆m(1),∆m(0) −∆m(2))√

var(∆m(0) −∆m(1)) + y(1)cov(∆m(1), ε
(1)
y )/z

√
var(∆m(0) −∆m(2)) + y(2)cov(∆m(2), ε

(2)
y )/z

.

The covariance form (8) holds in both Proposition 1 and 2. So, in this more general case, sym-

metric SDF-FX pass-through still implies a tight relationship between exchange rate covariance

and SDF covariance.

To directly evaluate this covariance result, I conduct a similar test as in Figure (1). I fix

the U.S. as the base country 0, and calculate the ratio between the covariance between bilateral
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exchange rate movements and the covariance between bilateral consumption growth differentials:
covt(∆s

i/0
t+1,∆s

j/0
t+1)

covt(∆c
(0)
t+1−∆c

(i)
t+1,∆c

(0)
t+1−∆c

(j)
t+1)

, for two foreign countries i and j.

If households have identical CRRA preference with risk aversion γ, then, the SDF can be

expressed as ∆m(i) = −α − γ∆c(i). By Proposition 2, under symmetric SDF-FX pass-through,

we expect this covariance ratio to be identical across country pairs (i, j):

covt(∆s
i/0
t+1,∆s

j/0
t+1)

covt(∆c
(0)
t+1 −∆c

(i)
t+1,∆c

(0)
t+1 −∆c

(j)
t+1)

= γ2 covt(∆s
i/0
t+1,∆s

j/0
t+1)

covt(∆m
(0)
t+1 −∆m

(i)
t+1,∆m

(0)
t+1 −∆m

(j)
t+1)

= γ2z.

Figure (2), panel (a) reports these ratios in the data. Contrary to being identical, these ratios

vary across country pairs. Certainly, there are other possibilities if we insist on having symmetric

SDF-FX pass-through. One possibility is that the investor preferences are very different across

countries. If so, these ratio estimates suggest a high degree of heterogeneity in preferences.

Another possibility is that the SDFs are driven by other economic quantities. In the same spirit

as in the last exercise in Figure (1), I use the change in the stock market dividend-price ratio as

a proxy for the SDF shock in an economy with long-run risk. If the households have the same

preference, I expect the ratio between the covariance between bilateral exchange rate movements
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Figure 2: Covariance Ratio Test

This histogram reports the ratio between the covariance between bilateral exchange rate movements and the
covariance between bilateral growth differentials in economic quantities. The underlying data are reported in
Appendix Table (A.2). The covariance ratios are winsorized at (−50, 200) and (−5, 5) to improve visibility.
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and the covariance between the bilateral differential in the change of the stock market dividend-

price ratio to be identical:

covt(∆s
i/0
t+1,∆s

j/0
t+1)

covt(∆dp
(0)
t+1 −∆dp

(i)
t+1,∆dp

(0)
t+1 −∆dp

(j)
t+1)

= k.

Figure (2), panel (b) reports these covariance ratios in the data, which also exhibit a large

degree of heterogeneity across country pairs. Therefore, to the extent each country’s stock mar-

ket dividend-price ratio proxies for its SDF shock, this result does not support the implication of

symmetric SDF-FX pass-through.

2.6 Case III: Correlated SDF and IM Shocks across Countries

Lastly, I consider the remaining case in which the SDF shocks and the IM shocks are correlated

across country pairs.

Assumption 3. (a’) corr(∆m(2), ε
(1)
y ) ̸= 0 or corr(∆m(1), ε

(2)
y ) ̸= 0.

Without loss of generality, I focus on the case in which corr(∆m(1), ε
(2)
y ) ̸= 0. In this case,

the SDF shock in country 1 affects the bilateral exchange rate dynamics between countries 0

and 2. As ∆m(1) = −µ1 + σ1,0ε
(0)
m + σ1,1ε

(1)
m and by construction corr(ε

(0)
m , ε

(2)
y ) = 0, then,

corr(∆m(1), ε
(2)
y ) ̸= 0 implies κ = corr(ε

(1)
m , ε

(2)
y ) ̸= 0. I can thus decompose the IM shock ε

(2)
y

into country 1’s SDF shock ε
(1)
m and an orthogonal component:

ε̃(2)y =
1√

1− κ2
(ε(2)y − κε(1)m )

that satisfies corr(ε(1)m , ε̃
(2)
y ) = 0.

Then, I can rewrite the bilateral exchange rate movement between countries 0 and 2 as

∆s2/0 = x(2) + z(2)(∆m(0) −∆m(2)) + y(2)(κε(1)m +
√
1− κ2ε̃(2)y )

= x̃(2) +
y(2)κ

σ1,1

∆m(1) + z̃(0)∆m(0) − z(2)∆m(2) + ỹ(2)ε̃(2)y ,

23



with ỹ(2) = y(2)
√
1− κ2, x̃(2) = x(2) + y(2)κ

σ1,1
µ(1) − y(2)κ

σ1,1

σ1,0

σ0,0
µ(0), and z̃(0) = z(2) − y(2)κ

σ1,1

σ1,0

σ0,0
.

To interpret this equation, let us take a different perspective and regard country 1 as the base

country. Then, the term y(2)κ
σ1,1

∆m(1) indicates that the bilateral exchange rate dynamics between

countries 0 and 2 is exposed to country 1’s SDF. Moreover, since z̃(0) ̸= z(2) when σ1,0 ̸= 0, we

can also interpret the pass-through from country 0’s SDF and country 2’s SDF to their bilateral

exchange rate as being asymmetric. Therefore, this expression is very similar to Eq. (6) in the

earlier Cases I and II, reproduced below,

∆s1/2 = (x(1) − x(2)) + (z(1) − z(2))∆m(0) − z(1)∆m(1) + z(2)∆m(2) + y(1)ε(1)y − y(2)ε(2)y ,

which regards country 0 as the base country. In this baseline case, when the SDF-FX pass-through

is asymmetric (i.e., z(1) − z(2) ̸= 0), the bilateral exchange rate dynamics between countries 1 and

2 is exposed to country 0’s SDF.

In other words, Assumption 3 generates asymmetric pass-through and the cross-country spill-

over from SDF shocks to exchange rate movements from the perspective of a different base country.

Together with Cases I and II, these results exhaust all possibilities and suggest that the asymmetric

SDF-FX pass-through is a general feature in the exchange rate dynamics. In the next section, I

explore the implications of this feature in detail.

3 Implications of Asymmetric SDF-FX Pass-through

The results above characterize the exchange rate dynamics between the base country 0 and two

foreign countries 1 and 2. In particular, Eq. (6) provides a general expression for the bilateral

exchange rate between the two foreign countries:

∆s1/2 = (x(1) − x(2)) + (z(1) − z(2))∆m(0) − z(1)∆m(1) + z(2)∆m(2) + y(1)ε(1)y − y(2)ε(2)y .
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To derive some intuition, let us first assume that the SDF shocks are uncorrelated across countries,

i.e., corr(∆m(i),∆m(j)) = 0 for i ̸= j, and consider the following three scenarios.

First, when the markets are complete, the bilateral exchange rate movement is entirely deter-

mined by the two countries’ SDF shocks. That is, Eq. (6) can be simplified to

∆s1/2 = ∆m(2) −∆m(1).

In this scenario, since country 0’s SDF ∆m(0) is uncorrelated with either foreign country’s SDF, it

does not comove with the exchange rate movement ∆s1/2.

Second, when the markets are incomplete but the SDF-FX pass-through is symmetric, i.e.,

z(1) = z(2) = z, then, Eq. (6) can be simplified to

∆s1/2 = (x(1) − x(2)) + z(∆m(2) −∆m(1)) + y(1)ε(1)y − y(2)ε(2)y .

By construction, the IM shocks ε(1)y and ε
(2)
y are uncorrelated with the base country 0’s SDF ∆m(0).

So, symmetric SDF-FX pass-through also implies zero correlation between country 0’s SDF ∆m(0)

and the exchange rate movement ∆s1/2.

Finally, when the markets are incomplete and the SDF-FX pass-through is asymmetric, then,

the term (z(1) − z(2))∆m(0) in Eq. (6) is nonzero. It allows country 0’s SDF, which is fully

idiosyncratic by assumption, to affect the bilateral exchange rate movement between countries 1

and 2. This term gives rise to a spill-over effect that propagates one country’s SDF shock to other

countries’ bilateral exchange rate movements, which is absent in the previous two scenarios.

Given that the theoretical results in the previous section support the case with asymmetric

SDF-FX pass-through, this international spill-over effect should be a general phenomenon. I next

test whether this spill-over effect is consistent with exchange rate patterns in the data.
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3.1 Empirical Implication: Is This Spill-Over Effect Consistent with Data?

If the SDFs are observable, I can test this spill-over effect by directly regressing the bilateral

exchange rate movments between two countries j and k on their SDFs and the SDF of a third

country i:

∆s
j/k
t = αj/k + β∆m

(i)
t + γj∆m

(j)
t + γk∆m

(k)
t + u

j/k
t .

I am interested in knowing whether the coefficient β is zero. I control for the SDFs ∆m
(j)
t and

∆m
(k)
t in order to absorb the potential comovements in the SDFs. When the SDF-FX pass-through

is symmetric (which includes the case of complete markets), I expect β = 0; when the SDF-FX

pass-through is asymmetric, I expect β ̸= 0 for a general choice of countries i, j, and k.

Unfortunately, SDFs are not directly observable. I have to set up my test with an auxiliary

assumption. Specifically, I consider a null hypothesis in which markets are complete and the SDFs

have the following factor structure:

∆m
(ℓ)
t = a

(ℓ)
t−1 + b(ℓ)ft + v

(ℓ)
t

for ℓ ∈ {i, j, k}, where ft captures one or more common SDF factors, and v
(ℓ)
t is a country-specific

shock. This factor structure has been proposed to understand exchange rate comovements (Lustig,

Roussanov, and Verdelhan, 2011; Verdelhan, 2018).

Under this null, country i’s average exchange rate contains information about its SDF. More

precisely, the average exchange rate movement for country i is

∆sit =
1

N

∑
ℓ

∆s
i/ℓ
t ,

which describes the average performance of country i’s currency against other currencies (Lustig

and Richmond, 2020; Aloosh and Bekaert, 2022). The (equal-weighted) dollar index is a good ex-

ample, which describes the performance of the U.S. dollar relative to an average foreign currency.
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The null hypothesis implies that ∆sit = ∆mt − ∆m
(i)
t , where ∆mt is the global average of the

SDFs. Even when the markets are incomplete, as long as the SDF-FX pass-through is above zero,

this average exchange rate movement still captures the home country’s SDF shock while averages

out the foreign countries’ idiosyncratic shocks.

Next, I regress the bilateral exchange rate movments between two other countries j and k

on country i’s average exchange rate movement, and control for the two common factors in the

exchange rate literature, namely dollar and carry (Verdelhan, 2018):

∆s
j/k
t = αj/k + βi∆sit + βddollart + βccarryt + u

j/k
t , for i ̸∈ {j, k}. (9)

Under the null, as country i’s average exchange rate movement is only exposed to these com-

mon factors and its own country-specific shock, the foreign exchange rate’s loading βi on its SDF

will be zero. In contrast, when markets are incomplete, asymmetric pass-through propagates a

country’s SDF shocks to other countries’ bilateral exchange rates, which leads to nonzero βi. In

this way, this test helps us distinguish exchange rate comovements that arise from common SDF

factors from comovements that arise from asymmetric SDF-FX pass-through.

To carry out this test, I first consider a version of the regression that does not contain the

common factors:

∆s
j/k
t = αj/k + βi∆sit + u

j/k
t , for i ̸∈ {j, k}. (10)

Figure (3)(a) reports the distribution of the t-statistics for the βi coefficient. In each panel, I use a

different base country i and run this regression for all foreign country pairs (j, k). For example, the

USA panel reports the distribution of t-statistics taking the U.S. as the base country i. Many of the

reported t-statistics are above 2 or below −2, implying that the βi coefficient tends to be nonzero

and statistically significant for many country pairs. In other words, the dollar’s average exchange

rate movement tends to comove with other countries’ bilateral exchange rate movements. While

this result is hardly surprising given the central role that the U.S. plays in the international trade
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(b) With Controlling Common Currency Factors

Figure 3: Distribution of t-Statistics for the βi Coefficient.

The regression equations in the two panels are (10) and (9). Each panel reports the distribution of t-statistics
using a different base country i. The t-statistics are winsorized at ±10 to improve visibility. The exchange
rate data are quarterly, 1988—2020.
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and financial networks, this pattern also holds when I pick a different base country. I report these

results in different panels: many of the t-statistics have absolute values greater than 2 and some

are greater than 5, which is suggestive of the spill-over effect.

Then, to rule out the possibility that this result is simply driven by common variations in SDFs,

I run regression (9) that controls for the common factors. Figure (3)(b) reports the distribution of

the t-statistics for the βi coefficient. The panel USA is omitted because the U.S. dollar’s average

exchange rate movement is co-linear with the dollar factor. The remaining panels show that the βi

coefficient remains statistically significant for many base countries and bilateral currency pairs. If

we take the factor model of exchange rates in Lustig et al. (2011); Verdelhan (2018) literally, the

bilateral exchange rate movement ∆s
j/k
t after controlling for the common factors only reflects the

idiosyncratic SDF shocks specific to countries j and k. In contrast, this empirical result suggests

that this idiosyncratic exchange rate movement is strongly correlated with currency i’s average

exchange rate movement ∆sit.

This result rejects the null and supports the view that bilateral exchange rates between any two

countries tend to comove with other countries’ SDFs, which is consistent with the implication of

the asymmetry in the SDF-FX pass-through. This mechanism gives rise to a novel channel through

which exchange rate comovements arise endogenously. This channel complements traditional

ingredients that generate exchange rate comovements by generating correlated SDFs. Moreover,

the spill-over into exchange rate movements may give rise to further spill-over effects on other

countries’ real outcomes, which could be an interesting path to pursue in future research.

3.2 Numerical Magnitude: How Large is This Spill-Over Effect?

Quantitatively, how large is the effect of asymmetric SDF-FX pass-through on the FX correlation

structure? In this section, I present a numerical result that quantifies how much deviation of the

exchange rate correlation from the SDF correlation can be expected under asymmetric SDF-FX

pass-through. There are three countries in this example. Suppose the pairwise correlation between

SDF shocks is ρ0,1 = ρ0,2 = ρ1,2 = 0.5, and the SDF volatility is 1 in each country. Then, the
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Figure 4: FX Correlation as SDF-FX Pass-through Varies

We plot the correlation between the SDF differentials ∆m(0)−∆m(1) and ∆m(0)−∆m(2) and the correla-
tion between the bilateral exchange rate movements ∆s1/0 and ∆s2/0 as we vary the SDF-FX pass-through
in two numerical examples.

implied correlation between the SDF differentials is corr(∆m(0)−∆m(1),∆m(0)−∆m(2)) = 0.5.

For simplicity, I maintain Assumption 1 to focus on the IM shocks ε(i)y that are not correlated with

the SDF shocks.

Then, I fix country 1’s SDF-FX pass-through z(1) at 0.1 and vary country 2’s SDF-FX pass-

through z(2), and trace out the implied correlation between the bilateral exchange rate movements

∆s1/0 and ∆s2/0 in Figure (4), Panel (a). When z(2) = z(1) ≡ 0.1, I recover the result in Propo-

sition 1: under symmetric SDF-FX pass-through, the exchange rate correlation equals the SDF

differential correlation.

When z(2) is either higher or lower than z(1), the implied exchange rate correlation becomes

higher relative to the SDF correlation. This pattern is consistent with Figure (1), which shows that

the correlation between bilateral exchange rate movements tends to be higher than the correlation

between proxies of SDF differentials. Numerically, the exchange rate correlation can approach 1,

which allows us to quantitatively escape the tight constraint between the exchange rate correlation

and the SDF differential correlation that characterizes the case of symmetric SDF-FX pass-through.

Figure (4), Panel (b), reports a different case in which the SDF correlation between countries
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1 and 2 is ρ1,2 = 0.25. In this case, the implied correlation between SDF differentials is lower:

corr(∆m(0)−∆m(1),∆m(0)−∆m(2)) = 0.25, which is closer to the average correlation between

economic fundamentals in Figure (1). Even so, the implied exchange rate correlation can still

become much higher as the SDF-FX pass-through of country 2 deviates from that of country 1.

Lastly, there is an interesting connection to Brandt et al. (2006) who also study the exchange

rate dynamics in incomplete markets. Incomplete markets allow multiple SDFs to be consistent

with a given exchange rate process. Brandt et al. (2006) show that, among these SDFs, there exists

a unique choice such that the exchange rate movements are equal to the SDF differentials, just as in

the complete-market case. These SDFs are the minimum-variance SDFs, because other admissible

SDFs are equal to these SDFs plus additional shocks that are unspanned by the asset payoffs, and

thus have higher variances.

My paper takes a different but related approach. I fix the SDFs, which could come from

some underlying consumption processes. Then, incomplete markets allow multiple exchange rate

processes to be consistent with these SDFs. Among these exchange rate processes, symmetric

SDF-FX pass-through generates the minimum-correlation exchange rate movement, which attains

the lowest exchange rate correlation that is equal to the SDF correlation. As I introduce asymmetric

SDF-FX pass-through by either raising or lowering z(2) relative to z(1), I obtain an exchange rate

correlation that is higher and above the SDF correlation.

4 Generalizations

4.1 More Than Three Countries

The main result in this paper holds in a general multi-country setting. To recap, my setting so far

contains only three countries indexed by 0, 1, 2. I designate country 0 as the base country, and

the Euler equations between foreign countries 1 and 2 imply one set of equilibrium constraints

via Triangular arbitrage. For given values of z(1) and z(2), this set of equilibrium constraints pin

down the correlation between IM shocks corr(ε(1)y , ε
(2)
y ), which further pins down the correlation
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between bilateral exchange rate movements corr(∆s1/0,∆s2/0).

With N + 1 countries indexed by 0, 1, . . . , N , where N ≥ 2, the results I derive in the paper

must hold for any three countries in this set. Moreover, I can similarly designate country 0 as

the base country, and derive N(N − 1)/2 unique sets of equilibrium constraints from the pairs of

foreign countries (i, j) such that 1 ≤ i < j ≤ N . For given values of z(i) and z(j), these sets

of equilibrium constraints pin down the N(N − 1)/2 correlations between foreign incomplete-

market shocks corr(ε
(i)
y , ε

(j)
y ), which further pin down the N(N − 1)/2 correlations between bi-

lateral exchange rate movements corr(∆si/0,∆sj/0). Therefore, the (N + 1)-country case is a

straightforward generalization of the three-country case.3

4.2 General Exchange Rate Dynamics in Continuous Time

The results hold more generally in a dynamic, infinite-horizon, and continuous-time economy. I

fix a probability space (Ω,F ,P) and a given filtration {Ft : t ≥ 0} satisfying the usual conditions.

I assume that all stochastic processes are adapted to this filtration.

Let A[Xt] denote the drift of the process Xt; the operator A is also known as the generator.

With slight abuse of notation, let [dXt, dYt] denote the instantaneous conditional covariance be-

tween two diffusion processes Xt and Yt. Formally, it is defined as [dXt, dYt] = d[X, Y ]t/dt where

[X, Y ]t is the standard quadratic covariation process between Xt and Yt.

Countries are indexed by i ∈ {0, 1, 2}. Let M (i)
t and m

(i)
t denote country i’s cumulative SDF

and its log. The log SDF follows a diffusion process:

dm
(i)
t = −µ

(i)
t dt− σ

(i)
t dZ

(i)
t ,

and let ρi,j,t = [dZ
(i)
t , dZ

(j)
t ] denote the correlation between two countries’ SDFs.

The mean, volatility and correlation parameters µ
(i)
t , σ(i)

t , and ρi,j,t can be time-varying. I

3That said, with more than 2 foreign countries, the correlation matrix for corr(ε(i)y , ε
(j)
y ) has to be positive semidefinite,

which could impose additional constraints on parameter values.
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assume they follow

dσ
(i)
t = a

(i)
σ,tdt+ b

(i)
σ,tdW

(i)
σ,t ,

dµ
(i)
t = a

(i)
µ,tdt+ b

(i)
µ,tdW

(i)
µ,t ,

dρi,j,t = a
(i)(j)
ρ,t dt+ b

(i)(j)
ρ,t dW

(i)(j)
ρ,t ,

where all stochastic processes are adapted to the filtration Ft and the Brownian motions W (i)
σ,t ,W

(i)
µ,t ,W

(i)(j)
ρ,t

are allowed to be correlated with each other.

Without loss of generality, I fix country 0 as the base country. Let Si/0
t denote the exchange

rate between country 0 and country i, which increases when the currency in country 0 appreciates.

Let si/0t denote the log exchange rate.

If markets are complete, there is a unique exchange rate process determined by the SDF dif-

ferential:

ds
cm,i/0
t = dm

(0)
t − dm

(i)
t = −(µ0 − µi)dt− (σ0dZ

(0)
t − σidZ

(i)
t ).

Under incomplete markets, I assume that investors can still trade both home and foreign risk-

free bonds. Their risk-free bond prices follow

dP
(i)
t = r

(i)
t P

(i)
t dt.

As investors in each country can hold domestic bonds, we have the following set of first-order

conditions:

0 = A[M
(i)
t P

(i)
t ];

moreover, as investors can also hold foreign bonds, we have the following set of first-order condi-
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tions between country 0 and country i:

0 = A[M
(0)
t (S

i/0
t )−1P

(i)
t ] = A[M

(i)
t S

i/0
t P

(0)
t ].

Following my derivation in the simple case, I can without loss of generality express the bilat-

eral exchange rate movement as

ds
i/0
t = x

(i)
t dt+ z

(i)
t (dm

(0)
t − dm

(i)
t ) + y

(i)
t dY

(i)
t ,

where (dm(0)
t −dm

(i)
t ) is the SDF differential between countries 0 and i, z(i)t describes the SDF-FX

pass-through, and dY
(i)
t is an additional shock that arises due to market incompleteness. Let πi,j,t =

[dZ
(i)
t , dY

(j)
t ] denote the correlation between the SDF shock and the IM shock. By construction, I

pick z
(i)
t to ensure zero correlation between the IM shock dY

(i)
t and country 0’s SDF shock dZ

(0)
t :

[dZ
(0)
t , dY

(i)
t ] = 0.

Then, the first-order conditions for bond holdings between countries 0 and i imply equilibrium

restrictions on the relationship between x
(i)
t , y(i)t , and z

(i)
t :

0 = (y
(i)
t )2 + (2z

(i)
t − 1)σ

(i)
t πi,i,ty

(i)
t + ((z

(i)
t )2 − z

(i)
t )((σ

(0)
t )2 + (σ

(i)
t )2 − 2ρ0,i,tσ

(0)
t σ

(i)
t )

x
(i)
t = (1− z

(i)
t )(µ

(i)
t − µ

(0)
t )− 1

2
((σ

(i)
t )2 − (σ

(0)
t )2)

+
1

2
(z

(i)
t )2((σ

(0)
t )2 + (σ

(i)
t )2 − 2ρ0,i,tσ

(0)
t σ

(i)
t )

+
1

2
(y

(i)
t )2 − z

(i)
t ((σ

(0)
t )2 − ρ0,i,tσ

(0)
t σ

(i)
t ) + z

(i)
t σ

(i)
t y

(i)
t πi,i,t.

Now, I consider the equilibrium conditions for multiple foreign currencies, which are restricted

by Triangular arbitrage. Specifically, since

ds
1/0
t = x

(1)
t dt+ z

(1)
t (dm

(0)
t − dm

(1)
t ) + y

(1)
t dY

(1)
t ,

ds
2/0
t = x

(2)
t dt+ z

(2)
t (dm

(0)
t − dm

(2)
t ) + y

(2)
t dY

(2)
t ,
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then, the bilateral exchange rate movement between the two foreign currencies 1 and 2 has to

follow

ds
1/2
t = (x

(1)
t − x

(2)
t )dt+ (z

(1)
t − z

(2)
t )dm

(0)
t − z

(1)
t dm

(1)
t + z

(2)
t dm

(2)
t (11)

+ y
(1)
t dY

(1)
t − y

(2)
t dY

(2)
t ,

which increases when country 2’s currency appreciates.

The following proposition states the main results in this continuous-time setting.

Proposition 3 (Conditions for Symmetric SDF-FX Pass-Through, Continuous Time). (a) If the

IM shock dY
(i)
t in a country i is not correlated with the SDF shock in another country j, i.e.,

[dZ
(1)
t , dY

(2)
t ] = [dZ

(2)
t , dY

(1)
t ] = 0, then, symmetric SDF-FX pass-through, i.e. z(1)t = z

(2)
t = zt,

implies a tight relationship between the conditional covariance of exchange rate movements and

the conditional covariance of SDF differentials:

[ds
1/0
t , ds

2/0
t ] = zt[dm

(0)
t − dm

(1)
t , dm

(0)
t − dm

(2)
t ].

(a1) If we further assume [dZ
(1)
t , dY

(1)
t ] = [dZ

(2)
t , dY

(2)
t ] = 0, there is a starker restriction in

correlation form:

[ds
1/0
t , ds

2/0
t ]√

[ds
1/0
t , ds

1/0
t ]

√
[ds

2/0
t , ds

2/0
t ]

=
[dm

(0)
t − dm

(1)
t , dm

(0)
t − dm

(2)
t ]√

[dm
(0)
t − dm

(1)
t , dm

(0)
t − dm

(1)
t ]

√
[dm

(0)
t − dm

(2)
t , dm

(0)
t − dm

(2)
t ]

.

(b) If the IM shock dY (i)
t in a country is correlated with the SDF shock in another country, i.e.,

[dZ
(1)
t , dY

(2)
t ] ̸= 0 without loss of generality, then, we can similarly derive

ds2/0 = x̃
(2)
t dt− y

(2)
t κt

σ
(1)
t

√
1− ρ20,1,t

dm
(1)
t + z̃

(0)
t dm

(0)
t − z

(2)
t dm

(2)
t + ỹ

(2)
t dỸ

(2)
t ,

which indicates that country 1’s SDF shock affects the bilateral exchange rate movement between

countries 0 and 2.
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The proof and the definition of the relevant parameters is provided in a separate Online Ap-

pendix. This proposition replicates the results in the one-period, discrete-time model: part (a)

corresponds to Case II above, part (a1) corresponds to Case I, and part (b) corresponds to Case III.

In fact, the continuous-time model bears strong similarity to the discrete-time model, so that the

derivation is almost identical. So, the results about asymmetric SDF-FX pass-through also hold in

this more general set-up with time-varying drifts, volatilities, and correlations.

5 Conclusion

In this paper, I develop a framework that attributes exchange rate movements in incomplete markets

to SDF and non-SDF shocks. This framework requires freely tradable domestic and foreign risk-

free bonds, but is otherwise flexible to allow general characterizations of exchange rate dynamics

in incomplete markets. Under this framework, I show that symmetric SDF-FX pass-through im-

poses a tight relation between exchange rate correlation and SDF differential correlation, which is

unlikely to hold in the data. Therefore, asymmetry in SDF-FX pass-through is a general feature

of incomplete markets, which propagates a country’s SDF shock to bilateral exchange rate move-

ments between foreign countries. These results offer a new way of understanding the disconnect

and comovements in exchange rate dynamics.
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Appendix
This appendix contains proof for the main results in the paper and some empirical tables that
demonstrate the underlying data. There is an online appendix that contains proof for the more
general continuous-time setting, which is available on the author’s personal website.

A Proof

A.1 Lemma 1
The Euler equations for domestic risk-free bonds imply

r(0) = µ0 −
1

2
(σ2

0,0), r(1) = µ1 −
1

2
(σ2

1,0 + σ2
1,1).

The Euler equations for foreign risk-free bonds imply

1 = E[exp(∆m(0) −∆s1/0 + r(1))]

= exp(E[∆m(0) −∆s1/0 + r(1)] +
1

2
(σ2

0,0 + var(∆s1/0)− 2cov[∆m(0),∆s1/0])

0 = −µ0 − E[∆s1/0] + r(1) +
1

2
σ2
0,0 +

1

2
var(∆s1/0)− cov[∆m(0),∆s1/0]

= −E[∆s1/0] + r(1) − r(0) +
1

2
var(∆s1/0)− cov[∆m(0),∆s1/0]

and similarly

0 = E[∆s1/0] + r(0) − r(1) +
1

2
var(∆s1/0) + cov[∆m(1),∆s1/0]

Take the sum and plug in the first set of first-order conditions,

0 = var(∆s1/0)− cov[∆m(0) −∆m(1),∆s1/0] (A.1)

Plug in

∆s1/0 = x(1) + z(1)(∆m(0) −∆m(1)) + y(1)ε(1)y ; (A.2)

then, Eq. (A.1) implies an equilibrium restriction on the relationship between z(i) and y(i),

0 = (z(1))2var(∆m(0) −∆m(1)) + 2z(1)cov[∆m(0) −∆m(1), y(1)ε(1)y ] + (y(1))2

− cov[∆m(0) −∆m(1), z(1)(∆m(0) −∆m(1)) + y(1)ε(1)y ]

0 = (y(1))2 + ((z(1))2 − z(1))var(∆m(0) −∆m(1)) (A.3)
+ (2z(1) − 1)y(1)cov[∆m(0) −∆m(1), ε(1)y ]

= (y(1))2 + ((z(1))2 − z(1))((σ0,0 − σ1,0)
2 + σ2

1,1) + (2z(1) − 1)y(1)cov[∆m(0) −∆m(1), ε(1)y ]

40



which implies the solution for y(1), noting that cov[∆m(0) − ∆m(1), ε
(1)
y ] = −cov[∆m(1), ε

(1)
y ] =

−σ1,1corr(ε
(1)
m , ε

(1)
y ).

Next, based on the FX dynamics (2),

E[∆s1/0] = x(1) + z(1)(µ1 − µ0)

var(∆s1/0) = var(z(1)(σ0,0ε
(0)
m − σ1,0ε

(0)
m − σ1,1ε

(1)
m ) + η1,1ε

(1)
m + z(1)σ1,1ε

(1)
m + ζ1,1ε

(1)
s )

= var(z(1)(σ0,0 − σ1,0)ε
(0)
m + η1,1ε

(1)
m + ζ1,1ε

(1)
s )

= (z(1))2(σ0,0 − σ1,0)
2 + η21,1 + ζ21,1

and

cov[∆m(0),∆s1/0] = cov[σ0,0ε
(0)
m , z(1)(σ0,0ε

(0)
m − σ1,0ε

(0)
m − σ1,1ε

(1)
m ) + (η1,1 + z(1)σ1,1)ε

(1)
m + ζ1,1ε

(1)
s ]

= z(1)σ0,0(σ0,0 − σ1,0)

Then, we can recover x(1) from the cross-country Euler equations:

x(1) = −z(1)(µ1 − µ0) + r(1) − r(0) +
1

2
var(∆s1/0)− cov[∆m(0),∆s1/0]

= (1− z(1))(µ1 − µ0)−
1

2
(σ2

1,0 + σ2
1,1 − σ2

0,0) +
1

2
((z(1))2(σ0,0 − σ1,0)

2 + η21,1 + ζ21,1)

− z(1)σ0,0(σ0,0 − σ1,0)

A.2 Proposition 1 and 2
Under symmetric pass-through, i.e., z(1) = z(2) = z and following Eq. (A.3) in the proof for
Lemma 1, the cross-country Euler equations for country pairs (0, 1) and (0, 2) imply

0 = (z2 − z)[(σ0,0 − σ1,0)
2 + σ2

1,1] + (y(1))2 + (1− 2z)y(1)cov(∆m(1), ε(1)y ) (A.4)

0 = (z2 − z)[(σ0,0 − σ2,0)
2 + σ2

2,1 + σ2
2,2] + (y(2))2 + (1− 2z)y(2)cov(∆m(2), ε(2)y ) (A.5)

Similar Euler equations apply to the country pair (1, 2), which imply

0 = var(∆s1/2)− cov[∆m(2) −∆m(1),∆s1/2] (A.6)

That is,

0 = (z2 − z)(σ2,0 − σ1,0)
2 + (z2 − z)(σ1,1 − σ2,1)

2 + (z2 − z)σ2
2,2

+ (1− 2z)[y(1)σ1,1cov(ε
(1)
m , ε(1)y ) + y(2)σ2,1cov(ε

(1)
m , ε(2)y ) + y(2)σ2,2cov(ε

(2)
m , ε(2)y )]

+ (y(1))2 + (y(2))2 − 2y(1)y(2)cov(ε(1)y , ε(2)y )

Plug in Assumption 2 and Eq. (A.4) and (A.5), this implies

y(1)y(2)cov(ε(1)y , ε(2)y ) = −(z2 − z) ((σ0,0 − σ1,0)(σ0,0 − σ2,0) + σ1,1σ2,1)
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Then, by Assumption 2 again,

cov(∆s1/0,∆s2/0) = cov(z(∆m(0) −∆m(1)) + y(1)ε(1)y , z(∆m(0) −∆m(2)) + y(2)ε(2)y )

= z2cov(∆m(0) −∆m(1),∆m(0) −∆m(2)) + y(1)y(2)cov(ε(1)y , ε(2)y )

= z ((σ0,0 − σ0,1)(σ0,0 − σ0,2) + σ1,1σ2,1)

= z · cov(∆m(0) −∆m(1),∆m(0) −∆m(2))

Lastly, I also use Eq. (A.4) and (A.5) to solve for the FX variance:

var(∆s1/0) = z2
(
(σ0,0 − σ1,0)

2 + σ2
1,1

)
+ (y(1))2 + (−2z)y(1)σ1,1cov(ε

(1)
m , ε(1)y )

= z
(
(σ0,0 − σ1,0)

2 + σ2
1,1

)
− y(1)cov(∆m(1), ε(1)y )

var(∆s2/0) = z
(
(σ0,0 − σ2,0)

2 + σ2
2,1 + σ2

2,2

)
− y(2)cov(∆m(2), ε(2)y );

then,

corr(∆s1/0,∆s2/0)

=
cov(∆s1/0,∆s2/0)√

var(∆s1/0)
√

var(∆s2/0)

=
z · cov(∆m(0) −∆m(1),∆m(0) −∆m(2))√

z · var(∆m(0) −∆m(1)) + y(1)cov(∆m(1), ε
(1)
y )

√
z · var(∆m(0) −∆m(2)) + y(2)cov(∆m(2), ε

(2)
y )

=
cov(∆m(0) −∆m(1),∆m(0) −∆m(2))√

var(∆m(0) −∆m(1)) + y(1)cov(∆m(1), ε
(1)
y )/z

√
var(∆m(0) −∆m(2)) + y(2)cov(∆m(2), ε

(2)
y )/z

With Assumption 1, the correlation formula can be simplified as

corr(∆s1/0,∆s2/0) = corr(∆m(0) −∆m(1),∆m(0) −∆m(2))

B Data Sources and Empirical Tables
The exchange rate data are from Datastream. The consumption data are from World Bank Devel-
opment indicators. The equity price-dividend data are from MSCI.
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Table A.1: Correlation Matrix of Exchange Rates and Economic Quantities

This table reports the correlation matrix of different bilateral variables, between the pair of country i and
USA and the pair of country j and USA. Exchange rate data are annual, 1988—2020. Consumption data are
constant price in local currency terms, and annual, 1970—2020. Price-dividend ratio data are constructed
from the cum- and ex-dividend returns of the MSCI country-level aggregate stock portfolios in local currency
units, annual, 1990—2016.

Panel (a) Correlation of bilateral log exchange rate movements ∆s
i/USA
t

AUS CAN CHE DEU DNK GBR JPN NOR NZL SWE
AUS
CAN 0.78
CHE 0.35 0.19
DEU 0.53 0.44 0.82
DNK 0.53 0.44 0.82 1.00
GBR 0.64 0.54 0.42 0.58 0.58
JPN 0.34 0.03 0.47 0.30 0.29 -0.02

NOR 0.73 0.68 0.61 0.75 0.75 0.72 0.18
NZL 0.89 0.71 0.41 0.58 0.58 0.67 0.17 0.79
SWE 0.73 0.60 0.72 0.84 0.84 0.77 0.24 0.84 0.70

Panel (b) Correlation of log consumption growth differential ∆c
(i)
t −∆c

(USA)
t

AUS CAN CHE DEU DNK GBR JPN NOR NZL SWE
AUS
CAN 0.55
CHE 0.44 0.46
DEU 0.42 0.48 0.62
DNK 0.27 0.14 0.14 0.30
GBR -0.03 0.29 0.13 0.03 -0.18
JPN 0.23 0.30 0.37 0.60 0.12 0.20

NOR 0.47 0.50 0.28 0.44 0.56 -0.05 0.20
NZL 0.43 0.36 0.28 0.03 0.15 0.12 -0.08 -0.00
SWE 0.63 0.61 0.50 0.49 0.32 0.10 0.18 0.45 0.33

Panel (c) Correlation of log stock dividend-price ratio change ∆dp
(i)
t −∆dp

(USA)
t

AUS CAN CHE DEU DNK GBR JPN NOR NZL SWE
AUS
CAN -0.05
CHE 0.37 -0.16
DEU 0.03 0.20 0.56
DNK -0.10 0.26 0.08 0.44
GBR 0.52 0.07 0.47 0.33 0.25
JPN 0.06 0.26 0.18 0.22 0.19 0.29

NOR 0.15 -0.03 0.49 0.45 0.49 0.25 0.52
NZL 0.48 -0.24 0.26 -0.11 -0.23 0.36 0.12 0.28
SWE 0.13 0.35 0.22 0.52 0.67 0.56 0.56 0.50 0.01
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Table A.2: Covariance Ratio Test

This table reports the ratio between the covariance between bilateral exchange rate movements and the
covariance between bilateral growth differentials in economic quantities. Exchange rate data are annual,
1988—2020. Consumption data are constant price in local currency terms, and annual, 1970—2020. Price-
dividend ratio data are constructed from the cum- and ex-dividend returns of the MSCI country-level aggre-
gate stock portfolios in local currency units, annual, 1990—2016.

Panel (a) Ratio between FX covariance and consumption growth differential covariance
AUS CAN CHE DEU DNK GBR JPN NOR NZL SWE

AUS
CAN 61.35
CHE 36.23 14.76
DEU 54.24 30.37 46.51
DNK 91.49 111.74 222.18 120.86
GBR -1032.36 60.62 109.39 563.28 -111.44
JPN 56.36 3.09 39.46 14.79 79.37 -2.78

NOR 71.32 48.80 80.87 60.78 52.19 -456.93 27.85
NZL 75.33 55.79 43.48 490.15 115.07 157.05 -52.07 -9243.45
SWE 61.59 40.51 62.61 71.07 119.16 319.20 49.74 82.65 74.28

Panel (b) Ratio between FX covariance and stock dividend-price ratio differential covariance
AUS CAN CHE DEU DNK GBR JPN NOR NZL SWE

AUS
CAN -14.87
CHE 0.57 -0.57
DEU 10.08 1.07 0.44
DNK -2.61 0.63 2.32 0.54
GBR 1.97 10.28 0.70 1.41 1.44
JPN 4.04 0.07 0.94 0.49 0.42 -0.06

NOR 2.94 -12.23 0.36 0.49 0.35 2.22 0.12
NZL 1.34 -1.67 0.55 -1.98 -0.70 1.75 0.62 0.98
SWE 3.07 0.75 0.86 0.44 0.27 1.00 0.14 0.44 26.17
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