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equities; market volatility and inflation constitute the most critical regime-switching that 
asymmetrically interact with characteristics. P-Trees outperform most known observable and 
latent factor models in pricing individual stocks and test portfolios, while delivering transparent 
trading strategies and risk-adjusted investment outcomes (e.g., out-of-sample annualized Sharp 
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1 Introduction

Tree-based models are exceptional in predictive performance when dealing with

data of high dimensionality, nonlinearity, asymmetric variable interactions, low signal-

to-noise ratios, and small sample environments (e.g., Sorensen et al., 2000; Rossi and Tim-

mermann, 2015; Gu et al., 2020; Bali et al., 2022). However, they are developed for pure

prediction tasks, and are neither guided by economic principles nor tailored for financial

panel data. Meanwhile, despite the popularity of factor models (e.g., Fama and French,

2015; Hou et al., 2021), researchers recognize the need to apply machine learning (ML)

models to understand the time-series co-movement and cross-sectional variation of asset

returns using high-dimensional asset characteristics from financial big data (e.g., Kelly

et al., 2019; Kozak et al., 2020; Lettau and Pelger, 2020b). Nonetheless, many ML methods

appear black boxes without straightforward formulation and interpretation. When taken

off-the-shelf, they do not incorporate economic restrictions such as no arbitrage.

Therefore, we develop a novel unified P-Tree framework (“P” for “panel”) for analyz-

ing (unbalanced) panel data, inheriting the advantages of tree models while incorporat-

ing interpretability under economics-guided global split criteria.1 When applied to asset

pricing, P-Tree extends the scope of tree models beyond pure prediction to recovering

the stochastic discount factor (SDF) from a panel of individual asset returns. Specifically,

P-Tree splits the cross section top-down to generate leaf basis portfolios, achieving super-

vised dimension reduction and generalizing sequential security sorting for constructing

characteristics-managed basis assets. We derive SDF from leaf portfolios and grow P-

Tree following global split criteria to explain the cross-sectional returns or maximize the

Sharpe ratio of investment portfolios.

While other applications of P-Tree exist, the asset pricing application effectively il-

lustrates our methodological innovations. First, ML methods, including tree-based meth-

1We develop and post a P-Tree package in R,TreeFactor, for general explorations by other researchers
(https://github.com/Quantactix/TreeFactor).
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ods, assume observations are independently and identically distributed (i.i.d.). P-Tree ad-

mits the panel structure of data, incorporates vectorized leaf parameters for multi-period

observations, and performs supervised dimension reduction for the unbalanced panel.

Specifically, the P-Tree nodes are time series of portfolios for (value-weighted) averages of

individual asset returns. This innovation allows P-Tree to overcome the high-dimensional

sorting challenge raised in Cochrane (2011) and to capture potentially asymmetric inter-

actions of multiple characteristics, which are desirable in empirical asset pricing.

Second, tree-based models for prediction, such as CART (Classification and Regres-

sion Tree), grow recursively and optimize split rules at each node without considering

other sibling nodes. This “myopic” strategy focuses on local optimization for computa-

tional ease but usually leads to overfitting because it operates on fewer observations in

each node as the tree grows. In contrast, P-Tree is designed to utilize data from the entire

cross section to guard against overfitting when iteratively generating basis portfolios and

latent factors. In our asset pricing application, P-Tree recovers the SDF by minimizing

pricing errors or maximizing the Sharp ratio (theoretically equivalent), both global crite-

ria entailing all sample observations. P-Tree thus customizes a nonlinear ML method to

combine economic principles and statistical properties, while achieving transparency and

interpretability of non-ensemble trees.2

Empirically, we apply P-Tree to individual stock returns in the U.S. from 1981 to

2020.3 The asset pricing and investment P-Tree factor models outperform most alterna-

tives, including the well-known observable factor models (e.g., Fama and French, 2015;

Hou et al., 2021) and latent factor models (e.g., Kelly et al., 2019; Lettau and Pelger, 2020b),

in terms of pricing and investment performance. In particular, P-Tree models show ex-

cellent pricing performance in explaining individual stock and test portfolio returns. In-

vestment P-Tree models offer annualized Sharpe ratios close to 3 and significant monthly

2When boosted to generate multiple factors, P-Trees can be viewed as an alternative to PCA approaches
but with greater interpretability and (potentially asymmetric) nonlinear interactions.

3P-Tree can be applied beyond equities. For example, the online appendix reports its implementation on
U.S. corporate bonds.
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alphas of about 0.80% in the test sample. Moreover, the multi-characteristics sequentially-

sorted P-Tree leaf basis portfolios better span the efficient frontier and serve as challeng-

ing test assets for alternative factor models.

Our study of the out-of-bag variable importance validates the transparent and inter-

pretable P-Tree models, because single P-Tree and P-Forest (ensemble) reveal the same

small set of characteristics (e.g., idiosyncratic volatility and earnings-to-price ratio) as

drivers of the cross-sectional return variation through nonlinear interactions. P-Tree can

also split the panel of return data on the time series using macroeconomic variables: mar-

ket volatility and inflation are crucial macro predictors for considering regime-switching.

Idiosyncratic volatility plays a crucial role when splitting the cross section for either high-

or low-market-volatility periods, whereas market equity is more important during low-

inflation periods. Moreover, P-Tree displays all the split rules in sequence, which helps

researchers understand the interactions among firm characteristics and between macroe-

conomic variables and firm characteristics, and potentially enhance trading strategies and

resurrect anomalies.4 Overall, P-Tree offers a new framework for panel data analysis that

incorporates economic guidance through global split criteria and can be tailored for asset

pricing applications and beyond.

Literature. Machine learning has gained adoption in finance in recent years, has been

shown to be powerful in predicting individual asset returns with a high dimension of as-

set characteristics (e.g., Freyberger et al., 2020; Gu et al., 2020; Bianchi et al., 2021; Bali et al.,

2022). While recent studies focus on deep learning or reinforcement learning(Chen et al.,

2022; Cong et al., 2019; Feng et al., 2022), P-Tree adds a more interpretable class of Tree-

based models that can be customized for asset pricing.5 Though financial economists have

4In particular, P-Tree allows a long-short factor’s long and short leg portfolios to interact with different
characteristics, which loads the portfolio on different leaf basis portfolios. This is in contrast to the tradi-
tional treatment of a long-short portfolio as a single asset, complementing the pioneering work of Jarrow
et al. (2021) to model the two legs of anomaly portfolios separately.

5Technically speaking, our paper also contributes to AI and data science by introducing a new form of
economically guided, self-supervised learning (SSL) algorithm. Existing SSL train large models without
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used the regression tree or ensemble methods such as boosted trees and random forests

(e.g., Rossi and Timmermann, 2015; Gu et al., 2020), most of them apply off-the-shelf tree

models for prediction. One recent exception by Creal and Kim (2021) identifies variables

that best explain assets’ betas by splitting currency-return observations via Bayesian ad-

ditive regression trees (BART). Instead of risk premia, we focus on the panel structure of

returns and interpretability, which are crucial for understanding asymmetric nonlinear

interactions and guiding portfolio constructions.

Our study contributes to the growing literature on latent factor models related to sta-

tistical factor models, such as principal component analysis (PCA). Latent factor models

in asset pricing start with the arbitrage pricing theory of Ross (1976), and the empirical

test in Roll and Ross (1980). For recent work, the projected PCA of Kim et al. (2021),

and the instrumental PCA of Kelly et al. (2019) and Kelly et al. (2022) use firm charac-

teristics as instruments to model the time-varying factor loadings and estimate principal

components. Lettau and Pelger (2020a,b) develop the risk premia PCA and provide a reg-

ularized estimation for risk premia. Recent studies, such as the auto-encoder (Gu et al.,

2021), generative adversarial network (Chen et al., 2022), and characteristics-sorted factor

approximation (Feng et al., 2021) have also developed nonlinear deep neural networks

for latent factor modeling. P-Tree belongs to nonlinear latent factor models but is the

only one providing a graphical representation for variable nonlinearity and asymmetric

interactions, something PCA methods or deep learning ill-afford.

More generally, for recovering the pricing kernel, Kozak et al. (2020) use a shrinkage

estimator on the SDF coefficients for characteristics-based factors. Bryzgalova et al. (2020)

estimate the regularized SDF on a given set of characteristics-managed portfolios with a

pruning algorithm with a global criterion. P-Tree differs in growing a tree top-down

labeled data through pretext tasks and data-driven supervisory signals (e.g., Chen et al., 2020), and is fast
emerging in AI and data science with various applications. in image, audio, and language processing and
recognition (e.g., OpenAI’s GPT-3, Google’s BERT Model, and Facebook(Meta)’s wav2vec). We join Cong
et al. (2022) as the earliest studies to utilize economic principles (e.g., no-arbitrage under a factor return
structure) for iteratively generating supervisory signals (e.g., based on pricing performance) for clustering
observations.
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rather than bottom-up (pruning), and generating test portfolios endogenously.6 Our ap-

proach exploits a global iterative greedy algorithm to effectively search in a much larger

space of tree structures than the conventional sequential sorting to uncover nonlinear sig-

nals and predictor interactions. Cong et al. (2022) is another application of the panel tree

structure for clustering individual assets and estimating heterogeneous factor models.

We also join the emerging studies about imposing economic restrictions on estimat-

ing and evaluating ML or statistical factor models (e.g., Gagliardini et al., 2016; Feng et al.,

2021; Chen et al., 2022; Avramov et al., 2022). For evaluating risk factors, Feng et al.

(2020) and Bryzgalova et al. (2022) estimate the risk price for high dimensional factors

by variable selection cross-sectional regressions. Rossi and Timmermann (2015) adopt

the boosted regression to estimate the conditional covariance for ICAPM. DeMiguel et al.

(2020) offer the economic rationale for why many characteristics are needed in portfolio

investment, by considering transaction costs. While no-arbitrage has been applied to lin-

ear parametric models, we adopt it into flexible ML methods—a challenging task because

of the additional SDF modeling.

Finally, this paper relates to the construction of basis assets and the general asset

pricing literature. P-Tree contributes the first economic-supervised solution of clustering

individual stocks and generating leaf-basis assets. Ahn et al. (2009) generate basis assets

by unsupervised clustering of assets according to the correlation structure of returns. Zhu

et al. (2020) develop a group-wise interpretable basis selection to estimate a new adaptive

multi-factor model. The literature, including regularized linear models (Kozak et al., 2020;

Bryzgalova et al., 2020) and the PCA approaches (Kozak et al., 2018; Haddad et al., 2020;

Lettau and Pelger, 2020b), largely takes pre-specified or characteristics-managed portfo-

lios as given. P-Tree generates these characteristics-managed portfolios, complementing

the adversarial networks approach in Chen et al. (2022), among others.

6Enumerating all possible tree configurations to prune from is an NP-hard problem. It is not computa-
tionally feasible unless one manually specifies a small set of variables and shallow depth for initial trees.
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2 P-Tree Factor Models for Asset Pricing

2.1 Tree-based Models and P-Tree Innovations

Before detailing P-Trees’ growth, we formally describe CART, the building block of

the tree-based method, introduce P-Tree models, and explain how they innovate.

CART and asset pricing interpretation. Decision trees partition the space of predictors

into rectangles by a sequence of splits and provide local conditional responses.7 Let zi =

(zi,1, · · · , zi,K) denote a vector of K predictors for the i-th observation. A j-th split rule

of the tree is c̃(j) = (z·,k, cj), which splits the data sample along the k-th predictor z·,k

according to greater or smaller than the value cj
8. A tree consists of J splits in total

that partition the predictor space into J + 1 regions (leaf nodes), which we denote by

{Rj}J+1
j=1 . Importantly, CART assigns a constant leaf parameter µj to each leaf nodeRj for

prediction tasks. The regression tree T , with parameters ΘJ = {{c̃(j)}Jj=1, {µj}J+1
j=1 }, can be

expressed as

T (zi | ΘJ) =
J+1∑
j=1

µjI(zi ∈ Rj). (1)

The indicator function I(zi ∈ Rj) takes value 1 for one and only one leaf node and 0 for

all others. CART takes a simple average of training data in each leaf node to estimate the

leaf parameter. The averaging within a node and through ensembles guard CART models

against overfitting.
To predict a new observation, CART finds the leaf node and reports the associated

leaf parameter as the prediction. Figure 1 illustrates how CART uses firm characteris-

tics (with the corresponding partition of the characteristics space and their constant leaf

parameters) to fit stock returns. Growing a tree entails finding the best split rules sequen-

7CART(Breiman et al., 1984) is the most influential binary decision tree model in statistics, and is the
building block for ensemble methods. Well-known ensemble tree models include random forest (Breiman,
2001), boosting trees (Freund and Schapire, 1997), or Bayesian approaches such as Bayesian additive regres-
sion trees (Chipman et al., 2010) and the recent XBART (He et al., 2019; He and Hahn, 2021).

8A multiway-split tree can always be represented as a tree with multiple binary splits.
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Figure 1: Example: A Decision Tree For Prediction

Left: A decision tree with two splits, three leaf nodes, and three leaf parameters. Right: Corresponding
partition plot for the sample of predictor space on value and size.

size < 0.5

µ1 value < 0.7

µ2 µ3

yes no

yes no

size

value

tially. CART grows by recursively partitioning the characteristics of space. From a parent

node, the best split is determined by all split rule candidates according to pre-specified

split criterion, and then the data sample is divided into two regions for left and right

child nodes. The growing process repeats until some pre-specified stopping conditions

are met, such as the total number of leaves, maximal tree depth, or a minimal number of

observations in each leaf. When splitting a particular node, the recursive algorithm only

considers observations in that local node without looking at other nodes.

Although CART is designed purely for prediction, we interpret it for single-period

asset pricing as follows. Let ri,t denote the return of asset i at one same time period t. The

split criterion typically used is the sum of squared errors:

L(c̃) =
∑

i∈left node

(ri,t − r̄L)2 +
∑

i∈right node

(ri,t − r̄R)2, (2)

where r̄L = 1
#left node

∑
i∈left node ri,t and r̄R = 1

#right node

∑
i∈right node ri,t are average excess re-

turns in the left or right leaf nodes, respectively. If we continue to grow the tree in Figure

1, the bottom nodes (leaf nodes) are associated with constant leaf parameters. In other

words, assets in the same node share the same constant leaf parameter, the expected

return estimated. This one-period tree structure is typically used to capture the cross-

sectional difference of average excess returns for individual stocks.
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CART vs. P-Tree. Applying the off-the-shelf tree models in ML for asset pricing instead

of pure prediction has at least two serious limitations. First, CART requires same-period

return observations. Like most ML methods, CART assumes i.i.d. observations but ig-

nores the panel structure of asset pricing data. When one fits CART to multiple data

periods, the leaf parameters lose the pricing kernel interpretation, calling for new meth-

ods adapted to panel data for cross-sectional asset pricing. An additional advantage of

adapting tree models to panel data involves portfolio optimization on leaf basis portfo-

lios — a vector of portfolio returns over multiple periods. We, therefore, specify the leaf

parameters of P-Trees to be vectors instead of scalars.

Second, when splitting a node, CART only considers observations within that node

without using information from other sibling nodes. This recursive statistical algorithm

leads to overfitting idiosyncratic noises from observations in that node when growing

a single tree and does not incorporate any economic guidance. P-Tree grows iteratively

instead, imposing a global split criterion defined on all leaf nodes, which explicitly mod-

erates the in-sample overfitting. The algorithm searches for all split rule candidates in

all current leaf nodes to find the optimal split that improves the pre-defined performance

metric. This metric, reflected in a global split criterion, is crucial to asset pricing studies

when the goal is to construct a factor model that prices all individual stock returns or

delivers the highest Sharpe ratio for investment.

2.2 Growing a P-Tree

A P-Tree splits the universe of unbalanced individual assets, over T time periods

with Nt assets in each time period and N assets in total, into non-overlapping leaf nodes

according to values of ranked firm characteristics.9 Leaf basis portfolios are thus created

9The P-Tree framework is flexible enough to accommodate a simultaneous sorting scheme (i.e., Fama-
French ME - B/M 5×5 equity portfolios). One needs to split along ordered duplet or multiplet of charac-
teristics, that is, linear partitions, not parallel to any single input variable. P-Tree can also split according to
macro variables in the time series (see Section 4.4).
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as value-weighted portfolios for stocks within each leaf node. The number of basis port-

folios increases one at a time when the tree splits a parent node into two child nodes.

After the j-th split, P-Tree generates j + 1 leaf basis portfolios. Therefore, it reduces di-

mension from thousands of individual stocks to j + 1 leaf basis portfolios. This idea of

characteristics-managed leaf basis portfolios is similar to commonly used characteristics-

sorted portfolios but allows for the asymmetric interactions of multiple characteristics.

Here is the growth procedure: Let R
(j)
t denote the return vector of the leaf basis

portfolios after the j-th iteration of the tree. After the j-th splits, the tree has j + 1 basis

portfolios, denoted by R
(j)
t =

[
R

(j)
1,t , R

(j)
2,t , · · · , R(j)

j+1,t

]
. Here, R(j)

k,t represents a vector of

returns of T periods for the k-th leaf basis portfolio. We denote f (j)
t as the P-Tree factor

(latent factor generated by P-Tree) generated after the j-th splits and β(j)(zi,t−1) = b
(j)
0 +

b(j)ᵀzi,t−1 as the conditional factor loadings driven by firm characteristics.

The portfolio at the root node (R(0)
t , before the first split) corresponds to the market

factor: a single-leaf basis portfolio of all assets. We gradually grow the tree with addi-

tional splits by updating
{

R
(j)
t , f

(j)
t , β(j)(·)

}
iteratively. First, leaf basis portfolios R

(j)
t are

expanded when the tree splits and grows one more leaf. Second, the P-Tree factor, f (j)
t , is

re-estimated using the expanded leaf basis portfolios. Finally, factor loadings β(j)(·) are

re-estimated for the updated P-Tree factor for individual asset returns.

Figure 2: Illustration of the First Split

To search for the optimal characteristic and cutpoint value, we consider one split rule candidate,
RVAR FF3≤ 0.6, for calculating the split criterion.

R
(0)
t : RVAR FF3 ≤ 0.6

R
(1)
1,t R

(1)
2,t

yes no

First split. Before the first split, the entire cross section lies in the root node, and the

corresponding value-weighted leaf basis portfolio R
(0)
t is the market factor. Firm char-
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acteristics are normalized cross-sectionally to [−1, 1] uniformly within each time period.

For all characteristics and macroeconomic variables, we consider various split threshold

candidates. For example, we use quintile split rule candidates at -0.6, -0.2, 0.2, and 0.6.

Consider a split rule candidate c̃k,m = (z·,k, cm), which partitions the root node to

the left and right child nodes according to whether the k-th characteristics is smaller than

value cm or not. Figure 2 illustrates a candidate for the first split. Stock-return obser-

vations in each potential child leaf form a leaf basis portfolio, denoted by R
(1)
1,t and R

(1)
2,t

respectively. The P-Tree factor is estimated as the mean-variance efficient (MVE) portfolio

of all leaf basis portfolios,10

f
(1)
t = w(1)ᵀR

(1)
t , w(1) ∝ Σ−11 µ1, (4)

where Σ1 and µ1 are the covariance matrix and average excess returns for leaf basis port-

folios R
(1)
t =

[
R

(1)
1,t , R

(1)
2,t

]
after the first split.11

To gauge the quality of the split rule candidate, we measure a customized split crite-

rion based on the loss of aggregate pricing errors,

L(c̃k,m) =
T∑
t=1

Nt∑
i=1

(
ri,t − β(1)(zi,t−1)f

(1)
t (c̃k,m)

)2
, (5)

where f (1)
t is determined by the split rule c̃k,m, and β(1)(zi,t−1) = b

(1)
0 +b(1)ᵀzi,t−1 is the con-

ditional beta driven by characteristics zi,t−1. Note that (5) is a customized split criterion

10For a robust estimation of the efficient portfolio weights, we include two small shrinkage parameters,
γΣ = 10−4 and γµ = 10−4 and the estimation is

w(j) =
(

Cov(R(j)
t ) + γΣIk+1

)−1 (
E(R(j)

t ) + γµ1
)
, (3)

where Ik+1 is the identity matrix and 1 is a vector of ones. The shrinkage parameters help stabilize the
portfolio weight estimation and avoid over-leveraging. Larger shrinkage parameters imply a larger regu-
larization. These regularized portfolio optimization studies are also addressed in Bryzgalova et al. (2020).

11The absolute sum of portfolio weights is normalized to two, which is equivalent to a 50% margin con-
straint. According to Regulation T of the Federal Reserve Board, a minimum of 50% of the security’s current
market value is required for the margin account.
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with an embedded factor model:

T (zi,t−1|Θ) = β(1)(zi,t−1)f
(1)
t ,

where Θ is a collection of split rule and leaf regression coefficients β(1) for the tree. The

leaf parameter is a function conditional on latent factor and dynamic betas. The betas

are estimated by a pooled regression model for all individual stock returns regardless

of the leaf node membership. Thus the split criterion is “globally” involving all stock-

return observations. In the P-Tree framework, the choice of split criteria is flexible. We

demonstrate the aggregate pricing errors as an example in the current subsection, and

discuss asset pricing or investment criterion further in Section 2.3.

A different split rule candidate c̃k,m produces different partitions of the data, thus

creating different leaf basis portfolios, corresponding P-Tree factors, and valuation of split

criteria in (5) eventually. Therefore, we loop over all split rule candidates, and choose the

one minimizing the split criteria as the first split rule.

Second split. The second split can happen at either the root’s left or right child node.

We evaluate the split criteria for all split rule candidates for both leaf nodes, and pick the

one that minimizes the split criteria as in (5). Figure 3 depicts the tree of the candidates

for the second split. In either case, one leaf node splits, becomes an internal node, and

creates two new leaf nodes. The P-Tree factor is now constructed based on all three leaf

basis portfolios:

f
(2)
t = w(2)ᵀR

(2)
t , w(2) ∝ Σ−12 µ2, (6)

where Σ2 and µ2 are the covariance matrix and average excess returns for leaf basis port-

folios R
(2)
t =

[
R

(2)
1,t , R

(2)
2,t , R

(2)
3,t

]
after the second split. The construction of three basis port-

folios depends on which node the candidate splits, as shown in Figure 3.
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Figure 3: Illustration of the Second Split

These two figures display two candidates for the second split. Either the left or right node splits, and the
tree model’s second (j-th) iteration has three (j + 1) leaf basis portfolios to generate the latent factor.

R
(0)
t : RVAR FF3 ≤ 0.6

R
(1)
1,t : BASPREAD ≤ 0.6 R

(2)
3,t

R
(2)
1,t R

(2)
2,t

yes no

yes no

(a) Splitting node R(1)
1,t at BASPREAD.

R
(0)
t : RVAR FF3 ≤ 0.6

R
(2)
1,t R

(1)
2,t : EP ≤ −0.6

R
(2)
2,t R

(2)
3,t

yes no

yes no

(b) Splitting node R(1)
2,t at EP.

The updated P-Tree factor is plugged into the split criteria,

L(c̃k,m) =
T∑
t=1

Nt∑
i=1

(
ri,t − β(2)(zi,t−1)f

(2)
t (c̃k,m)

)2
, (7)

where β(2)(zi,t−1) = b
(2)
0 + b(2)ᵀzi,t−1. Notably, it is still defined globally on the entire cross

section. Furthermore, we explore all candidates of all possible nodes to find the one with

the largest global performance improvement, rather than focusing on a specific leaf node

without looking at sibling nodes, as is the case in CART. This global criterion still uses a

greedy algorithm, but is less myopic and helps prevent overfitting.

All subsequent splits are determined similarly. Algorithm 1 summarizes the entire

tree-growing procedure.One natural turning parameter of the tree-growing process is the

number of leaves. We consider a tree with J + 1 = 20 leaf nodes in the baseline specifi-

cation.12 Once the tree growing process terminates, then f (J)
t and β(J)(·) are final outputs.

We discuss how one can create multi-factor P-Trees or incorporate exogenously given

pricing factors in Section 2.4.

12Our data consist of 3,000 to 7,000 stocks per month. We set the condition of the minimal leaf size to be
10. Leaf nodes that cannot satisfy minimal leaf size are not further split. We demostrate model robustness
in the Internet Appendix I for trees with different number of leaves (e.g., 15 an 25).
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2.3 Incorporating SDF Objectives into Global Split Criteria

A fundamental theorem in asset pricing is the duality between the mean-variance

efficient (MVE) portfolio and the stochastic discount factor (SDF). The minimal variance

of the SDF equals the maximal squared Sharpe ratio of the MVE portfolio (Hansen and

Jagannathan, 1991). Correspondingly, explaining the cross section and maximizing the

Sharpe ratio are direct and indirect objectives of constructing the SDF. The global split

criteria of the P-Tree can incorporate either asset pricing objective.

Let us first illustrate the duality of asset pricing no-arbitrage restriction and the max-

imal Sharpe ratio of investment for the SDF. We start with the minimum-variance SDF in

the span of N individual asset excess returns, rt = [r1,t, ..., rN,t]
ᵀ,

mt+1 = 1−wᵀ
t (rt+1 − µt), (8)

where µt = Et[rt+1] represents the conditional expectation of excess returns. Plugging in

the linear SDF in (8) into the no-arbitrage restriction Et[mt+1rt+1] = 0 yields the solution

to SDF loading wt,

wt = Σ−1t µt, (9)

where Σt = Covt(rt+1) is the conditional covariance matrix of excess returns. Plugging it

into (8) yields the conditional variance of SDF,

Vart(mt+1) = µᵀ
tΣ
−1
t µt, (10)

which equals the maximal conditional squared Sharpe ratio of the tangency portfolio.

Therefore, the tangency portfolio weights equal the SDF parameter in (9). A solution

of portfolio weights to maximize the squared Sharpe ratio also satisfies the no-arbitrage

restriction for the SDF. However, the estimation of Σt and µt for a large number of indi-

vidual assets is unfeasible (Cochrane, 2014). One motivation of the P-Tree is to reduce
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the dimension of the individual assets and to create a small number of leaf basis portfo-

lios, which can be considered with two types of split criteria. The below text refers P-Tree

models with asset pricing or investment criteria P-Tree or Investment P-Tree, respectively.

Asset pricing criterion. The P-Tree algorithm in Section 2.2 illustrates the asset pricing

criterion under no arbitrage. The direct objective of constructing an SDF is to explain the

cross section of returns and minimize the loss of aggregate pricing errors. Thus the tree

growing algorithm searches for split rule candidate that minimizes

LA(c̃k,m) =
T∑
t=1

Nt∑
i=1

(
ri,t − βi,t−1(zi,t−1)ft

)2
, (11)

where ri,t is the excess return for stock i at period t, ft is the P × 1 traded factor return,

and βi,t−1 is the factor loading for stock i. With this criterion, P-Tree solves a joint problem

for constructing the latent factors and estimating betas.

The realized pricing errors are the return residuals from the traded factor model. P-

Tree generates latent traded factors to reduce the aggregate realized pricing errors. If we

adopt this criterion for growing the P-Tree, it minimizes the aggregate realized pricing

errors and thus follows the no-arbitrage restriction. Chen et al. (2022) and Feng et al. (2021)

share the same modeling objective by constructing latent factors via deep learning. In-

cluding a benchmark factor (e.g., market factor) in ft is also possible and discussed in

Section 2.4. For U.S. equities, we use P-Tree to generate latent factors to complement the

benchmark factor model to reduce pricing errors.

Investment criterion. A traded SDF is supposed to be the tangency portfolio with the

maximal Sharpe ratio. Therefore, an indirect objective of recovering the SDF and growing

the P-Tree is to maximize (minimize) the (negative) squared Sharpe ratio following (10):

LI(c̃k,m) = −µ′FΣ−1F µF, (12)
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where F = ft is the latent factor generated by the P-Tree, with mean and covariance µF

and ΣF respectively. Considering this alternative global criterion implies a joint problem

of constructing the latent factors and estimating efficient portfolio weights. The portfolio

optimization also requires a special design to accommodate the panel structure of asset

returns, which is not available for standard ML methods. Including benchmark factors

(e.g., market factor) in F is also feasible (see Section 2.4). Thus, F = [fbenchmark,t, ft]. The

indirect construction of the latent factor relies on the squared Sharpe ratio improvement

over benchmark factors (Barillas and Shanken, 2017).

2.4 Boosted P-Trees for Multiple Factors

P-Tree models offer practical ways to build a multi-factor model additionally. To do

so, one can use boosting, an ML technique to combine an ensemble of weak learners to

form a strong learner (Freund and Schapire, 1997). It grows a list of additive trees sequen-

tially, each time generating a latent factor to augment factors generated by all previous

trees. We propose the boosting split procedures as follows:

1. The first factor f1,t is generated by the standard P-Tree as discussed in Section 2.2.

Then, we keep f1,t and its corresponding factor loadings β1(·).

2. The second factor is generated to augment the first one. The tree-growing steps are

the same, except we use the boosting split criteria:

L(c̃k,m) =
T∑
t=1

Nt∑
i=1

(
ri,t − β1(zi,t−1)f1,t − β2(zi,t−1)f2,t

)2
.

Note that β1(·) is fixed from step 1, then ri,t−β1(zi,t−1)f1,t represents the unexplained

pricing error of the previous factor model. The second factor is generated to aug-

ment the first one. Then, we keep f2,t and its corresponding factor loadings β2(·).

3. The third factor f3,t is generated similarly to augment the first two factors, whereas

16



factor loadings for the first two factors are fixed at previous estimations.

L(c̃k,m) =
T∑
t=1

Nt∑
i=1

(
ri,t − β1(zi,t−1)f1,t − β2(zi,t−1)f2,t − β3(zi,t−1)f3,t

)2
.

4. Repeat the above process K times to generate K factors ft = [f1,t, · · · , fK,t] and ob-

tain corresponding factor loadings β = [β1, · · · , βK ].

The boosted P-Tree factors can augment any existing factor model. Suppose we fit

the P-Tree model with K = 3 factors. The three factors can be listed in decreasing order of

importance as [f1,t, f2,t, f3,t]. Generating additional P-Tree factors is similar to generating

additional principal components and each subsequent factor to help reduce the remaining

pricing errors. For example, a three-factor boosted P-Tree model follows:

T (zi,t−1|Θ) = β1(zi,t−1)f1,t + β2(zi,t−1)f2,t + β3(zi,t−1)f3,t.

P-Tree on benchmark factors. Another natural boosting application is creating an aug-

mented factor model on benchmark factor models. Feng et al. (2021) start with a bench-

mark model such as CAPM or Fama-French factor models and add latent factors gen-

erated by deep learning. P-Tree factors can also be generated to augment a benchmark

model fbenchmark,t to explain the “unexplained” information from the benchmark factors.

L(c̃(j)) =
T∑
t=1

Nt∑
i=1

(
ri,t − β0(zi,t−1)

ᵀfbenchmark,t − β1(zi,t−1)f1,t

)2
.

For the investment criterion, it simply expands F = [fbenchmark,t, ft] and calculates its nega-

tive squared Sharpe ratio as in (12). Boosted P-Tree factors can be added similarly. Given

the central role of the market factor, which is not explained by ranked characteristics, we

use the market-adjusted P-Tree for our baseline empirical results.13

13Complementing the market-adjusted P-Tree (Figure 5), we present a plain-vanilla P-Tree in Figure A.1.
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Boosted Investment P-Trees. The boosting procedures are straightforward under the

investment criterion. Additional P-Tree factors are generated to maximize the Sharpe ra-

tio for the tangency portfolio on existing factors. However, the original boosting idea for

unexplained residuals might not apply to this sequential boosted investment strategy, be-

cause every additional P-Tree factor updates the weights for the tangency portfolio. The

main application of this investment P-Tree is to perform supervised dimension reduction

from the unbalanced panel of individual stock returns to a few P-Tree factors for improv-

ing the existing investment portfolio. Feng et al. (2022) construct latent factors generated

by deep learning to complement or hedge benchmark assets, such as market factors for

corporate bonds or equities. Our P-Tree framework is similarly flexible for generating

additional factors to complement and hedge benchmark factors.

3 An Empirical Implementation of P-Tree on U.S. Equities

The P-Tree framework is easily implementable on the panel of U.S. equity data or

corporate bond data. The baseline P-Tree model trained on U.S. public equity data runs

about 1.5 hours on a server with an Intel Xeon Gold 6230 CPU, for a training data set with

61 characteristics and 1.3 million observations. We describe the details next and report

another implementation on the U.S. corporate bond data in Internet Appendix III.

3.1 Data

Equity data and Characteristics. The standard filters (e.g., same as in Fama-French fac-

tor construction) are applied to the universe of U.S. equities: (1) include only stocks listed

on NYSE, AMEX, or NASDAQ for more than one year; (2) use those observations for

firms with a CRSP share code of 10 or 11; and (3) exclude stocks with negative book eq-

uity or lag market equity. We use 61 firm characteristics with monthly observations for

each stock, covering six major categories: momentum, value, investment, profitability,
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frictions (or size), and intangibles. Table A.1 lists these input variables. We standardize

the characteristics cross-sectionally in the range [−1, 1].14

The sample period ranges from January 1981 to December 2020. We use the first 20

years for training and the latter 20 years for testing. The average and median monthly

numbers of stock observations are 5,265 and 4,925 in the training sample and 4,110 and

3,837 in the testing sample, respectively. For individual stock returns in the training sam-

ple, we perform a cross-sectional winsorization on 1% and 99% to reduce the outlier ef-

fects. We perform no winsorization for the observations in the test sample.

Macro predictors. We use ten macro predictors for consideration of time-series splits.

Table A.2 summarizes the macro predictors, including macroeconomic variables, bond

market predictors, and aggregate characteristics for S&P 500. Macro predictor data are

uniformly standardized by the historical percentiles of the rolling window of the past 10

years. For example, inflation greater than 0.7 implies the current inflation level is higher

than 70% of observations of the past 10 years. This rolling window data standardization

is useful when comparing the predictor level to detect macroeconomic regime switches.

3.2 Splitting the Cross Section

We use the market-adjusted asset pricing criterion as our baseline empirical specifi-

cation, and report complementary results using the investment criterion. Figure 5 plots

the market-adjusted P-Tree. In each leaf node, S# is the order of splits, and N# is the node

index. The numbers printed in the leaves are the median number of observations in the

monthly updated leaf basis portfolios. The split rules are the selected splitting charac-

teristics and cross-sectional quintile cutpoints [−0.6,−0.2, 0.2, 0.6].15 Before the first split,

14For example, market equity values in December 2020 are uniformly standardized into [−1, 1]. The firm
with the lowest value is -1, and the highest value is 1. All others are distributed uniformly in between.
Missing values are imputed as 0, implying the firm is neutral in the security sorting on the characteristic.

15This follows conventional univariate security sorting, which uses quintiles to maintain sufficient obser-
vations in each sorted portfolio. Our R package allows for finer grid searches and flexible specifications.
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the tree grows from the root node (N1), whose leaf basis portfolio represents the value-

weighted market factor.

Growth, splits, and stop. Selecting tuning parameters to balance the model fitness and

complexity is crucial in ML. We need to determine when to stop the P-Tree growth. To

maintain interpretability and avoid overfitting, we advocate a natural tuning parameter,

the number of leaves, to limit the tree size.16 We report the results for the case of 20 final

leaves. Our findings are robust to other tree sizes, such as 15 and 25.

Figure 5 displays a market-adjusted P-Tree, which stops growing after 19 splits.The

data-driven P-Tree first splits along the idiosyncratic volatility over Fama-French three

factors (RVAR FF3) at 0.6 (80% quantile), which is related to characteristics including size

and liquidity. After this split, 80% of the stocks go to the left leaf (labeled N2), and 20%

go to the right (N3). The second split is on the earnings-to-price ratio (EP) at -0.6 of the

right leaf (N3), whereas the third split is on the volatility of turnover (STD TURN) under

the high-RVAR FF3 and low-EP node (N6).

Partition, clusters, and leaf basis portfolios. P-Tree is helpful for clustering similar as-

sets under the economic-guided split criterion by their underlying characteristics. Figure

5 perfectly illustrates the (asymmetric) characteristics interactions for splitting the cross

section. By jointly defining the partition corresponding to the leaf node, P-Tree learns

the interaction of characteristics appearing in the same path. For instance, BASPREAD is

useful for low-RVAR FF3 stocks, such that liquidity might be a better indicator for cluster-

ing low-volatility stocks. However, for high-RVAR FF3 stocks, EP is useful because value

might be a better indicator for clustering high-volatility stocks.

The partition plot in Figure 7 is an alternative way to visualize these clustering pat-

terns. We report the monthly average excess returns and annualized Sharpe ratios for leaf

16Other conditions for controlling tree growth can be easily added to the framework. For example, one
can require the minimal leaf portfolio size to be 10, although it turns out to never bind in our empirical
exercise. As Figure 5 shows, the median portfolio size is well above 40 when the growth stops.
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basis portfolios. These performance gaps show the usefulness of splitting the cross section

via the nonlinear interaction of characteristics. The partition plot perfectly illustrates the

nonlinear and asymmetric interaction between EP and RVAR FF3. When used to split the

cross section, the EP only matters for high idiosyncratic volatility (RVAR FF3) stocks. In

the training sample, the low-RVAR FF3 partition portfolio has a 60% annualized Sharpe

ratio, but the high-RVAR FF3 low-EP partition portfolio has a -87% value.

3.3 Random P-Forest for Variable Importance

Random forest is another prominent ensemble approach that fits multiple trees to

reduce prediction errors.17 We deploy this strategy to measure the usefulness of charac-

teristics for the P-Tree growth. We refer to our approach as a random P-Forest. First, we

bootstrap the data on the time-series dimension with replacement. We preserve the com-

plete cross section for the selected periods to exploit the low serial correlations of returns,

which is a crucial assumption of random forest. Second, we randomly draw 20 charac-

teristics out of 61 for each subsample. Third, we independently grow a P-Tree on each

bootstrap sample and repeat the procedure 1,000 times. Any characteristic is considered

about 330 times out of 1,000 subsamples for fitting the P-Forest.

Quantifying importance. Our empirical exercises focus on the out-of-bag (OOB) vari-

able importance and define two measurements. The first measurement of variable im-

portance counts the frequency of one variable being selected by splitting. Intuitively, the

more often a characteristic is selected as a split rule candidate, the more important it is.

For each bootstrap sample, a subset of characteristics is randomly drawn to grow the tree,

and only a fraction of them are actually selected as split rules. We count the number of

times a particular l-th characteristic zl used in the first J splits and the total number of

17The idea of random forest is bagging, where sampling data from empirical distribution approximates
sampling from the true underlying distribution, thus enabling quantification of the estimation uncertainty
and variable importance.
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appearances in bootstrap subsamples. We define the first measurement of importance as

Selection Probability(zl) =
# (zl is selected at first J splits)

# (zl appears in the bootstrap subsamples)
. (13)

The second measurement aims to capture a feature’s “treatment effect”. For the 1,000

bootstrap subsamples, we know a characteristic is randomly included in a subsample by

following a Bernoulli distribution. Even if one characteristic is included in a subsample,

it is not necessarily selected as a split rule. The with- and without-sampling scheme for a

particular characteristic creates the treatment effect evaluation and the significance eval-

uation of its importance. We compute the loss function reduction for the asset pricing

criterion in (11) or the investment criterion in (12) as the characteristic importance:

Char. Importance(zl) =

[
E (loss function | with zl)

E (loss function | without zl)
− 1

]
× 100. (14)

Panel A of Table 3 summarizes the selection frequency in (13) of being the top split-

ting characteristics. We find idiosyncratic volatility (RVAR FF3) has a 40% chance to be

the first split characteristic once included in the bootstrap sample. Other high selections

are highly correlated, including IVOL of CAPM (RVAR CAPM), return volatility (SVAR),

and market equity (ME). The second split characteristic in Figure 5 is the earnings-to-price

ratio (EP), for which we also find a high selection probability, as well as its similar value

measure, the cash flow-to-price ratio (CFP). The two metrics reveal similar important

characteristics for growing the P-Tree. These characteristics are essential for capturing

the asymmetric nonlinear interactions and do not overlap with the important ML return

predictors (Gu et al., 2020), which only focuses on return prediction.

Figure 8 summarizes the variable importance in a market-adjusted random P-Forest.

According to (14), a negative value implies a reduction in model performance when

we excludethis characteristic. We conduct a two-sample t-test using the bootstrap sam-

ples and plot those significantly useful characteristics in a deeper color. Only seven
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out of 61 characteristics show statistical significance. The in-sample results identify the

significant characteristics such as return and idiosyncratic volatility (SVAR, RVAR FF3,

RVAR CAPM), analysts’ earning revisions (RE), bid-ask spread (BASPREAD), corporate in-

vestment (CINVEST), and dollar trading volume (DOLVOL). The return and idiosyncratic

volatility characteristics also show consistently significant asset pricing improvement for

the test sample in the bottom plot of Figure 8, so do RE, BASPREAD, and CINVEST.

Interpretable non-ensemble P-Tree without overfitting. Visualizing characteristics of

asymmetric nonlinear interactions gives P-Tree models excellent interpretability. A non-

linear tree structure and the interactions of characteristics are displayed when the decision

tree continues splitting further. However, these patterns gleaned from the single P-Tree

are only helpful if the P-Tree model can avoid overfitting. We use the aforementioned

characteristic importance metrics to examine if a P-Tree splits on similar characteristics

without overfitting. Specifically, we compare important characteristics from the random

P-Forest with those revealed in our single P-Tree model. If they are similar, the P-Tree

model with global split criteria behaves similarly to the less interpretable random P-Forest

that typically achieves better out-of-sample performance.

The results are indeed consistent. Those important characteristics from random P-

Forest, namely, idiosyncratic volatility (RVAR FF3) and the earnings-to-price (EP), are also

the characteristics used in the first two splits of the P-Tree (Figure 5). We deduce that P-

Tree models behave similarly to random P-Forest and are not subject to overfitting. Yet,

the nonlinearities and interactions revealed in P-Tree models provide helpful information

that is impossible to glean directly from ensemble models.

4 Performance and Further Applications

We now report the performance of P-Tree models for pricing individual stocks and

test portfolios and constructing investment strategies. We then discuss how P-Tree helps
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uncover nonlinear patterns in the cross-section of asset returns and enhance trading strate-

gies, all while maintaining interpretability. Finally, we illustrate how P-Tree augments

tree models by allowing both time-series and cross-sectional splits and incorporating in-

teractions of macroeconomic variables (and with asset-specific characteristics).

4.1 Asset Pricing Performance

Performance metrics. We follow the literature (e.g., Feng et al., 2021) to include multiple

performance metrics. Total R2 and cross-sectional R2 evaluate economic asset pricing

performance for variation in time-series and cross-sectional dimensions. Specifically,

Total R2 = 1−
1

NT

∑T
t=1

∑N
i=1 (ri,t − r̂i,t)2

1
NT

∑T
t=1

∑N
i=1 r

2
i,t

, (15)

where r̂i,t = β̂(zi,t−1)ft. Total R2 represents the fraction of realized return variation ex-

plained by the model-implied contemporaneous returns.

Stock CS R2 = 1−
1
N

∑N
i=1

(
1
T

∑T
t=1(ri,t − r̂i,t)

)2
1
N

∑N
i=1

(
1
T

∑T
t=1 ri,t

)2 , (16)

where r̂i,t = β̂(zi,t−1)ft. Cross-sectional R2 for individual stocks represents the fraction of

the squared unconditional mean returns described by the common factor model.

Portfolio CS R2 = 1−
∑N

i=1

(
r̄i − ̂̄ri)2∑N

i=1 r̄i
2

, (17)

where ̂̄ri = β̂
ᵀ

i λ̃f . The risk premium estimation adopts the cross-sectional regression

estimates of r̄i on β̂i. The portfolio cross-sectional R2 represents the fraction of assets’

average excess returns explained by the model-implied expected returns.

Comparing asset pricing models. Table 1 summarizes the P-Tree performance under

the asset pricing criterion. Panel A shows two P-Tree models on the market benchmark,
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plus one and four P-Tree factors. The additional number of P-Tree factors generated by

boosting is selected by the squared Sharpe ratio test of Barillas and Shanken (2017). Panel

B of Table 1 compares these results with observable factor models such as CAPM, Fama-

French five-factor model (Fama and French, 2015), and the recent Q5 model of Hou et al.

(2021). We also implement latent factor models from the ML finance literature, such as

RP-PCA of Lettau and Pelger (2020b) and IPCA of Kelly et al. (2019). Panel C reports

the standard P-Tree factor models. Panels D and E report the results of the P-Tree with

time-series splits on market volatility and inflation, which we discuss in Section 4.4.

Both P-Trees with and without the market factor show consistently positive values of

Total R2 in pricing individual stock returns, outperforming most observable factor mod-

els both in-sample and out-of-sample. The multifactor P-Tree models show compara-

ble Total R2 to two strong latent factor models. Cross-sectional R2 for individual stocks

quantifies the aggregate unexplained average pricing errors by the factor model. For the

cross-sectional R2, the multifactor P-Tree models produce highly positive numbers for in-

sample and out-of-sample analysis, which demonstrates the performance of the model-

implied expected returns. These numbers are close to the strong IPCA benchmark.

Next, we investigate the P-Tree performance on pricing multiple sets of test portfo-

lios. In this case, cross-sectional R2 in (17) quantifies the aggregate unexplained pricing

errors by the model-implied expected returns and is calculated using the entire sample of

data. We consider Fama-French ME-B/M 5 × 5 and 49 industry portfolios. In addition,

20 leaf basis portfolios are generated by P-Tree in Figure 5 and P-Tree generates another

20 without the market factor in Figure A.1. Generating basis assets is another data-driven

output from our P-Tree framework, which resolves the multiple characteristics challenge

and follows a chosen economic-guided split criterion.

Observable factor models, including CAPM, FF5, and Q5, explain well the cross-

sectional average excess returns for 25 ME-B/M and 49 industry portfolios. However,

they cannot explain the leaf basis portfolios generated by P-Trees. Lewellen et al. (2010)
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question that many factors are only tested on 25 ME-B/M portfolios with a strong factor

structure, suggesting using more new test assets. Our P-Tree factor models in Panel A

consistently price all sets of test assets. The results improve when considering the time-

series split, as seen in Panels D and E. Though the one-factor P-Tree does not work well

for the 20 leaf basis portfolios, the boosted four-factor P-Tree does. Among other latent

factor models, IPCA stands out as competing with robust positive performances. But

P-Trees offer more transparency and interpretability than other latent factor models.

4.2 Investment Performance

P-Tree is a flexible framework that reduces the dimension of thousands of individ-

ual stocks into a few latent factors for asset pricing or investment split criterion. Because

P-Tree factors are traded portfolios, we can assess the investment performance of P-Tree

factors for evaluating their in-sample and out-of-sample model fitness. Though our em-

pirical studies generate P-Trees on the monthly characteristics, its rebalancing frequency

can be lowered to quarterly or annual to reduce transaction costs.

On the one hand, though the asset pricing P-Tree is grown for fitting cross-sectional

returns, it should also deliver a high Sharpe ratio because it generates an SDF. On the

other hand, the investment P-Tree follows the squared Sharpe ratio split criterion and is

supposed to provide excellent investment performance. Figure 6 plots investment P-Tree

on the market benchmark and finds RVAR FF3 is again consistently the first characteristic

for splitting the cross section. The growth of these two P-Trees reveals the duality of asset

pricing and risk-adjusted investment performance of an SDF.

We compare the risk-adjusted investment performances of these observable or latent

factors. We consider two common strategies for investing multiple factors: the 1/N equal-

weighted portfolio and the MVE portfolio.18 Table 2 reports the monthly average return,

Jensen’s alpha, and the annualized Sharpe ratio of the training and test samples.

18We follow (3) to calculate portfolio weights and rescale their absolute sum to 1.
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The asset pricing and investment P-Tree factor models deliver exceptionally positive

performances. For the in-sample analysis, the MVE strategies of the five-factor model

(market plus four boosted P-Tree factors) deliver a 3.47 and 12.55 annualized Sharpe ratio,

in Panels A and B. Their monthly Jensen’s alphas are beyond 1%. These numbers are

consistently high out of the sample. In Panels B and C, the out-of-sample MVE strategies

of two investment P-Tree five-factor models offer annualized Sharpe ratios close to 3, plus

significant monthly alphas of about 0.80%. If we focus on the long-only 1/N strategies, the

numbers become lower but are still consistently positive. Overall, these P-Trees and the

five-factor IPCA perform well above other models. The portfolio construction, variable

importance, and interactions of characteristics are more transparent in P-Tree models.

We decompose each P-Tree factor on benchmark models to evaluate the additional

investment information, alphas, in Table 4. For example, the first investment P-Tree factor

RVAR FF3-ABR in Panel B shows economically and statistically significant alphas against

FF5 and Q5 models. A 5-factor IPCA model cannot explain this top P-Tree factor for

either in-sample or out-of-sample evaluation. The efficient portfolio of four investment

P-Tree factors plus the market factor still shows significant alphas everywhere. Moreover,

the risk-adjusted investment performances for asset pricing P-Tree factors in Panel A are

slightly lower but still consistently positive.

P-Tree factors are generated on leaf basis portfolios—the data-driven basis assets

generated by P-Trees on multiple characteristics. We also compare the investment per-

formance on different basis portfolios, such as conventional clustering (5 × 5 ME-B/M

and 49 industry portfolios) in Panel C, which shows lower investment performance. We

can conclude these positive performances of investment P-Tree factors come from both

the interaction and nonlinearity of characteristics and the data-driven way of identifying

these characteristics (as opposed to ad-hoc sorting).
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Hedging benchmark Portfolios. The generated P-Tree latent factor complements any

benchmark model for investment purposes too. Note that the objective of the Sharpe

ratio is not about the performance of the generated P-Tree factors, but the tangency port-

folio formed together with the benchmark model. The economically-guided P-Tree factor

plays two fundamental roles: (i) it should have a low or even negative correlation with the

benchmark factor, providing a potentially hedging portfolio; and (ii) when the benchmark

factor alone cannot span the efficient frontier, the P-Tree factor should enter the SDF if it

helps to improve the multi-factor portfolio efficiency (Fama, 1996), which implies poten-

tially missing factors from a large number of characteristics. Furthermore, the investment

P-Tree factors rely on the squared Sharpe ratio improvement over the benchmark without

using any test assets, sharing the same spirit with Barillas and Shanken (2017).

This hedging perspective of boosted P-Tree factors on the investment criteria differs

from the multi-factor model on the asset pricing P-Tree. The statistical boosting scheme

forms a strong learner by adding orthogonal weak learners, which works perfectly for

risk-adjusted investment for diversification. The innovation of P-Tree is to provide a

dimension reduction strategy for investing individual assets to hedge or complement

benchmark assets. In addition to equity risk factors, benchmark assets can include corpo-

rate bonds, treasury bonds, or commodities.

Figure 9 shows the annualized returns of the market-adjusted investment P-Tree and

market factors. We find P-Tree factor has positive returns for every year in the training

sample, and only one slightly negative year in the test sample. However, the market factor

is particularly positive that year and the tangency portfolio is still good. The purpose of

hedging is to generate a positive return when the market is down. Over the past four

decades, the market has had negative returns for ten years, yet the P-Tree factor perfectly

plays the role of a hedge. Therefore, the finding of persistently high performance—an

annualized Sharpe ratio of 2.78 and a monthly alpha of 1.10% for the recent two decades—

for the efficient portfolio combining two factors should not be a surprise.
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Finally, we report in Internet Appendix II how P-Tree asset pricing and investment

performances are robust under economic restrictions such as the exclusion of small stocks.

4.3 Nonlinearity, Interactions, and Interpretability

P-Tree essentially generalizes (sequential) sorting to capture nonlinear patterns. The

information can be used to understand characteristic interactions, resurrect anomalies,

and enhance other trading strategies.

Sorted Factors. Economic theory and extant empirical literature inform us of the long

and short directions for constructing the portfolios, such as small-minus-big or high-

minus-low. As shown in Figure 4, two types of characteristics-sorted factors follow the

original directions for long-short positions. Specification (a) is the standard univariate

sorting scheme. Specification (b) is the interaction factors generated by our P-Tree mod-

els for a sequential sorting scheme. As for P-Tree specification, we consider both the

market-adjusted asset pricing P-Tree and the market-adjusted investment P-Tree to gen-

erate interaction factors. For each characteristic, we train a P-Tree and restrict the first

split on that characteristic, the second and third split excluding that characteristics, and

the maximal depth is three. We restrict all splitting cutpoints to be the median for this

example and fit these interaction factors using the training sample.

Figure 4: Specifications of Characteristics-Sorted Factors

MKT

Long A

Long A Short A

Short A

Long A Short A

(a) Uni-Sort 4x1

MKT

Long A

Long B Short B

Short A

Long C Short C

(b) P-Tree Interaction
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We summarize the number of significant positive risk premia and alphas cases in

Table 5, Panels A and B, at 10% and 5% significance levels. First, more than half of

univariate-sort factors feature significant risk premia and alphas at the 10% level in the

entire sample. Second, fewer significant factors show in the test sample than in the train-

ing sample, which might reflect the post-publication bias (McLean and Pontiff, 2016).

Third, our market-adjusted asset pricing and investment P-Tree interaction factors have

more significant alphas than univariate-sort factors, which reflect incremental informa-

tion gains beyond the market. Last, the market-adjusted investment P-Tree interaction

factors show exceptional risk premia and alphas in and out of the sample. These em-

pirical findings confirm the advantages of P-Tree that extract asymmetric characteristics

interactions beyond the conventional sorting.

Enhancing and resurrecting anomalies through interactions. The information on asym-

metric nonlinearity and interaction provides new economic insights and can be used to

construct profitable trading strategies. We analyze how these interaction factors behave

using six examples and report the findings in Table 6 and Figure A.6. In short, inter-

action factors enhance investment performance over univariate-sort ones. For example,

the univariate-sort factor for standardized unexpected earnings (SUE) delivers a positive

risk premium. When we create an interaction factor with industry-adjusted B/M ratio

(BM IA) and dollar trading volume (DOLVOL), the performance almost doubles. BM IA

and DOLVOL are useful for the low and high SUE leaf portfolios, respectively. Figure A.6

shows the average excess returns for two legs during splitting and finds decreasing and

increasing values in the corresponding direction. This important insight reveals the need

for an asymmetric model of factor construction. Whereas Jarrow et al. (2021) point out

that long and short legs have different underlying risk factors, and thus reflect different

risks, our findings highlight how long and short legs can interact with different character-

istics asymmetrically. Dividend yield (DY in Panel C) and change in profit margin (CHPM
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in Panel E) are also examples of enhancing factors through interaction.

Utilizing the information in asymmetric characteristics interactions might help the

post-publication decay problem. Once we include the “correct” control or interaction,

some of these factors or anomalies can be resurrected. For example, the univariate-sort

factor for maximum daily returns (MAXRET) has a significant premium in the training

sample but disappears in the test sample. Interacting with industry-adjusted size (ME IA)

and abnormal returns around earnings announcement (ABR) in the long and short legs,

this interaction factor earns 0.67% for monthly average returns and 1.11% for alpha for

the out-of-sample period. Growth in long-term debt (LGR) in Panel D and momentum

6-month (MOM6M) in Panel F are also resurrecting examples.

4.4 P-Tree for Panel Data: Cross Section + Time Series

Panel data of asset returns have both cross-sectional and time-series dimensions.

Most of the literature focuses on explaining the cross-sectional return variation, as do

the P-Tree models. Since the tree grows from top to bottom, the panel of assets is parti-

tioned into many leaf nodes based on past characteristics. Each leaf node maintains the

entire time series from period 1 to T but a subset of assets. However, empirical findings

show the factor choices, their risk premia, and even betas can be time-varying under dif-

ferent macroeconomic states. For example, a large literature examines regime changes

in financial markets involving periods of high and low volatility or inflation, booms or

recessions (e.g., Hamilton and Lin, 1996; Buraschi and Jiltsov, 2005).

P-Tree enables splits in the time-series dimension and provides an alternative ap-

proach to factor-beta construction and estimation with regime-switching. Moreover, the

time-series information extracted from macroeconomic variables proves helpful in con-

structing the dynamic SDF. We consider creating time-varying factor models and estimat-

ing corresponding conditional betas under switching macroeconomic states, which can

be achieved by splitting nodes (e.g., the root node) by macroeconomic variables instead
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of firm characteristics. Each child node maintains the same cross section of assets as the

parent node, whereas their time-series samples do not overlap. This setting improves

P-Tree’s flexibility to capture cross-sectional and time-series variations, which performs

clustering over the two-dimension panel.

The asset pricing split criterion for the first time-series split is

L(c̃) =
∑
t∈RA

∑
i∈NA,t

(ri,t − βA(zi,t−1)fA,t)
2 +

∑
t∈RB

∑
i∈NB,t

(ri,t − βB(zi,t−1)fB,t)
2 , (18)

where the split rule candidate c̃ partitions the time series of data into two non-overlapped

sets of time periods RA and RB, for example, high or low inflation states. Note that both

sets of periods are not necessarily to be consecutive. Let NA,t denote the subsample of

assets in the child nodeRA in time period t, and NB,t proceeds similarly. Factors fA,t and

fB,t are P-Tree factor returns (or market) at each time period in the left or right child node,

respectively. Note that there are no overlapping periods between RA and RB. Addition-

ally, RA and RB might include multiple periods for the changing macroeconomic states.

Compared with the cross-sectional split criteria in (5), the time-series split criterion is the

total pricing loss of two time periods, with two corresponding factors fA,t and fB,t. Below

is the two-period model with conditional betas:

T (zi,t−1|Θ) = βA(zi,t−1)fA,tI(t ∈ RA) + βB(zi,t−1)fB,tI(t ∈ RB). (19)

After searching for the optimal time-series split rule at the root, all subsequent split rules

are chosen from cross-sectional characteristics only. Note any further split on either child

of the root node only depends on the subsample on one side. This extension also informs

how macroeconomic variables interact with firm characteristics to price assets, because

they jointly define the partition of the space.
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Regime switching under market volatility or inflation. Given the limited history of

monthly returns, and for illustration, we only implement one time-series split at the root

node (i.e., the first split rule of the tree). The first split determines the optimal macro

predictor for regime switching. After a complete search, P-Tree splits market volatility

(SVAR) at the 60% quantile of the past decade. Figure A.2 shows the time-series split and

the two branches of a cross-sectional split. The left and right branches have different tree

structures in high and low market volatility periods, implying the tree model adapts to

different macro conditions. We also consider another important macro predictor, infla-

tion, as the first split, chosen as the median of the past decade in Figure A.3. Idiosyncratic

volatility RVAR FF3 is selected as the first split characteristic for low-inflation periods,

and market equity ME is selected for high-inflation periods.

Table 3 presents variable importance in the selection probability for the time-series

split on stock variance and inflation. We find that the characteristics differ in economic

regimes, consistent with the findings in Boons et al. (2020). Although those volatility

characteristics are most important, the earnings-to-price (EP) is also helpful in highly

volatile periods. Liquidity, the number of zero-trading days (zerotrade), is more crit-

ical during low-inflation periods than in high-inflation periods, which is consistent with

the time-series split tree in Figure A.3, where zerotrade is chosen as the second split.

In conclusion, stock variance and inflation are regime-switching indicators, and equity

characteristics play different roles in different regimes.

Finally, the asset pricing results for the time-series split market-adjusted asset pric-

ing P-Tree model are summarized in Panels D and E of Table 1, and their investment

gains are reported in Table 2. The five-factor time-series P-Tree models have shown per-

sistently high Total and cross-sectional R2 for individual stocks. Furthermore, they pro-

vide robustly positive cross-sectional R2 to different test portfolios than the standard P-

Tree models and others. In the test sample, the long-only 1/N strategies for these five

time-series P-Tree factors provide significant monthly alphas of about 0.50%. We can also
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consider the time-series investment P-Trees, which could deliver higher risk-adjusted in-

vestment performance for macro-guided market timing. In summary, by incorporating

regime-switching and time-series splits, our P-Tree model can guide market-timing in

equity trading and characteristics-based portfolio construction.

5 Conclusion

Panel Tree (P-Tree)—a new class of ML/AI models for panel data analysis—innovates

upon standard tree-based models by relaxing the i.i.d. assumption on the observations

and adopting global split criteria. When applied to asset pricing or investment, P-Tree

performs self-supervised dimension reduction from an unbalanced panel of individual

stock returns, generates leaf basis portfolios, and finally constructs latent factors for the

pricing kernel. Meanwhile, P-Tree preserves the widely recognized advantages of tree-

based models, such as transparently displaying asymmetric and nonlinear interactions

while accommodating noisy data.

Our empirical study of U.S. equities shows that P-Tree models outperform most ob-

servable and latent factor models for pricing individual assets and portfolios. The gen-

erated asset pricing and investment P-Tree factors also show robust risk-adjusted invest-

ment performance. In addition, the resulting leaf basis portfolios better span the efficient

frontier on the market benchmark and serve as useful assets for testing alternative factor

models. The asymmetric interaction of characteristics of the P-Tree enhances factor invest-

ing performance over the univariate-sort factors. Finally, P-Tree learns regime-switching

across macroeconomic states by time-series splits interacting with asset characteristics.

Overall, P-Tree models generalize characteristics-based sorting and capture potential

nonlinearities, providing a useful alternative to PCA-based methods with similar empir-

ical performance but maintaining transparency. They also apply to other asset classes,

such as corporate bonds and general panel data structures beyond asset pricing.
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Figure 5: Market-Adjusted Panel Tree

This figure displays the market-adjusted asset pricing P-Tree trained from 1981 to 2000. The first factor is the market factor, and then we apply P-Tree
to generate a boosted tree factor under the asset pricing criterion. We show splitting characteristics and split rule values for each parent node. The
node numbers (N#) and splitting order numbers (S#) are also printed on each parent node. We have included the median monthly number of stocks
in the leaf basis portfolios. The description of equity characteristics are listed in Table A.1.
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Figure 6: Market-Adjusted Investment Panel Tree

This figure displays the market-adjusted investment P-Tree trained from 1981 to 2000. Controlling the market factor, we apply P-Tree to generate a
tree factor to maximize the Sharpe ratio of the SDF spanned by the market factor and the tree factor. We show splitting characteristics and split rule
values for each parent node. The node numbers (N#) and splitting order numbers (S#) are also printed on each parent node. We have included the
median monthly number of stocks in the leaf basis portfolios. The description of equity characteristics are listed in Table A.1.
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Figure 7: Partition Plots for Figure 5

This diagram illustrates the partition for the first few splits of the tree structure in Figure 5. For example,
the first split (S1) is cut at 80% of RVAR FF3 on the entire stock universe, and the second split is cut at 20%
of EP on the high RVAR FF3 partition. We also provide each partition’s monthly average excess returns and
annualized Sharpe ratios. The overlaid arrows show that the next split is implemented on the partitioned
area from the previous one.
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Figure 8: Out-of-Bag Characteristics Significance

This figure reports the characteristics significance of the out-of-bag ensembles from the random P-Forest of
1,000 trees with the market benchmark. The training period is 1981-2000, and the testing period is 2001-
2020. The variable importance measure is the average percentage increase of the loss function by including
a characteristic in a tree model. A negative value implies including this characteristic reduces loss and is
useful. The dark color bars on the left are significant characteristics at the 5% level by the two-sample t-test.
The descriptions of characteristics are listed in Table A.1.
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Figure 9: Annualized Returns of Market-Adjusted Investment P-Tree Factor

This figure shows the annualized returns (%) of the market-adjusted investment P-Tree factor and the mar-
ket factor. The results of both in-sample (1981-2000) and out-of-sample (2001-2020) are presented.

In-Sample: 1981-2000

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

40

30

20

10

0

10

20

30

40

RE
T

MKT
PTree

Out-of-Sample: 2001-2020

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

40

30

20

10

0

10

20

30

40

RE
T

MKT
PTree

43



Table 1: Asset Pricing Performance

This table reports the asset pricing performances. “Tot” (total R2 %) and “CS” (cross-sectional R2 %) in
equations (15) and (16) are measures for individual stock returns. The in-sample period is from 1981 to
2000, and the out-of-sample period is from 2001 to 2020. We also report cross-sectional R2 % in (17), using
the factor models in the rows to price the test asset portfolios in the columns. “Leaf20” indicates the 20
basis portfolios from Figure 5, and “Leaf40” indicates the 40 basis portfolios from Figure 5 and A.1. Panel A
shows results for the market-adjusted asset pricing panel tree models with #factors. Specifically, “PTree2”
indicates a two-factor model of the market factor and a P-Tree factor. “PTree5*” indicates a five-factor
model of the market factor and four P-Tree factors. “*’ indicates the optimal number of factors selected by
the squared Sharpe ratio test of Barillas and Shanken (2017). Panel B provides comparisons for benchmark
models introduced in section 4.1. Panel C reports the standard asset pricing P-Tree factor models. Panels D
and E report the market-adjusted asset pricing P-Tree performance when applying the time-series splits on
market volatility and inflation, respectively.

Individual Stocks Portfolios

In-Sample Out-of-Sample Entire Sample
Tot CS Tot CS FF25 Ind49 Leaf20 Leaf40

Panel A: Market-Adjusted P-Tree

PTree2 11.1 25.5 11.1 10.4 77.8 92.9 85.4 66.1
PTree5* 13.0 22.7 13.7 16.5 77.9 63.2 50.8 67.3

Panel B: Other Benchmark Models

CAPM 7.0 1.3 8.4 0.6 91.4 88.1 -219.1 -36.6
FF5 11.0 13.1 11.3 5.1 96.1 78.5 -72.7 22.7
Q5 10.9 18.1 11.5 6.4 96.1 88.7 32.5 62.6
RP-PCA5 12.1 18.3 13.6 15.0 69.7 48.6 -66.5 23.2
IPCA5 13.8 27.8 14.9 17.7 90.4 57.3 31.4 63.0

Panel C: P-Tree

PTree1 9.5 2.7 10.8 6.6 89.1 83.3 -373.8 -99.5
PTree4* 12.9 27.2 13.2 13.0 78.4 31.8 15.0 46.7

Panel D: Time-Series Split Market-Adjusted P-Tree - Market Volatility

TS-PTree2 11.7 24.7 11.3 9.3 73.2 88.5 83.6 65.9
TS-PTree5* 13.4 26.4 13.6 18.4 89.4 53.6 40.2 57.2

Panel E: Time-Series Split Market-Adjusted P-Tree - Inflation

TS-PTree2 11.5 26.6 11.4 11.7 78.6 85.7 76.9 70.6
TS-PTree5* 13.3 28.6 13.3 16.1 91.0 71.2 80.3 80.0
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Table 2: Investing P-Tree Factors

This table reports the investment performance of the equity factor models. We report the monthly average
return (%) and Jensen’s α (%), the annualized Sharpe ratio for the factors’ mean-variance efficient (MVE)
and equal-weighted (1/N ) portfolios. Panels A, E, and F use asset pricing criteria; Panels B and C are using
investment criteria. The “*” indicates the optimal number of factors selected by the squared Sharpe ratio
test of Barillas and Shanken (2017). For t-statistics *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.

In-Sample (1981-2000) Out-of-Sample (2001-2020)

MVE 1/N MVE 1/N
AVG SR α AVG SR α AVG SR α AVG SR α

Panel A: Market-Adjusted P-Tree

PTree2 1.75 1.58 1.51*** 1.31 1.34 0.86*** 0.30 0.31 0.29 0.45 0.56 0.17
PTree5* 1.26 3.47 1.20*** 1.06 1.69 0.72*** 0.80 1.93 0.76*** 0.70 1.14 0.42***

Panel B: Market-Adjusted Investment P-Tree

PTree2 1.78 10.41 1.76*** 1.27 1.94 0.90*** 1.07 2.78 1.10*** 0.86 1.36 0.56***
PTree5* 1.36 12.55 1.35*** 0.78 1.93 0.56*** 0.76 2.96 0.78*** 0.48 1.34 0.32***

Panel C: Investment P-Tree

PTree1 1.80 10.52 1.80*** 1.80 10.52 1.80*** 1.07 2.71 1.13*** 1.07 2.71 1.13***
PTree5* 1.37 14.66 1.36*** 0.74 2.96 0.63*** 0.79 2.78 0.82*** 0.44 1.64 0.35***

Panel D: Other Benchmark Models

FF5 0.45 1.48 0.38*** 0.38 1.34 0.33*** 0.27 0.64 0.13* 0.25 0.59 0.12
Q5 0.77 2.78 0.74*** 0.63 2.10 0.53*** 0.34 1.22 0.34*** 0.31 1.10 0.25***
RP-PCA5 0.82 3.48 0.76*** 1.07 1.77 0.75*** 0.34 1.49 0.32*** 0.50 1.00 0.27***
IPCA5 1.50 10.37 1.48*** 0.90 3.15 0.80*** 0.97 4.60 0.98*** 0.73 2.14 0.61***

Panel E: Time-Series Split Market-Adjusted P-Tree - Market Volatility

TS-PTree2 1.80 1.67 1.56*** 1.32 1.36 0.86*** 0.60 0.66 0.57*** 0.60 0.77 0.31***
TS-PTree5* 1.20 3.65 1.14*** 1.03 1.61 0.69*** 0.78 1.69 0.73*** 0.74 1.14 0.46***

Panel F: Time-Series Split Market-Adjusted P-Tree - Inflation

TS-PTree2 1.66 1.70 1.49*** 1.21 1.34 0.78*** 0.28 0.32 0.29 0.43 0.56 0.11
TS-PTree5* 1.37 4.50 1.32*** 1.21 2.07 0.93*** 0.51 1.24 0.53*** 0.64 1.16 0.52***
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Table 3: Characteristics Importance by Top Splits

This table reports the most frequently selected characteristics from the random P-Forest of 1,000 trees with
the market benchmark, which can be used to assess the variable importance. The “Top 1” rows only count
the first split for 1,000 trees. The “Top 2” or “Top 3” rows only count the first two or three splits. The num-
bers reported are the selection frequency for these top characteristics selected out of the 1,000 ensembles.
The description of characteristics are listed in Table A.1.

Panel A: Equity Entire Training Sample (1981-2000)

1 2 3 4 5

Top1 RVAR FF3 RVAR CAPM ME SVAR CFP
0.40 0.40 0.39 0.32 0.25

Top2 ME RVAR FF3 RVAR CAPM CFP EP
0.45 0.41 0.40 0.35 0.33

Top3 ME RVAR FF3 RVAR CAPM CFP EP
0.45 0.41 0.41 0.37 0.36

Panel B: Low Stock Variance Panel C: High Stock Variance

1 2 3 1 2 3

Top1 RVAR FF3 RVAR CAPM SVAR ME RVAR FF3 RVAR CAPM
0.48 0.42 0.33 0.36 0.34 0.30

Top2 RVAR FF3 RVAR CAPM ME ME RVAR FF3 EP
0.48 0.42 0.34 0.43 0.36 0.32

Top3 RVAR FF3 RVAR CAPM SVAR ME rvar ff3 EP
0.49 0.43 0.35 0.44 RVAR FF3 0.36

Panel D: Low Inflation Panel E: High Inflation

1 2 3 1 2 3

Top1 RVAR FF3 RVAR CAPM SVAR ME CFP EP
0.48 0.42 0.30 0.41 0.35 0.32

Top2 RVAR FF3 RVAR CAPM ZEROTRADE ME CFP RVAR FF3
0.48 0.42 0.34 0.46 0.37 0.37

Top3 RVAR FF3 RVAR CAPM ZEROTRADE ME CFP RVAR FF3
0.48 0.43 0.35 0.46 0.38 0.37
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Table 4: Factor Spanning Alpha Test

This table reports the monthly alphas (bp) and significance for the factor-spanning test. Panels A and B
show results for each factor of the market-adjusted asset pricing and investment P-Tree models in Table 2.
We regress each factor in the rows against a factor model in the columns. “FF5” is the five-factor model in
Fama and French (2015), “Q5” is the five-factor model in Hou et al. (2021), and “IPCA5” is the five-factor
model in Kelly et al. (2019). We name the P-Tree factors by the first two splitting characteristics in the
tree structure for the characteristics interactions. We also show the mean-variance efficient (MVE) and 1/N
strategies investing these five factors. Notably, “FF25” and “INF49” are the 5× 5 ME-B/M and 49 industry
portfolios. For t-statistics, *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

In-Sample Out-of-Sample
FF5 Q5 IPCA5 FF5 Q5 IPCA5

Panel A: Market-Adjusted P-Tree factors

RVAR FF3-EP 130*** 101*** 107** 12 4 31
BM IA-Ill 35** 33 -100*** 107*** 110*** 34
MOM12M-STD DOLVOL 82*** 53*** -24 25 22 -95***
ME-RDM 52*** 48*** 109*** 29*** 27*** 13
MVE (4 factors + mkt) 58*** 45*** -21 36*** 34*** -11
1/N (4 factors + mkt) 60*** 47*** 49* 35*** 33*** 1

Panel B: Market-Adjusted Investment P-Tree factors

RVAR FF3-ABR 354*** 341*** 227*** 215*** 201*** 69***
BM IA-LGR 46*** 58*** 96*** 13 16 -20
STD TURN-LEV 36*** 32*** 85*** -21** -19** -18
CFP-MOM12M 53*** 49*** 90*** 45** 47** 5
MVE (4 factors + mkt) 248*** 241*** 175*** 147*** 139*** 42**
1/N (4 factors + mkt) 98*** 96*** 131*** 50*** 49*** 12

Panel C: Other Test Assets

MVE-FF25 55*** 42*** 27* 19*** 15** 10
MVE-IND49 13* 20 -14 10 8 28*
1/N-FF25 -8*** -8 57*** 3 8** 5
1/N-IND49 63* 30 62 -2 10 4
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Table 5: Uni-Sort Factors vs. Interaction Factors

This table summarizes the significant counts of long-short factors for average returns and Jensen’s alphas.
We count the number of significant average returns and alphas in Panels A and B at the 10% and 5% levels.
The specifications include (1) 4x1 long-short portfolios, (2) market-adjusted asset pricing P-Tree interaction
factors, and (3) market-adjusted investment P-Tree interaction factors.

Panel A: # of Significant Cases at 10% level

Uni-Sort 4x1 P-Tree Interaction Investment P-Tree Interaction
Mean Alpha Mean Alpha Mean Alpha

81-00 27 33 18 44 54 55
01-20 14 28 20 38 37 51
81-20 32 37 24 50 55 58

Panel B: # of Significant Cases at 5% level

Uni-Sort 4x1 P-Tree Interaction Investment P-Tree Interaction
Mean Alpha Mean Alpha Mean Alpha

81-00 20 31 10 34 52 54
01-20 6 22 14 28 35 49
81-20 24 32 21 46 54 58
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Table 6: Examples of Interaction Factors

This table demonstrates six examples in Figure A.6. We report the out-of-sample (2001-2020) monthly
average returns (%) and Jensen’s alpha (%) of the 4x1 long-short factors and the market-adjusted investment
P-Tree interaction factors. The interaction factors are created with the train sample period from 1981 to 2000,
and we have provided the corresponding interaction characteristics. For t-statistics, *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively. The descriptions of characteristics are listed in
Table A.1.

Panel A: Stand. Unexp. Earnings Panel B: Maximum Daily Returns

Uni-Sort 4x1 +BM IA+DOLVOL Uni-Sort 4x1 +ME IA+ABR
Mean Alpha Mean Alpha Mean Alpha Mean Alpha

81-00 0.69*** 0.64*** 1.14*** 1.26*** 0.81** 1.20*** 1.08*** 1.40***
01-20 0.53*** 0.67*** 1.35*** 1.39*** -0.04 0.47 0.67*** 1.11***
81-20 0.61*** 0.66*** 1.25*** 1.32*** 0.39 0.84*** 0.87*** 1.26***

Panel C: Dividend Yield Panel D: Growth in Long-term Debt

Uni-Sort 4x1 +MOM12M+ME IA Uni-Sort 4x1 +BA IA+SUE
Mean Alpha Mean Alpha Mean Alpha Mean Alpha

81-00 0.41 0.87*** 1.05*** 1.34*** 0.33** 0.52*** 0.77*** 0.95***
01-20 -0.07 0.03 0.47** 0.74*** -0.09 -0.10 0.53*** 0.56***
81-20 0.17 0.44** 0.76*** 1.04*** 0.12 0.20* 0.65*** 0.75***

Panel E: Change in Profit Margin Panel F: Momentum 6-Month

Uni-Sort 4x1 +BASPREAD+ME IA Uni-Sort 4x1 +GMA+BM IA
Mean Alpha Mean Alpha Mean Alpha Mean Alpha

81-00 0.45*** 0.41*** 1.07*** 1.20*** 0.60* 0.64** 1.12*** 1.20***
01-20 0.32* 0.46*** 0.46** 0.65*** 0.15 0.53 0.52* 0.83***
81-20 0.38*** 0.45*** 0.76*** 0.93*** 0.37 0.60** 0.82*** 1.02***
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Appendices

Algorithm Algorithm of growing a single P-Tree

1: procedure GROWTREE(root)
2: Input Asset returns ri,t and ranked characteristics zi,t

3: outcome Grow the tree from the root node, form leaf basis portfolios
4: for j from 1 to J do . Loop over number of iterations
5: if current depth ≥ dmax then
6: return.
7: else
8: Search the tree, find all leaf nodes N
9: for each leaf node N in N do . Loop over all current leaf nodes

10: for each split rule candidate c̃k,m,N in CN do
11: Partition data temporally in N according to c̃k,m,N .
12: if Either left or right child of N does not satisfy minimal leaf size

then
13: L(c̃k,m,N) =∞.
14: else
15: Calculate leaf basis portfolios.
16: Estimate SDF using all leaf basis portfolios as in (4).
17: Calculate the split criteria L(c̃k,m,N) in (5).
18: end if
19: end for
20: end for
21: Find the best leaf node and split rule that minimizes split criteria

c̃j = arg min
N∈N ,c̃k,m,N∈CN

{L(c̃k,m,N)}

22: Split the node selected at the j-th split rule of the tree c̃j .
23: end if
24: end for
25: return

{
R

(J)
t , f

(J)
t , β(J)(·)

}
26: end procedure
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Table A.1: Equity Characteristics

This table lists the description of 61 characteristics used in the empirical study.

No. Characteristics Description

1 ABR Abnormal returns around earnings announcement
2 ACC Operating Accruals
3 ADM Advertising Expense-to-market
4 AGR Asset growth
5 ALM Quarterly Asset Liquidity
6 ATO Asset Turnover
7 BASPREAD Bid-ask spread (3 months)
8 BETA Beta (3 months)
9 BM Book-to-market equity
10 BM IA Industry-adjusted book to market
11 CASH Cash holdings
12 CASHDEBT Cash to debt
13 CFP Cashflow-to-price
14 CHCSHO Change in shares outstanding
15 CHPM Industry-adjusted change in profit margin
16 CHTX Change in tax expense
17 CINVEST Corporate investment
18 DEPR Depreciation / PP&E
19 DOLVOL Dollar trading volume
20 DY Dividend yield
21 EP Earnings-to-price
22 GMA Gross profitability
23 GRLTNOA Growth in long-term net operating assets
24 HERF Industry sales concentration
25 HIRE Employee growth rate
26 ILL Illiquidity rolling (3 months)
27 LEV Leverage
28 LGR Growth in long-term debt
29 MAXRET Maximum daily returns (3 months)
30 ME Market equity
31 ME IA Industry-adjusted size
32 MOM12M Cumulative Returns in the past (2-12) months
33 MOM1M Previous month return
34 MOM36M Cumulative Returns in the past (13-35) months
35 MOM60M Cumulative Returns in the past (13-60) months
36 MOM6M Cumulative Returns in the past (2-6) months
37 NI Net Equity Issue
38 NINCR Number of earnings increases
39 NOA Net Operating Assets
40 OP Operating profitability
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Continue: Equity Characteristics

No. Characteristics Description

41 PCTACC Percent operating accruals
42 PM profit margin
43 PS Performance Score
44 RD SALE R&D to sales
45 RDM R&D to market
46 RE Revisions in analysts’ earnings forecasts
47 RNA Return on Net Operating Assets
48 ROA Return on Assets
49 ROE Return on Equity
50 RSUP Revenue surprise
51 RVAR CAPM Residual variance - CAPM (3 months)
52 RVAR FF3 Res. var. - Fama-French 3 factors (3 months)
53 SVAR Return variance (3 months)
54 SEAS1A 1-Year Seasonality
55 SGR Sales growth
56 SP Sales-to-price
57 STD DOLVOL Std of dollar trading volume (3 months)
58 STD TURN Std. of Share turnover (3 months)
59 SUE Unexpected quarterly earnings
60 TURN Shares turnover
61 ZEROTRADE Number of zero-trading days (3 months)

Table A.2: Macro Predictors for Market Timing

This table lists the description of macro predictors used in the empirical study.

No. Variable Name Description

1 EP Earnings-to-price of S&P 500
2 DY Dividend yield of S&P 500
3 LEV Leverage of S&P 500
4 NI Net equity issuance of S&P 500
5 SVAR Stock Variance of S&P 500
6 ILL Pastor-Stambaugh illiquidity
7 INFL Inflation
8 TBL Three-month treasure bill rate
9 DFY Default yield
10 TMS Term spread
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Figure A.1: Panel Tree

This figure displays the standard asset pricing P-Tree trained from 1981 to 2000. The figure format follows Figure 5.
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Figure A.2: Panel Tree Split on High/Low Market Volatility

This figure shows the market-adjusted asset pricing panel tree by considering both cross-sectional and time-series variations. The most important
macro predictor is stock market volatility SVAR, and the first split is implemented when the current SVAR level is lower than the 60% quantile of the
past decade. Two tree models are provided as two child leaves for high- and low-SVAR periods. The figure format follows Figure 5.
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Figure A.3: Panel Tree Split on High/Low Inflation

This figure shows the market-adjusted asset pricing panel tree by considering both cross-sectional and time-series variations. One of the most
commonly used macro predictors is inflation, and the first split is implemented when the current inflation level is lower than the median of the past
decade. Two tree models are provided as two child leaves for high- and low-inflation periods. The figure format follows Figure 5.
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Figure A.4: Out-of-Bag Characteristics Significance: High/Low Market Volatility

This figure reports the characteristics significance of the out-of-bag ensembles from the random P-Forest of
1,000 trees with the market benchmark. We report results for high and low market volatility periods (split
at 60-th quantile over the past decade) in the training sample, 1981-2000. This figure’s details follow Figure
8. The left dark columns indicate significantly useful characteristics for reducing the loss function.
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Figure A.5: Out-of-Bag Characteristics Significance: High/Low Inflation

This figure reports the characteristics significance of the out-of-bag ensembles from the random P-Forest of
1,000 trees with the market benchmark. We report results for high and low inflation (split at 50-th quantile
over the past decade) in the training sample, 1981-2000. This figure’s details follow Figure 8. The left dark
columns indicate significantly useful characteristics for reducing the loss function.
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Figure A.6: Examples of Interaction Factors

This figure shows six examples of the market-adjusted investment P-Tree interaction factors. More details are reported in Table 6. In the second
layer, we report the average excess returns of the long portfolio and short portfolio. In the third layer, the numbers are the average returns of the
long-long portfolio and short-short portfolio. One can find further splitting helps create a higher return spread.
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Internet Appendix

I Robustness check for Tuning Parameter No. Leaf

This section investigates the robustness of the P-Tree with respect to a key tuning parameter,

Number of Leaves. The baseline empirical results are based on Number of Leaves equals 20, and we

provide two other values, 15 and 25. We find the tree structure, asset pricing performance, and

investment performance are robust for Number of Leaves.

Tree Structure The P-Tree grows iteratively. Starting from the root node, we keep splitting and

getting a sequence of P-Trees with more and more leaves. The market-adjusted P-Tree with 25

leaves is displayed in Figure I.1. We highlight the first 14 splits in blue, the 15th to 19th splits in

red, and the 20th to 24th in green. The structure of the P-Tree with 25 leaves subsumes the one with

20 and 15 leaves. So, the tree structure is sequential growing and robust for the number of leaves

for asset pricing P-Tree. For other specifications of P-Trees, we report the sequential structure of

the standard asset pricing P-Tree in Figure I.2 and the market-adjusted investment P-Tree in Figure

I.3. The deeper tree always subsumes the shallow tree.

Asset Pricing and Investment Performance Table I.1 shows the asset pricing performance

of P-Trees with 15 and 25 leaves. Panels A and B report for the market-adjusted P-Trees. Panels C

and D report for the standard P-Trees. Although the number of leaves changes, the performance

measures are close to those in Panels A and C Table 1.

Table I.2 shows the asset pricing performance of P-Trees with 15 and 25 leaves. Panels A

and B are for the market-adjusted P-Tree, Panels C and D are for the market-adjusted investment

P-Trees, and Panels E and F are for the investment P-Trees. Consistent with Table 2, the out-of-

sample MVE strategies of asset pricing P-Tree has annualized Sharpe ratio of about 1.9, and the

investment P-Trees have Sharpe ratios close to 3.
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Figure I.1: Market-Adjusted Panel Tree

This figure visualizes the market-adjusted asset pricing P-Tree. The number of leaves is 25, so there are 24 splits. We color the first 14 splits in blue,
the 15th to 19th splits in red, and the 20th to 24th in green. The blue part is a P-Tree with 15 leaves (up to S14); the combination of the blue and red
parts is a P-Tree with 20 leaves (up to S19); the whole diagram is a P-Tree with 25 leaves. Figure format follows Figure 5.
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Figure I.2: Panel Tree

This figure visualizes the asset pricing P-Tree. The number of leaves is 25. We color the first 14 splits in blue, the 15th to 19th splits in red, and the
20th to 24th in green. The blue part is a P-Tree with 15 leaves (up to S14); the combination of the blue and red parts is a P-Tree with 20 leaves (up to
S19); the whole diagram is a P-Tree with 25 leaves. Figure format follows Figure A.1.
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Figure I.3: Investment Panel Tree

This figure visualizes the market-adjusted investment P-Tree. The number of leaves is 25. We color the first 14 splits in blue, the 15th to 19th splits in
red, and the 20th to 24th in green. The blue part is a P-Tree with 15 leaves (up to S14); the combination of the blue and red parts is a P-Tree with 20
leaves (up to S19); the whole diagram is a P-Tree with 25 leaves. Figure format follows Figure 6.
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Table I.1: Asset Pricing Performance

Table format follows Table 1, where Number of Leaves equals 20. This table reports the robust asset pricing
performances of P-Tree factors for the tuning parameter Number of Leaves equals 15 and 25. Panels A and B
report for market-adjusted asset pricing P-Tree factor models, and Panels C and D report for the standard
asset pricing P-Tree factor models.

Individual Stocks Portfolios

In-Sample Out-of-Sample
Tot CS Tot CS FF25 Ind49 Leaf20 Leaf40

Panel A: Market-Adjusted P-Tree, No. Leaves = 15
PTree2 11.02 25.66 11.24 10.47 74.87 93.34 88.03 61.78
PTree5* 12.99 22.92 13.62 16.84 70.77 63.62 31.90 51.66

Panel B: Market-Adjusted P-Tree, No. Leaves = 25
PTree2 11.12 25.35 11.06 10.27 76.21 92.88 85.71 67.25
PTree5* 12.99 22.78 13.67 17.09 51.84 57.04 41.14 47.74

Panel C: P-Tree, No. Leaves = 15
PTree1 9.54 2.72 10.79 6.63 89.28 83.50 -496.77 -153.89
PTree5* 13.07 26.06 13.27 13.09 78.83 42.35 46.81 61.10

Panel D: P-Tree, No. Leaves = 25
PTree1 9.58 1.94 10.85 7.37 88.78 82.91 -336.48 -85.54
PTree5* 13.03 25.52 13.53 14.46 70.84 21.21 25.98 53.14
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Table I.2: Investment Performance of Factors

Table format follows Table 2, where Number of Leaves equals 20. This table reports the robust investment
performances of P-Tree factors for the tuning parameter Number of Leaves equals 15 and 25. Panels A and
B report for the market-adjusted asset pricing P-Tree factor models, Panels C and D report for the market-
adjusted investment P-Tree factor models, and Panels E and F report for the investment P-Tree factor mod-
els.

In-Sample (1981-2000) Out-of-Sample (2001-2020)

MVE 1/N MVE 1/N
AVG SR α AVG SR α AVG SR α AVG SR α

Panel A: Market-Adjusted P-Tree, No. Leaves = 15

PTree2 2.08 1.59 1.80*** 1.51 1.40 1.04*** 0.41 0.35 0.45* 0.51 0.60 0.26*
PTree5* 1.47 3.42 1.40*** 1.18 1.77 0.83*** 0.98 1.95 0.98*** 0.80 1.31 0.54***

Panel B: Market-Adjusted P-Tree, No. Leaves = 25

PTree2 1.65 1.58 1.42*** 1.25 1.32 0.81*** 0.38 0.41 0.37* 0.49 0.64 0.21*
PTree5* 1.18 3.19 1.12*** 1.02 1.69 0.70*** 0.73 1.85 0.66*** 0.69 1.11 0.40***

Panel C: Market-Adjusted Investment P-Tree, No. Leaves = 15

PTree2 1.94 9.07 1.92*** 1.35 2.05 0.98*** 1.21 2.91 1.25*** 0.93 1.48 0.64***
PTree5* 1.48 12.10 1.47*** 0.87 1.99 0.64*** 0.84 2.77 0.86*** 0.46 0.95 0.24***

Panel D: Market-Adjusted Investment P-Tree, No. Leaves = 25

PTree2 1.73 11.44 1.71*** 1.24 1.91 0.87*** 1.03 2.84 1.06*** 0.84 1.32 0.54***
PTree5* 1.25 16.12 1.24*** 0.75 2.11 0.56*** 0.74 2.94 0.76*** 0.50 1.30 0.33***

Panel E: Investment P-Tree, No. Leaves = 15

PTree1 1.96 9.12 1.96*** 1.96 9.12 1.96*** 1.22 2.84 1.27*** 1.22 2.84 1.27***
PTree5* 1.49 15.69 1.48*** 1.03 6.31 0.98*** 0.87 3.63 0.88*** 0.61 3.19 0.60***

Panel F: Investment P-Tree, No. Leaves = 25

PTree1 1.75 11.60 1.75*** 1.75 11.60 1.75*** 1.03 2.76 1.08*** 1.03 2.76 1.08***
PTree5* 1.28 15.57 1.27*** 0.70 4.22 0.63*** 0.73 2.96 0.73*** 0.45 2.35 0.40***
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II Robustness to Economic Restrictions

Avramov et al. (2022) highlight how many ML models are not robust to imposing various

economic restrictions. Luckily, the performance of P-Trees survives these restrictions. Next, we

report our findings concerning arguably the most important restriction—the exclusion of small

and illiquid stocks.

According to Hou et al. (2020), 65% of known anomalies cannot pass the test hurdle of

|t| ≥ 1.96, mainly because the original studies rely on equal-weighted returns, small stocks, and

NYSE-AMEX-NASDAQ breakpoints for portfolio sorting and cross-sectional regression. In this

paper, the leaf basis portfolio returns are value-weighted. Furthermore, to alleviate the concerns

that P-Tree trading strategies rely on small and illiquid stocks, we revisit the empirical exercises,

excluding the small stocks with NYSE breakpoints. We consider the investment pool of the stocks

larger than 10% (20%) NYSE breakpoints, which removes about 47% (60%) observations in the

original data. Figure I.4 reports the number of stocks and the number of stocks above 10% and

20% NYSE breakpoints in each month.

Table I.2 shows the investment performance of investment P-Tree factors, excluding the small

stocks by NYSE size breakpoints of 10% and 20%. Compared to the numbers in Table 2 Panel B,

the Sharpe ratio of the P-Tree five-factor model decreases from 2.96 to 1.90 and 1.46 by excluding

the stocks smaller than 10% and 20% NYSE breakpoints. The Jensen’s alpha decreases from 0.78%

to 0.33% and 0.25% for 10% and 20% NYSE breakpoints, respectively. In Table 2 Panel C, the in-

vestment P-Tree five-factor model (without Market) has a Sharpe ratio of 2.78 and alpha of 0.82 in

the test period. By contrast, the best models after excluding small stocks are with two factors, se-

lected by the Squared Sharpe ratio test of Barillas and Shanken (2017). The Sharpe ratio decreases

to 1.93 (1.32), and the alpha decreases to 0.38% (0.26%), by excluding stocks smaller than NYSE

10% (20%) breakpoints.

In summary, the investment gains are lower by excluding more small stocks. However, P-

Tree factors still capture sizeable investment gains, even excluding about half of the stocks. The

out-of-sample Sharpe ratios are about 1.9 (1.4) if we only invest in the top 52% (40%) largest stocks.

Jensen’s alphas’ are also statistically significant after excluding small stocks.
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Figure I.4: Number of Stocks by Month

This figure displays the monthly number of stocks of the original sample and the filtered sample by NYSE breakpoints at 10% and 20%. The date
range is 1981 to 2020.
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Figure I.5: Market-Adjusted Investment Panel Tree
Excluding small stocks, NYSE breakpoints 10%

Figure format follows Figure 6. We exclude the stocks smaller than the 10% NYSE size breakpoints.
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Figure I.6: Market-Adjusted Investment Panel Tree
Excluding small stocks, NYSE breakpoints 20%

Figure format follows Figure 6. We exclude the stocks smaller than the 20% NYSE size breakpoints.
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Table I.3: Investment Performance of Factors

Table format follows Table 2. This table reports the investment performances of investment P-Tree factors,
excluding the small stocks by NYSE size breakpoints 10% and 20%.

In-Sample (1981-2000) Out-of-Sample (2001-2020)

MVE 1/N MVE 1/N
AVG SR α AVG SR α AVG SR α AVG SR α

Panel A: Market-Adjusted Investment P-Tree, larger than NYSE 10% size breakpoint

PTree2 0.96 7.18 0.93*** 0.85 1.31 0.48*** 0.46 1.98 0.45*** 0.55 0.84 0.23***
PTree5* 0.75 9.30 0.73*** 0.59 1.14 0.30*** 0.34 1.90 0.33*** 0.40 0.77 0.15***

Panel B: Market-Adjusted Investment P-Tree, larger than NYSE 20% size breakpoint

PTree2 0.87 5.87 0.84*** 0.81 1.23 0.43*** 0.32 1.41 0.32*** 0.48 0.75 0.17***
PTree5* 0.67 7.67 0.65*** 0.59 1.10 0.29*** 0.24 1.46 0.25*** 0.37 0.73 0.13***

Panel C: Investment P-Tree, larger than NYSE 10% size breakpoint

PTree1 0.97 7.64 0.96*** 0.97 7.64 0.96*** 0.45 1.88 0.46*** 0.45 1.88 0.46***
PTree2* 0.81 8.44 0.79*** 0.64 6.60 0.62*** 0.37 1.93 0.38*** 0.29 1.74 0.29***

Panel D: Investment P-Tree, larger than NYSE 20% size breakpoint

PTree1 0.88 6.24 0.87*** 0.88 6.24 0.87*** 0.31 1.28 0.33*** 0.31 1.28 0.33***
PTree2* 0.73 6.81 0.71*** 0.60 5.84 0.58*** 0.25 1.32 0.26*** 0.20 1.18 0.21***
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III Application of P-Tree to the U.S. Corporate Bonds

This section complements our empirical exercises by applying P-Tree to U.S. corporate bonds.

III.1 Data

We follow Feng et al. (2022) to calculate the monthly returns and 45 characteristics as listed in

Table I.4. Specifically, we obtain corporate bond issuance and rating information from FISD and

the transaction data from the enhanced version of TRACE with standard filters.

Our corporate bond sample period spans from July 2004 to December 2020. We use the first

ten years, from July 2004 to June 2014, for training and the remaining period, from July 2014

to December 2020, for testing. The average and median monthly numbers of corporate bond

observations are 4,528 and 4,574 in the training sample and 5,337 and 5,432 in the testing sample,

respectively. The individual corporate bond returns in the training sample are subjected to cross-

sectional winsorization on 5% and 95% quantiles to remove outliers. Returns in the test sample are

not winsorized. Similar to the equity data, bond characteristics are standardized cross-sectional in

the [−1, 1] range.

III.2 Empirical Results

Implementation Similar to the study of U.S. stocks, in this section, we apply P-Tree to generate

the SDF for U.S. corporate bonds with asset pricing and investment split criteria. The tuning

parameters and shrinkage parameters are selected the same. Specifically, the number of leaves is

20, the minimal leaf size is 10, and the mean and covariance shrinkage parameters in (3) are 10−4.

Figure I.7 depicts the market-adjusted P-Tree with asset pricing criterion in the training sam-

ple. Endogenously, the P-Tree first splits along the systematic skewness of bond (COSKEW) at -0.6

(20% quantile) and then short-term reversal (STR) at -0.2 (40% quantile). Figure I.8 shows the P-

Tree with asset pricing criterion, which splits on the dollar trading volume of bond (VOLUME) at

-0.6 (20% quantile) and then duration (DUR) at 0.2 (60% quantile). Figure I.9 shows the market-

adjusted investment P-Tree, which splits on the liquidity risk factor beta (LRF BETA) at 0.6 (80%

quantile) and then short-term reversal (STR) at 0.6 (80% quantile).
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Asset Pricing Performance Furthermore, we generate multi-factor models by boosting P-Tree.

For comparison, we include the well-known observable factors, including CAPM (corporate bond

market factor), BBW4 four-factor model in Bai et al. (2019), and FF5-BOND five-factor model in

Fama and French (1993), and state-of-art latent factor models, including RP-PCA with five factors

in Lettau and Pelger (2020b) and IPCA with five factors in Kelly et al. (2019).

Table I.5 shows the asset pricing performance of P-Tree and alternatives. The three-factor

model in Panel A (the corporate bond market factor plus two P-Tree factors) has excellent pricing

performances, and is comparable to BBW4 and FF5-BOND. Excluding the market factor, the four-

factor model in Panel B has higher total R2 and cross-sectional R2 for out-of-sample bond pricing,

but lower cross-sectional R2 for Rating-Duration 25 portfolios and 30 industry portfolios. The

observable factor models are stronger in pricing corporate bond portfolios than the latent factor

models, while the latent factor models are better in pricing individual corporate bonds. Overall,

the pricing performance of P-Tree factors is comparable to that of observable and latent factors.

Investment Performance Table I.6 shows the investment performances of corporate bond P-

Tree and other benchmark factors. In Panels A, B, C, and D, the four specifications of P-Tree factors

show substantial out-of-sample risk-adjusted investment gains.

Specifically, in Panel D, the one-factor model of P-Tree under the investment criterion has

0.29% monthly expected returns and 1.40 annualized Sharpe ratio, for the out-of-sample period.

Moreover, in Panel B, the four-factor model of P-Tree under asset pricing criterion has 0.18% α and

1.64 annualized Sharpe ratio, which performs well in pricing corporate bond returns and invest-

ment. Jensen’s α’s are significantly positive for both the MVE strategies and the 1/N strategies

of the P-Tree factors. By contrast, the other benchmark factors are weaker than P-Tree factors in

Sharpe ratio and α; especially for the 1/N strategies, none of the benchmark factors has signifi-

cantly positive α. Overall, P-Tree factors are exceptionally attractive in direct investment.
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Figure I.7: Corporate Bond: Market-Adjusted Panel Tree

This figure displays the market-adjusted asset pricing P-Tree for corporate bonds, trained from July 2004 to June 2014. We show splitting
characteristics and split rule values for each parent node. The node numbers (N#) and splitting order numbers (S#) are also printed on
each parent node. We have included the median monthly number of bonds in the leaf basis portfolios. The figure format follows Figure
5. The description of bond characteristics are listed in Table I.4.
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Figure I.8: Corporate Bond: Panel Tree

This figure displays the asset pricing P-Tree for corporate bonds trained from July 2004 to June 2014. We show splitting characteristics
and split rule values for each parent node. The node numbers (N#) and splitting order numbers (S#) are also printed on each parent
node. We have included the median monthly number of bonds in the leaf basis portfolios. The figure format follows Figure 5. The
description of bond characteristics are listed in Table I.4.
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Figure I.9: Corporate Bond: Market-Adjusted Investment P-Tree

This figure displays the market-adjusted investment-guided corporate bond P-Tree with market factor trained from July 2004 to June
2014. We show splitting characteristics and split rule values for each parent node. The node numbers (N#) and splitting order numbers
(S#) are also printed on each parent node. We have included the median monthly number of bonds in the leaf basis portfolios. The
figure format follows Figure 5. descriptions of bond characteristics are listed in Table I.4.
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Table I.4: Corporate Bond Characteristics

This table lists the description of 45 corporate bond characteristics used in the empirical study.

No. Characteristics Description

1 AGE Time since issuance
2 LIQ AMIHUD Amihud liquidity
3 LIQ BPW Liquidity measure of Bao, Pan, and Wang (2011)
4 COSKEW Systematic skewness
5 CRF BETA Credit risk beta controlling bond market factor
6 DEF BETA DEF (Fama and French, 1993) factor beta
7 DRF BETA Downside risk beta controlling bond market factor
8 DUR Duration
9 ES10 Expected shortfall 10%
10 ES5 Expected shortfall 5%
11 ISKEW Idiosyncratic skewness
12 KURT Return Kurtosis
13 LIQ BETA Liquidity beta of Lin, Wang, and Wu (2011)
14 LRF BETA Liquidity risk beta controlling bond market factor
15 LTR Long-term reversal from t-13 to t-48 months
16 MKT BETA Market beta
17 MKT RVAR Market residual variance
18 MOM12m Momentum from t-7 to t-12 months
19 MOM6m Momentum from t-2 to t-6 months
20 P FHT Modified illiquidity measure based on zero returns
21 BAS Bid-Ask Spread
22 ZEROTRADE Zero Trading Days
23 PI FHT An extended FHT measure based on zero returns
24 PI HL An extended High-low spread estimator
25 PI ROLL An extended Roll’s measure
26 RANGE Daily Return Range
27 RATING Credit Ratings
28 LIQ ROLL Roll’s liquidity
29 SIZE Amount outstanding
30 SKEW Return Skewness
31 STD LIQ Standard deviation of Amihud daily liquidity
32 STR Short-term reversal in t-1 months
33 T2M Time to maturity
34 TC IQR Interquartile range
35 TERM BETA TERM (Fama and French, 1993) factor beta
36 TERM DEF RVAR TERM-DEF (Fama and French, 1993) residual variance
37 TRADE Number of trades
38 TURN Turnover
39 UNC BETA Macroeconomic Uncertainty Beta
40 VaR10 Value-at-risk 10% over past 3 years
41 VaR5 Value-at-risk 5% over past 3 years
42 VARIANCE Return Variance
43 VIX BETA VIX index beta
44 VOLUME Dollar trading volume
45 YTM Yield-to-maturity
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Table I.5: Corporate Bond: Asset Pricing Performance

This table reports the asset pricing performances for corporate bonds. “Tot” (total R2 %) and “CS” (cross-
sectional R2 %) in equations (15) and (16) are measures for individual bond returns. The in-sample period
is from July 2004 to June 2014, and the out-of-sample period is from July 2014 to December 2020. We also
report cross-sectional R2 % in (17), using the factor models in the rows to price the test asset portfolios in
the columns. “RD25” indicates the 5 × 5 portfolios sorted on rating and duration, “Ind30” indicates the
30 industry portfolios of corporate bonds, “Leaf20” indicates the 20 basis portfolios from Figure I.7, and
“Leaf40” indicates the 40 basis portfolios from Figure I.7 and I.8. Panel A shows results for the market-
adjusted panel tree model under asset pricing criterion with #factors. Specifically, “PTree2” indicates a
two-factor model of the market factor and a P-Tree factor. “PTree3*” indicates a three-factor model of the
market factor and two P-Tree factors. “*’ indicates the optimal number of factors selected by the squared
Sharpe ratio test of Barillas and Shanken (2017). Panel B reports P-Tree factor models under the asset pricing
criterion. Panel C provides comparisons for other benchmark models, introduced in Section III.2.

Individual Bonds Portfolios

In-Sample Out-of-Sample Entire Sample
Tot CS Tot CS RD25 Ind30 Leaf20 Leaf40

Panel A: Market-Adjusted P-Tree

PTree2 29.53 6.57 15.84 -12.33 78.37 93.47 89.23 88.59
PTree3* 34.73 22.02 23.36 14.11 70.78 95.08 88.46 91.37

Panel B: P-Tree

PTree1 30.87 20.86 21.62 20.34 88.80 96.84 91.25 93.89
PTree4* 38.36 23.00 26.15 23.45 29.97 65.66 89.45 89.84

Panel C: Other Benchmark Models

CAPM 21.35 20.83 17.72 6.59 88.80 96.84 91.25 93.89
BBW4 24.35 18.59 23.50 23.34 69.48 91.30 91.12 93.97
FF5-BOND 23.91 15.26 22.74 19.53 74.58 92.56 76.44 83.38
RP-PCA5 38.03 22.95 28.76 23.86 57.93 90.44 89.43 91.79
IPCA5 49.08 24.67 33.71 24.21 -2.62 86.77 70.75 81.28
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Table I.6: Corporate Bond: Investing P-Tree Factors

This table reports the investment performance of the corporate bond factors and other benchmark factors.
We report the monthly average return and Jensen’s α (%), the annualized Sharpe ratio for the factors’
mean-variance efficient (MVE) and equal-weighted (1/N ) portfolios. The “*” indicates the optimal number
of factors selected by the squared Sharpe ratio test of Barillas and Shanken (2017). For t-statistics *, **, and
*** indicate significance at the 10%, 5%, and 1% levels, respectively. The table format follows Table 2.

In-Sample (200407-201406) Out-of-Sample (201407-202012)

MVE 1/N MVE 1/N
AVG SR α AVG SR α AVG SR α AVG SR α

Panel A: Market-Adjusted P-Tree

PTree2 0.45 1.44 0.25*** 0.42 1.33 0.18*** 0.26 1.04 0.10 0.30 1.06 0.07
PTree3* 0.47 2.30 0.33*** 0.43 1.63 0.21*** 0.26 1.24 0.11** 0.30 1.12 0.07**

Panel B: P-Tree

PTree1 0.33 0.58 -0.08 0.33 0.58 -0.08 0.38 0.97 0.05 0.38 0.97 0.05
PTree4* 0.52 2.60 0.40*** 0.48 1.80 0.26*** 0.29 1.64 0.16*** 0.32 1.34 0.13***

Panel C: Market-Adjusted Investment P-Tree

PTree2* 0.51 3.70 0.42*** 0.45 1.92 0.25*** 0.31 1.37 0.15*** 0.34 1.17 0.09***

Panel D: Investment P-Tree

PTree1* 0.54 4.59 0.51*** 0.54 4.59 0.51*** 0.29 1.40 0.18*** 0.29 1.40 0.18***

Panel E: Other Benchmark Models

BBW4 0.58 1.49 0.37*** 0.55 1.41 0.31*** 0.36 1.03 0.09 0.33 0.93 0.06
FF5-BOND 0.52 0.89 0.21 0.28 0.63 0.08 0.71 1.23 0.34** 0.16 0.35 -0.11
RP-PCA5 0.76 1.40 0.46*** 0.88 1.12 0.25*** 0.22 0.78 0.12 0.44 0.90 0.10
IPCA5 0.48 2.36 0.41*** 0.36 0.90 0.09 0.28 1.50 0.15*** 0.27 1.00 0.06

19


	Introduction
	P-Tree Factor Models for Asset Pricing
	Tree-based Models and P-Tree Innovations
	Growing a P-Tree
	Incorporating SDF Objectives into Global Split Criteria
	Boosted P-Trees for Multiple Factors

	An Empirical Implementation of P-Tree on U.S. Equities
	Data
	Splitting the Cross Section
	Random P-Forest for Variable Importance

	Performance and Further Applications
	Asset Pricing Performance
	Investment Performance
	Nonlinearity, Interactions, and Interpretability
	P-Tree for Panel Data: Cross Section + Time Series

	Conclusion
	Appendices
	Robustness check for Tuning Parameter No. Leaf
	Robustness to Economic Restrictions
	Application of P-Tree to the U.S. Corporate Bonds
	Data
	Empirical Results




